
The Impact of Encrypted DNS on Network Security

by

Karel Hynek

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Doctoral study programme: Informatics

Department of Digital Design

Prague, May 2023



Supervisor:
prof. Ing. Hana Kubátová, CSc.
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Abstract

The encrypted DNS is a natural response of the engineering community to the privacy
concerns raised due to domain name misuse by internet service providers, threat actors, or
government surveillance programs such as MORECOWBELL or QUANTUMDNS. How-
ever, visible domain names are essential for network intrusion detection, and their encryp-
tion has a great impact on security. This dissertation thesis maps the impacts of encrypted
DNS on security, its state of deployment, and the possibilities of encrypted traffic analysis
to overcome the reduced visibility. We partnered our research with the CESNET associ-
ation, which is a Czech national education and research network operator, which kindly
provided us with the anonymized flow-based telemetry that we used in our studies. In
particular, the main contributions of the dissertation thesis are:

1. Evaluation of encrypted DNS adoption.

2. Description of encrypted DNS misuse by threat actors.

3. Design and evaluation of flow-based encrypted DNS detectors.
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Abstrakt

Šifrované DNS vzniklo jako odpověd’ na zvýšené obavy uživatel̊u ohledně soukromı́ a zpra-
cováńı dat. Masové sledováńı doménových jmen bylo v minulosti prokázáno u několika am-
erických poskytovatel̊u internetu, ale i u tajných složeb v rámci rámci rozsáhlých špionáž-
ńıch programů jako byly MORECOWBELL a QUANTUMDNS. Šifrováńı doménových
jmen značně snižuje možnost jejich odposlechu a př́ıpadného zneužit́ı k profilováńı uživatel̊u,
na druhou stranu ale zabraňuje i jejich legitimńımu použit́ı. Analýza doménových jmen je
naprosto zásadńı při detekci śıt’ové aktivity malwaru. Využit́ı šifrovaného DNS má tedy
i negativńı dopad na śıt’ovou bezpečnost. Tato dizertačńı práce se zabývá mapováńım
dopad̊u šifrovaného DNS na bezpečnost uživatel̊u a vývojem metod analýzy šifrovaného
provozu, které mohou zmı́rnit dopady snižené viditelnosti do provozu. Práce obsahuje
následuj́ıćı hlavńı př́ınosy:

1. Vyhodnocováńı adopce šifrovaného DNS.

2. Popis zneuž́ıváńı šifrovaného DNS ke škodlivým účel̊um.

3. Vytvořeńı a vyhodnoceńı nového detektoru šifrovaného DNS.

Kĺıčová slova:
DNS, DNS over HTTPS, DNS over TLS, Bezpečnost, Poč́ıtačové śıtě
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Chapter 1

Introduction

The translation of human-readable domain names into machine-usable IP addresses and
vice versa is an essential feature that enables a user-friendly usage of network services.
Traditionally, this mechanism is performed by Domain Name System (DNS) [90, 89] in
the Internet environment. DNS is one of the oldest network protocols, and, therefore, it
is based on transferring unencrypted queries and answers through network links. Never-
theless, the plain text domain names leave a wide space for possible misuse. For example,
studies like [56, 74] showed the possibility of user tracking over DNS and even bypassing
the private mode in browsers. The fact that DNS-based tracking is possible in scale was
shown by enormous DNS-based surveillance scandals such as QUANTUMDNS and MORE-
COWBELL, operated by governmental agencies [51]. The massive size of these scandals
triggered concerns over users’ privacy among the broad public. The natural response to
these concerns was the privacy-preserving encrypted DNS protocol.

1.1 Motivation

Personal privacy has become one of the crucial features of modern applications in recent
years. Thus, privacy-preserving technologies represent a rapidly evolving area, that is
being fastly deployed to production and warmly welcomed by users. In recent years, DNS
protocol finally got its privacy-preserving version—the encrypted DNS. Currently, there are
three encrypted DNS versions standardized by IETF in the form of RFC: DNS over HTTPS
(DoH) [59], DNS over TLS (DoT) [63], and DNS over QUIC (DoQ) [65]. Despite their
relative novelty, DoH and DoT have already gained wide adoption in popular software.
DoH is already supported by Windows OS [70], Apple (in MacOS and iOS) [28], and
Mozilla Firefox [91]. Moreover, Chrome-based browsers support DoH by default (since
version 83) [10]. DoT is currently enabled by default in Android OS (since version 9.0
Pie) [75].

The fast adoption of encrypted DNS is definitely beneficial for users’ privacy. Nowadays,
even users without any technical skills or knowledge about encrypted DNS can gain the
benefits of increased privacy. Moreover, encrypted DNS is often enabled by default; users

1



1. Introduction

thus gain the benefits of increased privacy with all the comfort without any necessary
actions.

Nevertheless, increased privacy always impacts security. Plaintext DNS inspection is
one of the essential sources for network intrusion detection. The presence of malware in
the network can be identified by generated (DGA) or blocklisted domain names. Visible
domain names also play an essential role in parental control systems, policy enforcement,
or lawful blocking. As a relatively novel set of protocols, it has not been appropriately
studied to gather knowledge about its properties and effects on network security. The abuse
possibilities and security threats arising from the lack of domain name visibility have been
mostly unknown, highlighting the urgency and necessity of encrypted DNS research.

1.2 Problem Statement

The encrypted DNS represents a novel set of protocols with a potentially enormous impact
on the security of users due to reduced visibility and essential information loss for security
detectors. Nevertheless, no comprehensive study on important encrypted DNS properties.
The researchers do not have open information about the encrypted DNS service providers
and actual adoption of encrypted DNS service among users and service providers, which
provides essential knowledge to understand the severity of encrypted DNS security impli-
cations.

The other challenge arising from the encrypted DNS is a possible novel set of attack
vectors that must be explored. Moreover, we are unaware of the applicability of known plain
DNS attack vectors data exfiltration, packet reflection, or command-and-control (C2) in
the encrypted DNS domain. There needs to be a comprehensive evaluation of these abuses
via encrypted DNS; especially in the face of a novel trend of secure DNS resolvers that
claim security protection capabilities.

Lastly, we need to inspect the possibility of DoH detection due to its capability to blend
into other HTTPS traffic, leaving the network operators and administrators unaware of
its presence. DoH can thus be an easy-to-use tool that can be used even by non-experts
to bypass DNS-based policy enforcement systems. Therefore, reliable DoH detection is
essential for maintaining security without the need for traffic decryption with a man-in-
the-middle proxy, which would have a much more negative impact on the user’s privacy.

1.3 Goals of the Dissertation Thesis

1. Measurement of the encrypted DNS adoption across service providers.

2. Description and evaluation of encrypted DNS threats, particularly DoH, since it
cannot be reliably detected in the network.

3. Evaluation of DoH privacy properties.

4. Research, design, and development of the detection of DoH.

2



1.4. Structure of the Dissertation Thesis

1.4 Structure of the Dissertation Thesis

The thesis is organized into six chapters. The chapters are based on eight research papers
authored by this thesis’s author that were published at conferences (including CORE A
conference) or in Q1 journals (including journals with Impact Factor=11.043). The con-
tribution of the author of this thesis is then summarized in the following Section 1.5. The
thesis chapters are as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.

2. Background and State-of-the-Art : Introduces to the necessary theoretical background
and surveys the current state-of-the-art in encrypted DNS research.

3. Encrypted DNS Adoption: Provides results of our encrypted DNS adoption measure-
ment.

4. DNS over HTTPS Misuse by Threat Actors : Provides a comprehensive summary of
possible threats arising from DoH and their misuse in the wild.

5. DoH Detection and Fingerprinting Using Side-Channel Analysis : Describes our ex-
periments with side-channel attacks, including DoH detection.

6. Conclusions : Summarizes the results of our research, suggests possible topics for
further research, and concludes the thesis.

1.5 Author’s Publications Used in the Dissertation Thesis
and His Contribution

The text in the dissertation thesis is based on the following published journal or conference
papers. This section summarizes the thesis author’s contribution to each paper.

Publication [A.1]: Dmitrii Vekshin, Karel Hynek, Tomáš Čejka; DoH insight: Detecting
DNS over HTTPS by machine learning

Dmitrii Vekhin (student of the thesis author) created a dataset and performed an initial
preprocessing. The author of this thesis designed the detection algorithm and
performed all the experiments. Besides he also contributed to the writing.
Tomáš Čejka then helped with the writing of the initial draft and also did the internal
review.

3



1. Introduction

Publication [A.2]: Karel Hynek, Tomáš Čejka; Privacy Illusion: Beware of Unpadded DoH

The author of this thesis created an experimental dataset and performed
all the experimental evaluations described in the publication; besides, he also
contributed to the writing. Tomáš Čejka helped with the initial draft and also did the
internal review of the publication.

Publication [A.3]: Karel Hynek, Dmitrii Vekshin, Jan Luxemburk, Tomas Cejka, and
Armin Wasicek; Summary of DNS Over HTTPS Abuse

The author of this thesis created an extensive survey of related works and
is the main co-author of the analysis of DoH use in the malware. Moreover,
the author of this thesis described the inner workings of novel thread models
occurring in web environments. Dmitrii Vekshin (a student of the author and an Avast
employee) was responsible for DoH malware and DoH metadata gathering. Moreover, as a
native Russian speaker, he translated multiple Russian documents necessary for the novel
attack vector understanding. Jan Luxemburk helped with the revisions and contributed
to writing the revised draft. Tomas Čejka and Armin Wasicek helped to write the initial
draft and performed internal reviews.

Publication [A.4]: Sebastian Garćıa, Joaqúın Bogado Garcia, Karel Hynek, Dmitrii Vek-
shin, Tomas Cejka, and Armin Wasicekk; Large Scale Analysis of DoH Deployment on the
Internet

Sebastian Garćıa, Joaqúın Bogado Garcia took care of the internet-wide scans and
contributed to the writing. Moreover, they performed a trend analysis and statistical
comparison of the year-apart lists. The author of this thesis analyzed the data from
the scans and also enriched them for other contextual information. Moreover,
he also performed a deep analysis of the DoH providers, their certificates, and
their DNS capabilities. Dmitrii Vekshin provided data from the Avast internal threat
analysis tool. Tomáš Čejka and Armin Wasicek then helped write the initial draft.

Publication [A.6]: Lukáš Melcher, Karel Hynek, and Tomáš Čejka; Tunneling through DNS
over TLS providers

The design of all the experiments has been performed by the author of this
thesis, who also performed the analysis of the gathered data; Moreover, he
also wrote the original draft of the publication. Lukáš Melcher performed the data
gathering during his Master’s thesis, supervised by the author of this thesis. Tomáš Čejka
performed the final review of the publication.
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Publication [A.7]: Daniel Uhricek, Karel Hynek, Tomáš Čejka, and Dušan Kolář; BOTA:
Explainable IoT malware detection in large networks

The original idea of the weak-indication principle was created by the author of
this dissertation thesis, who also contributed to experimental data gathering
and detection algorithm design. Moreover, he also contributed to the writing
of the original draft. Daniel Uhř́ıček created the experimental implementation and
performance measurement during his Master’s thesis, supervised by the author of this
thesis. Moreover, Daniel Uhř́ıček also contributed to the original draft writing. Tomáš
Čejka and Dušan Kolář then performed the final review of the publication.

Publication [A.8]: Sebastián Garćıa, Karel Hynek, Dmitrii Vekshin, Tomáš Čejka, and
Armin Wasicek; Large scale measurement on the adoption of encrypted DNS.

Sebastian Garcia took care of the data gathering from the University (Organization 2)
and provided the analysis of the University data. Moreover, Sebastian contributed to
the writing. Author of this thesis provided statistical data from the large ISP
(Organisation 1) and performed its statistical analysis. And he contributed to
the writing. Dmitrii Vekshin and Armin Wasicek provided data and its analysis from
the Global Security Company (Organization 3). Tomáš Čejka contributed to writing the
original draft and performed an internal review.
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Chapter 2

Background and State-of-the-Art

In this chapter, we summarize the necessary background about encrypted DNS. The Sec-
tion 2.1 provides detailed information about the three standardized encrypted DNS ap-
proaches (DoH, DoT, DoQ). Details of the encrypted DNS approaches have been studied
and provided in papers [A.1, A.2, A.8, A.3]. Following Section 2.2 contains a summary
of research works that studied the encrypted DNS from various aspects. This section is
heavily based on data published in survey [A.3].

2.1 Background on the Encrypted DNS

For a long time, it has been known to the security community that domain name en-
cryption is one of the essential features for users’ privacy protection. DNS traffic can be
used for user profiling and surveillance [52, 51], especially in countries without Internet
freedom [22]. Users from oppressive countries would gain the most significant benefit from
DNS encryption. Nevertheless, DNS encryption also has strong opposing voices due to
data centralization and reduced visibility of security network monitoring.

Currently, the encrypted DNS is pushed by the tech giants such as Google or Cloudflare,
who let their resolvers by default in web browser settings [A.4]. For instance, Firefox
(since version 92.0) uses Claudflare Inc. by default, similar to Opera browser (from version
79.0.4143.50). In these cases, the browser bypasses OS-level DNS settings and sends the
DNS requests to a third party (Cloudflare), which then has privileged access to valuable
data for profiling and advertisement. These few large encrypted DNS providers are typically
big tech giants and telecommunication providers (telcos) who effectively cut off smaller
ISPs, small telcos, and even local administrators from accessing DNS. Moreover, bypassing
OS-level DNS settings can drastically decrease user security when the OS-based DNS is
connected to the security-protection system, such as DNS filters for policy enforcement in
organizations or antivirus tools.

Despite the opposing voices, the deployment of encrypted DNS is successfully progress-
ing. Currently, there are three standardized protocols—(i) DNS over HTTPS, (ii) DNS
over TLS, and (iii) DNS over QUIC. We further describe them in the following sections.
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2.1.1 DNS over HTTPS

The IETF adopted the DoH protocol as an RFC document (RFC8484 [59]) in 2018. Nev-
ertheless, there are two significantly different implementations. The RFC8484 compliant
approach uses classic DNS “Wireformat” [89] encapsulated in the HTTPS protocol. The
messages are transferred either by HTTP GET or POST requests to /dns-query API end-
point. The other approach uses DNS messages encoded in the JSON format described in
RFC8427 [58]. However, with the JSON approach, there is no standardized API endpoint.
Most well-known resolvers use the same as the RFC version [A.4]; however, for example,
Google uses /resolve API endpoint.

The JSON data are then transferred via HTTPS GET. The primary motivation to
encode the DNS query in a JSON is to increase the readability and easy data manipulation
based on text-based messages. According to our observation, JSON is used primarily for a
single query by applications where performance and short response time are not a priority.

2.1.1.1 DNS over HTTPS on the Packet Level

DoH follows the classic request-response scheme, with expected differences across HTTP
protocol versions. Even though HTTP1.1 is not officially recommended by RFC [59] due
to performance reasons, according to our findings in [A.4], most resolvers and browsers
support it. The biggest performance bottleneck of HTTP1.1 is the missing support of
multiple concurrent requests within a single connection; therefore, it always has to wait for
the response before sending the following query. According to our observations (in Chrome
version 941, and Firefox 912), browsers reduce the performance penalty by creating multiple
parallel connections (usually two). By switching between connections, they can perform
concurrent requests. According to RFC8484, each packet contains only one DNS query
or response. Thus, network observers can reliably count the number of queries/responses
transferred in the encrypted channel. Apart from that, no other information can be directly
obtained from the network packets due to the TLS encryption.

From the packet-level perspective, DoH looks similar to any other HTTPS communi-
cation. It establishes a connection on port 443, performs a TLS handshake, and transfers
encrypted data. This design decision prevents easy recognition of DoH in firewalls and
creates a straightforward way to bypass DNS-based network protections. Detailed analysis
of DoH traffic shape is provided in Section 5.1.2.

2.1.1.2 Oblivious DNS over HTTPS

As previously mentioned, the main argument against all encrypted DNS approaches is data
centralization. Therefore, RFC9230 [73] recently proposed the Oblivious DoH (ODoH)
protocol, an upgrade of DoH to prevent central DNS resolver from surveillance by hiding

1https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-
desktop 30.html.

2https://www.mozilla.org/en-US/firefox/91.0/releasenotes/.

8

https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop_30.html
https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop_30.html
https://www.mozilla.org/en-US/firefox/91.0/releasenotes/


2.1. Background on the Encrypted DNS

actual users’ IP addresses. The protocol stands on the DoH principles, thus encoding
DNS messages into HTTPS. However, it adds an intermediate proxy between the user and
DNS resolver, which separates the content and IP address. The proxy cannot decrypt the
underlying messages and only retransmits them to the DNS resolver. The DNS resolver
then processes the query, but it does not know the IP address of the actual user. Even
though ODoH significantly improves users’ privacy, it also impacts performance due to the
added latency by the intermediate proxy.

2.1.2 DNS over TLS

DNS over TLS is specified by RFC7858 [63]. Its design is heavily based on the DNS over
TCP described by RFC7766[38]. However, instead of sending DNS wireformat messages
over TCP, those are sent over a secure TLS over TCP connection. IANA reserved port
853/TCP, which all DoT clients and resolvers should use by default. Since the packets are
sent over a dedicated port, a network administrator can easily recognize, block, or filter the
traffic. However, it is worth noting that the RFC standard allows using DoT with ports
other than 853/TCP; therefore, it is expected that DoT clients and resolvers will have the
option to change the port in their configuration.

From the packet level, the DoT behaves similarly to DoH; however, the missing HTTPS
headers result in smaller packets overall. Similarly, as in DoH, each packet carries only a
single DNS request/response; the observer thus can reveal the number of exchanged DNS
messages.

2.1.3 DNS over QUIC

The last IETF standardized encrypted DNS version is DoQ in RFC9250 [65]. DoQ is very
similar to DoT since it encapsulates DNSWireformat messages (specified in RFC 1035 [89])
into a QUIC connection. Contrary to DoT and DoH, RFC9250 considers the DoQ usage
between the recursive resolver to the authoritative nameserver. Initially, it was proposed
in the RFC draft [66] to use port 784/UDP. Nevertheless, the final standard specifies port
853/UDP as a default one, which all DoQ clients and resolvers should use. Therefore, also
DoQ can be easily recognized in the network.

Since DoQ is still relatively novel, the software support is still nascent, and only a
handful of resolvers already support it. Therefore, we are still determining its production-
like packet behavior. Nevertheless, due to the RFC9250 [65] requirement that the client
selects a separate QUIC stream for each query, which is similar to the current DoH over
HTTP/2 implementations), we might expect similar behavior as in the case of DoH and
DoT. Thus a single packet would carry only a single DNS request/response.
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2.2 Encrypted DNS Research

Despite the relative novelty of encrypted DNS protocols, they have already been studied
by multiple researchers, including the author of this thesis. Even though the DoT is the
oldest encrypted DNS approach, most of the research works are focused on DoH due to
its stealthiness causing its significant impact on security. Research in DoQ is still nascent
due to its novelty and limited support in the software. In this section, we will summarize
related work based on the four perspectives: (i) Performance Perspective, (ii) Adoption
Perspective, (iii) Privacy Perspective, and (iv) Security Perspective.

2.2.1 Performance Perspective

The latency of DNS protocol directly impacts the performance of networking applica-
tions [17]. Therefore, many researchers measured the performance consequences of en-
crypted DNS deployment. These studies are summarized in Table 2.1.

One of the first DoH latency measurements was published by McManus [86] from
Mozilla in 2018, showing that the average additional latency caused by DoH is only six
milliseconds. The following study created by Böttger et al. [15] focused on DoH overhead
compared to traditional DNS. Their results show that DoH adds significant latency when
the connection is used for a single query. However, the additional latency is negligible when
the DoH connection is reused for multiple queries. Another study by Hounsel et al. [61]
shows that DoH latency and reliability depend strongly on the selected resolver. This
observation is also supported by Jerabek et al. [71], who studied DoH resolver behavior
and the distribution of DoH packet sizes depending on used resolvers. According to their
results, some DoH resolvers use long HTTP headers resulting in larger packets and thus
creating a more considerable overhead.

A more extensive study was performed by Chhabra et al. [26], who studied DoH per-
formance impact worldwide. Their results show that users from higher-income countries
with higher-quality internet infrastructures are less likely to experience slower performance
caused by DoH, resulting in a disproportionate impact on users from countries with lower
economic capacity. Their findings are also supported by the studies performed by Hounsel
et al. [60], Borgolte et al. [14] and Mbewe et al. [85], who also show that DoH has a negli-
gible impact in good network condition. According to these studies [60, 14, 85], traditional
DNS significantly outperforms DoH when dealing with congested or 3G mobile networks.

Lu et al. [80] conducted the DoT performance impacts measurements. Their exper-
iments spanned ten countries worldwide. Similarly, as in DoH, they report negligible
latency compared to traditional DNS when the connection is reused for multiple queries.
The results are supported by Hounsel et al. [61] and Mbewe [85]. Other DoT performance
measurement was done by Doan et al. [41], who measured only the latency of single-
query requests. Unsurprisingly, the measured DoT overhead was significant, reaching up
to 200ms.

Lu et al. [80], Hounsel et al. [61], and Mbewe [85] also performed a comparison of DoT
and DoH performance. In Lu et al. measurements, the latency of DoH and DoT queries
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were very similar—DoT performed slightly better with average/median performance over-
head of 5ms/9ms (for DoT) and 8ms/6ms (for DoH). Nevertheless, Hounsel et al. and
Mbewe et al. show that DoT significantly outperforms DoH and sometimes even traditional
DNS when used over networks with higher latencies.

