
 Confidential C

Diploma thesis at Renault:
Development of a tool for automating the analysis of engine control unit error handling

ENSTA Bretagne
2 rue F. Verny
29806 Brest Cedex 9, France

PAURON, Valentin,

valentin.pauron-
liverato@ensta-bretagne.org

Renault Group
1 Allée Cornuel
91510 Lardy
Tél : 01 60 82 21 52
11700@renault.com

AVARGUEZ, Frédéric,
frederic.avarguez@renault.c
om
DENAYROLLES, Manuel
manuel.denayrolles@renault
.com

mailto:11700@renault.com
mailto:frederic.avarguez@renault.com
mailto:frederic.avarguez@renault.com
mailto:manuel.denayrolles@renault.com
mailto:manuel.denayrolles@renault.com

Diploma Thesis – Renault Group

 Valentin Pauron 2

Acknowledgments

I would like to express my deepest gratitude to Frédéric Avarguez who accepted me in the team and has always

been there to answer my questions and granted me the chance to visit the Crash test centre. I would also like

to extend my sincere thanks to Manuel Denayrolles who offered to me the opportunity to join the Renault

technical and test centre in Lardy.

Moreover, I would particularly like to thank Philippe Saillour, Patrick Leveau and Cuong Do-Hoang who guided

me all along this internship. I also had the pleasure of working with Arnaud Lebaudy who helped me a lot to

achieve this project.

I would also like to extend my sincere thanks to Mr. Vojtisek, my academic supervisor, who accompanied me

and helped me to successfully complete this work.

Diploma Thesis – Renault Group

 Valentin Pauron 3

Résumé

L’électronique embarquée automobile s’est massivement développée depuis la commercialisation de l’ABS

électronique par Bosch en 1978. Ayant une place centrale dans l’architecture électronique des véhicules, les

calculateurs automobiles permettent de contrôler et d’assurer le bon fonctionnement des véhicules.

Mon projet de fin d'études d'ingénieur au Centre Technique et d'Essais Renault Lardy en France, s’inscrit dans

la conception et le développement d’un outil Python afin d’automatiser le post-traitement des résultats

d’essais de validation inter-systèmes faits au banc HIL (Hardware In the Loop). Les essais inter-systèmes

consistent à tester la bonne communication entre les différents calculateurs de la voiture et les bancs

Hardware-in-the-loop (HIL) servent à tester le fonctionnement d'un système embarqué pour lequel

l'environnement matériel est simulé. Les objectifs finaux de ce projet de fin d’études sont d’améliorer la qualité

du développement des nouveaux projets de Renault Group et de réduire leurs coûts et délais de validation.

Tout d’abord, la conception de l’architecture de l’outil Python a permis d’établir le planning d’avancement du

projet de manière à optimiser et organiser mon travail. De cette façon, j’ai pu créer les différentes fonctions

qui composent l’outil.

Par la suite, la période de validation de l’outil montre que les résultats obtenus par l’analyse manuelle et

automatique des essais sont identiques, à l’exception de quelques cas isolés. De plus, l’outil a été mis à

disposition de mon équipe à la fin du stage de fin d’études ce qui a permis de confirmer que cet outil de post-

traitement automatique des essais sur banc HIL permet de libérer des ressources humaines pour se concentrer

sur d’autres tâches ayant une plus grande valeur ajoutée comme la résolution d’erreurs détectées par l’outil.

Abstract

Since Bosch launched electronic ABS in 1978, on-board automobile electronics have significantly improved.

Automotive electronic control units (ECUs) are essential to the electronic architecture of automobiles, allowing

them to be controlled and kept in proper working order.

In order to automate the post-processing of inter-system validation test results acquired on Hardware-in-the-

loop (HIL) test benches, I designed and developed a Python tool for my Diploma Thesis at the Renault Lardy

Technical and Test Centre in France. Inter-system tests involve assessing proper communication between the

various electronic control units within the vehicle and Hardware-in-the-loop (HIL) benches are testing

platforms which employ physical hardware components to mimic real-world interactions, facilitating the

evaluation and validation of electronic control units.

The ultimate goals of this diploma thesis are to decrease validation times and costs while increasing the quality

of new project development for the Renault Group.

First of all, I was able to plan the project's progress timetable and organize my work by creating the Python

tool's architecture. I was able to develop the many functions that make up the tool in this way.

The results acquired by human and automatic test analysis were then identical, except for a few rare

occurrences, as revealed by the tool's validation period. Additionally, the tool was made available to my team

at the end of the diploma thesis, it confirmed that this automated post-processing tool for HIL bench tests

frees up human resources to focus on activities which have a higher added value, including fixing tool-detected

mistakes.

Diploma Thesis – Renault Group

 Valentin Pauron 4

Table of contents
Acknowledgments .. 2

Résumé ... 3

Abstract .. 3

Introduction .. 6

1. Background ... 7

1.1. Presentation of the “applications-functions” team and inter-system environment 7

1.2. Realising an internship at Renault .. 9

2. Presentation of the former validation methodology for inter-system environment 9

2.1. Used tool: INCA / MDA module .. 9

2.2. Former test equipment: Vehicles ... 9

2.3. Newest test equipment: HIL benches .. 10

2.4. Inter-system (COMX) tests analysis on MDA module .. 12

3. Development of a tool for automatic analysis of engine control unit error handling 12

3.1. Definitions .. 12

3.2. Diploma thesis schedule .. 18

3.3. Overall tool architecture .. 19

3.4. Development of a function to read the PVAL HIL (Hardware-In-the-Loop Validation Plan) and extract

relevant data .. 20

3.4.1. Reading the PVAL HIL (Hardware-In-the-Loop Validation Plan) and extracting relevant information

on Python ... 20

3.4.2. Development of liste_seq function .. 22

3.5. Development of the automated Post-Processing function .. 23

3.5.1. Input files .. 23

3.5.2. CUT tests ... 24

3.5.3. CRC and Clock tests .. 29

3.5.4. Invalid values tests ... 31

3.5.5. Post-process function ... 35

3.5.6. Discussion, performances of the software ... 35

3.5.7. Problems and their resolution .. 36

3.5.7.1. “Ressemblance” function: Two methods to link variables with the same Invalid Value message

 37

3.5.7.2. Different samplings between two variables in a frame ... 37

3.5.7.3. Changing the calculation method of the period of a frame ... 38

Diploma Thesis – Renault Group

 Valentin Pauron 5

3.5.7.4. Time constraint margins ... 39

3.6. GUI .. 42

3.6.1. Development of the tool’s GUI ... 42

3.6.2. GUI for every user .. 43

3.7. Validation of the tool .. 45

4. Tool improvements and maintenance ... 47

4.1. Filtering signals ... 47

4.2. Global variables for the AEMS methodology ... 48

4.3. Adaptability of the tool .. 48

Conclusion .. 50

Bibliography .. 51

Table of abbreviations .. 52

Table of figures ... 53

Appendix 1: Assessment report ... 55

Appendix 2: AEMS Methodology ... 56

Appendix 3: liste_seq code ... 57

Diploma Thesis – Renault Group

 Valentin Pauron 6

Introduction

The conception of Electronic Control Unit (ECU) software is a really long and complex process, as the engine

development engineers have to comply with all of the functional specifications, which means that the

constraints coming from other development departments have to be taken into account. The production costs

are also a major constraint. Furthermore, the variable customer needs and the green energies trends are highly

to be considered. Moreover, the electronic architecture of a car plays more and more a critical role in the

overall architecture of the vehicle, especially with electric ones.

At Renault, their development is handled by the powertrain tuning team, and as it plays such a centre role in

the vehicle the process starts in the early phases of the car design. However, small changes in the ECU design

can drastically impact the drivability, the power unit packaging or the architecture of the car. That is why the

base models created in the early phases of development are modified as the car changes to find the perfect

compromise between all the aspects of the vehicle.

I realised my diploma thesis in the applications/functions team. This team is responsible for the development,

calibration and then vehicle tests of the new Renault Electronic Control Units software.

As a car enthusiast and a mechanical engineering student, realizing an internship at Renault was interesting

because it allowed myself to get a better technical knowledge and also discover the automotive engineering

world in a new country. Moreover, the courses at Czech Technical University in Prague in the second year of

Master of Automotive engineering mainly focused on powertrains which matched perfectly with realizing an

internship in the team which designs the ECU of a car.

This work begins with the background of the diploma thesis, with a brief presentation of the Renault team in

which I realized it. It then focuses on the development of a Python tool to automate the post-processing of

inter-system (COMX) validation test results. Inter-system (COMX) tests are tests to assess proper

communication between the various control units within the vehicle. The project schedule and the architecture

of the developed Python program are presented. The development of the tool's main functions and its

Figure 1 Renault Lardy Technical and Test Centre

Diploma Thesis – Renault Group

 Valentin Pauron 7

validation are then presented. To complete this work, openings on new functionalities of the tool are proposed

and then the maintenance programme of the tool is presented.

