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Abstract:

In summer 2022, the first LHC Run-3 proton-proton collision data were
recorded with the ATLAS central detector and the ATLAS Forward Proton
(AFP) detectors. An analysis of this data was performed. Two methods
were used to study the efficiency of the Time-of-Flight (ToF) detector for
all 2022 data. For the determination of the ToF time resolution, first an
elaborate calibration was performed. These performance studies of the ToF
data included a proton-proton vertex reconstruction using the matching of
ToF and central ATLAS vertex positions. After a calibration of time delays,
a preliminary resolution of the vertex reconstruction was determined with
a low-p ATLAS data set. In addition, based on selected di-photon events,
a vertex reconstruction study was conducted with a high-p 2022 data set.
The potential of ToF data for an improved vertex reconstruction and thus
reduction of background in an Axion-Like-Particle search using AFP data has
been demonstrated.
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Abstrakt:

V 1été 2022 byla na Velkém hadronovém urychlovac¢i zaznamendna prvni
data z proton-protonovych srazek v ramci LHC Runu-3 pomoci centralniho
detektoru ATLAS a detektori ATLAS Forward Proton (AFP). Byla prove-
dena analyza téchto dat. Pro studium ucinnosti detektoru casu priletu (ToF)
byly pouzity dvé metody pro vSechna data z roku 2022. Pro urcéeni ¢asového
rozliseni ToF byla nejprve provedena podrobna kalibrace. Tyto studie kvality
ToF dat zahrnovaly rekonstrukci proton-protonového vertexu porovnanim
poloh vertexi ToF a centralniho ATLAS. Po kalibraci ¢asovych prodlev bylo
urceno predbézné rozliseni vertexové rekonstrukce pomoci ATLAS sadou dat s
nizkym p. Navic na zakladé vybranych di-fotonovych udalosti byly provedeny
studie rekonstrukce vertextl s daty z roku 2022 s vysokym pu. Byl prokazan
potencial ToF dat pro vylepseni rekonstrukce vertexi, a tim i snizeni pozadi
pri hledani Axionu podobné ¢astice pomoci AFP dat.
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Chapter 1

Introduction

Many extensions of the Standard Model (SM) use Axions and Axion-like
particles (ALPs), which are considered as candidates for the particles that con-
stitute the missing matter in the universe, the so-called dark matter [1, 2]. The
ALPs are hypothetical particles with spin 0, which, according to some predic-
tions, can explain the observed lack of Charge conjugation times Parity (CP)
violation in quantum chromodynamics [3]. Usually, ALPs couple to fermions
only through dimension-five operators proportional to fermion mass. Moreover,
(pseudo) scalars predominantly couple to gauge bosons through dimension-five
operators containing derivatives [4]. This means that in energy regimes exceed-
ing the top quark mass, ALPs are only accessible through their coupling to
the gauge bosons and the Higgs boson. They can be produced in different
processes.

At the LHC [5], the electromagnetic fields between colliding protons are
strong enough to create strong fluxes of high-energy virtual photons. These
photons can interact, for example, by merging together, after which the prod-
uct can decay into various final states. Photon fusion is a distinctive way of
looking for physics Beyond the Standard Model (BSM), as only electromag-
netic coupling needs to be considered. This search is therefore independent of
the strong and weak coupling forces on which most other LHC searches are
based. High-precision measurements of these types of Quantum Electrodynam-
ics (QED) processes can set limits on various theories, and any non-coincidence
with SM can indicate the presence of new physics [6].

Photon fusion is also known as light-by-light scattering. Scattering of light
by light mediated by ALPs is prohibited in the classical theory of electrody-
namics [7]. In various extensions, additional contributions are possible, which
makes light-by-light scattering measurements sensitive to physics BSM, which
can be used to search for Axion-like particles [4, §].

In this study, the main focus is on the process of central exclusive di-pho-
ton production pp — p(y7)p, which is shown in Figure 1.1.

These di-photon events can be recorded with the ATLAS central detector.
The vertex position of di-photons is used as a criterion to distinguish di-photon
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p p

Figure 1.1: Feynman diagram illustrating ALP mediated light-by-light scattering
in process of central exclusive di-photons production.

events coming from an ALP signal from di-photon events produced in other
background processes. Therefore, an improved di-photon vertex resolution will
contribute to better separation of signal and background events.

The ATLAS Forward Proton (AFP) detector [9] is designed to measure
trajectories of the leading protons far from the interaction point. After passing
through the LHC magnet system, these protons may deviate from the nominal
proton beam to such an extent that their deviations can be measured. The two
AFP stations are located approximately 210m on either side of the ATLAS
interaction area. The AFP detectors are placed in the so-called Roman Pots
(RP). They allow sensitive detectors to be placed close to the beam while main-
taining vacuum in the primary beam tube. Position of the deflected protons is
measured by the SiT. The forward detector is a useful tool for improvement
of the background reduction [10, 11].

The two AFP FAR stations are equipped with the ToF detector. The
initial ToF detector performance is determined using July 2022 data. Two
data sets were used in this analysis (Section 3.1), which are different from
those used in the author’s previous study [12].

The resolution of time measurements in individual channels of the ToF
detector and the efficiency are evaluated (Chapter 3). In comparison with
the author’s previous study [12], the efficiency analysis includes an additional
comparison of the methods (Section 3.3), a detailed background analysis (Sec-
tion 3.3.1), and a detailed evaluation of all available 2022 data (Section 3.3.2).
The technique for the determination of single-channel resolutions from the au-
thor’s previous study [12] is improved with an analysis of artefacts of the data
(Section 3.2.1). An additional calibration of the data and an extra cleanup
requirement are applied for the time resolution analysis (Section 3.2.2).

The capability of the ToF detector to measure the z-coordinate of the
primary vertex in interactions of pp — pXp is investigated (Chapter 4). This
analysis follows the author’s previous analysis [12] with a different data set. A
vertex matching analysis is performed after a necessary time delay calibration.

The ToF detector provides data to improve the vertex reconstruction



(Chapter 5). In particular, for di-photon events, as the photon reconstruction
uses data from calorimeters at a large distance from the interaction point.






Chapter 2

Detector design

2.1 ATLAS Central Detector

The ATLAS (A Toroidal LHC ApparatuS) detector [13] is one of the
experiments at the LHC at CERN and is a general-purpose detector that cov-
ers almost the entire solid angle around the interaction point. It is nominally
forward-backward symmetric with respect to the interaction point, having di-
mensions of 25 m in height, 44 m in length and a weight of approximately 7000
tonnes. The brief scheme of the detector is given in Figure 2.1.

Figure 2.1: Cut-away view of the ATLAS detector.

The central detector consists of 4 layers: the inner detector, the electro-
magnetic and hadronic calorimeters, and the muon spectrometer.

The inner detector is used to track charged particles in the pseudora-
pidity region of |n| < 2.5. It is immersed in a 2T solenoidal magnetic field.
Combination of the inner (discrete high-resolution semiconductor pixel and

>
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strip detectors) and the outer (straw-tube detectors, which can detect transi-
tion radiation) parts of the tracking volume are used for momentum and vertex
measurements, electron identification, and pattern recognition.

Electromagnetic calorimeter is provided by a high granularity liquid-argon

calorimeter and cover the pseudorapidity region of |n| < 3.2.
The hadronic calorimeter is provided by a scintillator-like calorimeter and cover
the range of |n| < 1.7. Both electromagnetic and hadron energy measurements
are taken by the liquid-argon forward calorimeters, they extend pseudorapidity
acceptance to the |n| < 4.9.

The calorimeters are surrounded by the muon spectrometer, which uses
high precision tracking chambers and covers regions of |n| < 2.7. In addition,
forward calorimeters cover the region of 3.2 < |n| < 4.9. The ATLAS Forward
Proton detectors are described in the next Section 2.2.

2.2 ATLAS Forward Proton Detector

The AFP detector consists of four stations, which are located at approx-
imately 205 m and 217 m - NEAR and FAR stations, on anticlockwise (A)
and clockwise (C) sides of the ATLAS interaction region. A plan view of the
detector is presented in Figure 2.2.

A-side ATLAS C-side
sector 8-1 Interaction Point 1 sector 1-2
Q6 AFP Q5 Q4 TCL4 Q3 Q1 Q1 Q3 TCL4 Q4 Q5 AFP Q6
] || : 0
ALFATCL6| Tcls D2 D1 Q2 Q2 DL D2 TCL5 |TCLBALFA
\J \/ \J Y
FAR station NEAR station NEAR station FAR station
-217.909 m -205.824 m 205.217 m 217.302m
Time-of-Flight Silicon Tracker SIiT SIT Silicon Tracker Time-of-Flight
h-U’ plane plane plane plane b ar
0 P3P2P1P0 |lP3 PZ P1PO y PoPLP2 Pl POP1P2P3
- ? IIII“’
£ IIII X III
o ---- | R L
} 150 distance | f K Pvlmﬁ 7 150 distance |
I
beam = diﬁractn'?g protons beam 1

Figure 2.2: AFP design.

The FAR stations are the only ones equipped with the ToF detectors, and
therefore only data from them are the subject of this study. In this section
only a brief description of the design and function of the AFP and ToF are
given, for more detail see [9].

For tracking the SiT is used, which consists of four layers of silicon pixel
detectors. The active area of the detector is approximately 20x20 mm?, the
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pixel size is 50x250 pm? and they form a pixel grid with a size of 336 by 80
pixels on each SiT plane. The planes of SiT are tilted by 14° providing a spatial
resolution of the 10 um in z and 30 um in y, as measured in beam tests [14].

2.3 Time-of-Flight Detector

The ToF detectors collect Cherenkov photons created in L-shaped fused
silica bars (LQ-bars), which are placed behind the tracker plates. Details of the
design are given in [15], only a brief description is provided here. The geometry
of the ToF detector was designed to optimize light yield given the space con-
straints of the Roman Pot stations. The LQ-bar consists of two arms: a radiator
arm exposed to beam protons and a light guide arm. The elbow presents an
Al-mirror and a taper cut to achieve better focusing of the Cherenkov photons
(Figure 2.3).

opetee
mirror | 4
taper [T radiator

\Y
o H
"":a‘taper D

K’L lightguide

Figure 2.3: ToF LQ-bar design. Vertical x Horizontal x Depth.

Photons emitted along a proton trajectory inside the radiator arm prop-
agate to the light-guide arm and to the end of the bars which is attached to
a photo-multiplier. To minimize the number of total reflections, the radiator
arms are tilted under the Cherenkov angle of 48° with respect to the beam
axis, which leads to the optimization of the time needed for light propagation
through the bar. To reflect downward-emitted photons back to the bar, the
trailing ends of the radiators are cut parallel to the beam axis. Four bars are
placed one after another to form a train. There are four trains on each side.
The bars and the corresponding channels are denoted as A, B, C, D (or 0
— 3), bar A being the first one to be crossed by protons. Each ToF detector
consists of four trains numbered from 0 to 3, 0 being the closest to the beam.
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The geometry of the bars is such that the optical path in all bars is equalized.
Figure 2.4 shows the design of the assembled LQ bars and SiT mounted on
the Roman Pot flange. The proton beam passes first through the SiT. The
direction of the X-axis is up.

