
Czech Technical University in Prague
Faculty of Nuclear Sciences and

Physical Engineering

Dissertation

General Framework for
Classification at the Top

Prague, 2023 Ing. Václav Mácha

II

Acknowledgements:

I would like to thank both my supervisor Václav Šmídl and supervisor-specialist Lukáš Adam
for their guidance, support, and time they devoted to me throughout my doctoral studies. I
would also like to thank my family and my friends.

Declaration:

I hereby declare that this work is the result of my own work and all sources I have used are
listed in the bibliography.

Prague, February, 2023 .
Ing. Václav Mácha

III

Bibliografický záznam

Autor: Ing. Václav Mácha,
České vysoké učení technické v Praze,
Fakulta jaderná a fyzikálně inženýrská,
Katedra matematiky

Název práce: Obecný rámec pro klasifikaci na vrchu

Studijní program: Aplikace přírodních věd

Studijní obor: Matematické inženýrství

Školitel: doc. Ing. Václav Šmídl, Ph.D.,
Ústav teorie informace a automatizace,
Akademie věd České republiky

Školitel specialista: Mgr. Lukáš Adam, Ph.D.,
České vysoké učení technické v Praze,
Fakulta elektrotechnická

Akademický rok: 2022/2023

Počet stran: 137

Klíčová slova: binární klasifikace, ranking, accuracy at the top, testování hypotéz

IV

Abstrakt

Cílem standardní binární klasifikace je klasifikovat všechny vzorky s nejnižší možnou chybou.
V mnoha aplikacích je však chyba u jedné třídy vzorků závažnější než chyba u třídy druhé.
Obvlášť pokud tyto třídy nejsou vyvážené. Typickým příkladem je detekce rakoviny, kde klasi-
fikovat nemocného pacienta jako zdravého je závažnější chyba než klasifikovat zdravého jako
nemocného. Nicméně i v tomto případě chceme minimalizovat obě chyby, protože snažit se
léčit zdravého pacienta také není ideální. Cílem je tedy minimalizovat počet nemocných pa-
cientů, které klasifikujeme jako zdravé a zároveň mít dané omezení na počet zdravých pa-
cientů, které klasifikujeme jako nemocné. Toto omezení lze formulovat jako rozhodovací práh
vypočítaný z klasifikačních skóre zdravých pacientů. Tím dostaneme úlohu minimalizace
počtu nemocných pacientů, kteří mají klasifikační skóre nižší, než je daný rozhodovací práh.
Jinými slovy, chyba se počítá pouze z malého počtu vzorků s nejvyšším klasifikačním skóre
(vzorky nahoře). Problémy, které se pokoušejí vyřešit tento druh optimalizačních úloh, jsou
hlavním předmětem této práce a souhrnně je nazýváme klasifikace na vrchu.

Mnoho známých kategorií problémů, jako je ranking, accuracy at the top nebo testování hy-
potéz, úzce souvisí s klasifikací na vrchu. Tato práce představuje jednotný rámec pro klasifikaci
na vrchu, ukazuje, že do tohoto rámce spadají některé již existující formulace, a navrhuje zcela
nové formulace (Pat&Mat, Pat&Mat-NP), které do rámce spadají také. Dále práce poskytuje teo-
retickou analýzu navrženého rámce pro různé klasifikátory a analyzuje vlastnosti jednotlivých
formulací a potenciální úskalí, se kterými se lze setkat při použití některých z nich. Kromě toho
práce ukazuje konvergenci metody stochastického gradientního sestupu pro vybrané formu-
lace, i když je odhad gradientu ze své podstaty vychýlený. Navíc práce odvozuje duální formy
vybraných formulací, ukazuje, jak do těchto forem začlenit nelineární jádra a představuje efek-
tivní algoritmus souřadnicového sestupu pro jejich řešení. Práce také studuje primární formy
s nelineárními modely. Ukazuje, že pokud použijeme nelineární model, výsledné formulace
jsou nerozložitelné. Tato vlastnost brání použítí metody stochastického gradientního sestupu
standardním způsobem. Práce tedy zavádí modifikaci této metody a ukazuje, že tato mod-
ifikace vede k vychýlenému odhadu skutečného gradientu. Pro zmírnění tohoto problému
práce navrhuje novou formulaci DeepTopPush. Nakonec je výkon navrhovaných formulací
demonstrován na datových sadách pro rozpoznávání obrazu a na reálných datových sadách
pro steganalýzu a detekci malwaru.

V

Bibliographic Entry

Author: Ing. Václav Mácha,
Czech Technical University in Prague,
Faculty of Nuclear Sciences and Physical Engineering,
Department of Mathematics

Title of Dissertation: General Framework for Classification at the Top

Degree Programme: Application of Natural Sciences

Field of Study: Mathematical Engineering

Supervisor: doc. Ing. Václav Šmídl, Ph.D.,
Institute of Information Theory and Automation,
Czech Academy of Sciences

Supervisor Specialist: Mgr. Lukáš Adam, Ph.D.,
Czech Technical University in Prague,
Faculty of Electrical Engineering

Academic Year: 2022/2023

Number of Pages: 137

Keywords: Binary Classification, Ranking, Accuracy at the Top, Hypothesis
Testing

VI

Abstract

Standard binary classification aims to classify all samples with the lowest possible error. How-
ever, in many applications, the error for one class is more severe than the other, especially if
the classes are not balanced. A typical example is cancer detection. Classifying a sick patient
as healthy is a more serious error than the other way around. However, we still want to mini-
mize both errors since trying to cure a healthy patient is also not ideal. Therefore, the goal is to
minimize the number of sick patients classified as healthy with some constraint on the number
of healthy patients classified as sick. This constraint can be formulated as a decision threshold
computed from the classification scores of healthy patients. Then the goal is to minimize the
number of sick patients with classification scores lower than the decision threshold. In other
words, the error is computed only on a small number of samples with the highest classification
scores (samples at the top). The problems that try to solve this kind of optimization task are
the main object of this work, and we collectively call them classification at the top.