1. Background

1.1. Presentation of the “applications-functions” team and inter-system

environment

The Renault Lardy Technical and Test Centre has three areas of expertise:

- Acoustics: studies of the vehicle's internal and external noise emissions

- Mechanical innovation: studies of the vehicle's structure, gearbox, and engine

- Electric vehicle: study of batteries and control systems

These studies include endurance, tightness, and performance tests, and are carried out using more than 200

test benches available to characterise vehicles and their equipment. In addition, the Lardy site has three tracks

for testing vehicles and their control systems.

My diploma thesis was realised in the applications/functions team, which is in charge of the calibration and

then validation of Electronic Control Units (ECUs) software. The goal of their work is to well calibrate the ECUs

software to ensure the good communication between the different ECUs of the cars. The environment

describing the communications between the different Electronic Control Units (ECUs) is called inter-system

environment. It involves assessing proper communication between the various electronic control units within

the vehicle [1].

This team is involved in the development of thermal, hybrid and electric projects. In their daily work, the team's

engineers and technicians adjust and then test the ECUs calibrations on the test track or on Hardware-in-the-

loop (HIL) test benches. While testing the ECU, they collect data using the INCA tool to then analyse it.

Following this, they analyse these tests using INCA's MDA (Measure Data Analyzer) module to check that the

calibrations are correct.

MDA is a measurement data analysis tool which is used to visualize, further process, analyse, and document

measurement data [2].

The engineers and technicians carry out tests on various Electronic Control Units, such as Battery Management

System (BMS) or Vehicle Dynamic Control (VDC), or even Adaptive Cruise Control (ACC), introducing errors to

check the reaction of the various electronic control units (ECUs). Adaptive cruise control (ACC) is a type of

advanced driver-assistance system for road vehicles that automatically adjusts the vehicle speed to maintain

a safe distance from vehicles ahead.

Diploma Thesis – Renault Group

 Valentin Pauron 8

As it is possible to notice on next figure, a lot of data flows between vehicles. The different lines represent the

communication links between the different vehicle Electronic Control Units.

The used protocol to link the different car ECUs is the CAN bus (Controller Area Network).

A CAN (Controller Area Network) bus, is a communication protocol used in automotive and industrial

applications to enable data transmission and communication between electronic control units (ECUs) and

devices within a networked system. In this work, the communication environment between the different ECUs

will be called inter-system.

An example of an inter-system connection failure is that an engineer from my team calibrated and then tested

the new ECU software of the new Renault R5. But as the software of the car is still under development, there

was a problem between the brakes and the ABS which caused the brakes to disengage if the ABS was used

before. Therefore, to avoid any accident during the tests, all cars which use this software cannot be driven at

more than 100 km/h. Moreover, to be able to drive this prototype vehicle, the driver has to get different

Renault driving certifications as well piloting trainings, as predevelopment cars have never or almost never

been tested on the road so anything could happen even if the parts of the car are oversized to ensure a better

safety during the tests.

Figure 2 CAN (Controller Area Network) Architecture representing the communication between the different ECUs [5]

Diploma Thesis – Renault Group

 Valentin Pauron 9

1.2. Realising an internship at Renault

In my opinion, team spirit is really important in this application/function team and in general in the whole

Renault company. All the time when someone needs help, especially the interns, it is possible to ask everyone

in the department and it is possible to get some advice or being redirected to new people who would have

better answers.

Moreover, as the centre in which I realised my thesis is a test centre, employees must be in the office therefore

it is very pleasant for new people who just arrived in the department to meet everyone and feel comfortable

instead of contacting them on Teams if they are working from home for instance.

2. Presentation of the former validation methodology for inter-system

environment

The validation of the ECUs’ software is a long and evolving process. Nowadays, the trends tend to automate

as much as possible the validation process to speed up the development of projects by making less errors due

to humans during the validation. By automating the validation process, the validation team can spend more

time on fixing errors and therefore increase the quality of the final product. The used tools to make the manual

post processing will be presented and then the different methods and means of validation will be presented.

2.1. Used tool: INCA / MDA module

INCA [2] is a software package created in 2009 which enables to calibrate the strategies implemented in the

vehicle's ECUs, to validate them on a test bench or using digital simulation, and to diagnose the electronic

components fitted to the vehicle. Several functions are provided by the INCA software and its extensions,

including:

o Flash re-programming of the ECU

o Measurement data analysis with the MDA (Measure Data Analyzer) extension

o Calibration management and measurement parameter setting

o Measurement acquisition

I used a lot this software during my internship to carry out my tasks both on the test bench and on the track.

Interactive and versatile, the work page is an optimized interface for preparing tests and monitoring their

progress. This work page allows the user to adjust ECU calibrations in real-time during the test.

2.2. Former test equipment: Vehicles

The standard process of validation is done with vehicles. The engineers and technicians who calibrate the

software of the car test it on the track while doing a data acquisition on INCA and then they make the analysis

of the acquisition on the INCA tool MDA (Measure Data Analyzer) to validate the ECU’s calibrations and

software [3].

To realize those vehicle tests, after calibrating the software, they have to follow and check each line of the

Validation Plan (PVAL). The Validation Plan (PVAL) is an Excel file which contains the types of tests to be done,

Diploma Thesis – Renault Group

 Valentin Pauron 10

the variables to check as well as the values they should move to during the different phases of the tests. This

file was generated and provided by Manuel Denayrolles, who is an inter-system (COMX) expert.

2.3. Newest test equipment: HIL benches

Nowadays, Hardware-in-the-Loop (HIL) benches are used to speed up and improve the development of new

projects. In fact, the physical environment of the car is simulated to recreate the ECU’s environment to then

test all the types of failures faster [4].

Thanks to the time saved on testing, the engineers and technicians can spend more time on the analysis of the

tests and then improve the quality of the development.

Figure 3 Validation Plan (PVAL) example for one type of test

Diploma Thesis – Renault Group

 Valentin Pauron 11

The HIL Environment consists in:

- Mathematical model (the simulation)

- HIL bench (hardware)

- ECU (hardware)

- Vehicle Harness (hardware)

- IS Tools (Control Desk, DDT2000, CANALYZER, INCA)

ECU (Electronic Control Unit): The ECU expects to receive sensors information and sends commands to

actuators: it receives the signals from HIL bench (the white rectangle) and sends the commands through the

harness (which is also present on the vehicle) connected to the HIL with the I/O board.

I/O board: The signals pass through Input/output boards that ensure the compatibility between the ECU and

the Real time Processor (for both sensor and actuator signals). The signals may have electrical failures

implemented which allows to validate the electrical diagnostics inside the ECU: open circuit, short circuit to

power supply or short circuit to ground. The I/O boards communicate with the HIL processor where the real-

time model is being run.

Control Desk: Interaction with the real-time model is done via the Control Desk.

CAN Network: The CAN Network is integrated to the harness. It ensures communication between all ECUs

present in the vehicle. On the HIL test bench, the CAN Network is connected to the Real-Time model which

simulates the other ECUs of the vehicle.

The ECU, the harness, the load rack, and the model are the only parts specific to a project, all the other

elements remain generic. [5]

An example of using an HIL bench in a concrete case to show that we gain time and can reproduce every

situation which could be really complex to create on a vehicle: such as simulating the overheating of the vehicle

Figure 4 HIL bench architecture [9]

Diploma Thesis – Renault Group

 Valentin Pauron 12

to see if it is well detected and if the connected components well react to this situation by implementing a

downgraded mode for example.

Then, after making the tests on the HIL benches or previously on the cars, the data coming from the tests have

to be analyzed on MDA.

2.4. Inter-system (COMX) tests analysis on MDA module

Whether it is a test on vehicle or on HIL benches, data has to be analysed on the MDA (Measure Data Analyzer)

tool to check if during all the different types of errors, the detection, confirmation and disconfirmation

variables well reacted in accordance with the Alliance Engine Management Software (AEMS) methodology.

The disconfirmation of a failure is the confirmation that the error has been cleared and no longer persists. The

Alliance Engine Management Software (AEMS) methodology is a is a group of rules shared by Renault and

Nissan to ensure that Electronic Control Units (ECUs) behave correctly when they are subjected to a failure. It

determines the time constraints that must be respected by the detection, confirmation and disconfirmation

variables.

For each test, all variables are selected on MDA and then, the time constraints are checked and then the test

is validated or not. If the test is validated, the calibrations of the ECU’s software linked to the checked variables

are validated. If not, the calibrations linked to the faulty variables have to be checked separately.

3. Development of a tool for automatic analysis of engine control unit error

handling

3.1. Definitions

ECU: Electronic Control Unit [6].

Hardware-in-the-Loop benches: HIL bench involves simulating vehicle and environmental inputs for the

electronic control unit (ECU) under test, causing it to believe that it is reacting to real-world driving conditions

on the open road.