ToF LQ-bars SIiT

radiators

Weny
|
|

Figure 2.4: AFP SiT and ToF LQ-bars. Proton beam comes from the right side.

The Cherenkov photon statistics translates to the number of photo-electrons
via the quantum efficiency of the Photomultiplier Tube (PMT') photo-cathode.
The number of photo-electrons is amplified by the high voltage applied to the
micro-channel plates of the PMTs. The voltage pulses from the PMT anodes
are amplified and processed by a constant fraction discriminator (CFD) [16]
providing a square signal for a HPTDC [17]. The signals are sampled in 1024
bins of about 25ns time window which corresponds to the LHC bunch spac-
ing. The overall time resolution of the detector is therefore affected at several
stages during the formation of the signal and its read-out in the front-end
electronics [18].
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Analysis of the ToF detector
with LHC Run-3 Data

3.1 Data selection

The first analysis of the ToF detector with Run-3 data was performed in
the author’s previous work [12]. In this analysis I continue ans expand this
study.

For the resolution and the efficiency analyses, two runs were chosen,
namely 429027 and 428770, different from the author’s previous analysis [12].
These runs have a clear step-like structure in the correlation SiT versus ToF
data (Figure 3.1), which is required to identify a run that can be used in such
a study.

Run 429027 data were collected on July 23, 2022, with CFD [16] thresholds
set to 250 mV and corresponds to an ATLAS integrated luminosity of 122.9
pb™'. The average pile-up (number of pp collisions in the same beam crossing)
for this run was 31.6.

Run 428770 data were collected on July 20, 2022, with CFD [16] thresholds
set to 250 mV and corresponds to an ATLAS integrated luminosity of 455.5
nb~'. The average pile-up is 0.05.

The pre-processing of the data included the correction of the channel map
and creating n-tuples from Analysis Object Data (AOD) [19] on the grid.

Before obtaining the resolutions and efficiencies, some general require-
ments on the data sample were applied:

e One track in the SiT per event.

o At most one cluster per plane in the SiT per event.
Additionally two more requirements were used:

e One active train in the ToF per event.

e A cut on measured ToF arriving time period.

9
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LQBar vs FSPO rows Side C
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Figure 3.1: Correlation of SiT versus ToF in run 429027 for C-side (top) and run
428770 for the A-side (bottom). The horizontal axis stands for the ToF trains, the
vertical axis stands for the X-position in the SiT in mm.
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3.2 Time resolution

The HPTDC [17] measures the time in terms of one of the 1024 raw time
bin numbers within a 25 ns time window of LHC collisions. In order to estimate
the non-linear effects that change the HPTDC raw time bin widths, running
the HPTDC in an internal calibration mode can be done. The idea is that
irregularities in raw time distributions for uniform input times can be traced
back to individual raw time bin widths. The internal HPTDC calibration is not
available in data. Therefore, a calibration procedure was developed in previous
studies of 2017 data [18]. The circuitry behind the time HPTDC introduces
repeating patterns in the raw time distributions. This effect manifests as nearly
regular modulation of raw time distributions in the real ToF data (Figure 3.2).

60000 T
12000(— s = 13.6 Tev

F Run 428770
10000} Side A, 0B

e
Vs=13.6 TeV
Run 429027
Side A, 0B

Events

Events

50000,

40000 8000

30000, 6000
20000 4000

10000

20001~

1000 1020 800 920 940 960 980 1000 1020
HPTDC bins HPTDC bins

&

Figure 3.2: Raw time distributions in run 429027 (left) and low-p run 428770
(right) for side A, channel 0B.

The time stored in the AOD [19] is not in nanoseconds, but in an uncali-
brated HPTDC output (raw time). A HPTDC calibration following the 2017
data analysis [18] is performed in Section 3.2.2. The raw time in terms of one
of the 1024 HPTDC bin numbers (0 .. 1023) is translated to nanoseconds by

time[ns] = rawbin x 25[ns|/1024.

The 25ns correspond to the 40 MHz LHC frequency.

In the raw time distributions small modulations are seen near the main
peaks. This is caused by slower or faster protons spilling into different Radiofre-
quency (RF) buckets [20] that are associated with the timings of circulating
protons in the LHC. One RF bucket is 2.5 ns long. This is the frequency used
by the RF cavities to accelerate the beam. The RF buckets are so small in
order to make the beam more intense, and only one of ten is used for better
bunch separation. These modulations were cleaned to obtain better resolution.
This is one of the additional requirements (a cut on measured ToF arriving
time period), mentioned before.

Figure 3.3 shows the raw time distribution before and after this additional
requirement for only one channel in run 429027 (0OA - train 0, bar A), as an
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example. Such distributions were created for each ToF channel in both runs
and are given in Appendix B.1. The left peak corresponds to the C-side and
the right one to the A-side, so they are both plotted on the same histogram.

ﬂ [ | E
580000 3 r 3
9 = E E E
m E Vs=13.6 TeV B E Vs=13.6 TeV
70000; Run 429027, channel 0A E E Run 429027, channel 0A
60000 [ pata 2022 = E [ pata 2022
500005 =
40000 =
300005 =
20000~ =
10000E- :
ot . S T AR Y ot N Y E
0 200 400 600 800 1000 0 200 400 600 800 1000
HPTDC bins HPTDC bins

Figure 3.3: Raw time distribution before (left) and after (right) additional cuts on
time were applied in the run 429027. The left peak corresponds to the C-side and
the right one to the A-side.

Figures 3.4 (run 429027) and 3.5 (run 428770) show the raw time distri-
butions after cleaning the sample, focusing on the main peak. The double-peak
structure is observed only in train 3 in both runs. This could be a feature of
the ToF construction. It is also possible that the readout is confused between
bunch crossings!.

las discussed at an ATLAS Combined Performance meeting
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Figure 3.4: Raw time distributions in run 429027 after the cut on the time for
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right).
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Figure 3.5: Raw time distributions in run 428770 after the cut on the time for
train 3 for each channel: A (top left), B (top right), C (bottom left) and D (bottom

right).
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The previous analysis with 2017 data [18] showed that the HPTDC cal-
ibration does not affect much the time resolution. Thus, in the author’s pre-
vious analysis [12], the calibration was not applied to obtain time resolutions.
However, in 2017 data some artefacts of the data were not present due to
the different detector configurations. Consequently, as continuation of the au-
thor’s previous work, the HPTDC calibration was done, as described in Sec-
tion 3.2.2. First, the procedure of obtaining the single-channel time resolutions
is described before the HPTDC calibration for comparison.

The resolutions were obtained as single-channel resolutions for each chan-
nel of the ToF. The following requirements were imposed on the data:

One track in the SiT per event.

At most one cluster per plane in the SiT per event.

Cut on measured ToF arriving time period.

One active train in the ToF per event.

The widths of the At distributions will serve for the determination of the
single-channel time resolutions. The At here stands for the difference of arrival
times in two ToF channels, i and j. There are six At values, however, there are
only four channels, thus the single-channel resolutions will be obtained using
chi-squared minimization [18]. We assume no correlations, which requires a
separate study, and set p;; = 0.

= E“(Uij —\Jo? + 07 — 2p;0,0,) 3.1)
Y (dse(045))? ’

The shapes of the distributions are not fully Gaussian, therefore these
results assume a Gaussian approximation. In the author’s previous analysis [12]
single-Gaussian fit and hypothesis of a double-Gaussian shape were tested.
Based on this analysis, where double-Gaussian approach was proved to be
more precise, in this work sum of two Gaussians is applied to both runs.

Few examples of the At distributions before the HPTDC calibration for
the run 429027 with a fitted curve overlaid to obtain the widths of the dis-
tributions are shown in Figure 3.6 for side A and in Figure 3.7 for side C.
All widths are listed in Figure 3.8. All At distributions before the HPTDC
calibration are given in Appendix B.1.
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Figure 3.6: Examples of the At distributions before the HPTDC calibration for the
run 429027 with a double Gaussian fitted curve overlaid for 4 combinations (0AC -
top left, 1BD - top right, 2BC bottom left, 3AB bottom right) of the ToF channels
for A-side.
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Figure 3.7: Examples of the At distributions before the HPTDC calibration for the
run 429027 with a double Gaussian fitted curve overlaid for 4 combinations (0AC -
top left, 1BD - top right, 2BC bottom left, 3AB bottom right) of the ToF channels
for C-side.
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Figure 3.8: Width of At (ps) distributions before the HPTDC calibration for the
run 429027 using a double Gaussian fit for all combinations of the ToF channels
inside one train. Trains: 0-3, bars: A-D.

The resulting time resolutions before the HPTDC calibration for the run
429027 are given in Figure 3.11, as determined from a fit of the six time
differences for the four bars as previously proposed [18]. The x? is defined in
Equation 3.1 for p;; = 0. Figures 3.9 and 3.10 show this fit for A and C sides,
respectively, with channels combinations on X-axis in the same order as in
Figure 3.8 and widths of the At distributions on the Y-axis.
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Figure 3.11: ToF time resolution (ps) before the HPTDC calibration for the run
429027, a double Gaussian fit. Trains: 0-3, bars: A-D.

Main purpose of such a fit is to obtain single-channel resolutions (4 chan-
nels) from 6 combinations of the ToF channels in one train. Fit is minimizing
chi-square, as shown in Equation 3.1. The resulting resolutions for the run
429027 shows that C-side gives better performance than A-side.

The same procedure was also applied to the and low-u run 428770, only
resulting time resolutions before the HPTDC calibration are shown in Fig-
ure 3.12.

Resolutions, side-A, Run 428770, [mm] Resolutions, side-C, Run 428770, [mm]

g3 g
2
1
0
A B C D A B C D
Bars Bars

Figure 3.12: ToF time resolution (ps) before the HPTDC calibration for the low-p
run 428770, a double Gaussian fit. Trains: 0-3, bars: A-D.



3.2. Time resolution

19

3.2.1 Multi-peak structure analysis

The At distributions (Figures 3.6 and 3.7) are not fully Gaussian and,
moreover, sometimes a multi-peak structure was observed. Mainly such struc-
tures appear in the train 2 of the ToF detector. Detailed examples of the
worst cases are shown in Figure 3.13 for the low-y run 428770 and the high-u
run 429027. All At distributions before the HPTDC calibration are given in
Appendix B.1.
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Figure 3.13: Worst cases of the At distributions for the high-x run 429027 (top)
and low-p run 428770 (bottom) for the C-side on examples of the ToF channels 2BC
(left) and 2BD (right).

This anomaly of the data significantly worsens single-channel time resolu-
tions, which can be seen most clearly by the worse resolution of the channel 2B
on both sides, especially on side-C (Figures 3.11). Side-C has higher efficiency
and better performance in general, compared to the side-A. Therefore, side-C
is also more sensitive to artifacts in the distributions.

In order to investigate the multi-peak structure, the track profile in the
SiT tracker was studied. For this analysis the low-p run 435229 was taken,
the same as was used for efficiency studies in the author’s previous work [12].
The reason is to use the longest low-p run, taken in Run-3 so far, having the
highest statistics. The track profile in X and Y axes is shown in Figure 3.14
for the low-u run 435229 in logarithmic scale on the Z-axis, which is shown in
color.