Many well-known categories of problems, such as ranking, accuracy at the top, or hypothesis
testing, are closely related to classification at the top. In this work, we introduce a unified
framework for classification at the top, show that several known formulations fall into it, and
propose entirely new formulations (Pat&Mat, Pat&Mat-NP) that fall into the framework. We
provide a theoretical analysis of the proposed framework for different classifiers and analyze
the properties of individual formulations and potential pitfalls that some formulations may
encounter. Besides that, we show the convergence of stochastic gradient descent for selected
formulations even though the gradient estimate is inherently biased. Moreover, we derive dual
forms of selected formulations, show how to incorporate non-linear kernels into these forms,
and derive an efficient coordinate descent algorithm to solve them. We also study the primal
forms with non-linear models. We show that when we use a non-linear model, the resulting
formulations are non-decomposable. This property prevents us from using stochastic gradient
descent in a standard way. We introduce modified a stochastic gradient descent and show that
this modification leads to a biased estimate of the true gradient. To mitigate this issue, we
propose a new formulation DeepTopPush. Lastly, we demonstrate the performance of proposed
formulations on visual recognition datasets and real-world applications on steganalysis and
malware detection datasets.

VII

VIII

Contents

Introduction 1

1 Introduction to Classification at the Top 3
1.1 Binary Classification . 3
1.2 Performance Evaluation . 5

1.2.1 Confusion Matrix . 5
1.2.2 ROC Analysis . 7

1.3 Classification at the Top . 9
1.3.1 Ranking Problems . 10
1.3.2 Accuracy at the Top . 12
1.3.3 Hypothesis Testing . 13

1.4 Summary . 14

2 Framework for Classification at the Top 15
2.1 Surrogate Formulation . 15
2.2 Ranking Problems . 17
2.3 Accuracy at the Top . 18

2.3.1 Threshold Comparison . 20
2.3.2 Efficient Computing of the Threshold for Pat&Mat 20

2.4 Neyman-Pearson Problem . 21
2.4.1 Threshold Comparison . 23

2.5 Summary . 24

3 Primal Formulation: Linear Model 27
3.1 Convexity . 27
3.2 Differentiability . 28
3.3 Stability . 29
3.4 Stochastic Gradient Descent . 32
3.5 Summary . 34

4 Dual Formulation: Linear Model 37
4.1 Derivation of Dual Problems . 37

4.1.1 Family of TopPushK Formulations . 39
4.1.2 Family of Pat&Mat Formulations . 40

4.2 Kernels . 41
4.3 Coordinate Descent Algorithm . 42

4.3.1 Update Rules . 42
4.3.2 Initialization . 44

4.4 Summary . 46

IX

Contents

5 Primal Formulation: Non-Linear Model 49
5.1 Bias of Sampled Gradient . 50
5.2 DeepTopPush . 52
5.3 Theoretical Justification . 53

6 Numerical Experiments 55
6.1 Settings . 55

6.1.1 Formulations . 55
6.1.2 Hyper-parameters . 57
6.1.3 Datasets . 58
6.1.4 Performance Criteria . 59
6.1.5 Critical Difference Diagrams . 60
6.1.6 Implementation . 60

6.2 Image Recognition . 60
6.2.1 Primal Formulation: Linear Model . 61
6.2.2 Dual Formulation: Linear Model . 64
6.2.3 Primal Formulation: Non-Linear Model 65

6.3 Steganalysis . 70
6.3.1 Nsf5 . 70
6.3.2 JMiPOD . 71

6.4 Malware Detection . 73

Conclusion 75

Apendices 77

A Appendix for Chapter 2 79

B Appendix for Chapter 3 81
B.1 Convexity . 81
B.2 Differentiability . 82
B.3 Stability . 83
B.4 Stochastic Gradient Descent . 88

B.4.1 General Results . 88
B.4.2 Proof of Theorem 3.9 . 89
B.4.3 Auxiliary Results . 94

C Appendix for Chapter 4 97
C.1 Derivation of Dual Problems . 97

C.1.1 Family of TopPushK Formulations . 97
C.1.2 Family of Pat&Mat Formulations . 100

C.2 Coordinate Descent Algorithm . 101
C.2.1 Family of TopPushK Formulations . 101
C.2.2 Family of Pat&Mat Formulations . 110

D Appendix for Chapter 5 121

Bibliography 123

X

Introduction

The modern world is a world of information. In the past few decades, we have witnessed the
rapid spread of computers, the internet, smart devices, sensors, etc., to every possible aspect
of our lives. All these new technologies provide us with valuable data. But the amount of
data is enormous, and the time when it was possible to process all the data manually is long
gone. Thus, the need for methods that can process data automatically without explicitly being
programmed for specific tasks has grown significantly. The field devoted to such methods is
machine learning and covers many different approaches to achieving such goals [51]. In this
work, we focus on one specific subcategory of machine learning called classification [5].

Classification can be easily described on autonomous cars. Autonomous cars are getting
more and more popular these days. One problem that they must solve is the recognition of
road signs. Let’s say that we have a lot of images of road signs. All these signs can be grouped
into a finite number of classes based on their meaning. Classification aims to find a function
that returns the corresponding class to which the road sign from the image belongs [69]. Such
a function is usually called a classifier, and the process of finding a classifier is called training.

In most cases, the classifier is a parameterized function. In such a case, training is the
process of finding parameter values for which the classification is most accurate. To be able to
train the best parameter values, we need a so-called training set. In the case of classification,
each data point in the training set consists of features and a corresponding label. The features
describe the object of interest in a way understandable for computers. The label is the identifier
of the class to which the object of interest belongs. Problems that assume a labeled training
set are called supervised learning problems [5]. In our example, the features are individual
pixels of the image of the road sign, and the label is its type. The labels in the training set
are essential because they allow us to determine which classifier parameters provide the most
accurate predictions. However, they are usually challenging and expensive to obtain, as the
labeling process must be done manually by a person with experience in the corresponding
field. Notably, the labels are only used during training. Once the training is finished, only the
features are needed to use the classifier.

The problem of classification is very important, and many real-world problems can be for-
mulated as classification problems:

• Autonomous Cars: As we have already mentioned, the classification can be used for
autonomous cars, for example for road sign recognition [69].