The only study which measures the performance of DoQ was published by Kosek et
al. [76], who queried 264 resolvers via DoT, DoH, and DoQ. The results are consistent
with previous measurements performed with DoH and DoT on high-quality connections.
Nevertheless, the underlying QUIC protocol also supports fast 0-RTT handshake types.
According to Kosek et al., the DoQ does not use fast handshakes to its full potential, and
40% of measurements show considerably higher handshake times than expected, leaving
space for possible optimization in the future. Nevertheless, the authors claim that DoQ
outperformed DoH and DoT; thus DoQ is the fastest encrypted DNS option.

Table 2.1: Comparison of DoH performance-related research. Measurement Setup — mea-
surement data and its origin, Results — The main conclusions of the measurement about
the DoH performance impact compared to traditional DNS.

Author Year Protocol Measurement Setup Results

McManus [86] 2018 DoH Firefox users
Negligible impact,

added latency of 6ms.

Böttger et al. [15] 2019 DoH Single client
Negligible impact on latency
when reusing connection.

Borgolte et al. [14] 2019 DoH
Self-emulated network

conditions
Selective impact,

depending on network conditions.

Lu et al. [80] 2019 DoH & DoT
Generated across endpoints in

11 countries
Negligible impact,

DoT and DoH perform similarly.

Hounsel et al. [60] 2020 DoH & DoT
Self-emulated network

conditions
Selective impact,

depending on network conditions.

Hounsel et al. [61] 2021 DoH & DoT
Generated via endpoints
across North America

Selective impact,
depending on used DoH resolver
DoT outperforms DoH with bad

network conditions.

Chhabra et al. [26] 2021 DoH
Worldwide measurement

across 224 countries
Selective impact,

depending on network conditions.

Mbewe et al. [85] 2021 DoH & DoT
Generated via endpoints

across Africa
Selective impact,

depending on network conditions.

Doan et al. [41] 2021 DoT
Generated from RIPE Atlas

probes

Large impact,
when used with single-query

connections.

Jerabek et al. [71] 2022 DoH Generated, single location
Selective impact

depending on the used DoH resolver.

Kosek et al. [76] 2022
DoH & DoQ

& DoT
Generated, single location

Negligible impact,
DoQ is the fasted encrypted DNS.
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2.2.2 Adoption Perspective

Encrypted DNS is gaining adoption across prominent software vendors, and popular oper-
ating systems, web browsers, and DNS resolution software already support it. Therefore
we might expect the increasing usage of encrypted DNS among users and DNS service
providers. Research works listed in Table 2.2 study the state of adoption of selected en-
crypted DNS approaches.

DoT adoption was studied by Lu et al. [80] in 2019. They performed an IPv4 internet-
wide scan for opened 853/TCP port to identify the resolvers, and they found around
2250 DoT resolvers operating in the wild. Deccio et al. [36] performed such a scan across
1.2 million open DNS resolvers3. They found 1747 different DoT resolvers, making their
adoption around 1.5h across open DNS resolvers. The following study performed by Doan
et al. [41] replicated the methodology of Deccio et al. [36] nine months after and found 2151
dot resolvers—an increase of 23.1%. Doan et al. [41] also studied network flows from the
WIDE backbone4. They report that DoT forms only 0.017% of all flows. In comparison,
classical DNS accounts for 2.3% of all flows, meaning the share of DoT was negligible.

Compared to DoT, the DoH resolver is much more challenging to recognize since it
does not use a dedicated port. In 2019, Lu et al. [80] used a large dataset of URLs from
their commercial partner looked for RFC8484 compliant URLs5. Their analysis found 17
DoH resolvers, which is compared to DoT negligible. Nevertheless, we need to consider
their results lower-bound since they used only a limited dataset.

Deccio et al. [36] also studied the support of DoH in 2019 and used active DoH queries
to open resolvers. From around 1.2 million open resolvers, only nine supported DoH.
Following studies of DoH adoption were carried out in 2021 and 2022 by the author of this
thesis [A.8, A.4]. We found two orders of magnitude more DoH resolvers and an increasing
trend in DoH adoption across users and service providers. For more details, please refer to
the Chapter 3.

The only study of DoQ adoption was published by the author of this thesis in [A.8]. Ac-
cording to our results, DoQ traffic is extremely rare. Nevertheless, this study was performed
before the release of the DoQ standard. For more details, please refer to the Chapter 3.

2.2.3 Privacy Perspective

Since the primary benefit of encrypted DNS is the increased privacy of end-users [63,
59], it has been thoroughly studied by many researchers. The privacy-focused studies
are summarized in Table 2.3. Overall, there is a general scepticism [128, 112] about the
sufficiency of DNS encryption for preserving users’ privacy. Therefore, the DNS protocol
privacy enhancement feature called EDNS padding [84] was introduced. Clients with EDNS
support send requests (via encrypted DNS) padded with random content to equalize the
sizes of all packets. The padding reduces the possibility of side-channel information leakage.

3IP addresses that also support traditional DNS.
4WIDE Project data repository:https://www.wide.ad.jp/index e.html.
5https://*/dns-query?*.
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Table 2.2: Comparison of encrypted DNS adoption-related research. Measurement Setup
— measurement data and its origin, Results — The main conclusions about the DoH
adoption measurement.

Author Year Protocol Measurement Setup Results

Deccio et al. [36] 2019 DoH & DoT Scan across Open Resolvers
DoH adoption ≤ 1h,
1.5h of DoT adoption.

Lu et al. [80] 2019 DoT & DoH
IPv4 scan for DoT

URL dataset for DoH
17 DoH resolvers, 1500 DoT resolvers.

Doan et al. [41] 2021 DoT Scan across Open Resolvers
DoT adoption of 1.7h

DoT accounts for 0.017% of all
connections.

Garcia et al. [A.8] 2021
DoH & DoT

& DoQ
IPv4 address space

Traffic from 3 organizations

931 DoH capable IP addresses,
Volume of DoH traffic is increasing,

DoH is relatively rare.

Garcia et al. [A.4] 2022 DoH
IPv4 address space

Two-fold increase of DoH resolvers in
one year,

Most DoH resolvers are privately
operated.

Website fingerprinting is one of the possible attacks which leverage side-channel infor-
mation. The fingerprinting attacks are built on the assumption that connection to each
website generates unique sequence packets’ sizes, which the adversary can leverage to infer
the transferred and encrypted content [113]. Traditional website fingerprinting is based on
the observation of all victims’ traffic across multiple connections. Encrypted DNS website
fingerprinting is motivated by a significant reduction in the amount of data necessary to
process by the adversary to infer visited websites.

Houser et al. [62] performed a website fingerprinting attack using DoT traffic only.
They report a high accuracy (AUC over 0.99) for detecting victim visits to a website from
a particular category—dating, insurance, gambling, and so on. More importantly, the
accuracy remains high even with the deployment of padding (AUC over 0.97).

The susceptibility of DoH against website fingerprinting was studied by Bushart et
al. [20] and Siby et al. [113]. Both approaches achieved an accuracy of over 86% in the
detection of particular website visit using DoH traffic without padding. When the EDNS
padding feature was enabled, they were still successful with more than 70% accuracy.

The author of this thesis also studied an attack similar to DoH website fingerprinting
in [A.2]. However, his research aimed to infer the content of queries inside a single DoH
packet. It was shown that HTTP1.1 is much more susceptible to fingerprinting attacks,
and we successfully inferred queried domain names with an accuracy of 90%. However, the
method proved unusable when the EDNS padding was enabled. More details are provided
in Chapter 5

The downgrade privacy attack on DoH was studied by Huang et al. [64]. They per-
formed a downgrade attack by blocking the DoH connection, forcing the browsers to roll
back to traditional unencrypted DNS without any noticeable alert in the user interface.
According to the study [64], browser vendors do not consider this attack a vulnerability
but rather a well-documented feature also described in RFC8310 [39]. Since RFC8310 is
targetting mainly DoT, we might expect similar behavior also in the case of DoT. Accord-
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ing to Huang et al. [64], the impact of a downgrade attack could be reduced by proper
notification about lost privacy; however, none of the browser vendors plan to integrate it.

Table 2.3: Comparsion of DoH privacy-related research. The study scope abbreviation
stands for: C — Correlation of encrypted and unencrypted DNS on recursive resolver, FP
— Fingerprinting attack, DG — Downgrade attack.

Author Year Protocol Scope Outcomes

Shulman et al. [112] 2014 DNS C Execution of correlation attack for domain inference.

Siby et al. [113] 2019 DoH FP
ML model for website fingerprinting.

0.908 F1 score when no defence mechanism used.

Houser et al. [62] 2019 DoT FP
ML model for queried domain name and category inference
0.99 AUC when no defence mechanism used for category

inference.

Bushart et al. [20] 2020 DoH FP
ML model for website recognition.

86.1% accuracy when no defence mechanism used.

Hynek et al. [A.2] 2020 DoH FP
ML model for queried domain name inference.

90.14% accuracy when no defence mechanism used.

Huang et al. [64] 2020 DoH DG Execution of DoH downgrade attack.

2.2.4 Security Perspective

Studies [14, 44, 19, A.3] on the impact of encrypted DNS (particularly DoH) mass deploy-
ment conclude that DNS encryption is a security problem since many existing automated
network security tools rely on plain-text DNS. Attackers can leverage the increased privacy
of encrypted DNS to hide their malicious activities. Even though DoH provides confiden-
tiality of resolution, it does not protect against subversion of DNS resolution (such as DNS
cache poisoning) [9] and allows the creation of DNS tunnels [A.6].

The security-based DNS research is concentrated mainly to DoH—DoT, and DoQ is
still nascent. We are aware of a single research work [A.6] considering DoT, which was
published by the author of this thesis. We studied security measures deployed by DoT
service providers, showing a lack of protection by the most used providers, including Google
DNS. More details are provided in Chapter 4.

The rest of encrypted DNS-related security research considers only DoH. These DoH
studies can be divided into two categories: (i)Detection of DoH presence in the network,
and (ii)Detection of malicious DoH. All encrypted DNS studies are then summarized in Ta-
ble 2.4.

2.2.4.1 Detection of DoH Presence in Network

DoH decreases visibility by automated network security tools [14]; therefore, detection of
DoH presence can be considered viable for maintaining situational awareness of network
operators and analysts. DoH traffic in the highly restricted network might indicate a
policy violation attempt or the presence of some unwanted software. Since DoH does not
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use any dedicated port number, it blends into other encrypted HTTPS traffic, making
its recognition difficult. Most DoH can be blocked by filtering 443/TCP connections to
well-known DoH providers (such as Google or Cloudflare). However, it is always possible
to choose less known DoH resolver that anyone can deploy — there is already available
open-source software capable of DoH to DNS translation. As shown in our research [A.4],
hundreds of “unknown” DoH resolvers do not appear on public DoH blocklists.

The author of this thesis is also the author of the first study [A.1] that proposed DoH
detection by its traffic characteristics. We trained several machine learning models to dis-
tinguish DoH connections from other traffic, achieving high accuracy of 99% (0.99 F1 score).
The essential traffic feature for detecting DoH is the duration of the connection, its bursti-
ness, and the number of transferred packets. However, we worked only with browser-based
DoH connections, leaving a single query DoH undetected. Detailed information about our
approach and evaluation are provided in Chapter 5. Following studies [131, 82, 49, 11, 12]
also achieved similar results, proving that browser-based DoH has distinctive properties
that can be leveraged for detection. Csikor et al. [34] expressed concern about the DoH
detection possibility, arguing that it can be misused for censorship by a downgrade attack.
Therefore, they have evaluated multiple DoH padding techniques, which modified the DoH
traffic characteristics, making them similar to regular HTTPS. One of the evaluated tech-
niques successfully degraded the performance of machine learning detectors to the level
where its deployment would be impractical.

2.2.4.2 Detection of Malicious DoH

Traditional DNS abuse detection is a well-studied topic, targeted by multiple research
works [40, 132, 13, 43, 100, 23, 111, 98]. However, none of the mentioned work can be
directly applied to DoH due to the added encryption.

The security-related research in the DoH area focuses mainly on data exfiltration. Mon-
tazeriShatoori et al. [82] analyzed the DoH tunneling approaches and the possibility of their
detection. They created a dataset called CIRA-CIC-DoHBrw-20206 and proved the usabil-
ity of time-related features to detect DoH tunnels and reported an accuracy of almost 100%
(F1 of 0.999).

Following studies [11, 107, 134, 12, 6, 114] then used the DoHBrw-2020 to prove the
possibility of malicious DoH detection with various machine learning approaches, all of
them achieving very high accuracy above 99%. However, the CIRA-CIC-DoHBrw-2020
consists of only lab-created traffic from tunneling tools that use traditional unencrypted
DNS, translated into DoH using a proxy. The dataset does not include traffic from already
DoH-capable malware samples or exfiltration tools. These weaknesses were addressed
by studies from Kwan et al. [77], and Zhan et al. [135]. Both studies focused on a more
realistic scenario of DoH tunnel detection using a DoH-capable exfiltration tool. Kwan et al.
focused on simple detection techniques using only a single feature, such as throughput and
achieved 93% accuracy by observing only outgoing throughput. Zhan et al. [135] executed

6https://www.unb.ca/cic/datasets/dohbrw-2020.html.
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DoH-based exfiltration between various locations worldwide. They tested multiple machine
learning classifiers and achieved detection accuracy above 99%.

2.3 Key Findings

This chapter presented a survey on encrypted DNS research. The main findings are:

1. Encrypted DNS can be as fast as a regular DNS.

2. There are serious concerns about EDNS privacy. It has already been exploited for
website fingerprinting.

3. The adoption of encrypted DNS is rising. The author of this thesis significantly
contributed to this research area.

4. It is possible to detect DoH using ML with very high accuracy. The author of this
thesis proposed the first ML-based DoH detector.

5. Detection of DNS tunnels is reliable and accurate despite the encryption.

The approaches and measurements performed by the author of this thesis will be further
described in the following chapters.
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Table 2.4: Comparison of research considering encrypted security. The abbreviations in
Scope column stand for D — DoH detection, E — DoH exfiltration, S — Summary. The
abbreviations in Data column stand for: C— Custom dataset, D—DoHBrw-2020 Dataset.

Author Year Protocol Scope Method Data Outcomes

Vekshin et al. [A.1] 2020 DoH D AdaBoost C

DoH detector with accuracy of
99% (0.99 F1 score)
DoH client (browser)

identification with an accuracy
of 99%.

MontazeriShatoori [82] 2020 DoH D & E Random Forest D
DoH detector with 0.99 F1 score.
DoH exfiltration detector with

0.99 F1 score.

Banadaki et al. [11] 2020 DoH D & E XGBoost D

DoH detector with claimed
100% accuracy.

DoH exfiltration detector with
claimed 100% accuracy.

Singh et al. [114] 2020 DoH E
Gradient
Boosting

D
DoH exfiltration detector with

claimed 100% accuracy.

Wu et al. [131] 2021 DoH D Autoencoder C
DoH exfiltration detector with

98% accuracy.

Casanova et al. [49] 2021 DoH D Bi-LSTM D
DoH exfiltration detector with

99% accuracy.

Csikor et al. [34] 2021 DoH D Random Forest C

DoH exfiltration detector with
0.97 F1 score, when no defence

mechanisms used.
DoH detection defence

techniques, which drops the
detector performace to unusable

level.

Kwan et al. [77] 2021 DoH E
Simple

statistical
C

They achieved 94% accuracy by
observing outgoing throughput.

Ding et al. [107] 2021 DoH E Autoencoder D
DoH exfiltration detector with

0.99 F1 score.

Behnke et al. [12] 2021 DoH D & E LightGBM D
DoH detector with 99% accuracy
DoH exfiltration detector with

claimed 100% accuracy.

Alenzi et al. [6] 2021 DoH E XGBoost D
DoH exfiltration detector with

99% accuracy.

Zebin et al. [134] 2022 DoH D & E
Balanced
Stacked

Random Forest

D

Single detector capable of
distinquishing DoH exfiltration,
DoH and non-DoH traffic with

accuracy of 99%.

Zhan et al. [135] 2022 DoH E Random Forest C
DoH exfiltration detector with

0.99 F1 score.

Melcher et al. [A.6] 2022 DoT E — —
Evaluation of DoT resolvers’
protection against covert

channels.
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Chapter 3

Encrypted DNS Adoption

In this chapter, we provide detailed information about the results of our research related
to encrypted DNS adoption. This chapter is divided into two sections. The Section 3.1
describes the methodology and results of our Internet-wide research scan among DoH
providers active on the Internet, which was published in our papers [A.8, A.4]. The Sec-
tion 3.2 then contains methodology and results of our encrypted DNS flow measurement
published in [A.8]. We conducted this research in cooperation with anti-virus company
Avast Software s.r.o. and with Stratosphere laboratory at FEL CTU.

3.1 DoH Adoption Among Service Providers

Previous works focused mainly on DoT adoption among the service providers (as described
in Section 2.2.2). Contrary to DoT, DoH does not have an assigned port and shares port
443/TCP with other HTTP services. Thus, the scan for DoH capability is much more
resource-intensive due to the necessity to perform several HTTPS requests.

Nevertheless, we performed two Internet-wide scans one year apart to study the amount
of DoH-capable IP addresses and their evolution in time. For the second scan, we also
studied the properties of each DoH-capable IP address to provide deeper insight into DoH
support on the Internet.

3.1.1 Methodology

The longitudinal analysis consists of two Internet-wide scans. The first was performed in
April 2021, and the second between January and April 2022. Each exploration consisted of
the following methodology steps: (i) create a list of well-known DoH resolvers; (ii) scan all
the hosts on the IPv4 Internet looking for servers with port 443/TCP open; (iii) discover
which of those IPs are DoH resolvers; (iv) verify that they answer DoH correctly and
compile a final list; (v) enrich the IP addresses of the discovered DoH resolvers with
information from threat intelligence services; (vi) verify the use of SNI; (vi) estimate the
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and results
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Figure 3.1: Diagram of the methodology to scan the Internet to find DoH resolvers.

number of organizations providing DoH resolution services. The steps are graphically
presented in Figure 3.1.

3.1.2 Creation of the Well-known DoH Resolvers Lists

Each list of well-known DoH resolvers was created by aggregating all the resolvers available
in public lists, reports, documents, and academic papers. The DoH resolvers were verified
using our custom Python script described in Section 3.1.2.3.

Some lists of DoH resolvers, such as the AdGuard list [2], and the curl list [35], are
publicly available on the Internet. However, those lists are not comprehensive and miss
some resolvers that appear on the different lists. Therefore, we created compound lists
each year. The list created in 2021 is called Known2021, and the list created in 2022 is
called Known2022. Both were published in public repositories [48, 69]. The original lists
used for the Known2021 and Known2022 creation are included within each list repository.
Moreover, IP addresses from Known2021 that worked in 2022 were also added to the
Known2022.

3.1.2.1 Scan of Port 443/TCP on the Internet

We scanned the entire IPv4 address space on the Internet, looking for hosts with open
port 443/TCP. It was done by dividing the IPv4 address space into 255 uniform A-class
ranges to distribute the load among several scanning nodes. Each range was scanned from
a different cloud virtual machine. The masscan tool performed the scan [50] with a fixed
rate of 2000 packets per second. Masscan was also configured to retry each IP address
three times.

The same masscan parameters were used in both 2021 and 2022.1. Moreover, in both
scans, we used the masscan feature to scan the IP addresses in random order and limit the
number of packets per second sent to service providers.

1Masscan command example: masscan -p 443 --range 20.0.0.0-29.0.0.0 --rate 2000

--retries 3.
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3.1.2.2 DoH Service Discovery

Once the list of IP addresses with open port 443/TCP was collected, we needed to find
DoH-capable ones. To automate the process, we created a DoH Nmap script [108]. Nmap
is a well-known multifunctional network scanner that implements the Nmap Script Engine
(NSE) for users to develop their scanning scripts [81]. Our DoH script checks all six different
DoH methods: HTTP/1 with GET, HTTP/1 with POST, HTTP/1 with JSON, HTTP/2
with GET, HTTP/2 with POST, and HTTP/2 with JSON. This scan was executed using
the same cloud setup as for port 443/TCP scan.

In order to speed up the process, the script only checks the HTTP status code in the
response. It does not parse the whole HTTP response or make any more DNS resolu-
tions. Therefore, false positives may occur, which we later filter in the DoH verification
stage Section 3.1.2.3. This verification stage was implemented in a separate script to keep
the Nmap script as simple and fast as possible.

The Nmap script sends six DoH requests2 with a DNS query asking for the example.com
domain. This domain is managed and recommended by IANA for testing purposes. For all
six methods, the script sends the same query to the /dns-query3 API endpoint. This end-
point is specified in RFC 8484 for the HTTP GET and HTTP POST DoH methods. Since
the JSON method is not standardized by the RFC, the endpoint of DNS JSON API might
differ between providers. However, many well-known providers, such as Cloudflare [32],
AhaDNS [3], and Quad9 [101] use the same endpoint as defined in the RFC.

The Nmap parameters used for this stage in 2021 differ from the ones used in 2022. In
2021 we used Nmap with the most aggressive timing template (parameter -T5), allowing
for a faster scan. However, this timing template is prone to packet loss, reducing the service
discovery efficiency. In 2022, we used the normal Nmap timing template (parameter -T3)
to obtain higher-quality results, minimizing packet loss.

