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Abstract

The encoding of space in close proximity to the body, referred to as peripersonal space
(PPS), is believed to contribute significantly to defensive behavior and consequently, survival.
Despite numerous empirical findings on PPS representations in both humans and monkeys,
the neural mechanisms underlying these processes remain largely unknown. In this thesis,
we primarily investigate the idea that visuo-tactile (or audio-tactile) prediction—the use of
a visual (or auditory) stimulus to predict a future contact with the body perceived through
touch—is a key mechanism of PPS encoding, as initial evidence suggests. We investigated the
mechanism using computational models. We started with the tactile modality and developed
biologically-inspired representation of large areas of the body surface of the humanoid robot.
The representation was based on a modified self-organizing map neural network, trained on
tactile data from the humanoid robot, which allowed to incorporate prior knowledge about
the representation of the body surface in the primary somatosensory cortex. This research
was employed to investigate the process of formation of the representation. This was followed
by models performing visuo-tactile prediction. One model employed a neural network archi-
tecture which combined a Restricted Boltzmann Machine to integrate position and velocity,
with a feedforward neural network for predicting future contact with the body. The model
demonstrated the feasibility of visuo-tactile prediction by replicating the phenomenon of PPS
expansion, which occurs as velocity of an approaching stimulus increases. The second model
was a Bayesian Decision Theory based normative model. This model successfully replicated
many crucial characteristics of PPS encoding. In order to investigate the development of PPS
encoding with child-caregiver-like interaction data, we created a model utilizing raw visuo-
tactile inputs. We began with a deep neural network based on predictive coding for next-frame
video prediction that achieved state-of-the-art performance. Subsequently, this network was
extended to include the tactile modality and utilized raw visuo-tactile inputs generated during
an interaction between a humanoid robot and a person, emulating the interaction between a
child and a caregiver. The ongoing work report with preliminary results is included in the
thesis.





Abstrakt

Předpokládá se, že reprezentace prostoru v těsné blízkosti těla (peripersonální prostor –
PPP), významně přispívá k obrannému chování a tím i k přežití. Navzdory četným em-
pirickým poznatkům o reprezentaci PPP u lidí i opic, zůstávají neurální mechanismy, které
jsou základem těchto procesů, z velké části neznámé. V této práci se zabýváme především
myšlenkou, že vizuálně-taktilní (nebo zvukově-taktilní) predikce – vizuální (nebo zvukový)
podnět se využije k předpovědi budoucího kontaktu s tělem vnímaného prostřednictvím
dotyku – je klíčovým mechanismem reprezentace PPP, jak naznačují první poznatky. Tento
mechanismus jsme zkoumali pomocí výpočetních modelů. Začali jsme s hmatovou modalitou
a vyvinuli jsme biologicky inspirovanou reprezentaci velkých ploch povrchu těla humanoid-
ního robota. Reprezentace byla založena na modifikované neuronové síti samoorganizující se
mapy, natrénované na taktilních datech z humanoidního robota, což umožnilo zahrnout před-
chozí znalosti o reprezentaci povrchu těla v primární somatosenzorické kůře. Tento výzkum
byl využit ke zkoumání procesu tvorby této reprezentace. Následovaly modely provádějící
vizuálně-taktilní predikci. První model využíval architekturu neuronové sítě, která kombi-
novala omezený Boltzmannův stroj pro integraci polohy a rychlosti s dopřednou neuronovou
sítí pro předpovídání budoucího kontaktu s tělem. Model prokázal proveditelnost vizuálně-
taktilní predikce replikováním jevu expanze PPP, ke kterému dochází s rostoucí rychlostí
blížícího se podnětu. Druhým modelem byl normativní model založený na bayesovské teorii
rozhodování. Tento model úspěšně replikoval mnoho klíčových charakteristik kódování PPP.
Abychom prozkoumali vývoj reprezentace PPP s daty interakce podobné interakci dítěte a
pečovatele, vytvořili jsme model využívající nezpracované vizuálně-taktilní vstupy. Začali
jsme s hlubokou neuronovou sítí založenou na prediktivním kódování pro predikci dalšího
snímku videa, která dosáhla výkonu na úrovni nejlepších aktuálních metod. Následně byla
tato síť rozšířena o taktilní modalitu a využila nezpracované vizuálně-taktilní vstupy gene-
rované během interakce mezi humanoidním robotem a osobou, která napodobuje interakci
mezi dítětem a pečovatelem. Zpráva o této probíhající práci s předběžnými výsledky je
součástí práce.





Chapter 1

Introduction

Understanding how a complex biological system like the brain, with billions of interconnected
neurons, works is one of the most challenging tasks for modern science. Due to the brain’s
unimaginable complexity, high non-linearity, and limited observability, solely relying on tra-
ditional experimental approaches is limiting for a thorough understanding.
In recent decades, however, advances in computer science have opened up new horizons

for unraveling the mysteries of the brain. The new computational methods, such as machine
learning techniques, have the potential to become powerful complements to the empirical
approach. By bridging the gap between the theoretical and empirical approaches, the methods
provide a valuable framework for deepening our insight into the mechanisms of different brain
functions and behavior. Abstract and often vague ideas of the potential mechanism can be
transformed into computational models and compared with empirically observed properties.
The models which conflict with the empirical data are eliminated [1]. The process of using
the computational models in cognitive neuroscience is shown in Fig. 1.1 (A). In this thesis,
the models are primarily used to explore the biological mechanisms of encoding space in close
proximity to the body and related events in that space.
The computational models of different phenomena generally strongly depend on available

technology and computational methods. For example, without effective optimization methods
and fast graphics processing units, it would not be possible to get state-of-the-art models of
representations of images in inferior temporal cortex in monkeys and humans which are based
on convolutional neural networks [3–5]. This dependence of the models on suitable methods
is reflected in the second objective of the thesis.
In light of the opportunities which the intersection of computer science, engineering, cog-

nitive neuroscience and psychology provides, there are three objectives of the thesis (see Fig.
1.1 (B)):

1. Building on the schema (see Fig. 1.1 (A)), the first objective of the thesis is to create
computational models which deepen understanding of the biological mechanisms of the
representations of the events within the close surroundings of the body.

2. The second objective is to provide new computational methods, preferably inspired by
mechanisms observed in the brain, for the computational models. For example, we
created a neural network for next frame video prediction based on predictive coding
schema which was then used as a base of a visuo-tactile predictive model of peripersonal
space encoding (see Chapter 3).

3. The third objective is to apply the computational models of PPS encoding and the
computational methods in machine learning and robotics.
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Figure 1.1: (A) Schema of usage computational models in brain sciences from
[1]. The biological organism and model perform an experimental task. The data from the
organism and the model are collected and compared. If the brain and model data does not
correspond, the model is eliminated. The models can also perform experimental tasks which
may be performed with biological organisms in the future. For example, in case of PPS
research the task can be observing of the approaching visual object by a monkey (e.g., [2])
and by a predictive PPS encoding model. In this case, firing rate of a PPS-related neuron
is recorded and compared with predicted tactile activations by the model. Schema redrawn
from [1]. (B) Objectives of the thesis. Objective 1— create computational models which
deepen understanding of the biological mechanisms of the representations of the events within
the close surroundings of the body. Objective 2 — provide new computational methods,
preferably inspired by mechanisms observed in the brain, for the models. Objective 3 —
apply the computational models of PPS encoding and the computational methods in machine
learning and robotics. See text for details.

Individual contribution of each work to these objectives is elaborated in Chapter 2 (see Table
2.1 for summary).
In Fig. 1.2, the objectives of the thesis are elaborated from the perspective of synthetic

methodology (SM), also known as “understanding by building” [6] (Chapter 1). A synthetic
model of natural phenomenon is created. The created model is used for deepening of the
understanding of the natural phenomenon. The model may be eventually transformed into
application.

1.1 Peripersonal space representation as a prediction task

The central topic of the thesis is peripersonal space (PPS), which is the space in the close
surroundings of the body [7,8] (see Fig. 1.3), and how it is together with corresponding events
(e.g., presence of a predator) represented by the brain. It has special importance for survival,
because objects in the PPS may come into direct contact with the body. Experimental findings
indicate that PPS encoding plays a significant role in defensive behavior (see e.g., [9]). When
a flying stone or another dangerous object approaches the body, it can be a matter of life
and death whether a defensive response is initiated. It is therefore not surprising that there
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Figure 1.2: Synthetic methodology and thesis objectives. Overview of approaches to
the study of intelligence. On the left, we have the empirical sciences like biology, neurobiol-
ogy, and psychology that mostly follow an analytical approach. In the center, we have the
synthetic ones, namely cognitive science and AI, which can either model natural agents (this
is called synthetic modeling) or alternatively can simply explore issues in the study of intel-
ligence without necessarily being concerned about natural systems. From this latter activity,
industrial applications can be developed (this part of caption taken with a minor modification
from [6], Chapter 1). Selected parts of the schema of usage computational models in brain
sciences and thesis objectives—“models”, “new methods” and “applications”—(see Fig. 1.1)
were put into the synthetic methodology schema. Synthetic methodology schema redrawn
with modifications from [6] (Chapter 1).

is a specialized circuit in the fronto-parietal cerebral cortex that responds to events in the
immediate surroundings of the body (see e.g., [11, 12]).

Despite the existence of many empirical results, understanding of the mechanisms behind
the PPS representations is still missing. Results of several empirical studies suggest that PPS
encoding has an important role in impact prediction (e.g., [13,14]). This role of PPS encoding
for impact prediction is also widely popular in the community (see [15,16] for reviews).

The idea of PPS encoding as impact prediction assumes that a visual or auditory stimulus
is used to predict a future tactile stimulus. The predicted tactile impact value may also reflect
a more general criterion than simply minimizing the difference between the predicted value
and the actual tactile impact value. For example, it may be reflected that the cost of not
predicting an impact when it occurs may be greater than the cost of predicting an impact
when it does not occur (as we model in [17]). In the thesis, this concept will be referred to as
predictive PPS encoding.

Motivated by the need to explore the idea of predictive PPS encoding in a more profound
and specific way—from a vague idea to a model with behavior which can be compared to
empirical results—, we mainly focused on the models which perform impact prediction. This
choice was supported by the fact that it can be formulated as a computational task, which
has moreover its significance in machine learning and robotics applications. As explained
earlier (see Fig. 1.1 for a corresponding schema) comparing the behavior and properties of
the model with empirical results may result in a hypothetical mechanism being rejected. The
comparison should not be only with the current empirical results. It is highly desirable to

3



Figure 1.3: Conceptual schema of the peri-hand (blue), peri-face (green) and peri-
trunk (red) PPS representations. Figure from [10]. [Under a Creative Commons Attri-
bution 4.0 International License – http://creativecommons.org/licenses/by/4.0/]

make testable predictions, based on the properties of the model, for future empirical studies
which can be compared with the model’s behavior and properties. For example, our normative
model of PPS encoding [17] showed that when a sensory uncertainty of approaching stimulus
is increased (e.g., by changing light conditions), the PPS boundary becomes more graded.
This can be experimentally tested and used for possible rejection of the model in the current
form.

1.2 Related PPS encoding models

In this section, we will introduce related PPS encoding models and their connection to pre-
dictive PPS encoding.
To begin with, we will introduce the PPS model developed by Magosso et al. [18] and

its various extensions [19–22]. The initial version of the computational model of PPS used a
biologically motivated neural network with hardwired receptive fields of multisensory neurons
to cover the entire tactile modality and the corresponding part of visual space, with some
extension beyond the part covered by the tactile modality. The model was further extended
by Hebbian learning to account for PPS extension after tool-use [19, 22]. Another variant
of the model addressed short-term recalibration of the PPS [21]. A neural network model
by Noel et al. [20] addressed the expansion of PPS with increasing speed of the stimulus
approaching the body (see e.g., [23]). They extended the model of Magosso et al. [18] to

4
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include neural adaptation, which led to a decrease in neural activation for slower stimuli
and thus a decrease in the size of the PPS. The focus of these models was on potential
neural mechanisms of PPS encoding, without being explicitly tailored for predictive PPS
encoding. The models link visual stimuli close to the body with the tactile modality—a
visual stimulus, indirectly via multimodal neurons and feedback connections, preactivates
corresponding unimodal tactile neurons that can be more easily activated. Although, this
can be seen as visuo-tactile prediction, the ability to predict future impact was not directly
evaluated. Therefore, it is unclear whether the models can effectively use, for example, the
previous trajectory of the stimulus to more accurately predict future impact.
Another neural network model proposed by Bertoni et al. [24] is based on the Restricted

Boltzmann Machine (RBM). The model performs multisensory integration of tactile, propri-
oceptive and visual modalities. This model by Bertoni et al. is unique in that it takes into
account proprioception—the PPS is anchored to the hand. In contrast to predictive PPS
encoding, the model focuses mainly on spatial visuo-tactile prediction (related visual and tac-
tile stimuli occur simultaneously during training) and ignores the temporal dimension. This
limits the extension of PPS further away from the body.
Bufacchi et al. [25] created a geometric model of the PPS related to the hand blink reflex

(see [26]) defensive response. They proposed that around a body area, the PPS is encoded as
a probability field whose values correspond to the probability of the stimulus hitting the body
area. The field is expected to be used to modulate the defensive response. The hand blink
reflex was used to fit the model to measured data. Since the field reflects the probability of
a future hit, the model also supports the idea that PPS encoding is related to visuo-tactile
prediction. On the other hand, the model did not take into account dynamic properties of the
stimulus (e.g., direction of motion). However, the consideration of dynamic properties may
not be necessary for the prediction related to the hand blink reflex.
Another model was developed by Roncone et al. [27]. The PPS representation model

was trained using the real humanoid robot iCub [28]. The probabilistic form (likelihood of
contact) of the PPS representation was learned from looming objects that eventually hit the
body. The model used stimulus distance and estimation of time to contact for each tactile
unit to estimate the likelihood of contact. The distributed PPS representation was used for
avoidance and reaching tasks with the real robot. This model performs visuo-tactile prediction
to represent PPS in a different way than our models, but is conceptually close to them.
Recently, a model of PPS-like encoding based on reinforcement learning (RL) was pro-

posed by Bufacchi et al. [29] (currently under review). The authors demonstrated that only
two assumptions—(i) agents experience rewards (both positive and negative) when they get in
contact with objects from the environment, (ii) they maximize reward by performing proper
actions—are sufficient to explain most of the empirical properties of PPS representations.
Moreover, they showed that impact prediction is an emergent property of the model rep-
resentation. In other words, they suggested that the brain maximizes reward by choosing
appropriate actions, and impact prediction is only a by-product of this process. The potential
contribution of this new concept of PPS encoding is great. However, further research and
critical exploration is needed to decide whether this more general approach is indeed a better
modeling schema for PPS-related phenomena.

1.3 Roadmap of the thesis

This thesis is a compilation of three published journal articles and a conference article. More-
over, a preliminary results report of a work, which is a continuation of the published articles
and currently in preparation for submission, is included. To introduce a story line of our
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exploration of the mechanisms of PPS representations, this section unfolds how the presented
works build on each other and how they are interrelated. Main contributions of each work
are elaborated in Chapter 2. A roadmap of the thesis is in Fig. 1.4.

Figure 1.4: Roadmap of the thesis. The arrows show that the article at the end of the
arrow builds on the article at the beginning of the arrow or that insights and weaknesses of one
work influenced the following work (see the text for details). The green rectangle corresponds
to the body surface, the blue one to the surrounding space. The red rectangle represents
PPS which covers the body surface and a close subpart of the surrounding space. The white
rectangles correspond to the different works.

We initially developed a biologically-inspired representation of the large areas of the body
surface of the humanoid robot iCub [28] that is equipped with the pressure-sensitive tactile
modality (see Fig. 1.5). This was motivated by the fact that the body surface is also a part
of the PPS encoding—receptive fields of observed PPS related neurons commonly include
a tactile area and its close surroundings [23], for example. Modifying a well known neural
network architecture self-organizing map (SOM; [30]), we get 2D maps with representation
of the large areas of the body surface which locally preserved topological organization of the
tactile modality and performed compression of the tactile information [31] (see Fig. 1.5). The
topological organization cannot be preserved globally, because the 3D surface of the robot
(e.g. a cylindrical surface) cannot be reduced to 2D map with complete preservation of the
topological organization. Although we have not directly used these maps in our PPS research
yet, it had an impact on the choice of using 2D tactile topology preserving tactile maps with
compression for tactile encoding in our following work—visuo-tactile PreCNet (see Chapter
3).
Our initial model of PPS representation departed from a Restricted Boltzmann Machine

based neural network [32] for integration of the position and velocity and a feedforward neural
network for the prediction itself (see Fig. 1.6). Because the model based on predictive PPS
encoding successfully replicated the phenomenon of PPS expansion with increasing speed of
an oncoming stimulus [23], the work was encouraging for the idea of predictive PPS encoding.
However, the complexity of the model—it consists of two different neural network models—

6



Figure 1.5: Representation of the body surface of a humanoid iCub by a 2D tactile
map. (Left) A 2D tactile map whose neurons have receptive fields which cover the tactile
modality. The map locally preserves tactile topology and compresses tactile information.
(Right) A humanoid robot iCub with depicted tactile modality. Figure taken from [31].
©2017 IEEE
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Figure 1.6: Scenario and architecture. (Left) 2D experimental scenario. Stimulus trajec-
tory in orange; positions of stimulus at two different discrete time moments shown. “Skin”
in green. (Right) Architecture of the neural network and illustration of training and testing
(predicting) process. Figure and caption taken from [33].

and the fact that certain aspects of the model were based on more hypothetical mechanisms
(e.g., existence of a sensory buffer) made it harder to relate and determine consequences of the
results for the biological side of PPS research. This motivated us to propose a normative model
of PPS, which is more transparent and based on more biologically plausible mechanisms.
We developed a normative model as the second predictive PPS encoding model. This

model is based on the estimation of the probability of a moving object hitting the body and
Bayesian Decision Theory. Although, the idea of the model is general, in this work, the focus of
the model was on an experimental scenario with an object with a uniform linear motion. Since
this setup is very common in cognitive neuroscience studies of PPS (e.g., [2,10]), it facilitated
a comparison between the model’s properties and the empirical results. This comparison
revealed that the model replicated a wide range of empirically established characteristics of
PPS.
However, this model was not intended for learning from data, which limits its use for

investigating the development of PPS encoding with visuo-tactile data from child-caregiver-
like interaction with a child-like robot. This led us to propose a deep neural network model for
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next visuo-tactile frame prediction which also minimizes weighted prediction loss. In contrast
to the previous model, the calculation is not hard-wired but learned from the training data.
As a first step, we ignored the tactile modality and created a deep neural network for next
frame video prediction based on predictive coding.
In next frame video prediction task a sequence of images is given and the task is to

anticipate the succeeding image (see Fig. 1.7). We created a deep neural network PreCNet [36]

Figure 1.7: Next frame video prediction task A sequence of images is given as an input.
The task is to predict the next image as close as possible to the ground truth image. The
images taken from Caltech Pedestrian Dataset [34, 35] which was used for evaluation of the
model.

based on predictive coding schema proposed by Rao and Ballard [37]. The state-of-the-art
performance of the network on widely used datasets with images from a car-mounted camera
was a good prerequisite for sufficient predictive performance of the model with real world
child-caregiver-like data as inputs.
The network PreCNet was extended by a tactile modality and applied for predicting future

visuo-tactile frames (see Fig. 1.8 for a visuo-tactile frame). As a part of loss function related

visuo-tactile frame

Figure 1.8: Visuo-tactile frame. An image from the left camera of iCub and a tactile map
representing the torso are integrated into a visuo-tactile frame. The images were created in
Neurorobotic Platform simulator [38], the skin was created using [39] as a starting point.

to tactile channel, a generalized version of the loss function of the normative model [17] was

8



used. The model was trained using data which mimicked a real interaction between a baby
and a caregiver by using a child-like humanoid robot iCub (see Fig. 1.9). The initial results

Figure 1.9: Real world interaction with a child-like robot iCub. The person walks up
to the robot and strokes it, much like a parent would do it.

showed that the visuo-tactile PreCNet can predict future tactile activations. Although this
work is still ongoing, we decided to incorporate it into the thesis in the form of a brief ongoing
work report (see Chapter 3). This aims to clarify the connection between our previous work,
especially the network for next frame video prediction, and the main topic of the thesis.
The thesis is structured as follows. Chapter 2 presents main contributions of the individual

published works. Chapter 3 is dedicated to the ongoing work report of the visuo-tactile
PreCNet. The next chapter contains the conclusions (Chapter 4). Chapter 5 is devoted to
discussion and future work.

9
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Chapter 2

Contribution of published works

This chapter outlines the main contributions of each article that constitutes the thesis. We
provide an overview of each model used and summarize the main results. The contributions
of the individual articles are compiled in Table 2.1.

2.1 Robotic homunculus: Learning of artificial skin representa-
tion in a humanoid robot motivated by primary somatosen-
sory cortex

Hoffmann, M., Straka, Z., Farkaš, I., Vavrečka, M. and Metta, G., 2017. Robotic
homunculus: Learning of artificial skin representation in a humanoid robot motivated
by primary somatosensory cortex. IEEE Transactions on Cognitive and Developmental
Systems, 10(2), pp.163-176.

The article is in Appendix A. The code is available at https://github.com/matejhof/
robotic-homunculus-supporting-materials.

We used a humanoid robot, iCub [28], equipped with an artificial pressure-sensitive skin to
investigate how the representation of large areas of the body surface, which mimics that found
in the primary somatosensory cortex of primates [40, 41], can be obtained from local tactile
stimulations of the humanoid’s body (see Fig. 2.1).
We employed a well-known self-organizing map (SOM; [30]), which is known to preserve the

topology of the input data, and investigated the arrangement of the trained maps. We found
that these fully data-driven maps have very different and variable arrangements in contrast
to the arrangement of primary somatosensory cortex (see Fig. 2.2 left part). In addition,
the standard SOM was unable to handle multiple concurrent tactile stimulations. Motivated
by findings from biology that the arrangement of the cortical sheet seems to be roughly
genetically determined (see [31] for details), we modified the standard SOM by adding the
possibility to restrict the receptive fields of individual neurons within the map and created the
Self-Organizing Map With Maximum Receptive Field Size Setting (MRF-SOM). This allowed
us to create a map—learning was still used—with an appropriate arrangement, as shown in
Fig. 2.2 (right), and also significantly increased the robustness of the network to multiple
simultaneous tactile stimulations.
From an application point of view, the method can be used for bio-inspired representations

of large-area tactile arrays [43] or the representation of proprioceptive inputs [44], for example.
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Table 2.1: Contributions summary of each work in three key areas (see Chapter 1).

Understanding
of PPS/body
surface repre-
sentation

Computational
methods (only
contributions
here)

Applications

Robotic ho-
munculus [31];
Appendix A

Effect of activity-
dependent vs.
independent
factors on so-
matotopic map
formation.

Modification of
SOM that allows
to set Maximum
Receptive Field
Size of individual
neurons.

Bio-inspired rep-
resentations of
large-area tactile
arrays or the
representation of
proprioceptive
inputs.

RBM and
FFNN model
of PPS [33]; Ap-
pendix B

Visuo-tactile pre-
diction as a mech-
anism of PPS rep-
resentation learn-
ing is feasible.

No significant
contribution.

No significant
contribution.

Normative model
of PPS represen-
tation [17]; Ap-
pendix C

The normative
model of PPS
based on impact
prediction mech-
anism replicates
many of the PPS
characteristics.
This supports
the idea of the
“predictive PPS
encoding”. Pre-
dictions for future
empirical work
are proposed.

No significant
contribution.

No significant
contribution.

PreCNet [36]; Ap-
pendix D

No significant
contribution.

Deep neural net-
work based on a
predictive coding
schema.

State-of-the-art
performance for
next frame video
prediction task.

2.2 Learning a peripersonal space representation as a visuo-
tactile prediction task

Straka, Z. and Hoffmann, M., 2017. Learning a peripersonal space representation as
a visuo-tactile prediction task. In Artificial Neural Networks and Machine Learn-
ing–ICANN 2017: 26th International Conference on Artificial Neural Networks, Al-
ghero, Italy, September 11-14, 2017, Proceedings, Part I 26 (pp. 101-109). Springer
International Publishing.

The article is in Appendix B. The code is available at https://github.com/ZdenekStraka/
icann2017-pps.

The model of PPS, in a 2D environment (see Fig. 1.6), is based on two parts: (i) an
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Figure 2.1: Representation of tactile body surface in monkey and robot. (A) and (B)
Simplified representation of selected body parts in Brodmann area 3b of macaque monkey.
Numbers and color code mark the correspondences between the cortical areas and skin surface
on the body parts that will be modeled using the iCub robot. Redrawn and adapted after [42].
(C) and (D) Schematics of analogous situation in the robot—approximate target for the SOM
algorithm. Figure and caption taken from [31]. ©2017 IEEE

Standard SOM MRF-SOM

Figure 2.2: Learned maps from tactile stimulation on right side of robot body.
(LEFT) Learned representations using standard SOM. The three panels depict the maps
(24 × 7 neurons) after learning as a result of three runs of the algorithm on the same training
set. The arrangement is variable and significantly different from that found in primary so-
matosensory cortex. (RIGHT) Learned representation using MRF-SOM. The arrangement
resembles that found in primary somatosensory cortex (see Fig. 2.1). Figures and a caption
from [31] used as a base for this figure. ©2017 IEEE

RBM-based neural network which integrates position and velocity and (ii) a feedforward
neural network for visuo-tactile prediction (see Fig. 1.6 for the architecture). In addition,
all variables are encoded by the neurons with a “probabilistic population code” [32, 45] to
incorporate uncertainty. The work showed that the idea of learning PPS representation as a
tactile prediction from looming visual stimuli is feasible. Additionally, the model showed PPS
expansion with an increasing speed of the looming stimuli, which is an empirically observed
property of PPS representations [23].
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2.3 A normative model of peripersonal space encoding as per-
forming impact prediction

Straka, Z., Noel, J.P. and Hoffmann, M., 2022. A normative model of peripersonal
space encoding as performing impact prediction. PLOS Computational Biology, 18(9),
p.e1010464.

The article is in Appendix C. The code is available at https://github.com/ctu-vras/
pps-normative-model.

The normative model that links PPS encoding with impact prediction is based on estima-
tion of the probability of a moving object hitting the body (see “Hit probability estimation”
in Fig. 2.3) and Bayesian Decision Theory (see “Bayesian decision” in Fig. 2.3). The model
allows for the consideration that the cost of not predicting an impact when it occurs may be
greater than the cost of predicting an impact when it does not occur.
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Figure 2.3: Schema of the normative model of PPS with an example of calculation.
Figure from [17].

The hypothesis that PPS reflects impact prediction is supported by the results of the
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model, which replicated the following empirically determined characteristics of PPS: (i) defines
a gradual boundary between near and far space, (ii) shows expansion of PPS as the speed
of an incoming object increases, (iii) demonstrates larger PPS for a looming than a receding
stimulus, (iv) scales according to numerically expressed characteristic of the environmental
objects and (v) it can accommodate different PPS sizes for various parts of the body. In
addition, we proposed specific predictions for future empirical work.

2.4 PreCNet: Next-frame video prediction based on predictive
coding

Straka, Z., Svoboda, T. and Hoffmann, M., 2023. PreCNet: Next-frame video predic-
tion based on predictive coding. IEEE Transactions on Neural Networks and Learning
Systems. [in press]

The article is in Appendix D. The code is available at https://github.com/ctu-vras/
precnet.

We transformed the seminal predictive coding schema proposed by Rao and Ballard [37] into
a deep neural network (PreCNet) for next frame video prediction, while remaining maximally
faithful to the original schema.
The network attained state-of-the-art performance on a widely used benchmark (KITTI

[46] for training, Caltech Pedestrian Dataset [34,35] for testing) for next frame video prediction
task, consisting of videos from a car-mounted camera (see Fig. 2.4 for a qualitative comparison
of PreCNet with other state-of-the-art methods).
Furthermore, we showed that the use of a larger dataset (2M images subset of BDD100K

[47]) than the standard one (KITTI with 41k images) yielded another significant improvement.
This revealed the limitations of using KITTI dataset for training.
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ContextVP RC-GAN PredNet

Input Prediction (t=11)

CrevNet

IPRNN Jin et al. CrevNet

PreCNet (Ours)t=8 t=10
Ground

Truth (t=11)
Input

ContextVP RC-GAN PredNetPreCNet (Ours)

Prediction (t=11)

G.T.t=8 t=10

Figure 2.4: Qualitative comparison of PreCNet with other state-of-the-art methods
on the Caltech Pedestrian Dataset. Ten input frames were given (see frames for t = 8,
t = 10), and the next one (t = 11) was predicted (RC-GAN used only four input frames) by
the models (for references, see [36]). Figure and caption (with modifications) from [36].
©2023 IEEE
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Chapter 3

Ongoing work: Visuo-tactile prediction
during child-caregiver-like interaction

3.1 Visuo-tactile prediction during child-caregiver-like interac-
tion

This work is currently being prepared for submission. Thus, this chapter takes the form of
a brief ongoing work report. The focus of this report centers primarily on the motivation
behind this work, its relation to our previous work (which forms the core of the thesis), and
our plans for the remaining work. This work is a continuation of Adrian Pitonak’s bachelor
thesis [48], which I supervised.