20

Chapter 3. Analysis of the ToF detector with LHC Run-3 Data

ﬁ [ T I T T T I T T T I T T T I T T T I T T T I T T T I T T T I T T T I T ]
>_§ 5—1Vs=13.6TeV —
- Run 435229 :
- Side A ]
o .
5[ =
~10F =
-15 =
—20F : =
e ey e ey by by by by
-18 -16 -14 -12 -10 -8 -6 -4 -2
Xtrack
% r T I L | L | L | L | L | L | T T T | L I T
>_§ 25— 1\s=13.6 TeV
 Run 435229
Side C

20

15

10

-18 -16 -14 -12 -10 -8 -6 -4 -2
X

track

Figure 3.14: Track profile in SiT tracker in logarithmic scale on the color Z-axis
for the low-u run 435229 for the A-side (top) and C-side (bottom).

Clear indications of tracks in the X-Y plane can be seen, main one and
additional one, which goes horizontally. This trace was considered as possible
candidate for the reason for the multi-peak structures in At distributions. In
order to check this hypothesis, the track profile was checked on a few high-u
runs. As example, run 429027 is shown in Figure 3.15. This run has a clear trace
of the main track, however, no additional trace was observed. Nevertheless, the
multi-peak structure in the high-p runs is even more visible than in the low-pu
runs. Based on this study, it was preliminary concluded? that the additional
trace is not the main reason for the multi-peak structure.

2as discussed at an ATLAS Combined Performance meeting
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Figure 3.15: Track profile in SiT tracker in logarithmic scale on the color Z-axis
for the high-p run 429027 for the A-side (top) and C-side (bottom).

Nevertheless, the hypothesis for the appearance of the additional trace
was put forward. The low-p run 435229 was the longest Run-3 run so far with
a duration of 2 days and 20 hours. Therefore, there is a non-zero possibility
of optics settings changes during this long run. In this case the first trace
corresponds to one set of settings, and another one to second set. To check
this hypothesis the track profile was checked regardless on the different time
ranges in the run. If in each time range of the run only one trace is observed,
it could explain the double peak.

It turned out that was not the case, and both main and additional traces
were observed in each time range of the run. Consequently, the reason for
appearance of the additional trace remains to be determined.
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3.2.2 HPTDC calibration

The reason for the appearance of the multi-peak structures is not yet
determined, nonetheless, the single-channel time resolutions can be calculated
more precisely than it was done in the beginning of the Section 3.2. Parasitic
multi-peak structures can be cleaned using a likelihood cleanup approach to
the data with a principal Gaussian from a multiple-Gaussian fit of the At
distributions. To perform this procedure, data should be smooth, free of the
HPTDC binning artefacts.

The modulations in the uncalibrated ToF data, introduced by the cir-
cuitry behind the time HPTDC, can be suppressed in the space of discrete
Fourier transform of the raw time distributions. The time distributions can be
reconstructed by inverse transform represent the reference for the calculation
of the underlying HPTDC bin widths. The method was developed in previous
studies of 2017 data [18].

The inverse Fast Fourier Transform (FFT) with magnitudes of the FFT
coefficients corresponding to the oscillations suppressed was performed. Such
a uniform raw time distribution was considered as a reference. From this refer-
ence, the raw distributions can fluctuate upwards or downwards in cases where
the physical bin width of the HPTDC is wider or narrower than the nominal
one, which is assumed to be 25/1024 ns. After the new bin widths are known,
the positions of the bins were shifted. These shifts arise because the widths are
no longer trivial, and each bin exerts an influence on the position of all subse-
quent bins. In addition, the uniform randomization of the raw times across the
actual bin widths were done in order to get smooth distributions, especially
the At ones.

The differences observed in the low statistics tails cause shifts of the bin
position corrections, unique for each run. Such artificial shifts can be ignored,
since they are absorbed into the constant time delay of each channel in every
run.

Figure 3.16 shows examples of the raw time distributions before and after
the HPTDC calibration for the side A, channel 0B for both high-y and low-pu
runs. All raw time distributions before and after the HPTDC calibration are
given in Appendix B.2.
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Figure 3.16: Raw time distributions before (blue) and after (red) the calibration
in run 429027 (left) and low-p run 428770 (right) for side A, channel 0B.
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A few examples of the At distributions after the HPTDC calibration for
the run 429027 with a fitted curve overlaid to obtain the widths of the distri-
butions are shown in Figure 3.17 for side A and in Figure 3.18 for side C. The
same examples for the low-p run 428770 are shown in Figure 3.19 for side A
and in Figure 3.20 for side C. All At distributions after the HPTDC calibra-
tion are given in Appendix B.2. Fits for the worst distributions (train 2) were
improved with a third Gaussian.
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Figure 3.17: Examples of the At distributions after the HPTDC calibration for
the run 429027 with a multiple-Gaussian fitted curve overlaid for 4 combinations
(0AC - top left, 1BD - top right, 2BC bottom left, 3AB bottom right) of the ToF
channels for A-side.
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Figure 3.18: Examples of the At distributions after the HPTDC calibration for
the run 429027 with a multiple-Gaussian fitted curve overlaid for 4 combinations
(0AC - top left, 1BD - top right, 2BC bottom left, 3AB bottom right) of the ToF
channels for C-side.
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Figure 3.19: Examples of the At distributions after the HPTDC calibration for the
low-p run 428770 with a multiple-Gaussian fitted curve overlaid for 4 combinations
(0AC - top left, 1BD - top right, 2BC bottom left, 3AB bottom right) of the ToF
channels for A-side.
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Figure 3.20: Examples of the At distributions after the HPTDC calibration for the
low-p run 428770 with a multiple-Gaussian fitted curve overlaid for 4 combinations
(0AC - top left, 1BD - top right, 2BC bottom left, 3AB bottom right) of the ToF
channels for C-side.

In comparison with the same At distributions before the HPTDC calibra-
tion, shown in Figures 3.6 and 3.7), the calibrated data is more smooth and
better suitable for the fitting and further analysis.

After the calibration was done, a multiple-Gaussian fit was performed and
the Gaussian with the highest normalisation (here - blue one) was determined
as a principal Gaussian for the Likelihood cleaning procedure. For this ap-
proach, the principal Gaussian is chosen from all Gaussians, used for fitting,
assuming that one of them contains most of the signal (leading component)
and others represent mostly background or problems in the detector read-
out (sub-leading components). Afterwards, the principal Gaussian (denoted as
f(z) below, with its mean value p) was used as a guide function for the data.

Equation 3.2 represents a general approach of the cleanup cut. Each At
value in the data is used as variable X for usage in the principal Gaussian
function. If a fraction of the mean of the function in this X-point and the
mean of the function in Gaussian mean value is less then some random value
between 0 and 1, this data point is being cut.

@) <R, (3.2)

f(p)

where R is a random number between 0 and 1.



26

Chapter 3. Analysis of the ToF detector with LHC Run-3 Data

The same examples of the At distributions after the likelihood cleanup
procedure are shown in Figure 3.21 for side A and in Figure 3.22 for side C
for the run 429027 with a fitted curve overlaid to obtain the widths of the
distributions. For the low-p run 428770 results shown in Figure 3.23 for side
A and in Figure 3.24 for side C. All these At distributions after the likelihood
cleanup procedure was applied, are given in Appendix B.3.
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Figure 3.21: Examples of the At distributions after the likelihood cleanup pro-
cedure was applied, for the run 429027 with a Gaussian fitted curve overlaid for 4
combinations (0AC - top left, 1BD - top right, 2BC bottom left, 3AB bottom right)
of the ToF channels for A-side.
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Figure 3.22: Examples of the At distributions after the likelihood cleanup pro-
cedure was applied, for the run 429027 with a Gaussian fitted curve overlaid for 4
combinations (0AC - top left, 1BD - top right, 2BC bottom left, 3AB bottom right)
of the ToF channels for C-side.
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Figure 3.23: Examples of the At distributions after the likelihood cleanup proce-
dure was applied, for the low-u run 428770 with a Gaussian fitted curve overlaid
for 4 combinations (0AC - top left, 1BD - top right, 2BC bottom left, 3AB bottom
right) of the ToF channels for A-side.
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Figure 3.24: Examples of the At distributions after the likelihood cleanup proce-
dure was applied, for the low-u run 428770 with a Gaussian fitted curve overlaid
for 4 combinations (0AC - top left, 1BD - top right, 2BC bottom left, 3AB bottom
right) of the ToF channels for C-side.

All widths are listed in Figure 3.25 for the high-p run 429027 and in

Figure 3.26 for the low-u run 428770.
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Figure 3.25: Width of At (ps) distributions after the likelihood cleanup procedure
was applied for the run 429027 using a Gaussian fit for all combinations of the ToF
channels inside one train. Trains: 0-3, bars: A-D.
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Figure 3.26: Width of At (ps) distributions after the likelihood cleanup procedure
was applied for the low-g run 428770 using a Gaussian fit for all combinations of
the ToF channels inside one train. Trains: 0-3, bars: A-D.

The resulting time resolutions after the likelihood cleanup procedure was
applied for the run 429027 are given in Figure 3.29, as determined from a fit
of the six time differences for the four bars as previously proposed [18]. The
x? is defined in Equation 3.1 for p;; = 0. Figures 3.27 and 3.28 show this fit
for A and C sides, respectively, with channels combinations on X-axis in the
same order as in Figure 3.25 and widths of the At distributions on the Y-axis.
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Figure 3.27: Fit of six widths of the At distributions for trains 0 (top left), 1 (top
right), 2 (bottom left), 3 (bottom right) after the likelihood cleanup procedure was
applied, for the run 429027 for A-side.
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Figure 3.28: Fit of six widths of the At distributions for trains 0 (top left), 1 (top
right), 2 (bottom left), 3 (bottom right) after the likelihood cleanup procedure was
applied, for the run 429027 for C-side.
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Figure 3.29: ToF time resolution (ps) after the likelihood cleanup procedure was
applied, for the run 429027. Trains: 0-3, bars: A-D.

The resulting resolutions after the HPTDC calibration for the run 429027
show that the C-side gives better performance than the A-side.

The same procedure was used on low-y (low pile-up) run 428770. The
resulting time resolutions for the run 428770 are given in Figure 3.32. Fig-
ures 3.30 and 3.31 show this fit for A and C sides, respectively, with channels
combinations on X-axis in the same order as in Figure 3.26 and widths of the
At distributions on the Y-axis. The resulting resolutions for the low-y run
428770 shows that the C-side gives better performance than the A-side, same
as it was for the run 429027.
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Figure 3.30: Fit of six widths of the At distributions for trains 0 (top left), 1 (top
right), 2 (bottom left), 3 (bottom right) after the likelihood cleanup procedure was
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Figure 3.31: Fit of six widths of the At distributions for trains 0 (top left), 1 (top
right), 2 (bottom left), 3 (bottom right) after the likelihood cleanup procedure was
applied, for the low-u run 428770 for C-side.
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Figure 3.32: ToF time resolution (ps) after the likelihood cleanup procedure was
applied, for the low-p run 428770. Trains: 0-3, bars: A-D.

Comparing the resolutions before the HPTDC calibration and the likeli-
hood cleanup procedure was done, shows an improvement in the final results.
They became more uniform and closer to the designed values. The reason for
the multiple-peak structures is not determined and fixed yet. Therefore, the
presented analysis is most suitable to obtain single-channel resolutions of the
ToF detector. Overall, these resolutions are preliminary.