Therefore, to make a fair comparison between the two scans, we estimated the number
of resolvers lost in 2021. We re-scanned all the 2022 DoH resolvers using both timing
parameters. Results show that the more aggressive parameters of 2021 indeed caused
packet loss and resulted in a smaller number of detected DoH resolvers. From the 4354 DoH
resolvers found with normal timing parameters, the nmap set with aggressive parameters
found between 2851 and 3213 in repeated scans. the relative efficiency, then, of the DoH
Service discovery in 2021 was between 65.5% and 73.8% compared to 2022.

3.1.2.3 DoH Resolver Verification

The list of DoH resolvers found in the previous stage was verified for correct DoH imple-
mentation to remove false positives. We implemented a Python script (available in [108]),
which tests the correct support of three DoH methods (GET, POST, and JSON) via
HTTP/1 and HTTP/2. Contrary to the Nmap DoH script, the Python script can parse

2HTTP/1-GET, HTTP/1-POST, HTTP/1-JSON, HTTP/2-GET, HTTP/2-POST, and HTTP/2-
JSON.

3DNS query endpoint example: https://1.1.1.1/dns-query?name=example.com.
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the DoH responses and check that they are valid DNS responses. This step filtered out IP
addresses that responded “HTTP 200 OK” to DoH requests, but the response did not con-
tain DNS data. The result of this stage is a list of confirmed and validated DoH resolvers
and supported DoH methods. The same verification method was performed for 2021 and
2022.

At the end of this step, and from now on, the verified list of DoH resolvers of 2021 is
called Scan2021, and the one from 2022 is called Scan2022.

3.1.2.4 IP Address Enrichment

The list of DoH resolvers was further enriched with related information about the discov-
ered IP addresses. The enrichment consists of (i) the TLS certificates, (ii) information
from the WHOIS service, (iii) information from VirusTotal threat intelligence feeds, in-
cluding downloaded samples and URLs related to malware samples associated with the
IP addresses, (iv) passive DNS data with the referred domain names for the IP, (v) DNS
server type, (vi) DNS server version identification, and (vii) information about the web
page if there was any. In addition, a suspicious flag was included in case the IP address has
a high probability of being relate to a phishing campaign according to a set of indicators
used by the Avast Web Shield feature. This set of indicators consists of keywords, domain
name structure, lexical analysis results, domain hosting information, and other indicators.

The information for (v) DNS server type and (vi) DNS server version identification
was obtained using the DoH inherited capabilities of traditional DNS. In DoH, as in DNS,
it is possible to create a CHAOS record class with TXT requests and issue it into a
version.bind query to identify which type of DNS software the server is using. Finally,
the TLS certificate data of the DoH resolvers were analyzed to detect anomalies, such as
expired or self-signed certificates. Since the IP address enrichment was implemented late
in 2021, it was applied only to the DoH resolvers in 2022.

3.1.2.5 Verification of SNI Usage

The main limitation of our DoH scan is that it may not find DoH resolvers hosted on shared
infrastructure—a single server hosting multiple services behind the same IP address. In
such cases, to be successful, the query needs to send a Server Name Indication (SNI) and
HTTP Host header, or HTTP/2 :authority header. In this case, our methodology would
incorrectly mark active DoH resolvers as non-DoH since we do not know and thus do not
provide domain names in the TLS handshakes.

To investigate the severity of this limitation, we estimated how many DoH resolvers
were not found by performing a test with the Known2022 list of well-known DoH resolvers
where domain names are present. The methodology was: (i) For each well-known DoH
resolver in the Known2022 list with an IPv4 address, get its domain name; (ii) do all the
six types of DoH queries providing the SNI, or HTTP/1, or HTTP/2 host headers; (iii) get
the IPv4 address for that domain; (iv) do all the six types of DoH queries providing only
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the IPv4 address, without any SNI or HTTP header. Using these steps, we obtained the
share of well-known DoH resolvers requiring a domain name for a successful connection.

3.1.2.6 Estimation of the Number of Organizations

To estimate the number of organizations that provide DoH resolution services in the
Scan2021 and Scan2022 lists, we used the following methodology: (i) extract the reverse
DNS of all the IPs in the Scan2021 and Scan2022 lists. (ii) extract the effective second-
level domain name for each IP and consider each unique, effective second-level domain4

of an organization. (iii) if the effective second-level domain was not available, extract the
WHOIS organization name and consider each WHOIS organization an organization. (iv) if
the WHOIS organization was not available, group the IP addresses by their /16 CIDR and
Autonomous System Number (ASN), and consider each unique group as an organization
as used by Deccio et al. [36].

3.1.3 Results

This section shows the findings that can be obtained from the Scan2021 and Scan2022
lists and a comparison of these results with the well-known lists of DoH resolvers. Then
we deeply analyze the result from the Scan2022 and inspect the IP addresses from various
aspects, including threat intelligence feeds.

3.1.3.1 Results of Creating Well-Known DoH Resolvers Lists

Regarding the creation of DoH resolver lists that are well-known by the community, Ta-
ble 3.1 shows a summary of the main differences. The total number of well-known DoH
resolvers between 2021 and 2022 increased by ∼12%. From the DoH resolvers found in
2021, only ∼67% remained active in 2022 (157 IP addresses from 234 IP addresses). In 2022
there was a ∼10% increase of IPv4 addresses, with ∼65% appearing in 2021 and 2022—
∼35% of the IPv4 addresses of well-known DoH providers disappeared in 2022. Similarly,
there was an increase of ∼13.4% of unique ASNs and a ∼14.5% increase in the number of
unique IPv6 addresses in 2022.

The number of unique domain names slightly decreased due to the different method-
ologies of their collection. Contrary to the well-known DoH resolver list of 2021, the 2022
list does not contain domain names acquired by reverse DNS queries (PTR) as discussed
in Section 3.1.2.

3.1.3.2 Results of DoH Scans

The port scan of 2021 found 41,022,969 IP addresses with port 443/TCP open on the
Internet. Of these, 930 were verified to be actual DoH resolvers. Since this scan used a set
of aggressive Nmap parameters, which reduced its efficiency, this number of DoH resolvers

4We used https://publicsuffix.org/list/ for recognition of effective second-level domain name.
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Table 3.1: Summary of well-known DoH resolvers in the Known2021 and Known2022 lists.

Known2021 Known2022 Intersection Increase

Total Unique Servers UP 234 262 157 11.9%
Total Unique IPv4 Servers 131 144 86 9.9%
Total Unique IPv6 Servers 103 118 78 14.5%
Unique Autonomous Systems 52 59 42 13.4%
Unique Domain Names 110 109 67 -0.1%

Table 3.2: Features of IP addresses of the Discovered
DoH resolvers.

Feature Scan2021 Scan2022

Total number of unique IP addresses 930 (100%) 4354 (100%)
IP addresses with domains 679 (73%) 4197 (96%)
IP addresses without domains 251 (27%) 149 (3%)
Unique SLD 171 657

Unique /16 prefixes* 115 39

Unique Autonomous System* 72 27
Estimated number of unique providers 243 – 286 684 – 696

* Number calculated only from IP addresses for which we
could not obtain a domain name.

could be underestimated. Our experiments show that the number of DoH resolvers in April
2021 was actually between 1173 and 1241.

In 2022, the port scan found a total of 36,035,492 IP addresses with port 443/TCP
open, which represents 87.84% of the IPs found during 2021. We attribute the smaller
amount of IPs to the large variability in Internet scans (packet loss, bandwidth differences,
and geolocation filters) and not to an actual decrease in the number of endpoints with port
443/TCP open. The number of verified IP addresses of DoH resolvers found during 2022
and contained in the Scan2022 list is 4354. This number is ∼4.8 times larger than the
amount of DoH resolvers of Scan2021.

Table 3.2 summarises the total number of resolvers discovered in both scans. In
Scan2022, we found four times more unique IP addresses of DoH resolvers than during
Scan2021. Even when we consider the decreased efficiency of Scan2021 during the service
discovery stage, the difference in the discovered DoH resolvers with Scan2022 is statistically
significant with a p-value < 0.01. This result is based on a standard two-sample-one-side
T-Test for the mean of a distribution [123]. Thus we observed an actual increase in the
number of public DoH resolvers.

Moreover, the number of organizations providing DoH resolution services in April 2022
is 2.5 times larger than in April 2021. Figure 3.2a shows that 474 DoH resolvers were
found in both scans. However, almost half of the verified DoH resolvers found in Scan2021
were not found in Scan2022. Since our methodology does not track the DoH resolvers
individually, we do not know if these DoH resolvers have been moved to another IP address
or ceased operations. On the other hand, the decrease in the number of unique /16 prefixes
can be explained by a slight increase in the efficiency of the domain extraction process in
2022.
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Figure 3.2: Venn diagrams of DoH resolver IP addresses distribution.

3.1.3.3 Comparison Between the Well-Known and DoH Scan Lists

The distribution of the DoH resolver IP addresses across all lists is shown in Figure 3.2b.
Reading the figure from top to bottom, we find that 40 addresses are only present in the
Known2021 list, 35 only in the Known2022 list, and 28 in both. None of these addresses
were found in the Scan2021 or Scan2022 lists. Meanwhile, five IP addresses present in the
Known2021 list were only seen in that list, and 12 IPs present in the Known2022 list were
only seen in that same list. From all IP addresses present in both well-known lists, 11 were
found only during Scan2021, 30 only during Scan2022, and 17 were found during both
scans. A total of 434 IP addresses were only found in Scan2021, 3838 were only found in
Scan2022, and 474 were present in both scans. Nevertheless, 452 IP addresses were absent
from any of the well-known lists. Most DoH resolver IP addresses did not appear on any
of the well-known lists. However, the well-known lists are evolving. There are 11 servers
that were in Scan2021, which were not present in the Known2021 list but are included in
the Known2022 list. However, only five of these servers appear to be still active on the
Scan2022 list. The rest may have been moved to another address or stopped operations.

3.1.3.4 Results of the SNI Verification

The results of the SNI verification are shown in Table 3.3. In the Known2022 list of DoH
resolvers, there are only 93 that have a domain and an IPv4 address. It can be seen
that around 30% of the well-known DoH resolvers require an SNI or HTTP header to
work successfully. It means that our Scan2021 and Scan2022 of DoH resolvers are a lower
bound, and theoretically, there could be at least 30% more DoH resolvers on the Internet.
It should also be considered that this test was performed on well-known resolvers, in which
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Table 3.3: Results of SNI verification during DoH resolvers finding.

Connected by Successful Successful %

Domain Name 93 100%
IP address 66 71%

86
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Figure 3.3: Venn diagrams of HTTP version support across DoH resolvers.

the distribution of an SNI requirement may differ from the rest of the resolvers on the
Internet.

3.1.3.5 Capabilities of the DoH Resolvers Found

Since we have queried each DoH resolver multiple times, we can analyze the methods
supported by the DoH resolvers. Figure 3.3 shows the HTTP version support. It can be
seen that most DoH resolvers on both scans support both HTTP versions. In the 2022 scan,
we observed an increased share of HTTP/2-only or HTTP/1-only resolvers with respect
to the total.

The methods supported in the DoH resolvers are shown in Figure 3.4. Most resolvers
support the RFC 8484 compliant versions. Some resolvers support only DoH-GET or only
DoH-POST, even though the RFC 8484 specifies that the resolver must implement both
methods. The IP addresses of those DoH resolvers supporting only DoH-GET are the same
in both scans. The JSON approach is supported by around one-third of all resolvers. None
of the resolvers supports the JSON approach exclusively.

26



3.1. DoH Adoption Among Service Providers

22

41

536

0

0

0

331

DoH-JSON
DoH-GET
DoH-POST

(a) DoH methods support in Scan2021.

81

41

2577

0

0

0

1655

DoH-JSON
DoH-GET
DoH-POST

(b) DoH methods support in Scan2022.

Figure 3.4: Venn diagrams of supported methods across DoH resolvers.

3.1.3.6 DNS Server Identification

Table 3.4 shows the results of the DNS software identification for all the DoH resolvers that
answered the specialized version query correctly (only 435 or 10%). However, most of them
replied with an empty string response. The Scan2022 IP addresses were also queried using
traditional unencrypted DNS over port 53/UDP. We used nslookup software to query the
Google.com address with a 10-second timeout, and from 4354 only 1176 (∼27%) resolvers
supported legacy DNS. We repeated the test three times with similar results.

3.1.3.7 Who Operates the DoH Resolvers

A total of 657 unique domain names from TLS certificates were analyzed to find out who is
offering the DoH resolution services. At first, we tried to use the domain classification ser-
vice NetStar[94]; however, only a negligible portion of domain names was classified. There-
fore, we visited each of them manually via the web browser and classified domain names
into one of 11 categories: DNS/ISP/Cloud—DNS providers, Internet service providers,

Table 3.4: DNS software identification of found DoH resolvers in Scan2022.

Name # % Name # %

a) empty 113 26.0 g) AkamaiVantioCacheServe 10 2.3
b) Unbound 88 20.2 h) Q9 8 1.8
c) PowerDNS 77 17.7 i) NominumVantioCacheServe 8 1.8
d) unknown 68 15.6 j) SDNS 1 0.2
e) Bind 48 11.0 k) I-Evolve DNS 1 0.2
f) Dnsmasq 13 3.0
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Table 3.5: Share of DoH provider categories.

Name # % Name # % Name # %

a) unknown 280 41.9 e) other 24 3.5 i) security 16 2.3
b) DNS/ISP/Cloud 145 21.7 f) finance 22 3.2 j) government 11 1.6
c) personal webpage 92 13.7 g) software-provider 18 2.6 k) privacy 10 1.5
d) industry&business 34 5.1 h) education 16 2.3

hosting providers and cloud providers; industry&business—manufactures, e-shops, and
other types of trade business; finance—banks, investment advisers, and insurance com-
panies; software-provider—companies providing software development services; educa-
tion—universities, research institutes, and libraries; security—computer security compa-
nies; government—governments and governmental organizations; privacy—companies
that focus on privacy such as VPN providers and privacy enhancement software; per-
sonal webpage—domain names hosting personal web site portfolio or personal blogs;
other—companies and institutions that did not fall into any other category; and un-
known—domain names did not host website, or that could not be categorised.

The share of each category among DoH providers is shown in Table 3.5. We were not
able to categorize most of the resolvers. The web page hosted on these resolvers could not
identify the website’s owner, or the server did not serve web pages. When the web server
responded with a web page, it usually showed a login page. Around 20% of the domain
names in the category “unknown” showed a login page of AdGuard Home DNS resolver.
Two servers were misconfigured and showed a directory structure of private project files.

For identification, we did not use information directly from the domain names. Al-
though some domain names suggested that the server is operated by an individual, we
also categorized it into the “unknown” category since we could not verify it. Nevertheless,
we could not even estimate the owner for most domain names. Sometimes they seemed
randomly generated, such as hhgasdygqwueysbjadasghds.com or kasldjflkasdjf.xyz.

The second most common category is DNS/ISP/Cloud providers, which offer DoH. A
significant share of these companies might be expected since they usually provide DNS
resolution as part of their services. The third most common category is private web pages.
Individuals operate these resolvers, and the website usually contains the portfolio of a
freelance software developer, or it was a personal blog.

3.1.3.8 TLS Certificate Analysis

We analyze the TLS certificate data of found DoH resolvers in the Scan2022. The share of
certificate authorities is written in Table 3.6. The most common certification authorities
across found resolvers are Let’s Encrypt and ZeroSSL. Most of the DoH resolvers provided
valid and trusted certificates. We found 193 (4̃.5%) IP addresses with expired certificates.
More than 57% of those expired certificates were issued by the Let’s Encrypt Certification
Authority. The expiration date of the invalid certificates was mainly 2021 and 2022 (in
81% of the cases). The certificates of five resolvers expired before the DoH standardization
in 2018.
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Table 3.6: Share of TLS certification authorities across the found DoH resolvers in
Scan2022. CA stands for Certification Authority, IIJ stands for Internet Initiative Japan
Inc., and ERDC stands for Engineer Research and Development Centre.

CA Name # % CA Name # % CA Name # %

a) Let’s Encrypt 1703 39.1 d) Blue Coat 106 2.4 g) IIJ 63 1.4
b) ZeroSSL 1654 38.0 e) Sectigo ltd. 103 2.3 h) WoTrus CA ltd. 36 0.8
c) other 545 12.5 f) Apple Inc. 100 2.3 i) ERDC 36 0.8

3.1.3.9 Threat Intelligence Results

From the 4354 IP addresses in the Scan2022 list inspected by the threat intelligence tools,
1502 are considered suspicious for phishing according to the Avast Web Shield tool. This
fact does not mean that the IPs are currently malicious but were associated with phishing
activities during the studied period 2021-2022. When we inspected URL links on the IP
addresses websites, we found 105 addresses that reference a malicious site (According to
VirusTotal). Moreover, 27 DoH-capable IP addresses were marked by VirusTotal as a
source of downloaded malware samples—they directly hosted malware.

3.1.4 Scan Result Summary

The results presented in the previous section confirm that the deployment of public DoH
resolvers is increasing. The number of well-known resolvers in 2022 increased by 12%
compared to 2021. However, only 67% of the well-known DoH resolvers in 2021 remained
active in 2022.

A similar phenomenon can be observed with Scan2021 and Scan2022, where only 9.8%
of the IPv4 addresses were found in both scans. A possible explanation for this discrepancy
is that the missing servers were for testing purposes and, as such, have been moved to a
definitive address or stopped operations. Furthermore, 88% of the DoH resolvers found in
Scan2022 were not previously seen by any list, nor Known2021, Known2022, or Scan2021.
Nevertheless, even the Scan2022 list is incomplete. Approximately 55% of the well-known
DoH resolvers in 2022 were not found in the Scan2022 performed in January 2022 due to
limitations (domains requiring SNI) or other connection errors.

Moreover, the fact that so many DoH resolvers could not be found after one year and
that the number of DoH resolvers is increasing suggests a great dynamism and casts doubts
about the effectiveness of the blocklist-based DoH resolvers filtering.

By comparing the results of the HTTP versions supported by the discovered resolvers
of the two scans, as shown in Figure 3.3, there were some changes in support of the HTTP
version. There is a decrease in the percentage of DoH resolvers that support both HTTP/1
and HTTP/2; however, we can also see an increase in HTTP/1-only resolvers, even though
the RFC does not recommend it due to performance reasons.

The list of differences in DoH resolvers can be summarised as follows:
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◦ The well-known list of 2022 compared to the well-known list of 2021: 1.22x more
IPv4, 28% intersection, 5x more organizations.

◦ DoH on Internet 2021 compared to well-known list 2021: 21x more.

◦ DoH on Internet 2022 compared to DoH on Internet 2021: 1.86x more (1.7x adjusted).

◦ DoH on Internet 2022 compared to well-known list 2021: 39.33x more.

◦ DoH on Internet 2022 compared to well-known list 2022: 32x more.

◦ 98.5% of the DoH resolvers found in Scan2022 are unknown to the community.

Only 21% of the DoH resolvers found in Scan2022 belong to DNS/ISP/cloud providers,
while 44.6% belong to unknown organizations, and 12.7% belong to personal web pages.
Almost 35% of the IP addresses found in our study show indicators related to phishing
campaigns, and 27 of 4354 IPs were a source of malware. We expect the domain resolution
service to be under constant security reviews, either if it is unencrypted through standard
DNS or encrypted using DoH or some other protocols. The occurrence of DoH resolvers’
IP addresses associated with malware or phishing shows that users’ security and privacy
could be already at risk or that these resolvers are misused for malicious purposes.

Leaving aside which of those groups can be considered trusted DoH resolvers, 77.3%
of the certificates of DoH providers in Scan2022 were given by free services such as Let’s
Encrypt, suggesting low-cost deployment of DoH resolvers. The large number of DoH
resolvers operated for private use, which are not listed in the DoH lists, allows threat
actors to hide and abuse DoH in ways described in following Chapter 4.

3.2 Amount of Encrypted DNS Traffic

Compared to the previous section, which studied DoH adoption by the service providers,
this section focuses on the encrypted DNS adoption across the users. Moreover, our scope
is not limited only to DoH, but we also study the adoption of DoT and DoQ.

First, we describe the data source for the encrypted DNS traffic volume measurement
and methodology. Then we analyze the traffic from four perspectives: (i) amount and
comparison of encrypted DNS traffic in each network, (ii) analysis of the stationarity and
trends of the traffic in each organization, (iii) ratios of the relationship between traffic,
with their stationarity.

3.2.1 Description of the Source Networks and Datasets

The encrypted DNS was measured through a collaboration between three large organi-
zations. The first organization is a European ISP provider, the second is a European
University, and the third is a global security company.
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Large European ISP Provider (Organization 1) Organization 1 is a national re-
search and education network (NREN) infrastructure. It is an ISP that interconnects
many academic institutions, research organizations, some government offices, and others.
In total, the infrastructure routes the traffic from over 500,000 users and serves as a tran-
sit network for neighboring networks as well. At the perimeter, monitoring probes are
equipped with FPGA-accelerated hardware cards to handle the high-speed traffic (over
100 Gb/s) and export extended IP flow data.

The flow export in this organization is configured with 5 minutes of active and 30
seconds of inactive timeout to produce unidirectional IPFIX [4] extended with custom
information fields. Long connections are split by the “active timeout,” and a flow record
is exported every time this timeout elapses, even though the actual connection is not
terminated yet. The connection is also terminated if no packet is observed within the
“inactive timeout” period. The collected monitoring data are represented by unidirectional
IP flows, which are different from other organizations; thus, densities and ratios were used
to compare the traffic.

More importantly, Organization 1 has an internal peering (multiple lines) with cache
servers of Google LLC services; however, these lines are not equipped with monitoring
probes. Therefore, the traffic between internal users and Google is not measured; mean-
while, the traffic between foreign users (via the perimeter) and Google is measured.