• Medical Diagnosis: In medicine, classification is often used to improve disease diag-
nosis. In such a case, the features are medical records such as the patient’s blood tests,
temperature, or x-ray images. The classes are whether the patient has some disease or
not. As an example, we can mention the classification of mammogram images. In such a
case, the goal is to detect whether the patient has cancer [72, 44].

• Spam Detection: Another use of classification can be found in detecting spam emails
based on the content of the email [58].

• Internet Security: These days, the internet is a crucial part of our lives. With its in-
creasing usage, the number of attacks also increases. An essential part of the defense are

1

Contents

intrusion detection systems [31, 61] that search for malicious activities (network attacks)
in network traffic. Classification can be used to improve such systems [29, 64].

• Marketing: In marketing, the task can be to classify customers based on their buying
interests. Such information can be used to build a personalized recommendation system
for customers and therefore increase income [38, 77].

From the previous examples, it is clear that classification is a problem present in many sectors.
We can also see that many classification problems contained only two classes. For example,
we want to detect whether the patient has some disease or not in medical diagnosis. Or in
spam detection, we have a class of clear and spam emails. Such problems are usually called
binary classification. The rest of the work focuses only on binary classification problems and
is organized as follows:

• Chapter 1 introduces the general formulation for binary classification and discussed how
to measure the performance of binary classifiers. Furthermore, we show that standard
binary classification optimizes overall performance. However, many problems closely
tied to binary classification only focus on the performance of the most relevant samples.
We introduce three categories of such problems.

• Chapter 2 introduces a general optimization framework for classification at the top.
Many problems fall into this framework even though they are usually considered separate
problems. We describe ranking problems, accuracy at the top, and the Neyman-Pearson
problem in more detail and show that many formulations from these three categories
fall into the framework. Moreover, we derive two new formulations closely related to
the existing one. Finally, we discussed the basic properties and relations between intro-
duced formulations. All formulations are introduced in a general form with arbitrary
model f , even though many of them have been initially designed only for a linear model.
Theoretical properties of the formulations with different models are discussed later.

• Chapter 3 is dedicated to the linear model and formulations in their primal form, i.e., in
the form presented in this chapter. This chapter shows that some formulations have nice
properties such as convexity, differentiability, or stability. We derive some theoretical
guarantees for the optimal solution based on these properties.

• Chapter 4 is dedicated to the dual forms of formulations from Table 2.1. In this chap-
ter, we again assume a linear model only and show that all formulations can be split
into two families based on their similarities. Then we derive dual formulations for these
two families and show that these formulations are very similar to standard SVM. Using
this observation, we use the kernel trick to employ non-linearity into the formulations.
Finally, we derive an efficient algorithm for solving the formulations.

• In Chapter 5, we assume a nonlinear model. A prototypical example of such a model can
be a neural network. The resulting formulations are not decomposable since the decision
threshold is always a function of all classification scores. Therefore, it is impossible to
use the stochastic descent algorithm directly to solve them. In Chapter 5, we present two
approaches for dealing with this problem.

• Chapter 6 is dedicated to all numerical experiments. All codes used for the experiments,
as well as all experiment configurations, are publicly available on GitHub:

https://github.com/VaclavMacha/ClassificationAtTopExperiments.jl

Chapters 1 and 2 are crucial for the whole work since they introduce all formulations that are
studied in the rest of the work. On the other hand, Chapters 3, 4, and 5 study the properties
of these formulations in three different settings. Therefore, these three chapters can be read
separately.

2

 https://github.com/VaclavMacha/ClassificationAtTopExperiments.jl

1
Introduction to Classification at the Top

In the previous chapter, we briefly introduced binary classification and what it is suitable for.
In this chapter, we introduce binary classification more formally and define the notation used
in the rest of the work. Moreover, we discuss several approaches that can be used to measure
the performance of binary classifiers. Finally, we present the problem of classification at the
top, which is closely related to binary classification. This problem is the main topic of the
entire work.

1.1 Binary Classification

As we discussed before, binary classification is the special case of classification in which the
total number of classes is two. Although these classes can have arbitrary names, we call the
class we are interested in the positive class and the other class the negative class. Moreover, we
use the label y = 1 to denote the positive class and y = 0 to denote the negative class. The
notation used in the rest of the work is summarized in Notation 1.1.

Notation 1.1: Dataset

In this work, we use label 0 to encode the negative class and label 1 to encode the positive
class. By a dataset of size n ∈ N we mean a set of pairs in the following form

D = {(xi , yi)}ni=1,

where xi ∈ Rd represents samples and yi ∈ {0,1} corresponding labels. To simplify future
notation, we denote a set of all indices of dataset D as I = I− ∪I+, where

I− = {i
∣∣∣ i ∈ {1,2, . . . ,n} ∧ yi = 0},

I+ = {i
∣∣∣ i ∈ {1,2, . . . ,n} ∧ yi = 1}.

We also denote the number of negative samples in D as n− = |I−| and the number of posi-
tive samples in D as n+ = |I+|. The total number of samples is n = n− +n+.

The goal of any classification problem is to classify given samples with the highest possible
accuracy or, in other words, with the lowest possible error. In the case of binary classification,
there are two types of error: a positive sample is classified as negative, and vice versa. Formally,
using the Notation 1.1, the minimization of these two types of errors can be written as follows

minimize
w, t

C1

∑

i∈I−
1[si≥t] +C2

∑

i∈I+

1[si<t]

subject to si = f (xi ;w), i ∈ I ,
(1.1)

3

1.1 Binary Classification

where C1,C2 ∈ R, the function f : Rd → R is further referenced as a model and 1[·] is the Iverson
function which is used to count misclassified samples and is defined as

1[x] =

0 if x is false,

1 if x is true.
(1.2)

Moreover, the vector w ∈ Rd represents trainable parameters (weights) of the model f and t ∈ R
represents a decision threshold. The parameters w are determined from the training set. Al-
though the decision threshold t can also be determined from the training data, in many cases, it
is fixed. For example, many training algorithms assume that the classification score si = f (xi ;w)
given by the model f represents the probability that the sample xi belongs to the positive class.
Therefore, the decision threshold is set to t = 0.5, and the sample is classified as positive if its
classification score is larger than this threshold. In Notation 1.2, we summarize the notation
used in the rest of the work.