COMX tests: Communication Across all Electronic Control Units CAN (Controller Area Network) tests i.e.,

exchanges between all the electronic control units (ECUs) inside the vehicle. Those inter-system tests involve

assessing proper communication between the various control units within the vehicle. [5]

Specifications of a software:

The specifications of an ECU’s software are the architecture and the links between all the variables of the

software to respect the customer’s requirements design specifications [7]. In our case, this diploma thesis will

study the behavior of the detection, confirmation, and disconfirmation of failures in inter-system (COMX).

Diploma Thesis – Renault Group

 Valentin Pauron 13

Therefore, in inter-system (COMX), the main variables which will be checked are the detection, confirmation,

and disconfirmation variables of a failure to assess whether the time constraints are respected or not to detect

and then report potential communication problems between two ECUs.

The architecture of an ECU’s software is basically this:

The detection variable detects the failure and transmits this information to the confirmation and

disconfirmation variables which will respectively switch to 1 or 0 after the confirmation and disconfirmation

time.

Those three variables are reported by the ECU.

Detection variable:

It is a Boolean which is released by the ECU as soon as the failure has been implemented by the experimenter.

Confirmation variable:

The confirmation variable is a Boolean released by the ECU after a delay after the detection of the error to

confirm that the error is present.

Disconfirmation variable:

The disconfirmation of a failure is in fact the confirmation that the error has been cleared and no longer

persists. This variable is released by the ECU after a delay after the detection of the error is over.

INCA/MDA: INCA (Integrated Calibration and Application Tool) is a measurement, calibration and diagnostic

software. [2]

HIL Bench (hardware-in-the-loop): HIL tests help validate embedded software on automotive ECUs using

simulation and modeling techniques to shorten test times and increase coverage, especially for test cases that

are hard to reliably replicate in physical lab, track, or field testing. [4]

Figure 5 ECU software architecture

Diploma Thesis – Renault Group

 Valentin Pauron 14

Frame:

Each frame of the CAN architecture is composed of a data field which contains the information to transmit but

it is also composed of other fields such as the CRC one that we will study later or other ones to know some

information about the importance of the frame for example.

Frame emission period:

Period of transmission of the frame from a sending to a receiving ECU.

Types of tests:

CUT: The CUT of a frame is a type of test used to assess the robustness of a communication system in the case

of a frame break. In this test, communication between two ECUs is intentionally interrupted to check that the

system reacts correctly in this abnormal situation. Later in this thesis, a frame break will be called a CUT.

CRC: (Cyclic Redundancy Check) CRC is an error detection method used to check the integrity of transmitted

data.

Clock: The Clock test’s goal is to desynchronize the clock of one control unit to another one and then see if the

receiver control unit detects the problem of clock desynchronization.

Invalid Value: The goal of this test is to change the value encoded into the data field of a frame by putting a

value out of the valid boundaries of the frame to then transmit it from an emitter ECU to a receiver ECU and

see if the receiver detects and reacts properly to this invalid value.

Figure 7 Different types of tests in COMX

Figure 6 Frame architecture [9]

Diploma Thesis – Renault Group

 Valentin Pauron 15

AEMS (Alliance Engine Management Software) Methodology:

The Alliance Engine Management Software (AEMS) methodology is a is a group of rules shared by Renault and

Nissan to ensure that Electronic Control Units (ECUs) behave correctly when they are subjected to a failure. It

determines the time constraints that must be respected by the detection, confirmation and disconfirmation

variables.

For inter-system (COMX) tests, there are 3 phases in the diagnostic of a failure: detection, confirmation, and

disconfirmation.

However, before the diagnostic of the failure can start, there are 4 variables which must switch to 1:

 -Ignition key variable: It is a Boolean which switches to 1 when the ignition starts.

 -Engine status variable: It is a state variable which has the value of 0 when the engine is off, 1 when the engine

is starting and 2 when the engine is running,

 -Can diagnosis variable: It is a Boolean which switches to 1 when the diagnostics are authorized on the can

network.

 -Conditions of enabling the diagnostic variable: It is a Boolean variable which switches to 1 when all the

conditions are right for activating the diagnostic.

 -Link status variable: It is a Boolean variable which switches to 1 to confirm the presence of the frame received

by the transmitting ECU.

Then, the diagnostic must be activated so that the confirmation and disconfirmation variables can change

value.

The detection consists in making the system aware of an anomaly. Then the confirmation consists in switching

the confirmation variable from 0 to 1 after the detection of the failure for more than a few emission periods

Level 1

Detection Detection time

Confirmation Confirmation time

Disconfirmation Disconfirmation time

Detection Detection time

Confirmation Confirmation time

Disconfirmation Disconfirmation time

Detection Detection time

Confirmation Confirmation time

Disconfirmation Disconfirmation time

Detection Detection time

Confirmation Confirmation time

Disconfirmation Disconfirmation time

Detection Detection time

Confirmation Confirmation time

Disconfirmation Disconfirmation time

Diagnostic

Absence of frame (CUT)

Error contained in

the frame

Frame break (CUT)

Clock failure

CRC failure

Invalid Value failure

Figure 8 Time constraints in the AEMS methodology [Appendix 2]

Diploma Thesis – Renault Group

 Valentin Pauron 16

or a few seconds. The emission period Finally, after the detection variable switches back to 0 when the failure

is over, after a few periods of frames or a few seconds when the value of the detection variable is at 0, the

confirmation variable will switch to 0 as well and the disconfirmation variable will switch back to 1 and

therefore the warning light on the dashboard will also switch off.

There are also 2 categories of diagnostics: the nofrm (No frame) variables are relative to the frame itself

whereas the datanok (Data NOK) variables are relative to the data contained in the frame.

Nofrm (No frame) variables change value according to the state of the entire frame i.e., whether it is present

or not, whereas datanok (Data NOK) variables change according to the contents of the frame i.e. its datafield

or crc.

t

t

t

Example of a CUT test

1

CUT start

1

1

CUT end

Detec on

Con rma on

Discon rma on

Detec on me

Con rma on me

Discon rma on me

Figure 9 Example of a frame behavior during a CUT test

Corrupted data

Figure 10 Datanok failure

Diploma Thesis – Renault Group

 Valentin Pauron 17

Datanok variables are raised when the values in the datafield are wrong, i.e., when the frame datafield is

corrupted. This is the case when there is an invalid value (because a value is set in the datafield outside the

limits), when there is a CRC because the CRC is activated.

There is a “no frame” transmission error when there is a communication break because there is no longer a

connection between the receiver and sender, so the receiver necessarily receives a replacement value.

PVAL HIL: PVAL means “Validation Plan”. It is an excel file which contains all the different steps to realize on

the HIL (hardware-in-the-loop) test bench during a test. Firstly, there is the normal phase where all the

variables are compared to their initial value. Then there is the “error” phase during which the perturbation is

imposed and therefore the corresponding variables are being checked to assess if they switch at the right

moment according to the Alliance Engine Management Software (AEMS) methodology. Finally, there is the

third and last phase which consists in getting back to the initial situation to check if the detection, confirmation

and disconfirmation variables change at the right moment. This file was generated and then provided by

Manuel Denayrolles, who is an inter-system expert, he was my diploma thesis supervisor.

Sender Receiver

Figure 11 No more connection between sender and receiver

Diploma Thesis – Renault Group

 Valentin Pauron 18

3.2. Diploma thesis schedule

: Professional training and university work

: Project milestones

: Final project milestones

The development of an automation tool software for analysis of engine control unit error handling is

decomposed in different parts.

On the upper part of the schedule, it is possible to notice the different milestones of the development of the

post processing tool. The schedule is based on the architecture of the post-processing tool, which breaks down

into several parts: Reading the PVAL HIL (Hardware-In-the-Loop Validation Plan) on Python to extract the

important data, then partial post-processing of the 4 types of tests without taking into account the time

constraints imposed by the Alliance Engine Management Software (AEMS) methodology and finally the precise

post-processing of the 4 types of tests by taking into account the time constraints.

On the lower part it is possible to notice the milestones of the development of the tool which are related to

the creation of the Excel report containing the valid frames and also the GUI of the tool so that the software

can be used by every user in the future.

Figure 12 Diploma thesis schedule

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

July-23 August-23

August-23March-23 April-23 May-23 June-23 July-23

March-23 April-23 May-23 June-23

PVAL HIL

Reading

INCA training Accurate post-

processing CUT

Diploma Thesis

report finished
Partial post-

processing:
CUT,CRC, Clock

Accurate post-

processing:
CRC,Clock,InVal

Partial

post-
processing
InVal

Tool Done

Post-processing

report

GUI

Version 1

Statistics

of the post-
procesing

GUI finishedTool

Optimisation

Validation of

the tool

Diploma Thesis – Renault Group

 Valentin Pauron 19

3.3. Overall tool architecture

Before presenting the tool’s main functions, this illustration summarises the general operation of the tool,

including the main inputs, the main functions as well as the results provided by the tool.