3.3 Efficiency

Information about the reconstructed SiT tracks is stored in the AFPTrack-
Container [21]. This container was used as a basis for the measurement of the
ToF response. The efficiency in each channel is defined as a fraction based
on two samples, first where the given ToF channel provided time information,
and second a reference sample of events with reconstructed SiT tracks. Based
on the author’s previous analysis [12], two methods were used for comparison:
dividing histograms and calculating the ratio of sums of events. The reason for
the differences in them was studied.

For both methods the following requirements were imposed on the data:

e One track in the SiT per event.
o At most one cluster per plane in the SiT per event.
« One active train in the ToF per event (ON/OFF)

The last requirement was imposed a as cleanup cut to remove unwanted
events. However, this requirement decreases the statistics as not all tracks are
in one train only. Thus, both cases (ON/OFF) were investigated. For both
methods the whole procedure was performed separately for side A and side C.
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The regions for the X-value of the SiT, corresponding to the ToF train, were
defined for each side (A and C). These regions are shown in Table 3.1.

Train | A-side (mm) C-side (mm)
0 —4.9 to —2.0 —5.3 to —2.0
1 —8.0 to —=5.0 —8.4to —5.4
2 —13.0to —=8.1 | —13.4 to —8.5
3 —15.0 to —13.1 | —15.0 to —13.5

Table 3.1: Regions for the X-value of the SiT, corresponding to the ToF trains.

For the first method, dividing histograms, the reference histogram was de-
fined for events passing the selection criteria without the optional requirement
(OFF), only for events with reconstructed SiT tracks. The other 16 histograms
include (or not, depending on the case under investigation) the additional re-
quirement (ON) for each of the 16 ToF channels.

The next step was dividing each of 16 channel histograms by the reference
histogram bin by bin. So, the number of events in each individual bin of one
of the 16 histograms of the ToF is divided by the number of events in the
corresponding bin of the reference histogram. This ratio defines the efficiency
in each bin which is shown in Figure 3.33. The case with the requirement (ON)
is shown for the 4 trains, side-A, bar B. In order to define efficiency in each
channel the mean value of the bins in the region, corresponding to the exact
train, was calculated. For the last train (3) the active region was cut in order
to avoid noise, possibly originating from the collimator shadow?.

The procedure described above is for the case with the requirement (ON).
Next, the procedure was repeated without the requirement (OFF) and results
are given in Figure 3.34 for the ToF trains of side-A and bar B. Some back-
ground is visible for the case without the requirement (OFF), and the reason
needs to be further studied.

3as discussed at an ATLAS Combined Performance meeting
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Figure 3.33: Ratios, which define efficiencies for the run 429027, for the case of
cuts "one train ON" for A-side for each train and one bar: 0B (top left), 1B (top
right), 2B (bottom left) and 3B (bottom right).
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Figure 3.34: Ratios, which defines efficiencies for the run 429027, for the case of
cuts "one train OFF" for A-side for each train and one bar: 0B (top left), 1B (top
right), 2B (bottom left) and 3B (bottom right).
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The resulting efficiencies for both cases (ON/OFF) for the histogram ratio
method are shown in Figure 3.35, top: ON, bottom: OFF. Each cell on that plot
corresponds to the efficiency in this channel assuming that SiT track points
on respective ToF' train.
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Figure 3.35: Efficiencies (%) for the run 429027 for each channel of ToF for A (left)
and C (right) sides with the requirement "one train ON", (top) and OFF, (bottom)
for the "histogram" method.

For the second method, direct numbers, i.e. the number of events in the
two samples were counted. For the first sample an event has to pass the main
requirements (OFF) and in addition the track has to be inside a given region
in X, as measured by the silicon detector (Table 3.1). For the second sample,
the event has to pass the requirement ON (or not, depending on the case under
investigation) and there must be a hit in a corresponding channel of the ToF.
There are 16 values for the second sample (for each channel), and 4 numbers
for the first sample (for each train). The efficiency is defined as the ratio of
the number of events in the second sample divided by the number of events
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in the first sample. The resulting efficiencies for both cases (ON/OFF) for
this method are shown in Figure 3.36, top: ON, bottom: OFF. Each cell on
that plot corresponds to the efficiency in this channel assuming that SiT track
points on respective ToF' train.
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Figure 3.36: Efficiencies (%) for the run 429027 for each channel of ToF for A (left)
and C (right) sides with the requirement "one train ON", (top) and OFF, (bottom)
for the "direct numbers" method.

The efficiencies for both methods are very similar with minor differences.
The reason for such differences is the binning of the histogram in the histogram
method. Since the values are grouped into bins before calculating the average,
the final result will be more precise with increasing number of histogram bins.
This effect is shown in Figure 3.37 on example of one train OFF case, side
C, where values from algorithm with original binning (200 bins) are compared
with values from the algorithms with increasing number of bins (600 and 2000)
and with results from the "direct numbers" method. With increasing number of
bins, the results from the "histogram" method are getting closer to the results
from the "direct numbers" method.
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Figure 3.37: Efficiencies (%) for the run 429027 for each channel of ToF for C-side
with the requirement "one train OFF" for the "histogram" method: 200 bins (top
left), 600 bins (top right), 2000 bins (bottom left); and "direct numbers" method
(bottom right).

The efficiencies for case OFF is higher than for case ON, as far as it
includes non ideal events and some background. For the further studies only
"direct numbers" method will be used, as this algorithm gives the most precise
result.

The same procedure for the "direct numbers" method was applied to the
low-u run 428770. The resulting efficiencies for both cases (ON/OFF) for the
method of "direct numbers" are shown in Figure 3.38, top: ON, bottom: OFF.
Each cell on that plot corresponds to the efficiency in this channel assuming
that SiT track points to the respective ToF train.
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Figure 3.38: Efficiencies (%) for the run 428770 for each channel of ToF for A (left)
and C (right) sides with the requirement "one train ON", (top) and OFF, (bottom)
for the "direct numbers" method.

The low-p run 428770 case ON shows structure close to the step-like with
higher efficiencies in train 0 and lower in train 3. The possible reason for such
a structure is proximity to the beam. Since this run has very low pile-up, the
beam is more focused than for a usual high-x run®.

4as discussed at an ATLAS Combined Performance meeting
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3.3.1 Background analysis

Another useful method of representing efficiencies is calculate efficiency
in all channels assuming that SiT track points to one of the ToF trains. With
such a representation a full map of ToF activity can be seen. Both for the train
to which the track points, and for other trains. Therefore, more information
about possible systematic background can be obtained.

Efficiencies calculated in such a way for the run 429027 for both cases
(ON/OFF) using the method "direct numbers' are shown in Figure 3.39 for
train 0 and in Figure 3.40 for train 3. Empty boxes represents zero response
of the corresponding channel. Edge trains are chosen as examples, full set of
efficiencies calculated by "track pointing" technique are given in Appendix C.
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Figure 3.39: Efficiencies (%) for the run 429027 for each channel of the ToF with
track pointing to train 0 for A (left) and C (right) sides with the requirement "one
train ON", (top) and OFF, (bottom) for the "direct numbers" method.
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Figure 3.40: Efficiencies (%) for the run 429027 for each channel of the ToF with
track pointing to train 3 for A (left) and C (right) sides with the requirement "one
train ON", (top) and OFF, (bottom) for the "direct numbers" method.

Efficiencies calculated in such a way for the low-p run 428770 for both
cases (ON/OFF) using the method "direct numbers" are shown in Figure 3.41
for the train 0 and in Figure 3.42 for train 3. Empty boxes represents zero
response of the corresponding channel. Edge trains are chosen as examples,
full set of efficiencies calculated by "track pointing" technique are given in
Appendix C.
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Figure 3.41: Efficiencies (%) for the low-p run 428770 for each channel of the ToF
with track pointing to train 0 for A (left) and C (right) sides with the requirement
"one train ON", (top) and OFF, (bottom) for the "direct numbers" method. Empty
boxes represents zero response of the corresponding channel.
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Figure 3.42: Efficiencies (%) for the low-p run 428770 for each channel of the ToF
with track pointing to train 3 for A (left) and C (right) sides with the requirement
"one train ON", (top) and OFF, (bottom) for the "direct numbers" method. Empty
boxes represents zero response of the corresponding channel.

Typically the efficiency is maximized in the ToF train to which SiT track
is pointing. For the case one train ON a clear structure can be seen. Only the
pointed train is active, all other trains do not contribute in both runs. For the
case one active train OFF efficiencies in pointed train are maximized, however
other trains are still active, usually neighboring. This effect is magnified in the
low-p run 428770, therefore it was investigated more detailed.
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Data from the ToF detector is stored as hits in the chosen channels, when
a particle goes through the detector in the AFPToFHitContainer [22]. This
basic information was processed to obtain the efficiencies. However, this basic
information can also be used in a raw way. As a new detailed analysis, the hit
correlation map in all channels was studied. This assumes that the SiT track
points to one of the ToF trains.

Such a correlation represents the response of the ToF channels as a func-
tion of other channels. Therefore, the detailed activity of the detector can be
studied. For this analysis the requirement "one train OFF" was used. This
means that all trains can be active in the event. Figures 3.43 and 3.44 show
hit correlation maps for the high-y run 429027 and the low-p run 428770 for
the C-side, as an example. All hit correlation maps are given in Appendix C.
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Figure 3.43: Hit correlation map for the high-u run 429027 for each channel of the
ToF with track pointing to train 0 (top left), train 1 (top right), train 2 (bottom left)
and train 3 (bottom right) for the C-side with the requirement "one train OFF".
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Figure 3.44: Hit correlation map for the low-u run 428770 for each channel of the
ToF with track pointing to train 0 (top left), train 1 (top right), train 2 (bottom left)
and train 3 (bottom right) for the C-side with the requirement "one train OFF".

The hit correlation map shows the effect of activity in trains neighboring
the one train to which the track points. In the low-u run this effect is magnified
in comparison with the high-u one. Therefore, it would be interesting to check
this with another low-p run. The longest low-p run in Run-3 so far has the
number 435229. It was used in the author’s previous analysis [12]. Figure 3.45
shows the hit correlation maps for this low-p run, for the side-C, as an example.
All hit correlation maps are given in Appendix C.
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Figure 3.45: Hit correlation map for the longest low-p run so far in the Run-3,
435229, for each channel of the ToF with track pointing to train 0 (top left), train 1
(top right), train 2 (bottom left) and train 3 (bottom right) for the C-side with the
requirement "one train OFF".

The effect of neighboring activity became stronger in larger low-u run.
The train 3 has the biggest "shadow effect" on neighboring trains. The reason
for such a behavior could be the presence of general secondary particles, or
collimator shadow, which covers part of the train 3 and it could give secondary
particles®.

Sas discussed at an ATLAS Combined Performance meeting
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3.3.2 2022 efficiency summary

The efficiencies were calculated for all available data from 2022 using the
"direct numbers" method with the requirement "one train OFF", as described

in Section 3.3 for each train. The summary plots are given in Figure 3.46 for
the 2022 data for both sides.
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Figure 3.46: Efficiency summary for the 2022 data for the A-side (top) and the
C-side (bottom) with the requirement "one train OFF" for the period from 05 July
to 27 November 2022. Labels on Y-axis correspond to the beginning of the month.