Notation 1.2: Classifier

By classifier, we always mean a pair of a model f and a corresponding decision threshold t.
By model, we mean a function f : Rd → R which maps samples x to its classification
scores s, i.e. for all i ∈ I the classification score is defined as

si = f (xi ; w),

where w represents trainable parameters (weights) of the model f . Predictions are defined
for all i ∈ I in the following way

ŷi =

1 if si ≥ t,
0 otherwise.

(1.3)

In the introduction, we briefly described how to find the best classifier. However, this
process is more complicated in the real world. The whole process can be split into the four
phases:

• Training: The first phase is the actual training of the classifier. In this phase, we use some
algorithm to find the trainable parameters of the classifier based on the provided train-
ing set. Returning to the formulation of binary classification 1.1, in this phase, we want
to find weights w and the threshold t. However, most formulations have some hyper-
parameters, such as C1 and C2 in 1.1. These hyperparameters are fixed for training. Mul-
tiple classifiers with different hyperparameter values are typically trained in the training
phase.

• Validation: The validation phase selects the best hyper-parameter values that lead to the
most performant and robust classifier. In this phase, the performance of classifiers from
the training phase is evaluated on the so-called validation set. The validation set has the
same structure as the training set but contains different samples.

• Testing: In the testing phase, the classifier with the best performing values of hyper-
parameters is tested against different classifiers. For the testing, the testing set is used.
The testing set also has the same structure as the training set (it contains the labels) but
contains different samples.

• Inference: In the previous phases, we trained multiple classifiers and selected the best
one for our specific task. In the inference phase, we apply this classifier to real unlabeled
data.

4

1 Introduction to Classification at the Top

1.2 Performance Evaluation

In the previous section, we defined general binary classification problem (1.1). However, we
did not discuss how to measure the performance of the resulting classifier. In this section,
we introduce basic performance metrics that are used to measure the performance of binary
classifiers.

1.2.1 Confusion Matrix

Based on the prediction ŷi from (1.3) and the actual label yi of the sample xi , each sample can
be assigned to one of the four following categories:

• True negative: sample xi is negative and is classified as negative, i.e. yi = 0 ∧ ŷi = 0.

• False positive: sample xi is negative and is classified as positive, i.e. yi = 0 ∧ ŷi = 1.

• False negative: sample xi is positive and is classified as negative, i.e. yi = 1 ∧ ŷi = 0.

• True positive: sample xi is positive and is classified as positive, i.e. yi = 1 ∧ ŷi = 1.

If we assign each sample from dataset D to one of the categories above and count the number
of samples in each of these four categories, we get the confusion matrix (sometimes also called
contingency table) [23], see Figure 1.1. A confusion matrix consists of four fields that contains
number of true-negative (tn), false-positive (fp), false-negative (fn), and true-positive (tp) sam-
ples in the whole dataset. More formally, using the prediction rule (1.3) we can compute all
fields of the confusion matrix as follows

tp(s, t) =
∑

i∈I+

1[si≥t], fn(s, t) =
∑

i∈I+

1[si<t],

tn(s, t) =
∑

i∈I−
1[si<t], fp(s, t) =

∑

i∈I−
1[si≥t],

(1.4)

where s is the vector of classification scores given by model f , and 1[·] is the Iverson func-
tion (1.2). In the following text, we sometimes use a simplified notation tp = tp(s, t) (and
similar notation for other counts). In such cases, the vector of classification scores and decision
threshold is fixed and is known from the context. Using the simplified notation, we can define
true-positive, false-positive, true-negative, and false-negative rates as follows

tpr =
tp
n+
, fnr =

fn
n+
, tnr =

tn
n−
, fpr =

fp
n−
. (1.5)

Figure 1.2 shows the relation between classification rates and the decision threshold. The blue
and red curves represent the theoretical distribution of the scores of negative and positive
samples, respectively. If we increase the value of the threshold t, we decrease the false-positive
rate, but at the same time, we also increase the false-negative rate. On the other hand, if
we decrease the value of t, we decrease the false-negative rate, but at the same time, we also
increase the false-positive rate. In other words, it is not possible to decrease the false-positive
rate only by moving the threshold t without increasing the false-negative rate and vice versa.
Therefore, we always have to find some balance between these two types of errors.

If we look at the general definition of the binary classification problem (1.1), the objective
function is only the weighted sum of false-positive and false-negative samples. Therefore, we
can use the notation (1.5) and rewrite the problem (1.1) to

minimize
w, t

C1 · fp(s, t) +C2 · fn(s, t)

subject to si = f (xi ;w), i ∈ I .
(1.6)

5

1.2 Performance Evaluation

ŷ = 0 ŷ = 1

y = 0 →

y = 1 →

↓ ↓

Predicted label

Row total:

A
ct

u
al

la
b

el

true
negatives

(tn)

false
positives

(fp)

all
negatives

(n−)

false
negatives

(fn)

true
positives

(tp)

all
positives

(n+)

Column
total:

all predicted
negatives

all predicted
positives

Figure 1.1: The confusion matrix for the binary classification problem, where the negative class
has the label 0 and the positive class has the label 1. The true (target) label is denoted by y and
the predicted label is denoted by ŷ.

Decision
threshold t

tnr tpr

fprfnr

Distribution of
negative scores

Distribution of
positive scores

Scores s

Figure 1.2: The relation between classification scores and rates. The blue/red curve is the the-
oretical distribution of the scores of negative/positive samples, respectively. The area between
the blue line and the x-axis is divided by the decision threshold t. The left part represents the
true-negative rate, while the right part represents the false-positive rate. The area between the
red line and the x-axis is also divided by t. The left part represents a false-negative rate, and a
right represents the true-positive rate.

6

1 Introduction to Classification at the Top

Name Aliases Formula

true negatives correct rejection tn

false positives Type I error, false alarm fp = n− − tn

true positives hit tp

false negatives Type II error fn = n+ − tp

true negative rate specificity, selectivity tnr = tn
n−

false positive rate fall-out fpr = fp
n−

= 1− tnr

true positive rate sensitivity, recall, hit rate tpr = tp
n+

false negative rate miss rate fnr = fn
n+

= 1− tpr

accuracy — acc = tp+tn
n

balanced accuracy — bacc = tpr+tnr
2

precision positive predictive value precision = tp
tp+fp

Table 1.1: Summary of classification metrics derived from confusion matrix. The first column
shows the name used in this work, while the second column shows alternative names that can
be found in the literature. The last column shows the formula based on the confusion matrix.