Figure 13 General operating principle of the tool

Diploma Thesis – Renault Group

 Valentin Pauron 20

3.4. Development of a function to read the PVAL HIL (Hardware-In-the-Loop

Validation Plan) and extract relevant data

3.4.1. Reading the PVAL HIL (Hardware-In-the-Loop Validation Plan)

and extracting relevant information on Python
The PVAL HIL (Hardware-In-the-Loop Validation Plan) of a software is the schedule of all the tests to perform

to validate the correct reaction of a diagnostic:

• Detection of errors.

• Confirmation of errors.

• Disconfirmation of errors.

This excel sheet is generated and provided by Manuel Denayrolles, who is an inter-system (COMX) expert.

Step CAN Frame CAN Message/Variable Value to be given Variable to check Value to be checked

Wait 3

TA_SetDelayBetweenSteps 0

CD_SetKeyOn
Frm_Detection_Cnd True OR 1

INCA_ResetFailures

DDT_ResetFailures

INCA_StartRecord FileName Frame Name

Wait 3

CD_StartEngineAndCheck Vnx_eng_stt Nnx_eng_run_stt

Wait 3

INCA_Read Frame_Detected 1

INCA_Read dem_cnd_datanok 1

INCA_Read Status (Vbx_Var) 0

INCA_Read rx_asil 0

INCA_Read frm_stt Nnx_frm_ok_vld_stt

INCA_Read vld_stt_mux Nnx_frm_ok_vld_stt

INCA_Read Status_mux(det_fail_mux) 0

INCA_Read dem_fail_datanok 0

INCA_Read dem_pass_datanok 1

INCA_Read dem_act_datanok 1

INCA_Read Rx_cal_bck_comc

CD_CANUncheckFrame Frame Name

INCA_Read Frame_Detected 1

INCA_Read dem_cnd_datanok 1

INCA_Read Status (Vbx_Var) 1

INCA_Read rx_asil 1

INCA_Read frm_stt Nnx_frm_nok_det_stt

INCA_Read vld_stt_mux Nnx_frm_nok_det_stt

INCA_Read frm_stt Nnx_frm_nok_vld_stt

INCA_Read vld_stt_mux Nnx_frm_nok_vld_stt

INCA_Read Status_mux(det_fail_mux) 1

INCA_Read dem_fail_datanok 1

INCA_Read dem_pass_datanok 0

INCA_Read dem_act_datanok 1

INCA_Read Rx_cal_bck_comc

CD_CANcheckFrame Frame Name

INCA_Read Rx_cal_bck_comc

INCA_Read Frame_Detected 1

INCA_Read dem_cnd_datanok 1

INCA_Read Status (Vbx_Var) 0

INCA_Read rx_asil 0

INCA_Read frm_stt Nnx_frm_ok_vld_stt

INCA_Read vld_stt_mux Nnx_frm_ok_vld_stt

INCA_Read Status_mux(det_fail_mux) 0

INCA_Read dem_fail_datanok 0

INCA_Read dem_pass_datanok 1

INCA_Read dem_act_datanok 1

INCA_StopRecord

CD_SetKeyOff

INCA_ResetFailures

DDT_ResetFailures

Figure 14 PVAL HIL template

Diploma Thesis – Renault Group

 Valentin Pauron 21

As it is possible to notice on this PVAL HIL template, the first column represents the list of the actions during

the test.

The second one contains the name of the different frames.

The third one contains the name of the invalid message for the Invalid Values tests.

The fourth one contains the value of the invalid message for the Invalid Values tests.

The fifth and the sixth contain the list of the variables to check and the value to be checked during the test.

To analyze the results of the tests, thanks to pandas Python library, I created a function liste_seq which goes

through all the PVAL HIL and then gets the name of the different frames, the type of test and the variables to

check as well as the values to be checked.

Figure 15 Extracted PVAL HIL of a CUT test in Python

Diploma Thesis – Renault Group

 Valentin Pauron 22

Then this list will be used to make the analysis of the test by getting the variables to check in the .dat file and

then comparing them with the value that they should take in the PVAL.

3.4.2. Development of liste_seq function

As it has been presented in the previous part, this function is used to extract all the relevant information to

then carry out the automated post-processing of the INCA acquisition files.

This function takes the path of the HIL Validation Plan (PVAL) as an argument as well as the transmission rate

of the analysed frame.

Then, thanks to Pandas Python library, which enables a user to read an Excel file on Python, the Validation Plan

(PVAL) HIL is imported in Python.

Then, the PVAL HIL, an Excel file, is converted to an array thanks to Numpy Python library. This library is used

for numerical and mathematical operations. It provides support for working with arrays and matrices.

Moreover, the functions provided by this library are very fast which makes this library very useful for data

analysis.

The start and end indexes of each PVAL HIL test are then found using the find_index function.

The start and end indexes of a test can be easily recognised in the PVAL HIL Excel file as each start is at the

same line as a “key_on” cell and each end is at the same line as a “key_off” cell.

Thus, this function is based on this principle.

Figure 17 Example of an Excel Validation Plan (PVAL) HIL showing start and end of a test

Figure 16 list_seq function code beginning

Diploma Thesis – Renault Group

 Valentin Pauron 23

Then, a loop goes through the indexes of the starts and ends of the tests and for each test, the name of the

frame is found and then the test type. Then, the 3 parts of the test are found in the Validation Plan (PVAL)

using specific cells. And finally, once the structure of the test is established, liste_seq function will go through

the 3 parts of the test contained in the Excel file PVAL HIL to extract relevant information.

It is possible to look at the code in Appendix 3.

3.5. Development of the automated Post-Processing function

Once all the important data have been extracted from the PVAL HIL, it is now possible to read the acquisition

files on Python to then analyze the tests and validate or not the reaction of the different variables of the

diagnosis when a frame is cut or when an error is imposed.

The post-processing of the different variables is not based on seconds but on the number of iterations for each

sampling of the variables. I.e., a common variable in a test is chosen as the reference, it is called the step

variable of every frame for every test. Then, all the other variables which were analyzed had to be sampled at

the same rate as the reference because it would be very tricky to compare two variables precisely which are

not sampled at the same rate. Therefore, if a variable is not sampled at the same rate as the reference’s one,

it is skipped and automatically set to NOK but the post-processing of the test will continue anyway.

In the remainder of this report, an OK test will refer to a successful one whereas a NOK test will refer to a fail

one.

3.5.1. Input files

PVAL HIL: Validation plan of a software to schedule of all the tests to perform to validate the correct reaction

of a diagnostic. All the important information from this file is extracted by liste_seq function.

Database: This Excel file is mainly used to make the link between the names of the messages, which will be

voluntarily distorted during the Invalid Values tests, and its associated frames, the platform type as well as the

name of the shortened message.

Bridge file: It is an Excel file which makes the link between the frames to check and their associated detection,

confirmation, and disconfirmation variables. It also makes the link between the frame and its emission rate.

Data acquisition: I created the function list_frames_and_files which gets all the names of the frames in the HIL

Validation Plan (PVAL) and link them to their INCA acquisition file in the INCA Record folder. Thanks to this

function, it is possible to automate the post processing of the data by automatically analyzing every frame

from the PVAL HIL one after another.

Diploma Thesis – Renault Group

 Valentin Pauron 24

The principle of this function is that thanks to the PVAL HIL, the list of the frames and types of tests is created.

Then, thanks to this list, the function reads the file names of the .dat files in the acquisition folder to then

compare each frame and type of test to the name of the .dat file.

3.5.2. CUT tests

A CUT test is a frame break test in which the tuner cuts the link between a master ECU and a slave ECU to then

see if the master ECU well reacts to this CUT by detecting it, confirming it and then disconfirming it when the

ECUs are reconnected.

The imposed time constraints during the test relate to the values of the step variable as well as the values of

the detection variable.

Figure 18 List of data path linked to frames names and types of tests

Figure 19 CUT test principle

Diploma Thesis – Renault Group

 Valentin Pauron 25

The step variable is a state variable which characterizes the frame activity i.e., every time the frame is sent

from the sender to the receiver, a rising edge is raised.

To analyse the CUT tests, I created the function check_var_CUT_New_Time which takes as arguments the

important data extracted from the PVAL HIL for the analysed test, the acquisition file path as well as the bridge

file.

The bridge file is used to get the emission rate “dt” of the frame.

In this function, firstly, the acquisition path is found thanks to the find_data function.

Then, the acquisition data is imported in Python thanks to mdfreader library.

Mdfreader is a Python library which is used to import Measured Data Format (MDF) files which are acquisition

files coming from the INCA software.

Once the data is imported in Python, the extracted emission rate dt is used to compute the time constraints

on the different variables of the frame.

Thanks to the data of the “step variable”, the beginning and the end of the CUT are computed thanks to

find_CUT_New function by determining the iterations when the “step variable” starts to be constant and when

it finishes to be constant, i.e., when the CUT is over.