3.1.1 Introduction

It is still unclear how PPS encoding is formed in the brain during early childhood. There is
initial evidence that a simple form of (auditory) PPS encoding is present even a few hours
after birth [49]. Additionally, the results of the study showed a significant positive correla-
tion between the multisensory integration (calculated from EEG data) of the tactile and near
auditory stimulation and postnatal age. This is supportive for the concept that PPS repre-
sentations are not fixed and are still developing in early childhood, although more research
needs to be done.
The complexity of babies’ interaction with the environment—the movement of caregivers

is stochastic, highly variable and non-uniform, for example—, which has likely impact on de-
velopment, poses a limitation on the use of “disembodied” computational models for exploring
the developmental process. Computational models mostly fail to reflect the interaction com-
plexity. This work explores the possibility of using embodied robotic models and collecting
sensory data during scenarios that resemble the natural interaction of a baby with a caregiver.
A humanoid child-like robot, iCub [28], was used to collect data to train PPS representations.
This work has also an application aspect. Roncone et al. [27] created a white box—

processing of the raw visual inputs consisted of several handcrafted stages, for example—
model of PPS encoding. It was trained, using probabilistic estimation approach, to predict
tactile contact from raw visual stimuli. The model was successfully used for avoidance and
reaching tasks with the real robot. As deep learning approach often outperforms handcrafted
methods, we employ a deep neural network, based on our previous work [36], for visuo-tactile
prediction. This may improve prediction performance and therefore contribute to performance
improvement of the robot in tasks such as avoidance and reaching.
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3.1.2 Visuo-tactile predictions

The task is to predict a future tactile activation given an observed image sequence. This
is demonstrated using an illustration with inputs from a simulated environment, as shown
in Fig. 3.1. Our visuo-tactile prediction model extends PreCNet [36] by incorporating two-

....

Input sequence at time T2

T2 Tactile prediction 

for time (T2, T3]

T1 T2 T3

visuo-tactile frame

T1

A

B

C

Figure 3.1: Illustration of a visuo-tactile prediction task in a simulated environ-
ment. (A) An image from the left camera of iCub and a tactile map representing the torso
are integrated into a visuo-tactile frame. (B) A green ball is looming toward the robot iCub.
The corresponding camera images and tactile maps are displayed side by side. The onset of
tactile activation was between T2 and T3. (C) The task at time T2 is to predict the tactile
activation that will occur between time T2 and T3 from the input sequence of images. The
images were created in Neurorobotic Platform simulator [38]; the skin was created using [39]
as a starting point.

dimensional tactile maps that reflect the topology of the tactile modality into the input frames
(see Fig. 3.1 A). In the case of the real robot, the tactile maps also perform compression of
the tactile information. Furthermore, a part of a loss function related to the tactile modality
was created as a generalization of the loss function used in our normative PPS model [17].
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3.1.3 Preliminary Results

We trained the network on a dataset containing multiple sequences of a person walking towards
and touching iCub (sequences without touching were also included). The motivation was to
mimic the interaction between a child and a caregiver (see Fig. 3.2). The network was tested

Figure 3.2: Real world interaction with a child-like robot iCub. The person walks up
to the robot and strokes it, much like a parent would do it.

on the test subset of the dataset. The network predicted future tactile stimuli given the
input sequences, as shown in Fig. 3.3 and in a video [https://drive.google.com/file/
d/1PFT1jC_4TFcPduzASRnr0k2QZ1KhFLu3/] (in slow motion [https://drive.google.com/
file/d/1kMm3dqPwu04p9FOqVfEsyeAxwmw-91mw/]). The upper part of the video corresponds
to the input frame, the lower part to the prediction of the future video-tactile frame. The
model is expected to predict tactile activation before it happens, as demonstrated in Fig. 3.3
or in the movie.
The distance of the experimenter’s right hand from the touch location on the iCub’s torso,

used (only) for evaluation, was obtained using a motion capture system. This allowed to
obtain the dependence of the tactile prediction values on the distance of the hand from the
robot (see Fig. 3.4). Assuming that the tactile prediction value is closely related to PPS
encoding, the PPS response from Fig. 3.4 can be used to compare the model with empirical
properties of PPS, in a similar fashion to [17].
In addition, we also used a synthetic dataset (see Fig. 3.1) created in the Neurorobotic

Platform (NRP) simulator [38] and trained and tested the network using the dataset. Certain
properties of the model can be analyzed more easily in a controlled environment where an
object moves uniformly and linearly towards the robot.

3.1.4 Future Work

There are several questions we would like to address in this work. First, we want to explore the
idea of PPS encoding as a visuo-tactile prediction in a developmental scenario. Specifically, it
is being questioned whether the idea that interactions in which a caregiver approaches a baby
are the basis for the development of PPS encoding is plausible and can lead to PPS represen-
tations with empirically observed properties. We also aim to propose testable predictions for
future empirical studies.
A synthetic scenario involving a looming ball heading towards a robot was created in NRP

to train the model and gain insight into some properties of the model, such as the effect of
the speed of the moving object on the tactile predictions. The properties of the model will be
analyzed.
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Figure 3.3: Visuo-tactile predictions of the network. Four consecutive input visuo-
tactile sequences and corresponding predictions are shown. After inputting a sequence, a
prediction of the visuo-tactile frame is generated. The predicted frame is expected to be close
to the following input frame (ground truth). Although this work focuses on tactile prediction,
the prediction of the next visual frame is also obtained as a by-product.

The model may also have an important contribution in the field of robotics. We will
study whether this data-driven model can be used for contact prediction in the context of
human-robot interaction or as a reliable method for collision avoidance. For example, the
concept of self-supervised learning of safety zones around a robot during its interaction with
the environment will be studied.
Another potential contribution of this work is the unique method of extending visual

frames with tactile maps to form visuo-tactile frames. Preliminary results indicate that the
method is effective and could have applications beyond our model. This will be investigated
further.
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max

max

Figure 3.4: Dependence of a predicted tactile activation on the distance of the
experimentator’s hands from iCub. The network predicted negligible tactile activation
(see the lower tactile map) when the looming hands were more than about 20 cm away from
the robot. When the distance was less than 20 cm, tactile activation was predicted as shown
in the upper tactile map. The maximum tactile activation over all pixels of the predicted
tactile map was used in the plot.
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Chapter 4

Conclusions

The focus of the thesis was primarily on the modeling of peripersonal space (PPS) encoding
and biologically motivated representations of the body surface. The exploration of the encod-
ing of PPS was performed using the concept of visuo-tactile prediction. The code of all our
models has been made publicly available.
We began by modifying a self-organizing map neural network to incorporate prior knowl-

edge about the representation of the body surface in the primary somatosensory cortex. We
used tactile data from the humanoid robot iCub to investigate the process of formation of
this representation [31].
In the following work, we proposed a neural network-based architecture that focused

mainly on the feasibility of the idea of visuo-tactile prediction as the key mechanism of PPS
encoding [33]. This network replicated the empirical observation of PPS expansion that occurs
with increasing velocity of a looming stimulus. In subsequent work, we proposed a normative
model of PPS encoding to perform impact prediction [17]. Using Bayesian decision theory,
the model was able to replicate many characteristics of PPS. Suggestions for future empirical
studies based on the properties of the model are an important part of the paper.
To explore the development of PPS encoding using raw visuo-tactile inputs during an

interaction between a humanoid robot and a caregiver that mimics the interaction between
a child and a caregiver, we first developed a deep neural network (PreCNet) for next frame
video prediction based on the predictive coding schema [36]. PreCNet achieved state-of-the-
art performance on a commonly used benchmark for next-frame video prediction. Currently,
we are preparing a manuscript where the visual frames of PreCNet are extended by adding a
tactile modality. The network is then employed for visuo-tactile prediction. We will analyze
the PPS encoding properties of the model, particularly in the context of PPS development.
We will also explore the application of this method in robotics. This research is presented in
the thesis as an ongoing work report.
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Chapter 5

Discussion

In this chapter, the discussion will be primarily related to the concept of peripersonal space
(PPS) encoding as visuo-tactile prediction (predictive PPS encoding), which is the central
focus of the thesis. Since detailed discussions can be found in each published paper, we will
avoid discussing them in depth here and instead focus on general aspects that were addressed
in the thesis.
The concept of predictive PPS encoding appears to be a natural candidate for explaining

the properties of PPS representations (e.g., [13, 14]) and is widespread in the scientific com-
munity (see [15, 16] for reviews). Therefore, it was anticipated that the models’ properties
would generally align with empirical findings. This largely proved to be the case. Given the
generality of the concept of predictive PPS encoding, there is a danger that an implementation
of the concept will be overfitted to the desired properties. It may happen by a “proper” choice
of model or training/test dataset parameters or their form. For instance, certain features of
PPS could be explained by proposing a hypothetical frequent situation that a child might
experience during his or her development, without clear evidence that the situation actually
occurs significantly often. As there are limited options to avoid this situation without knowing
the correct model or data and its parameters, it is necessary to be careful in interpreting the
results. Our approach to address the “overfitting” issue predominantly involved three strate-
gies. The first strategy is that we published concrete non-trivial properties of the model that
can be observed in future empirical work (see [17]). This is an efficient test of the model since
it is currently unknown whether these properties will indeed be observed. The second strategy
is to test the model in several experimental scenarios (see [17]). If the model can replicate
PPS responses from more scenarios, the risk that it is caused by overfitting is smaller. The
third strategy is to utilize bio-plausible datasets (see Chapter 3). This was the motivation
for the third model, which was trained on a visuo-tactile dataset that mimics caregiver-child
interactions using a humanoid robot. Although the dataset does not correspond to the child’s
actual sensory experience, it is based on real data, which may help to increase its similarity
to the child’s actual sensory experience in some aspects.
Our focus was mostly on the high-level functional mechanism rather than the mechanistic

explanation of how neural circuits implement the predictive encoding of PPS. It is a challeng-
ing task to find a biologically plausible neural network model (preferably based on spiking
neural networks) of the predictive PPS encoding that covers all important aspects, including
velocity and sensory uncertainty. As explained in Section 1.2, Magosso et al.’s biologically
motivated neural network PPS encoding model [18] can be seen as performing a visuo-tactile
prediction by linking visual stimuli close to the body with the tactile modality. Moreover, Noel
et al. [20] expanded the model by adding neural adaptation to increase the size of the PPS
with increasing speed of the approaching stimulus, and suggested that the neural adaptation
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mechanism may be an important part of a related predictive mechanism in the brain that is
presumably involved in the addressed phenomenon. However, the predictive abilities of the
models have not been explicitly investigated. Consequently, it is unclear whether the models
can effectively use, for example, the previous stimulus trajectory for accurate future contact
prediction. Investigating the predictive abilities of these models, and potentially extending
them to perform more accurate future tactile predictions, may help bridge the gap between a
biologically plausible neural architecture and predictive PPS encoding mechanisms.
If visuo-tactile predictions are indeed a key mechanism in PPS encoding, their primary

purpose is likely related to the survival of the organism. Consequently, the predictions must
be evident at the behavioral level. As different actions have varying time courses and du-
rations (e.g., blinking vs. sidestepping), the brain needs to make predictions with different
time steps based on the related actions. This was reflected in our normative model [17] and
visuo-tactile PreCNet (see Chapter 3) by choice of predictive time step. When we compared
the predicted tactile impact values produced by the models with empirically observed PPS
responses like modulation of reaction time—presumably related to defensive reactions—we
assumed that a higher value of predicted contact would result in a stronger modulation of
the potential model’s PPS response. Given the seemingly straightforward connection between
predicting a threatening stimulus and eliciting a defensive reaction, it is reasonable to assume
that the close link between the prediction and reaction exists. Therefore, we performed a
direct comparison of the properties of the predicted impact values with the properties of the
measured responses. However, the precise relationship between prediction and response is
still unclear and likely depends on the individual defensive reaction. Consequently, a possible
next step in investigating predictive PPS encoding would be to incorporate actions into the
models, similar to Roncone et al.’s extension of their predictive PPS encoding robotic model
with a controller that utilized predictions during reaching and avoidance tasks [27]. For cogni-
tive neuroscience research on PPS encoding, it would be particularly intriguing to expand the
predictive PPS encoding model to encompass a basic defensive reaction, such as protective
blinking. By doing so, it would be possible to compare behavior-based responses of the model,
like reaction times, with observed responses in an empirical experiment. The utilization of a
simpler controller should result in more transparent inquiry and simplified analysis of the find-
ings. Alternatively, Bufacchi et al. [25] conducted a direct mapping of predictions onto PPS
response modulations. While this approach allows for a straightforward comparison between
the predictive PPS encoding model and the organism’s PPS encoding, using a model designed
for actual defensive actions is a more technically demanding yet bio-plausible approach.
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Chapter 6

Publications

Main publications from my studies are organized into categories and listed in reverse chrono-
logical order within each category. Impact factor (IF) values are taken from Journal Citation
Reports for the year 2022 (Clarivate, 2023). Each publication is accompanied by author share.

Thesis subject-related publications

Impacted journal publications

1. Straka, Z.; Svoboda, T.; Hoffmann, M.: PreCNet: Next-frame video prediction based
on predictive coding.In: IEEE Transactions on Neural Networks and Learning Systems,
IEEE, 2023. [to appear] [IF=10.4]
citations: 4 in Web of Science (WoS), 11 in Google Scholar (GS)

Straka, Z. (50 %); Svoboda, T. (25 %); Hoffmann, M. (25 %)

2. Straka, Z.; Noel, J. P.; Hoffmann, M.: A normative model of peripersonal space encoding
as performing impact prediction. In: PLOS Computational Biology, Public Library of
Science, 2022, 18(9). [IF=4.3]
citations: 2 in GS

Straka, Z. (50 %); Noel, J. P. (25 %); Hoffmann, M. (25 %)

3. Hoffmann, M.; Straka, Z.; Farkaš, I.; Vavrečka, M.; Metta, G.: Robotic homunculus:
Learning of artificial skin representation in a humanoid robot motivated by primary
somatosensory cortex. In: IEEE Transactions on Cognitive and Developmental Systems,
IEEE, 2017, 10(2), pp. 163-176. [IF=5.0]
citations: 19 in WoS, 38 in GS

Hoffmann, M. (32 %); Straka, Z. (32 %, equal contribution with M.H.); Farkaš,
I. (16 %); Vavrečka, M. (10 %); Metta, G. (10 %)

Conference proceedings (excerpted by WoS)

1. Straka, Z.; Hoffmann, M.: Learning a peripersonal space representation as a visuo-
tactile prediction task. In: 26th International Conference on Artificial Neural Networks
(ICANN), Springer International Publishing, 2017, Proceedings, Part I pp. 101-109.
[ENNS Best Paper Award]
citations: 6 in WoS, 9 in GS

Straka, Z. (50 %); Hoffmann, M. (50 %)
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Publications not related to thesis subject

1. Svarny, P.; Straka, Z.; Hoffmann, M.: Versatile Distance Measurement between Robot
and Human Key Points Using RGB-D Sensors for Safe HRI In: 1st Workshop on Prox-
imity Perception in Robotics at IROS 2018. KIT Scientific Publishing, 2018.
citations: 2 in GS

Svarny, P. (70 %); Straka, Z. (10 %); Hoffmann, M. (20 %)

2. Svarny, P.; Straka, Z.; Hoffmann, M.: Toward Safe Separation Distance Monitoring
from RGB-D Sensors in Human-Robot Interaction In: Proceedings of the International
PhD Conference on Safe and Social Robots. Strasbourg: Commission of the European
Communities, 2018, pp. 11-14.
citations: 13 in GS

Svarny, P. (70 %); Straka, Z. (10 %); Hoffmann, M. (20 %)
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Robotic homunculus: Learning of artificial skin
representation in a humanoid robot

motivated by primary somatosensory cortex
Matej Hoffmann, Member, IEEE, Zdeněk Straka, Igor Farkaš, Michal Vavrečka,

and Giorgio Metta, Senior Member, IEEE

Abstract—Using the iCub humanoid robot with an artificial
pressure-sensitive skin, we investigate how representations of the
whole skin surface resembling those found in primate primary
somatosensory cortex can be formed from local tactile stimula-
tions traversing the body of the physical robot. We employ the
well-known self-organizing map (SOM) algorithm and introduce
its modification that makes it possible to restrict the maximum
receptive field (MRF) size of neuron groups at the output layer.
This is motivated by findings from biology where basic somato-
topy of the cortical sheet seems to be prescribed genetically and
connections are localized to particular regions. We explore dif-
ferent settings of the MRF and the effect of activity-independent
(input-output connections constraints implemented by MRF) and
activity-dependent (learning from skin stimulations) mechanisms
on the formation of the tactile map. The framework conveniently
allows one to specify prior knowledge regarding the skin topology
and thus to effectively seed a particular representation that
training shapes further. Furthermore, we show that the MRF
modification facilitates learning in situations when concurrent
stimulation at non-adjacent places occurs (“multi-touch”). The
procedure was sufficiently robust and not intensive on the data
collection and can be applied to any robots where representation
of their “skin” is desirable.

Index Terms—artificial skin, self-organizing maps, somatosen-
sory cortex, tactile sensor, humanoid robot.

I. INTRODUCTION

THE somatotopic representations discovered in the pri-
mary motor and somatosensory cortices of primates [1],

[2] have attracted extensive attention because of their unques-
tionable importance in “interfacing” the brain with the body.
Somatotopy of these brain areas is often visualized in form
of “homunculi” (“little men”) that facilitate presentation to a
wider audience and stimulate researchers to investigate the ori-
gin of the correspondence of the cortical representations with
the motor and somatosensory systems. The pioneering work
of Leyton, Sherrington, Penfield and others was later refined
using more accurate techniques; the single “somatosensory
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Fig. 1. Somatosensory homunculus. (A) Famous somatosensory ho-
munculus of man after Penfield and Rasmusen [3]. Reprinted from
[5] under a CC BY license, with permission from OpenStax College,
original copyright 2013. Download for free at http://cnx.org/contents/
29cade27-ba23-4f4a-8cbd-128e72420f31@5. (B) Dorso-lateral view of the
brain showing the location of area 3b. (C) Organization of the representations
of body surface in area 3b of the cynomolgus macaque. Area 3b is shown
“unfolded” from the central sulcus and medial wall of the hemisphere. Cortical
areas activated by designated body surfaces are outlined. Representations of
individual digits of the hand are outlined and numbered (D1 corresponding
to thumb, D5 to little finger); the dashed line indicates the region along the
medial wall where portions of the representation are contained in the cortex
on the medial wall of the hemisphere. Redrawn and simplified after Fig.1,
[4].

homunculus” of [3], Fig. 1 (A), for example, was replaced
by four individual full homunculi in the areas 3a, 3b, 1, and
2 of the anterior parietal cortex. The two areas fed primarily
by tactile (rather than proprioceptive) inputs are 3b and 1,
with area 3b being the most ”primary”. Detailed somatotopic
organization in area 3b of the macaque based on the results
of [4] is shown in Fig. 1 (C).

The formation of these representations has become an
important topic in the “nature vs. nurture” debate. Two extreme
positions are constituted by the activity-independent view,
which claims that establishment of topographic maps is a
result of patterning intrinsic to the nervous system and does
not require specific neural activity, and the activity-dependent
or self-organization view, which attributes a key role to the
patterns of neural activity in the process of somatosensory
neural circuits development. This idea was elaborated by Crair
[6] who concludes: “Where the development of a particular
neural circuit lies in this continuum probably depends on a
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number of factors, including the presence of neural activity in
the developing neurons, the particular stage of development
involved, and whether there is competition between different
pools of neurons for postsynaptic target territory.” While
this statement applies to central nervous system development
in general, we will focus on the somatosensory cortex, in
particular on the representation of cutaneous inputs (i.e. inputs
originating from the skin; in the remainder of this article, we
will use “tactile” to refer to these inputs, because this term is
more compatible with the terminology in robotics). The inter-
play of genetically determined and activity-dependent factors
encompasses the whole ascending pathway—specifically the
posterior column–medial lemniscal pathway that carries “fine
touch”. Somatotopy is present in the ascending fibers and at all
“relay stations”: the dorsal root ganglion, the medulla, the VPL
nucleus of the thalamus, and finally in the neocortex (with area
3b considered the most “primary”). The activity-independent
topographical arrangements may come from molecular gra-
dients between specific areas. Vanderhaeghen et al. [7], for
example, provide evidence that certain proteins act as within-
area thalamocortical mapping labels in rat’s S1 and affect
topography as well as the relative size of individual areas.
Conversely, others have amassed evidence for the activity-
dependent factors in map formation (e.g., [8], [9]). The in-
terplay of these two factors will be central to our experiments
on a humanoid robot with artificial skin.

There have been different models of topographic map for-
mation proposed. Some of them contain considerable neurobi-
ological detail: von der Malsburg and Willshaw [10] modeled
the axon growing mechanism between two neural sheets.
Pearson et al. [11] studied breaking up of their “model cortex”
into clusters, applying the neuronal group selection theory.
Models that choose a higher abstraction level include the
dynamic field theory [12] and self-organizing maps (SOMs)
[13]–[15]. These computational models were restricted to
small simulated “skin patches” and controlled stimulation.
Some researchers moved beyond bottom-up single modality
processing models to multisensory settings (Pitti et al. [16]
studied visuo-somatosensory alignment in the superior col-
liculus) or fully embodied sensory-motor settings: Kuniyoshi
and colleagues (e.g., [17]) developed a fetal simulator with
the aim to investigate the effect of its embodied interaction in
the uterine environment on early neural development. Some
of these works specifically addressed somatosensory cortex
development (e.g., [18], [19] using Hebbian learning and
denoising autoencoder, respectively).

With the advent of robotic tactile sensing technologies
[20]–[24], learning the skin representationy gains practical
importance: robots are in need of such representations of their
skin surface that can be used in control (e.g. in collision
isolation and reaction) or in tactile human-robot interaction
(see [25] for a survey; [26] for a recent implementation on the
iCub humanoid robot). Denei et al. [27] provide an overview
and present a method of obtaining a 2D tactile map, which
can be advantageous for control purposes, from a previously
obtained 3D skin mesh (using [28] or [29], for instance).
McGregor et al. [30] developed a method based on information
distance (ANISOMAP) that is able to reconstruct 3D tactile

surface (in a topological, not metric, sense) from uninterpreted
tactile data. In these approaches, every tactile sensor is typ-
ically represented—without compression of the input space.
The SOM algorithm, on the other hand, possesses the vector
quantization property in that it allocates a smaller number of
output representatives (“neurons”) in an optimal fashion with
respect to the density of input vectors (resembling the cortical
representations that reflect the innervation density of different
skin parts as well as the stimulation frequency). Pugach et al.
[31] used the SOM to learn a representation of the surface of
a conductive material that did not have any discrete tactile
sensors; instead, the stimulus location and pressure on a
continuous sensor surface were reconstructed using electrical
impedance tomography and the voltage matrices thus obtained
were fed as inputs to the SOM.

Our overarching research approach is the so-called synthetic
methodology [32]: understanding natural phenomena by real-
izing them in artificial systems and, at the same time, seeking
how to turn the artifacts into applications. First, the biolog-
ically motivated line of this work consists in using a baby
humanoid robot with tactile arrays covering most body parts
to investigate the possibility of somatotopic map formation
from physical stimulation of the skin. With the map from the
primate somatosensory cortex as an approximate target, we
explore the effect of parameters of the SOM algorithm, initial
conditions, constraints, and input data properties on the output
map. To this end, we introduce a SOM modification that makes
it possible to restrict the maximum receptive field (MRF)
size of neuron groups at the output layer—mimicking the
activity-independent “patterning” of the cortex. At the same
time, mirroring the organization of primary somatosensory
cortex is only one possible target. The embodiment of the
humanoid robot is obviously not identical with primates—in
particular, the characteristics and placement of tactile sensors
and the “neural system” and its constraints are different—,
therefore, we also study the behavior of the algorithm in less
constrained settings and analyze representations that emerge
from the contingencies intrinsic to the robot. To the best of
our knowledge, this is the first investigation in this scale and
in a real robot. The output of this work, the different “robotic
tactile homunculi”, will be used in subsequent research on
the iCub that targets the development of multimodal body
representations (see [33] for a survey of the notion of body
schema in robotics, [34] for an account of the iCub learning a
peripersonal space representation using the artificial skin, and
[35] for learning a proprioceptive representation).

Second, pursuing the “useful artifacts/algorithms” line, the
modified SOM algorithm proposed is surely applicable more
generally in engineering settings. The presented procedure
was found sufficiently robust and not very intensive on the
data collection and can thus be applied to any robots where
representation of their “skin” is desirable. The fact that the
desired map organization can be easily specified is particularly
convenient, as it allows to seed the representation exploiting
prior knowledge about the skin spatial arrangement (which is
often available) and/or consider other criteria on the properties
of the output map that may be dictated by how this represen-
tation will be used in subsequent processing. Furthermore, we
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show how the MRF modification improves SOM learning in
case of “multi-touch”.

This article is structured as follows. The Materials and
Methods with detailed descriptions of the setup and the
algorithms used comes immediately after the Introduction,
followed by Results, and finally Conclusion, Discussion, and
Future Work.

II. MATERIALS AND METHODS

A. iCub Robot and Artificial Skin

The iCub is an open-source platform for research in cog-
nitive robotics [36]. Its mechanical design is detailed in [37].
The iCub was recently equipped with an artificial pressure-
sensitive skin covering most body parts [38]. There are skin
patches on the torso (440 taxels), arms (380 taxels on each
upper arm), forearms (230 taxels each), palms (44 each), and
fingertips (12 taxels per fingertip). In total, these comprise
1928 tactile elements. In this work, we use the skin on the
right half of the upper body—a schematic and photo of the
skin layout on the trunk and one arm is depicted in Fig. 2. With
the exception of palms and fingertips, the skin is composed
of triangular modules, each of them hosting 10 taxels. The
taxels respond proportionally to the pressure applied to them.
However, in this work, we restricted ourselves to binary values
(0 ∼ inactive, 1 ∼ active) only. The data were sampled at 50
Hz.

Fig. 2. Artificial skin on the iCub. (left) Schematic illustration of the
layout of skin patches on one half of the upper body. The patches covering
arm and forearm that would not be visible in this view have been unfolded.
(right) Photograph of the real robot in analogous posture and exposed skin
on corresponding body parts.

B. Training Data

1) Synthetic Training Data: In order to analyze the prop-
erties of the algorithm under controlled conditions, synthetic
data sets were used in the first step. The training data were
generated on a simulated skin with a rectangular grid—nodes
of the grid representing taxels. Skin activations were simply
represented by a matrix S.

S(i, j) =

{
1 for a stimulated taxel
0 for a non-stimulated taxel

(1)

The simplest method of generating a single touch,
with m = numRows and n = numCols, would be:

1) Randomly choose a taxel t1 (with a position (i, j), i ∈
{1, ..,m}, j ∈ {1, .., n}).

2) Find all adjacent taxels {t2, t3, ..., to} to the taxel t1
chosen in the previous step. If the taxel t1 is not on the
edge of the skin, the number of adjacent taxels is eight,
otherwise the number of adjacent taxels is lower.

3) For all (k, l) ∈ {1, ..,m} × {1, .., n} set

S(k, l) =

{
1 if pos.(k, l) matches one of {t1, .., to}
0 otherwise

However, application of this algorithm would lead to a
nonuniform distribution of taxel activations, with those at the
edges less frequently activated (there is a smaller number of
adjacent taxels that could serve as the locus of simulated
touch). In order to guarantee a uniform distribution of taxel
activations, the grid was circumscribed by a row/column of
“virtual taxels” along all edges. Each of the “virtual taxels”
could be chosen as the central taxel t1 of a touch. The actual
activations calculated according to the pseudocode above were
confined to the original dimensions of matrix S though. The
code implementing this is available under S1 Code (function
createTouches2) in [39]. Multi-touches were generated
by independently iterating the algorithm above, giving rise to
an activation matrix for each touch. These were then summed
and finally a ceiling function was applied to each element to
ensure it is bounded by 1.