Summary efficiency plots show downward trend in time. This points on
the degradation of the detector elements, which can be caused by the radiation
in the collider tunnel®. The best detector efficiency was in July 2022, at the
start of the Run-3. All analyses described in this work, were performed with
data taken at that time.

6as discussed at an ATLAS Combined Performance meeting



Chapter 4

ToF vertex reconstruction

The capability of the ToF detector to measure the z-coordinate of the
primary vertex in interactions of kind pp — pXp is investigated in this chapter.
Vertex reconstruction using the ToF is based on the proton arrival times on
the A and C sides of the AFP system. The z-coordinate of the primary vertex
(z1or) Was basically calculated as follows:

c
2ToF = 5(150 —ta). (4.1)

This formula represents a general approach, but cannot be used directly
on the data; firstly arrival times should be corrected for possible time offsets,
which is shown in first section of this chapter (4.1).

The final corrected zm,r was then used for the distribution zatr,as — 21oF,
whose width represents the combined resolution of the zr,r and zatras mea-
surement. zarpas here is the z-coordinate of the reconstructed primary ver-
tex, provided by the central ATLAS detector with resolution at the level of
~ 30 pym. The distribution of zarras — 21or contains a background from the
random coincidences of protons measured in the ToF, but not originating from
pp — pXp processes and whose arrival time spreads are mainly driven by the
beamspot size.

Following the author’s previous work [12], for this analysis some general
requirements on the data samples were applied:

e One track in the SiT per event.

o At most one cluster per plane in the SiT per event.
e One active train in the ToF per event.

o Cut on measured ToF arriving time period.

Data from the low-p run 428770 and the high-p run 429027 were used and
compared in this study. In the author’s previous study [12] different runs were
used.

49
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4.1 Time delays correction

The time measured in one ToF channel i (for example, channel 0A is train
0, bar A) is made up from several components as follows:

l; = tproton + ti,delay + ti,smear — Lelock (42)

Here the t,;oton is the proton arrival time, the ?; gy is a constant time
offset in exact ToF channel, appeared because of the signal delay (for example,
it can be caused by signal cable lengths). Therefore, this time delay is constant
for the given ToF channel, if there was no intervention into the system (e.g.
during data taking of the one run for sure). The #; ymear represents all random
effects of the signal processing, for example variation in Cherenkov photon
statistics or effects of electronics. The tgoq is a reference clock that opens a
25 ns window within which the leading protons from a single bunch-crossing
arrive to the ToF.

The tproton and teock can be abolished by measuring time differences on
the event by event basis within one ToF train. This approach also allows to
deal with the t; gelay, Which is required for this study.

The main goal of this part was to determine ¢; gelay, which was done using
At;; distributions which were defined as follows:

< Atz] >=<t; — tj >=< ti,smear + ti,delay - tj,smear - tj,delay >
=< ti,delay - 2fj,delauy >,

(4.3)

where < %; smear > cancels for all channels.

For determination of the delay correction constants an approach [18] was
used with the z-position of the luminous ATLAS beamspot, which is measured
by the central ATLAS detector. The zp.r value, determined using Equation 4.1,
in its mean value copy the z-position of the luminous ATLAS beamspot, there-
fore the following relation was used:

[k >= 2ps — (D} — DY) (4.4)

< Zro

where DY, and D, are mentioned above delay correction constants for the
given ToF channels ¢ and j in A and C sides, respectively, which were used for
determination of the zr.r. The mean value was obtained over the time period of
one LHC LB [23] (~ 1 min of data taking). These delay correction constants are
unique for the each pair of the ToF channels and basically only their difference
matters to correct positions of the zr.p in given ToF channels. The following
equation was used for the determination of this difference, assuming that the
mean value was obtained over the one lumiblock and the fact that zgg does
not change within one LB (showed as sum over LBs, >/ 5)

<> 2) — 2ps >= DL — D, (4.5)
LB
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With the event-by-event approach only double-tag events were used, which
means that signal is required in both sides of the AFP system (A and C) si-
multaneously. However, this significantly reduces the data statistics. Therefore,
another approach was used to create pseudo-double-tag events from single-tag
events. This approach is called event mixing. For this analysis the time buffers
were filled with time values measured during one LB and then pseudo-double-
tag events can be produced.

The ToF has 16 channels on each side, therefore there exist 16 x 16 = 256
combinations of channels. For each of them the distribution corresponding to
Equation 4.5 was created and a Gaussian fit was applied to determine the
mean value. A few examples of such distributions with fitted curve overlaid
are given in Figure 4.1 for run 429027 and in Figure 4.2 for low-p run 428770.
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Figure 4.1: zp,r — zpg distributions for the run 429027 with a Gaussian fitted curve
overlaid for 2 combinations of the ToF channels. Left - side A 0A (train 0, bar A)
with side C 1B (train 1, bar B). Right - side A 2B (train 2, bar B) with side C 0D
(train 0, bar D).
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Figure 4.2: zp,p — zpg distributions for the low-u run 428770 with Gaussian fitted
curve overlaid for 2 combinations of the ToF channels. Left - side A 0A (train 0, bar
A) with side C 1B (train 1, bar B). Right - side A 2B (train 2, bar B) with side C
0D (train 0, bar D).
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The mean values of these fits define the differences between the delay
correction constants for each of the 256 combinations of the ToF channels,
according to Equation 4.5. All combinations are shown in Figure 4.3 for both
runs. The mapping of the indices is performed by means of the logic:

for(i = Indexgidea])
{
for(j = Index(sigecy)
. (4.6)
Dl — D,
}

2

which means that in each iteration a channel on the A-side is chosen and
channels on the C-side were taken one by one to form combinations, then the
procedure is repeated for each channel on the A-side. Some structure in the
differences depending on the channel combination can be seen.
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Figure 4.3: All differences between delay correction constants for each of the 256
combinations of the ToF channels for the run 429027 (left) and for the low-x run
428770 (right).

These 256 differences between delay correction constants can be param-
eterized in terms of the DY and D‘Zj to find 32 correction factors (DY, D]C)
This was done using a fit as shown in Figure 4.4 for both runs. Finally, all
delay correction constants were determined for each channel on both sides for
both runs. Figure 4.5 shows them in mm.
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Figure 4.4: All differences between delay correction constants for each of the 256
combinations of the ToF channels with fit overlaid for the run 429027 (left) and for
the low-p run 428770 (right).
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Figure 4.5: Delay correction constants for all ToF channels on A-side (top) and
C-side (bottom) for the run 429027 (left) and for the low-p run 428770 (right).

After all the corrections were determined it is possible to correct the zrp
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position and compare it with the zgg position. The dependence of the zgg on
lumiblock (basically - on time) is not uniform and differs in each particular run.
As the zrop copying the zps, procedure of time delay corrections was checked
by comparing the dependence of the zgs and zp,r per LB. The raw positions
of z1op are distributed around the zpg in a Gaussian-like manner. Therefore,
Gaussian fit was applied.

Figure 4.6 shows the dependence of the zgg and zp.r per LB before and
after the corrections on time delays for both runs. Figure 4.7 shows the de-
pendence of the zgs and z,r per LB after the corrections on time delays for
both runs in a magnified way, which allows it to be seen clearly that the zr.p
repeats the form of the zgg. In addition, the precision of the fit was defined by

<32 — 2ps > —(DL - D). (4.7)
LB

The graphical representation is shown in Figure 4.8 for both runs. The
high-/ run shows better precision of the fit than the low-x run due to the much
higher statistics.
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Figure 4.6: Dependence of the zpg and zp,r per LB before (top) and after (bottom)
the corrections on time delays for the run 429027 (left) and for the low-x run 428770
(right).
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Figure 4.8: Precision of the fit for the run 429027 (left) and for the low-p run
428770 (right). Details are given in the text.

4.2 Vertex matching

The ToF detector reconstructs the primary vertex in the case of finding
two leading protons under the proper conditions. However, it can reconstruct
fake vertices caused by a fake double-tag of two leading protons from two
unrelated events.

It is possible to measure the production vertex of a pp — pXp process from
the time information of the two leading protons on each side. If zp,r happens
to be measured from protons that truly are coming from the primary ATLAS
vertex, a narrow enhancement is observed in the otherwise wide zatr,as — 2ToF
distribution. In other words, the primary vertex position in ATLAS (zatpas)
and z position from ToF (zr.r) are correlated for the signal processes; the
projection to the zarpas — zror is a convenient way for searching for such
correspondence.
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Then, in a given data sample if a cut is applied on such zatras — 2ToF
observable (e.g. a window around the signal peak, whose width is driven by
the resolution) some statistics will be lost (the events in the wide tails are cut
away, but these are mostly background) and the signal is enriched, because
the sub-selected sample contains larger fraction of genuine signal events than
the whole sample.

For this analysis only the low-u run 428770 was used, since high-mu runs
include too much combinatorics. The variable zt,r was corrected on time de-
lays, discussed in Section 4.1. Figure 4.9 shows zatras — 21or; the wide distri-
bution indicates background and narrow one is the signal.
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Figure 4.9: The distribution of the zaTr.as — 2zToF for the low-u run 428770.

The sensitivity of the approach to the signal can be checked using Equa-

tion 4.8:
sensitivity = signal/4/background, (4.8)

according to which sensitivity for the full data is about 102.66.

The width of the signal distribution is ¢ = 9.00 mm. To convert it to the
single-side resolution, Equation 4.1 was used for the determination of zr.p,
including a factor 1/2. Thus, the resolution in length units was calculated as
follows, assuming that both sides are the same:

C C
_ 2 2 _
Olength = 5\/O-time,A + Otime,C — §O-time\/§- (49)

According to Equation 4.9, the single side resolution in ps was calculated:

V2

Ops =~ ~Omm x 109 ~ 42.45 ps, (4.10)
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where the speed of light is in m/s.

This indicates that the ToF works well and definitely can reconstruct
signal events; however, the resolutions are still not fully established, which
was also shown in Section 3.2. The HPTDC calibration, done in Section 3.2.2,
introduces additional uncertainty. Correction on them is a separate unique task
and requires separate analysis. Therefore, in this chapter HPTDC uncalibrated
ToF data was used. Nevertheless, vertex matching analysis gives applicable
results even without HPTDC calibration, which is most important for the
single-channel resolutions in the high-u data.

Figure 4.10 (from [18]) shows the zarpas — 21or distribution for the data
from 2017. In the data from 2022 the signal is much better visible, which is
the result of a better efficiency of the ToF detector in Run-3 in comparison
with Run-2. The resolution in data 2017 was better (5.2 £ 0.9 mm), due to
better single-channel resolutions which had less artefacts. Therefore, it must
be stressed that results obtained in data from 2022 are very preliminary and
cannot be compared with results from 2017 directly.