Figure 20 Step variable example

Diploma Thesis – Renault Group

 Valentin Pauron 26

Once the beginning and the end of CUT have been computed, a test is done to assess if the step variable is

constant or not. If it is constant, that means that the frame is not active, therefore the test is automatically set

as NOK. If not, the analysis of the test can begin.

The check_var_CUT_New_Time function will now go through all the variables to check in the PVAL HIL during

the 3 phases of the chosen test.

Figure 21 Step variable reaction during a CUT

Diploma Thesis – Renault Group

 Valentin Pauron 27

During the first phase, which is the normal phase, the variables are compared to their initial expected values.

I.e., the variables concerning the ignition key, the conditions to activate the diagnosis, the activation of the

diagnosis, the link status between the two ECUs and evidently the detection, confirmation, and disconfirmation

variables to ensure that they are set to their initial values. Moreover, during this first phase, when the detection

variable is being checked, the beginning and the end of the detection are computed at the same time as the

time constraints on the confirmation and disconfirmation variables are based on failure detection.

Then, during the second phase which is the CUT phase, the detection variable is firstly checked to notice if

there are some parts during the CUT when it oscillates between 0 and 1 thanks to test_det_fail function.

The principle of this function is that when it detects a 0, it checks if detection variable stays at 0 for more than

one emission period. If so, this oscillation could disturb the other variables, therefore the entire test is set as

NOK. Else, detection is OK and the test analysis can keep on.

Following this, all the other variables can be checked during this phase as their time constraints all depend on

the time of the beginning of the CUT or on the time of detection (which should occur a few periods after the

beginning of the CUT).

For the third and last phase, the same process as for the second one is applied i.e., the detection, the

confirmation and disconfirmation variables are checked to notice if they come back to their initial value,

Figure 22 Last version of extracted PVAL HIL of a CUT test in Python

Diploma Thesis – Renault Group

 Valentin Pauron 28

depending on the time constraints of the end of the CUT and the end of the detection for the confirmation and

detection.

Finally, the result of the analysis of the test is returned by check_var_CUT_New_Time.

Figure 23 Analysis result of a CUT test

Diploma Thesis – Renault Group

 Valentin Pauron 29

3.5.3. CRC and Clock tests

A Clock test is a desynchronisation test in which the tuner desynchronizes a master ECU and a slave ECU to

then see if the master ECU well reacts to this desynchronisation by detecting it, confirming it and then

disconfirming it when the ECUs are reconnected.

The time constraints imposed during the test relate to the values of the of the synchronisation detection

variable.

The synchronisation detection variable is a Boolean variable which characterizes a problem of synchronization

between two ECUs.

The CRC (Cyclic Redundancy Check) test is an error detection method used to check the integrity of transmitted

data.

The CRC detection variable is a Boolean variable which characterizes a problem of data integrity between two

ECUs.

As it is possible to notice on this scheme representing the architecture of a frame, some bits of each part of

the data frame are used to compute the CRC of a frame. When the frame is emitted, the CRC is also computed

and sent by the emitter. Then, the receiver computes the CRC with the received frame and compares this value

with the CRC calculated by the emitter. Thanks to this method, it is eventually possible to spot an error during

the transmission of the frame.

Figure 24 Clock and CRC principles

Figure 25 Frame architecture

Diploma Thesis – Renault Group

 Valentin Pauron 30

However, this method is not unerring because during the calculation of the CRC, not all the bits are selected

to compute this value therefore if an error appears on a bit which is not in the calculation of the CRC, the frame

can be transmitted without detecting any malfunction.

The analysis of the CRC and Clock tests are exactly the same. Therefore, I created a common function,

check_var_CRC_Clock, to analyse both the CRC and Clock tests.

The only difference between those two tests is the name of the detection variable which is “CRC_det_fail” for

a CRC test and “Clock_ det_fail” for the Clock tests.

As the variables time constraints depend only on the detection of the failure, I created a test at the beginning

of the program so that the function knows if the test is a CRC one or a Clock one.

check_var_CRC_Clock function takes as arguments the important data extracted from the PVAL HIL for the

analysed test, the acquisition file path as well as the bridge file.

The bridge file is used to get the emission rate “dt” of the frame.

In this function, firstly, the acquisition path is found thanks to the find_data function.

Then, the acquisition data is imported in Python thanks to mdfreader library.

Once the data is imported in Python, the emission rate dt is extracted from the bridge file to use it to compute

the time constraints on the different variables of the frame.

Thanks to the “step variable” data, which is the detection variable for those tests, the beginning and the end

of the CRC or Clock failure are computed thanks to find_CRC function by determining the iterations when the

“step variable” switches to 1 and then returns to 0, i.e., when the failure is over.

Once the beginning and the end of the CRC or Clock failure have been computed, a test is done to assess if the

frame is active or not thanks to the callback variable (which is the step variable in CUT tests). If not, the test is

automatically set as NOK. Else, the test analysis can begin.

check_var_CRC_Clock function will now go through all the variables to check in the PVAL HIL during the 3

phases of the chosen test.

Figure 26 Callback variable : represents the frame activity, one step every period

Diploma Thesis – Renault Group

 Valentin Pauron 31

During the first phase, which is the normal phase, the variables are compared to their initial expected values.

I.e., the variables concerning the ignition key, the conditions to activate the diagnosis, the activation of the

diagnosis, the link status between the two ECUs and evidently the detection, confirmation, and disconfirmation

variables to ensure that they are set to their initial values.

Then, during the second phase which is the CRC or Clock failure phase, the detection variable is firstly checked

to notice if it oscillates between 0 and 1 during the failure. Variable oscillations are monitored in the same way

as for CUT tests, thanks to test_det_fail function. Then, if the detection oscillates, the detection variable is

directly set as NOK. Following this, all the other variables can be checked during this phase as their time

constraints all depend on detection time. That is why for this test it is very important to make a precise

diagnosis on this detection variable as all the analysis computations are based on it.

For the third and last phase, the same process as for the second one is applied i.e., the detection, the

confirmation and disconfirmation variables are checked to notice if they come back to their initial value,

depending on the time constraints based on the end of detection for confirmation and disconfirmation.

Finally, the result of the analysis of the test is returned by check_var_CRC_Clock.

3.5.4. Invalid values tests

An Invalid value is a replacement value enabling the system to continue operating without crashing, by

activating a degraded mode for example, but meaning that the transmitter is no longer able to calculate and

send a valid value. Link with the transmitter is still present i.e. the frame is present and active, synchronisation

is OK i.e. Clock is OK, data is not corrupted i.e. CRC is OK but the transmitter can no longer calculate a valid

value.

For example, if one of the transmitter's sensors is out of order and it needs to transmit this measurement or

perform a calculation using this measurement: a replacement value is sent instead, known as the invalid value.

In the remainder of this report, an invalid value message will refer to the signal name of the faulty invalid value

which is linked to its detection, confirmation and disconfirmation variables.

Figure 27 Invalid values test principle

Diploma Thesis – Renault Group

 Valentin Pauron 32

For example, the frame “ADAS_A2” which is a driving aids frame contains different signals such as

“ACC_PWTWheelTorqueRequest” or “ACC_PWTWheelTorqueOrder” which manage the adaptative cruise

control.

The goal of this test is to change the data field of a frame in the frame structure by putting a value out of the

valid bounds of the frame to then transmit it from an emitter ECU to a receiver ECU and see if the receiver

detects and reacts properly to this invalid value.

In fact, there is also three parts during the test. Firstly, all the variables are being recorded during the first

phase, which is the normal phase. Then, during the second phase, one or more messages of the frame are

voluntarily changed with invalid values and then the detection and confirmation variables are being recorded

precisely to notice if the system well reacts to the perturbation.

Then during the last phase, the third one, the changed messages containing invalid values are removed and

the situation is finally set back to the initial situation to notice if the detection, confirmation, and

disconfirmation variables well react.

To analyse Invalid Values tests, I created the function check_var_InVal which takes as arguments the important

data extracted from the PVAL HIL for the analysed test, the acquisition file path as well as the bridge file.

The bridge file is used to get the emission rate “dt” of the frame.

In this function, firstly, the acquisition path is found thanks to the find_data function.

Then, the acquisition data is imported in Python thanks to mdfreader library.

Once the data is imported in Python, the extracted emission rate dt is used to compute the time constraints

on the different variables of the frame.

Then, thanks to find_Msg_InVal and the database, a dictionary which links all Invalid Values messages to the

variables names is created.

Finally, the initialization phase is over, therefore, the analysis can start.

Figure 29 Frame architecture

Figure 28 Example of an invalid value PVAL containing 2 invalid values

CD_CANImpose
Faulty Message 1

(Signal 1)
Invalid Value 1

CD_CANImpose
Faulty Message 2

(Signal 2)
Invalid Value 2

Frame Name

Diploma Thesis – Renault Group

 Valentin Pauron 33

As an invalid value test can contain several invalid values messages, the post-processing is done message by

message as invalid values messages are sent at a different time. Consequently, the beginning and the end of

phase 2 during the analysis should differ from one message to another.