2) Tactile Stimulations in Real Robot: Whenever individual
skin parts were stimulated, the experimenter was sliding with
the tip of a single finger, mostly the thumb, along the skin
surface, stimulating on average between 6 and 12 taxels at a
time (for the fingertips, only 3). In some regions, such as on the
“edges” of the arm (see Fig. 2), there are small gaps between
individual skin patches. In one place, the fabric covering the
skin has also a stitch on the surface. In these locations, two
fingertips were sometimes used to ensure co-activation of the
regions along the boundaries. The stimulation sequence was
random—to the extent that this could be ensured by a human
experimenter.

To study multi-touch on the robot, the torso was used and
two experimenters were sliding along the torso with one thumb
each, giving rise to the double-touch data set that will be
used in the second part of Section III-A. The experimenters
were trying to move independently and to spend roughly
equal times at different locations. The total stimulation time
was around 9 minutes, giving rise to 28000 data points—see
V ideoMultitouch.mp4 at [39] for an illustration.

Finally, to generate the training data for the complete “tactile
homunculus”, stimulations from the whole skin surface were
necessary. Individual skin parts were stimulated as described
above. However, in addition, the data had to contain co-
activations of abutting skin parts in order to provide input
material to the SOM algorithm to extract the topological
relationships. Compared to humans, the skin parts in the
robot are less continuous—joints, for example, are lacking
skin coverage. To mitigate this effect, special stimulations
that generated activations along the borders of neighboring
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skin parts (such as adjacent fingertips, fingertips and palm,
palm and forearm etc.) were necessary. The robot was put
into configurations where the skin parts in question were not
too far apart. Even so, the gaps did not allow for the co-
stimulations to be generated using a single object and two
hands had to be used instead. An illustration of how this was
done is provided in V ideoStimulationIllustration.mp4 and
V ideoStimulationIllustrationDesktopRecording.mp4 at
[39]. The number of data points per skin part that formed
the training set is detailed in Table I. Less than half an hour
of stimulation time was necessary for a complete half of the
robot’s body. The logic behind the particular choice of ratios
will be explained under III-B.

TABLE I
STIMULATION FREQUENCY OF INDIVIDUAL SKIN PARTS FOR HALF OF THE

ROBOT’S BODY

Nr. taxels Nr. data points stimulation time [s]
individual digits 5×12 9000 180

palm 44 6300 126
forearm 230 15700 314

upper arm 380 15700 314
torso 440 22000 440

1154 68700 1374
adjacent digits 6700 134

palm+digits 1000 20
palm+forearm 1000 20

forearm+upper arm 2000 40
upper arm+torso 3000 60

13700 274

C. Self-organizing Map with Maximum Receptive Field Size
Setting (MRF-SOM)

The classical version of the self-organizing feature (Koho-
nen) map was described in [40], [41]. We use the variant with
the dot product application to determine the best matching unit
(winner) for a given input: DP-SOM (rather than the variant
with Euclidean distance—the motivation for this choice will
be explained below). We follow the formalization of [41], in
which both variants are presented. The same formula—dot
product—is used to determine the activation of output neurons
after learning.

The classical SOM, as its name suggests, relies purely on
self-organization and learns from the inputs in an unsupervised
way. While this may be ideal in many situations, in some
other cases, there may exist prior knowledge or constraints that
should be applied to steer the adaptation in specific directions.
In our case, which deals with the problem of mapping the
whole-body skin surface to a 2-dimensional output sheet, there
is no perfect solution. Evolution of primate nervous systems
has led to one particular solution to the problem that reappears,
with variations, in different species. With this coarse topology
as our target, we were seeking a modification of the SOM
algorithm that allows to impose some constraints on the output
layer topology. Our proposed solution is loosely inspired
by the synaptic connections in the ascending somatosensory
pathway, which are not all-to-all, but confined to specific
regions, with overlaps to neighboring regions (see e.g., [42]).
In a similar way, we have developed a solution to impose

input layer (taxels)

output layer (neurons)

n1 n2

n3 n4

t1 t2 t3 t4 t5

t6 t7 t8 t9 t10

t11 t12 t13 t14 t15

t16 t17 t18 t19 t20

t21 t22 t23 t24 t25

Fig. 3. Illustration of MRF-SOM. Four output neurons, n1, n2, n3, n4, are
shown at the top. At the bottom layer, there are 25 inputs, taxels t1, ..., t25.
The color code and the weight vectors (weights shown only for n1, n2) mark
the maximum receptive field size setting of the output neurons. See text for
details.

“masks” on weight vectors between the input and output
layers, allowing to nullify certain connections. Conversely,
each output neuron has a mask of 1’s to certain regions of
the input space, thus defining a maximum possible extent of
its receptive field—hence the name MRF-SOM, SOM with
Maximum Receptive Field size setting. After learning, each
neuron will specialize on a specific part of the input space,
which will necessarily lie within the MRF constraint.

We will illustrate how this is implemented with the help of
Fig. 3. There are four output neurons: n1, n2, n3, n4. At the
input layer, there are 25 taxels arranged on a square grid. Let us
further assume that we want to define a 3×3 maximum recep-
tive field (MRF) for each output neuron, pointing to respective
corners of the input grid. This is schematically illustrated with
color codes of the neurons and their respective RFs on the
input grid; taxels with multiple colors indicate overlapping
MRFs of the neurons. The way this is implemented is through
the weight vectors: for each output neuron, a mask is applied
to the elements of its weight vector. So, taking neuron n1, for
example, the mask applied to its weight vector is specified in
Eq. 2:

mask1 = [1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (2)

This is also schematically depicted in Fig. 3: the dashed
lines correspond to weight vector components of n1 that have
a “1” component in the mask. The missing lines correspond
to the nullified connections. Analogous pattern is shown for
n2. The mask will be reapplied to the weight vector at each
iteration of the algorithm—elements outside the MRF may
have been subject to adaptation and hence become non-zero
until the mask is applied.
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Now we will show how we modified the learning of the DP-
SOM. Let’s have a DP-SOM with k neurons. Each neuron has
its own weight vector. We will denote by mi the weight vector
of the neuron i. The winner neuron (indexed by c) is deter-
mined by using the dot product as c = argmaxi{mi · x(t)},
where x(t) ∈ {0, 1}l is an input vector whose dimension in
our case equals the number of taxels. Adaptation of the weight
vectors of the DP-SOM during learning is then realized by the
rule in Eq. 3 below (the “bell curve” neighborhood as per II.B
and the dot product formulation from Section II.F in [41]):

mi(t+ 1) =
mi(t) + hci(t)x(t)

‖mi(t) + hci(t)x(t)‖
(3)

where ‖.‖ denotes the Euclidean norm, hci(t) =
α(t) exp(−‖ri−rc‖2/(2σ2(t))) is the Gaussian neighborhood
function, where the learning rate 0 < α(t) < 1 decreases
monotonically with time, ri, rc ∈ R2 are the vectorial
locations on the output grid, and σ(t) corresponds to the
width of the neighborhood function, which also decreases
monotonically with time. Adaptation in MRF-SOM is realized
by these steps:

i.
m

′
i = mi(t) + hci(t)x(t) (4)

ii.
m

′
i = m

′
i.∗ maski (5)

iii.

mi(t+ 1) =
m

′
i

‖m′
i‖

(6)

where the vector maski ∈ {0, 1}l is the mask of the neuron
i. Application of Eq. 5, using component-wise multiplication
of two vectors, sets the elements of the weight vector m

′
i

corresponding to taxels that are not connected with neuron i
to zeros. Everything else in the MRF-SOM algorithm is the
same as in the DP-SOM algorithm.

The choice of the DP-SOM as opposed to the Euclidean
distance version was primarily motivated by the winner se-
lection step. For every neuron in the MRF-SOM, the weights
outside its MRF are nullified as per Eq 5. Thus, the input
vector components outside a neuron’s RF do not affect the
winner neuron determination. However, this would not be the
case in the Euclidean distance version. Furthermore, it is a
characteristic feature of our data set that the majority of input
vector components are 0; the dot product computation in this
case is faster.

1) Implementation and Parameters of MRF-SOM Training:
A freely available SOM toolbox [43] was used. Training is
implemented in the som_seqtrain function. However, this
is the Euclidean distance variant of the algorithm. Therefore,
we performed necessary modifications for the dot product
version as well as added the maximum receptive field size
setting as specified above (MRF-SOM).

The following input parameters were used: a hexagonal
lattice in the shape of a sheet, a Gaussian neighborhood
function with initial radius of 5 and final equal to 1, and the
learning rate decayed from the initial value 0.5 according to
α(t) = a/(t+b) with suitably chosen parameters a and b. The

0.34 0.51 0.06

0.080.01 0.74

input layer (taxels)

neuron i

RF of the neuron i

Fig. 4. Receptive field determination from weight vectors. For a given
threshold, here 0.3, all taxels connected with a neuron with a weight exceeding
the chosen threshold are marked as belonging to the RF of the neuron.

remainder of the parameters followed default settings; for more
information use the online documentation of the SOM toolbox
[44]. In addition, the MRF input parameter was added. Rows
of the parameter MRF express the maximal possible ranges of
RFs of the neurons. The code used is available under S2 Code
in [39].

D. Receptive Fields and Visualization of Learned Maps

Given the relation of our study with somatotopic maps
from biology, it is the receptive fields of neurons in the
learned maps that are crucial. That is, for each neuron of the
output map, we need to know the region of skin (the set of
taxels) whose stimulation evokes that neuron’s response. Two
different techniques were employed in this work.

1) Weight Vector Components Exceeding the Threshold:
The first method of receptive field determination is straight-
forward: for each neuron, its weight vector is inspected and
all the taxels that are connected with the neuron with a weight
exceeding a certain threshold are marked as belonging to
its RF. This is illustrated schematically in Fig. 4. However,
this method is rather a top-down shortcut that gives only a
quick overview. Furthermore, the threshold needs to be set
empirically and depends on the weight vector size.

2) Biomimetic RFs Determination: The second method
we used was inspired from biology and the way RFs are
determined using microelectrode recordings in electrophys-
iology, where localized tactile stimulations are applied and
neuronal responses recorded. In a similar vein, we emulated
this procedure by replaying a testing set that consisted of
stimulations (single localized stimulations, not multi-touch)
similar to the ones used for training and recorded the winner
neurons. A pseudocode of this “bottom-up” algorithm is given
below. Basically, every neuron has its RF (rf ), which is
initially an empty set. As the algorithm iterates through the
stimulations, winning neurons enlarge their RFs by including
the taxels stimulated at a given time. An example of a map
visualized using this method is Fig. 11.

Pseudo-code of the “biomimetic RF determination” algo-
rithm:
Input: Mtest (test set with touch stimulations), threshold K

1) Init:
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Mi = [0, 0, .., 0] for all i ∈ {1, 2, .., N}, where the
length of all Mi is equal to the number of taxels
and N is number of neurons.
rfi = ∅ for all i ∈ {1, 2, .., N}

2) For each touch tch from Mtest

determine the winner w for touch tch
Mw = Mw+tch i.e. increment number of taxels
stimulations from tch for winner

3) For each neuron i in the grid
add taxels from Mi that exceed threshold K to rfi
plot taxels from rfi with red color, others with
green color

3) Heuristic Visualization of Learned Maps: To obtain a vi-
sualization of the learned maps, we preferred the “biomimetic”
method. However, sometimes, there was a fair amount of
neurons that ended up with empty RFs after application of
this method—they never won after any stimulation from the
testing set. Yet, these neurons did learn to represent some
parts of the skin, as revealed by analysis of their weight
vectors. In this case, the first method—looking at weight
vector components exceeding the threshold—was applied in a
second step, allowing to assign RFs to the remaining neurons.
A heuristic threshold was applied. In this way, we could
generate visualizations where each neuron can be colored
according to the body part(s) it represents, as will be shown
in Figs. 14, 16, 17.

E. Topology Preservation Measure with External Distance
Metric (TPMEDM)

To complement visual inspection of the learned maps and to
allow for quantitative comparison of different settings of the
algorithm, numerical measures assessing the quality of learned
maps are desirable. Various measures have been proposed to
numerically assess the organization of the trained SOMs (for
an overview, see [45] and references therein). For instance, the
topographic product [46] considers only the codebook vectors
(weight vectors) after learning and measures the distances of
k nearest neighbors of each neuron in the output space as well
distances between the prototypes in the input space, eventually
combining them into a single number that summarizes the
quality of the topology preservation. However, the input space
we are dealing with here renders this method inappropriate
due to the particular nature of distances in the input space.
Although a skin patch is a 2D surface (embedded in a 3D
space), our input space is very different: it has as many
dimensions as there are taxels and every dimension can take
only discrete values {0, 1}. Imagine a 3×3 skin patch with
taxels t1, ..., t9 shown in Fig. 5.

Fig. 5. Schematic illustration of a 3×3 skin patch with 9 taxels.

The input will simply be a 9-dimensional vector of activa-
tions A, like in Eq. 7.

A = (At1 , At2 , At3 , At4 , At5 , At6 , At7 , At8 , At9) (7)

It is apparent that using the Euclidean distance formula,
different “atomic” touches (activation of only one taxel) will
have identical distances from each other—no matter where
they lie on the skin. For example, stimulation of taxel 1 (A1,
Eq. 8) will have the same distance from the neighboring taxel
2 (Eq. 9) and from a “far away” taxel 9 (Eq. 10)—all distances
being equal to

√
2.

A1 = (1, 0, 0, 0, 0, 0, 0, 0, 0) (8)

A2 = (0, 1, 0, 0, 0, 0, 0, 0, 0) (9)

A9 = (0, 0, 0, 0, 0, 0, 0, 0, 1) (10)

In case of multiple concurrent taxel stimulations, the dis-
tance will get smaller if the stimulations overlap on some
taxels. However, the set of Euclidean distances computed for
the given input data will be very discrete (“step-like”), rather
than continuous, so it cannot give satisfactory results.

Another commonly applied measure, topographic error,
does not rely on any distance measurements. For every input
data point, it determines the first and second best-matching
units and checks whether these are adjacent on the output
map lattice. This information is then aggregated and normal-
ized. This measure is more suitable in our situation and we
experimented with it.

However, we finally decided to employ a quality measure
that directly measures the main objective of the representation:
how the actual skin surface topology is preserved in the
“cortical sheet”—the output lattice. That is, we decided to
utilize information that is external to the algorithm itself,
namely the actual distances between the taxels on the skin.
This information is not available to the SOM algorithm—
only indirectly through the co-stimulations of adjacent taxels
present in the input data. However, it is available to us (at
least for the simulated skin and for individual skin parts, like
the torso) and we will thus directly use it to assess the quality
of learned maps. Our measure also uses the RF concept, as
defined in II-D above.

The measure we are proposing, Topology Preservation
Measure with External Distance Metric (TPMEDM), basically
evaluates whether the taxels composing RFs of adjacent neu-
rons on the cortical sheet are also close to each other on the
skin surface. This is schematically illustrated in Fig. 6.

The TPMEDM measure is evaluated as follows:
1) Determine RFs rfi for all neurons i = 1, 2, .., N , using

the biomimetic method specified in II-D.
2) For all adjacent neurons i, j on the output map lattice,

make a union of their RFs rfi,j = rfi∪ rfj
For all pairs of taxels k, l ∈ rfi,j , compute the taxel
distance using the external distance function.

3) Return the mean taxel pair distance.
Experimentation with this measure on our data proved that

it is superior to the topographic product and topographic

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCDS.2017.2649225

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

A B C

Fig. 6. Union of two receptive fields. Top: In each case (A, B, C), the
red taxels in the two panels represent hypothetical RFs of two adjacent
neurons. Bottom: Blue taxels represent the union of the RFs from the top
row. The distances between every taxel pair in this union forms the basis of
the TPMEDM. (A) RFs of adjacent neurons are close to each other and partly
overlap. (B) RFs are distant. (C) One of the RFs is not compact. Since RFs
of adjacent neurons are closest in the case A, the mean of distances of all
pairs of blue taxels in union of both RFs is smaller than in the cases B and
C.

error measures (but keeping in mind that it utilizes external
distance information) and in most cases it matches well with
the visual assessment of learned maps. The code implementing
this measure can be found under S1 Code in [39].

III. RESULTS

The Results section is split into two parts. The first part
is devoted to learning correct topology of a skin surface
using the SOM from input data that contain multiple concur-
rent stimulations. A modification of the SOM algorithm that
mitigates the problems resulting from “multi-touch” will be
presented and tested in a series of experiments on a simulated
skin surface and later on real data coming from concurrent
stimulation of the robot torso. The second part presents a series
of experiments where the SOM algorithm together with the
proposed modification is used to learn a single representation
of the skin surface of one half of the robot’s body—giving
rise to the “robotic homunculus” analogous to the lateralized
representations in primate somatosensory cortex.

This section will feature both figures with actual results
(such as learned maps) and schematics showing the algorithm
settings, for example. For better orientation of the reader, all
“Results figures” captions will be preceded with “Results – ”.
All Tables report results.

A. Toward More Realistic Stimulation – Learning From Multi-
touch

1) Multi-touches on Simulated Skin: In these experiments,
we simulated different numbers of concurrent stimulations on
a skin model and investigated their effect on map formation.
Multi-touch in general degrades the quality of learned maps,
because the standard SOM algorithm is not able to naturally
cope with multiple concurrent stimulations: it treats them
as a single point in the input space, resulting in learning
(weight vector adaptation) in undesired directions. However,
the SOM modification presented here, MRF-SOM (see the
corresponding Section II-C under Methods for details), can
be employed to mitigate this effect. For each neuron at the
output, a maximum possible extent of its receptive field (RF)
is prespecified; subsequently, each neuron will learn to be
sensitive to a subset of this maximum region of input space.

1 MRF 2 MRF 4 MRF

Fig. 7. Illustration of three variants of MRF setting for simulated skin
experiments. From left to right: 1 MRF, 2 MRF, 4 MRF. There are 8×8
output neurons shown at the top and 20×20 inputs (simulated taxels) at the
bottom. The color code and the span of weight vectors mark the maximum
receptive field size of every output neuron area. Taxels with multiple colors
mark the overlap of maximum receptive fields.

The maximum receptive field (MRF) regions with only a
partial overlap will then ensure that activations will remain
grossly localized and hence interference between far away
input space regions will be reduced.

The skin model had a size of 20×20 taxels (tactile elements,
modeling individual pressure sensors in the robot). Training
data consisted of 100 000 k-touches, with k ∈ {1, 2, 4, 6, 8}
fixed for each training set. Stimulations of taxels followed a
uniform distribution; for details of the generation see Section
“Synthetic training data” under II. The MRF-SOM had a size
of 8×8 neurons and was trained for 24 epochs. Additional
parameters and details of the implementation can be found in
Section II-C. Three variants of the MRF setting were studied.
In the first case, each neuron’s MRF contained all taxels (1
MRF), which is equivalent to unmodified SOM (the MRF
setting having no effect). This is illustrated schematically in
Fig. 7, left panel. In the second case (2 MRF), if neuron i
is on the left half of the map, then its MRF contains only
taxels from the left part of the skin. Two rows of taxels in
the center of the skin are shared by neurons from left and
right halves of the map. The third case (4 MRF) is similar to
the second but the neurons and their MRFs are divided in four
partially overlapping squares. The overlap is necessary in order
to smoothly connect the representations at the boundaries.

An illustration of the results is depicted in Fig. 8 (right) for
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1 MRF 4 MRF

Fig. 8. Results – Learning from 8-touches in simulated skin. 1 MRF
(left) vs. 4 MRF (right) settings. The 8×8 matrix is the lattice of the
output neurons. Every element (subplot) then depicts a miniature version of
the simulated skin, in which the set of red taxels represents the receptive field
of the corresponding neuron. If there is more than one red area per subplot,
it means the neuron’s RF is not continuous.

the most challenging input type: 8 concurrent stimulations.
For visualization, we used a biologically inspired method of
determining the RFs of individual neurons – please see Section
“Biomimetic RFs from simulated skin stimulation” under II-D.
The left panel (1 MRF, i.e. standard SOM without MRF)
shows the difficulty the standard SOM is facing with this input:
practically all neurons learn discontinuous RFs (red areas
in every subplot). Conversely, the problem is significantly
mitigated in the case of four MRFs – see the right panel,
where the majority of neurons have a single continuous RF in
the input space.

Space limitations will not permit us to graphically demon-
strate all the combinations of input types (number of con-
current touches) and algorithm settings (number of MRF).
Therefore, we developed a custom measure of the quality of
learned maps: TPMEDM (see Section II-E for details), which
correlates with the visual intuition regarding the topology
preservation. For every combination of stimulation type and
MRF setting, 10 repetitions of the learning algorithm were
run, using a different training set and initial weight settings.
Aggregate results in terms of TPMEDM between the runs are
shown in Table II (including the standard deviation) and Fig. 9:
the lower the TPMEDM value, the better the quality of the
map. It is evident that the topology preservation capability
of standard SOM (1 MRF) degrades rapidly in the case of 4
and more concurrent touches. This is significantly improved
already if two MRFs are used; 4 MRFs make the degradation
in performance even for 8-touch very small. The apparent non-
monotonicity in some of the values along the k-touch axis lies
within the standard deviation intervals.

The data and code related to this section are available under
S1 Data and Code in [39].

2) Multi-touch on the iCub Torso: In this section we
verify our findings from the simulated skin on the real robot.
The largest single skin surface, the torso with 440 taxels
(see Section II-A) was chosen and stimulated by either one
experimenter (1-touch or single touch) or two experimenters
(2-touch or double touch). Please recall that single touch
stands for a single stimulated area of a couple of adjacent
taxels (around 12 on average in this case) at a time; double
touch corresponds to two such independent, disjoint areas. The
procedure gave rise to 28000 samples and is described in more

TABLE II
MULTI-TOUCH ON SIMULATED SKIN. QUALITY OF LEARNED MAPS IN

TERMS OF TPMEDM FOR DIFFERENT COMBINATIONS OF INPUT
(1-TOUCH TO 8-TOUCH) AND MRF SETTING, USING THE mean± std

NOTATION TO SUMMARIZE 10 RUNS OF THE ALGORITHM. LOWER VALUES
CORRESPOND TO BETTER MAPS.

1 MRF 2 MRF 4 MRF
1-touch 2.97 ± 0.01 3.01 ± 0.00 3.03 ± 0.01
2-touch 3.13 ± 0.15 2.99 ± 0.04 3.03 ± 0.16
4-touch 5.86 ± 0.99 4.17 ± 0.41 3.43 ± 0.10
6-touch 6.80 ± 0.80 4.23 ± 0.26 3.61 ± 0.13
8-touch 6.48 ± 1.77 4.39 ± 0.28 3.57 ± 0.14
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Fig. 9. Results – Multi-touch on simulated skin – graphical representation
of the means from Table II Lower values correspond to better maps in terms
of TPMEDM. The plot reveals the drop in performance of standard SOM (∼
1 MRF) when faced multi-touch and how this effect is counterbalanced by
the use of MRF.

detail in Section II-B, “Tactile stimulations in real robot”, with
a link to a video.

Similarly to the previous section, the output layer of the map
had 8×8 neurons and the map was trained for 25 epochs, with
the same parameter settings. Four MRF settings were tested: 1
(i.e. standard SOM), 2, 4, and 8. This is illustrated in Fig. 10.
The MRF regions were overlapping at their boundaries.

2 MRF 8 MRF4 MRF

Fig. 10. Illustration of three variants of the MRF setting for multi-touch
on iCub torso. From left to right: 2 MRF, 4 MRF, 8 MRF (1 MRF not
shown). There are 8×8 output neurons at the top; 440 taxels of torso skin
in a 2D arrangement (before its attachment on the 3D robot torso) are at the
bottom. Color code and weight vector span mark the MRF setting of output
neurons; taxels with multiple colors signify MRF overlap.

Analogously to our findings on the simulated skin array,
multi-touch makes it more difficult for a SOM to capture the
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TABLE III
SINGLE TOUCH AND 2-TOUCH ON ICUB TORSO SKIN. QUALITY OF

LEARNED MAPS IN TERMS OF TPMEDM FOR DIFFERENT COMBINATIONS
OF INPUT (1-TOUCH OR 2-TOUCH) AND MRF SETTINGS, USING THE

mean± std NOTATION TO SUMMARIZE 10 RUNS OF THE ALGORITHM.
LOWER VALUES CORRESPOND TO BETTER MAPS.

1 MRF 2 MRF 4 MRF 8 MRF
1-touch 28.99 ± 0.51 28.65 ± 0.18 28.63 ± 0.12 28.08 ± 0.08
2-touch 40.40 ± 1.17 37.06 ± 1.22 33.99 ± 0.60 30.65 ± 0.69

input space topology also for real data sets. This is illustrated
in the left panel of Fig. 11. Some neurons have learned
discontinuous RFs; furthermore, the overall topology of the
torso skin is not well represented in the map. Conversely, “pre-
parcellation” of the space into coarse, partially overlapping
regions using the MRF setting significantly improves the
situation. The case of 8 MRF is shown in the right panel: the
RF sizes are comparable to the 1 MRF case, but the topology
preservation is clearly superior.

1 MRF 8 MRF

Fig. 11. Results – Learning from 2-touches in iCub torso skin. 1 MRF
(left) vs. 8 MRF (right) settings. Every element of the 8×8 matrix depicts
a miniature version of the torso skin array, in which the set of red taxels
represents RF of the corresponding neuron—according to the position on the
lattice.

Aggregate results for all combinations of stimulation type
and MRF settings using TPMEDM (see II-E) are depicted in
Table III and Fig. 12. The quality of learned maps clearly
degrades when the training set contains double touches. The
MRF setting successfully mitigates this effect and performance
correlates with the number of MRFs used.

Compared to the results from the simulated skin, shown
in Table II and Fig. 9, double touch appears to present
significantly higher difficulties in the case of real data. (Note
that the comparison can take into account only the differences
within a data set; the absolute values of TPMEDM cannot
be compared between data sets, because the measure utilizes
the actual distance between taxels, but the scale of the two
skin arrays is different.) We attribute this to the overall less
favorable statistical properties of the real data sets, mainly
due to the data collection procedure. Despite every effort of
the experimenters to stimulate all taxels uniformly, a plot of
the distribution of taxel activations within a data set reveals
that this was not the case, with number of stimulations per
taxel ranging from around 400 to around 2500 stimulations
and the portions of skin at the borders being significantly less
stimulated (for the case of double touch see S1 Fig.eps at
[39]). This nonuniformity will naturally be reflected in the
learned map. Furthermore, there is a difference between the
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Fig. 12. Results – Single touch and 2-touch on iCub torso skin – graphical
representation of the means from Table III. Lower values correspond to
better maps in terms of TPMEDM. The plot reveals the drop in performance
on 2-touch and how this effect is counterbalanced by the use of MRF.

synthetic and the real training set: the “real” touches, unlike
synthetic ones, are not completely independent (even if each
of them is made by a different experimenter). These problems
are in a sense inherent to data sets collected by humans
in this way. However, our results show how the problem
can be largely alleviated using the proposed MRF-SOM—if
approximate topology of the surface to be mapped is known
beforehand.

The data and code related to this section are available in
S2 Data and Code in [39].

B. Robotic Tactile Homunculus

In previous sections, we studied the effects of different
stimulation and algorithm parameters on a problem where all
inputs were located on an essentially 2D input space (the torso
of the real robot is not exactly planar, but can be approximated
as such) and then represented by a SOM with 2D topology on
the output layer. There was thus a relatively clear optimum,
which the algorithm with its properties (optimal representation
of input space, topology preservation) could come close to.
In this section, the goal is to represent tactile sensors of the
“whole”, or significant parts of, the body surface in the same
output sheet with 2D topology. Some skin parts are locally
planar, but already relatively simple parts, such as an upper
arm, present a problem to the standard rectangular lattice, due
to the neighborhood relation on opposite sides of the sheet
(there is no beginning and end of the skin around the arm).
This could be mitigated by using a toroidal lattice, but for
the case of the whole skin surface, all body parts cannot be
possibly arranged on a 2D sheet preserving all neighborhood
relations. Thus, some discontinuities are inevitable.