Parameters C1, C2 ∈ R are used to specify which error is more serious for the particular classi-
fication task.

The confusion matrix is not the only way to measure the performance of binary classifiers.
For example, there are many different classification matrices, and many of them are derived
directly from the confusion matrix [23, 50, 13, 33]. As an example, we can mention accuracy
and balanced accuracy defined as

acc =
1
n

(tp+tn), bacc =
1
2

(tpr+tnr).

Note that the objective function in (1.6) is accuracy if C1 = C2 = 1
n . Moreover, for C1 = 1

2n−
and C2 = 1

2n+
, the objective function is balanced accuracy. This show the importance of these

two performance matrices for standard binary classification. More performance metrics de-
rived from the confusion matrix can be found in Table 1.1. Moreover, in the following section,
we introduce a different approach for the performance evaluation of binary classifiers.

1.2.2 ROC Analysis

In the previous section, we defined a general binary classification formulation (1.6) that mini-
mizes a weighted sum of false-positive and false-negative counts. Therefore, we always have to
find some trade-off between the false-positive and false-negative counts and select the best hy-
perparameters C1, C2, for given tasks. There is no universal truth which of these two errors is
worse. For example, it is probably better to classify a healthy patient as sick and do additional
tests than the other way around. On the other hand, in computer security, an antivirus pro-
gram with a lot of false-positive alerts is useless since it is disruptive to the user. The Receiver
Operating Characteristic (ROC) space [22, 23] is one way to visualize the trade-off between
false-positive and false-negative errors.

7

1.2 Performance Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A

B

C

D

E

False-positive rate

Tr
u
e-
p
os
it
iv
e
ra
te

0 0.2 0.4 0.6 0.8 1
False-positive rate

Classifier 1: AUC = 95%
Classifier 2: AUC = 77%

Figure 1.3: A basic representation of the ROC space with five different classifiers. (left) A
comparison of ROC curves for two different classifiers. (right)

ROC space is a two-dimensional space with the x-axis equal to the false-positive rate and
the y-axis to the true-positive rate. The left-hand side of Figure 1.3 shows the ROC space with
five highlighted points. Each point in the ROC space represents one fixed classifier, i.e., one
pair consisting of a model f and a decision threshold t. There are several important points
in the ROC space. The point (0,0) represents a classifier classifying all samples as negative,
while (1,1) is a classifier classifying all samples as positive. Both these classifiers are useless.
On the other hand, the point (0, 1) represents the perfect classifier that classifies all samples
correctly since fpr = 0 and tpr = 1.

ROC representation allows us to decide whether one classifier is better than another, only
in some cases. For example, in Figure 1.3, classifier B is better than classifier C since B has a
higher true-positive rate and at the same time a lower false-positive rate. On the other hand, it
is impossible to say which classifier is better if one has a higher true-positive rate and the other
has a lower false-positive rate. We can see this situation for classifier B and A. In such a case,
the preference depends on the given problem, as discussed at the beginning of this section.

Another important part of the ROC space is the diagonal line highlighted in red in Fig-
ure 1.3. Any classifier that appears on this diagonal provides the same performance as a ran-
dom classifier. For example, classifier C is represented in ROC space by point (0.7,0.7). Such
classifier randomly classifies 70% of samples as positive. Therefore, any classifier that appears
in ROC space in the lower right triangle is worse than a random classifier. There are usually no
classifiers in this area since any classifier from the lower right triangle can be easily improved.
If we negate the prediction of such a classifier for every sample, we get its negated version in
the upper left triangle. Such a situation is in Figure 1.3 for classifiers E and B. Since classifier
E has a false-negative rate of 1 − tpr = 0.8, we can deduce that negated classifier will have a
true-positive rate of 0.8. Similarly, since classifier E has a true-negative rate of 1− fpr = 0.4, its
negated version will have a false-positive rate of 0.4. Therefore the negated version of classifier
E is represented in ROC space by point (0.4,0.8), which is classifier B.

Many classifiers only predict whether samples are positive or negative. As an example, we
can mention decision trees. Such classifiers are always represented as a single point in the ROC
space. In this text, we consider only classifier from Notation 1.2, which predict a continuous
score instead of a hard prediction. We assume that the classifier consists of the model f that
produces classification scores and the decision threshold t. Many standard classifiers such as
neural networks or logistic regression fall into this setting. Even though the decision thresh-
old is determined during the training process, it is possible to change it and obtain different

8

1 Introduction to Classification at the Top

predictions. This possibility is very often used to produce so-called ROC curves [23].
ROC curve shows how model f behaves for different thresholds t varying from −∞ to +∞.

Right-hand side of Figure 1.3 provides an example of two ROC curves for two different classi-
fiers. Classifier 1 provides accuracy 95% and is represented by the blue dot, while the blue line
represents its ROC curve. Classifier 2 represented by the green dot provides accuracy 76%,
and the green dashed line represents its ROC curve. A standard method for comparing two
classifiers is to compare the corresponding areas under the ROC curves (AUC) [12, 32]. Such
an approach is a simple way to reduce the curve to one number. In the case of standard binary
classification, the larger the AUC, the better. In Figure 1.3 we can see that the blue classifier
has AUC 95% while the green one has only 77%. Therefore, for most classification problems,
the blue classifier is better. Even though we get almost the same values of accuracy and AUC
for both classifiers, the accuracy is not equivalent to AUC. The similarity is only a consequence
of the used example.

Since both false-positive and true-positive rates are non-increasing functions of threshold t,
we can efficiently compute the ROC curve from sorted classification scores. Moreover, the AUC
of a classifier is equivalent to the probability that the classifier will rank a randomly chosen
positive sample higher than a randomly chosen negative sample [23]. By comparing the classi-
fiers from the right-hand side of Figure 1.3, we can deduce that Classifier 1 is generally better
at a false-positive rate larger than 0.01. Otherwise, Classifier 2 is the better one. Therefore,
there is a specific region of the ROC space where Classifier 2 outperforms Classifier 1. In the
next section, we discuss multiple different problems which focus on the performance only at
low false-positive rates.