The measurement methodology in Organization 1 can be summarized as follows:

◦ DoH traffic is filtered from IP Flows extended with TLS handshake information. It
is therefore measured as the number of Client Hello packets with SNIs of well-known
DoH providers transferred via port 443/TCP. The list of the providers used for DoH
measurement is shown in Table 3.7.

◦ DNS over TLS traffic was also filtered from IP Flows extended with TLS infor-
mation, which ensures the occurrence of Client Hello packets. However, in this case,
only port filtering was used. Therefore, DoT traffic is calculated as the number of
Client Hello packets observed on port 853/TCP.

◦ DNS over QUIC traffic was counted from traditional IP Flow data. Since QUIC
obfuscates even the handshake packets by encryption, it is unfeasible for Organiza-
tion 1 to perform DPI for QUIC recognition due to the lack of available computational
power. Therefore, DoQ traffic is calculated as the number of flows observed on port
784/UDP5.

◦ DNS traffic was measured from traditional IP Flow data by filtering by the port
number of 53/UDP and 53/TCP.

◦ Total traffic was measured from traditional IP Flow data without any filtering.

5The 853/UDP port was assigned to DoQ more than one year after the measurement. During the
measurement, 784/UDP was recommended to use for DoQ.
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Table 3.7: Major DoH providers used for measurement.

IPv4-1 IPv4-2 IPv6-1 IPv6-2

dns.cloudflare.com 1.1.1.1 1.0.0.1 2606:4700:4700::1111 2606:4700:4700::1001
dns.google.com 8.8.4.4 8.8.8.8 2001:4860:4860::8888 2001:4860:4860::8844
dns.aa.net.uk 90.155.62.13 90.155.62.14 N/A N/A
dns-nyc.aaflalo.me 104.27.159.50 104.27.158.50 N/A N/A
dns.adguard.com 104.20.31.130 104.20.30.130 2a10:50c0::ad1:ff 2a10:50c0::ad2:ff
doh.cleanbrowsing.org 192.124.249.8 N/A N/A N/A
nic.cz 193.17.47.1 185.43.135.1 N/A N/A
dns.nextdns.io 104.31.88.168 104.31.89.168 2a07:a8c0::1c:7db6 2a07:a8c1::1c:7db6
dns.brahma.world 104.27.170.14 104.27.171.14 N/A N/A
dns1.dnscrypt.ca 69.165.220.221 N/A 2620:fe::fe 2620:fe::9
libredns.gr 116.202.176.26 N/A N/A N/A

Large European University (Organization 2) Organization 2 is a faculty of a pub-
lic University in Europe. The measured network contains approximately 2200 non-WiFi
desktop computers and servers.

Organization 2 uses the Zeek Security Monitor [96] to capture traffic between its network
and the Internet. The traffic is filtered so only flows started by computers within its IPv4,
and IPv6 ranges are included. There is an official authority DNS server of the organization
that works as an open resolver for the local computers and also for users from the Internet.
Thus, the traffic from this DNS server is removed to measure only the DNS communication
originating inside Organization 2.

The data from Organization 2 has the following features:

◦ Number of flows: Total flows generated by the organization. From Zeek conn.log.

◦ Number of flows to port 443/TCP: Regardless of the state. From Zeek conn.log.

◦ Number of flows TLS Established: Established TLS flows in any port. From Zeek
ssl.log

◦ Number of DoQ flows: Flows to port 784/UDP. From Zeek conn.log.

◦ Number of DoT flows: Flows to port 853/TCP. From Zeek conn.log.

◦ Number of DoH flows: Flows to well-known DoH providers from Table 3.7. From
Zeek ssl.log.

◦ Number of DNS flows: Flows going out to port 53/UDP but not to the main DNS
server of the organization. From Zeek conn.log.

◦ Number of unique source IPs: Count of unique IPv4 and IPv6 IPs. From Zeek
conn.log.
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The DNS flows were filtered to discard flows going to the official DNS server of the
organization because (i) the traffic from the local network to that server does not appear
in the capture, and (ii) we discard spurious connections from the Internet to the main DNS
server.

The DoH flows were computed by first filtering all established TLS traffic, i.e. to port
443/TCP with an established TLS session, and then by filtering the IP address of the DoH
providers shown in Table 3.7.

Global Security Company (Organization 3) Organization 3 is a large, global se-
curity company protecting hundreds of millions of endpoints. To protect clients against
security issues, the traffic produced in the endpoints is analyzed and blocked in the end-
points. The solution processes HTTP and HTTPS traffic from both IPv4 and IPv6. It uses
URL detection algorithms to analyze and protect against threats and full content filtering
to stop malware. As a result, over 300 billion URLs are checked each month.

As part of the research to identify new and emerging threats, the threat intelligence
gathered from the endpoints can be queried to produce trends and statistics, for instance,
to count the number of DoH and DNS requests.

For privacy reasons, Organization 3 can not share the absolute numbers for their mea-
surements. Therefore all the analyses are done by ratios of values, such as DoH flows per
user.

3.2.2 Amount of Encrypted DNS Traffic

The first descriptive analysis is done on the amount of traffic of every encrypted protocol
that has been seen by the three organizations. First, we show the total amounts for
Organizations 1 and 2, and then we compare the combinations of ratios of values between
all three organizations.

The DoH traffic was filtered in all organizations using the list of DoH resolvers in Ta-
ble 3.7. We selected a limited number of resolvers since Organization 1 has a technical
limit in its filtering capabilities.

The traffic of Organization 1, described in Section 3.2.1, is shown in Figure 3.5. This
Figure uses a logarithmic y axis and computes the daily values. The number of DoH flows
per day has mean=181,794 and STD=78,331. The DoT flows per day has a mean of 28,395
and a STD=10,120; being on average 6.4x times smaller than DoH. Note that the amount
of DoH traffic is larger than the amount of DoT by one order of magnitude. The number
of DoQ flows per day has a mean=6235 and a STD=20,131. The amount of DoQ traffic is
approximately 29 times smaller than DoH but still significant.

Regarding the percentages of each protocol for Organization 1, the percentage of DoT
traffic to the total flows had a mean=0.00001%, and STD=0.00007. The percentage of
DoH traffic to the total flows had a mean=0.00007% and STD=0.0004.

For the use of any encrypted DNS protocol in comparison with all DNS-related proto-
cols, Organization 1 has, on average, a 0.01% of its DNS traffic being encrypted.
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Figure 3.5: Number of flows for Organization 1 in logarithmic scale. Total flows, number
of DNS flows, DoH flows, DoQ flows, and DoT flows. From February 24th, 2021 to May
15th, 2021. Vertical lines represent weekends.

The traffic of Organization 2, described in Section 3.2.1, is shown in Figure 3.6. This
figure uses a logarithmic y axis and computes the daily values. It can be seen that the DoT
traffic is larger than the DoH traffic, which is opposite to Organization 1. We could not
reconcile this difference, and we attribute it to the potentially larger number of Android
phones in Organization 2. The amount of DoH traffic is, on average, 35 times smaller
than DoT. The amount of DoQ traffic is almost continually zero. The mean and standard
deviation values for all the measurements are shown in Table 3.8. The STD of the number
of flows is large due to the infection happening around Feb 28th and the outage happening
around May 3rd.

Figure 3.6 shows that the DoT traffic had an important decrease around mid-January
2021; that is not an anomaly but a consequence of some unknown change in the process.
The reasons for this strong decline could not be found, but as shown in Section 3.2.4, a
similar but opposite phenomenon happened in 2020. Around February 22nd, there was a
peak in the number of flows to port 443/TCP (top red line). This peak corresponds to an
infected computer6 inside the organization that scanned ports 443/TCP on the Internet.
However, it can be seen that the TLS Established traffic (yellow line) does not pose a peak
since most of the connections were not successful.

It can also be seen in Figure 3.6 that the number of unique IP addresses (both IPv4
and IPv6) is quite constant (red line in the middle), with a small standard deviation of
253. Around May 3rd, there was a small network outage that reduced the amount of traffic
collected and added some bias to the measurements.

Regarding the percentages of each protocol for Organization 2, the percentage of DoT

6The infection was verified and cured during the same day.
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Table 3.8: Mean and STD of the daily traffic volumes for Organization 2 from January
1st, 2021, to May 23rd, 2021. The traffic volume mean is calculated from flows. The mean
of IP addresses is calculated from unique addresses.

Value Mean STD

DoH Traffic 50.3 237.6
DoT Traffic 1782.4 2459.0
DoQ Traffic 0 0.1
DNS Traffic 5,524,360.2 2,535,076.7
Total Flows 15,504,487 12,290,761.5
TLS Traffic 506,300.9 222,479.8
Traffic on Port 443 2,227,208.6 10,780,265.3
IP Addresses 2971.4 253.6

Figure 3.6: Traffic per day in logarithmic scale from Organization 2 showing the total
number of flows, number of DoH flows, number of DNS flows, number of established TLS
flows, number of flows to port 443/TCP, number of DoT flows, number of DoQ flows,
number of DNS flows and amount of IP addresses. From January 1st, 2021 to May 23th,
2021. Vertical lines are on weekends.

traffic to the total flows had a mean=0.0002%, and STD=0.0003. Compared with Orga-
nization 1, the percentage of DoT traffic is 20 times larger in Organization 2 despite its
total amount being 16 times larger in Organization 1.

The ratio of DoH flows to the total flows for Organization 2 had a mean=0.000003%,
and STD=0.000007. The percentage of DoH traffic is 23x times larger in Organization 1
than in Organization 2, and its total amount is 3.6 times larger in Organization 1.

Regarding the use of any encrypted DNS protocol compared with all DNS-related pro-
tocols, Organization 2 has, on average, a 0.033% of its DNS traffic being encrypted. This
is 3 times more than Organization 1.

The traffic of Organization 3, described in Section 3.2.1, is shown as ratios of other
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values. The first comparison is on the amount of DoH flows per unit user per country per
day, normalized by the country’s population. The countries used are the top 8 countries
with the largest amount of DoH flows in total. This ratio is computed by dividing the DoH
traffic for the whole country per day by the total number of unique users sending DoH in
all countries and again dividing by the country’s population.

Figure 3.7 shows the DoH values per user per country normalized by the relative popula-
tion of the country. Population data taken from Datacommons7: Argentina 44.94M, Brazil
211M, Italy 60.36M, Mexico 127.6M, Poland 37.97M, Russia 144.4M, Spain 46.94M, US
328.2M. The normalized comparison shows that even though US and Brazil are still the top
senders, they are not by a large margin, and Italy appears like a strong DoH user, followed
by Argentina. The exact mean and standard deviation values are shown in Table 3.9.

We did not normalize the values with the number of users that Organization 3 has
in each country, but we assume the population follows the size of the countries since
Organization 3 is global.

Figure 3.7: Organization 3 DoH traffic per user per country, normalized by the relative size
of the population of each country. Vertical lines represent weekends. Population estimation
in millions taken from datacommons.org.

Stationarity of Values To better understand if the traffic is growing, decreasing, or
having any trend, we tested the stationarity of the measurements. It was tested using the
Augmented Dickey–Fuller test (ADF) [92], which is the standard test of non-stationarity
of time series. A stationary time series is one whose properties do not depend on the time
at which the series is observed [67]. Time series that show trends or seasonality are non-
stationary. The implementation used was the function adfuller() from the Python library
statsmodels.tsa.stattools.

7https://datacommons.org/.
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Table 3.9: Mean and STD for the top 8 countries by DoH count, of “DoH flow count-per-
user, per day, per capita,” in Organization 3.

Country Mean STD

Argentina 0.44 0.03
Brazil 0.69 0.1
Italy 0.49 0.05
Mexico 0.14 0.03
Poland 0.35 0.05
Russia 0.12 0.02
Spain 0.35 0.04
US 0.61 0.05

Table 3.10: Augmented Dickey-Fuller test for stationarity of values in the three organiza-
tions for the duration of their measurements in 2021. The confidence interval was set to
95%.

Org Value ADF Stat P-value Conclusion

1 DoH -2.7 5.95e-02 Non-Stationary
1 DoT -1.1 6.91e-01 Non-Stationary
1 DoQ -8.7 2.66e-14 Stationary
1 Flows -2.03 2.70e-01 Non-Stationary
1 DNS -4.3 3.01e-04 Stationary
2 DoH -11.6 1.77e-21 Stationary
2 DoT -2.2 1.80e-01 Non-Stationary
2 DoQ -12.09 2.13e-22 Stationary
2 DNS -5.3 5.32e-06 Stationary
2 Flows -4.6 1.27e-04 Stationary
2 TLS -6.6 4.42e-09 Stationary
2 Port443 -3.3 1.33e-02 Stationary
2 IPs -2.07 2.56e-01 Non-Stationary
3 DoH -0.1 9.44e-01 Non-Stationary

The results of the ADF test on the raw amount of data for the three organizations can
be seen in Table 3.10. The test shows that in Organization 1, the only Stationary value
is the DoT traffic. The rest of the values seem to have a trend or a strong seasonality.
For Organization 2, most of the values are stationary, except the number of IP addresses,
according to its linear model, which seems to be growing. Note that the DoT traffic of
Organization 2 is ignored since there were only two days with a value of 1.

In particular, for the number of IP addresses of Organization 2, the ADF test failed
to reject the null hypothesis that the series is non-stationary with confidence of 95%.
Therefore we conclude that the number of IPs is non-stationary. This result may seem
contradictory with Figure 3.6 where the line for IP addresses seems very stationary. How-
ever, a detailed study of the time series of IP addresses shows that it has a strong cycle
due to weekends. The result of non-stationarity is, therefore, correct because according
to the theory, a time series of cyclic behavior (without trends or seasonality) is stationary
only if the cycles are not of fixed length. Since the cycles have a fixed length due to the
weekends, the series is therefore non-stationary [67].
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3.2.3 Ratios Between Organizations

Ratio DoH per 1 Million Flows Given the different numbers of users in each or-
ganization, it was necessary to compute a ratio-per-user and a ratio-per-amount-of-flows
to compare the changes in the traffic. These ratios are based on the idea that, given
large enough networks, the users tend to generate a similar amount of traffic. Therefore,
computing the ratios-per-user gives an idea independent of the number of users.

The first ratio comparison done is the number of DoH flows per 1 million flows, com-
puted each day. This ratio gives an idea of how much DoH traffic is generated compared
to the total traffic but independently of the number of users seen in each organization. In-
stead of comparing with the total amount of flows, which is a varying quantity, comparing
with the DoH flows per 1 million flows is a much more stable and transferable metric.

The comparison of ratios for all three organizations is shown in Figure 3.8. Because each
organization had access to a slightly different time frame, the Figure shows an overlap only
in the last 40 days. More importantly, the comparison shows that the ratio of DoH flows
per 1 million flows for all three organizations is comparable and not with large differences.
For Organization 1 (top blue line), the mean is 15.2 (STD=8.9); for Organization 2 (bottom
red line), the mean is 3.2 (STD 7.4); and for Organization 3 (middle yellow line), the mean
is 4.25 (STD 0.2). Even though the data does not come from the same exact distribution
according to an ANOVA test, the values are a good indicator and estimator of this ratio
for other networks.

Figure 3.8: Comparison of the number of DoH flows per 1 million flows for all Organiza-
tions. The ratios were processed to discard anomalies.

The second evaluation of the ratio of DoH per 1 million flow was regarding its stationar-
ity, and it used again the Augmented Dickey–Fuller test (ADF) (described in Section 3.2.2).
The results of the test show that for Organization 1, the ratio had a statistic of -3.62, with
a p-value of 5.35e-03, and therefore using a confidence interval of 95%, we can estimate
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that it is Stationary. For Organization 2, the ratio had a statistic of -11.28, with a p-value
of 1.40e-20, and therefore using a confidence interval of 95%, we can estimate that it is
Stationary. For Organization 3, the ratio had a statistic of -4.59, with a p-value of 1.34e-04,
and therefore using a confidence interval of 95%, we can estimate that it is Stationary.

Ratio DoH per 1 Million DNS Flows The second ratio comparison done is regarding
the amount of DoH flows per 1 million DNS flows. This ratio, similar to the last one, allows
a comparison between the organizations regardless of the number of their users. In this
case, we compare DoH with DNS since both protocols are intimately related, and we may
even expect a small decrease in DNS if DoH grows. Figure 3.9 shows the ratio comparison.
Similarly, as in the previous case, even though the data does not come from the same
distribution, the numbers are comparable and with some similarity. For Organization 1,
the mean of the ratio is 86.5 (STD 56.9), and for Organization 2, the mean of the ratio is
8.88 (STD 33.5).

Figure 3.9: Comparison of the number of DoH flows per 1 million DNS flows for Organi-
zation 1, and 2. The ratios were processed to discard anomalies.

Regarding their stationarity, using the ADF test, for Organization 1, the statistic is -3.6,
with a p-value of 5.57e-03; therefore, using a confidence interval of 95% we can conclude
that its ratio is Stationary. For Organization 2, the statistic is -11.6, with a p-value of
2.43e-21; therefore, using a confidence interval of 95%, we can conclude that the ratio is
Stationary.

3.2.4 Past Trends in Encrypted DNS

Given that almost five months of traffic may not be sufficient to see larger trends, we
accessed past traffic captured by Organization 2 during 2020 using Argus sensors. This
traffic was not used for comparison with the other organizations since they did not retain
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old traffic. This traffic is a measurement of DoH, DoT, and DoQ flow protocols, as shown
in Figure 3.10. Apart from a sensor problem that broke the capture from 2020/09/09 to
2020/09/23, it can be seen that there are two clear growing trends for DoT and DoQ. In
particular, from 2020/08/01, the DoT traffic grew 3 times in a couple of days. The DoQ
traffic continued to be around 4200 requests per day from August 1st to October 10th,
after which it lowered to 1100 requests per day until November 24th. On November 25th,
it started to grow, reaching a peak on December 12th of 14,000 requests per day. Given
that the number of IPs in Organization 2 remained almost constant, it can be seen that
the peak ratio of DoT per IP address was around 5.6 requests per day.

This is a large change compared to the mean of the ratio DoH/IP address for 2021,
which was 0.016. The peak ratio of the DoT per IP in 2021 was 350x larger than the mean
value for the first five months of 2021.

Figure 3.10: Number of DoH/DoT/DoQ requests during 2020 in the traffic of Organiza-
tion 2.

3.2.5 Measurement Summary of Encrypted DNS Adoption by Users

DoH Trends DoH traffic has grown from 2020 to 2021, according to our measurements,
but in the first five months of 2021, its growing ratio has become stationary. The percentage
of DoH to total flows is larger in the ISP provider (Organization 1) than in the university
(Organization 2). These results are consistent with the previous work of Lu et al. [80]
(see Chapter 2). The difference between DoH flows per 1 million flows and DoH flows per
1 million DNS flows is significantly similar in the three organizations with a nearly constant
mean, which supports the idea that DoH has become stationary in several locations around
the world. The only apparent growth in DoH is in ISP Organization 1.
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For the global security company (Organization 3), DoH has gone from stationary to
slightly decreasing. However, when DoH was measured per user, by country, and normal-
ized by population, the amount of DoH was stable. USA and Brazil have larger DoH-per-
user-per-capita, but Italy and Argentina are close behind.

DoT Trends DoT traffic seems much larger in the ISP (Organization 2) than in the
other organizations. Showing a non-stationary growth in this organization. However, it
shows an actual decrease in Organization 2 in mid-January 2021. The absolute number of
DoT flows is larger than DoH in all the traffic captures combined.

DoQ Trend The amount of DoQ traffic was only significant in Organization 1, with a
small but stationary amount; almost zero in Organization 2, and not measured in Organi-
zation 3. It may be possible that the differences are due to artifacts in the network capture
mechanisms.

Comparison between Organizations Despite the differences in size, type of organiza-
tion, and scope, it is possible to say that the ratio of DoH traffic growth at the beginning
of 2021 is similar and almost constant for all organizations. Organization 1 is the most
different, showing a small growth in the DoH ratio for May 2021.

3.3 Key Findings

This chapter presented the research on encrypted DNS adoption by users and also by the
DNS service providers. Moreover, the properties of DoH resolvers has been discussed. The
key findings in this chapter are:

1. The amount of encrypted DNS (particularly DoH and DoT) has risen in the studied
period in two organizations.

2. DoH was mostly used in the United States of America and Brazil (from the list of
considered countries).

3. The lowest DoH usage has been measured in Russia (from the list of considered
countries).

4. The number of DoH providers has risen between 2021 and 2022 almost two times.

5. The small personally-owned DoH resolvers represent 13.7% of all DoH resolvers on
the Internet in 2022.

6. Some of the DoH resolvers IP addresses found in 2022 on the Internet took part in
malware campaigns.
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7. There are 32x more DoH resolvers on the Internet than listed in the open-source DoH
blocklists.

The results in this chapter suggest a high impact on the network security. More and
more users are starting to use DoH; thus the security monitoring tools are losing a signif-
icant amount of DNS traffic for inspection. Network intrusion detection should not rely
on plain DNS data in the future. Moreover, the increasing trend in DoH resolvers deploy-
ment might be just a reaction to increasing demand from users. Nevertheless, the poor IP
reputation and the history associated with malware campaigns or phishing campaigns are
worrying properties. Moreover, the large number of DoH resolvers operated for private use
allows threat actors to hide and abuse DoH.
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Chapter 4

Encrypted DNS Misuse

Due to the increased privacy of encrypted DNS, there is a large potential for its misuse by
threat actors. In this chapter, we thus summarize our findings about currently encrypted
DNS misuse, mainly focusing on DoH, which is by far the most misused approach. The
chapter is divided into three sections: The first Section 4.1 surveys current proof of con-
cept codes and actual malware families that leverage increased privacy of DoH and provide
DoH abuse taxonomy, which we published in [A.3]. Following Section 4.2 explores the
measures deployed by DoT providers to prevent DoT abuse. This section is based on our
work [A.6], which was awarded by the CNSM 2022 conference committee. And last Sec-
tion 4.3 describes novel abuse vectors used in the web environment that we found during
our cooperation with anti-virus company Avast Software s.r.o. The novel abuse vectors
were also published in [A.3].