To test our algorithm, we have targeted one particular type
of solutions to this problem, namely the one resembling those
present in the primary tactile cortex of primates – see Fig. 1.
Primary representations in the brain are always lateralized;
therefore we focus on building representations of the right
half of the body only (including the trunk, which is present in
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both halves). Another striking factor of cortical representations
is the magnification of certain body parts, which is primarily
attributed to different degrees of skin innervation. Our target
roughly corresponds to the part of area 3b from the trunk to
the digits (fingers). This region is highlighted in Fig. 13 (A),
along with the correspondences on the macaque monkey body
(B).

Fig. 13. Representation of tactile body surface in monkey and robot. (A-
B) Simplified representation of selected body parts in area 3b of macaque
monkey. Numbers and color code mark the correspondences between the
cortical areas and skin surface on the body parts that will be modeled using
the iCub robot. Redrawn and adapted after [4]. (C-D) Schematics of analogous
situation in the robot – approximate target for the SOM algorithm.

Of course, the robot and its artificial skin differs from the
monkey in numerous aspects. First, our version of the robot
does not have capacitive skin on the face or the legs. Second,
the skin is composed of identical modules, which corresponds
to constant innervation density (with the exception of the palm
and fingertips that use different technology, but still with a
similar density). Moreover, there is a much larger absolute
number of taxels on larger body parts: 440 on torso, 380
on upper arm, compared to mere 104 on palm and fingers
(see II-A for details). A “uniform” stimulation of the robot’s
surface would thus give rise to very different proportions of
the homunculus. Therefore, to be able to influence the number
of neurons devoted to different body parts at the output layer,
we will manipulate the stimulation frequency of individual
skin parts. Roughly inspired by these proportions, but taking
the actual taxel counts per body part in the robot also into
account, we chose corresponding ratios of stimulation time,
and hence also the number of training data points, per skin
part. The details of the stimulation procedure (i.e., touching the
robot’s skin), including a video and a table showing the exact
numbers, are in Section II-B. In all experiments in this section,
the output map lattice was 24×7 (to mimic somewhat the
elongated shape of the tactile homunculus in the cortex) and
the map was trained for 25 epochs; all remaining parameters
are specified in Section II-C.

1) Homunculus Learning without MRF Setting: In the
first step, we have applied the standard SOM algorithm (dot
product version, DP-SOM) without additional constraints (no
MRF setting) using the training set as described above. Five
complete independent runs of the algorithm were executed;
the results of three of them are depicted in Fig. 14. We
want to make the following points regarding the distribution
of RFs on these maps: First, there is high variability in the
outcome of different runs of the algorithm resulting in very

different topology of the learned map. Sometimes, some skin
parts’ representations fill a compact “strip” across the whole
longer dimension of the map; sometimes, they extend along
this longer dimension. Torso, palm, and fingers’ portions of
the map remain always compact (in the right-most map, palm
and fingers not neighboring though), whereas the forearm and
upper arm representations are often separated into multiple
disjoint areas. This could be attributed to the fact that they
are composed of multiple skin patches wrapped around a
toroidal or smooth cuboidal shape, which is far from planar,
and perhaps also the fact that they are centrally located in
the chain and thus may be pulled by their neighbors to
different directions. Second, the size occupied by different
body parts in the learned map also varies: for example, from
64 to 80 neurons devoted to the torso or from 26 to 38
for the forearm. Third, as anticipated, the outcome departs
considerably from the arrangement present in the biological
maps (area 3b – cf. Figs. 1 and 13). The results confirm the
intuition that the problem of fitting the whole skin surface
onto a 2D sheet is under-constrained and there is no perfect
solution. It seems that there are multiple local extremes that
the algorithm may converge to. The convergence properties
could improve if significantly larger training set was available
and slower learning rate was applied. However, it seems
impossible that self-organization alone would bring about the
same representations of palm and finger regions in the map as
it is in the somatosensory homunculus, for example.

Fig. 14. Results – Learning from tactile stimulation on right side of robot
body with standard DP-SOM. The three panels on the left depict the maps
(24×7 neurons) after learning as a result of three runs of the algorithm on
the same training set. The visualization, which colors the maps according to
the RFs of individual neurons, is the result of the “Heuristic visualization of
learned maps” procedure described in Section II-D. Neurons with multiple
colors signify that the taxels belonging to their RF are part of more than one
skin part. The right panel shows body parts that correspond to the colors in
the maps. Supporting material illustrating how the visualization was arrived
at for the map in the middle and on the right is shown in S2 Fig.svg and
S3 Fig.svg respectively at [39].

2) Homunculus Learning with MRF Setting: In order to
address the shortcomings of the maps learned in the previous
section, here we employ the MRF setting (see II-C) to steer the
self-organizing process in desired directions. That is, unlike
Section III-A, where we showed how MRF improved SOM
adaptation when the training data contained multiple disjoint
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stimulations, here only single stimulations were used, but
MRF-SOM is exploited in order to ensure coarse topology
of the representation as well as approximate proportions of
areas devoted to individual skin parts.

The overall layout is depicted in Fig. 13, (C-D), illustrating
the desired sequence of areas and their rough proportions. This
gross layout is then translated into specific MRF settings: one
variant is shown in Fig. 15. The MRF region of the output
map dedicated to a specific skin part spans that skin part and
an adjacent region of the neighboring skin part.

Fig. 15. Detailed MRF setting for learning tactile homunculus. The
colors and lines ascending from the individual skin parts to the neuronal sheet
schematically illustrate the MRF settings. Every skin part has its “dedicated”
area in the neuronal sheet—dark green for torso, blue for upper arm, pink for
forearm, light green for palm, and tones of orange for fingertips. In addition,
the skin areas bordering with another skin part belong to the MRF of the
adjacent area of neurons as well—as illustrated by the color code. The palm
and finger areas are an exception to this rule: tighter MRF settings were
used here to warrant that the learned map will have topology analogous to
area 3b. The particular order of digits, with little finger adjacent to the palm
representation, would otherwise not emerge from running the algorithm on
the training set.

An example of a learned map with these settings
is in Fig. 16. The left panel shows the RFs of the
upper-most 49 neurons of the lattice—the region devoted
to the torso—demonstrating reasonable coverage of the
area as well as appropriate topology preservation. The
whole map—in the middle panel—testifies good preserva-
tion of the “desired layout” (MRF setting) and the ac-
tual learned topology. An illustration of the activations in
the learned map during tactile stimulation is provided in
V ideoStimulationsAndMapActivations.mp4 at [39]. This
map meets the criteria of obtaining a representation that is—
on a certain level of abstraction—faithful to the biological
blueprint, but adapted to the robot, and will be used in further
work where a biologically motivated representation of the
robot’s tactile inputs is necessary.

3) Simulating Lesion of One Body Part: In light of the
apparent stringency of the underlying MRF constraints out-
lined in Fig. 15, the result presented in Fig. 16 may appear
to be somewhat unsurprising. We have decided to explicitly
test the degree of plasticity that is still present in the network
with detailed constraints. To this end, we have simulated a
lesion of the upper arm skin by pruning three quarters of the
corresponding training set segments where this part was stimu-
lated. The learned map in Fig. 17 demonstrates that despite the
stringent MRF constraints, the neighboring skin parts (torso
and forearm) significantly expanded their representations at

Torso

detail

A B C

Fig. 16. Results – Learning from tactile stimulation with MRF-SOM. (A)
Top section of the output map – 7×7 neurons with miniature depictions of
the torso skin; red taxels mark RFs of the corresponding neuron (visualization
using the “biomimetic RF determination method”; see Section II-D). (B)
Visualization of the whole map using two-stage “heuristic visualization”.
Neurons with multiple colors indicate that the taxels composing their RF
belong to more than one skin part. (C) Body parts with color code corre-
sponding to the map. Inspired by the visualization in Fig. 13, the arrows
illustrate how the coarse orientation of individual skin parts is represented
in the map. For example, the top-to-bottom direction of the torso skin was
roughly translated into right-to-left in the map. Supporting material illustrating
how the visualization was arrived at is shown in S4 Fig.svg at [39].

the expense of the upper arm region. Furthermore, even the
palm representation could take advantage of the situation and
seize new territory. The data and code related to this section
are available in S3 Data and Code at [39].

Fig. 17. Results – Learning from tactile stimulation with MRF-SOM
and simulated lesion of upper arm. The same settings and visualization as
in Fig. 16 were used, but 3/4 of upper arm stimulations were pruned in the
training set.

IV. CONCLUSION, DISCUSSION, FUTURE WORK

In this article, we presented work studying how a humanoid
robot with sensitive skin could learn a topographic representa-
tion of its body surface from experience—by receiving tactile
stimulations all over its artificial skin. Having stimulated the
robot’s skin on the upper body for about half an hour in
total, we studied the settings of the well-known self-organizing
feature map (SOM, or Kohonen map) algorithm that are
required to channel the learning into a target representation
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resembling the one known from the primate cortex. To this
end, we proposed a modification of the standard SOM algo-
rithm (MRF-SOM) that allows to prespecify certain, partially
overlapping, receptive fields of the output layer neurons. This
guarantees that certain proportions as well as the sequence of
the represented areas can be specified a priori. This may, on
one hand and at a high level of abstraction, mimic the known
connectivity from the ascending somatosensory pathway with
divergent connections (e.g., [42]), but it mainly constitutes a
simple but practical tool to guide SOM learning in desired
directions. We also show that even if relatively specific “seed-
ing” of the map is applied, the network does retain sufficient
plasticity to suppress representation of a lesioned region of the
input space. Furthermore, the standard SOM algorithm is not
able to cope with multiple concurrent stimulations (such as
simultaneous touch on different body parts): it treats them as
a single point in the input space, resulting in weight adaptation
in undesired directions. The proposed modification signifi-
cantly increases the performance in this case. At the same
time, the proposed MRF-SOM algorithm is easily portable to
other robots that feature some form of artificial skin array
(e.g., [47], [48]; [20], [21] for reviews) and can be deployed
to tailor the map learning process to any criteria specified by
the user (such as the availability of prior knowledge of skin
arrangement or the desired properties of the output layer).
Finally, the new TPMEDM measure quantifying the quality
of the observed maps, which relates the distance of adjacent
taxels peripherally to their separation on the generated map
(see Section II-E for details), is another contribution of this
work.

The goal was not to obtain a mathematically optimal repre-
sentation (which would inevitably have to be 3-dimensional,
e.g., [49]), but rather one motivated by the primary repre-
sentations of tactile (cutaneous) receptors in primate brains.
This is one of the well-known “somatosensory homunculi”,
concretely the one of Brodmann area 3b. If the cortical sheet
is unfolded, one can imagine a 2-dimensional grid of neurons
with a somatotopic arrangement of receptive fields, mimicking
the spatial arrangement of the cutaneous receptors on the
body surface, but with inevitable discontinuities resulting from
the dimensionality reduction (the skin forms a continuous
structure in three dimensions). There is thus no perfect solution
to this problem in terms of topological or topographical
criteria and the one adopted by biological systems is a result
of various historical, evolutionary, anatomical (nerves from
different body parts reach spinal or later thalamic nuclei at
different locations) and other constraints.

As already discussed, the level of chosen abstraction regard-
ing the putative biological processes in operation was very
high. Some of the decisions as to the model parameters were
dictated by the platform we used. For example, the artificial
skin of the iCub responds to sustained pressure only, which
may be said to grossly emulate the response of Merkel disk
receptors (slowly adapting mechanoreceptors present in human
skin). In terms of receptive field size, the situation may be
somewhat comparable: (i) Although individual Merkel disk
receptors are much smaller than the taxels in the robot, the
dorsal root ganglion cells innervating superficial skin layers

receive input from 10–25 Merkel disk receptors, giving rise
to a receptive field spanning a circular area with a diameter
of 2–10 mm ( [50], p. 435), which is comparable to the taxel
diameter of 4 mm in the robot; (ii) Cortical neurons have larger
receptive fields than sensory afferents, spanning for example
half a fingertip or areas of several centimeters in diameter on
less densely innervated body parts (see [4], for example). This
is again roughly comparable to the situation in the robot after
learning, where RF sizes also range from parts of a fingertip to
fractions of the palm surface (roughly 1–2.5 cm in diameter)
to several triangular skin modules on other body parts (1.5–4
cm in diameter, for example). However, there is a number of
important differences that limit the biological plausibility of
our setup. First, the skin mechanics and the receptor embed-
ding in the robot and in biology is most probably completely
different (see [51] for a 3D finite element model of the finger
distal phalange and [52] for a review of prosthetic electronic
skin.) Second, with mere 1154 receptors on the half of the
robot upper body and only 24×7 neurons on the output layer,
the numbers are significantly smaller than in the biological
realm. Third, the overlap and redundancy of the representation
are largely limited, compared to what is expected from the
biological counterpart. Fourth, we have only emulated one
receptor type (Merkel disk, isotropic response only in our
model), while it has been hypothesized recently that “touch
is a team effort”: the submodalities of touch (slowly and
rapidly adapting mechanoreceptors, Pacinian afferents) inter-
act. Thus the traditional perspective relying on submodality
segregation and receptive field mapping using artificial, sub-
modality specific stimuli is limited—the alternative being
natural, multimodal, stimuli and analysis of neuron firing
based on their function [53]. Fifth, any attentional mechanisms
were out of our scope—but see [54], for example. Finally,
regarding the artificial neural circuitry employed, it has to be
stated that the “relay stations” of the ascending pathway with
additional functionality like inhibitory surround were ignored
and a direct mapping from the “receptors” to the “cortex” was
learned instead (similarly to [10]–[12]; [55] used a 3-layer
network).

The SOM algorithm itself has been shown to give rise to
receptive field structures that resemble those of real neurons
(e.g., [56]). One decision on our part has been that we have
worked with binary inputs only. However, we have conducted
an empirical comparison with continuous data (both simulated
and real from the iCub torso), both variants leading to very
similar maps after training. A report summarizing our results
BinaryV sContinuousStimuli.pdf is available at [39]. An-
other feature that is probably at odds with putative neuronal
mechanisms is the global supervisory mechanism in SOM that
determines the winning neuron during learning. It could be
replaced by recurrent interactions between neurons though,
which was already present in von der Malsburg’s model [10]
and later in the LISSOM model (Laterally Interconnected
Synergetically Self-Organizing Map; [57]) or the recent GCAL
variant (Gain Control, Adaptation, Laterally connected; [58]).
It is possible that these algorithms may perform better when
faced with multi-touch stimulations—this needs to be tested
in the future. Another variant of the algorithm that is relevant
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in this situation is the DSOM (Dynamic SOM; [59]), in
which the time-dependent learning function (learning rate and
neighborhood radius decreasing over time) was replaced by a
time-invariant function, triggering learning as soon as inputs
that lack a close representative are encountered. This would be
a way of achieving life-long learning in the robot and could be
one of the possible implementations leading to the well-known
plasticity (reorganization capability) of the cortical maps (see
e.g., [12], [13], [55] for models dealing with somatosensory
cortex). This constitutes another direction of future work.

In summary, as a model of somatosensory (tactile, more
precisely) cortex development, the work presented operates
at a high level of abstraction and has admittedly important
limitations. However, its contribution to the neurosciences
and cognitive sciences should be best viewed as a building
block, part of a larger project that aims at embodied modeling
of primate body and peripersonal space representations. Our
effort parallels that of Kuniyoshi et al. dealing with foetal
development (e.g., [17]), but focuses on early postnatal devel-
opment and uses a real robot as opposed to simulation. The
maps representing the robot’s skin that originated in this work
will be used in ongoing work that studies the development
and operation of multimodal (tactile, proprioceptive, visual)
body representations. The development of proprioceptive rep-
resentations is studied in parallel [35] as well as learning
from visuo-proprioceptive-tactile associations about periper-
sonal space [34]. At the same time, these developments may,
first, set the ground for future refinement of the work presented
here. In particular, self-touch (as developed for the iCub
in [60]) holds great promise as an autonomous multimodal
body schema learning tool. Second, with several modules in
place, the possibilities for behavioral testing of the learned
representations—accuracy of gazing at or removal of vibrating
stimuli, for example—will be open. At the same time, this
work is relevant for robotics, in particular for physical human-
robot interaction: robots with artificial skin and representations
thereof are more aware of the full occupancy of their bodies,
leading to safer interaction with their surroundings. Finally, all
the data and code used in this work are available at [39] and
we would be happy to assist other researchers in using it.
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Abstract. The space immediately surrounding our body, or peripersonal
space, is crucial for interaction with the environment. In primate brains,
specific neural circuitry is responsible for its encoding. An important
component is a safety margin around the body that draws on visuo-tactile
interactions: approaching stimuli are registered by vision and processed,
producing anticipation or prediction of contact in the tactile modality. The
mechanisms of this representation and its development are not understood.
We propose a computational model that addresses this: a neural network
composed of a Restricted Boltzmann Machine and a feedforward neural
network. The former learns in an unsupervised manner to represent posi-
tion and velocity features of the stimulus. The latter is trained in a super-
vised way to predict the position of touch (contact). Unique to this model,
it considers: (i) stimulus position and velocity, (ii) uncertainty of all vari-
ables, and (iii) not only multisensory integration but also prediction.

Keywords: Peripersonal space · Touch · RBM · Probabilistic popula-
tion code · Visuo-tactile integration

1 Introduction

For survival, animals and humans have to be “aware” of their bodies and space
around them. This space is called peripersonal space (PPS) and is especially
important for safe interaction of an agent with the environment. PPS is the
space that extends the surface of the body. In the primate brain, there is neural
circuitry specialized on PPS representation, in particular bimodal neurons with
visuo-tactile receptive fields (e.g., [3]; [1] for a review) firing when some part
of the skin is stimulated or a visual stimulus is presented nearby. The PPS is
seemingly extended when a stimulus moves faster (e.g., [3]) and the direction of
the moving object (looming vs. receding) is also important for responses of the
PPS network [10]. Thus, position and velocity of the stimulus have to be con-
sidered. Moreover, there is evidence that the brain is able to combine different
sensory information in a statistically optimal manner ([2]; [5] for a computational
model), for which the brain must also encode uncertainty of sensory information.
The two modalities—visual and tactile—are presumably interacting in several

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part I, LNCS 10613, pp. 101–109, 2017.
https://doi.org/10.1007/978-3-319-68600-4_13
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ways: (i) the correlations induced when the stimulus contacts the skin surface
may facilitate learning and online adaptation of the PPS; (ii) the visual informa-
tion is predictive of the tactile in both space and time—that is, an approaching
stimulus that is perceived only visually facilitates the responses of neurons with
tactile receptive fields at the expected contact location (e.g., [10]).

PPS learning—in a narrow sense of the visuo-tactile neurons’ characteristics
—can be viewed as a regression task: learning a functional relationship between a
visual stimulus in space (position and velocity) and the expected contact location
as perceived by the tactile modality. Training data is provided by approaching
objects perceived visually and eventually contacting the skin. If uncertainty of
the input is considered, we obtain a regression problem with errors in variables.

There are few computational models of PPS representation learning in the
sense considered here (i.e., PPS as margin-of-safety rather than PPS as space
within reach – see [1]). Magosso et al. [6] proposed a neural network that models
unimodal (visual and tactile) and bimodal representations of an imaginary left
and right body part, but focused on their interaction rather than learning and
velocity was not considered. Roncone et al. [9], on a humanoid robot, developed a
proxy for the visual receptive fields in a probabilistic sense (likelihood of contact)
and showed that they can be learned from scratch from objects nearing and
eventually contacting the skin. Velocity (or time to contact) was considered, but
for both, position and velocity, the 3D space was collapsed to a single dimension.
Neither of the models takes uncertainty of the inputs into account.

Our work departs from a neural network model based on a Restricted Boltz-
mann Machine (RBM) from [7] that enables integration of information from
different modalities—there vision and proprioception, here position and velocity
both derived from vision (the step of extracting these quantities from actual
visual input is not addressed here). A probabilistic population code [5] is used
to encode position and velocity as Gaussian distributions including uncertainty,
which are then fed into the RBM model providing dimensionality reduction and
feature extraction. However, the model is not able to make temporal predictions
such as predicting the future state of one modality from the other modality.
Thus, we extended the model by a feedforward neural network that takes the
RBM hidden neurons as input and learns to predict a location on the body sur-
face (covered by skin) that will be hit by a moving object based on the integrated
representation of position and velocity of the object.

This article is structured as follows. The Materials and Methods section
details input/output encoding and the RBM. This is followed by the Experi-
ments and Results section where we describe learning and testing of the model.
We close with a Conclusion and Discussion.

2 Materials and Methods

2.1 Input and Output Encoding

The input neurons use a “probabilistic population code” [5,7] to encode a mea-
surement x and its uncertainty (determined by a gain g). A state (or “activa-
tion”) r of the neuron population is sampled from the distribution
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p(r|x, g,Σt) =
∏

j

Pois[rj |gfj(x)], (1)

where fj(x) = e− 1
2 (x−cj)

T Σt(x−cj) is a Gaussian function centered in the receptive
field (RF) center cj of the j-th neuron, the covariance matrix Σt is a constant diag-
onal matrix (for the given modality), with all diagonal elements having the same
value (variance of the Gaussian function) that determines the width of the RF.

The state r of the neuron population can be interpreted as a normal distri-
bution (we assume that the size of the neuron population is sufficiently large)
N (ψ(r),Σ(r)) [5,7] where

ψ(r) =

∑
i ciri∑
i ri

(2)

is the mean and

Σ(r) =
Σt∑

i ri
(3)

is the covariance matrix. The matrix is diagonal, with all diagonal elements equal
to the variance σ2. Equations (2) and (3) are valid if we assume that a prior dis-
tribution p(x) is uniform (for the Gaussian case see [7]). A relationship between
g and the variance is g ∝ 1

σ2 [5]. In what follows, instead of the covariance matrix
(3), we will use η and call it confidence of a measurement, defined as follows:

η =
∑

i

ri (4)

The confidence η fully determines the values of the covariance matrix (see
the denominator in (3)). Note that η ∝ g ∝ 1

σ2 . Thus, the decoded covariance
σ2 as the uncertainty of the measurement can always be determined from η.

For detailed information about neuron RF centers cpos
j , cvel

j , ctact
j see [11].

2.2 Restricted Boltzmann Machine (RBM)

This part of the architecture is based on an RBM-like model from [7]. A
Restricted Boltzmann machine is a generative model that consists of two layers
with no intralayer connections and full interlayer connections [4,12] (see Fig. 1
right). The input units (with state r) are Poisson random variables that take
nonnegative integer values according to (1). The hidden-layer units (with state
v) are binary. The input and hidden units have biases (br, bv). The connection
between both layers (weights W) is undirected.

During learning, one population is given and the other is sampled. The units
v (resp. r) are sampled from Bernoulli (Poisson) distribution [4,12]

p(v|r) =
∏

i

Bern[vi|σ({Wr + bv}i)] (5)
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p(r|v) =
∏

j

Pois[rj |exp({WTv + br}j)] (6)

The RBM was trained using one-step contrastive divergence [4].

3 Experiments and Results

We deploy our neural network architecture in a 2D scenario where objects are
approaching a simulated skin surface (see Fig. 1 left). The performance of the
learned representation is assessed, focusing on the precision and reliability of
the predictions generated. Finally, we analyze how the PPS representation is
modulated by stimulus speed. Complete code and parameters for all experiments
is available online [11].

3.1 Peripersonal Space Representation Learning

Learning proceeds in two separate phases. The input variables are: (i) 2D
stimulus position, xpos (from the hypothetical “visual” modality), and (ii)
stimulus velocity, xvel – the change of position during a timestep xvel(t) =
xpos(t) − xpos(t − 1). Both are encoded (using (1)) by the neural populations
with states rpos and rvel respectively. The gains associated with the input vari-
ables, gpos, gvel, are uniformly generated from bounded intervals. First, the RBM
is trained to represent this input space in an unsupervised fashion. Second, the
tactile modality is added and learning proceeds in a supervised way to predict
the contact location.

RBM Learning. The object positions xpos(i), i ∈ {1, 2, ..., N} (N is the
size of the training set) uniformly covered the space of the visual modal-
ity (see Fig. 1 left). The direction and magnitude of each velocity vector

Fig. 1. Scenario and architecture. LEFT: 2D experimental scenario. Stimulus tra-
jectory in orange; positions of stimulus at two different discrete time moments shown.
“Skin” in green. RIGHT: Architecture of the neural network and illustration of train-
ing and testing (predicting) process. See text for details. (Color figure online)
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xvel(i), i ∈ {1, 2, ..., N} were uniformly generated from a bounded interval.
For training of the RBM, we used the training set U = {[rpos

U (1), rvel
U (1)],

[rpos
U (2), rvel

U (2)], ..., [rpos
U (N), rvel

U (N)]}, where rpos
U (i) and rvel

U (i) are obtained
from xpos(i) and xvel(i) (using (1)). The RBM was trained using one-step con-
trastive divergence [4]. The main parameters of the learning were: size(rpos) =
289, size(rvel) = 625, size(v) = 150, gpos/vel ∈ (12, 18), xvel ∈ (−0.012, 0.012)×
(−0.012, 0.012) and the number of training epochs was 60 (for other parameters
see [11]).

Feedforward Network Learning. The second phase of learning can be viewed
as a regression task, with xpos and xvel as independent variables and xtact, 1D
position of the stimulation registered by the tactile modality, as the dependent
variable (can be empty – no prediction). As before, all variables have their respec-
tive gains gpos, gvel, gtact (uniformly generated from bounded intervals) and are
encoded using (1), giving rpos, rvel, and rtact. We will distinguish predicted value
of the tactile position xtact

pred and the measured value xtact
meas that are used during

training and testing.
Simulated looming objects follow trajectories that start at the top edge of

a simulated space (dimensions chosen arbitrarily) and end at the bottom edge
(see Fig. 1 left). The start and end of the trajectory and the object velocity are
generated uniformly from bounded intervals. If the end of the trajectory falls in
the region covered by the emulated “skin”, the tactile modality is activated. The
position of the stimulation object is recorded at discrete time moments (see the
orange circles in Fig. 1 left).

The relationship between “visual” stimulation, e(t), and tactile stimulation,
z(t), is formally described below. On contact of the object with “skin”, the “con-
nection” is strengthened if the tactile stimulation xtact

meas(c) follows the moment
of “visual” stimulation at time t by at most Q timesteps. Formally, let C ⊂
{1, 2, ..,M} be the set of time moments when the tactile modality was activated,
M size of the training set and Q an integer constant (“memory buffer size”). The
set T consists of pairs T = {(e(1), z(1)), (e(2), z(2)), ..., (e(M), z(M))}, where
e(t) = (xpos(t), gpos(t),xvel(t), gvel(t)) (independent variables with their gains)
and z(t) = (xtact

meas(c), g
tact
meas(c)) if ∃c, c ∈ C that t ∈ [c − Q, c], else z(t) is empty.

For training of a feedforward neural network (FF NN), the set T will
now be used to generate a set S = {(v(1), rtact(1)), (v(2), rtact(2)), ..., (v(M),
rtact(M))}, where v is the state of the RBM hidden layer and is sampled from
the Bernoulli distribution (5) given r = [rpos, rvel], as obtained from e(t). Then,
rtact(t) is obtained from a corresponding z(t) – see Fig. 1 right. If z(t) is empty,
then rtact(t) is a zero vector.