1.3 Classification at the Top

As discussed above, Classifier 1 focuses on the overall performance, while the Classifier 2 on
the performance on low false-positive rates, see Figure 1.3. The latter classifier can be handy for
search engines such as Google or DuckDuckGo, where the goal is to have all relevant results on
the first few pages. The results on page 50 are usually of no interest to anyone, so it is crucial
to move the most relevant results to the few first pages [17, 36]. Therefore, it is essential
to push as many positive samples above some small portion of the worst negative samples
(negative samples with the largest classification scores). In this section, we use two different
visual representations for the performance of classifiers from the right-hand side of Figure 1.3
to show the difference and emphasize their advantages.

Figure 1.4 shows the difference between the standard classifier (Classifier 1) that maxi-
mizes the accuracy and the classifier that focuses only on the classification at the top (Classifier
2). In this particular case, Classifier 2 maximizes the number of positive samples that are
ranked higher or equal than the worst negative sample. In other words, Classifier 2 maximizes
true-positive rate at the smallest possible false-positive rate. If we go back to the example with
search engines, the goal of Classifier 2 is to push as many relevant results before the first
irrelevant. Formally, Classifier 2 maximizes the following metric

pos@top(s) =
1
n+

∑

i∈I+

1[si≥maxj∈I− sj]. (1.7)

For both classifiers, Figure 1.4 shows two different decision thresholds. The black threshold
is the one for which the classifier was trained, while the green one represents the worst nega-
tive sample. For Classifier 2 these two thresholds coincide. We can observe that Classifier 1
provides a much better separation of positive and negative samples. Only a few samples above
the black threshold ruin perfect separation. On the other hand, the separation provided by
Classifier 2 is much worse since half of the positive samples are mixed with negative ones.
Therefore, the accuracy of Classifier 1 is 95% while the accuracy of Classifier 2 is only 76%.

9

1.3 Classification at the Top

Classifier 1
acc 95%
pos@top 19%

Classifier 2
acc 76%
pos@top 53%

Negative scores Threshold for acc
Positive scores Threshold for pos@top

Figure 1.4: Difference between standard classifiers (Classifier 1) and classifiers maximiz-
ing pos@top metric (Classifier 2). While the former has a good total accuracy, the latter has a
good pos@top metric.

However, in terms of metric (1.7) the situation is quite different. Since there are few negative
outliers, there is only 19% of positive samples above the worst negative for Classifier 1, but
53% for Classifier 2.

The same behavior can also be demonstrated using ROC curves. Figure 1.5 shows ROC
curves for both classifier with (right) and without (left) logarithmic scaling of x-axis. The blue
line represents ROC curve for Classifier 1 and the green dashed one for Classifier 2. Moreover,
There are two important points for Classifier 2. The blue filled circle corresponds to the black
threshold and the blue filled square to the green threshold from Figure 1.4. Since for Classifier
2 both thresholds coincide, there is only one point in Figure 1.5 highlighted by a green square.
The superiority of Classifier 1 in the overall performance is evident from the left-hand side
of the figure, since there is only a small region of ROC space, where Classifier 2 provides
a higher true-positive rate. However, this region is very interesting. The right-hand side of
Figure 1.5 allows us to concentrate on very low false-positive rates. If the false-positive rate
is lower than 7 · 10−1, then Classifier 2 provides better true-positive rate than Classifier 1.
Finally, the value of metric (1.7) is highlighted using squares for both classifiers and it is clear,
that Classifier 2 provides higher value of this metric.

The rest of the chapter presents three main categories of problems that focus only on a
small number of the most relevant samples. Moreover, in Chapter 2, we show that at least
some formulations from these three categories are closely related to binary classification.

1.3.1 Ranking Problems

The first category is the category of ranking problems. The ranking algorithms play a crucial
role in many information retrieval problems:

• Document (Text) retrieval systems are used for obtaining relevant documents from the
collection of documents based on the relevance to the user’s query. Such systems are
widely used for accessing books, journals, or any other documents. However, the most
visible applications are search engines such as Google or DuckDuckGo.

• Collaborative filtering is one of the techniques used to predict a user’s rating of a new
product based on past ratings of users with similar rating patterns. Such systems can
be used to generate music or video playlists automatically. Therefore, such systems are
widely used in services such as Youtube or Spotify.

The two examples above show that ranking problems usually depend on users’ feedback or
preferences. In binary classification, we only have the labels that represent if the samples are

10

1 Introduction to Classification at the Top

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False-positive rate

Tr
u
e-
p
os
it
iv
e
ra
te

10−2 10−1 100

False-positive rate

Classifier 1: AUC = 95% Classifier 2: AUC = 77%

Figure 1.5: Difference between standard classifiers (Classifier 1) and classifiers maximiz-
ing pos@top metric (Classifier 2). While the former has a good total accuracy, the latter has a
good pos@top metric.

positive or negative. On the other hand, ranking problems use multiple ways to describe the
users’ feedback. One approach uses the feedback function Φ : Rd ×Rd → R to represent the
user’s preferences [26]. In such a case, the feedback function can be defined for all pairs of
samples (xi ,xj) in the following way

Φ(xi ,xj)

> 0 xi is prefered over xj ,

= 0 no preference,

< 0 xj is prefered over xi .

We can see, that the feedback function specify if the user prefers xi over xj or not. More-
over, the feedback function also specifies how strong the preference is, i.e., the higher the vol-
ume |Φ(xi ,xj)|, the higher the preference. Many ranking algorithms try to find some ordering
of all samples that minimizes the number of incorrectly ordered pairs of samples. Consider a
ranking function r : Rd → R. The sample xi is ranked higher than the sample xj if r(xi) > r(xj).
Then, the minimization of the number of misordered pairs can be formally written as follows

minimize
r

∑

i∈I

∑

j∈I
1[r(xi)≤r(xj)] ·max

{
0, Φ(xi ,xj)

}
. (1.8)

This problem is computationally demanding since the objective function contains a pairwise
comparison of all samples. Therefore, the problem is not suitable for large data. RankBoost [26]
is a boosting algorithm based on the AdaBoost [25] that combines many weak ordering func-
tions to obtain the final ranking. This approach leads to the maximization of the AUC [60].
Therefore, RankBoost focuses on the overall performance. However, as we discussed at the be-
ginning of the section, we want to focus only on the small portion of the most relevant samples
in many applications. In such a case, this approach is not ideal.