Applying the ToF data to the di-photon vertex reconstruction is not fea-
sible at the moment because currently the di-photon analysis is possible with
high-1 runs and the ToF vertex reconstruction analysis with low-u runs.
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Figure 4.10: The distribution of zarr,As — 21or measured in events with ToF signals
on both sides of the interaction region in run 341419 in data 2017, where zarras
is the primary vertex z-position reconstructed by ATLAS. The zp,r is obtained as
21oF = —5At, where At is the time difference of proton arrival times in A and C far
stations of the AFP measured by ToF. The distribution correspond to the ATLAS
data containing a reconstructed primary vertex together with coincidence of signals
in both ToF detectors in scenario with no cut on number of vertices reconstructed
by ATLAS. A double Gaussian function representing the signal and background
components is fitted to unbinned data samples using the extended likelihood fit as
implemented in RooFit. The mean of the signal component as well as the mean and
width of the background component are always estimated from a Gaussian fit to
the mixed event data, denoted as usFiéx ) ,ubF;dX and UIZZX . The mixed event data
ZATLAS — 2ToF distributions are obtained by random mixing of times measured by
ToF in either station and the zapras values which do not originate in the same
collision event. The expected resolution of the ToF detector, quoted as ngopfgcted

is obtained from the known single-channel resolutions convoluted with the actual
channel-hit-patterns observed in the data [18].



Chapter 5

Di-photon vertex reconstruction

In the author’s previous analysis [12] two approaches were used for deter-
mining the vertex of interaction, i.e. photon pointing and calorimeter pointing
methods. For the photon pointing method, the position of the event in ATLAS
is selected from Primary Vertex (PV) candidates reconstructed using tracks.
This method has a good resolution, but for the vertices of photons it can give
misleading information (as photons do not leave tracks). The second method
uses the calorimeter pointing tool to obtain the vertex of the two photons.

A comparison of the two techniques shows better resolution for the photon
pointing method. Nevertheless, this method has limited opportunities in the
case of photons, as they do not leave tracks in trackers. Therefore, for the
analysis of the Run-3 data the calorimeter pointing method was applied.

For this analysis data from run 429027, taken on July 23, 2022, was used.
'"Calo Pointing Tool" ! from the source in ATLAS ATHENA [24] was used
directly on the DAOD_HIGG1D1 and n-tuple for analysis was created. Events
with two photons only were used for this analysis.

Figure 5.1 shows the distributions for the resolutions in data for converted
and unconverted photons with fitted curve overlaid. Resolutions were obtained
as a difference between vertices of two photons in the data 2022. These dis-
tributions do not have a fully Gaussian shape, therefore a double-Gaussian fit
was applied to the data.

ICalo Pointing Tool from ATLAS ATHENA, link available at A

29
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Figure 5.1: Resolutions for converted (left) and unconverted (right) photons for
first Run-3 data from 2022 using the calorimeter pointing method with fitted curve
overlaid. The values, zy and 21, correspond to the z-position of the leading and the
sub-leading photons, respectively.

The distributions for the resolutions of di-photon vertices for the first
Run-3 data taken in 2022 are wider than for the data taken in 2017, as was
studied in the author’s previous analysis [12]. The reason for such a difference
is likely to be the newness of the data, for which some di-photon calibrations
are not done yet.

In comparison with the author’s previous analysis [12], this 2022 data set
has better statistics and allows to determine width for the converted protons
better. Nevertheless, statistics for them is still poor.
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Future applications on an ALP
search

Searches for the hypothetical Axion-like particles are a hot topic in a
modern science. Many extensions of the Standard Model use them as possible
candidates for particles that make up dark matter.

At the Large Hadron Collider the electromagnetic fields between protons
are strong enough to create powerful fluxes of high-energy virtual photons.
These photons can interact, for example, by merging together and then de-
caying into various final states. Photon fusion is a separate way of looking for
physics BSM. Scattering of light by light mediated by ALPs is prohibited in
the classical theory of electrodynamics. In various extensions, additional con-
tributions are possible, which makes light-by-light scattering measurements
sensitive to physics BSM, which can be used to search for an Axion-like par-
ticle.

A search for a forward proton scattering in association with light-by-light
scattering mediated by an Axion-like particle was performed using central
ATLAS detector and Silicon Tracker from the AFP system [25], however with-
out any ToF data.

In processes such as central exclusive di-photon production pp — p(~v7)p,
photons are recorded with the ATLAS central detector and the vertex posi-
tion of the di-photons is used as a criterion to separate di-photon events com-
ing from the expected ALP signal, from di-photon events produced in other
background processes. Therefore, an improved di-photon vertex resolution will
contribute to better separate signal and background events.

The ToF detector can provide data to improve the vertex reconstruction,
in particular for di-photon events. This additional data improves largely the di-
photon vertex reconstruction as currently the di-photon vertex reconstruction
uses calorimeter data which was taken at a large distance from the interaction
point in the central detector. The extrapolation from the calorimeters to the
interaction point has therefore inherently a large uncertainty.

In this analysis performance of the ToF detector on first Run-3 data was
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studied. In future searches data provided by the ToF can be used for improve-
ment of the vertex reconstruction, and therefore will help to reduce background
in ALP searches.

The 2017 AFP data have been used in a recent ATLAS publication on
an Axion-like particle (ALP) search [25]. It is planned that the ALP analy-
sis will be extended using the LHC Run-3 data. The sensitivity for an ALP
will be greatly increased by the larger integrated luminosity and an enhanced
background reduction using the ToF detector.
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Conclusions

A performance study of the ToF detector was conducted using first LHC
Run-3 data. This analysis extends a previous analysis by the present author
with different data sets, and adds new techniques. It provides preliminary
efficiencies and time resolutions of the ToF detector for 2022 data. Different
approaches for obtaining efficiencies were compared with each other and some
reasons of the differences were determined. A complete efficiency summary is
presented and the results show a downward trend in time for the performance
of the detector.

The preliminary time resolutions were obtained after applying a HPTDC
calibration and likelihood selection requirements. In addition, the performance
study includes a time delay calibration of the ToF detector. A primary proton-
proton vertex reconstruction using the ToF detector and a vertex matching
analyses with the central ATLAS detector was performed. The resulting reso-
lution of the ToF vertex reconstruction is less than 10 mm, which is consistent
with the expectations. These studies were performed mainly on two data sets,
with high p = 31.6 and one with low p = 0.8.

In addition, the vertex reconstruction of di-photon events is part of a
larger effort to use the AFP information together with central ATLAS detector
information to search for an Axion-Like-Particle with a di-photon resonance
signature, produced in ultraperipheral pp interactions. This is also known as
Light-by-Light (LbyL) scattering. A determination of the di-photon vertex
reconstruction was performed using a 2022 central ATLAS detector data set.
This resolution was found to be much larger than the one determined from the
ToF' detector.
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Appendix

A Codes

In Chapter 5 Calo Pointing Tool from ATLAS ATHENA was used for
processing files. Source file to this tool is available at Calo Pointing Tool.
Or see the next url: https://acode-browser2.usatlas.bnl.gov/lxr/source/r22/
athena/PhysicsAnalysis/ElectronPhotonID /PhotonVertexSelection/Root /PhotonPointing Tool.
CXX

All the analysis codes, used for this work are available at GitLab.
Or see the next url: https://gitlab.cern.ch/vlysenko/tof ctu masters 2023
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Appendix

B ToF time resolution

B.1 Before the HPTDC calibration

In Section 3.2 a few examples of raw time distributions (for train 3) are

given.

In this appendix all raw time distributions for the high-; run 429027 are
shown in Figures 1-4. Each figure corresponds to one ToF train. The left peak
corresponds to the C-side and the right one to the A-side.

All raw time distributions for the low-y run 428770 are shown in Figures 5-
8. Each Figure corresponds to the ToF train.
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Figure 1: Raw time distributions in run 429027 after the cut on the time for train 0
for each channel: A (top left), B (top right), C (bottom left) and D (bottom right).



Before the HPTDC calibration

71

o —— U U U T ] [ U T U — ]
g E B ©70000F- =
U_IBOOOO; Vs =136 Tev E w E Vs=136Tev E
50000F Run 429027, channel 1A E 600001~ Run 429027, channel 18 E
E Data 2022 | r Data 2022 3
F - 1 50000 = 3
40000 = F ]
E B 40000 -
300008 E 30000 E
20000 £ 20000 E
10000 ] 10000F- -
ot L1 N 1 ot P B B 1

0 200 400 600 800 1000 0 200 400 600 800 1000
HPTDC bins HPTDC bins
%] e T T T — 3 %] - T T T — T3
200005 1 80000/ E
570000 5=136TeV E @ E V5=136TeV E
60000 Run 429027, channel 1C E 70000 Run 429027, channel 1D E
E [ Data 2022 E 60000 [ Data 2022 E
50000 = E E
& ] 500001 =
40000 = £ E
F E 40000 E =
30000, E 300001~ =
20000 E 20000 3
10000E E 10000F E
E. .. P R E R E N SO R ]

O0 200 400 600 800 1000 00 200 400 600 800 1000
HPTDC bins HPTDC bins

Figure 2: Raw time distributions in run 429027 after the cut on the time for train 1
for each channel: A (top left), B (top right), C (bottom left) and D (bottom right).
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Figure 3: Raw time distributions in run 429027 after the cut on the time for train 2
for each channel: A (top left), B (top right), C (bottom left) and D (bottom right).

?



72

Appendix

‘g [ — T T T T T T T T T T T T T T ] ‘(L) F T T T T T T T T T T T T T T T B
§25000 g 40000 E
i C Vs=13.6 TeV ] w E Vs=13.6 TeV 3
r Run 429027, channel 3A B 350001 Run 429027, channel 38 =
20000] : E E
g [ pata 2022 1 30000 [ Data 2022 E
15000 - 25000 =
a ] 20000 =
10000; 15000; é
5000} 10000 ? ]
B 5000 1
ot P R R N o) P R N B B

0 200 400 600 800 1000 0 200 400 600 800 1000
HPTDC bins HPTDC bins
‘930000; T T T T T T T T T T T T T T T 15| ﬂ | T T T T T T T T T T T T T T |
g F E $350001 =
> > E |
m r V5=13.6 Tev B I E Vs=13.6 Tev E
250001~ Run 429027, channel 3C - 30000 Run 429027, channel 3D -
£ [ Data 2022 ] F [ Data 2022 E
200001 .| 25000 |
B . 20000 E
15000— - E 9
F ] 15000 =
10000 i E ]
= ] 10000 E
S000F 5000~ b
O: Ll Ll | of Ll Ll | 1

0 200 400 600 800 1000 0 200 400 600 800 1000
HPTDC bins HPTDC bins

Figure 4: Raw time distributions in run 429027 after the cut on the time for train 3
for each channel: A (top left), B (top right), C (bottom left) and D (bottom right).
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Figure 5: Raw time distributions in low-p run 428770 after the cut on the time for
train 0 for each channel: A (top left), B (top right), C (bottom left) and D (bottom
right).
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Figure 6: Raw time distributions in low-p run 428770 after the cut on the time for
train 1 for each channel: A (top left), B (top right), C (bottom left) and D (bottom

right).
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In Section 3.2 the At distributions were studied to obtain single-channel
time resolution of the ToF detector.

All At distributions before the HPTDC calibration for the high-p run
429027 with a double-Gaussian fitted curve overlaid are shown in Figures 9-12
for the side A and in Figures 13-16 for the side C, each Figure corresponds to
the ToF train.