We used a standard two-layer feedforward neural network with sigmoid hid-
den neurons (state denoted h) and linear output neurons (see Fig. 1 right). The
training algorithm was scaled conjugate gradient backpropagation [8]. For the
training we used MATLAB’s Neural Network Toolbox. The main parameters of
the learning were: size(rtact) = 25, size(h) = 20, Q = 70, gpos/vel/tact ∈ (12, 18),
||xvel|| ∈ (0.005, 0.01) and the number of training epochs was 3369.
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3.2 Peripersonal Space Representation Testing

The process of prediction is schematically illustrated in Fig. 1 right. The pre-
diction is obtained from the feedforward neural network. An input v of the FF
NN is obtained from the stimulus (xpos,xvel, gpos, gvel) in the same way as it is
described in Sect. 3.1. From the output of the FF NN rtact (to prevent negative
activations and noise, we set to zero all rtact

j that have smaller value than 1),
we can get the predicted position xtact

pred(i) = ψ(rtact(i)) and the confidence η(i)

(see Eqs. (2) and (4)). If all elements of a state rtact are zeros, then no predic-
tion is generated. The error of the prediction is err = |xtact

pred − xtact
meas| (see Fig. 1

left). For testing we use xtact
meas for the end point of the trajectory (even if it

lies outside of the space covered by skin – cannot be “measured” by the tactile

Fig. 2. Peripersonal space representation testing – touch prediction perfor-
mance. A: Dependence of error on distance D and end of the trajectory
xtact

meas. The color code encodes the error |xtact
meas −xtact

pred| in actual vs. predicted contact
location (for the meaning of the D, xtact

meas and err see Fig. 1). The crosses denote that
the prediction is not generated (rtact = 0). The area between the two dashed lines
contains the stimuli that are followed by the tactile stimulation (xtact

meas is on the skin).
B: Dependence of confidence on distance D and end of the trajectory xtact

meas.
The color code encodes the confidence (see (4)) of each prediction depending on D and
xtact

meas. C: Dependence of error and confidence on D. Only trajectories with end
on the skin were used (the area between the dotted lines in A, B). Each value of the
dependent variable is the mean of error or confidence for stimuli from a 0.1 wide area of
D. Empty predictions were excluded. D: Dependence of prediction on speed and
distance D. Each point represents a moving stimulus (with a known value of speed)
at distance D from the end of trajectory. All stimuli were from trajectories that end
on the skin. The stimuli for which predictions are empty are marked by a red cross,
others are marked by a blue dot. (Color figure online)
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modality). The stimuli for testing are obtained in the same way as for learning
(see Sect. 3.1). The results are analyzed in the next section.

3.3 Analysis of the Results

The results are summarized in Fig. 2. Overall, the architecture has successfully
coped with the task. We find that if the trajectory of the stimulus ends on the
skin, the prediction error increases with the distance from the contact location,
but the prediction confidence decreases. This is illustrated in aggregated form
in Fig. 2C and in detail in Fig. 2A, B (in the latter, the testing set is reduced
for visualization purposes). If the trajectory ends outside the skin (xtact

meas /∈
[0.2, 0.6]), there was no prediction (η = 0) or the confidence η had a low value
(see Fig. 2A, B). This is desirable, as the lower confidence enables recognition
of false and inaccurate predictions. It is also possible to see that the confidence
was lower at the edges of the skin than in the central part.

In Fig. 2A and B, there seems to be a fuzzy but apparent border or threshold
in distance, after which the generated predictions are empty or their confidence
is low – around D = 0.5. This border is determined by buffer size Q, but,
importantly, it is also modulated by speed of the stimulus. We analyzed this
specifically in Fig. 2D: with higher speed, the empty predictions are generated
farther from the skin, so the “border of the PPS” moves farther.

4 Conclusion and Discussion

The mechanisms of PPS representation and learning in biology are not fully
understood. Arguably, PPS adaptation can be largely attributed to neuronal
plasticity in the corresponding networks (probably fronto-parietal areas) through
interaction with the environment. The contingencies between a visual stimulus
looming to the body and tactile stimulation on contact of the object with the
skin may constitute sufficient material for the development and continuous recal-
ibration of the PPS representation.

To investigate this hypothesis, we proposed a neural network architecture
that consists of two parts. The first network has two input populations, one
encodes position of the “visual” stimulus, the other encodes velocity of the stim-
ulus. Both of them also encode uncertainty of the stimuli. The information from
the input layers is integrated by the hidden layer of an RBM. However, this
model alone cannot make temporal predictions, so we extended it by a feedfor-
ward neural network with one hidden layer. This feedforward network is trained
in a supervised manner to predict tactile stimulation.

We tested how the network after training can predict tactile stimulation given
the “visual” position and velocity of a looming stimulus and found that: (i) the
error of the prediction increased with the distance of the stimulus from the skin;
(ii) the confidence of the prediction decreased with distance. The confidence was
also low or zero if the trajectory of the stimulus ended outside the skin. These
are expected and desired properties, thus verifying the suitability of our method.
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Interestingly, our model reproduced the phenomenon of seeming PPS expan-
sion pertaining to faster stimuli and predicts a hypothetical mechanism for this:
for a given distance, there is an emergent cut-off speed, whereby slower stimuli
do not induce any prediction of touch (and thus may not lead to PPS activation)
but faster stimuli do.

In the future, we want to conduct a more detailed comparison with the prop-
erties of PPS in biology. In addition, it will be natural to add additional modal-
ities next to vision and touch: (i) the auditory modality may provide additional
information about the same stimulus, which in turn needs to be optimally inte-
grated with vision; (ii) proprioception is mediating coordinate transformations
for stimuli pertaining to the body. Finally, we want to test our model in a real
scenario on a humanoid robot. These may require changes to the architecture
presented here, such as possible recruitment of a convolutional neural network
to process raw visual inputs, and—upon inclusion of additional modalities and
hence dimensions to the task—transforming the RBM into a Deep belief network
or adding more hidden layers to the FF NN.
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Abstract

Accurately predicting contact between our bodies and environmental objects is paramount

to our evolutionary survival. It has been hypothesized that multisensory neurons responding

both to touch on the body, and to auditory or visual stimuli occurring near them—thus delin-

eating our peripersonal space (PPS)—may be a critical player in this computation. However,

we lack a normative account (i.e., a model specifying how we ought to compute) linking

impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to

develop such a model and show that it recapitulates many of the characteristics of PPS.

Namely, a normative model of impact prediction (i) delineates a graded boundary between

near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming sti-

muli increases, (iii) shows stronger contact prediction for looming than receding stimuli—but

critically is still present for receding stimuli when observation uncertainty is non-zero—, (iv)

scales with the value we attribute to environmental objects, and finally (v) can account for

the differing sizes of PPS for different body parts. Together, these modeling results support

the conjecture that PPS reflects the computation of impact prediction, and make a number

of testable predictions for future empirical studies.

Author summary

The brain has neurons that respond to touch on the body, as well as to auditory or visual

stimuli occurring near the body. These neurons delineate a graded boundary between the

near and far space. Here, we aim at understanding whether the function of these neurons

is to predict future impact between the environment and body. To do so, we build a math-

ematical model that is statistically optimal at predicting future impact, taking into account

the costs incurred by an impending collision. Then we examine if its properties are similar

to those of the above-mentioned neurons. We find that the model (i) differentiates

between the near and far space in a graded fashion, predicts different near/far boundary

depths for different (ii) body parts, (iii) object speeds and (iv) directions, and (v) that this

boundary scales with the value we attribute to environmental objects. These properties

have all been described in behavioral studies and ascribed to neurons responding to
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objects near the body. Together, these findings suggest why the brain has neurons that

respond only to objects near the body: to compute predictions of impact.

Introduction

Predicting environmental impact on our body is a critical computation promoting our evolu-

tionary survival. Interactions between our body and the environment occur within the theater

of our peripersonal space (PPS; [1, 2]), the space immediately adjacent to and surrounding our

body. In turn, the brain has a specialized fronto-parietal circuit representing multisensory

objects and events in a body-centered reference frame when these are near the body [3–5].

There is strong experimental evidence demonstrating that PPS plays a key role in defensive

behaviors (see [6] for a seminal review) and initial evidence likewise suggests that PPS encod-

ing plays a role in impact prediction [4, 7, 8]. For instance, stimuli looming toward the body

enhance tactile sensitivity at the spatial and temporal location where observers expect impact

to occur [9], and PPS enlarges as the speed of incoming stimuli grows [10]. However, we lack a

normative account linking impact prediction and PPS.

Modeling efforts have accounted for a number of different aspects of PPS. Magosso and col-

leagues first introduced a biologically motivated neural network of PPS [11, 12]. This model

inherits much of its ability to distinguish between near and far spaces from its local connectiv-

ity patterns within unisensory areas. Variants of this model can account for PPS re-sizing after

tool use [12, 13], as well as its remapping as a function of the speed of approaching stimuli [14]

and recent stimuli statistics [15]. This model may also account for the inflexibility of PPS

remapping in autism [16]. Similarly, Bertoni et al. [17] developed a neural network model of

PPS, with the innovation that this latter one learns the statistical regularities between visual,

tactile, and proprioceptive inputs in order to construct a representation of PPS. In doing so,

Bertoni et al.’s model shows how PPS neurons may be anchored to body parts. Straka and

Hoffmann [18] have trained a neural network to integrate seen object position and velocity, as

well as to predict future tactile contact. However, this model’s predictions of tactile activation,

and thus impact, were trained in a supervised manner and the model did not explicitly calcu-

late the probability of future tactile contact. Roncone et al. [19] proposed a PPS model which

was trained using a humanoid robot, by nearing objects. The model estimated the likelihood

of future contact and used this prediction for avoidance behavior. Perhaps most related to our

model, Bufacchi et al. [20] used a 3D geometric model of defensive PPS to fit hand-blink reflex

data, assuming uncertainty about stimulus direction in all 3 dimensions and an infinite time-

limit.

These models have certainly advanced our understanding of PPS, but share a common limi-

tation in being non-normative. That is, they suggest how PPS and impact prediction could be

computed or learned from observations, as opposed to how it ought to be computed. Instead,

a wealth of evidence, across a wide variety of fields and tasks (e.g., [21–24]), have shown that

humans perceive and perform decisions (near) optimally. Thus, mechanistic models (e.g., neu-

ral networks) and human performance should be benchmarked against statistical optimality.

Similarly, a strong test of the hypothesis that a functional role of PPS is to perform impact pre-

diction [4, 8] is to build a normative model of the latter, and then contrast the behavior of this

model to known properties of PPS encoding.

Here, we use Bayesian Decision Theory [25–28] to propose a normative model of PPS as

performing prediction of impact which minimizes the loss/cost such an impact may incur to

the agent. We show that this normative model (i) delineates a graded boundary between near
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and far space [3], (ii) demonstrates a larger PPS as the speed of incoming stimuli increases [10,

14], (iii) shows stronger contact prediction for looming than receding stimuli—but critically is

still present for receding stimuli [6, 29, 30]—, (iv) scales with the values of objects (e.g., innocu-

ous vs. potentially dangerous; [31, 32]), and finally (v) can account for differing sizes of PPS

for different body parts [33]. Together, these results recapitulate a set of important features of

PPS and support the hypothesis that PPS neurons perform contact prediction.

Results

We developed a Bayesian observer inferring whether contact between an external object and

the body would occur within the next time step. An overview of the model is given in Fig 1

and S1 File (for full detail see the Materials and methods section). Briefly, at time T, an object

has position xT and moves with velocity vT. The observer is tasked with predicting whether at

or before T + ΔT this object will make contact with the body. This prediction takes into

account two components. First, the probability estimation of the object making contact with

the body, given its perceived position and velocity, including its uncertainty. Second, the loss

(i.e., penalty) incurred if the prediction is incorrect. We denote the possible impact of the

object on the body as y 2 {0, 1}, which is a binary variable—either there is contact with the

body or there is not. Instead, ypred 2 [0, 1], a continuous value, is the prediction whether con-

tact will occur or not, taking into account the estimation of probability of contact and the loss

function. Optimal impact prediction is denoted by y�pred.

According to Bayesian Decision Theory (see e.g., [25, 26]) the optimal decision—in our

case the impact prediction y�pred—is

y�pred ¼ arg min
ypred2½0;1�

Lððx̂T; sxÞ; ðv̂T; svÞ; ypredÞ ð1Þ

where

Lððx̂T; sxÞ; ðv̂T; svÞ; ypredÞ ¼ Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞ � lossðy ¼ 1; ypredÞþ

Pðy ¼ 0jðx̂T; sxÞ; ðv̂T; svÞÞ � lossðy ¼ 0; ypredÞ
ð2Þ

and x̂T; v̂T are respectively the observer’s point estimates of the object position xT and velocity

vT at time T (see Fig 1). The estimates need not be the same as the actual object position and

velocity, given that perception may be distorted by observation noise (see Derivation of the

normative impact prediction model for details). Uncertainty about the position and velocity

are respectively expressed by σx, σv. Stimuli perceived less accurately (e.g., visual stimuli at low

contrast, or auditory localization as opposed to visual localization) result in greater σx and σv.

To include this uncertainty, position and velocity estimates are respectively encoded as normal

distributions Nðm ¼ x̂T; s ¼ sxÞ and Nðm ¼ v̂T; s ¼ svÞ. Displacement of the object during

ΔT is encoded as normal distribution Nðm ¼ DT � v̂T; s ¼ DT � svÞ (see Fig 1 or Derivation of

the normative impact prediction model for details).

Merging the position and displacement estimations, the probability Pðyjðx̂T; sxÞ; ðv̂T; svÞÞ

of the external object making contact with the body (y = 1) at or before T + ΔT given the

agent’s observations at time T is estimated (see the calculation in Fig 1 or in Derivation of the

normative impact prediction model). Conversely, the estimated probability that the external

object will not make impact with the body is

Pðy ¼ 0jðx̂T; sxÞ; ðv̂T; svÞÞ ¼ 1 � Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞ.

The second important component in computing the value associated with an object’s veloc-

ity and distance to the body is the utility function, loss(y, ypred). For a predicted value ypred, it

enables to calculate the corresponding loss associated with y 2 {0, 1}. For a zero-one loss
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Fig 1. Schema and illustrative example of the contact prediction model. Say an object (black circle) is xT = 30cm

from the body (black head) and is approaching with velocity vT = −50cm/s. Perception with noise. The nervous system

estimates the position and velocity of the object with respect to our body with a given uncertainty. For instance, we

may estimate x̂T ¼ 32cm and v̂T ¼ � 48cm=s. Assuming that the noise is Gaussian, the values x̂T ; v̂T are samples from

normal distributions N(μ = xT, σx), N(μ = vT, σv), where σx (here, for illustration σx = 4cm), σv (here σv = 5cm/s) reflect

the level of noise. Further, we assume the brain encodes not only point estimates (x̂T ; v̂T), but also their uncertainty—

the estimates are encoded as normal distributions Nðm ¼ x̂T ; s ¼ sxÞ and Nðm ¼ v̂T ; s ¼ svÞ, respectively (see

Derivation of the normative impact prediction model for details). Displacement calculation. According to ΔT, the

object displacement distribution is Nðm ¼ DT � v̂T ;s ¼ DT � svÞ. Future position estimation. Knowing the current
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function—loss is 0 if the prediction ypred equals y, 1 otherwise—the optimal prediction (i.e.,

minimizing expected loss) is to predict the state with the highest probability. More generally,

however, a number of different loss functions could be used. Here, we define a fairly general

loss function as,

lossðy; ypredÞ ¼ FP max ð0; ypred � yÞ2 þ FN max ð0; y � ypredÞ
2
; ð3Þ

where FP, FN 2 [0,1] are respectively the false positive and false negative factors, and max(0,

x) is a function which outputs x for x� 0 and 0 for x< 0. In other words, FP determines the

penalty, or cost, associated with predicting impact when none occurs, and FN determines the

penalty associated with not predicting impact when one does occur.

Throughout the article, we typically assume FN> FP, as we focus on defensive PPS and

given that it is arguably better to erroneously predict tactile activation (FP) than it is to experi-

ence impact on our bodies without predicting it (FN) (see The Precautionary Principle). In this

case an impact prediction minimizing the expected loss is performed. We typically use FN = 5;

FP = 1. This choice is arbitrary and was chosen experimentally. The effect of different choices

(1, 5, 100) is illustrated in Section A graded PPS “boundary”—Effect of sensory uncertainty

and cost of false negative prediction. We did not study the case where FN< FP, which may

correspond to appetitive actions like reaching or grasping (see also [34]), but such values can

be readily tested with the current model. Furthermore, for the special case when FP = FN, the

model performs optimal impact prediction—the error between the prediction and the actual

state is minimized. In this case, the optimal prediction is equal to the hit probability estima-

tion. In what follows, we complement every graph in the main body of the article (with FN = 5;

FP = 1) with a twin figure in the S1–S5 Figs where FN = FP = 1.

Putting the above together (estimated probability of touch and loss function), we may write

the full expression (see Eq (6) for the derivation),

Lððx̂T; sxÞ; ðv̂T; svÞ; ypredÞ ¼ Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞ � lossðy ¼ 1; ypredÞþ

Pðy ¼ 0jðx̂T; sxÞ; ðv̂T; svÞÞ � lossðy ¼ 0; ypredÞ ¼

Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞFNð1 � ypredÞ
2
þ ð1 � Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞFPy2

pred

ð4Þ

In what follows, we perform simulations to compare properties of this normative model of

impact prediction with known properties of PPS encoding.

A graded PPS “boundary”—Effect of sensory uncertainty and cost of false

negative prediction

The study of PPS was jump-started by the realization that the primate brain has a set of neu-

rons encoding multisensory objects when these are near from the body [2, 6, 10, 30, 35, 36].

Thus, first and foremost, if the impact prediction model accounts for PPS, it ought to differen-

tiate between near and far spaces. In addition, more recently authors have highlighted that this

position and displacement during ΔT, the position at time T + ΔT is calculated as positionT+ΔT = positionT +

displacement. Consequently, the distribution of possible future positions X̂TþDT is

Nðm ¼ x̂T þ DT � v̂T ; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDT � svÞ
2
þ s2

x

q

Þ. Hit probability estimation. As the body position is at x = 0, the object

will hit the body if its position is equal or smaller than zero (see the green part of the distribution). Therefore, the

estimated probability of body hit (i.e., y = 1) is Pðy ¼ 1jðx̂T ;sxÞ; ðv̂T ;svÞÞ ¼ PðX̂TþDT � 0Þ. The probability estimation

of no contact is Pðy ¼ 0jðx̂T ;sxÞ; ðv̂T ; svÞÞ ¼ 1 � Pðy ¼ 1jðx̂T ; sxÞ; ðv̂T ;svÞÞ, which corresponds to the crimson part

of the distribution. Bayesian decision/prediction. Following Eq (1), a prediction y�pred—which minimizes the expected

loss—is calculated. See S1 and S2 Files for details of the computation.

https://doi.org/10.1371/journal.pcbi.1010464.g001
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PPS “boundary” is not all-or-none, but graded [37]. Thus, in a second step we question if and

how the impact prediction model allows for graded PPS “boundaries”.

First, we build a baseline model with the parameter values listed in Table 1.

As shown in Fig 2, the model generates predictions of contact y�pred that grow gradually with

object proximity to the body. Further, it differentiates between a “far space” where touch is not

likely to occur, and a “near space” where touch is highly likely to occur. If we consider the PPS

“boundary” as the first value of predicted impact where meanðy�predÞ > 0:01 (see [14], Fig 17 &

18 for a similar approach). With this basal configuration the impact prediction model specifies

a “boundary” between far and near space at about 50cm from the body.

An alternative operationalization of the PPS “boundary” used in the literature is the mid-

point of a sigmoid function (e.g., [29, 33, 38]). Interestingly, close examination not solely of

the mean response (solid line), but also of the variability (blue dots) with the model (Fig 2)

seems to indicate that impact prediction estimates are most variable near the PPS “boundary”

region. We examined if this property was apparent in empirical data by re-analyzing data from

[39]. In this study, human observers (n = 19) were asked to respond to touch as quickly as pos-

sible as task irrelevant visual stimuli approached their body in virtual reality. In Fig 3A we

show that reaction times to visuo-tactile stimuli were faster than to tactile stimuli alone. Fur-

ther, this multisensory facilitation was most apparent as visual stimuli were near the body—

Table 1. Baseline model parameters. Negative values for velocity vT indicate objects approaching the body, while posi-

tive values would indicate objects receding from the body. In simulations we manipulate each of these parameters,

except for σx and FP.

velocity vT = −25cm/s
velocity estimation uncertainty σv = 20cm/s
position estimation uncertainty σx = 2.5cm
false negative factor FN = 5

false positive factor FP = 1

prediction time step ΔT = 0.5s

https://doi.org/10.1371/journal.pcbi.1010464.t001

Fig 2. PPS as optimal impact utility prediction for baseline parameters. Blue dots—20 for each distance—are

individual predictions (samples) of y�pred . Blue line—mean of 20 repetitions. Parameters used are in Table 1. See S1 Fig

for a version with FN = FP = 1.

https://doi.org/10.1371/journal.pcbi.1010464.g002
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indexing the encoding of PPS. In this dataset, the PPS “boundary” was located between the

first and second visuo-tactile distance indexed. Most importantly, in Fig 3B we quantified vari-

ability in reaction times, at a single subject level. That is, while reports (e.g., [15, 16, 40, 41])

typically illustrate between-subject variability (for instance by showing standard errors of the

mean across subjects), there is no quantification of within-subject variability. Here, for each

subject we measure the range between the 25th and 75th percentile of their reaction times, for

a given subject and distance. Fig 3B depicts the mean of these ranges across subjects, and

shows that within-subject variability peaked at the second distance indexed. In Fig 3C we show

all reaction times measured, again showing the largest range at the second distance index.

Altogether, the empirical results concur with the modeling prediction that within-subject vari-

ability is largest near the PPS “boundary”.

Next, we questioned if and how this model may account for steepness in the PPS boundary,

as well as for changes in its size—the most common experimental finding (e.g., PPS expanding

with tool use [42], or during walking [40], or bodily illusions [41]). Conveniently, this norma-

tive model of impact prediction in essence has two degrees of freedom: (1) the uncertainty

associated with perceptual observations, and (2) the ratio of FP, FN, dictating an appraisal of

the danger associated with the objects approaching the body. For simplicity, we refer to these

degrees of freedom respectively as a ‘sensory’ and ‘cognitive’ node, yet it is well established that

socio-emotional contexts and motor constraints/possibilities impact our appraisal of the value

of objects in our environment (e.g., see [4, 5, 37]). One additional parameter is the ΔT. This is

the prediction time step of the model—a time interval for which contact estimation is per-

formed. The object may hit the body at any moment within this interval. Its effects will be

studied in Section PPS shape modulated by prediction time step. The rest of parameters (e.g.,

xT, vT) depend on the physical state of the world.

In turn, in Fig 4A and 4B we respectively manipulate σv (5, 20, and 35 cm/s) and FN (1, 5,

and 100). As shown in Fig 4A, changes in sensory uncertainty lead to concurrent increase in

PPS size (i.e., the first distance at which y�pred is higher than 0.01 being farther and farther in

space), and a decrease in the sharpness of its boundary. On the other hand, increasing FN
(while maintaining FP constant at 1), Fig 4B, increases the size of PPS while leaving the shape

of its boundary virtually unchanged. Together, these results demonstrate that the normative

Fig 3. Variability in multisensory facilitation as a function of distance from the self–empirical data. New evaluation of data from Masson et al. [39]. (A) Visuo-tactile

facilitation of reaction times (RT) as a function of distance to the body—means and standard errors across subjects. (B) Within-subject variability of reaction times. (C)

Aggregate subject, combining visuo-tactile RT facilitation across all subjects.

https://doi.org/10.1371/journal.pcbi.1010464.g003
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model of impact prediction not only differentiates between a near and far space but also shows

that both sensory and higher-level value attributes [37] may impact the size and shape of PPS.

In S6 Fig we explore how σv, ΔT and FN may simultaneously impact the gradient of the PPS

boundary and PPS size.

Finally, note that the observed effect that increasing perceptual uncertainty increases the

PPS size is apparent when the PPS boundary is operationalized as the farthest distance for

which meanðy�predÞ > 0:01. If instead the midpoint of a sigmoid function is estimated and used

as a proxy for PPS size, the effect is significantly smaller. For the special case where FP =

FN = 1, S2 Fig, top panels, there is no effect on “PPS size” at all.

PPS encoding and object velocity

In addition to defining a graded separation between near and far spaces, PPS encoding is also

modulated by the characteristics of nearby external objects, such as their velocity [10, 14],

movement direction [6, 29, 30], and valence [31, 32]. In the next three sections we tackle each

of these properties in turn.

PPS size expands with the increasing velocity of incoming stimuli [10, 14]. Hence, we ques-

tioned whether our model recapitulates this finding. The simulation setup mimicked the set-

ting from [14], with an object approaching the observer with a fixed velocity vT equal to -25 or

-75 cm/s (looming toward the subject). As shown in Fig 5, the impact prediction model inher-

ently shows the dependency between distance of the object to the observer and impact predic-

tion y�pred for both velocities. In fact, if we again operationalize the PPS “boundary” as the

farthest distance for which meanðy�predÞ > 0:01, our simulation roughly corresponds to the size

of PPS empirically measured around the face (i.e., 52 cm for 25 cm/s and 77 cm for velocity 75

Fig 4. Effect of stimulus uncertainty and the False Negative (FN) penalty parameters. Dependency between the mean of 1000 predicted tactile

activations y�pred (for each distance) and distance xT (in centimeters) of the stimuli from the body. The symbols “+” indicate 25th and 75th percentiles

which are calculated from 1000 predicted values y�pred for each distance. (A) The size of PPS and slope of its boundary are modulated by σv. (B) The

size of PPS, but only minimally the slope of its boundary, are modulated by FN. Parameters used are in Table 1 (except for σv in (A) and FN in (B)).

See S2 Fig—the right upper panel—for a version of subfigure A with FN = FP = 1.

https://doi.org/10.1371/journal.pcbi.1010464.g004
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cm/s; [14]). Thus, while Noel et al. [14] hypothesize that the enlargement of PPS during

increasing object velocity is due to neural adaptation (i.e., progressively stronger inputs are

needed to drive a neuron that has been active for a given time), here we are agnostic about the

neural implementation and instead show that the physics of our environment naturally leads

to an enlargement of PPS with increased object velocities under a framework of impact predic-

tion (see [17] for a similar demonstration that PPS encoding results from the physics of the

environment wherein touch is more likely to occur when objects are near the body).

PPS encoding and looming versus receding objects

PPS encoding is also modulated by the movement direction of objects in the external environ-

ment. Namely, neurons mapping PPS are most readily driven by looming, as opposed to

receding sensory stimuli [6, 30]. Here we replicate this situation by simulating objects moving

with negative (toward the body) or positive (away from the body) velocities. Further, to extend

on the empirical data and generate predictions for further experiments, we also simulate

objects moving at different speeds (vT = 12.5cm/s or 25cm/s) and with different levels of sen-

sory uncertainty (σv = 5cm/s, 20cm/s, or 35cm/s), both while approaching or receding from

the observer.

As expected, the results demonstrate that when objects loomed toward the body, the pre-

dicted tactile activation was higher than when it receded from the body—see Fig 6 and com-

pare the curves corresponding to the same speed vT and uncertainty σv but with opposite

directions. Most importantly, our model still generated non-zero y�pred when the object recedes

from the body. This is due to object position and velocity estimations having non-zero uncer-

tainties σx, σv. Namely, predicted contact for a receding stimulus would be zero if the location

and velocity of stimuli were known without any uncertainty (i.e., σx and σv were zeros). The

fact that the current simulations and Bayesian Decision Theory are able to recapitulate not

Fig 5. Comparison of PPS sizes for object velocities of -25 and -75 cm/s. Dependency between the mean of 1000

repetitions of impact predictions y�pred and distance xT (in centimeters) between the stimuli and body, for different

object velocities. The symbol “+” indicates 25th and 75th percentiles which are calculated from 1000 predicted values

y�pred for each distance. Notice that the beginning of PPS—defined as the farthest distance for which

meanðy�predÞ > 0:01—roughly corresponds to the PPS beginning around the face determined by [14]. Except for the

velocity vT = −75cm/s, the baseline parameters from Table 1 are used. See S3 Fig for a version with FN = FP = 1.

https://doi.org/10.1371/journal.pcbi.1010464.g005
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Fig 6. A looming stimulus leads to a higher response than a receding one. The stimulus is looming (receding) to (from) the body with velocity vT size 12.5 or 25 cm/

s. The horizontal axis is the distance xT of the stimulus from the body. The vertical axis corresponds to the impact prediction y�pred—for the mean and 25th/75th

percentiles of 1000 predictions for each distance. (Left column) The speed of the stimulus was vT = ±12.5cm/s. Although the prediction values were significantly

smaller for the receding movement, it was still slow enough to get significant impact prediction values even for the receding movement. With increasing velocity

uncertainty σv of the stimulus, the prediction values increased. (Right column) Speed was increased to vT = ±25cm/s. This led to reduction of impact prediction values

y�pred for the receding movement compared with the smaller speed case. The parameters not listed here take values from Table 1. See S2 Fig for a version with FN =

FP = 1.

https://doi.org/10.1371/journal.pcbi.1010464.g006
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only a response to looming, but also to receding stimuli, supports the hypothesis that PPS

reflects a stochastic computation of impact prediction.

Further, we can use this framework to make specific predictions for future empirical work.