4.1 Taxonomy of DoH Abuse: Tools & Malware

Since the encrypted DNS is built upon the traditional DNS, its abuse possibilities can
be derived from classical DNS protocol. According to the 2016 Cisco annual security
report [30], 91.3% of malware families use DNS, and the number is not decreasing. DNS is
primarily abused for accessing C2 infrastructure as well as data exfiltration. Incorporating
DNS into malware’s infrastructure increases its resilience against threat protection systems,
for instance, when combined with DGA [115] and Fast Flux [93] techniques. The resilience
of malware even increases when deploying these techniques via encrypted DNS due to
added encryption.

Malware creators are aware of the advantage of encryption and have started to use it to
avoid detection [125]. However, not every traditional DNS abuse technique can be applied
to encrypted DNS. For example, DNS amplification, a common DDoS attack vector, is a
widespread problem first described by Evron et al. [104]. Fortunately, DNS amplification
cannot be performed with encrypted DNS. DNS amplification attacks spoof source IP
addresses such that the DNS resolver’s response is sent to the victim’s system. Encrypted
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DNS requires establishing TCP or QUIC connection; thus, source IP address spoofing is
impossible.

In this section, we survey only DoH abuse approaches since DoH cannot be reliably
detected and thus blocked in the network, creating tempting opportunities for the threat
actors. We are unaware of any DoT and DoQ capable malware; nevertheless, DoH is already
misused in multiple malware and proof-of-concept codes. We have analyzed multiple public
sources of information and related works (such as GitHub, malware analysis research blogs,
and VirusTotal) to summarize the state of DoH abuse.

We divide known DoH abuse into three categories: (i) C2 Access and Communication,
(ii) Covert Channels, and (iii) Unaware Usage. Table 4.1 summarizes the number of DoH-
abusing code/malware samples we are aware of for each category. The following sections
describe the categories and the code/malware samples in further detail.

Table 4.1: Number of DoH-capable code samples/malware strains for each category.

Category # References

C2 Access and Communication 10 [122, 129, 54, 125, 1, 124, 78, 116],
Novel abuse scenario described in Section 4.3.2,Section 4.3.3

Covert Multipurpose Channels 4 [8, 88, 119, 45],
Novel abuse scenario described in Section 4.3.1

Unaware Usage N/A Any SW with DNS

4.1.1 C2 Access and Communication

C2 communication is one of the most common abuses of unencrypted DNS. In the en-
crypted case, most malware uses DoH only to gain access to the C2 infrastructure. C2
communication itself then continues via other protocols. An example of such usage is the
PsiXbot malware. The analysis created by the Proofpoint threat insight team [122] re-
veals that PsiXbot uses the hardcoded dns.google.com resolver and issues a JSON-based
DoH request via HTTP1.1 to resolve a hardcoded C2 domain. After receiving the C2
server IP, the communication between C2 and malware uses HTTP, which is unencrypted.
Interestingly, the HTTP payload is encrypted using the RC4 algorithm. Similarly, bank-
ing malware FluBot, which targets Android devices, also relies on DoH to access its C2
infrastructure [129].

Another case of DoH abuse was published by Huntresslabs [54] describing the JSON-
based TXT request for DKIM using DoH via the dns.google.com domain resolver. The
TXT answer contained the IP addresses of external servers for downloading another pay-
load to complete the C2 access. Both approaches exploit the fact that Google DNS is the
most popular DNS resolver [103]; thus, it is probably accessible.

Overall, we are currently aware of five approaches that gain access to the C2 infras-
tructure using DoH [122, 129, 54, 125, 1], and all of them are slight modifications of the
two mechanisms described above. All five approaches use the JSON API of DoH, and they
mostly use Google’s DNS resolver. The only exception is the Godlua malware [125], which
uses Cloudflare’s DNS resolver.
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Malware can also utilize DoH as a channel for transmitting C2 commands. The LSD

malware [124] uses DoH for accessing C2 infrastructure and downloading (via TXT records)
a bootstrap script to connect to a crypto-mining pool proxy.

The other existing proof-of-concept (PoC) source codes are not yet deployed in any
actual malware. One noteworthy PoC code is godoh [110, 78], which uses DoH via its JSON
API to tunnel C2 conversations. A similar concept called DoHC2 [116] was implemented
for the adversary simulation and red team operations software Cobalt Strike1.

4.1.2 Covert Multipurpose Channels

Some solutions for covert channels natively support DoH. The dnstt [45] is a tool ca-
pable of data exfiltration via DoH. Similarly, the DNSExfiltrator [8] can upload files to
the server via DoH with Google’s or Cloudflare’s resolvers. Ciampanu [29] reports that
DNSExfiltrator is already used by the OilRig group, which is tracked as Advanced Per-
sistent Threat group 34 (APT34). In addition, DoH tunnels are already covered in red
team seminars and conferences like 44CON [88] or BruCON [119], where an Excel sheet
downloads malware via a DoH tunnel.

Moreover, there are multiple solutions available on regular, unencrypted DNS, such
as Iodine [42], DNSCat [99], or TUNS [95]. Even though these well-known and easy-to-use
programs do not support DoH, they can extend their capabilities by running a DoH proxy.

4.1.3 Unaware Usage

For comprehensiveness, there is also a separate category, “Unaware Usage” which we have
identified during our analysis. With the large-scale deployment of DoH in popular browsers
and Operating Systems, malware DNS communication might get encrypted without the
malware’s intention or awareness of the encryption. Canonical examples are web browser
extensions that call a browser API for domain resolution, or malware might use DoH
because DoH is set as a default DNS method in the OS. As an example of the consequence,
malware becomes stealthier due to encrypted communication, even though the malware
itself is not aware of DoH.

From the network security perspective, these scenarios are the most challenging. We
are not aware of any study that analyzed the detection possibility of malicious DNS traffic
mixed with benign inside the same DoH connection. Untangling the mix is a challenging
problem.

4.2 Evaluation of DoT Tunneling

As described in the Section 4.1, DNS tunneling is one of the typical DoH abuses. However,
with the advance in traditional DNS tunnel detection, which has become very accurate
in the last years [133], we expect that service providers would deploy security measures,

1https://www.cobaltstrike.com.
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Figure 4.1: Share of DoT resolvers in CESNET network. The share was calculated from
the number of DoT connections.

including protections against DNS tunneling. Since DNS service providers can process
unencrypted DNS messages, they have the opportunity to mitigate these threats and per-
form payload-based and signature-based detection of DNS abuse, which are, according to
Wang et al. [133], the most accurate approaches. Moreover, there already are DNS servers
claiming anti-malware or family-friendly protection2. We performed the first study that
evaluated their protective properties.

Compared to related works on encrypted DNS tunneling (see Section 2.2.4.2), which
considered only DoH, we focused our experiments on DoT tunnels. In the following sec-
tions, we will describe the results of our experiments with the most popular DoT resolvers
and evaluate the usability and, thus, threat severity of DoT tunnels.

4.2.1 Experimental Methodology

The proper methodology used for the experiments is crucial in obtaining relevant results.
Therefore, we will first describe our experimental setup.

4.2.1.1 Selection of DoT Resolvers

The first step was to identify relevant DoT-capable resolvers. We decided to focus our
experiments on well-known and established DNS resolvers since they are more important
from a security perspective. We argue that if an attacker deploys the unprotected resolver,
the DoT connection3 will be considered suspicious due to an unknown IP address and it can
be then blocked by the firewall. On the contrary, the use of well-known and established
DoT resolver is much more stealthy. In the case of DoT, the main threat arises from
abusing well-known services such as Google DNS, which is used by millions of benign users.
Moreover, we wanted to select resolvers with global reach, making the results applicable
worldwide and representing global security risks related to encrypted DNS.

To select the most popular DoT resolvers, we worked with CESNET, which provides
Internet service to more than half a million users.

2https://kb.adguard.com/en/general/dns-providers.
3Compared to DoH, DoT can be recognized by its use of assigned port 853/TCP.
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The anonymized one-month traffic from CESNET captured in January 2022 was ana-
lyzed to obtain the most popular DoT resolvers. DoT traffic was selected via port filtering
since it uses port 853/TCP [63], resulting in 10 million DoT connections. Consequently,
domain names of used resolvers were then extracted from Server Name Indication exten-
sion, which is transmitted during the TLS handshake. The share of individual resolvers is
depicted in Figure 4.1. Resolvers marked as “other” were mainly local, operated either by
CESNET itself or by universities. Since these resolvers are not used globally and are not
dominant even in CESNET (only 0.4% of all DoT connections), we decided not to include
them in our analysis.

The real-world analysis of DoT traffic showed only three well-established providers
that represent 99.6% of all DoT traffic on CESNET. Since the analysis was only limited
to traffic from Czechia, we also used a list of well-known DoT resolvers maintained by
DNS privacy project4. Together, we evaluated 16 DoT resolvers listed in Table 4.2. All
of them are operated by large global organizations, and thus we assumed they have an
extensive user base. Therefore, the observed DoT communication with them usually does
not raise suspicion. We also purposely selected family-filtered versions of DNS resolvers
(when available), which we considered more protective. Moreover, the CleanBrowsing
family filter explicitly claims security protection [31].

Table 4.2: Evaluated public DoT resolvers, marked ones allowed the creation of DoT
tunnel.

Name Domain Name IP Address

Google DNS dns.google.com 8.8.8.8
CleanBrowsing family-filter-dns.cleanbrowsing.org 185.228.168.168
AliDNS dns.alidns.com 223.5.5.5
BlahDNS dot-de.blahdns.com 78.46.244.143
Bitdefender ore-dns.bitdefender.net 35.247.80.47
Cloudflare one.one.one.one 1.1.1.1
Dismail fdns2.dismail.de 159.69.114.157
Quad9 dns9.quad9.net 9.9.9.9
AppliedPrivacy dot1.applied-privacy.net 146.255.56.98
NextDNS dns.nextdns.io 178.255.154.59
Adguard dns.adguard.com 94.140.14.14
Adguard-F dns-family.adguard.com 94.140.15.16
Bitdefender fra-dns.bitdefender.net 35.242.226.78
Digitalcourage dns3.digitalcourage.de 5.9.164.112
Bitdefender ore-dns.bitdefender.net 35.247.80.47
dns.sb dns.sb 185.222.222.222

4.2.1.2 Experimental Environment

Contrary to DoH, we are unaware of any malware or exfiltration tool that natively supports
DoT. It does not mean that DoT cannot be misused—there are DNS to DoT translation
proxies, which are transparent for connected devices, leaving them unaware of encryption.

4https://dnsprivacy.org/public resolvers/.
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Any software (including malware) which does not support DoT natively can then take
advantage of encryption when the proxy is deployed (e.g., on a router).

Our testing setup is depicted in Figure 4.2 and follows the unaware usage scenario
(from Section 4.1.3) with the DoT proxy deployed on the edge router of a small LAN. There
are three main entities: (i) Router with DoT Proxy, (ii) DNS Tunnel Target, (iii) Rogue
User performing DNS tunneling, and (iv) Benign Users.

DNS 

Tunnel

DNS
DoT with 


DNS tunnel and 

benign DNS

Benign Users

Rogue User
performing DNS

Tunneling

Router with

DoT proxy

DoT
resolver

DNS Tunnel
Target

DNS

DNS

DNS 
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Figure 4.2: DoT tunnel measurement setup.

Router with DoT Proxy We used a router with OpenWrt5 operating system. Since
OpenWrt is Linux-based, we could install a third-party DoT proxy. Moreover, we set the
router as a primary DNS resolver for connected clients.

We have installed Stubby6 DoT proxy into the router and used it throughout all our
experiments. It was operated with default configuration settings. We provided only the
domain name of the used resolver as the configuration entry.

DNS Tunnel Target Represents the server side of the DNS tunnel. We registered
the domain name using freenom free domain name provider7. We rented Virtual Private
Server (VPS) with a 1Gbps connection and set it as an authoritative DNS server for the
registered domain. On the VPS, we executed the server side of the DNS tunnel. During
our experiments, we used Iodine8 and DNS2TCP9 for tunneling.

Iodine is a well-known DNS tunneling tool. The tunnel is created on the data-link layer.
Thus IP headers are also transmitted. During its start-up, Iodine created a specialized
network interface that any application can use.

DNS2TCP performs tunneling on the TCP layer. Thus IP headers are not transmit-
ted. The developers claim that contrary to IP-over-DNS approaches (such as Iodine), the
lack of IP headers increases throughput. However, it cannot tunnel arbitrary traffic, and
the “resource” (application listening on the tunnels server-side) needs to be specified. We

5We used TP-Link Archer AC1750 with https://openwrt.org.
6https://dnsprivacy.org/dns privacy daemon - stubby/.
7https://www.freenom.com.
8https://github.com/yarrick/iodine
9https://github.com/alex-sector/dns2tcp.
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have used SSH as a resource for all of our experiments. Unlike other supported resources
such as SMTP or POP3, SSH allowed us to tunnel traffic easily with various speeds and
characteristics.

Rogue User Performing DNS Tunneling This entity represents the client side of the
DNS tunnel. The DNS tunneling tools were executed on a Linux-based machine connected
via WiFi to the Router with DoT proxy. Moreover, the tunneling tool was set to use a
Stubby DNS proxy running on the router.

Even though Iodine is highly configurable, it also supports autodetection and selects
the most suitable configuration based on the used resolver. During our measurement,
we deployed Iodine in a default configuration; thus, the optimal parameters were chosen
automatically.

DNS2TCP does not support autodetection, nor is it as configurable as Iodine. It allows
configuration of only resolver (we used Router with DoT proxy), “resource” application
(we used SSH), and timeout interval. The timeout interval (a maximum server’s answer
delay) was set to 3 seconds since it is the default value; thus, we assumed it is commonly
used.

Benign Users This entity represents actual devices using the Internet and creating
DNS requests to make background noise. These devices were two laptops, desktops, and
four Smart Phones actively used by the users. Moreover, background traffic made the
experiments more realistic, considering our setup with the DoT proxy deployed on the
router.

Definition of Measured Performance Characteristics We selected four perfor-
mance characteristics: (i) Tunnel stability, (ii) Packet Loss, (iii) Packet Delay, and (iv)
Throughput.

Tunnel Stability It represents the time interval for which the tunnel stayed connected
and was ready for use. During the measurement, we did not transfer any large volumes
of data in the tunnel; instead, we only used the tunnel for C2-like communication sending
short packets with only 4B of data. The client sent a message every ten seconds, which
was then immediately followed by the server’s response. This measurement verified the
feasibility of C2 communication. When the connection remained active for more than
360minutes, we stopped the experiment.

Packet Loss It represents the number of packets lost in the tunnel. Since Iodine creates
a tunnel on the IP layer, we could use the Ping program to measure packet loss. The
packet loss was not measured for DNS2TCP since it creates a reliable transport layer.
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Packet Delay It represents the Round Trip Time (RTT) of a packet transmitted via the
tunnel. Similarly, as in Packet Loss, we used the Ping program to obtain these character-
istics for the Iodine-based tunnel. For DNS2TCP we used TCP version of Ping10. Since
DNS2TCP used SSH as a resource, we used port tunneling inside SSH for this measure-
ment.

Throughput It represents the achieved throughput of the tunnel. We measured it by
sending a large file (∼1GB) via SSH using the scp program. Since some tunnels did not
perform well and we could not transmit the whole file in a reasonable time, we always
left the transmission active for at least 30minutes. The resulting throughput was then
calculated from the successfully transmitted amount of data. This measurement verified
the feasibility of data exfiltration.

4.2.1.3 Experiments Execution

Altogether, the experiments took place between January 2022 and March 2022. Each
resolver was tested at least three times during the day. All experiments were conducted
from a single location in Prague, Czech Republic. The router was connected to the network
via 30Mbps connection, which is, according to report [21], an average connection speed in
the country. Nevertheless, we assume that location and connection speed have negligible
impacts on the results since the tested providers have multiple servers around the world
to improve their performance.

The experiment procedure consisted of the following steps: (i) Startup of DNS tunnel
server, (ii) Configuration of Stubby to use evaluated resolver, (iii) Startup of DNS tunnel
client on separate Machine. (iv) Execution of performance measurement described in
Section 4.2.1.2, and finally, (v) gathering the results and their interpretation.

The workflow remained unchanged for all selected DoT resolvers to maintain the com-
parability of results.

4.2.2 Results

We could not create a DoT tunnel through most of the selected well-known resolvers listed
in Table 4.2. The tunnel was successfully created only via seven out of 16 evaluated DoT
resolvers, which are written with the measured performance characteristics in Table 4.3.

Generally, Iodine was more successful in connections and outperformed DNS2TCP in all
measured characteristics. Dismail offered the best throughput from all measured resolvers
while being very stable. The C2-like communication was uninterrupted for the whole
360minutes till we ended the stability experiment. Even though we achieved the highest
throughput with Iodine, the DNS2TCP tunnel could not be established at all.

Google DNS also performed very well, with high throughput and high stability. The
average RTT was more than 30ms smaller than Dismal. Moreover, Google DNS is the
only resolver where we successfully created a tunnel with the DNS2TCP.

10tcping – https://github.com/cloverstd/tcping.
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Table 4.3: DoT tunnels performance results for resolvers, for which the tunnel was suc-
cessfully established. The abbreviation in the column titles stands for: T. — Tool, E. —
Tunnel was successfully established, RTT-min — minimal Round Trip Time, RTT-avg —
average Round Trip Time, RTT-max — maximal Round Trip Time, RTT-std — Standard
Deviation of Round Trip Times, and Through. — Throughput. The Tools abbreviations
are: I — iodine, D — dns2tcp.

T. E. Stability RTT-min RTT-avg RTT-max RTT-std Loss Throug.

Google DNS I Y >360min 27.9ms 51.4ms 3593.1ms 147.4ms 2.50% 176Kbps
D Y 120 min 28.7ms 213.4ms 17 365.2ms 986.4ms —– 148Kbps

CleanBrowsing I Y >360min 50.6ms 1103.8ms 10 821.6ms 1489.8ms 16.80% 7.2Kbps
D N —– —– —– —– —– —– —–

AliDNS I Y >360min 161ms 211ms 8637.6ms 1192ms 57.60% 0.8Kbps
D N —– —– —– —– —– —– —–

BlahDNS I Y 50 min 70.7ms 618ms 5126.6ms 1006.5ms 23.60% 8Kbps
D N —– —– —– —– —– —– —–

Dismail I Y >360min 37.4ms 82ms 3345ms 258.6ms 2.60% 232Kbps
D N —– —– —– —– —– —– —–

AppliedPrivacy I Y 4 min 531ms 1241.6ms 7161.4ms 1198.4ms 9.20% —–
D N —– —– —– —– —– —– —–

Quad9 I Y 2 min —– —– —– —– —– —–
D N —– —– —– —– —– —– —–

The family-friendly and malware protection CleanBrowsing was also very stable when
used with C2-like communication. However, the achieved throughput of only 7.2Kbps
limits the possibility for exfiltration. Similar performance was also measured via AliDNS
or BlahDNS.

The tunnel created via AppliedPrivacy was very unstable. We could barely measure
the RTT characteristics and packet loss with the Iodine. The throughput could not be
measured at all because the tunnel collapsed when we attempted to send a large file.
With Quad9, we could only measure the tunnel stability with C2-like communication. The
tunnel immediately collapsed when we tried to perform RTT measurements with the ping
program.

4.2.3 Response from DoT Providers

To validate our results, we emailed the tested providers, informing them about the results
and asking them if they perform any DNS tunnel prevention. After one month, we got
a reply only from Applied Privacy, CleanBrowsing, Quad9, and Google — through all of
them, we were able to create a DoT tunnel. Unfortunately, we did not receive any reply
from other service providers; thus, we could not check our results completely.

Google asked us for patience until they obtain the technical department’s answer, but
they did not send it even after one month of waiting. The reaction from other providers
was always almost the same: They do not perform any DNS tunnel protection. Instead,
they confirmed that DNS throttling is deployed to prevent the overloading of their services,
resulting in reduced performance. However, our results show that even the throttled DNS
tunnel could be leveraged for C2 communication.
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4.2.4 Discussion

We could not establish a connection with most of the evaluated resolvers; thus, we can
assume they have deployed protection against DNS tunneling. However, seven out of 16
tested resolvers can be misused for DNS tunneling, even when performed without stealth-
iness using Iodine. The DNS2TCP success in tunnel creation was much lower. We are not
sure why the Iodine outperformed DNS2TCP in all measured characteristics. We assume
that Iodine’s success is caused by its autodetection feature, which tailors the configuration
settings (such as maximal request size and type of request) for each resolver. However,
this hypothesis needs to be further investigated, which is out of the scope of this work.

Compared to other works measuring tunnel performance over traditional DNS, DoT
tunnels perform much worse. The highest observed value (232Kbps via BlahDNS) achieved
around 50% of throughput measured by Merlo et al. [87]. We assume that the performance
drop is caused by the overhead created by the TCP connection since the DNS exfiltration
tools are not designed for DNS via a reliable channel.