All At distributions before the HPTDC calibration for the low-u run
428770 with a double-Gaussian fitted curve overlaid are shown in Figures 17-20
for the side A and in Figures 21-24 for the side C, each Figure corresponds to
the single ToF train.
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Figure 9: At distributions for the run 429027 with a double Gaussian fitted curve
overlaid for all combinations of the ToF channels in train 0 for the A-side.
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Figure 10: At distributions for the run 429027 with a double Gaussian fitted curve
overlaid for all combinations of the ToF channels in train 1 for the A-side.
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Figure 12: At distributions for the run 429027 with a double Gaussian fitted curve
overlaid for all combinations of the ToF channels in train 3 for the A-side.
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Figure 13: At distributions for the run 429027 with a double Gaussian fitted curve
overlaid for all combinations of the ToF channels in train 0 for the C-side.
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Figure 17: At distributions for the low-pu run 428770 with a double Gaussian fitted
curve overlaid for all combinations of the ToF channels in train 0 for the A-side.
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Figure 18: At distributions for the low-pu run 428770 with a double Gaussian fitted
curve overlaid for all combinations of the ToF channels in train 1 for the A-side.
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Figure 19: At distributions for the low-pu run 428770 with a double Gaussian fitted
curve overlaid for all combinations of the ToF channels in train 2 for the A-side.
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Figure 20: At distributions for the low-pu run 428770 with a double Gaussian fitted
curve overlaid for all combinations of the ToF channels in train 3 for the A-side.
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Figure 21: At distributions for the low-pu run 428770 with a double Gaussian fitted
curve overlaid for all combinations of the ToF channels in train 0 for the C-side.
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Figure 22: At distributions for the low-pu run 428770 with a double Gaussian fitted
curve overlaid for all combinations of the ToF channels in train 1 for the C-side.
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Figure 24: At distributions for the low-pu run 428770 with a double Gaussian fitted
curve overlaid for all combinations of the ToF channels in train 3 for the C-side.

B.2 After the HPTDC calibration

In Section 3.2.2 the HPTDC calibration was performed.
All raw time distributions before and after the HPTDC calibration for the
high-p run 429027 are shown in Figures 25-28 for the side A and in Figures 29-
32 for the side C, each Figure corresponds to one ToF train.
All raw time distributions before and after the HPTDC calibration for the
low-p run 428770 are shown in Figures 33-36 for the side A and in Figures 37-40
for the side C, each Figure corresponds to one ToF train.
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Figure 25: Raw time distributions before (blue) and after (red) the calibration in
high-p run 429027 for all ToF channels in train 0 for the A-side.
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Figure 26: Raw time distributions before (blue) and after (red) the calibration in
high-y run 429027 for all ToF channels in train 1 for the A-side.
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Figure 27: Raw time distributions before (blue) and after (red) the calibration in
high-p run 429027 for all ToF channels in train 2 for the A-side.
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Figure 28: Raw time distributions before (blue) and after (red) the calibration in
high-y run 429027 for all ToF channels in train 3 for the A-side.
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Figure 29: Raw time distributions before (blue) and after (red) the calibration in
high-p run 429027 for all ToF channels in train 0 for the C-side.
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Figure 30: Raw time distributions before (blue) and after (red) the calibration in
high-p run 429027 for all ToF channels in train 1 for the C-side.
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Figure 31: Raw time distributions before (blue) and after (red) the calibration in
high-p run 429027 for all ToF channels in train 2 for the C-side.
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Figure 32: Raw time distributions before (blue) and after (red) the calibration in
high-p run 429027 for all ToF channels in train 3 for the C-side.



After the HPT

DC calibration

95

%)
= = A
ngOOO (5=136Tev Calibrated
w :l;n 12807/:0 . Uncalibrated
ide A,
10000

8000

6000

4000

980 1000 1020
HPTDC bins
£12000_" " T T T T L B B B sy
5 15=136Tev Calibrated
I'ulOOOO Run 428770 . Uncalibrated

Side A, 0C

940

1000 1020
HPTDC bins

960 980

%) e M T T T T T T T3
§12000j Vs=13.6 Tev Calibrated ]
it} [ Run 428770 M uncalibrated ]
10000} Side A, 0B —
80001 =
6000/~ =
40001 -
2000~ =
590 960 980 1000 1020
HPTDC bins
2] e S e s e \i TS
c F Vs=13.6 Tev [ ] calibrated
£10000— ]
i r Run 428770 M uncaiibrated |
[ Side A 0D ]
80001 j
6000 :
4000 ]
2000 7

860 880 900 920 940 960 980 1000 1020

HPTDC bins

Figure 33: Raw time distributions before (blue) and after (red) the calibration in
low-p run 428770 for all ToF channels in train 0 for the A-side.
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Figure 35: Raw time distributions before (blue) and after (red)
low-p run 428770 for all ToF channels in train 2 for the A-side.

the calibration in

6000

2 E = a =
§ [ 5=136Tev Calibrated ] § 6000 {5 = 13.6 Tev Calibrated ]
[ Run 428770 . 1 [ Run 428770 ' b
w 5000/ gige A A .Uncahbrated ] w 5000}3"19 A 3B .Uncallbrated {
40001 3 4000 3
3000 = 3000/ E
2000~ = 2000 E
1000 e 1000~ -
800 920 940 960 980 1000 1020 800 920 940 960 980 1000 1020
HPTDC bins HPTDC bins
2] [ e T L s S B s s | ) 5000*‘ LI B T L e R B S
§ 6000 Vs = 13.6 Tev calibrated ] § F {5=136Tev Calibrated
i} [ Run 428770 . ] o [ Run 428770 . 7]
5000[ Side A, 3C .Uncallbrated { 5000[ sige A, 3D .Uncallbrated ]
40000 1 4000 -
30000 E 3000F E
2000 3 2000 —
1000f- - 1000F E
800 920 940 960 980 1000 1020 800 920 940 960 980 1000 1020
HPTDC bins HPTDC bins

Figure 36: Raw time distributions before (blue) and after (red)
low-p run 428770 for all ToF channels in train 3 for the A-side.
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Figure 37: Raw time distributions before (blue) and after (red) the calibration in
low-p run 428770 for all ToF channels in train 0 for the C-side.
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Figure 38: Raw time distributions before (blue) and after (red) the calibration in
low-p run 428770 for all ToF channels in train 1 for the C-side.
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Figure 39: Raw time distributions before (blue) and after (red) the calibration in
low-p run 428770 for all ToF channels in train 2 for the C-side.
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Figure 40: Raw time distributions before (blue) and after (red) the calibration in
low-p run 428770 for all ToF channels in train 3 for the C-side.
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All At distributions after the HPTDC calibration for the high-y run
429027 with a double-Gaussian fitted curve overlaid are shown in Figures 41-44
for the side A and in Figures 45-48 for the side C, each Figure corresponds to
one ToF' train.

All At distributions after the HPTDC calibration for the low-y run 428770
with a double-Gaussian fitted curve overlaid are shown in Figures 49-52 for
the side A and in Figures 53-56 for the side C, each Figure corresponds to one
ToF' train.
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Figure 41: At distributions after the HPTDC calibration for the run 429027 with
a double Gaussian fitted curve overlaid for all combinations of the ToF channels in
train 0 for the A-side.
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Figure 42: At distributions after the HPTDC calibration for the run 429027 with
a double Gaussian fitted curve overlaid for all combinations of the ToF channels in
train 1 for the A-side.
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Figure 43: At distributions after the HPTDC calibration for the run 429027 with
a double Gaussian fitted curve overlaid for all combinations of the ToF channels in
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Figure 44: At distributions after the HPTDC calibration for the run 429027 with
a double Gaussian fitted curve overlaid for all combinations of the ToF channels in

train 3

for the A-side.
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Figure 45: At distributions after the HPTDC calibration for the run 429027 with
a double Gaussian fitted curve overlaid for all combinations of the ToF channels in

train 0 for the C-side.
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Figure 46: At distributions after the HPTDC calibration for the run 429027 with
a double Gaussian fitted curve overlaid for all combinations of the ToF channels in
train 1 for the C-side.
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Figure 47: At distributions after the HPTDC calibration for the run 429027 with
a double Gaussian fitted curve overlaid for all combinations of the ToF channels in
train 2 for the C-side.
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Figure 48: At distributions after the HPTDC calibration for the run 429027 with
a double Gaussian fitted curve overlaid for all combinations of the ToF channels in
train 3 for the C-side.
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Figure 49: At distributions after the HPTDC calibration for the low-p run 428770
with a double Gaussian fitted curve overlaid for all combinations of the ToF channels

in train O for the A-side.
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Figure 50: At distributions after the HPTDC calibration for the low-p run 428770
with a double Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 1 for the A-side.
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Figure 51: At distributions after the HPTDC calibration for the low-p run 428770
with a double Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 2 for the A-side.
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Figure 52: At distributions after the HPTDC calibration for the low-p run 428770
with a double Gaussian fitted curve overlaid for all combinations of the ToF channels

in train

3 for the A-side.
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Figure 53: At distributions after the HPTDC calibration for the low-p run 428770
with a double Gaussian fitted curve overlaid for all combinations of the ToF channels

in train 0 for the C-side.
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Figure 54: At distributions after the HPTDC calibration for the low-p run 428770
with a double Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 1 for the C-side.
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Figure 55: At distributions after the HPTDC calibration for the low-p run 428770
with a double Gaussian fitted curve overlaid for all combinations of the ToF channels

in train 2 for the C-side.
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Figure 56: At distributions after the HPTDC calibration for the low-p run 428770
with a double Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 3 for the C-side.
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B.3 After the likelihood cleanup procedure

In Section 3.2.2 after the HPTDC calibration, the likelihood cleanup pro-
cedure was performed.

All At distributions after the likelihood cleanup procedure for the high-pu
run 429027 with a Gaussian fitted curve overlaid are shown in Figures 57-60
for the side A and in Figures 61-64 for the side C, each Figure corresponds to
one ToF' train.

All At distributions after the likelihood cleanup procedure for the low-p
run 428770 with a Gaussian fitted curve overlaid are shown in Figures 65-68
for the side A and in Figures 69-72 for the side C, each Figure corresponds to
one ToF train.
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Figure 57: At distributions after the likelihood cleanup procedure for the run
429027 with a Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 0 for the A-side.
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Figure 58: At distributions after the likelihood cleanup procedure for the run
429027 with a Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 1 for the A-side.
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Figure 59: At distributions after the likelihood cleanup procedure for the run
429027 with a Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 2 for the A-side.
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Figure 60: At distributions after the likelihood cleanup procedure for the run
429027 with a Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 3 for the A-side.
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Figure 61: At distributions after the likelihood cleanup procedure for the run
429027 with a Gaussian fitted curve overlaid for all combinations of the ToF channels

in train 0 for the C-side.