That is why every invalid value test analysis is carried out faulty message by faulty message.

Then for every faulty message analysis, the activation, activation conditions, detection, confirmation and

disconfirmation variables are found in the variables to check list and then loaded in Python thanks to search

function and the dictionary which links the shortened message name to the corresponding variables.

Once all the relevant variables have been loaded, the post-processing of the faulty message can begin.

During the first phase, which is the normal phase, the variables are compared to their initial expected values.

Then, during the second phase which is the invalid value failure phase, the invalid value message detection

variable is firstly checked to notice if it oscillates between 0 and 1 during the failure. Variable oscillations are

monitored in the same way as for CUT tests, thanks to test_det_fail function. Then, if the detection oscillates,

the detection variable is directly set as NOK. Following this, all the other variables can be checked during this

phase as their time constraints all depend on detection time.

For the third and last phase, the same process as for the second one is applied i.e., the detection, the

confirmation and disconfirmation variables are checked to notice if they return to their initial value, depending

on the time constraints based on the end of detection for confirmation and disconfirmation.

Finally, the analysis of the variables linked to the faulty message is saved in the “Result” list which contains the

analysis of the other faulty messages.

Then, the analysis process is applied to all the other faulty messages variables and finally the “Result” list is

returned, containing all the faulty messages analysis.

Figure 30 Example of 3 invalid values detection variables with different starts

Diploma Thesis – Renault Group

 Valentin Pauron 34

Example of a faulty Invalid Value test: In this test, it will be shown that the time constraints were not respected

between the detection of the failure and then the confirmation of the failure: There was 20 sec between the

detection and the confirmation whereas it should have been (3+1) dt according to the AEMS methodology i.e.

about 4 sec to confirm the failure.

Therefore, following this situation, the tool notices the wrong confirmation time and then set the confirmation

variable as NOK which will result as a NOK test in the Excel report, with the confirmation variable to check.

Figure 31 Faulty Invalid Value test

Variables to check Phase 1 Phase 2 Phase 3
Vbx_dem_fail_abs1ignition_datanok 0 0 0

Vbx_dem_pass_abs1ignition_datanok 1 0 0

Result NOK
nofrm - -

Status of observed datanok variables NOK 6

Figure 32 Faulty invalid value test Excel report

Diploma Thesis – Renault Group

 Valentin Pauron 35

As it is possible to notice on this Excel report, this diagnosis is well established as it is possible to see that the

“dem_fail” variable (confirmation variable) is still at 0 at the time when it is supposed to switch to 1 because

of the detection of the failure. Finally, the test is set to NOK at the right error code 6 which means that the

confirmation time is not respected.

3.5.5. Post-process function

Finally, after developing and testing the three post-processing functions adapted to the 4 types of tests, i.e.

check_var_CUT_New_Time, check_var_CRC_Clock or check_var_InVal, I created the Post-process function

which takes as main argument the extracted Validation Plan (PVAL) HIL to then go through it and read the

name and test type of each frame to then apply the right post-processing function I just mentioned.

Post-process function is the main function which is called in the GUI to make the post-processing of all the

tests.

3.5.6. Discussion, performances of the software

It was highly practical to create the Post-process function which calls upon four other functions rather than a

single, large function. This made the development and testing of these four functions much simpler, unlike a

function which would handle all four types of tests and be more complex to debug. Furthermore, using multiple

small functions rather than a single main one offers several advantages for tool maintenance and updates, as

it facilitates modifications and improvements to the functions and simplifies problem-solving.

Additionally, breaking down the program's structure into various small functions is well-suited for maintenance

and future upgrades by other engineers or technicians from my team, as it will enable them to better

Figure 33 Post-processing function code in Python

Diploma Thesis – Renault Group

 Valentin Pauron 36

understand the tool's operation compared to dealing with a single, monolithic function, which can be

challenging to grasp.

The advantage of creating Post-process function is that it is possible to test all types of tests or select only one

if improvements have been made to a specific post-processing function, for example.

Moreover, in a future project, the Python list derived from data extracted from the PVAL HIL could be

transformed into classes. This transformation would create an even more understandable structure for a new

user. For instance, each frame from the PVAL HIL could be directly accessed by its name in Python instead of

its index, thereby containing different lists of variables to control based on each type of test.

An also important part of this project was to optimize the software so that the tool can analyse the data coming

from the HIL tests as fast as possible to be able to speed up the development of new Renault projects.

In early June, the tool was able to analyse 61 tests per hour.

Then, by using some existing and fast libraries on Python, such as Numpy or Pandas, it was possible to reduce

computation time up to the end of the thesis.

That is why in early August, after optimizing the tool, it was possible to analyse more than 100 tests per hour.

3.5.7. Problems and their resolution

During the development of the tool, I faced different problems, some were hard to fix but not very significant

on the results of analysis and some were less hard to fix but very influent on the results.

Therefore, in this part, the different problems will be presented in the order of their influence on the results,

and not according to the difficulty of solving them. Always had to modify little parts of the tool to correct it

and took a long time to calibrate the time constraints for example because I always had to look at the variables

on MDA to set new time constraints margins.

CAN Frame CUT CRC CLock InVal
VDC_A121 NOK - - -
ADAS_A104 NOK - - -
HFM_A104 OK - - -

USM_A102_FD OK - - -
IVI_A132_FD NOK - - -
IVI_R103_FD NOK - - -

ParkOut_SCU_Frame NOK - - -
EPKB_A1 NOK - - -

FRCAMERA_A110 OK - - -
BCM_R102SC_FD NOK - - -

CDM_A107 OK - - -
CDM_A103_FD NOK - - -
HVAC_A114_FD NOK - - -

VDC_A5 NOK - - -
HVAC_A2_FD NOK - - -
USM_A101 OK - - -

Figure 34 Excel results containing only the post-processing of CUT type tests

Diploma Thesis – Renault Group

 Valentin Pauron 37

3.5.7.1. “Ressemblance” function: Two methods to link variables with the

same Invalid Value message

As it is possible to notice on this example of PVAL HIL with 3 invalid values faulty messages, the signal names

of the two first messages are very similar which created a problem in the program. As once the invalid message

is obtained, all the linked variables such as detection, confirmation or disconfirmation are found in the PVAL

HIL but in this case, the linked variables were not the good ones but the ones of the other similar faulty

message. Therefore, all the analysis of some invalid values tests were wrong as the post processing of every

invalid value signal depends on its variables and not on the variables of another one which could have been

triggered later for example.

Finally, the other method has been chosen, whose aim is to import the big database file which links all the

diagnostics variables to Invalid Values messages.

3.5.7.2. Different samplings between two variables in a frame

Error message: out of bounds of the pfail_clock variable.

CD_CANImpose VDC_A9 WheelSpeedFR 65535

CD_CANImpose VDC_A9 WheelSpeedFL 65535

CD_CANImpose VDC_A9 VehicleSpeed 65535

Figure 35 Invalid values signals in a PVAL HIL

Figure 36 Error message in Python

Diploma Thesis – Renault Group

 Valentin Pauron 38

I ran into a problem concerning the difference of sampling between the step variable and a pfail_clock variable

during a CUT test therefore the analysis failed because the iteration of the beginning of the CUT was about

80.000 whereas the length of the pfail_clock variable was about 8.000 samples therefore the test was

performed outside the pfail_clock variable’s bounds.

Is was a problem because it failed the test whereas it was ok because this pfail_clock variable was not relevant

for a CUT test.

finally, we now check if the time sampling (master of the variable) of the variable to check is the same as the

one of the step variable.

3.5.7.3. Changing the calculation method of the period of a frame

In the first phase of development of the tool, I was computing the refresh rate of every frame in order not to

import too many files in the Post_Process tool. I was computing the refresh rate of each frame thanks to the

data of the step variable (Vnx rx) to then make the analysis of the test and apply the time constraints of the

AEMS methodology to the variables of the frame based on the computed refresh rate.

Figure 37 Different samplings of 2 variables in MDA

Diploma Thesis – Renault Group

 Valentin Pauron 39

Finally, I chose to use the bridge file to get the dt instead of computing it because there was a problem of

acquisition in some .dat file which distorted the computation of dt (In this case, 10 iterations instead of 1000).

Consequently, this wrong dt disrupted the post-processing of the frame and released a NOK instead of an OK

because the tool assessed if the time constraints between the beginning of the CUT and its detection were

respected but they were not as the dt was wrong. Therefore, it is finally a better choice not to compute the dt

for every frame because the process of getting the dt of each frame in the bridge file is finally faster.

3.5.7.4. Time constraint margins

It is very important to well calibrate the time constraint margins of the tool not to get a wrong NOK i.e. to

assess a test as NOK instead of OK and therefore distort the statistics.