Apart from Dismail and Google DNS, most of the other resolvers performed DNS traf-
fic throughput throttling, making the tunnel slower (around 8Kbps); thus, less usable
for sending large volumes of data. However, for five resolvers, the tunnel was very sta-
ble, and it could be used for low-throughput traffic such as C2 communication, including
CleanBrowsing, which claims anti-malware protection.

Unfortunately, the tunnel created via Google DNS, the most used resolver on the CES-
NET network (see Section 4.2.1.1), showed very good performance and could be misused
for malicious purposes such as exfiltration or long-lasting C2 channels.

Even though our experiments considered only DoT, we might expect that similar results
would also be obtained via DoH and DoQ. We can see that popular resolvers (such as
AdGuard or Cloudflare) perform DNS tunnel protection, but the measures deployed by
Google DNS (if any) are absolutely insufficient. Given that the Google DNS market share
(∼80% on CESNET network), we can conclude that encrypted DNS tunneling must be
considered a serious threat till at least all well-known and established providers would
deploy protections11.

4.3 Novel DoH Abuse Scenarios

In the survey of DoH abuse in Section 4.1, we summarized known DoH abuse vectors
currently used on the Internet. Nevertheless, we also want to evaluate any new threat
scenarios considering DoH. Therefore, we partnered with Avast Software, a large global
security company protecting hundreds of millions of endpoints. During the cooperation,
we had access to a continuous feed of suspicious software, malware, and malicious website
samples analyzed in a sandbox environment. The automated analysis pipeline allowed
the selection of particular malware samples for further inspection. We filtered malicious
samples performing DoH based on port (443/TCP) and IP addresses of known Google and

11Small and untrusted providers can be blocked in the networks.
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Cloudflare DoH resolvers which are written in Table 4.4. We decompiled or deobfuscated
the source codes of found DoH-capable samples and manually analyzed them, looking
for functions processing DoH requests and responses. In some web-based samples, we
spotted unconventional and unpublished use of DoH by service providers to avoid DNS-
based service blocking.

Table 4.4: Used IP addresses for recognition of DoH connection during our finding of DoH-
capable malicious software samples.

Resolver IPv4 IPv6

Cloudflare

1.1.1.1,1.0.0.1,
104.16.248.248,
104.16.248.249,
104.16.249.248,
104.16.249.249

2606:4700:4700::1111,
2606:4700:4700::1001

Google 8.8.8.8,8.8.4.4
2001:4860:4860::8888,
2001:4860:4860::8844

User

Req: unblocked.do

Resp: unblocked.do DNS
server

Acces to unblocked domain
Req: unblocked.do

Resp: unblocked.do

ISP's
MIDDLEBOX

User

Req: blocked.do

DNS
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ISP's
MIDDLEBOX

Block List
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Figure 4.3: Scheme of DNS tampering procedure.

Many countries perform website censorship and blocking according to local laws. It is a
common practice because our modern society considers many types of content as harmful
and unacceptable. The prevention of access to some Internet resources helps to fight against
child pornography, copyright infringement, and many more. There are multiple ways of
implementing web content blocking [53, 37]. However, many countries implement it using
DNS Tampering, i.e., a spoofed DNS answer can deny the existence of the domain name
or redirect users to some block page (that can be operated by the government) with the
reason of the website closure [37]. The DNS tampering procedure is depicted in Figure 4.3.
Naturally, DoH effectively bypasses this blocking mechanism, which can be leveraged by
service providers leaving users unaware of their illegal activity.
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The rise of DoH support enabled malware authors to access an easy-to-use JSON-based
DNS API through the browsers’ JavaScript interpreter that can be leveraged in browser-
based exploits. Specifically, multiple service providers (C2 services) were observed to take
advantage of encryption and easy-to-use DNS-based C2 communication channels. All of
them abuse DoH to avoid website censorship and blocking.

None of the previous studies described DoH abuse by service providers on the web,
which is also a critical field related to computer security and network monitoring. Even
though some of the identified threats are known or similar to traditional DNS threats, they
appeared recently in the DoH domain. In this section, we present a real-world observation
of their transfer into the encrypted domain, which proves an adoption of DoH abuse in
web-based threats. The observations are organized in three abuse scenarios: (i) Client
Modification to Access Blocked Websites, (ii) DoH in Website Redirections, and (iii) DoH
Requests in Advertisements and Spam Campaigns.

4.3.1 Abuse Scenario 1: Client Modification to Access Blocked Web-
sites

The abuse scenario assumes two entities — client and server. The client wants
to communicate with the server; however, direct communication is not allowed,
and its prevention is implemented by DNS tampering on the local DNS recursor.
The client is modified to use DoH to bypass blocking mechanisms and obtain
the working server’s IP address that allows direct communication.

Even though there is almost universal support of DoH in web browsers, other types of
programs still lack the support. The most straightforward modification is installing a DoH
proxy that translates all local DNS requests into DoH. However, it requires much effort
from the users, and we have already observed more user-friendly client modifications that
use DoH only for accessing the blocked websites.

A real-world example is sdarot.tv, an Israeli-based website that provides video con-
tent. Due to the copyright violation, it was blocked by the Israeli government, and all local
Internet service providers have to prevent access by DNS Tampering [106]. However, the
website is still flourishing due to the multiple non-browser clients and their modifications.
Sdarot provides a plugin written in python for the home theater software Kodi, and its
short and simplified code snipped can be found below in Listings 4.1. The plugin uses
base64 encoded domain names in the translation process. After the translation, all URLs
contain IP addresses directly to avoid DNS resolvers of the operating system and ISP.

Sdarot also provides Android and Android TV applications that do not use DoH. How-
ever, the applications bypass the system settings and use the Google DNS servers instead
of the local DNS recursor. In addition, we analyzed the decompiled Java code, and it
indeed contained code for DoH JSON-based queries. Thus, the DoH support might be
enrolled soon because the simple use of some foreign DNS resolvers is already insufficient
in some states [7].
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Listing 4.1: DoH usage example in Sdarot Kodi plugin.

#b64decode domain

API = b64decode(’aHR0 ...90 LnR2’)

def getIP (domain ):

#b64 encoded domain:

#https ://dns.google.com/resolve/type=A&name=

URL=’aHR0 ...25 hbWU9’

req = http.get(b64decode(URL)+ domain );

return json.parse(req)[IP]

def create_url(sid , season , episode ):

ipaddr = getIP(API);

final_url = "http ://"+ipaddr+"/"+sid+"/"\

+season+"/"+episode

return final_url

The Abuse Scenario 1 falls into a Covert Multipurpose Channels category of DoH abuse
described in Section 4.1.2.

4.3.2 Abuse Scenario 2: DoH in Website Redirections

The abuse scenario assumes three entities – client, server, and C2 domain. The
client is redirected to the server or performs willing access. On the first visit,
the server modifies the client’s browser by installing a redirection mechanism.
Later, the server is identified as malicious, and the DNS tampering technique
prevents its access. Due to the installed modification, the browser recognizes the
prevention access mechanism and performs a DoH request to the C2 domain.
The response contains a functional landing domain of the server that allows its
access.

During the monitoring of DoH usage in our laboratory, we found DoH requests created
in web-based JavaScript by multiple websites. The websites use DoH for redirection to
illegal online casinos targeting Russian citizens.

Since 2009, the gambling business has been banned in the Russian Federation, with
a few gambling zones exceptions. As a result, all online casinos (even non-Russian) are
prohibited in Russia. Even advertisement to gambling websites is considered illegal. The
online gambling organizers risk a fine of up to 14,000USD and website closure by the
government. Despite the severe penalties, Russia’s illegal gambling market is worth about
7.9 billion USD per year [83].

Online casinos are fighting the gambling ban by changing IP addresses and registering
multiple domains. We have used the Security Trails Passive DNS system12 to monitor a

12A system, which records the history of resolved domains and their IP addresses. URL: https:
//securitytrails.com.
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domain name of a selected online casino IP address. As can be seen in Figure 4.4, more
than 100 domain names point to the same website according to the Passive DNS data.

The rapid domain name-changing strategy is almost identical to malware C2 infras-
tructure, which uses DGA. However, the casinos depend on users who are unwilling to test
the connection to hundreds of domains. Therefore, there is a redirection infrastructure in
place that ensures landing on the functional unblocked casino website.

Figure 4.4: Number of unique domains pointing to the single IP address of the selected
website with DoH redirection script according to Security Trails Passive DNS data.

In all observed JavaScript code samples, which performed DoH requests, the redirection
occurs in the web browsers as a JavaScript Service Worker — an API that allows websites
to install JavaScript code into the browser. It is like a browser plugin that can run only
on domains (and all its subdomains) that installed it. When the user accesses the page,
the service worker is initiated and runs in the background, separate from other websites’
JavaScript code. Even though the service worker API is limited, it can register callbacks
for events such as “website fetch” and modify the content similarly as a proxy.13

The redirector service worker is installed in the browser when the user enters the casino
website. Next time, when the user wants to access, the redirector activates. In all analyzed
websites, the redirector issued a DoH TXT request to a C2 domain and got a base64
encoded JSON object. The format of the TXT answer is shown in Listings 4.2. The array
contains a redirection enable flag, body substring, and the functional landing domain.
The body substring distinguishes between a government block page and the actual casino
webpage. It is usually a short identifier that occurs in the body tag of the webpage.

The service worker scripts in the four analyzed websites were very similar, with minor
differences in function names or used API, showing that all of them were implemented sep-
arately. The example of the observed redirection script is shown in Listings 4.3. According
to the instruction from C2, the service worker checks whether the domain is blocked. If not,
the user proceeds to the webpage. In the other case, the user is redirected via JavaScript

13https://developer.mozilla.org/en-US/docs/Web/API/Service Worker API.
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Listing 4.2: The example of the decoded TXT answer. 1 – is the enable flag, 2 – identifier
for distinguishing between block pages and the correct output, 3 – redirection domain.

{
"1":1,

"2":"VDuXmwmNZ",

"3":"https :// somedomain.com"

}

to the landing domain, and a new JavaScript Service Worker is installed. By this mecha-
nism, users can remember only one URL (the first one they have visited) and are always
redirected to the functional unblocked website. The whole redirection scheme is depicted
in Figure 4.5.
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Redirection Script Installation

User
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evil-1.do
(blocked)

Access to evil-1.do
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First visit: Javascript Service worker installation

Repeated visit: Blocked domain case
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2

Figure 4.5: Redirection scheme.

We have analyzed selected C2 responses in time with the Security Trails Passive DNS
System14. All unique domain names that appeared in the responses between September
29th and November 20th in 2020 are shown in Figure 4.6. Overall, in the observed period,
the landing domain name changed 35 times. It can be noticed that some of the landing
domain names are very similar and differs in only a single character, which is sufficient for
bypassing DNS tampering.

We have found eight different C2 domains that redirect to more than 80 websites dur-
ing our research. All of them targeted the Russian market and were related to gambling.

14https://securitytrails.com.
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Listing 4.3: DoH redirector in service worker.

//response arg. contains the server response

//for previous GET query

function onWebsiteFetch(response){
[enabled, check_string, domain] = get_domain();

if(enabled and !response.contains(check_string))

redirect(domain);

else

return response;

}
function get_domain() {

//b64encoded DoH query to C2 domain

resp = fetch(b64decode("aHR...bWU="))

return json.parse(b64decode(resp)).txtContent

}

Figure 4.6: Responded landing domains in time for selected C2 between September 29th
and November 20th in 2020. For data extraction we used Security Trails Passive DNS
System.

However, the presented approach has enormous potential in more fields other than gam-
bling. Besides, the presented DoH-based redirection can potentially substitute the domain
fronting [46] (a technique for censorship bypass utilizing infrastructure with multiple ser-
vices), which is already banned by large CDN providers [72].

The Abuse Scenario 2 falls into a C2 Access and Communication category of DoH abuse
described in Section 4.1.1, and its mass deployment can enable a hidden web (like the dark
web). Websites could change their domains and IP addresses more rapidly (in a matter
of minutes) without reduced comfort for users. The only problem is the first visit, which
can be performed via advertising (as described) or other services that would query the C2
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domain and provide the first redirect. The state authorities are almost defenseless against
this redirection principle. The C2 domain might seem like a candidate for a weak spot
because its inaccessibility would cause the collapse of the whole redirection infrastructure.
However, when the C2 domain is accessed solely by DoH, the access can be prevented
only by the DoH resolver or by the TLD15 operator. Even though the DoH provider can
technically prevent access to a particular domain, users can always use a different one
that does not perform blocking. TLD operators can perform forced domain shut-down.
However, it is usually complicated to achieve.

4.3.3 Abuse Scenario 3: DoH Requests in Advertisements and Spam
Campaigns

The abuse scenario assumes two entities – client and C2 domain. The client
unwillingly initiates one or multiple DoH requests to the C2 domain – the re-
sponse contains a JavaScript code or pieces of code. The client then executes
the code and performs actions commanded by the C2 server.

This scenario is observed mainly in redirection use cases, often triggered by illegal adver-
tisements. Its usage was detected in e-mail spam campaigns; however, the same scripts can
be found even on websites. All of the detected scripts utilized the same principle as in Sec-
tion 4.3.2—C2 domain queried via the JSON DoH API of Google resolver; therefore, it falls
into a C2 Access and Communication category of DoH abuse described in Section 4.1.1.
However, contrary to Scenario 2, these scripts did not use JavaScript Service Worker API;
instead, they fetched JavaScript source code from the C2 channel and executed it.

The samples we observed on websites received redirection JavaScript code to illegally
operated web pages. The C2 communication was usually fetched right after the load or
by some action, such as a button click. In the case of e-mail spam campaigns, an HTML
document is delivered as an attachment (or as a MIME16 part) and requires the mail client
to open it. The pseudocode of the malicious scripts is shown in Listings 4.4. At first,
the DoH TXT query to the attacker’s C2 domain is performed. The attacker domain is
usually encoded as a base64 string and hardcoded in the script. The DoH request can be
executed directly within scripts. We also observed the utilization of public API (such as
Google OAuth API), in which case the malicious code is passed as a callback function.

In the observed cases, the answer always contained the redirection script with a landing
URL wrapped inside a code utilizing JavaScript window API. The JavaScript interpreter
then executed the code and performed the redirection. Even though we observed its use
only in redirection use cases, passing a JavaScript code from the C2 domain gives the
attacker immense flexibility to run almost any command. Such practice could make phish-
ing and cross-site scripting attacks more resistant because exploiting public DoH resolvers

15Top Level Domain.
16Multipurpose Internet Mail Extensions.
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Listing 4.4: DoH redirector in advertisements.

//base64 encoded query to C2 domain

query = b64decode(’aHR0...90LnR2’)

function redirector(){
// b64encoded DoH query to C2 domain

resp = fetch(query)

command = json.parse(resp).txtContent

// eval(window.location.redirect(https://identification.some.domain))

eval(command)

}
//The redirector can be directly called

redirector();

//It can utilize some API

//Example with googles OAuth API

<script src="https://accounts.google.com/o/oauth/revoke?callback=redirector()">

</script>

//Or it can be triggerd by users’ action

<button onClick="redirector()"></button>

Table 4.5: Summary of presented abuse scenarios characteristics. The abbreviation of the
abuse category stands for: CMC — Covert Multipurpose Channels (Section 4.1.2), C2 —
C2 Access and Communication (Section 4.1.1).

Scenario 1 Scenario 2 Scenario 3

Requires specialized client ✓
DoH as hidden channel to bypass DNS ✓ ✓ ✓
DoH as C2 channel ✓ ✓
Getting malicious code from C2 ✓
Targets only Web Browsers ✓
Website closure detection ✓
Abuse category CMC C2 C2

hides them from the network traffic analysis systems, which could trigger an alarm if the
JavaScript code was downloaded directly by HTTPS from a potentially suspicious domain.

Summary of Described Abuse Scenarios

The described scenarios represent working examples of mechanisms built above DoH that
(i) have been observed by our malware laboratory, (ii) were not previously described in
academic study, and (iii) can be very easily used for any malicious activity. Each sce-
nario misuses DoH in a different way, Scenario 1 uses DoH to bypass restricted DNS,
and Scenario 2 detects DNS tampering and website closure and then performs redirection.
Moreover, Scenario 2 uses DoH as a C2 to recognize valid web pages from the block page.
Scenario 3 also uses DoH as a C2; however, it uses DoH for obtaining malicious code. The
differences between scenarios are also shown in Table 4.5.
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4.4 Key Findings

This chapter described the existing abuse possibilities of DoH. The key findings can be
summarized as:

1. There are multiple malware families leveraging DoH to hide their activity. They use
it for C2 or for Covert Channels.

2. DoH created an easy-to-use JSON API that can be leveraged for C2 and Covert
Channel from a web browser’s JavaScript. Such practice has been observed on the
Internet to avoid lawful blocking.

3. Some large DoT service providers (Google DNS, AliDNS, CleanBrowsing and more)
do not block malicious DNS activity despite their content inspection possibility.

The fact that DoH and possibly other encrypted DNS approaches are already leveraged
for C2 access has a significant impact on the security. Moreover, we found out that even
well-established DoT providers that have access to unencrypted data do not protect the
users. This chapter showed that encrypted DNS can be easily misused and thus should
not be neglected by network administrators and security experts.
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Chapter 5

DoH Detection and Fingerprinting
Using Side-Channel Analysis

Since encrypted traffic, in general, is often challenged by statistical side-channel analy-
sis [127] to reveal various properties about the transmitted content, we also applied these
techniques to encrypted DNS, particularly DoH. As in other encrypted traffic research,
side-channel analysis forms a feasible approach that would mitigate the reduced visibility
and enable network IDSs to maintain security.

In Section 5.1 we describe our approach to DNS fingerprinting, which we published
in [A.2] and got an award from the conference committee. Section 5.2 presents results
published in [A.1], the first DoH recognition approach by traffic shape. Nevertheless,
DoH recognition still has severe limitations regardless of its reliability. A possible solution
for reliable DoH recognition, which is based on our approach published in [A.7], is then
described in Section 5.3.

5.1 DoH Fingerprinting

Previous works studied website fingerprinting by observing just DoH or DoT connections,
which showed great accuracy in the inference of visited websites. However, we were in-
terested in an even higher level of detail from the DoH connections, such as mapping
individual domains requested in encrypted channel. We thus analyzed the DoH requests
and responses to infer the payload of each request.

In this section, we describe the dataset, methodology, and results of our DoH query
fingerprinting approach that challenged the privacy properties of DoH. The accuracy of the
DoH query fingerprinting is studied across different HTTP protocol versions and multiple
browsers.
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5.1.1 Datasets

Since no previous research attempted to fingerprint individual DoH queries, there was not
any dataset, that would be usable for our tasks. Therefore, we created a novel dataset and
made it publicly available on the Zenodo platform [68].

DoH is currently supported in almost all commonly used web browsers [91, 10]. How-
ever, in the dataset creation and further analysis, we decided to use just Mozilla Firefox
and Google Chrome browser since they are used by the majority of users [118]. We also
evaluated several Chrome-based browsers, such as Microsoft Edge and Opera, but the con-
nections were the same as in the case of Chrome. Therefore, Firefox and Chrome are the
two main representatives of DoH implementations in web browsers.

Additionally, we evaluated the traffic from multiple DNS providers (Google, Cloudflare,
and NextDNS). However, we did not observe any significant differences in terms of packet
sizes and padding. Therefore, the further text explains our experiments and analysis using
only one resolver—Cloudflare (which is the default choice in multiple browsers).

To create the DoH communication datasets, we used several virtual machines with
Windows and GNU/Linux operating systems. A simplified scheme is shown in Figure 5.1.
We captured the traffic from the DoH-enabled web browsers using tcpdump [121]. To
automate the process of traffic generation, we installed Google Chrome and Mozilla Firefox
into separate virtual machines and controlled them with the Selenium framework [109]
(Table 5.1 shows detailed information about used browsers and environments). Selenium
simulates a user’s browsing according to the predefined script and a list of domain names
(i.e., URLs from Alexa’s top websites list1 in our case). The selenium was configured to
visit pages in random order multiple times. For capturing the traffic, we used the default
settings of each browser. We did not disable the DNS cache of the browser, and the
random order of visiting webpages secures that the dataset contains traces influenced by
DNS caching mechanisms.

Dataset
Storage

Web Browers in VMs

Internet

PCAP

DoH  Traffic

tcpdump

Encryption Keys

Selenium
Controller

(with list of domains)

Figure 5.1: Scheme of capturing datasets using Selenium, several virtual machines with
web-browsers, and tcpdump. The web browsers were forced to dump cipher keys, so the
captured PCAP files can be decrypted.

Each virtual machine was configured to export TLS cryptographic keys, that was used
for decrypting the traffic using Wireshark application. The encrypted content of DoH

1http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.
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Table 5.1: Versions of browsers and OS used for dataset generation. These versions were
considered updated at the time of dataset creation in 2020.

Browser Name Browser Version OS

Mozilla Firefox
74 Fedora 31

77.1 Windows 10
Google Chrome 83.0.4103.97 Windows 10

responses was used only as a ground truth for labels at the end of the dataset preparation
process.

We captured multiple datasets with different numbers of visited pages to evaluate the
accuracy of the classifier with varying quantities of labels. We also used both common
versions of HTTP. Detailed information about captured datasets is shown in the Table 5.2.
Each dataset is composed of testing and training parts of approximately the same size.
The capturing of the training and testing part was done on different days for even more
realistic results.