£30000

[

>

w
25000
20000
15000
10000

5000

— 0=

T
Run 429027, Far-C, 0AC

4 Data 2022
(28.57+0.03) ps

Vs =13.6 TeV

0-5260-10000-6800 58

00 -9400 —9200 -9000 -8800

At[ps]
g40000}\ L L L L L L L :
%35000; Run 429027, Far-C, 0BC Vs =13.6 TeV é

E ¢ Data2022 E
30000 —°= (21.04 £ 0.03) ps 3
250005 =
20000 E
15000F =
10000 E

5000F E
B el
0 13501600 —1400 —1350 ~1080 ~800 600 400

At[ps]
930000 T T
c N 4
2 [ Run 429027, Far-C, 0CD Vs=13.6 TeV |
W25000F 4 pata 2022 -

[ —— 0=(30.16 £ 0.04) ps |
20000 -
15000 -
10000F -

50001 —
E P S RSN R L P NR R R ]

0200 =200 0 200 400 600 800 1000
At [ps]



120 Appendix
‘EZZOOO;\ TT T T T T T T L LR | \7: gzoooo}\ LA L B BN LB N B B B T T L L R | \{
Egoooo} Run 429027, Far-C, 1AB V5=13.6Tev %18000; Run 429027, Far-C, 1AC V5=136Tev ]

18000F ¢ Data 2022 3 E ¢ Data2022 E
160005 —°° (32.73+ 0.04) ps E 16000 __ ;- (34.49 £ 0.04) ps B
140005 E 14000 —
= E 12000f— =
12000F = 10000k E
10000F = B ]
8000;* é 8000? E
6000;7 ,; 6000; =
4000 E 40001 3
20001 E 2000F E
S N R I L R P I I Ll [ R

—POOO -800 -600 -400 -200 O 200 400 —%00 -400 -200 O 200 400 600 800
At[ps] At [ps]
‘220000;\ TT T T T T T T L LR | \; g30000;\ L AL LA AN FOLANL AL HNNLEL AL N A \;
o E Run 420027, Far-C, 1AD (5=136Tev J o [ Run 429027, Far-C, 1BC (5=136Tev 1
([i18000F- ¢ Data 2022 E « E ¢ Data2022 ]
E B 25000 —
16000F — 5= (37.20+ 0.05) ps E [ — 0=(23.32+0.03) ps 1
14000F° E 20000 E
12000 = C ]
10000 = 15000 —
8000F E B ]
6000;* 7; 10000; E
4000 3 50000 B
2000F = F ]
[ | e L PRI N TRI RS

—%00 -600 -400 -200 0 200 400 600 0 -400 -200 0 200 400 600 800 1000

At[ps] At [ps]
@« L N B B N B ] S O I BN B
€ E ] £30000/~ -
I-I>J2500()j Run 429027, Far-C, 1BD Vs=13.6 TeV — Lﬁ [ Run 429027, Far-C, 1CD Vs=13.6Tev J
[ ¢ Data2022 ] [ ¢ Data2022 =
20000;— 0 =(27.30+0.03) ps = 25000: —— 0=(24.34+0.03) ps b
- ] 200001 E
15000 - E ]
F ] 15000 3
10000 3 r ]
. ] 10000/~ E
5000 - 50000 =
I ES T AR R L o 11 E P NR R S| | P ST TSI ]

—%00 -600 -400 -200 0 200 400 600 —POOO -800 -600 -400 -200 0 200 400
At [ps] At[ps]

Figure 62: At distributions after the likelihood cleanup procedure for the run
429027 with a Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 1 for the C-side.
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Figure 63: At distributions after the likelihood cleanup procedure for the run
429027 with a Gaussian fitted curve overlaid for all combinations of the ToF channels
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Figure 64: At distributions after the likelihood cleanup procedure for the run
429027 with a Gaussian fitted curve overlaid for all combinations of the ToF channels
in train 3 for the C-side.
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Figure 65: At distributions after the likelihood cleanup procedure for the low-u
run 428770 with a Gaussian fitted curve overlaid for all combinations of the ToF
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Figure 66: At distributions after the likelihood cleanup procedure for the low-u
run 428770 with a Gaussian fitted curve overlaid for all combinations of the ToF
channels in train 1 for the A-side.
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Figure 67: At distributions after the likelihood cleanup procedure for the low-u
run 428770 with a Gaussian fitted curve overlaid for all combinations of the ToF
channels in train 2 for the A-side.
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Figure 69: At distributions after the likelihood cleanup procedure for the low-u
run 428770 with a Gaussian fitted curve overlaid for all combinations of the ToF
channels in train 0 for the C-side.
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Figure 70: At distributions after the likelihood cleanup procedure for the low-u
run 428770 with a Gaussian fitted curve overlaid for all combinations of the ToF
channels in train 1 for the C-side.
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Figure 71: At distributions after the likelihood cleanup procedure for the low-u
run 428770 with a Gaussian fitted curve overlaid for all combinations of the ToF

channels in train 2 for the C-side.
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Figure 72: At distributions after the likelihood cleanup procedure for the low-u
run 428770 with a Gaussian fitted curve overlaid for all combinations of the ToF
channels in train 3 for the C-side.
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C ToF efficiency

In Section 3.3.1 efficiencies are calculated in all channels assuming that
SiT track points to one of the ToF trains in order to see the full map of ToF
activity, both for the train to which the track points, and for other trains.

Efficiencies calculated in such a way for the run 429027 for both cases
(ON/OFF) using the method "direct numbers" are shown in Figures 73-76, each
Figure corresponds to the ToF train. Empty boxes represents zero response of
the corresponding channel.

Efficiencies calculated in such a way for the low-p run 428770 for both
cases (ON/OFF) using the method "direct numbers" are shown in Figures 77-
80, each Figure corresponds to the ToF train. Empty boxes represents zero
response of the corresponding channel.
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Figure 73: Efficiencies (%) for the run 429027 for each channel of the ToF with
track pointing to train 0 for A (left) and C (right) sides with the requirement "one
train ON", (top) and OFF, (bottom) for the "direct numbers" method. Empty boxes
represents zero response of the corresponding channel.



132 Appendix
%, 429027 Run, Numbers, ON, side-A, Train 1 %, 429027 Run, Numbers, ON, side-C, Train 1
[%) [%)
= £
o [
= ~
64.8 62.37 61.31 61.84 58.17
A B C D A B C D
Bars Bars
%, 429027 Run, Numbers, OFF, side-A, Train 1 %, 429027 Run, Numbers, OFF, side-C, Train 1
[%) [%)
£ £
o [
= =

A B C D

Bars

=

A B C D

Bars

Figure 74: Efficiencies (%) for the run 429027 for each channel of the ToF with
track pointing to train 1 for A (left) and C (right) sides with the requirement "one
train ON", (top) and OFF, (bottom) for the "direct numbers" method.
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Figure 75: Efficiencies (%) for the run 429027 for each channel of the ToF with
track pointing to train 2 for A (left) and C (right) sides with the requirement "one
train ON", (top) and OFF, (bottom) for the "direct numbers" method.
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Figure 76: Efficiencies (%) for the run 429027 for each channel of the ToF with

track pointing to train 3 for A (left) and C (right) sides with the requirement "one
train ON", (top) and OFF, (bottom) for the "direct numbers" method.
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Figure 77: Efficiencies (%) for the low-p run 428770 for each channel of the ToF
with track pointing to train 0 for A (left) and C (right) sides with the requirement
"one train ON", (top) and OFF, (bottom) for the "direct numbers" method. Empty
boxes represents zero response of the corresponding channel.
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Figure 78: Efficiencies (%) for the low-p run 428770 for each channel of the ToF
with track pointing to train 1 for A (left) and C (right) sides with the requirement
"one train ON", (top) and OFF, (bottom) for "direct numbers" method. Empty boxes
represents zero response of the corresponding channel.
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Figure 79: Efficiencies (%) for the low-p run 428770 for each channel of the ToF
with track pointing to train 2 for A (left) and C (right) sides with the requirement
"one train ON", (top) and OFF, (bottom) for the "direct numbers" method. Empty
boxes represents zero response of the corresponding channel.
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Figure 80: Efficiencies (%) for the low-p run 428770 for each channel of the ToF
with track pointing to train 3 for A (left) and C (right) sides with the requirement
"one train ON", (top) and OFF, (bottom) for the "direct numbers" method. Empty
boxes represents zero response of the corresponding channel.
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Hit correlation map showed in details effect of the activity in trains, neigh-
boring to the one track points on.

Figures 81, 82 shows hit correlation maps for high-y run 429027 for the
A-side and C-side, respectively.

Figures 83, 84 shows hit correlation maps for the low-y run 428770 for the
A-side and C-side, respectively.

Figure 85, 86 shows hit correlation maps for the longest low-p run in
Run-3, 435229, for the A-side and side-C, respectively.

Run 429027, Hit corr, side-A, Train 0 Run 429027, Hit corr, side-A, Train 1

Channels
@ @ ow
Channels
@ w
8 8 8

OA 0B OC OD 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D OA 0B 0C OD 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D
Channels Channels

Run 429027, Hit corr, side-A, Train 2 Run 429027, Hit corr, side-A, Train 3

Channels
@ w w
Channels
© w w
8 8 8

OA 0B 0OC OD 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D
Channels Channels

OA 0B OC OD 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D

Figure 81: Hit correlation map for the high-p run 429027 for each channel of the
ToF with track pointing to train 0 (top left), train 1 (top right), train 2 (bottom left)
and train 3 (bottom right) for the A-side with the requirement "one train OFF".
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Figure 82: Hit correlation map for the high-p run 429027 for each channel of the
ToF with track pointing to train 0 (top left), train 1 (top right), train 2 (bottom left)
and train 3 (bottom right) for the C-side with the requirement "one train OFF".
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Figure 83: Hit correlation map for the low-u run 428770 for each channel of the
ToF with track pointing to train 0 (top left), train 1 (top right), train 2 (bottom left)
and train 3 (bottom right) for the A-side with the requirement "one train OFF".
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Figure 84: Hit correlation map for the low-u run 428770 for each channel of the
ToF with track pointing to train 0 (top left), train 1 (top right), train 2 (bottom left)
and train 3 (bottom right) for the C-side with the requirement "one train OFF".
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Figure 85: Hit correlation map for the longest low-p run so far in LHC Run-3,
435229, for each channel of the ToF with track pointing to train 0 (top left), train 1
(top right), train 2 (bottom left) and train 3 (bottom right) for the A-side with the
requirement "one train OFF".
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Figure 86: Hit correlation map for the longest low-p run so far in LHC Run-3,
435229, for each channel of the ToF with track pointing to train 0 (top left), train 1
(top right), train 2 (bottom left) and train 3 (bottom right) for the C-side with the
requirement "one train OFF".
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AFP ATLAS Forward Proton. 2, 6, 8, 49, 51, 58,
61-63

ALP Axion-Like Particle. 2, 61, 62

ALPs Axion-like particles. 1, 61

AOD Analysis Object Data. 9

ATLAS A Toroidal LHC ApparatuS. 5, 6, 9, 49, 50,
58, 59, 61-63

BSM Beyond the Standard Model. 1, 61

CFD constant fraction discriminator. 8
CP Charge conjugation times Parity. 1

HPTDC high performance time-to-digital converter. 8,
11, 14-19, 22-25, 32, 34, 57, 63, 75, 90, 99-115

LB lumiblock. 50, 51, 54, 55
LHC Large Hadron Collider. 1, 2, 5, 8, 11, 50, 62,
63, 143, 144

PMT Photomultiplier Tube. 8
PV Primary Vertex. 59

QED Quantum Electrodynamics. 1

RF Radiofrequency. 11

RP Roman Pots. 2

SiT Silicon pixel Tracker. 2, 6-10, 14, 19-21, 34,
35, 3739, 41, 44, 45, 49, 131

SM Standard Model. 1
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ToF Time-of-Flight. 2, 6-12, 14-16, 18, 19, 22-30,
32, 34, 35, 37-47, 49-53, 55, 57, 58, 61-63, 70,
75-144
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