Namely, according to this model, when looming stimuli increase in speed, PPS expands (see

above). However, when receding stimuli increase in speed, there is a negligible probability that

at the next time-point the object will make contact with the body (i.e., increased velocity away

from the observer offsets the effect of object position being uncertain). Thus, while PPS should

expand with increasing velocity of looming stimuli [6, 29, 30], there should be no discernible

PPS gradient with fast receding stimuli. Similarly, the ability to delineate a PPS boundary

should decrease with increasing sensory uncertainty during looming object trajectories (i.e.,

the boundary becomes shallower). To the best of our knowledge, these experimental condi-

tions (looming and receding object trajectories during different velocities and uncertainty)

have not been tested, and will constitute an important future test in ratifying PPS as predicting

future impact.

PPS encoding and object value

The approach of dangerous objects leads to an expansion of PPS (see e.g., [31, 32, 38, 43]).

Within our normative impact prediction model, this effect would a priori seem most naturally

accommodated by a change in FN. However, it may also be argued that greater encoding

resources may be attributed to the encoding of dangerous objects, for instance via attentional

mechanisms (see [44]), and hence reduce σv.

As demonstrated above (Fig 4), these competing hypotheses conveniently lead to different

predictions. If the expansion of PPS during approach of dangerous objects is due to an increase

in FN (Fig 4B), we should observe a change in PPS size, with nearly no corresponding change

in its gradient. On the other hand, if σv decreases (Fig 4A), the PPS “boundary” becomes

sharper, and importantly, this leads to shrinking rather than expansion of the size of PPS.

Taffou and Viaud-Delmon [43] used ecological auditory stimuli (dog growling vs. sheep

bleating) and reported that PPS expanded in the dog condition, specifically in subjects scared

of dogs. They did not explicitly report on the gradient of PPS, yet visual examination suggests

no difference between dog and sheep conditions. This—PPS expansion and no apparent

change in gradient—putatively suggests that the effect reported in [43] is “cognitive” in nature

(i.e., originates from the loss function, FN) Importantly, this effect, as interpreted under the

current modeling framework also highlights a critical element of the Bayesian observer per-

forming contact prediction; namely that beyond optimizing the prediction of the probability

that touch will occur, PPS encoding also ought to optimize the utility associated with impact

prediction.

Ferri et al. [38] ratify the conclusion from [43], while also directly comparing ecological and

artificial stimuli. In a first experiment, the authors present artificial sounds associated with

negative and neutral valence—broadband Brown and White noise, respectively (see [38]). The

results show both an expansion and sharpening of PPS during the negative-valence condition.

Our model would predict that this may be a simultaneous “sensory” effect driving the change

in PPS boundary steepness and a “cognitive” effect driving the PPS expansion and overriding

any shrinking due to the new shape of the PPS boundary as a result of decrease in σv.

Together, this pattern of results highlights the importance in fully characterizing changes in

PPS encoding (only when size and gradient are quantified, one can attribute these effects to

“sensory” vs. “cognitive” in nature). Further, they suggest that when using ecologically valid

sounds—but not artificial stimuli—, enlargements of PPS are most likely due to modulations

in the loss function and not low level sensory components. Lastly, these results highlight that,
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according to the current framework, not all previously reported characteristics of PPS encod-

ing may be explained by either environmental factors or changes in the probability of touch

occurring. Instead, impact prediction must also account for the value attributed to environ-

mental objects [37].

PPS size across different body parts

Beyond defining a graded boundary between near and far space that is modulated by context,

another important characteristic of PPS is that it is dependent on body-part, with PPS growing

in size from hand to face to torso [33]. The differing size of PPS across body parts is unlikely

due to modulations in the sensory uncertainty associated with object position or velocity (σx

and σv) given that approaching objects are perceived by exteroception (i.e., vision or audition)

which is common across body parts. In theory, the ratio between FN and FP could account for

the different sizes of PPS across body parts, but we would have to posit FN being larger for the

torso than the face, and it is not immediately clear why this would be the case. Perhaps the

most parsimonious explanation would be that the difference in PPS size simply reflects differ-

ences in body-part size. In order to test this possibility, we extend the model from 1-dimen-

sional to 3-dimensional. We only model the face and torso in this section.

To extend the model to three dimensions, we generalized 1D position and velocity to 3D

vectors and the border of a body part is generalized to a 2D rectangle enclosed in 3D space—

only the “collision plane”, not the depth of the body part is considered; see Fig 7. The details

are in Section Extension to 3D space. We approximated the face by a rectangle with size

[25cm, 25cm], and the torso by a rectangle with size [50cm, 50cm]. In contrast to the 1D sce-

nario, now the object can miss the body part, which decreases the probability of hit. In all

Fig 7. 3D experimental scenario. An object is looming to a body part (2D rectangle with size [2 � r1, 2 � r2] enclosed in

3D space). As the object moves along the x1 axis, it has position xT ¼ ½x1
T ; x2

T ¼ 0cm; x3
T ¼ 0cm� and velocity vT ¼

½v1
T ¼ � 25cm=s; v2

T ¼ 0cm=s; v3
T ¼ 0cm=s� at time T. As the uncertainty in position estimation is nonzero

(σx ¼ ½s
1
x > 0;s2

x > 0;s3
x > 0�), the point position estimation x̂T ¼ ½x̂1

T ; x̂
2
T ; x̂

3
T � does not correspond to xT. Future

position estimation X̂TþDT with a multivariate normal distribution is then calculated (see Section Extension to 3D space

for details). The red area of X̂TþDT corresponds to the probability estimation of hit—the body part is on the path

between x̂T and each point of the red area. On the contrary, the blue area corresponds to no hit of the body. (Top) Top

view. (Bottom) Side view. The silhouette’s reference frame (left) is placed to the torso.

https://doi.org/10.1371/journal.pcbi.1010464.g007
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experiments, the object is moving along x1 axis to the center of the body part (see Fig 7). There-

fore, if the position and velocity uncertainty in the vertical and horizontal axis are zero

(s2;3
x;v ¼ 0), the probability estimation of hit is the same as in the 1D case, because missing the

body part on the left/right or over/under it is excluded. This means that the variables related to

the first dimension (e.g., x1
T; v

1
T; s

1
x) are equivalent to the variables of the 1D model (e.g., xT, vT,

σx). On the other hand, if the horizontal (s2
x;v) or vertical (s3

x;v) uncertainty increases, there is a

corresponding stochastic estimate that the object may miss the body part and hence the esti-

mation of probability of hit and of y�pred goes down.

Experiments with this model are shown in Fig 8. In the first experiment, we used baseline

parameters from the 1D case (see Table 1) and manipulated horizontal (axis x2) and vertical

(axis x3) position and velocity estimation uncertainties (first row—s1
v ¼ 20cm=s—in Fig 8).

For some settings of perceptual uncertainty, there is a difference in PPS size between the face

and torso. However, for the torso, the beginning of PPS is still much smaller compared to the

empirical value (72cm from [33]). In an effort to come close to the empirical values, we

increased the velocity uncertainty in the first dimension from the baseline value to

s1
v ¼ 30cm=s, leading to a general expansion of PPS (similarly to the experiment from Fig 6).

For position and velocity uncertainties in the other dimensions, s2;3
x ¼ 5cm;s2;3

v ¼ 40cm=s
(purple curve in Fig 8), the beginning of face and torso PPS roughly fit empirical estimations

(torso 72cm [33], face 52cm [14]). Thus, to fit empirical data, large horizontal and vertical

velocity uncertainty s2;3
v and small horizontal and vertical position uncertainty s2;3

x are neces-

sary. If the horizontal and vertical position uncertainty is further increased to s2;3
x ¼ 10cm, the

maximal value of y�pred is only 0.6 even for zero distance from the face, which would predict big-

ger reaction times in close proximity for the face than for the torso. We speculate that this is

not plausible.

Two additional observations are in order. First, interestingly, our results suggest that hori-

zontal and vertical uncertainty matters more for small body parts—something that can be

empirically tested. Second, for low values of horizontal and vertical uncertainty, the 3D model

for the torso has very similar PPS size and shape as the 1D case. Thus, a 3D model may often

not be necessary.

PPS shape modulated by prediction time step

An alternative parameter that could potentially influence the different extent of PPS is the pre-

diction time step parameter ΔT (in our model it was fixed to 0.5s). It may be interpreted as the

time the agent needs to perform a defensive action that will protect the body part threatened

by the impending collision. The effects of ΔT 2 {0.25, 0.5, 1}s on the 1D model are shown in S7

Fig (for the corresponding figure with FN = FP = 1 see S8 Fig). Depending on the body part

and the action, the “time constant” may differ. For example, blinking to protect the eyes will be

faster than squatting to protect the whole torso. To explore this hypothesis, we performed an

experiment with ΔT = 0.5s for the face and ΔT = 0.75s for the torso on the 3D model—see Fig

9. It is apparent that the ΔT parameter is very effective in shifting the PPS boundary.

Discussion

Understanding how observers avoid collision with approaching environmental objects poten-

tially harming their bodies is of paramount importance in furthering our understanding of

self-environment interactions. It has long been postulated that neurons encoding for our PPS

may play a critical role in this computation [4, 9, 14, 45, 46]. Yet, there has been no formal,

normative demonstration. In turn, the major contribution of the current work is the
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Fig 8. Modulation of PPS size by body part size in a 3D model (face and torso). For this experiment, 3D model was used (see Extension to 3D space). Dependency

between distance of stimuli from body and the mean of 1000 impact predictions y�pred for each distance and for PPS representation around the face (body part size

[25cm, 25cm]) and trunk (body part size [50cm, 50cm]). The object is moving along the x1 axis (xT ¼ ½x1
T ; x2

T ¼ 0; x3
T ¼ 0�; vT ¼ ½v1

T ¼ � 25cm=s; v2
T ¼ 0; v3

T ¼ 0�).

Position and velocity estimation uncertainty for the first dimension are s1
x ¼ 2:5cm and s1

v ¼ 20cm=s for the first row, s1
v ¼ 30cm=s for the second row. The

uncertainties in the other two dimensions s2;3
x;v (in cm or cm/s) are varied through the experiments. All other parameters are the baseline parameters from Table 1.

The vertical dashed lines correspond to the estimations of the beginning of PPS from [14, 33]. See S4 Fig for a version with FN = FP = 1.

https://doi.org/10.1371/journal.pcbi.1010464.g008
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derivation of a Bayes optimal model of impact prediction that consists of impact probability

estimation and a cost function simulating the utility/penalty for the agent incurred by the

impending collision. Supporting the hypothesis that PPS encodes the prediction of future con-

tact, in a value-dependent manner, the normative model of impact prediction can recapitulate

several of the defining characteristics of PPS: (i) a graded delineation of near and far space

[37], a preference for (ii) approaching [6, 29, 30] and (iii) rapidly moving [10, 14] stimuli, (v) a

scaling of the “boundary” differentiating near and far space as a function of the valence attrib-

uted to the approaching object [31, 32], and finally (v) differing sizes for different body parts

[33]. The model also makes a set of concrete and testable hypotheses for future work. For

instance, the fact that stimuli velocity ought to impact PPS delineation differently for looming

and receding trajectories (see Fig 6), the fact that perceptual uncertainty ought to have an

impact on PPS size and boundary shape (see Fig 4A) and that perceptual uncertainty in

orthogonal directions to the looming object impacts more the characteristics of PPS for

smaller rather than larger body parts (Fig 8), and finally, the fact that “sensory” and “cognitive”

effects ought to shape PPS encoding differently (compare Fig 4A and 4B).

Interestingly, the derivation highlights two major factors (beyond the environmental, such

as the position and velocity of incoming stimuli, as well as the size of body parts) that may

largely determine the shape and size of PPS. First, aspects related to the loss function—the

value attributed to false positive vs. false negative detection of contact (see [37] for an opinion

piece proposing a value-based theory of PPS). This loss function is likely modulated by social,

emotional, motor, attentional, and even reflex-like computations that ascribe a value to, or a

danger associated with, objects and events in the environment (see [4, 5] for further discus-

sion). Second, aspects related to the precision with which an observer may estimate the posi-

tion and velocity of the approaching object and self-position. Conveniently, these two factors

affect the overall size of PPS (e.g., the central point of a sigmoidal function differentiating

Fig 9. Modulation of PPS for face and torso in 3D model by prediction time step. Dependency between distance of stimuli from body and the mean of 1000

impact predictions y�pred calculated by the 3D model (see Section Extension to 3D space) for each distance and for PPS representation around the face (body part

size [25cm, 25cm]) and trunk (body part size [50cm, 50cm]). Baseline parameters (see Table 1) were used. Horizontal and vertical uncertainties were set to

s2;3
x ¼ 5cm;s2;3

v ¼ 5cm=s. For a detailed experiment description see Fig 8. (Left) Prediction time step ΔT is same for both body parts (baseline value). The

vertical and horizontal uncertainties are not large enough to cause different sizes for both body parts. (Right) The prediction time step is higher for the torso

(ΔT = 0.75s) than for the face. In this setting, the PPS beginnings of both body parts fit roughly the empirical estimations. The vertical dashed lines correspond

to the PPS beginning estimations from [14, 33]. See S5 Fig for a version with FN = FP = 1.

https://doi.org/10.1371/journal.pcbi.1010464.g009
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between the near and far space) and its gradient (e.g., the slope of the sigmoid) differently.

While the value-based computation may modulate the overall size of PPS, it only minimally

affects the gradient between near and far space. On the other hand, if an enlargement of PPS is

due to changes in low-level sensory uncertainty, by necessity this has to be accompanied by a

flattening of the curve differentiating between the near and far space. The differing effect

engendered by changes in the loss function vs. computing the probability of contact should

allow researchers to attribute their empirical effects to one or the other component of the nor-

mative impact prediction model. In S6 Fig, we provide 3D plots illustrating the effects of veloc-

ity uncertainty (σv), false positive cost (FN), and prediction time step (ΔT) on the slope of the

PPS boundary and its size.

Manipulations intended to affect the loss function are commonplace in PPS research [31,

32]—even if not necessarily conceived as such. For instance, researchers have presented

observers with sights or sounds of objects approaching with either a positive, neutral, or nega-

tive valence. Examining this literature under the current framework suggests that while eco-

logical stimuli may in fact affect solely the loss function (i.e., changes in the false negative

parameter, modulating only PPS size but not the shape of the boundary), artificial stimuli may

affect both value-based computation, as well as the precision of sensory representations (see

PPS encoding and object value).

More notoriously, the current framework points to a large empirical void. That is, while a

critical element of the current model, there is a lack of studies examining how sensory uncer-

tainty—by e.g., varying size, contrast, adding observation noise, or making the approach tra-

jectory variable—may affect PPS (but see Huijsmans et al. [7] for a recent exception). The

normative model of impact prediction would hypothesize that more uncertain stimuli should

lead to a larger PPS, depending on how the size of PPS is operationalized—cf. Section A graded

PPS “boundary”—Effect of sensory uncertainty and cost of false negative prediction. To the

best of our knowledge, this has not been explicitly tested. However, Schlack et al. [47], did

record from single cells in the ventral intra-parietal area—an area known to house PPS neu-

rons (see e.g., [6])—while presenting auditory or visual stimuli (the former being more impre-

cisely localized in space, [48]). The authors reported larger auditory than visual receptive fields

in this area, suggesting that audio-tactile PPS may be wider than visuo-tactile PPS, as the nor-

mative model of impact prediction would conjecture.

On the modeling front, PPS is commonly associated with not only defensive [6], but also

with approaching behaviors [34]. Thus, in the future we may develop a full choice model,

where an agent does not only predict if impact will occur or not, but could also take either

avoiding or approaching actions. In this line, Roncone et al. [19] made a robot move toward or

away from objects by connecting artificial “PPS neurons” to a controller. In our case, now

equipped with a normative model of impact prediction, we could trigger actions based on a

specific value of y�pred. Two aspects of the current work are worth highlighting in this action-ori-

ented setting. First, here we either used a loss function where FN> FP or an unbiased one (FN
= FP). However, this need not always be the case. In particular when approaching objects, the

cost associated with “miss” may be higher than that associated with a “false positive”. Namely,

a striking difference between “PPS for defensive behavior” and “PPS for action” may be that in

the former FN> FP while in the latter FN< FP. Second, we ought to highlight that in order to

qualitatively match empirical estimates of PPS sizes across different body parts, varying the ΔT
parameter was more effective than the FN/FP ratio. For defensive PPS, this parameter may be

mainly motivated by the time needed to trigger and execute a protective action. This may differ

for body parts—protecting the torso by moving it requires whole-body action, while hand or

head could be protected relatively more easily—or even for the same body parts depending on
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context, such as the character of a potential threat. For example, protecting the eyes against fly-

ing sand by blinking is more rapid than a squatting action or moving the arms in front of the

face when the threat is different. Similarly, in invasive single cell recordings a striking feature

of PPS neurons is their vast heterogeneity in receptive field sizes. Our current results suggest

that perhaps akin to what is observed in other spatial codes (e.g., place or grid cells) this hetero-

geneity bears from different intrinsic time-scales of each neuron.

It is also worth noting that the our model predicts complete curves relating impact predic-

tion and distance of the object from the body. It generates empirical predictions about how dif-

ferent parameters such as perceptual uncertainty or object valence modify this curve—by

offsets along the distance axis, change in its slope, or their combination. To test the model pre-

dictions in real experiments, complete distance-dependent curves are desired, as opposed to

simplifications defining PPS boundaries as either the farthest distance with an effect on a mea-

sured variable or as a midpoint of a fitted sigmoidal curve. Reducing the response curve to a

single distance may blur the impact of the different factors.

In conclusion, we derived a normative model of impact prediction, and demonstrated that

this model accounted for a number of characteristics of PPS. Further, this exercise highlighted

that beyond characteristics of the environment itself, the two main factors influencing PPS size

and shape are (i) the ability to represent the external environment precisely, and (ii) the value

attributed to false positive and negatives. Conveniently, these factors express differently (either

affecting both size and shape of PPS, or solely size), and thus researchers ought to be able to

attribute their effects to one or the other. Further, our formal approach has highlighted aspects

of empirical work that are still missing, most notoriously the ability to index biases and vari-

ance in PPS on the individual subject level. We hope novel methods to index PPS are devel-

oped (e.g., estimation tasks), which will allow for further joint theory—experiment

examination of impact prediction and PPS encoding.

Materials and methods

Derivation of the normative impact prediction model

In line with the probabilistic (e.g., [21]) framework to perception, we propose an estimation

procedure of computing the probability of future impact on the body (see Fig 1 for a schema

with an example). Following the estimation procedure, Bayesian Decision Theory (e.g., [25]) is

employed for impact prediction calculation.

An external object is moving on a straight line toward or away from the body. At time T, a

stimulus has position xT 2 R (distance from the body) and moves with velocity vT 2 R (nega-

tive values for a looming object). We followed [21] (among others) and supposed that sensory

estimations of the position x̂T and velocity v̂T are corrupted by Gaussian noise with variances

s2
x and s2

v , respectively. To simulate the effect of noise, x̂T and v̂T were obtained as samples

from normal distributions N(μ = xT, σ = σx) and N(μ = vT, σ = σv). If the object position sample

is within the body (x̂T < 0), it is set to x̂T ¼ 0:1cm—immediately in front of the body. Notice

that the higher values (e.g., auditory localization as opposed to visual localization) of the stan-

dard deviations σx, σv are related to less precise estimations.

The brain does not only encode point estimates, but also their uncertainties [21, 23, 24, 49].

Hence, we did not use only the point estimates x̂T; v̂T of the position and velocity, but also

included the uncertainty caused by the observation noise—the estimates of the position and

velocity are encoded as normal distributions Nðm ¼ x̂T; s ¼ sxÞ, Nðm ¼ v̂T; s ¼ svÞ,

respectively.

Next, we compute an estimate of object displacement during ΔT. The displacement is

encoded as Nðm ¼ DT � v̂T; s ¼ DT � svÞ. Note that this estimation, based on the equation
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displacement = ΔT � velocity, is precise only if the velocity does not change during ΔT (as

assumed in the current simulations and in all empirical studies of PPS with approaching

objects).

Given the estimate of the initial position and displacement of the object, we can estimate its

future position, X̂TþDT . This position is calculated as positionT+ΔT = positionT + displacement.
In case of Gaussian random variables, this means

X̂TþDT � Nðm ¼ x̂T þ DT � v̂T; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
x þ ðDT � svÞ

2

q

Þ. Notice that the calculation of the over-

all estimation uncertainty s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
x þ ðDT � svÞ

2

q

shows that manipulations of σv (used in

some simulations) is interchangeable with manipulations of σx (only ΔT has to be taken into

account). Therefore, the qualitative effects engendered by manipulating velocity uncertainty σv

in the main text can be generalized to position uncertainty σx. The model restricts mean of

position estimation to only the space in front of the body.

We can estimate the probability of impact, PðYjðx̂T; sxÞ; ðv̂T; svÞÞ, where Y 2 {0, 1} repre-

sents whether the object hits the body (y = 1) or not (y = 0). As the prediction is calculated

before the object hits (or not) the body, the actual future impact value y is not known during

the calculation. Therefore, the calculation takes into account the estimated probability

Pðyjðx̂T; sxÞ; ðv̂T; svÞÞ for both possible values of y. It is estimated as

Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞ ¼ PðX̂TþDT � 0Þ. That is, this is the estimation that the object will

be on the surface of the body or farther in space (see Fig 1) at time T + ΔT. Namely, contact of

the object with the body can occur at any time between time T and T + ΔT. The probability

estimation that the body will not be hit is

Pðy ¼ 0jðx̂T; sxÞ; ðv̂T; svÞÞ ¼ 1 � Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞ. Given the above, according to

Bayesian Decision Theory [25, 26], the optimal decision—in our case the impact prediction

y�pred 2 ½0; 1�—is calculated as

y�pred ¼ arg min
ypred2½0;1�

Lððx̂T; sxÞ; ðv̂T; svÞ; ypredÞ ð5Þ

where Lððx̂T; sxÞ; ðv̂T; svÞ; ypredÞ can be further expanded in the following manner by using a

loss function definition

Lððx̂T; sxÞ; ðv̂T; svÞ; ypredÞ ¼ Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞ � lossðy ¼ 1; ypredÞþ

Pðy ¼ 0jðx̂T; sxÞ; V̂ TÞ � lossðy ¼ 0; ypredÞ ¼

Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞ � lossðy ¼ 1; ypredÞþ

ð1 � Pðy ¼ 1jðx̂T; sxÞ; V̂ TÞÞ � lossðy ¼ 0; ypredÞ ¼

Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞðFP maxð0; ypred � 1Þ
2
þ FN maxð0; 1 � ypredÞ

2
Þþ

ð1 � Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞÞðFP maxð0; ypred � 0Þ
2
þ FN maxð0; 0 � ypredÞ

2
Þ ¼

Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞFNð1 � ypredÞ
2
þ ð1 � Pðy ¼ 1jðx̂T; sxÞ; ðv̂T; svÞÞÞFPy2

pred

ð6Þ

A prediction, ypred = 1 corresponds to hit prediction, is evaluated according to a function

loss: Y × Ypred! [0,1) which determines the cost incurred (or penalty) when the predicted

value ypred does not correspond to the future tactile impact value y. In other words, the loss

function reflects the difference between the predicted tactile activation and the actual future

tactile activation y at time T + ΔT. The loss function is expressed as

lossðy; ypredÞ ¼ FP maxð0; ypred � yÞr þ FN maxð0; y � ypredÞ
r

ð7Þ

PLOS COMPUTATIONAL BIOLOGY A normative model of peripersonal space encoding as performing impact prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010464 September 14, 2022 18 / 23



where FP, FN 2 [0,1] are respectively the false positive and false negative factors, max(0, x) is

a function which outputs x for x� 0 and 0 for x< 0. The parameter r 2 (0,1) shapes the loss

function. Throughout the simulations, we maintained it fixed to r = 2. If the prediction

matches the actual impact value, the loss will be 0. Instead, if ypred> y, then the loss function

(7) is reduced to loss(y, ypred) = FP(ypred − y)2 and the maximal value is reached when tactile

contact is predicted (ypred = 1) but does not happen (y = 0). Lastly, if ypred < y, then the loss

function (7) is equal to loss(y, ypred) = FN(y − ypred)2 and the loss is maximal when contact

occurs (y = 1) without a prediction of this happening (ypred = 0). We suggest that the loss dur-

ing FN cases is higher than during FP cases because objects making contact with the body

without any prediction—thus no defensive action—may be more harmful than making predic-

tions of contact that do not in fact occur.

Note that the prediction is optimal in relation to the estimated probability

Pðyjðx̂T; sxÞ; ðv̂T; svÞÞ of (no) impact given the object position and velocity estimations.

Because these sensory estimations are stochastic (point estimations x̂T; v̂T of xT, vT are cor-

rupted by Gaussian noise), there are multiple predictions y�pred for one position xT and velocity

vT and all of them are optimal in relation to the object position and velocity estimations

Nðm ¼ x̂T; sxÞ;Nðm ¼ v̂T; svÞ of xT and vT, respectively.

Extension to 3D space

The model proposed above is one-dimensional. We extended this model to three dimensions.

It means that both position and velocity are represented by 3-dimensional vectors xT ¼

½x1
T; x

2
T; x

3
T� and vT ¼ ½v1

T; v
2
T; v

3
T�. In our model, the movement in each dimension is treated

equivalently to the movement in the 1D model and independently on other dimensions (see

the selected reference frame in Fig 7). Therefore, position and velocity point estimates x̂T ¼

½x̂1
T; x̂

2
T; x̂

3
T�; v̂T ¼ ½v̂1

T; v̂
2
T; v̂

3
T� are sampled independently in individual dimensions depending

on the position and velocity uncertainties σx ¼ ½s
1
x; s

2
x; s

3
x�, σv ¼ ½s

1
v ; s

2
v ; s

3
v �.

The three-dimensional generalization X̂TþDT of the one-dimensional future position estima-

tion X̂TþDT � Nðm; sÞ is distributed as a multivariate normal distribution with a diagonal

covariance matrix (see Fig 7)

X̂TþDT � N

m1 ¼ x̂1
T þ DT � v̂1

T; s1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs1
xÞ

2
þ ðDT � s1

vÞ
2

q

m2 ¼ x̂2
T þ DT � v̂2

T; s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2
xÞ

2
þ ðDT � s2

vÞ
2

q

m3 ¼ x̂3
T þ DT � v̂3

T; s3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs3
xÞ

2
þ ðDT � s3

vÞ
2

q

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð8Þ

The body part is represented as a rectangle with size [2 � r1, 2 � r2] (see Fig 7). The probabil-

ity of a hit is estimated as

Pðy ¼ 1jðx̂T;σxÞ; ðv̂T;σvÞÞ ¼
R 0

� 1

R a1x1þr1

b1x1 � r1

R a2x1þr2

b2x1 � r2
fX̂TþDT

ðx1; x2; x3Þ dx1 dx2 dx3;¼

R 0

� 1

R a1x1þr1

b1x1 � r1

R a2x1þr2

b2x1 � r2
fNðm1 ;s1Þ

ðx1Þ � fNðm2 ;s2Þ
ðx2Þ � fNðm3 ;s3Þ

ðx3Þ dx1 dx2 dx3;
ð9Þ

where a1, a2, b1, b2 are the parameters of the integration boundaries (see Fig 7 for details) and f
represents the probability density function. The probability of no hit can be calculated as

Pðy ¼ 0jðx̂T;σxÞ; ðv̂T;σvÞÞ ¼ 1 � Pðy ¼ 1jðx̂T;σxÞ; ðv̂T;σvÞÞ.

In our simulations, to speed up the probability calculation determined by the integral from

Eq 9 and avoid problems (for example, zero horizontal and vertical uncertainties), we used
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numerical calculation. We generated 10000 samples for each future position estimation. The

probability was estimated as a rate of samples within the “hit” area to all samples (see the

code).

Simulation details

In the simulations, we mimicked the setup of empirical reports. An object was approaching or

receding from the body with constant velocity vT. In one experimental trial, for each distance

xT (e.g., 0, 5, 10, . . ., xmax cm) from the body, an impact prediction y�pred was calculated. Notice

that the choice of the xmax (beginning of the trajectory, in case of looming stimuli) did not

affect the computed values of y�pred, because the predicted values depend only on the actual posi-

tion and velocity (which is constant) and not on the previous trajectory.