Unfortunately, we were not able to enforce the Windows version of Firefox to use with
HTTP/1 only. After disabling the HTTP/2 in the settings, the browser established the
TLS connection to DoH resolver, but it used traditional unencrypted DNS, and the DoH
connection remained silent. We submitted a question to the Firefox support forum, but
we have received no response. We also could not capture the traffic of the Linux version
of Chrome because the DoH was still unsupported at that time.2

Table 5.2: Overall information about created dataset containing the number of DoH IP
flows and the total number of IP flows. The abbreviations in the column names stand for:
OS — Operating system, DoH resp. — Total number of DoH responses included in the
dataset, B — Browser (F — Firefox, C — Chrome), HV — HTTP Version, UP — Unique
Webpages, TV — Total visited webpages, UD — Unique domains (Number of labels)

Dataset Name OS B HV UP DoH rsp TV UD

Lin-Fir-H2-30 Lin F 2 30 162,078 1200 409
Lin-Fir-H2-50 Lin F 2 50 230,025 2000 455
Lin-Fir-H2-70 Lin F 2 70 356,311 2800 627
Win-Fir-H2-50 Win F 2 50 147,839 2000 445
Win-Chr-H2-50 Win C 2 50 37,125 2000 389
Lin-Fir-H1-30 Lin F 1 30 110,949 1200 308
Lin-Fir-H1-50 Lin F 1 50 186,070 2000 421
Lin-Fir-H1-70 Lin F 1 70 272,470 2800 572
Win-Chr-H1-50 Win C 1 50 22,787 2000 382

5.1.2 Traffic Shape of DoH

The essential step for successful DoH query fingerprinting is a deep understanding of the
traffic. Therefore, we manually analyzed decrypted raw PCAP data with the DoH com-

2The full support of DoH in Chrome browser was from version 93 (released in July 2021, one year after
our experiments).
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munication, which we captured for our datasets.

The DoH traffic follows the HTTP request-response scheme, with the expected differ-
ences across browsers, e.g., in HTTP headers. On the other hand, we did not observe
any differences between the Linux and Windows versions of Firefox. The most significant
difference was in support of EDNS padding by Google Chrome. All requests and responses
coming from Chrome had the same size. At that time, Firefox did not support the EDNS
padding feature. The first version of Firefox with padded encrypted DNS was version 95,
which was released in December 2021, one year after our experiments.

5.1.2.1 DNS over HTTP/2

The DNS over HTTP/2 communication pattern is shown in Figure 5.2. The browser sends
multiple DNS requests when loading the page. However, the resolver does not maintain the
sequence order of queries and sends responses in an arbitrary order. This behavior makes
the association of particular requests with corresponding encrypted responses impossible.

Another DNS over HTTP/2 characteristic originates from stream management. Each
request creates a new stream, which is then closed by the response. The queries and also
responses are split into exactly two datagrams. The first packet is always larger, with
at least 100 bytes (total length in the IP header field). The second packet contains only
HTTP2 stream control information, such as the end of stream flag, and therefore has a
fixed size of 71 bytes.

However, there are some exceptions. The Lin-Fir-H2-30 dataset contains 162,078 re-
sponses in total; only 78 of them were received as a single packet. Those larger packets
contain multiple HTTPS streams (DoH data stream & control streams), which effectively
obfuscates the size of DoH communication and precludes fingerprinting. However, the
number of such anomalous responses is negligible.

HTTP/2 header regarding the header compression (HPACK [97]) was also identified as
an important characteristic affecting fingerprinting. The header fields with nonpersistent
content across all packets (such as timestamps) result in different compressed header sizes.
Thus packets with the same data inside the data stream might have different sizes. The
data size inconsistency in HTTP/2 is the most significant complication for DNS traffic
fingerprinting, except for the EDNS padding.

5.1.2.2 DNS over HTTP/1

The HTTP/1 is not officially recommended by [59] due to performance reasons. More-
over, performing DoH response fingerprinting is more feasible in the case of HTTP/2. By
observing a single TCP connection, we are able to pair each request with an appropriate
response due to the fact, that HTTP/1 does not support streams and each query is al-
ways followed by the response. Also, the DNS requests and responses are always placed in
individual packets. Figure 5.3 depicts a histogram of DoH response sizes in our dataset.
We can notice that the packet sizes of Chrome DoH are larger due to the applied EDNS
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HTTP1.1

Browser DoH Resolver

POST Header + Data Part

Response header + Part of data
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Figure 5.2: DoH communication pattern difference between HTTP/2 and HTTP/1. The
abbreviations in legends stand for: H1 — HTTP/1, H2 — HTTP/2

padding. The padding effect is more noticeable in HTTP/1, where we observed only two
packet sizes.

The differences among the analyzed DoH communication are clearly summarized in Ta-
ble 5.3.
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Figure 5.3: The histogram of DoH packet sizes.
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Table 5.3: Summary of observed differences across analyzed browsers’ DoH communication.
The abbreviations in the columns label stand for: F — Firefox, C — Chrome

HTTP/2 HTTP/1
Browsers: F C F C

padding (EDNS) no yes no yes
split packets yes yes no no
average packet size lower lower higher higher
Multiple parallel conn. no no yes yes
order of responses arbitrary arbitrary ordered ordered
prefered DoH format RFC RFC RFC RFC
pairable req. & resp. no no yes yes

5.1.3 Fingerprinting Targets

During our first experiments, we observed a considerable number of DNS queries targeting
and generated subdomain name3 or subdomain name with a number of particular server4.
Those domains were often misclassified because of their similarity. We also noticed a similar
problem with domains that differs only in top-level domain5. Therefore we reduced the
problem to inferring the second-level domain (a domain name before the top-level domain),
as they provide us with the most important information.

5.1.4 Feature Engineering

The website fingerprinting approaches use a large number of features obtained from the
traffic. However, the field of DNS content fingerprinting is entirely different. The DoH traf-
fic is one long TCP connection with requests and responses. Thus the only feature we can
extract from the communication is the length of the individual packets, their timestamps,
and their direction.
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Figure 5.4: The histogram of DoH packet sizes on Firefox Linux version with HTTPS/1.

In the case of DoH, we have at least two packets associated with each DNS query—
request and response. However, the shuffled order of DNS over HTTP2 responses prevents

3such as i7gjqlci(...)0836525.nuid.imrworldwide.com.
4such as i0.sinaimg.cn and i1.sinaimg.cn.
5such as google.com and google.fr.
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pairing DNS requests with a corresponding response (see Section 5.1.2). After further
analysis, we decided to use only responses even with HTTP1.1, where the pairing is pos-
sible. The DNS queries are often smaller and have very similar sizes, as it is shown in the
Figure 5.4; Thus, the query size in the feature vector confused the classifier resulting in
worse results.

Similarly to website fingerprinting, the size of transmitted packets (particularly DoH
response packets) would play an essential role in our feature vector. However, only the
packet size feature is insufficient for DNS query fingerprinting because of the large number
of collisions and packet size variation. The only other feature we can directly extract from
the network is timing characteristics.

The browsers usually send batches of DNS queries in a short time period during the
website loading. After the main HTML content is loaded, it usually asks for multiple
sources, such as CDN, advertising server, or JavaScript libraries. For each website load, we
can observe multiple DNS bursts because each loaded asset might have other dependencies.
Our analysis revealed that even though the order of responses is shuffled, the unordered
set of packet sizes remains almost unchanged in one web page load. These observations are
consistent with the previous website fingerprinting approaches based on DNS presented
in [20, 113]. The batches of DNS queries and responses are observable at the traffic level
as bursts of packets in both directions.

1s

0.5 s> 1s > 1s

Figure 5.5: Neighborhoods of a DoH response. The black dot represents the fingerprinted
DoH response. Red packets belong to Close neighborhood, yellow and red packets belong
to Medium neighborhood and the green, yellow and red packets belong to Webpage neigh-
borhood.

For each DoH response, we consider three neighborhoods — Close, Medium, and Web-
page. The Close neighborhood includes only the responses that belong to a single burst
of communication. The Webpage neighborhood includes all responses that are related to
the whole page load. The Medium neighborhood was added to the feature vector as a
trade-off between a burst and a webpage. The sizes of each neighborhood were deter-
mined experimentally and are depicted in Figure 5.5. Assuming the fingerprinted packet
is in the middle of the interval. The Close neighborhood includes all packets within the
half-second interval, the Medium part includes all packets within the second interval, and
the Webpage neighborhood includes all packets that are bounded at least one-second-long
communication gap with zero responses.

Together from all three-time intervals, we extract 29 features based on packet sizes.
After calculating the feature score with Mutual Information, we reduced the feature list to
the final 11. All identified features are shown in Table 5.4.
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Table 5.4: Calculated Mutual Information value (MI) for each extracted feature. The
features with MI denoted in bold were included in our feature vector. The abbreviations
in the columns label stand for: CN — Close neighborhood, MN — Medium neighborhood,
and WN — Webpage neighborhood

Feature Name Mutual Information value

Packet Size 2.085

CN MN WN
Mean Size 0.866 0.848 0.892
Median size 1.133 1.097 1.053
Var. of Sizes 1.276 1.297 1.841
Num. packets in Neigh. 0.751 0.824 1.429
Max size in Neigh 1.390 1.374 1.330
Min size in Neigh 1.376 1.268 1.015
Num. of larger packets in Neigh. 0.413 0.448 0.606
Num. of smaller packet in Neigh. 0.468 0.509 0.639

5.1.5 Algorithm Selection

We experimented with multiple supervised learning algorithms and evaluated their preci-
sion. The models such as C4.5 decision tree [102] or K-Nearest Neighbours [117] performed
poorly; thus, we decided to focus on ensemble algorithms.

At first, we experimented with various stacked [130] model architectures, especially
the state-of-the-art k-fingerprinting approach-based architecture. However, in our initial
testing, the k-fingerprinting [55] based ensemble performed with around 40% precision. We
achieved the best results using the combination of the AdaBoosted decision tree [47] and
the Bagging meta-learning algorithm [18].

The AdaBoost ML algorithm sequentially learns multiple decision trees, one tree in
each iteration. Each consecutive iteration attempts to correct the errors from the models
trained in the previous iteration.

The Bagging meta-learning algorithm then trains multiple AdaBoosted decision trees,
each on a subset of training data and a subset of features. The Bagging approach is
designed to reduce variance in classification accuracy and train a robust and stable model.
The training on feature and data subsets also effectively prevents dataset overfitting.

The Hyperparameters of our classifier were set experimentally, and the most important
of them are written in the Table 5.5

Table 5.5: Experimentally selected values of model hyperparameters.

Algorithm Hyperparameter Name Value

C4.5 Desicision tree
Max Depth 30

Min. number of samples in leaf node 1
AdaBoost Number of estimators 3

Bagging
Max. ratio of features 0.4

Max. ratio of data 0.4
Number of estimators 55
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5.1.6 Classification Output

To make the classification more reliable, we used a multi-label output approach. The
output of our classification algorithm might be multiple most probable domains (output
label vector). We also added an extra label – None – for difficult cases where the classifier
is uncertain.

When the confidence of the classifier is larger than the probability threshold value, the
domain is added to the output label vector. Our aim was to keep the length of the output
label vector under two possible resulting domains. After the experimental evaluation with
multiple datasets, we found a threshold value of 10%, which results in an average output
vector length of 1.6 – 1.7 domains.

5.1.7 Results

This section evaluates the possibility of DoH response fingerprinting based on the described
feature vector. We measured the performance of the classifier according to its accuracy
and the number of unassigned labels (i.e., None label). We trained the classifier on the
training part of each dataset, and then we performed the classification in the test parts.
The results of the classifier were divided into three groups. None – The classifier was not
able to assign any label. True – One of the domains contained in the output label vector
was indeed queried. False – The classifier did not recognize the queried domain correctly
and assigned a wrong label. The accuracy is then calculated only from the class with
assigned labels.

5.1.7.1 DNS Content Fingerprinting Accuracy with HTTP/2 Datasets

The detailed results of the classifier used with HTTP/2 are written in the Table 5.6. We
can notice that the accuracy of our classifier on the Firefox traffic varies around 70%,
which is surprisingly high. As can be seen, the classifier does not perform significantly
worse with a larger number of unique web pages. The 70% accuracy and only 10% of
unclassified responses might suggest that the unpadded DoH is a serious privacy threat.
The classifier performs poorly on Google Chrome’s padded traffic.

Table 5.6: The precision of trained classifier with HTTP/2 datasets. The values in brackets
show the ratio of class in the test part of the dataset. The abbreviations in column names
stand for: AL — Average Length, Acc. — Accuracy

Dataset Name None True False AL Acc.

Lin-Fir-H2-30 9.5 % 64.5% 26 % 1.7 71.33%
Lin-Fir-H2-50 14.2 % 56.7% 29.1% 1.6 66.16%
Lin-Fir-H2-70 10.1 % 62.5% 27.4% 1.6 69.52%
Win-Chr-H2-50 28.8 % 12.2% 58.9% 1.7 17.23%
Win-Fir-H2-50 11.7 % 64.8% 23.4% 1.7 73.46%
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5.1.7.2 Classifier Precision with HTTP/1

According to our evaluation, the DoH connections without padding that use HTTP/1 are
even worse for the users’ privacy. In Table 5.7, we can see that the accuracy of our classifier
is around 90%, which is higher than in the previous case. Additionally, the amount of None
labels is almost negligible. Contrary to the HTTP/2 cases, we observe a slightly decreasing
inaccuracy with more web pages. However, this decrease is not linear, so it would not be
substantial with larger datasets.

Table 5.7: DNS content fingerprinting accuracy with HTTP/1 datasets. The values in
brackets show the ratio of class in the test part of the dataset. The abbreviations in
column names stand for: AL — Average Length, Acc. — Accuracy

Dataset Name None True False AL Acc.

Lin-Fir-H1-30 1 % 89.2 % 9.8 % 1.7 90.14 %
Lin-Fir-H1-50 3 % 85 % 12 % 1.7 87.5 %
Lin-Fir-H1-70 4.3 % 82.7% 13 % 1.6 86.34 %
Win-Chr-H1-50 56.8 % 4.6 % 38.6 % 1.6 10.73 %

5.1.7.3 Open-World Evaluation

We simulated the open-world environment by training our classifier with the Lin-Fir-H2-30
dataset, and then we evaluated it by the Lin-Fir-H2-70. The precision strongly depends on
the probability threshold value, and we achieved 50% accuracy with a threshold value set
to 20%. However, the None label was assigned to 80% of answers. Therefore, the classifier
determines the correct label only in 10% of DoH responses. Similar results were also
achieved with HTTP/1 datasets. The poor performance in the open-world environment can
be improved by combining the classifier with website fingerprinting methods to recognize
known webpages that are included in the training dataset. Naturally, increasing the size
of the training set of the “known” domain names also works well to improve the accuracy
of a potential attacker.

5.1.8 Discussion of Fingerprinting Evaluation

At first sight, the results of fingerprinting approach might seem mediocre. We also needed
to perform multiple sacrifices in the evaluation methodology—multi-label approach and
only SLD domain recognition. Moreover, the execution of such fingerprinting attacks
would be extremely challenging, especially due to the accuracy drop in an open-world
environment. Nevertheless, the accuracy proved to be high in the closed-world environment
using the DoH traffic without enhanced privacy protection.

The necessity of EDNS padding seems to be essential to maintain privacy. The accuracy
of non-padded queries fingerprinting is 50 percentage points higher than in the case of
padded ones. The other important outcome of our experiments is that HTTP/1 is less
private than HTTP/2, and the fingerprinting reached almost 90%.
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5.2 DoH Detection

Since DoH does not use a specialized port, it is not straightforward to detect in the net-
works. As described in Chapter 4 Malware creators are upgrading their DNS-based C2
infrastructure by deploying DoH to avoid detection by network IDSs. DoH detection can
thus be considered an essential task for maintaining situational awareness and security.
Detection by blocklist is not reliable due to fast IP changes and incomprehensive lists
(see Section 3.1). Therefore, we need to explore novel ways of DoH detection.

In the following section, we describe our approach that leverages side-channel analysis
and machine learning to detect DoH. We created a novel dataset with DoH traffic, which
was then used for our feature vector proposal and evaluation. Last but not least, we
describe the limitations of the proposed classifier.

5.2.1 Datasets

We started to prepare our experiments on DoH recognition in early 2020. At that time,
there was no publicly available dataset with DoH traffic. Therefore we created our own
and made it publicly on the Zenodo platform [126].

Currently, there are only two common options for using DoH. The first option is to
enable DoH in the web browser. The second way is to redirect all traditional DNS queries
via a central DoH proxy, which translates DNS queries to DoH. We set up both options to
produce DoH traffic, and the described scenarios are also shown in the simplified scheme
for dataset creation depicted in Figure 5.6.

The left side of Figure 5.6 presents a capturing of the traffic from DoH-enabled web
browsers. We installed Google Chrome and Mozilla Firefox into separate virtual machines
and controlled them with the Selenium framework, which simulates the user browsing
according to the predefined script. The browsers received commands to visit domains taken
from Alexa’s top websites list. The capturing was performed on the host by listening to
the network interface of the virtual machine. This created dataset contains about 5000
web pages visited by Mozilla Firefox and about 1000 pages visited by Google Chrome.

The right side of Figure 5.6 presents a collection of DoH data using a DoH proxy.
There are several DoH proxy implementations. We decided to use a DoH client developed
by Cloudflare [33] — cloudflared — because we believed it was one of the most used
solutions at the time of dataset creation. We installed the cloudflared software into a
Raspberry Pi computer. The IP address of the Raspberry was set as the default local
DNS resolver for the two independent offices at our university. This DNS resolver was a
provided option by local DHCP servers, so any auto-configured device connected to the
office network used this resolver by default. The Raspberry continuously captured DNS and
DoH traffic created by about 20 devices, including computers, laptops, and smartphones,
for around three months.

Additionally, we run several scripts to generate DNS requests to Raspberry rapidly.
These scripts simulated a busy middle-sized network that generates a significant amount
of DNS queries—the higher number of DoH queries in a sequence results in entirely different
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Figure 5.6: Simplified scheme of datasets creation. On the left, there is a capture of DoH
traffic generated directly by web browsers captured on the machine. On the right, there
is a whole LAN with several normally operating network devices and users that generate
DNS; DNS is resent by the cloudflared proxy using DoH.

behavioral patterns of the connection. The aim was to add a simulated DoH traffic with as
many similar parameters to ordinary HTTPS data transmission as possible. This is crucial
to include in the dataset to prevent potential misclassification. The scripts generated DNS
queries for domain names taken from Alexa’s top websites list. We captured more than
3,845,000 DoH packets at the proxy.

We also added traffic produced by instant messaging clients (IM) into our dataset. We
believe that IM traffic is the most similar to the DoH since it also follows the request-
response scheme with a small amount of transmitted data.

The captured PCAP data were immediately converted into extended IP flows due
to user privacy. To convert packets into extended IP Flows, we used an ipfixprobe flow
exporter [24] developed by the CESNET association. More specifically, we used a particular
PStats plugin, which is capable of computing additional packet-level statistics, usually
called as SPLT (sequence of packet lengths and times) feature, for the first 30 packets in
the flow. The resulting flows were consequently processed by Python scripts to add more
computed features and annotation (ground truth) labels. The DoH labels were reliably
completed according to our knowledge of proxy setup and, for manually generated traffic,
according to known IP addresses of the DoH services and target HTTPS servers.

Overall, the created dataset consists of 1,128,904 flows (aggregated into bidirectional
records), with around 33,000 of them labeled as DoH. To deal with the resulting imbal-
ance between DoH and regular HTTPS classes, we used the mechanism described in Sec-
tion 5.2.3. The size statistics and information about the software used in the dataset are
listed in in Table 5.8.
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Table 5.8: Overall information about created dataset containing the number of DoH IP
Flows and the total number of IP Flows.

DoH Client + Version Size DoH Total

Mozilla Firefox 73.01 Lin. 28GB 698 523,824
Google Chrome 81.0.4044.129 Win. 8GB 729 154,201
Cloudflared 2020.2.0 Lin. 1.5GB 32,752 450,879

5.2.2 Analysis and Feature Selection

Feature selection is one of the most important parts because it affects the accuracy of any
ML classifier. We noticed several differences from classic HTTPS traffic by looking into
the raw packet data. Typical DoH connections start with a TLS handshake followed by an
HTTP/2 connection preface. The rest of the communication looks like a classical request-
response scheme. However, there are several differences between classical web browsing.
The typical DoH connection parameters compared to other types of HTTP connections
are presented in Table 5.9.

Table 5.9: The typical connection parameters of DoH compared to other types of HTTPS
communications. The Pack. in column names stands for packets.

Name Pack. Bytes Pack. A→B Pack. B→A Bytes A→B Bytes B→A Duration

DoH Firefox 55,312 7293 kB 27,822 27,490 3021B 4271B 2088.2 s
Facebook CDN 5893 7474 kB 996 4898 84 kB 7390 kB 164.95 s
Web Page 233 275 kB 48 185 4690B 271 kB 5.75 s

According to our observations, a single DNS request and response has at least five
packets in DoH. Therefore, we can directly mark a shorter connection as a classical HTTPS.
The most significant difference between DoH and classic HTTPS is the duration of the flow.
According to our observations, browsers create a single connection to the DoH server, which
is then used for a longer time. During the operation, there might occur some reconnections
or a completely new connection to different DoH servers; however, it does not happen
very often. The longer connections can also be created by different communication, like
file downloading, video streaming, and so on. However, these types of connections tend
to transmit much more data in a shorter time than the DoH, ideally in the form of a
continuous burst of data. This can be clearly seen in Table 5.9, where the connections to
Facebook CDN are much shorter, with almost the same amount of transferred data. The
row “Web Page” represents an average of typical pages from Alexa’s top websites list, i.e.,
from our captured dataset.