Consider movie recommendations. In such a case, we only care if the movie is good or
not. It is not important if one bad movie is ranked higher than another bad movie. Both
movies are still bad and therefore not relevant. Many ranking algorithms [60] use the so-called
bipartite ranking to address this situation. In such a situation, each sample is positive (good)

11

1.3 Classification at the Top

or negative (bad), and the goal is to push positive samples above negative ones. The authors
of [60] proposed the following formulation

minimize
r

∑

j∈I−

∑

i∈I+

1[r(xi)≤r(xj)]

p

1
p

. (1.9)

The authors of [60] also proposed boosting algorithm called p-Norm Push to solve the formu-
lation above. Note that for p = 1, the formulation (1.9) is very similar to the RankBoost (1.8)
and the resulting ranking function maximizes the AUC, therefore focusing on optimizing the
overall ranking. On the other hand, for p→ +∞, the formulation (1.9) minimizes the largest
number of positive samples ranked below any negative sample

minimize
r

max
j∈I−

∑

i∈I+

1[r(xi)≤r(xj)].

In such a case, the resulting ranking function focuses only on the absolute top, i.e., it aims to
push as many positive samples above the negative sample with the highest rank. Moreover, the
formulation above can be equivalently rewritten as follows

minimize
r

∑

i∈I+

1[r(xi)≤maxj∈I− r(xj)]. (1.10)

Authors of [4] focus on this formulation and introduce a SVM (Support Vector Machines [18])
based algorithm called Infinite Push to solve it. Finally, authors of [45] proposed an even more
efficient algorithm with the linear complexity in the number of samples called TopPush. Note
that the objective function of the problem above is almost the same as the metric (1.7). There-
fore, this Classifier 2 from Figures 1.4 and 1.5 corresponds to the ranking function given by
TopPush algorithm. It shows a close connection between binary classification and the bipartite
ranking problems.

1.3.2 Accuracy at the Top

In the previous section, we introduced formulation (1.10), which focuses on maximizing the
number of positive samples above the worst negative sample (the one with the highest rank or
highest classification score). This formulation is very useful, as discussed at the beginning of
this section. However, such a maximization problem can be unstable since the objective func-
tion does not allow false-positive errors. Therefore, if there is one negative outlier with a high
score, the number of positive samples above this outlier can be tiny. The authors of [11] focus
on a similar problem as TopPush, but use a different approach. They proposed the following
formulation and called it accuracy at the top

minimize
w

1
n−

fp(s, t) +
1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,

t = max

t
∣∣∣∣∣∣∣

1
n

∑

i∈I
1[si≥t] ≥ τ

,

(1.11)

where f : Rd → R is a model. This formulation focuses on the top τ-fraction of all samples
and tries to maximize the number of positive samples and minimize the number of negative
samples in it. Even though the goal is to maximize the number of positive samples above
the top τ-quantile, the objective function contains false-positive and false-negative rates. It
should be sufficient to include only one of them since the definition of the threshold implies

12

1 Introduction to Classification at the Top

the minimization of the other one as well. However, this form of objective function should be
more robust [31]. The problem of accuracy at the top is useful, for example, in applications
where identified samples undergo expensive post-processing, such as human evaluation. For
instance, in pharmaceutics, potentially useful drugs must be preselected and manually inves-
tigated in drug development. Since the manual investigation is costly, we have to select only a
fraction of drugs with the highest potential. However, it is precisely what accuracy at the top
does.

There are many methods on how to solve accuracy at the top, since the formulation is com-
plicated due to the top τ-quantile in the constraint. The early approaches aim at solving ap-
proximations. For example, the authors of [37] optimize a convex upper bound on the number
of errors among the top samples. Due to exponentially many constraints, the method is com-
putationally expensive. In [11] the authors presented a SVM-like formulation. They assume
that the top τ-quantile is one of the samples, construct n unconstrained optimization problems
with fixed thresholds, solve them and select the best solution. While this removes the necessity
to handle the (difficult) quantile constraint, the algorithm is computationally infeasible for a
large number of samples. The authors of [31] proposed the projected gradient descent method,
where after each gradient step, the quantile is recomputed. In [21] authors suggested new for-
mulations for various criteria and argued that they keep desired properties such as convexity.
Finally, the authors of [71] showed that accuracy at the top is maximized by thresholding the
posterior probability of the relevant class.

1.3.3 Hypothesis Testing

The hypothesis testing operates with null H0 and alternative H1 hypothesis. The goal is to ei-
ther reject the null hypothesis in favor of the alternative or not to reject it. Since the problem
is binary, two possible errors can occur. Type I occurs when H0 is true but is rejected, and Type
II error happens when H0 is false but fails to be rejected. The Neyman-Pearson problem mini-
mizes [55] Type II error while keeping Type I error smaller than some predefined bound. Using
our notation for the Neyman-Pearson problem, the null hypothesis H0 states that sample x has
a negative label. Then Type I error occurs when the sample is false-positive, while Type II error
occurs when the sample is false-negative. Therefore, the Neyman-Pearson problem minimizes
the false-negative rate with the prescribed level τ of the false-positive rate. Such constraint
can be written in the form of quantile, i.e., the threshold is the top τ-quantile of scores of all
negative samples.

minimize
f

1
n+

fn(s, t)

subject to si = f (xi), i ∈ I ,

t = max

t

∣∣∣∣∣∣∣∣
1
n−

∑

i∈I−
1[si≥t] ≥ τ

,

This formulation is very similar to the one for accuracy at the top (1.11). The main difference
is that the quantile in the constraint is not computed from all but only from negative samples.
Also, note one key difference in interpretation. The τ in accuracy at the top represents the total
amount of samples we want to process with the smallest possible error. On the other hand, in
the Neyman-Pearson problem τ represents the maximal acceptable false-positive rate. There-
fore, the former approach is useful in situations where we can process only a certain number
of samples. The latter is for situations where we have strict constraints on false-positive errors.