Because the predictions y�pred differ from trial to trial—similarly to measures in experiments

with human observers—multiple trials for every experimental condition were performed. To

summarize multiple predicted values y�pred for each distance xT, means of y�pred and 25th/75th

percentiles for each distance xT were calculated. In simulations, the expected loss (Eq (6)) is

calculated for ypred 2 {0, 0.05, 0.1, . . ., 1} (except the experiment in Fig 2 where the granularity

is 0.001) and the one with the smallest loss is then selected as the optimal value y�pred. A detailed

example of y�pred calculation with all details is in S1 and S2 Files (interactive version).

Supporting information

S1 File. A detailed example of an impact prediction calculation—Interactive version.

(PDF)

S2 File. A detailed example of an impact prediction calculation. For a more interactive ver-

sion see S1 File.

(PDF)

S1 Fig. A version of Fig 2 with FN = FP = 1.

(EPS)

S2 Fig. A version of Fig 6 with FN = FP = 1.

(EPS)

S3 Fig. A version of Fig 5 with FN = FP = 1. The vertical dashed lines correspond to the PPS

beginning estimations from [14].

(EPS)

S4 Fig. A version of Fig 8 with FN = FP = 1. The vertical dashed lines correspond to the PPS

beginning estimations from [14, 33].

(EPS)

S5 Fig. A version of Fig 9 with FN = FP = 1. The vertical dashed lines correspond to the PPS

beginning estimations from [14, 33].

(EPS)

S6 Fig. Size of PPS and slope of its boundary is modulated by FN, ΔT and σv. Beginning of

PPS is determined as the farthest distance xT for which the mean value of 1000 y�pred samples

overcomes 0.01. For slope calculation, mean values of 1000 y�pred samples for each distance xT

were used. The slope was calculated around the central value (between min and max) of the

curve. Technically, the slope was negative—the values were decreasing from left to right—in

all cases. To better visualize the slope, we plotted absolute values of the slope. Except for σv, ΔT,
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FN and σx = 0cm, the baseline parameters (see Table 1) were used. See the code for details.

(EPS)

S7 Fig. Effect of timestep ΔT size on PPS. Dependency between the mean of 1000 predicted

tactile activations y�pred (for each distance) and distance xT (in centimeters) of the stimuli from

the body. The symbol “+” indicates 25th and 75th percentiles which are calculated from 1000

predicted values y�pred for each distance. PPS size expands with increasing size of timestep ΔT
(in seconds). Sharpness of the PPS boundary is decreasing with increasing size of timestep ΔT.

Except for ΔT, baseline parameters are used (Table 1).

(EPS)

S8 Fig. A version of S7 Fig with FN = FP = 1.

(EPS)
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PreCNet: Next-Frame Video Prediction Based on
Predictive Coding

Zdenek Straka, Tomáš Svoboda, Member, IEEE, and Matej Hoffmann, Member, IEEE

Abstract—Predictive coding, currently a highly influential the-
ory in neuroscience, has not been widely adopted in machine
learning yet. In this work, we transform the seminal model of
Rao and Ballard (1999) into a modern deep learning framework
while remaining maximally faithful to the original schema. The
resulting network we propose (PreCNet) is tested on a widely
used next frame video prediction benchmark, which consists of
images from an urban environment recorded from a car-mounted
camera, and achieves state-of-the-art performance. Performance
on all measures (MSE, PSNR, SSIM) was further improved when
a larger training set (2M images from BDD100k), pointing to the
limitations of the KITTI training set. This work demonstrates
that an architecture carefully based in a neuroscience model,
without being explicitly tailored to the task at hand, can exhibit
exceptional performance.

Index Terms—predictive coding, deep neural networks, next
frame video prediction, self-supervised learning

I. INTRODUCTION

PREDICTING near future is a crucial ability that every
agent—human, animal, or robot—needs for survival in a

dynamic and complex environment. Just for safely crossing a
busy road, one needs to anticipate the future position of cars,
pedestrians, as well as consequences of own actions. Machines
are still lagging behind in this ability. For deployment in such
environments, it is necessary to overcome this gap and develop
efficient methods for foreseeing the future.

One candidate approach for predicting near future is predic-
tive coding—a popular theory from neuroscience. The basic
idea is that the brain is a predictive machine which anticipates
incoming sensory inputs and only the prediction errors—
unpredicted components—are used for the update of an in-
ternal representation. In addition, predictive coding tackles
another important aspect of perception: how to efficiently
encode redundant sensory inputs [1]. Rao and Ballard pro-
posed and implemented a hierarchical architecture [2]—which
we will refer to as predictive coding schema (see Section
III-A for details)—that explains certain important properties of
the visual cortex: the presence of oriented edge/bar detectors
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and extra-classical receptive field effects. This schema has
influenced several works on human perception and neural
information processing in the brain (see e.g., [3]–[6]; for
reviews [1], [7], [8]).

In this work, our goal was to remain as faithful as pos-
sible to the predictive coding schema but cast it into a
modern deep learning framework. We thoroughly analyze
how the conceptual architecture is preserved. To demonstrate
the performance, we chose a widely used benchmark—next
frame video prediction—for the following reasons. First, large
datasets of unlabeled sequences are available and this task
bears direct application potential. Second, this task is an
instance of unsupervised representation learning, which is
currently actively researched (e.g., [9]). Third, the complexity
of the task can be scaled, for example by performing multiple
frame prediction (frames are anticipated more steps ahead).
On a popular next frame video prediction benchmark, our—
strongly biologically grounded—network achieves state-of-
the-art performance. In addition to commonly used training
dataset (KITTI), we trained the model on a significantly bigger
dataset which improved the performance even further.

We summarize our contributions as follows. First, in this
work, the seminal predictive coding model of Rao and Bal-
lard [2] has been cast into a modern deep learning framework,
while remaining as faithful as possible to the original schema.
Second, we tested our architecture (PreCNet) on a widely
used next frame video prediction benchmark (KITTI with 41k
images for training, Caltech Pedestrian Dataset for testing)
and outperformed most of the state-of-the-art methods and
achieved 2nd-3rd rank when measured with the Structural
Similarity Index (SSIM)—a performance measure that should
best correlate with human perception. Third, performance on
all three measures (MSE, PSNR, SSIM) was significantly
improved when a larger training set (BDD100k with 2M
images) than usually used by the community (KITTI) was
employed.

This article is structured as follows. The Related Work
section overviews models inspired by predictive coding and
state-of-the-art methods for video prediction. This is followed
by the Architecture section where we describe our model
and compare it in detail with the original Rao and Ballard
schema [2] and PredNet [10]—a model for next frame video
prediction inspired by predictive coding. In Section IV, we
detail the datasets, performance metrics, and our experiments
in next and multiple frame video prediction. This is followed
by Conclusion, Discussion, and Future Work. All code and
trained models used in this work are available at [11].
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II. RELATED WORK

This section starts with a summary of predictive coding-
inspired machine learning models. This is followed by an
overview of state-of-the-art methods for video prediction.

A. Predictive coding models

In this section, we will focus on predictive coding-inspired
machine learning models. A reader who is interested in the
application in computational and theoretical neuroscience may
find useful reviews [1], [8], [12] and references [2]–[6], [13].
Predictive coding, a theory originating in neuroscience, is more
a general schema (with certain properties) than a concrete
model. Therefore, no “correct” model of predictive coding
is available to date. In this work, by predictive coding, we
will understand a well defined schema proposed by Rao and
Ballard [2], which was also implemented as a computational
model (see Section III-A for a description of the schema). This
schema, which is highly influential in neuroscience, embodies
crucial ideas of the predictive coding theory.

We will relate predictive coding-inspired machine learning
models to the schema by Rao and Ballard and analyze which
properties of the original are preserved and which are not. A
detailed comparison of our deep neural network—intended to
be as faithful as possible to the Rao and Ballard schema—
will be presented in a separate Section III-C1. The models
with static inputs and sequences will be presented separately.

1) Models with static inputs: Song et al. [14] proposed Fast
Inference Predictive Coding model (FIPC) model for image
representation and classification which extends the schema by
Rao and Ballard by (i) a regression procedure with fast infer-
ence during testing and (ii) a classification layer which directs
representation learning to achieve discriminative features. An
important part of predictive coding theory is the existence of
prediction error neurons along with representational neurons
(see [2], [8]). Models [15]–[17] intended for object recognition
in natural images have these two distinct neural populations,
however, their training is not based on the prediction error
minimization used in predictive coding. A generative model by
Dora et al. [18] for inferring causes underlying visual inputs
does not follow the division into the error and representational
neurons. However, the model is trained, in accordance with
predictive coding, to minimize prediction errors. The same
authors contributed to the model which extends the predictive
coding approach to inference of latent visuo-tactile represen-
tations [19], used for place recognition of a biomimetic robot
in a simulated environment.

2) Models with sequences as inputs: Ahmadi and Tani
proposed the predictive-coding-inspired variational recurrent
neural network [20] (PV-RNN). The network works in a three
stage processing cycle: (i) producing prediction, (ii) backprop-
agating the prediction errors across the network hierarchy, (iii)
updating the internal states of the network to minimize future
prediction errors. The network was used for synchronous imi-
tation between two robots—joint angles and XYZ coordinates
of a hand tip were used—and for extracting latent probabilis-
tic structure from a binary output of a simple probabilistic
finite state machine. Using the same three stage predictive

coding processing cycle, Choi and Tani developed a predictive
multiple spatio-temporal scales recurrent neural network [21]
(P-MSTRNN) for predicting binary image (36x36 pixels)
sequences of human whole-body cyclic movement patterns.
They also explored how the inferred internal (latent) states
can be used for recognition of the movement patterns. Cha-
lasani and Principe proposed a hierarchical linear dynamical
model for feature extraction [22]. The model took inspiration
from predictive coding and used higher-level predictions for
inference of lower-level predictions. However, all three models
do not use the division into the error and representational
neurons and consequently use a different schema than Rao
and Ballard [2].

Lotter et al. proposed a predictive neural network (PredNet)
for next-frame video prediction [10]. The network follows
the division into error and representational neurons, but the
processing schema is different to the one proposed by Rao and
Ballard [2] and consequently to our model (see Section III-C3
for details). Despite the architectural differences from the
schema by Rao and Ballard, the network could mimic certain
features of biological neurons and perception [23].

B. Video prediction models

Video prediction is an important task in computer vision
with a long history. A sequence of images is given and one or
multiple following images are predicted (i.e., next and multiple
frame video prediction task respectively). As prediction of the
next sensory input is inherent to predictive coding, next frame
video prediction provides a natural use case to benchmark the
performance of our neural network architecture. Therefore, we
will focus predominantly on a brief review of recent work with
state-of-the-art performance on next frame video prediction
and—wherever feasible—we will quantitatively compare the
performance (see Section IV-C4).

Many of the methods for video prediction produce blurred
predictions. As blurriness is undesirable, Matthieu et al. [9]
proposed a gradient difference loss function which is mini-
mized when the gradient of the actual and predicted image is
the same. This loss function was then combined with adver-
sarial learning. Byeon et al. [24] showed with their LSTM-
based architecture that direct connection of each predicted
pixel with the whole available past context led to decreas-
ing prediction uncertainty on pixel level and therefore also
reduced blurriness. Reda et al. [25] suggested that blurriness
is amplified by using datasets with lack of large motion and
small resolution. Therefore, they used video games (GTA-V
and Battlefield-1) for generation of a large high-resolution
dataset with large enough motion (testing was performed on
natural sequences). The dataset was then used for training of a
model which combines a kernel-based approach with usage of
optical flow. In addition to optical flow estimation, a model by
Lu et al. [26] used pixel generation and adversarial training.
Gao et al. [27] proposed a model which performed generation
of the future frames in two steps. Firstly, a flow predictor
was used for warping the non-occluded regions. Then, the
occluded regions were in-painted by a separate network. A
method by Liu et al. [28] did not use optical flow directly,
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however, a deep network was trained to synthesize a future
frame by flowing pixel values from the given video frames.
This self-supervised method was also used for interpolation.
Similarly to Gao et al. [27], Hao et al. [29] proposed a two-
stage architecture. However, the input of a network contained,
in addition, sparse motion trajectories (automatically extracted
for video prediction). First, the network produced a warped
image that respected the given motion trajectories. In the
second stage, occluded parts of the image were hallucinated
and color change was compensated.

Villegas et al. [30] introduced a model which first performed
human pose detection and its future evolution. Then, the
predicted human poses were used for future frames generation.

Finn et al. [31] proposed a model that next to visual inputs
takes actions of the robot into account. This action-conditioned
model learned to anticipate pixel motions relatively to the
previous frame.

A Conditionally Reversible Network (CrevNet) proposed
by Yu et al. [32] uses a bijective two-way autoencoder,
based on convolutional networks, for encoding and decoding
input frames. Feature maps obtained from the autoencoder
are then used as an input to a ConvRNN-based predictor.
The transformed feature maps by the predictor are then de-
coded by the autoencoder and outputted as predicted frames.
Chang et al. proposed Information Preserving Spatiotemporal
Predictive Model [33] (IPRNN) which used skip connections
from encoders to decoders. As a decoder has access to
information from an encoder, the information loss is reduced.
The model used stacked spatiotemporal gated recurrent units
which took the encoded states as input. Yuan et al. integrated
the attention mechanism into a convolutional LSTM network
[34]. This model was further extended by pixel restoration
of the input images to the predictions and denoted as Deep
Pixel Restoration AttConvLSTM (DPRAConvLSTM) model.
Attention mechanism was also effectively used for human-
skeleton motion prediction [35], [36].

Some other state-of-the-art architectures are based on gen-
erative adversarial networks (GANs). The GAN by Kwon
and Park [37] is trained to anticipate both future and past
frames. The GAN proposed by Liang et al. [38] is trained to
consistently predict future frames and pixel-wise flows using a
dual learning mechanism. Vondrick et al. [39] proposed GAN
for generation of image sequences which unravels foreground
from the background of the images. A video prediction
network proposed by Jin et al. [40] integrates generative
adversarial learning with usage of spatial and temporal wavelet
analysis modules.

The stochastic nature of natural video sequences makes it
impossible to predict the future sequence perfectly. Models
such as [41]–[43] attempt to deal with that by generating
multiple possible futures. The objective is to predict frame
sequences which are: (i) diverse, (ii) perceptually realistic, and
(iii) a plausible continuation of the given input sequence or
image [41]. Therefore, this task is different from deterministic
video frame prediction whereby the model is intended to
produce only a single frame or sequence best fitting the actual
future.

Some of the mentioned works [10], [32], [38], [39] also

demonstrated that the representations which were learned
during next frames video prediction training could be used
for supervised learning tasks (e.g., human action recognition).

III. ARCHITECTURE

This section starts with a description of the predictive coding
schema which was proposed by Rao and Ballard [2]. This is
followed by a detailed description of our model. The section
is closed by a comparison of our model with related models:
(i) a hierarchical network for predictive coding proposed by
Rao and Ballard, (ii) PredNet – a deep network for next frame
video prediction inspired by predictive coding.

A. Predictive coding schema

Motivated by crucial properties of the visual cortex, Rao
and Ballard have proposed a hierarchical predictive coding
schema with its implementation [2]. According to this schema,
throughout the hierarchy of visual processing, “feedback con-
nections from a higher- to a lower-order visual cortical area
carry predictions of lower-level neural activities, whereas the
feedforward connections carry the residual errors between
the predictions and the actual lower-level activities” [2]. The
residual errors are used to reduce the prediction error in the
following moment (see Fig. 1, (b)).

This schema was directly turned into a computational model
in [2] (see Fig. 1, (a)). The feedback connection from higher-
level to lower-level Predictive Estimator (PE) carries the top-
down prediction rtd of the lower-level PE activity r. The
residual error r−rtd is sent back via feedforward connections
to the higher-level PE. The same error with opposite sign,
rtd − r, affects the following PE activity r (see Fig. 1, (a)).
The bottom-level PE produces a prediction of the visual input.

Drawing on the predictive coding schema, we propose the
Predictive Coding Network (PreCNet) (see Fig. 1, (c)). In
contrast with the model by Rao and Ballard (compare parts (a),
(c) of Fig. 1), PreCNet uses a modern deep learning frame-
work (see Section III-B for details of PreCNet architecture
and Section III-C1 for a more detailed comparison of both
models). This has enabled us to create a model based on the
predictive coding schema with state-of-the-art performance, as
demonstrated on the next-frame video prediction benchmark.

B. Description of PreCNet model (ours)

The structure, computation of prediction and states, and
training of the model is detailed below.

1) Structure of the model: The model, shown in Fig. 2,
consists of N+1 hierarchically organized modules1. A module
i ∈ {0, 1, . . . , N} consists of the following components:

• A representation layer is a convolutional LSTM
(convLSTMi) layer (see [44], [45]) with output state
Ri (alternatively2 r). The convLSTM followed dynamics

1The model is the same as in Fig. 1, (c). However, in order to enable
direct comparison with Rao and Ballard model, it was redrawn in a different
arrangement for Fig. 1, (b). The PE from the model of [2] is not equivalent
to the “Module” in Fig. 2. See Fig. 3, (b), (e) for a comparison.

2For representation layer states we used both small r and capital letter R.
Small r corresponds to formalism from [2], capital R was used in [10].
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Fig. 1. Comparison of the hierarchical network for predictive coding by Rao and Ballard and our PreCNet. (a) Components of a Predictive
Estimator (PE) module of the model by Rao and Ballard, composed of feedforward neurons encoding the synaptic weights UT , neurons whose responses
r maintain the current estimate of the input signal, feedback neurons encoding U and conveying the prediction f(Ur) to the lower level, and error-detecting
neurons computing the difference (r − rtd) between the current estimate r and its top-down prediction rtd from a higher level. (b) General architecture
of the hierarchical predictive coding model. At each hierarchical level, feedback pathways carry predictions of neural activity at the lower level, whereas
feedforward pathways carry residual errors between the predictions and actual neural activity. These errors are used by the PE at each level to correct its
current estimate of the input signal and generate the next prediction. (c) Components of a PE module of PreCNet architecture (see Section III-C1). Figures
(a) and (b) redrawn from [2], their captions with minor modification from [2].

from commonly used “No peepholes” LSTM variant [46]
(see Supplementary materials – convLSTM for details).
Technically, it consists of two convolutional LSTM layers
(convLSTMup/down

i ) which share hidden and cell states
(Ri, Ci) but differ in the input (Ei vs. Ei+1). The input,
forget, and output gates use hard sigmoid as an activation
function. During calculation of the final (hidden) and cell
states, hyperbolic tangent is used.

• An error representation consists of the Rectified Lin-
ear Units (ReLU) whose input is obtained by merg-
ing errors PREDICTION − ACTUAL STATE and
ACTUAL STATE − PREDICTION . The state of the
error representation is denoted as Ei.

• A decoding layer is a convolutional (convi) layer with
output state Âi. It uses ReLU as an activation function.

• An upsample layer, which uses nearest-neighbor
method, upscales its input by factor 2. This layer is not
present in the module 0.

• A max-pooling layer which downscales its input by a
factor 2. This layer is not present in the module 0.

2) Computation of the prediction and states: In every time
step, PreCNet outputs a prediction of the incoming image. The
error of the prediction is then used for the update of the states
(see also Fig. 4). The computation in every time step can be
divided into two phases:

1) Prediction phase. The information flow goes iteratively
from a higher to a lower module. At the end of this
phase (at Module 0), the prediction of the incoming input
image Â0 is outputted.

2) Correction phase. In this phase, the information flow
goes iteratively up. The error between the prediction and
actual input is propagated upward.

In a nutshell, a representational layer (with state Ri) represents
a prediction of the image I (i = 0) or a pooled convLSTM
state Ri−1 from the module bellow (i > 0). The decoding
layer transforms the representation Ri into the prediction Âi.
The error representation units Ei then depend on the error of
the prediction Âi (difference between the prediction Âi and
the image I or the pooled state Ri−1). The computation is
completely described in Alg. 1.

3) Training of the model: The model is trained by mini-
mizing weighted prediction errors through the time and hier-
archy [10]. The loss function is defined as

Ltrain =

M∑

m=1

Lseq(m), (1)

Lseq(j) =

ls∑

t=1

µt

N∑

l=0

λl
nl

nl∑

i=1

Et
l (i), (2)

where Lseq(m) is loss of the mth sequence, Et
l (i) is the error

of the ith unit in the module l at time t, M is a number of
image sequences, ls is a length of a sequence, N + 1 is a
number of modules, µt, λl are time and module weighting
factors, nl is the number of error units in the lth module. The
mini-batch gradient descent was used for the minimization.
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C. Comparison of PreCNet with other models

We will compare our model with the predictive coding
schema [2], the Fast Inference Predictive Coding model
(FIPC) [14], and PredNet [10].

1) Comparison of PreCNet and Rao and Ballard model:
PreCNet uses the same schema as the model by Rao and
Ballard (see Fig. 1 and Section III-A). However, as PreCNet is
couched in a modern deep learning framework and uses video
sequences as inputs, there are inevitably some differences. The
crucial differences are:

• Dynamic vs. static inputs. In contrast with PreCNet and
image sequences as inputs, the model by Rao and Ballard
takes static images as inputs. An extension to next frame
video prediction should be possible [47]3, but has not
been completely demonstrated (in [48], a model with
only one level of hierarchy is employed). These recurrent

3By using recurrent transformation of the representation layer states r̂(t+
1) = f(V r(t)), where r̂(t + 1) is the prediction of the next state r(t + 1)
made at time t, f is a nonlinear function, and V are synaptic recurrent weights.

Algorithm 1 Calculate PreCNet states at time t, assume N >
0. Merging of states A and B is denoted by putting them
into curly brackets {A, B}. See Supplementary materials –
convLSTM for a detailed convLSTM description.
Require: Image It, previous (t − 1) hidden and cell states
Rt−1

l , Ct−1
l of the representation layers l ∈ {0, 1, . . . , N},

previous error state Et−1
N of the (top) module N , maxi-

mum pixel value pixmax. For t = 1, the previous states
R0

l , C
0
l , E

0
N are initialized to zero.

for l = N,N − 1, . . . , 0 {Iterate top-down through the
modules} do

if l == N {Update the states in the top module} then
Rt

l , C
t
l ← convLSTMdown

l (Rt−1
l , Ct−1

l , Et−1
l )

Ât
l ← convl(R

t
l)

Et
l ← ReLU({Ât

l − pool(Rt−1
l−1), pool(Rt−1

l−1)− Ât
l})

if l 6= N and l 6= 0 {Update the states in the “middle”
module l} then
Rt

l , C
t
l ← convLSTMdown

l (Rt−1
l , Ct−1

l , upsample(Et
l+1))

Ât
l ← convl(R

t
l)

Et
l ← ReLU({Ât

l − pool(Rt−1
l−1), pool(Rt−1

l−1)− Ât
l})

if l == 0 {Update the states in the bottom module} then
Rt

l , C
t
l ← convLSTMdown

l (Rt−1
l , Ct−1

l , upsample(Et
l+1))

Ât
l ← min(convl(R

t
l), pix

max)
Et

l ← ReLU({Ât
l − It, It − Ât

l})

for l = 0, 1, . . . , N {Iterate bottom-up through the mod-
ules} do

if l == 0 then
Rt

l , C
t
l ← convLSTMup

l (Rt
l , C

t
l , E

t
l )

if l 6= 0 and l 6= N then
Et

l ← ReLU({Ât
l − pool(Rt

l−1), pool(Rt
l−1)− Ât

l})
Rt

l , C
t
l ← convLSTMup

l (Rt
l , C

t
l , E

t
l )

if l == N then
Et

l ← ReLU({Ât
l − pool(Rt

l−1), pool(Rt
l−1)− Ât

l})

connections resemble the recurrent connections inside
PreCNet representation (convLSTM) layer.

• Different building blocks. PreCNet, in contrast to Rao
and Ballard model, uses modern deep learning blocks
– convolutional and convLSTM layers. In addition, the
error representation of PreCNet consists of merged posi-
tive, PREDICTION−ACTUAL STATE , and negative,
ACTUAL STATE − PREDICTION , error popula-
tions [10]. These two populations are also used in the
model of Rao and Ballard, however, they are not merged
and are used separately. In contrast to PreCNet, ReLU is
not applied to the error populations.

• Different update of representation states. Representation
layer states of the Rao and Ballard model are deter-
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mined by a first-order differential equation. The states
are updated until they converge. In contrast, PreCNet’s
representation layer states are calculated by convLSTM.
To update the representation states r of the model by
Rao and Ballard, the “bottom-up” difference between the
prediction of the PE and the actual input (I − f(Ur) in
Fig. 1, (a)) followed by fully connected layer and the
“top-down” difference between the predicted state by the
higher PE and the actual state of the PE (rtd−r in Fig. 1,
(a)) are used simultaneously. PreCNet also uses both
differences for computation of the new representation
states r, however, not simultaneously; one difference
is used by the convLSTMdown during the prediction
phase, the second is used by the convLSTMup during
the correction phase (notice that the convLSTMdown and
convLSTMup share cell and hidden unit states).

• One vs. mutliple PEs on one level. There are multiple PEs
in one level of the model by Rao and Ballard. Higher level
PEs progressively operate on bigger spatial areas than the
lower level PEs. PreCNet has one PE in each level of the
hierarchy.

• Intensity of interaction between the Predictive Estimators
(PEs). Each PE of PreCNet is updated just two times
during one time step (one input image). Once during
the Prediction (top-down) phase and once during the
Correction (bottom-up) phase. This means that each PE
interact with its neighbour just two times during one time
step. On the contrary, the PEs of the model by Rao and
Ballard interact with each other many times (until their
representation states converge) during one time step. As
PreCNet uses the deep learning approach, which is more
computationally demanding, such intensive interaction
between the PEs is not possible.

• Minimizing error in all levels vs. only the bottom level
error. Errors in all levels of the model by Rao and
Ballard are minimized. However, PreCNet has achieved
better results when only the bottom level error—the
difference between the predicted and the actual image—
was minimized (see the setting of parameter λi in Section
IV-C2).

2) Comparison of PreCNet and FIPC: As FIPC [14] is
mainly an extension of the original Rao and Ballard model
by a procedure for regression mapping with fast inference at
test time, it shares many properties with the Rao and Ballard
model. The most important differences between PreCNet and
FIPC are:

• Different building blocks. Main building blocks of PreC-
Net are convolutional and convolutional LSTM networks.
FIPC main basic building blocks, similarly to Rao and
Ballard model, are simple feedforward networks. This
might be limiting for usage on large-scale images and
video sequences.

• Dynamic vs. static inputs. PreCNet takes image se-
quences as inputs and predicts next frames. FIPC, iden-
tically to Rao and Ballard model, works with static
images and is trained for their classification and feature
representation.

• Fast inference at test time. During testing, the trained
network works as a feedforward network (a subset of
weights is used) with class labels as outputs. Therefore,
during test time the network does not follow the predic-
tive coding schema.

• Intensity of interaction between the Predictive Estimators
(PEs) during training. FIPC Predictive Estimators, simi-
larly to Rao and Ballard model, interact with each other
many times during one training time step. For PreCNet,
it is only two times (see Section III-C1).

• Classification layer. FIPC added to the predictive coding
schema a classification layer which helps to learn more
discriminative features for a given classification task. On
the other hand, PreCNet is completely self-supervised.

3) Comparison of PreCNet and PredNet: PredNet, a state-
of-the-art deep network for next frame video prediction [10],
is also inspired by the model by Rao and Ballard. PredNet
and PreCNet (which we propose) are similar in these aspects:

• Building blocks: error representations, convolutional, and
convolutional LSTM networks.

• Training procedure. For the next frame video prediction
task, most training parameters, such as input sequence
length and batch size, of PreCNet are taken from Pred-
Net4.

• Number of trainable parameters. For training on the
KITTI dataset, PreCNet had approximately 7.6M and
PredNet 6.9M trainable parameters. We tested also
PreCNet-small with 0.8M parameters (see Table III for
results).

However, there are two crucial properties in which PredNet
departs from the predictive coding schema (see Fig. 3, (a), (c),
(d)):

• According to the predictive coding schema, except for
the bottom Predictive Estimator (PE), each PE outputs a
prediction of the next lower level PE activity r (repre-
sentation layer state). See Section III-A.

• No direct connection between two neighboring PE activi-
ties ri and ri−1 (representation layer states Ri and Ri−1

in formalism of [10]).
Instead, to remain faithful to the predictive coding schema,

the building blocks of PreCNet were connected in a sig-
nificantly different way (see Fig. 3 for comparison). These
modifications have led to considerably better performance of
PreCNet in comparison with PredNet (see Section IV-C4).

IV. EXPERIMENTS

In this section, the datasets and performance measures
are introduced, followed by experiments on next frame and
multiple frame video prediction. Trained models and code
needed for replication of all the results presented in the paper
(dataset preprocessing, model training and evaluation) are
available on a GitHub repository [11].