The DoH communication can also be distinguished from regular HTTP by the size of
transmitted packets. In Figure 5.7, we can see that the DoH variance of response packet
sizes is much lower. We can observe the same trend with the sizes of outgoing packets;
however, it is less significant because HTTP requests also tend to have similar sizes.

The specific activity pattern can also reveal the DoH directly implemented in browsers.
Figure 5.8 shows the example of an activity of one DoH connection, where we can see
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Figure 5.8: Activity in selected DoH flow record created by the Firefox web browser.

packet bursts and pauses depending on the user interaction. The number of packets inside
bursts, pauses, and their ratio is included in our feature vector.

We detect a packet burst when the interpacket time is shorter than a predefined burst
threshold. Therefore, we can count the number of packets “within a burst,” which all have
short interpacket times. Similarly, we detect a pause when the interpacket time is longer
than a predefined pause threshold. We understand that the packet delays depend on a web
server, user connection quality, and many other factors. Therefore, the thresholds must
be considered relatively for each connection. We evaluated several HTTPS connections,
and we set the burst threshold value as the 33.3% percentile from the inter-packet times of
each connection (i.e., a bidirectional flow record). The pause threshold is set similarly to
the 66.6% percentile.

Another identified feature represents the symmetry of the amount of incoming and
outgoing data. The DNS responses, especially in DNS wireformat, have almost the same
sizes as requests, and communication tends to be balanced (compared to HTTPS). We also
split the sequence of packets into thirds and calculated three symmetry metrics separately.
HTTPS traffic might be similar at the beginning of the connection, but it becomes strongly
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asymmetric later.
To measure the periodicity of the traffic, we used the autocorrelation metric as another

feature. In several previous works, autocorrelation is claimed as crucial for identifying DNS
traffic inside covert channels.

In total, we have identified and tested 19 traffic features. After calculating the feature
importance with the Gini index, we reduced the feature list to the final 18 features for
DoH recognition. All identified features are clearly outlined in Table 5.10. As seen in
the table, the most important feature for DoH recognition is the duration of an IP flow.
The average inter-packet delay is also essential. Surprisingly, the autocorrelation, regularly
used in related work, is insignificant.

Table 5.10: Importance of the evaluated features. The features with importance typed in
bold font were included in a feature vector of the corresponding usage.

Feature Name DoH Importance

duration 0.239
minIntrPckDelay 0.040
maxIntrPckDelay 0.089
avgIntrPckDelay 0.221
varPktSizeIn 0.015
varPktSizeOut 0.023
bytesInoutRatio 0.034
pktsInoutRatio 0.011
avgPktSizeIn 0.037
avgPktSizeOut 0.038
medianPktSizeIn 0.045
medianPktSizeOut 0.015
burstPausesRatio 0.049
pktInBursts 0.027
pktInPauses 0.063
autocorrelation 0.015
symmetry-1thrd 0.011
symmetry-2thrd 0.001
symmetry-3thrd 0.010

5.2.3 Results

This section describes the results of our measurements of the ML-based DoH recognition
using the dataset described in Section 5.1.1. Moreover, we applied methods for imbalanced
learning since we do not have equally distributed classes in the dataset. Currently, apply-
ing oversampling and undersampling methods is the most common approach for dealing
with imbalanced classes (e.g., according to to [79]). Specifically, we used SMOTE [25] for
oversampling and NearMiss-3 [136] as an undersampling method. The ratio between the
DoH class and regular HTTPS in our dataset is around 1:13. The SMOTE increases the
number of minority (DoH) class samples to a ratio of 1:5. The undersampling method then
reduces the number of majority (regular HTTPS) classes to the final ratio of 1:2.

The dataset balancing methods are applied only to the data given to the training phase
of the algorithms (selected using the standard n-Fold cross-validation, see later) since
applying it to the testing data is not recommended.
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5.2.3.1 Classification Algorithm

In order to classify and recognize DoH traffic, we experimented with five ML algorithms:
K-Nearest Neighbours [117] (We use 5-NN in our study), C4.5 Decision Tree [102], Random
Forest [57], Naive Bayes [27], and AdaBoosted Decision Tree [47]. These algorithms are
commonly used in Networking applications [16].

We used 5-Fold cross-validation to evaluate the precision of each algorithm. The hy-
perparameters of each algorithm were set experimentally by evaluating each parameter
separately and observing the precision of the results.

The overall performance of the algorithms is very similar across all evaluated algo-
rithms, which shows that our feature vector is robust and discriminative enough for DoH
recognition and classification. The detailed results are written in Table 5.11. The Naive
Bayes performs the worst in both tasks; however, its precision is still high. For further
evaluations, we selected the AdaBoosted Decision tree, which has the best accuracy.

Table 5.11: Comparison of the overall precision of the evaluated ML algorithms for DoH
identification in HTTPS traffic.

Algorithm Name Accuracy

5-NN 99.4%
C4.5 99.4%
Random Forest 99.5%
Naive Bayes 96.8%
AdaBoosted Dec. Tree 99.6%

5.2.3.2 Detailed Evaluation of DoH Recognition

Table 5.12: Confusion matrix of DoH recognition from a regular HTTPS traffic. The
table contains class accuracy and class recall for both classified classes: DoH and regular
HTTPS.

Ground Truth
Class Accuracy

DoH HTTPS

Result
DoH 32,668 81 99.7%

HTTPS 1511 411,791 99.6%

Class Recall 95.5% 99.9%

Based on the results in Section 5.2.3.1, we used AdaBoosted Decision Tree with the
maximal depth set to 15 and the number of estimators set to 5—other parameters remained
in their default values established in the SciKit Learn library6. The evaluation was done
using 5-Fold cross-validation again to obtain the results. The trained model achieved an
excellent result of 99.6% accuracy with an F1 score of 0.996. The detailed results are
presented in the form of a confusion matrix shown in Table 5.12.

6scikit-learn.org.
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5.2.3.3 Limitations

The proposed ML algorithms achieved excellent results on the created dataset. However,
they also have some limitations. DoH detection is only possible with connections that
contain multiple DNS queries. The proposed ML algorithm cannot recognize a DoH con-
nection with a single query because of the similarity with another request/response API.
The DoH implementation in browsers and the burst shape of packets are crucial for the
correct operability of the algorithm. Therefore it is easy to mask the DoH connection from
our classifier by creating new connections for each query, which would also significantly
increase latency due to TLS handshake.

The attackers can also hide the use of DoH by masking the traffic shape. For example,
they might synthetically create more asymmetrical connections — adding padding into
DoH query packets. This type of DoH connection would be misclassified due to its similarity
to the multimedia stream.

5.3 DoH Detection using Weak Indicators

The ML-based detector presented in Section 5.2 presented a first step in DoH detection
that had a lot of limitations and could not be deployed into commercial-grade IDS. Un-
fortunately, following DoH detection studies (listed in Table 2.4) just slightly improved
accuracy while still using ML-only detection on top of web-browser traffic.

Even though the number of ML-only-based detection proposals has risen in recent
years, we can notice that the commercial sector is reluctant to ML-only deployment, and
they are still predominantly using signature-based approaches [120]. From the network
security perspective, the ML-based detectors process extensive amounts of data—even
99% of accuracy is not sufficient. Such accuracy results in one misclassification every
second when deployed on a network with 100 connections per second. Since DoH detection
is generally a very asymmetrical problem and the DoH class represents only a negligible
fraction of all traffic, we might expect that most false classifications would be false positives.
Moreover, ML-only detectors are less explainable (if any), which is an essential property for
commercial IDS, since the alerts are then mostly consumed by human operators. According
to Alahmadi et al. [5], alert triggers without apparent reason require extensive investigative
effort, which gradually causes alarm desensitization—even professional security analysts
lose their trust in the validity of the alarm resulting in ignored and unresolved alerts.
Consequently, accurate IDS with unexplainable and untrustworthy alert triggers have only
a limited impact on security, leading to successful intrusions or large data breaches [105].

ML-only DoH detection is not a viable approach, and we need to explore novel ways
of its detection that would not rely just on ML and provide explainable and trustworthy
results. In our work [A.7], we presented a concept of weak indicators for the detection of
IoT malware. Nevertheless, a weak indication as a concept is general and can also be used
in DoH detection.
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Figure 5.9: Proposed weak indicators from [A.7] and their combination for IoT malware
detection.

5.3.1 Weak Indication Approach

The weak indication approach stands on the principle of weak indicators. The weak indi-
cator can be defined as an event that might suggest the presence of targetted class that we
want to detect. However, it is just an indication—it is imprecise and potentially unreliable,
and we cannot make any conclusions. Nevertheless, by combining multiple weak indicators
together, we can obtain accurate information that is trustworthy enough for final detection.

In [A.7], we proposed eight weak indicators targetting IoT malware detection, each of
them working on a different operational principle to ensure robustness—we had ML-based,
anomaly-based, and signature-based weak-indication detectors. Metaclassifiers then pro-
cess the outputs of weak indicators. The proposed weak-indication detection architecture
is depicted in Figure 5.9.

We use boolean functions as metaclassifiers; however, even ML-based metaclassifier
could be used. Nevertheless, the boolean formulas are easily understandable and can
provide reasoning for alert triggers (e.g., by describing that DHT and Stratum were seen
during a short time window, which suggests the presence of peer-to-peer miners), thus
saving valuable time for security personnel during the investigation.

The use of weak indicators does not just improve the explainability, but it also proved
to be very effective in malware hunting. We evaluated it by using real traffic from the
CESNET network and more than 100 IoT malware strains provided by anti-virus company
Avast Software. The proposed weak-indication architecture achieved 100% precision and
94.286% recall due to six false negatives caused by the ML-based C2 detector.

5.3.2 Weak Indicators for DoH Detection

The weak indication principle can also be applied in the DoH detection task. Based on our
thorough investigation of DoH protocol properties and its implementation on the Internet,
we defined four weak indicators (depicted in Figure 5.10) of DoH usage by the client. All
indicators are synchronous and work on a 30-second interval basis. Thus for each IP from
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Figure 5.10: DoH detection by weak indication principle

the protected network prefix, they aggregate 30 seconds of network telemetry data (flows)
and then forward the prediction to the following metaclassifier.

Traffic Shape weak indicator uses Machine Learning to recognize DoH. Machine learning
is considered an unreliable source of information that only suggests that statistical
properties of ongoing connection do (or do not) look like DoH. The design of this
detector is going to be based on our detection model presented in Section 5.2. When
a single flow in the 30-second long window is classified as DoH, the traffic shape DoH
indicator outputs a positive result.

TLS SNI weak indicator performs pattern matching on domain names transmitted during
TLS Handshakes. As shown in DoH blocklists [35], domain names of servers that offer
DoH resolution service often contain substrings doh and dns, which are detected by
this indicator. When a single flow in the 30-second long window contains targetted
substrings, the TLS SNI indicator outputs a positive result.

DNS weak indicator inspects DNS queries of individual users and reports whether the user
visited an IP address for which we cannot pair the corresponding DNS query/answer.
When more than 10 public IP addresses are visited without a previous DNS request,
the DNS weak indicator outputs a positive result. The threshold of 10 IP addresses
has been evaluated experimentally. The relatively high number of IP addresses stems
from the influence of local DNS caching on the endpoints.

Blocklist performs detection based on DoH resolvers blocklists. When a single destination
IP address appears on the DoH blocklist, the blocklist-based weak indicator outputs
a positive result.

Every 30 seconds, the weak indicators output their classification results to the meta-
classifier, which we implemented as a majority boolean function—at least three out of four
indicators must be positive in order to conclude DoH presence in the network.

The weak indication approach for DoH detection is still in the work-in-progress phase.
The values of the parameters (30-second aggregation windows and also the minimal 10 IP
addresses in the DNS weak indicator) might depend on the network and devices, and we
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need to explore their influence further. We already published a comprehensive collection
of DoH datasets [A.5] that were created using CESNET backbone lines (which ensures the
realness of the data) as well as traffic generation to 16 different providers (ensuring the
comprehensiveness of the data). Nevertheless, the whole evaluation of the weak-indication
approach for DoH detection is planned as future work.

5.4 Key Findings

In this chapter, we described the possible side-channel analysis of the DoH. The key findings
can be summarized as:

1. The DoH used without padding is susceptible to a detailed fingerprinting attack. It
allows the attacker to infer even a domain name.

2. DNS over HTTP/1 is more susceptible to fingerprinting attacks than DNS over
HTTP/2

3. Detection of DoH using side-channel analysis and machine learning is very accurate.
The author of this thesis was the first one who demonstrated that. Nevertheless, the
ML detector’s applicability is limited by the following:

◦ The classifier based solely on ML is unreliable and may trigger many false-
positive alerts.

◦ It works well only for longer DoH connections. Single-query DoH is very hard
to detect.

4. We can overcome the limitations of ML with the weak-indication principle.

Due to hard accuracy standards in the computer security area, the side-channel-based
fingerprinting attack is not a viable approach to potentially detect policy violations within
the encrypted DoH channel. Nevertheless, at least the detection of DoH shows much more
promising results. Even though ML-based detectors still have limitations, overcoming
them with a weak-indication principle is possible. Still, the side-channel analysis of DoH
is nascent and cannot be used now for solving current security challenges posed by DNS
encryption.
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Chapter 6

Conclusions

Encrypted DNS is a relatively novel approach for maintaining users’ privacy. Due to its
novelty, there is a need for studies targeting its adoption across service providers, users,
and, unfortunately, threat actors. The main focus of this thesis has been on DoH protocol
since its mass deployment has the most extensive impact in the cybersecurity field since
even its recognition in the network is challenging. Therefore this thesis focused on three
main aspects of DoH. The adoption across the service providers and also across users
was studied. Moreover, we researched the encrypted DNS abuse possibilities. Lastly, we
focused on side-channel analysis and DoH detection.

6.1 Summary

The results of our measurements show significant and rising adoption of encrypted DNS
by users and also by DNS service providers. Therefore, the impact of encrypted DNS
on network security is already large. Moreover, we might expect more severe security
implications from mass encrypted DNS usage in the future. Users and threat actors are
becoming more familiar with encrypted DNS and thus can leverage the increased privacy
to bypass DNS-based policy-enforcement tools in restricted networks. Moreover, we also
described that even web-based services intentionally deploy encrypted DNS to bypass the
DNS-based blocking, leaving users unaware of possible policy violations. Our research also
showed that DoH providers are restrained in active DNS blocking of malicious content;
thus, we cannot rely on them. Due to these facts, network administrators and security
managers should not rely on information from traditional DNS to force network policies
and maintain security, instead, they need to use more privacy-intrusive technologies such
as deciphering proxies.

Nevertheless, in corporate or university networks, without the possibility of deploying a
deciphering proxy, network administrators can prevent encrypted DNS abuse by blocking
ports assigned to encrypted DNS, such as 853/TCP for DoT, and forcing the clients to
downgrade to traditional DNS. In the case of DoH, we must use an ML-based detector,
described in this thesis, to recognize DoH from other regular HTTPS. Nevertheless, ML-
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based detectors cannot be 100% reliable; thus, further research in DoH recognition using
weak-indicator is necessary to achieve reliable DoH detection.

All of our results have been presented and discussed within the scientific community.
Two papers [A.6, A.2] have been awarded by the conference committee. Together we
published our results relevant to this thesis in four conferences (including the CORE A
conference) and three journals (including a journal with Impact Factor=11.043). A lot of
the works already received a considerable amount of citations, and we were also invited to
write blog posts on APNIC and perform presentations for the general public.

6.2 Contributions of the Dissertation Thesis

1. We mapped the adoption of encrypted DNS across service providers and users, show-
ing its increasing trend. Moreover, we revealed multiple properties of DoH resolvers
operating on the internet, such as their association with as a source of malware
binaries.

2. We also surveyed the DoH use by threat actors showing the transition of malicious
software into the encrypted domain. Moreover, we demonstrated and measured the
quality properties of encrypted DNS tunnels via multiple DoT providers.

3. We described DoH abuse by a web-based application that leverages DoH as an API
for their C2 infrastructure to bypass governmental closure.

4. We challenged DoH with side-channel analysis showing privacy weaknesses of DNS
over HTTP/1 and the necessity of EDNS padding.

5. We developed an ML-based DoH detection approach that achieved excellent accuracy
of 99.6% on the created dataset. Moreover, we outlined the way to make DoH detec-
tion more accurate, robust, and explainable by using a weak indication approach.

6.3 Future Work

The author of the dissertation thesis suggests exploring the following, which are already
out of the scope of this thesis:

◦ It would be interesting to perform several additional encrypted DNS adoption mea-
sures to show its progress over a long period of time.

◦ Following the study of DoH-capable malicious PoC and DoH-capable malware would
be interesting to study the adoption across threat actors.

◦ Comparison of all DoH detection approaches on a single dataset would be interesting
to reveal their properties and establish the best DoH detection approach.
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◦ The real-world performance of a weak-indication approach for DoH detection needs
to be measured to reveal if the weak indicators are the right approach to design
network detectors. The design of accurate DoH detectors is essential for network
security. Currently, it is challenging to map DoH-capable malware since we cannot
reliably recognize DoH.

◦ The protective properties of encrypted DNS resolvers should be explored more. The
possibility of data exfiltration via protective versions of resolvers is surprising and
needs to be evaluated and communicated to the public. Assuming blocklist-based
protection, it would be interesting to review the timeliness of used blocklist and their
precision.
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for encrypted traffic classification and analysis. International Journal of Network
Management, 25(5):355–374, July 2015. doi:10.1002/nem.1901.

[128] Tim Wicinski. DNS Privacy Considerations. RFC 9076, July 2021. URL: https:
//www.rfc-editor.org/info/rfc9076, doi:10.17487/RFC9076.

[129] Luca Winter. FluBot malware – All you need to know &; to act now [online]. Dec
2021. URL: https://www.threatmark.com/flubot-banking-malware/.

[130] David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, January
1992. doi:10.1016/s0893-6080(05)80023-1.

[131] Jiating Wu, Yujia Zhu, Baiyang Li, Qingyun Liu, and Binxing Fang. Peek in-
side the encrypted world: Autoencoder-based detection of doh resolvers. In 2021
IEEE 20th International Conference on Trust, Security and Privacy in Com-
puting and Communications (TrustCom), pages 783–790, 2021. doi:10.1109/
TrustCom53373.2021.00113.

[132] K. Xu, P. Butler, S. Saha, and D. Yao. DNS for Massive-Scale Command and
Control. IEEE Transactions on Dependable and Secure Computing, 10(3):143–153,
2013. doi:10.1109/TDSC.2013.10.

[133] Y. Wang et al. A comprehensive survey on dns tunnel detection. ComNet, 197, 2021.
doi:https://doi.org/10.1016/j.comnet.2021.108322.

[134] Tahmina Zebin, Shahadate Rezvy, and Yuan Luo. An explainable ai-based intrusion
detection system for dns over https (doh) attacks. IEEE Transactions on Information
Forensics and Security, 17:2339–2349, 2022. doi:10.1109/TIFS.2022.3183390.

[135] Mengqi Zhan, Yang Li, Guangxi Yu, Bo Li, and Weiping Wang. De-
tecting DNS over HTTPS based data exfiltration. Computer Networks,
209:108919, 2022. URL: https://www.sciencedirect.com/science/article/pii/
S1389128622001104, doi:https://doi.org/10.1016/j.comnet.2022.108919.

[136] J. Zhang and I. Mani. KNN Approach to Unbalanced Data Distributions: A Case
Study Involving Information Extraction. In Proceedings of the ICML’2003 Workshop
on Learning from Imbalanced Datasets, 2003.

98

https://doi.org/10.5281/zenodo.3818004
https://doi.org/10.1002/nem.1901
https://www.rfc-editor.org/info/rfc9076
https://www.rfc-editor.org/info/rfc9076
https://doi.org/10.17487/RFC9076
https://www.threatmark.com/flubot-banking-malware/
https://doi.org/10.1016/s0893-6080(05)80023-1
https://doi.org/10.1109/TrustCom53373.2021.00113
https://doi.org/10.1109/TrustCom53373.2021.00113
https://doi.org/10.1109/TDSC.2013.10
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108322
https://doi.org/10.1109/TIFS.2022.3183390
https://www.sciencedirect.com/science/article/pii/S1389128622001104
https://www.sciencedirect.com/science/article/pii/S1389128622001104
https://doi.org/https://doi.org/10.1016/j.comnet.2022.108919


Reviewed Publications of the Author
Relevant to the Thesis Topic

[A.1] Dmitrii Vekshin, Karel Hynek, and Tomas Cejka; DoH insight: Detecting DNS over
HTTPS by machine learning In: Proceedings of the 15th International Conference
on Availability, Reliability and Security. New York: ACM, 2020 ISBN 978-1-4503-
8833-7.

The paper has been cited 47x (excluding self-citations).

[A.2] Karel Hynek and Tomas Cejka; Privacy Illusion: Beware of Unpadded DoH In:
11th IEEE Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON). Montreal: IEEE 2020 p. 621-628 ISSN 2644-3163 Awarded
Paper

The paper has been cited 5x (excluding self-citations).

[A.3] Karel Hynek, Dmitrii Vekshin, Jan Luxemburk, Tomas Cejka, and Armin Wasicek;
Summary of DNS Over HTTPS Abuse In: IEEE Access. 2022, p. 54668-54680, ISSN
2169-3536.

The paper has been cited 3x (excluding self-citations).
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