Figure 38 Calculation method of frame emission period

Diploma Thesis – Renault Group

 Valentin Pauron 40

For example, this test was OK because the time period dt of this frame is 1 sec and according to the

methodology, the detection should happen about 3*dt after the beginning of the CUT i.e. about 3 sec after the

CUT in this case. As it is possible to notice here, the detection occurs 3.4 seconds after the beginning of the

CUT which is more than 3 seconds despite the tolerance margin of 20 % of a dt that I had implemented.

Therefore, the test was NOK. However, the right tolerance margin which is used by the tuners is in fact 50 %

of a dt period. Finally, after correcting this tolerance margin, lots more than half of the COMX tests switched

to OK.

Figure 39 Step and detection variables on MDA

Diploma Thesis – Renault Group

 Valentin Pauron 41

As it is possible to notice, by putting the right margins, many tests finally switched to OK by putting the right

time constraints.

CAN Frame CUT
VDC_A114 NOK

METER_A107_FD NOK
METER_A103_FD NOK
CSCM_A102_FD NOK
CSCM_A104_FD NOK
CSCM_A103_FD NOK
CSCM_A105_FD NOK
CSCM_A106_FD NOK

TIME_R1_FD NOK
METER_UserSetPref_A1_FD NOK

CDM_A117 OK
CPLC_R4_FD NOK

HVAC_A113_FD OK
CPLC_A103_FD NOK
CPLC_A107_FD OK
CPLC_A102_FD NOK
CPLC_A106_FD OK
CPLC_A104_FD NOK
HFM_A101_FD NOK
BCM_A114_FD NOK
BCM_R14_FD NOK

CDM_A111 NOK
VDC_A6 NOK

CAN Frame CUT
VDC_A114 NOK

METER_A107_FD OK
METER_A103_FD NOK
CSCM_A102_FD OK
CSCM_A104_FD NOK
CSCM_A103_FD NOK
CSCM_A105_FD OK
CSCM_A106_FD OK

TIME_R1_FD OK
METER_UserSetPref_A1_FD NOK

CDM_A117 OK
CPLC_R4_FD OK

HVAC_A113_FD OK
CPLC_A103_FD OK
CPLC_A107_FD NOK
CPLC_A102_FD OK
CPLC_A106_FD OK
CPLC_A104_FD OK
HFM_A101_FD NOK
BCM_A114_FD NOK
BCM_R14_FD NOK

CDM_A111 NOK
VDC_A6 OK

Figure 40 Results of tests analysis on the Excel report

Diploma Thesis – Renault Group

 Valentin Pauron 42

3.6. GUI

3.6.1. Development of the tool’s GUI

For each analysis of a frame, I created a GUI which contains:

- The name of the frame

- The type of test

- The results of the analysis of the frame during the 3 different phases

Figure 41 First Python’s GUI for test analysis

Diploma Thesis – Renault Group

 Valentin Pauron 43

Every line of the results contains the name of the variable which has been checked, the value to be checked,

the result of the comparison between the expected value and the real value (OK or NOK) and then the real

value during the test.

3.6.2. GUI for every user

The aim was to create a Human Machine Interface (HMI) to enable users to use the data analysis tool

without needing to know the Python language. The aim was therefore to develop a HMI that combined

Arnaud's work with my own. The initial specifications were quite simple: to create a GUI that would allow

everyone to obtain the automated report.

The first step was to create a GUI class containing all the necessary elements. The PyQt5 library was chosen,

a library dedicated to HMIs in Python, because it offers more functionality than Tkinter.

The first approach was to create a very simple window with three buttons: "Load CNIB file", "Load PVAL

Excel file" and "Start analysis". The choice of trial type was made via a drop-down menu, with no additional

message displayed. The only objective was to carry out the analysis, and the report was generated at the

location of the Python file. This version is called "HMI version 1".

Figure 43 HMI V1

Figure 42 Frame’s variable analysis result

Diploma Thesis – Renault Group

 Valentin Pauron 44

As the counting code evolved, this first GUI became obsolete, although it did the job it was supposed to

do. New functions were therefore added. The user now had to load the software database as well as the

vehicle platform, as these are used in the counting process. Arnaud and I also wanted to visualize the

calculation and progress of the counting in real time. Version 2 of the GUI was therefore created,

incorporating two progress bars to display the reading of the PVAL HIL file and the counting of the frames.

Visual changes have also been made (Version of 5 June).

Figure 44 HMI V2

Diploma Thesis – Renault Group

 Valentin Pauron 45

Following the development of the code, the final interface has been completed. To obtain the "lab" file,

the user must now select both the software variables file and the software "labels" file. To avoid having

too many buttons, the functions for loading the CNIB file and the PVAL HIL file have been merged. The load

button can now be used to locate the INCA folder and the PVAL HIL file in the results file sent directly by

Romania. A button for loading the bridge file has also been added for post-processing. A display of

processed frames has also been integrated into the HMI. What's more, the report and text file are now

automatically opened when they are generated at the end of the automatic processing, eliminating the

need to search for them and allowing you to choose the download location. This version is dated 31 July

2023."

3.7. Validation of the tool

The validation process is a pretty long development phase of the tool because it consists in realising a lot of

automated post processing with the tool to then compare the results to the manual post processing of the

data on MDA (Measure Data Analyser) module. It is very important to create a safe tool so that to get a right

OK or NOK not to compromise the development of a car. A safe tool is one that only enables calibration

validation if and when all associated tests are completely successful. Designing a tool which generates false

negatives rather than false positives is considerably preferable since if the outcome is a false negative, it will

be quickly reviewed and validated manually. If, however, it turns out to be a false positive, this result won't be

examined, and any calibrations associated to it could potentially result in future ECU failures, endangering the

driver of the car in the future.

Consequently, to validate the tool, I used the HIL tests realized by Renault in Romania on new cars ECUs [8].

Then those HIL (Hardware-in-the-Loop) tests have been manually analysed by the engineers and technicians

Figure 45 HMI V3

Diploma Thesis – Renault Group

 Valentin Pauron 46

of my team as well as subcontractors. Following this period of manual analysis, I ran the automated post-

processing tool on the same HIL tests to then compare automated post-processing results with manual post-

processing results.

To achieve the tool validation and so that the tool can be used by every user, even the ones who cannot use

Python, an executable has been created to start the tool easily and then directly start a post processing.

Figure 46 Example of automated post-processing

Diploma Thesis – Renault Group

 Valentin Pauron 47

4. Tool improvements and maintenance

It is really important to keep on improving the tool after releasing a first working version. Because it is still

possible to make it faster by improving the code by using new libraries. But it is also possible to improve it by

filtering the signals during the post processing so that to detect the errors at the right times even for irregular

signals. It could also be possible to create a code which adapts itself to the new AEMS methodology.

Adaptability in reading the PVAL is also very important to be able to analyze as much data as possible.

4.1. Filtering signals

Currently, when a test contains irregular signals like the ones on the graph above, the test is automatically set

as NOK because it means that there was a failure during the test. So that means that every test which has

technical problem is set as NOK.

However, it could be interesting in the future to adapt the tool to irregular signals so that analyzing the tests

could be possible even with technical issues.

Thanks to this approach it could be another way to improve the development of new ECUs software by

validating their software even if the signals in the test were not perfectly regular.

Figure 47 Example of irregular signals

Diploma Thesis – Renault Group

 Valentin Pauron 48

4.2. Global variables for the AEMS methodology
In the next years, new rules will force Renault to adapt its AEMS methodology and therefore change time

constraints for detection, confirmation and disconfirmation of errors for example. Thanks to this code, it is

possible to modify the time constraints of the tool without modifying the whole code in every analysis function.

Then, a next step in the improvement of the tool could be to use AI to read the new time constraints in the

AEMS methodology and then update the tool in a few seconds.

4.3. Adaptability of the tool

It is also really important to make an adaptable tool as sometimes the input files may contain errors that the

tool should recognize to overcome this problem and keep on analysing the file.

For instance, I encountered a problem in one part of the New Captur’s PVAL HIL. In fact, when the tool reads

the PVAL HIL to extract all the relevant information, it detects the transition from one vehicle to another using

the cell “CD_SetKeyOn” to know the beginning of a test and “CD_SetKeyOff” to know the end of a test.

Figure 48 Setting time constraints in Python

Diploma Thesis – Renault Group

 Valentin Pauron 49

On the New Captur’s PVAL HIL, the “CD_SetKeyOn” cell was missing for one test, therefore when the tool

wanted to detect the next test, it never detected it as the condition needed to know the beginning of a test is

this “CD_SetKeyOn” cell.

Finally, as this error occurred only once I corrected the PVAL HIL by adding the missing “CD_SetKeyOn” cell.