4The motivation was two-fold. Firstly, we wanted to make it clear that
the significant improvement of PreCNet over PredNet is not caused by better
choice of training parameters. Secondly, few trials with other parameter values
that we tried did not lead to significantly better results.
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Fig. 3. Comparison of PredNet and PreCNet. In (a), (b), the differences (connections between the blocks, some building blocks) are highlighted. In (c),
(d), (e), there is a comparison of the Predictive Estimators (PEs) of PredNet, PrecNet and the model by Rao and Ballard. Notice that the input from above
in (d), (e) – prediction rtd of r – is compared with the representation state r and the error is used for update of the r. The corresponding upper input
(blue) of the PredNet is a different entity; it is not related to r and is also compared with a different entity (Conv(E0)). There is also one more input from
above – representation layer state from above – which goes directly into ConvLSTM block of PredNet. PreCNet (see (e)) has overcome these differences and
follows the same predictive coding scheme as the model by Rao and Ballard. Notice the correspondence of the olive, purple polygons ((a), (b)) and the PEs
of PredNet and PreCNet (the rectangles in (c), (e)). In order to enhance comprehensibility, some of the labels from (a), (b) were added to (c), (d), (e) and
v.v. See Supplementary materials – Schema transformation to check the correspondence between both ((a), (b) and (c), (e)) ways of visualization.

A. Datasets
All datasets used are visual sequences obtained from a car

mounted camera. These scenes include fast movements of
complex objects (e.g. cars, pedestrians), new objects coming
unexpectedly to the scene, as well as movement of the urban
background.

For training, we used two different datasets; KITTI [49]
and BDD100K [50]. For evaluation, we used Caltech Pedes-
trian Dataset [51], [52], employing Piotr’s Computer Vision
Matlab Toolbox [53] during preprocessing. Using of Caltech
Pedestrian Dataset for establishing performance enables direct
comparison of the models from both training variants.

• KITTI dataset and its preprocessing: We followed
the preprocessing procedure from [10]. The frames were
center-cropped and resized with bicubic method5 to 128
by 160 pixels size (see the repository for code). We also
followed the division categories “city”, “residential” and
“road” of the KITTI dataset to training (57 recording
sessions, approx. 41K of frames) and validation parts in
the same way as in [10]. The dataset has 10 fps frame
rate.

• Caltech Pedestrian Dataset and its preprocessing:
Frames were preprocessed in the same way as the frames
of KITTI dataset (see above). Videos were downsampled
from 30 fps to 10 fps (every 3rd frame was taken). As this
dataset was used only for evaluation of the performance,
only testing parts (set06-set10) were used (approx. 41K
of frames).

• BDD100K and its preprocessing: The preprocessing of
the dataset was analogous to the preprocessing of Caltech
Pedestrian Dataset, including reducing frame rate from
30 to 10 fps. As the size of the whole dataset is very

5We do not know which resizing method was originally used by Lotter et
al. [10].

large (roughly 40M frames if 10 fps is used), we had
to randomly choose training and validation subsets of the
dataset—see the repository for details and chosen videos.
We created two variants of the training dataset; a big
one with roughly 2M frames (5000 recording sessions)
and a small one with similar size like KITTI training
dataset (approx. 41K frames, 105 recording sessions). As
a validation dataset, we randomly selected a subset of the
validation part of BDD100K with approx. 9K frames.

B. Performance measures

For comparison of a predicted with the actual frame, we
use standard measures: Mean Square Error (MSE), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index
(SSIM) [54]. MSE is a simple measure whose low values
indicate high similarity between frames. PSNR is a related
measure to MSE whose value is desired to be as high as
possible. Significant limitation of these two is that their
evaluation of similarity between two images does not correlate
very well with human judgment (e.g., [55], [56]). SSIM was
created to be more correlated with human perception. SSIM
values are bounded to [−1, 1] and higher value signifies higher
similarity.

C. Next frame video prediction

Firstly, the settings of experiments and parameters will
be described. This is followed by Quantitative results and
Qualitative analysis. Results, achieved by PreCNet, presented
in this subsection can be generated by publicly available
code [11]. Summary and details of the network parameters
and training are in Supplementary materials – 1 Network and
training parameters summary and details.
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TABLE I
NETWORK PARAMETERS SUMMARY. SEE TEXT FOR A DESCRIPTION.

convi convLSTM
up/down
i

module weight λi #chan. filter size #chan. filter size
i=0 1 3 3 60 3
i=1 0 60 3 120 3
i=2 0 120 3 240 3

1) Experimental settings: We performed experiments with
two settings. In both, the performance of trained models was
measured using Caltech Pedestrian Dataset (see Section IV-A)
which is commonly used for evaluating next frame video
prediction task. This also enabled direct comparison of training
on both datasets. The training was done on:

• KITTI dataset. This setting (i.e., KITTI for training,
Caltech Pedestrian Dataset for evaluation) is popular for
evaluation of next frame video prediction task and enables
good comparison with other state of the art methods.

• BDD100K dataset. Randomly chosen subset of the
dataset (approx. 2M of frames) was used. The training
dataset is significantly larger than KITTI dataset which
enables to avoid overfitting. We also performed training
on smaller BDD100K subset with roughly same size as
KITTI training dataset.

2) Network parameters: Main parameters of the network
are summarized in Table I. In the Table, the parameters of
each module in the hierarchy are described in a row. Module
weights are in the second column. The following columns con-
tain the number of channels #chan. (layer size) and filter sizes
of decoding (conv) and representation (convLSTM) layers. For
a detailed explanation see Section III-B.

For choosing a suitable number of hierarchical modules,
layer sizes (number of channels), and module weight factors
(λi, i ∈ {0, 1, 2}), KITTI dataset was used for training. We
performed a manual heuristic parameter search to minimize
mean absolute error (between the predicted and actual frames)
on validation set6. Padding was used to preserve the size in
all convolutional layers (including convLSTM). Values of the
pixels of the input frames were divided by 255 to make them
in the range [0, 1]. The filter sizes were taken from [10] (for
explanation of this choice, see Section IV-C3).

To better understand how the number of trainable pa-
rameters affects the performance and better comparison
with PredNet, we proposed the same model but changed
the number of channels in the modules from 60, 120,
240 to 20, 40, and 80 respectively (PreCNet-small). The
number of parameters was reduced from 7.6M to 0.8M.
Moreover, we simplified the architecture by (i) replacing
all pairs of convolutional LSTMs with shared hidden and
cell states—convLSTMup

i , convLSTMdown
i — by single con-

volutional LSTMs – convLSTMi (PreCNet-single-LSTMs),
and (ii) by simplifying error blocks ReLU({PREDICTION-
ACTUAL, ACTUAL-PREDICTION}) (see Alg. 1) to resid-

6If λ0 = 1, λ1,2 = 0 then the mean absolute error between the predicted
and actual frames corresponds to 2*loss value (2). This is a consequence of
division of error representation to negative and positive parts and using of
ReLU. For non zero λ1,2, this does not hold.

ual errors PREDICTION-ACTUAL only (PreCNet-residual-
error). It was also necessary to modify the sequence loss (2)
by putting the error values Et

l (i) into absolute value.
3) Training parameters: Except for training length and

learning rate, all the values of the training parameters were
same as in [10] (see Section III-C3 for the explanation).
The network was trained on input sequences with length
ls = 10. In the sequences used for training and validation,
a frame was generally present in more sequences, meaning
that the sequences overlap. During learning, the error related
to the first predicted input is ignored (µt=1 = 0), since the
first prediction is produced before seeing any input frame.
Prediction errors related to the following time steps are equally
weighted (µt =

1
ls−1 , for t ∈ {2, .., ls}).

In each epoch, 500 sequences from the training set were ran-
domly selected to form batches of size 4 and used for weight
updates. For validation, 100 randomly selected sequences from
the validation set were used in each epoch. We used Adam [57]
as an optimization method for stochastic gradient descent on
the training loss (1). The values of the Adam parameters β1, β2
were set to their default values (β1 = 0.9, β2 = 0.999).

Training parameters for training on both datasets were very
similar except for number of training epochs and learning rate
setting. For the KITTI and BDD100K training, the learning
consists of 1000 and 10000 epochs, respectively. Learning
rate was set to 0.001 and 0.0005 for first 900, 9900 epochs,
respectively7. Then it was decreased to 0.0001 for last 100
epochs. As the BDD100K training set is significantly larger
than KITTI training set, the training was longer for BDD100K.
The choice of the length of the training and learning rate
was based on evolution of validation loss and limited com-
putational resources. It means that validation loss still slightly
decreased at the final epochs, however, the benefit was not so
significant to continue training and use (limited) computational
resources.

4) Quantitative results: For a quantitative analysis of the
performance of the model, we used a standard procedure
and measures for evaluating the next frame video prediction.
The network obtained a sequence (from Caltech Pedestrian
Dataset) of length 10 and then predicted the next frame
(see Fig. 4 for details). Contrary to training and validating
sequences, there was no overlap between the two testing
sequences of length 11. This frame is compared to the actual
frame using MSE, PSNR and SSIM (see Section IV-B). The
overall value of each measure is then obtained as a mean of
the calculated values for each predicted frame.

We performed 10 training repetitions on KITTI dataset
(see Section IV-C1). The results are summarized in Table II.
The results show that the learning is stable. Moreover, we
carried out one training repetition of PreCNet-small, PreCNet-
residual-error and PreCNet-single-LSTMs.

We took the best model of 10 repetitions (according to
SSIM) and compared it with state-of-the-art methods (see
Table III). In the Table, the methods are sorted according
to their SSIM values. If not stated otherwise, a network

7Learning rate setting 0.001 for BDD100K training led in two of four
cases to rapid increase of training loss in later stages of training. Therefore,
the learning rate was changed to 0.0005.
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Fig. 4. Next frame video prediction evaluation schema. In each time
step PreCNet outputs next frame prediction. The predicted error is used for
update of the network states. After inputting 10 frames (time step t = 11),
the predicted frame is compared—using MSE, PSNR, SSIM—with the actual
input. This schema was used for quantitative and qualitative analysis of Next
frame video prediction (see Section IV-C).

TABLE II
PERFORMANCE SUMMARY OF 10 TRAINING REPETITIONS ON KITTI

DATASET. CALTECH PEDESTRIAN DATASET WAS USED FOR CALCULATION
OF THE VALUES. SEE SECTION IV-C4 FOR DETAILS.

MSE PSNR SSIM
best value 0.00205 28.4 0.929

worst value 0.00220 28.1 0.928
median 0.00208 28.4 0.928

received ten input images and predicted the next one which
was used during performance evaluation. Unless otherwise
stated, the values were taken from the original articles. Values
for BeyondMSE were taken from [38]; values for DVF and
CtrlGen were taken from [27]. Values for PredNet were taken
from [24], because in [10] the values were averaged over nine
(2-10) time steps. Values for “PreCNet 7 input frames” (see
Table IV), RC-GAN, DPRAConvLSTM and Lu et al. model
were calculated after only seven, four, three and two input
images (not ten), respectively. However, “PreCNet 7 input
frames” and RC-GAN had better performance in this case
than for input sequences of length ten. If this is true also
for DPRAConvLSTM and Lu et al. model is not known. The
number of parameters for DM-GAN and PredNet were taken
from [24].

PreCNet achieved 2nd-3rd position in SSIM. In MSE and
PSNR, it was outperformed by four and seven other methods,
respectively. The number of trainable parameters—for the
models where it is available—is similar for all except DM-
GAN (113M) and PreCNet-small (0.8M). PreCNet with a
small number of parameters still had comparable performance
to other models and outperformed PredNet. Replacement of
the pairs of convLSTMup/down

i by a single convLSTMi and
simplification of error blocks degraded the performance only
slightly.

Moreover, we took the best trained model and investigated
its performance for shorter input testing sequences. The results
are shown in Table IV. The network received input sequences
with the given input length and predicted the next frame.
Except the input sequence length, the experiential setting and
the PreCNet network are the same as in Tab. III (the values for
input length 10 are the same as in Table III). Copy last MSE
is not the same for all input lengths because the test set was

TABLE III
NEXT FRAME VIDEO PREDICTION PERFORMANCE ON CALTECH

PEDESTRIAN DATASET AFTER TRAINING ON KITTI DATASET. SEE
TEXT FOR DETAILS.

Caltech Pedestrian Dataset
Method MSE PSNR SSIM #param

Copy last frame 0.00795 23.2 0.779 -
BeyondMSE [9] 0.00326 - 0.881 -

DVF [28] - 26.2 0.897 -
DM-GAN [38] 0.00241 - 0.899 113M
CtrlGen [29] - 26.5 0.900 -
PredNet [10] 0.00242 27.6 0.905 6.9M
Lu et al. [26] 0.00188 28.7 0.913 3.9M
RC-GAN [37] 0.00161 29.2 0.919 -

ContextVP [24] 0.00194 28.7 0.921 8.6M
DPG [27] - 28.2 0.923 -

CrevNet [32] - 29.3 0.925 -
Jin et al. [40] - 29.1 0.927 7.6M

PreCNet (ours) 0.00205 28.4 0.929 7.6M
PreCNet 7 input frames (ours) 0.00202 28.5 0.930 7.6M

DPRAConvLSTM [34] - 30.2 0.930 -
IPRNN [33] 0.00097 31.0 0.955 -

PreCNet-small (ours) 0.00220 28.0 0.919 0.8M
PreCNet-single-LSTMs (ours) 0.00209 28.3 0.926 7.0M
PreCNet-residual-error (ours) 0.00212 28.2 0.927 5.6M

split into non-overlapping sequences with different lengths.
The performance was significantly worse for input length 3

TABLE IV
NEXT FRAME PREDICTION PERFORMANCE FOR DIFFERENT LENGTH

OF INPUT SEQUENCE. SEE TEXT FOR A DESCRIPTION.

Caltech Pedestrian Dataset
Input length MSE PSNR SSIM Copy last MSE

3 0.00216 28.1 0.924 0.00796
4 0.00208 28.4 0.928 0.00794
5 0.00203 28.5 0.929 0.00795
6 0.00204 28.5 0.930 0.00799
7 0.00202 28.5 0.930 0.00798
8 0.00203 28.5 0.930 0.00794
9 0.00203 28.5 0.930 0.00794
10 0.00205 28.4 0.929 0.00795

and slightly worse also for length 4. For longer sequences, it
was stable. For input length 10, the performance even slightly
decreased. A possible reason could be that the network was
trained on sequences with length 10 and, therefore, it was
not directly trained to predict the 11th frame after inputting
10 frames. To investigate the influence of sequence length
during training, we trained a network with ls = 5—half of the
basis sequence length—and evaluated it on the 6th frame after
inputting 5 frames. We performed two repetitions with 1000
epochs and two repetitions with 2000 epochs. The results in all
four cases were similar; SSIM was 0.924 in all cases, PSNR
varied from 28.2 to 28.4 and MSE was between 0.00209
and 0.00215. Therefore, the shorter sequence length during
training degraded the performance.

As the training on BDD100K dataset required long training
(large dataset), we performed only two training repetitions.
The performance is evaluated in Table V8. Usage of larger
dataset led to significant performance improvement in all three

8Performance of the network from the other training repetition is: MSE
0.00169, PSNR 29.3, SSIM 0.938.
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TABLE V
COMPARISON OF PRECNET PERFORMANCE ON CALTECH

PEDESTRIAN DATASET AFTER TRAINING ON KITTI (SAME AS IN
TABLE III) AND BDD100K DATASET (SEE SECTION IV-C1 FOR

DETAILS).

Caltech Pedestrian Dataset
Training Set #frames #epochs MSE PSNR SSIM
BDD100K 2M 10000 0.00167 29.4 0.938
BDD100K 41K 1000 0.00201 28.6 0.926

KITTI 41K 1000 0.00205 28.4 0.929

measures. Comparing PreCNet trained on large BDD100K
subset (2M) with the models trained on KITTI dataset (see
Table III), our model was second in SSIM and third in PSNR
and MSE.

In order to evaluate effect of different properties of
BDD100K and KITTI datasets on performance, we created a
small version of the BDD100K dataset with only approx. 41K
frames (similar size as the size of KITTI) and used the same
training parameters which were used for training on KITTI.
The performance on this dataset was similar to performance
on KITTI9. This suggests that the “quality” of the training set
(BDD100K vs. KITTI) is not the key factor for obtaining better
performance in this case. We studied the effect of the number
of training epochs as well. Validation loss on the small subset
of BDD100K (41K frames) started to increase during training
(1K epochs), indicating overfitting. Thus, we can exclude the
possibility that training for 10K epochs would further improve
performance. Hence, we claim that it is really the dataset size
that is the enabling factor for performance and that permitted
the results obtained for BDD100K (2M frames, 10K epochs).

5) Qualitative analysis: In Fig. 5, there is a qualitative
comparison of PreCNet with other state-of-the-art methods
trained on KITTI dataset (see Table III). The way of obtaining
the predicted frames used for the analysis is the same as for
Quantitative analysis (see the predicted frame at t = 11 in
Fig. 4). For a qualitative comparison of PreCNet with the
model by Jin et al. [40] see Fig. 9 (the predicted frame at
t = 11).

To assess which of the methods is best through visual
inspection is not straightforward; none of the models is better
than the others in all aspects and shown frames (excluding
PredNet which produced significantly worse predictions). For
example, in the last row of Fig. 5, DPG has generally the
sharpest prediction but PreCNet predicted the street lamp
significantly better. To compare our model with the IPRNN,
which significantly outperformed all models in all metrics
used, we used the sequences from the IPRNN article [33].
On these sequences (see Fig. 5, first two rows), there is
no apparent qualitative difference between the predictions
by IPRNN and PreCNet. For example, “STOP” sign in the
sequence from the first row is predicted sharper by PreCNet
than by IPRNN and the other models.

9We performed 3 training repetitions on BDD100K with 41K frames.
In Table V, there is performance of the best one (according to SSIM).
Performance of the other two is MSE {0.00199; 0.00202}, SSIM {0.925;
0.926}, PSNR {28.6; 28.6}.

In Fig. 6, KITTI and BDD100K (both 2M and 41K) training
variants (see Table V) are compared. Usage of large BDD100K
dataset (with approx. 2M frames) for training led to significant
improvement of all the measures (see Table V) in comparison
with training on KITTI dataset. It manifested also in the visual
quality of prediction of fast moving cars as you can see in the
second and third columns of the figure. The phantom parts of
the predicted cars were reduced. It also led to better shapes of
the predicted cars as you can see in the prediction in the first
column (focus on the front part of the van). On the other hand,
in some cases training on BDD100K dataset led to blurrier
predictions than training on KITTI (see the last column).

D. Multiple frame prediction

For multiple frame prediction, we used the same trained
models which we used for next frame video prediction (see
Section IV-C). The network had access to the first 10 frames—
same as in next frame video prediction. Then, in each timestep,
the network produced next frame and this next frame was used
as the actual input (as illustrated in Fig. 7). Therefore, the
prediction error between the prediction and input frame was
zero.

We briefly explored fine-tuning of the network for multiple
frame prediction [10]. To generate multiple future frames, the
predicted frames—produced by the pre-trained network for
next frame prediction—were used as inputs after inputting
10 frames. The network was trained to minimize the mean
absolute error between the predicted and ground-truth frames.
According to our preliminary results, this did not significantly
improve multiple frame prediction performance.

Please note the different meaning of timestep labels t and
T : small t starts at the beginning of a sequence, in contrast
with capital T , which starts at the beginning of a predicted
sequence (see the timestep labels in Fig. 7). Code needed for
generation of the results presented is publicly available [11].

1) Quantitative results: In Table VI, there is a quantitative
comparison of PreCNet, PredNet, CrevNet and RC-GAN for
multiple frame prediction. The methods obtained sequences
with a fixed length (10 for PredNet, CrevNet and PreCNet; 4
for RC-GAN; see Section IV-C4 for explanation) of Caltech
Pedestrian Dataset and outputted predictions 15 steps ahead
(CrevNet only 12). CrevNet, RC-GAN, PredNet and PreCNet
(KITTI) were trained on KITTI. PreCNet was also trained
on a subset of BDD100K with size 2M. Values for PredNet
and RC-GAN were copied from [37]. Values for CrevNet were
taken from [32]. Some values for T = 1 from Tables III and V
are slightly different because the test set used there was split
into non-overlapping sequences with different length (11 vs.
25).

For SSIM, PreCNet trained on KITTI outperformed PredNet
until timestep T = 9 (t = 19) when the values became equal
and then PreCNet started to lose. For PSNR, PreCNet started
to lose earlier (T = 6). RC-GAN and CrevNet outperformed
PreCNet in nearly all timesteps for SSIM10 and RC-GAN also
in all timesteps for PSNR.

10In T = 1, SSIM for PreCNet was 0.930 and for CrevNet 0.925.
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Fig. 5. Qualitative comparison of PreCNet with others state-of-the-art methods on Caltech Pedestrian Dataset. All models were trained on KITTI
dataset. Ten input frames were given (see frames for t = 8, t = 10), the next one (t = 11) was predicted (RC-GAN used only four input frames – see Section
IV-C4 for explanation) by the models (for references see Table III). The images of predictions of other models are copied from original or other cited papers
(see references in Table III). Position of the sequences in Caltech Pedestrian Dataset by rows; set06-v013, set06-v000, set07-v011, set10-v010, set10-v009,
set10-v010, set06-v009.

TABLE VI
A QUANTITATIVE COMPARISON OF SELECTED METHODS FOR

MULTIPLE FRAME PREDICTION. SEE TEXT FOR A DESCRIPTION.

Method T=1 3 6 9 12 15

PredNet [10] PSNR 27.6 21.7 20.3 19.1 18.3 17.5
SSIM 0.90 0.72 0.66 0.61 0.58 0.54

RC-GAN [37] PSNR 29.2 25.9 22.3 20.5 19.3 18.4
SSIM 0.91 0.83 0.73 0.67 0.63 0.60

CrevNet [32] SSIM 0.93 0.84 0.76 0.70 0.65 -
PreCNet PSNR 28.5 23.4 20.2 18.4 17.2 16.3
(KITTI) SSIM 0.93 0.82 0.69 0.61 0.56 0.53
PreCNet PSNR 29.5 24.6 21.4 19.4 18.3 17.4

(BDD100K 2M) SSIM 0.94 0.85 0.73 0.65 0.59 0.56

We also added PreCNet trained on the large subset of
BDD100K to the comparison. Then PreCNet outperformed

PredNet in all timesteps for SSIM and most timesteps for
PSNR; in timestep T = 15 it reversed. However, CrevNet and
RC-GAN still outperformed PreCNet in most timesteps. For
SSIM, PreCNet had better results than CrevNet and RC-GAN
only for predicted frames in T ∈ {1, 3}. For PSNR, RC-GAN
was outperformed by PreCNet only for T = 1.

In summary, PreCNet started with mostly better predictions
than its competitors, however, its performance tended to de-
grade faster for prediction further ahead.

2) Qualitative analysis: The methods were compared using
the sequences used in [37]. Moreover, PreCNet was separately
compared to the model by Jin et al. (Fig. 9). Fig. 8 provides
one example (for another illustration, see Supplementary Mate-
rials – Multiple frame video prediction sequence). Predictions
by PreCNet appear less blurred than those by PredNet and
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Fig. 6. Qualitative comparison of PreCNet performance on Caltech
Pedestrian Dataset after different training variants. First row corresponds
to the last frame of the input sequence with length 10. Second row corresponds
to the ground truth frame. Next rows correspond to the predicted frames of
different models which correspond to the models from quantitative evaluation
in Table V and related residual images – difference between the predicted
and the actual frame. Position of the sequences in Caltech Pedestrian Dataset
by columns; set10-v010, set06-v001, set07-v011, set07-v011. In contrast with
Fig. 5, the meaning of horizontal and vertical arrangement is inverted. To see
whole input sequences and related predictions check Supplementary materials
– Examples of next frame video prediction sequences.

by the model of Jin et al. (see Fig. 9). This is especially
apparent for the later predicted frames. Compared to RC-
GAN, predicted frames by PreCNet trained on KITTI seem
to have more natural colors and background is mostly less
blurred (focus on the buildings in the background). PreCNet
trained on large subset of BDD100K (2M of frames) produced
even less blurred frames. Comparison with CrevNet is not
straightforward. For example, CrevNet captured the geometry
of the shadow of the building on the road better than PreCNet.
On the other hand, it produced a phantom object (see right
side of the road in timesteps 9, 11) which is not present (or
negligible) in the corresponding frames by PreCNet.

V. CONCLUSION, DISCUSSION, FUTURE WORK

In this work, the seminal predictive coding model of
Rao and Ballard [2]—here referred to as predictive coding
schema—has been cast into a modern deep learning frame-
work, while remaining as faithful as possible to the original
schema. The similarities and differences are elaborated in

detail. We also claim and explain that the network we propose
(PreCNet) is more congruent with [2] than others based on the
deep learning framework that take inspiration from predictive
coding; the case of PredNet [10] is studied explicitly. PreCNet
was tested on a widely used next frame video prediction
benchmark—KITTI for training (41k images), Caltech Pedes-
trian Dataset for testing—, which consists of images from an
urban environment recorded from a car-mounted camera. On
this benchmark, we outperformed most of the state-of-the-art
methods and achieved 2nd-3rd rank when measured with the
Structural Similarity Index (SSIM)—a performance measure
that should best correlate with human perception. Performance
on all three measures was further improved when a larger
training set (2M images from BDD100k; to our knowledge,
biggest dataset ever used in this context) was employed. This
may suggest that the current practice based on the rather small
KITTI dataset used for training may be limiting in the long
run. At the same time, the task itself seems highly relevant, as
virtually unlimited amount of data and without any need for
labeling is readily available.

Below, we discuss some limitations of this work. For some
fast moving objects in the scene, PreCNet could not restore
their structure precisely (see e.g., the third column of Fig. 6
where the car contours are not preserved). This may be a
drawback of the cost function that minimizes the per-pixel
loss. Perceptual loss (e.g., [58]) based on high-level feature
differences between frames might alleviate this problem.

In multiple frame video prediction, qualitatively, the frames
predicted by PreCNet look reasonable and in some aspects
better than some of the competitors. However, a quantita-
tive comparison reveals that PreCNet performance degrades
slightly faster than that of its competitors when predicting up
to 15 frames ahead. We speculate that architectures which
achieve multiple frame prediction by recurrent feeding of
previous predictions may not achieve their best performance
for next and multiple frame predictions at the same time.
Increasing performance for multiple frame prediction may
decrease performance for next frame prediction and vice versa.
We performed fine-tuning of our network for multiple frame
prediction, but preliminary results did not show any significant
improvement. PreCNet and predictive coding in general is
perhaps intrinsically more suited for next frame prediction.
This remains to be further analyzed.

In the future, we plan to analyze the representations formed
by the proposed network. It would be interesting to study how
much of the semantics of the urban scene has the network
“understood” and how that is encoded. For example, our
network has not quite figured out that every car has a finite
length and its end should be predicted at some point when
it is not occluded anymore. In our model, best results on the
task were achieved when only prediction error on the bottom
level—difference between the actual frame and the predicted
one—was minimized during learning. Rao and Ballard [2],
on the other hand, minimized this error on every level of
the network hierarchy, which may have an impact on the
representations formed. Testing on a different task, like human
action recognition (e.g., [10], [38], [39]) is also a possibility.
Finally, some datasets feature also other signals apart from
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Fig. 7. Multiple frame video prediction evaluation schema. After inputting 10 frames, the predicted frames are inputted instead of the actual frames. The
prediction errors are therefore zeros. The predicted frames are compared—using MSE, PSNR, SSIM—with the actual inputs. We used this schema for both
quantitative and qualitative analysis of Multiple frame prediction (see Section IV-D).

the video stream. Adding inertial sensor signals or the car’s
steering wheel angle or throttle level is another avenue for
future research.

We want to close with a discussion of the implications
of our model for neuroscience. Casting the predictive coding
schema into a deep learning framework has led to exceptional
performance on a contemporary task, without being explic-
itly designed for it. In the future, we plan to analyze the
consequences for computational neuroscience. While receptive
field properties in sensory cortices remain an active research
area (e.g., [59]), a question remains whether the deep learning
approach can lead to a better model than, for example, that
of Rao and Ballard [2]. Richards et al. [60] and Lindsay [61]
provide recent surveys of this perspective. An investigation of
this kind has recently been performed for PredNet [23].
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