INCA_Read

INCA_Read

INCA_StopRecord

CD_SetKeyOff

INCA_ResetFailures

DDT_ResetFailures

CD_SetKeyOn

INCA_ResetFailures

DDT_ResetFailures

INCA_StartRecord

Wait

CD_StartEngineAndCheck

Wait

INCA_Read

INCA_Read

INCA_Read

INCA_StopRecord

CD_SetKeyOff

INCA_ResetFailures

DDT_ResetFailures

INCA_ResetFailures

DDT_ResetFailures

INCA_StartRecord

Wait

CD_StartEngineAndCheck

Wait

INCA_Read

Figure 49 PVAL HIL error leading to
an error during post processing

Diploma Thesis – Renault Group

 Valentin Pauron 50

Conclusion

This study focused on the development of an automatic analysis tool as part of the validation of ECU software.

After studying and understanding the manual post-processing method, the main functions required to

implement the post-processing tool have been created.

By developing the three main post-processing functions check_var_CUT_New_Time, check_var_CRC_Clock,

check_var_InVal as well as Post-process function, I have been able to automatically post-process the four test

types i.e., CUT, CRC, Clock and Invalid values. While validating the tool, its produced results were exactly the

same as those obtained by manual post-processing.

Moreover, to analyse all the frames of an ECU, it takes half a day by doing it automatically instead of doing it

manually during two weeks by three engineers and technicians.

Consequently, this automatic post-processing tool for HIL bench tests frees up human resources so that they

can concentrate on tasks with greater added value, such as resolving errors detected by the tool to realize a

better ECU software. In addition, a GUI has been developed to enable the tool to be used by everyone.

In conclusion, the tool is already being deployed on new Renault projects to improve productivity and quality.

This end of studies internship gave me the opportunity to work in the applications/functions team of the

Renault Lardy Technical and Test Centre. It gave me an overview of how car ECU development is carried out,

as I have developed a tool to validate the correct operation of ECUs for new Renault projects. Through this

work, it is possible to notice that I gained both technical and human skills thanks to the opportunity to realise

an internship at Renault.

Working in such an environment of car enthusiasts was a pleasure given my passion for cars, I was learning

without feeling like I was working. I find it fascinating to design a vehicle and then to be able to try out its

functions directly afterwards on the track, like at the Lardy centre. I also had the privilege to get an insight into

the world of crash tests which was very interesting to understand better the development of cars.

Moreover, developing the tool for automating the analysis of engine control units for our team and our

colleagues in Romania and Spain was very stimulating and rewarding. Working in this environment gave me

the opportunity to discover the main steps in the conception of new ECUs software as well as to gain technical

knowledge in this field. I also had to face several challenges, in particular the development of a tool under

pressure from project teams which needed it to improve their development of ongoing projects as fast as

possible but I adapted myself and I can only have incredible memories of this experience.

Furthermore, this internship introduced me to the organisation of a large and French automotive company.

Living in a city where the car industry has to adapt drastically to take account of the growing ecological

challenges was very interesting and motivating to maintain and strengthen my desire to work in the

automotive industry.

Diploma Thesis – Renault Group

 Valentin Pauron 51

Bibliography

[1] L. Jeannier et Y. Reneme, Méthodologie de calibration et de validation : Méthodologie pour l’architecture

C1H en A-EMS, Paris: Internal document of Renault, 2020.

[2] ETAS, «INCA – Produits logiciels,» 2023. [En ligne]. Available:

https://www.etas.com/fr/produits/inca_software_products.php. [Accès le 2023].

[3] ETAS, INCA V6.2 Didacticiel, Paris: ETAS, 2008.

[4] Aptiv, “What is hardware-in-the-loop testing?,” 24 March 2 22. [Online]. Available:

https://www.aptiv.com/en/insights/article/what-is-hardware-in-the-loop-testing. [Accessed July 2023].

[5] M. Denayrolles, HIL SW & Calib VALIDATION, Paris: Internal document of Renault, 2023.

[6] IFP: Institut Français du Pétrole (French Institute of Petroleum), Fondamentaux sur le fonctionnement des

moteurs (Fundamentals of engine operation), Rueil-Malmaison: IFP school, 2019.

[7] Renault Group, A-EMS Software specification, Engine Control Strategies: Conventional, hybrid and EV

systems, Paris: Internal document of Renault, 2022.

[8] Renault Group, HIL Bench usage, Paris: Internal document of Renault, 2015.

[9] M. Denayrolles, Methodology for using ATCL Appli COMX, Paris: Internal document of Renault, 2023.

Diploma Thesis – Renault Group

 Valentin Pauron 52

Table of abbreviations

AEMS: Alliance Engine Management Software

ECU: Electronic Control Unit

MDA: Measure Data Analyzer

COMX: Communication Across all Electronic Control Units

HIL: Hardware-in-the-loop

DATANOK: Data not OK

CUT: Frame break

CRC: Cyclic Redundancy Check

CAN: Controller Area Network

OBD: On-Board-Diagnostic

PVAL: Validation Plan

SW: Software

Calib: Calibration

BMS: Battery Management System

VDC: Vehicle Dynamic Control

ACC: Adaptive Cruise Control

NOK: Not OK

PFAIL: Pre-failure i.e., before failure

Diploma Thesis – Renault Group

 Valentin Pauron 53

Table of figures
Figure 1 Renault Lardy Technical and Test Centre ... 6

Figure 2 CAN (Controller Area Network) Architecture representing the communication between the different

ECUs [5] .. 8

Figure 3 Validation Plan (PVAL) example for one type of test ... 10

Figure 4 HIL bench architecture [9] .. 11

Figure 5 ECU software architecture ... 13

Figure 6 Frame architecture [9] .. 14

Figure 7 Different types of tests in COMX .. 14

Figure 8 Time constraints in the AEMS methodology [Appendix 2] .. 15

Figure 9 Example of a frame behavior during a CUT test ... 16

Figure 10 Datanok failure ... 16

Figure 11 No more connection between sender and receiver .. 17

Figure 12 Diploma thesis schedule ... 18

Figure 13 General operating principle of the tool .. 19

Figure 14 PVAL HIL template .. 20

Figure 15 Extracted PVAL HIL of a CUT test in Python ... 21

Figure 16 list_seq function code beginning .. 22

Figure 17 Example of an Excel Validation Plan (PVAL) HIL showing start and end of a test 22

Figure 18 List of data path linked to frames names and types of tests ... 24

Figure 19 CUT test principle ... 24

Figure 20 Step variable example .. 25

Figure 21 Step variable reaction during a CUT ... 26

Figure 22 Last version of extracted PVAL HIL of a CUT test in Python ... 27

Figure 23 Analysis result of a CUT test ... 28

Figure 24 Clock and CRC principles .. 29

Figure 25 Frame architecture ... 29

Figure 26 Callback variable : represents the frame activity, one step every period .. 30

Figure 27 Invalid values test principle .. 31

Figure 28 Example of an invalid value PVAL containing 2 invalid values ... 32

Figure 29 Frame architecture ... 32

Figure 30 Example of 3 invalid values detection variables with different starts ... 33

Figure 31 Faulty Invalid Value test ... 34

Figure 32 Faulty invalid value test Excel report ... 34

Figure 33 Post-processing function code in Python ... 35

Figure 34 Excel results containing only the post-processing of CUT type tests ... 36

Figure 35 Invalid values signals in a PVAL HIL .. 37

Figure 36 Error message in Python .. 37

Figure 37 Different samplings of 2 variables in MDA ... 38

Figure 38 Calculation method of frame emission period ... 39

Figure 39 Step and detection variables on MDA .. 40

Figure 40 Results of tests analysis on the Excel report .. 41

Figure 41 First Python’s GUI for test analysis ... 42

file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709849
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709850
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709850
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709851
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709852
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709853
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709854
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709855
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709856
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709857
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709858
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709859
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709860
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709861
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709862
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709863
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709864
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709865
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709866
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709867
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709868
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709869
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709870
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709871
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709872
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709873
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709874
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709875
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709876
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709877
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709878
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709879
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709880
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709881
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709882
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709883
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709884
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709885
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709886
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709887
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709888
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709889

Diploma Thesis – Renault Group

 Valentin Pauron 54

Figure 42 Frame’s variable analysis result .. 43

Figure 43 HMI V1 .. 43

Figure 44 HMI V2 .. 44

Figure 45 HMI V3 .. 45

Figure 46 Example of automated post-processing ... 46

Figure 47 Example of irregular signals ... 47

Figure 48 Setting time constraints in Python ... 48

Figure 49 PVAL HIL error leading to an error during post processing .. 49

Figure 50 AEMS Methodology .. 56

file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709890
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709891
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709892
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709893
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709894
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709895
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709896
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709897
file:///C:/Users/pauro/Documents/Renault/Valentin%202/Rapport%20de%20stage/Rapport_Pauron_Valentin_Renault.docx%23_Toc145709898

Diploma Thesis – Renault Group

 Valentin Pauron 55

Appendix 1: Assessment report

Diploma Thesis – Renault Group

 Valentin Pauron 56

Appendix 2: AEMS Methodology

Figure 50 AEMS Methodology

Diploma Thesis – Renault Group

 Valentin Pauron 57

Appendix 3: liste_seq code

Diploma Thesis – Renault Group

 Valentin Pauron 58