13

1.4 Summary

1.4 Summary

In this chapter, we introduced the general formulation (1.6) for binary classification and dis-
cussed how to measure the performance of binary classifiers. The first approach for perfor-
mance evaluation is based on the confusion matrix. This approach is very straightforward.
Moreover, it is possible to derive many different classification matrices from the confusion ma-
trix. Table 1.1 summarizes classification matrices derived from the confusion matrix used in
the upcoming chapters. The second approach introduced in this chapter uses the ROC space
to visualize the ability of classifiers to rank positive samples above negative ones. Since stan-
dard binary classification focuses on optimizing the overall performance, we discussed that
there are many problems closely tied to binary classification that focus on the performance of
the most relevant samples. Such problems occur in many applications, from search engines to
drug development. We also introduced Ranking problems, the problem of accuracy at the top,
and the Neyman-Pearson problem and discussed their relation to the binary classification.

Note 1.3

To improve the readability of the main part of the work, we postpone many results into
appendices. Main results are presented in the main part, but all auxiliary results and
proofs are located in appendices.

14

2
Framework for Classification at the Top

In the previous chapter, we introduced the general formulation (1.6) and fundamental evalua-
tion matrices for the binary classification problems. Furthermore, in Section 1.3, we introduced
three problems closely related to binary classification but focused on specific performance cri-
teria, namely: accuracy at the top problem, ranking problems, and the problem of hypothesis
testing. Even though these problems are usually considered separately, they all aim to mini-
mize the number of misclassified samples below (or above) a certain threshold. In the rest of
the chapter, we focus on this common property and show that all these problems fall into the
following unified framework for binary classification at the top

minimize
w

C1 · fp(s, t) +C2 · fn(s, t)

subject to si = f (xi ;w), i ∈ I ,
t = G(s,y),

(2.1)

where function G : Rn×{0,1}n→ R takes the scores and labels of all samples and computes the
decision threshold. The concrete form of the function G that defines the decision threshold
depends on the used problem. As we show later in the chapter, all problems mentioned above
differ only in the definition of the functionG.Note the important distinction from the standard
binary classification (1.6): the decision threshold is no longer fixed (as in the case of neural
networks) or trained independently (as in SVM) but is a function of scores of all samples.
Therefore, the minimization in problem (2.1) is performed only concerning the one variable w.

2.1 Surrogate Formulation

The objective function in (2.1) is a weighted sum of false-positive and false-negative counts.
Since these counts are discontinuous due to the presence of the Iverson function (see (1.4)),
the whole objective function is discontinuous too. Therefore, problem (2.1) is difficult to solve.
One way how to simplify the problem is to derive its continuous approximation. The usual
approach is to employ a surrogate function to replace the Iverson function [45, 31].

Notation 2.1: Surrogate function

To approximate the Iverson function (1.2), we use any surrogate function l that is convex,
non-negative, and non-decreasing with l(0) = 1, and l(s)→ 0 as s→ −∞. As examples of
such function, we can mention the hinge loss or the quadratic hinge loss defined by

lhinge(s) = max{0,1 + s}, lquadratic(s) = (max{0,1 + s})2.

Figure 2.1 compares the Iverson function with the hinge and quadratic hinge loss with
scaled inputs by ϑ = 2 and without scaling. We use ϑ > 0 to denote any scaling parameter.

15

2.1 Surrogate Formulation

−2 −1 0 1 2
0

1

2

3

4

s

l(
s)

1[s≥0]
lhinge(s)
lhinge(2s)
lquadratic(s)
lquadratic(2s)

Figure 2.1: Comparison of the approximation quality of the Iverson function using different
surrogate functions and scaling parameters.

Notation 2.1 summarizes all assumptions that a proper surrogate function must fulfill and
introduces the two most often used surrogate functions: hinge and quadratic hinge loss func-
tions. Moreover, Figure 2.1 compares these two surrogate functions with the Iverson function.
It is clear that the surrogate function always provides an upper approximation of the Iverson
function. In other words, if a surrogate function l satisfies assumptions from Notation 2.1,
then l(s) ≥ 1[s≥0] holds for any s ∈ R. Besides that, Figure 2.1 shows how the scaling parame-
ter ϑ affects the approximation quality of the surrogate function. If the scaling parameter is
greater, the surrogate function approximates the Iverson function better on interval (−∞,0). In
the opposite case, the approximation is better on interval (0,∞). The usual choice of scaling
parameter is ϑ = 1, and we used this choice for all surrogate functions used in the objective
functions. However, we also use surrogate functions for approximation of the decision thresh-
old. In such a case, the scaling parameter plays a crucial role for some theoretical guaranties,
as shown in upcoming chapters.

With a properly defined surrogate function, we can define the surrogate approximation
of the objective function of problem (2.1). To follow the notation from the previous chapter,
we first replace the Iverson function in (2.1). Using any surrogate function l that satisfies
assumptions from Notation 2.1, the true counts (2.1) may be approximated by their surrogate
counterparts defined by

tp(s, t) =
∑

i∈I+

l(si − t), fn(s, t) =
∑

i∈I+

l(t − si),

tn(s, t) =
∑

i∈I−
l(t − si), fp(s, t) =

∑

i∈I−
l(si − t).

(2.2)

Since the surrogate function provides upper approximation of the Iverson function, the sur-
rogate counts (2.2) provide upper approximations of the true counts (1.4). By replacing the
true counts in the objective function of (2.1) with their surrogate counterparts and adding a
regularization for better numerical stability, we get

minimize
w

λ
2
‖w‖2 +C1 · fp(s, t) +C2 · fn(s, t)

subject to si = f (xi ;w), i ∈ I ,
t = G(s,y).

(2.3)

The resulting objective function is continuous, and therefore the problem is easier to solve
than the original problem (2.1). No additional theoretical properties can be derived without

16

2 Framework for Classification at the Top

knowing the concrete form of model f and function G. Therefore, the rest of the chapter is
dedicated to problems that fall into the general framework (2.3) and concrete form of G for
such problems. More precisely, we focus on the three problems introduced in Section 1.3 and
show how to rewrite them to our general formulation (2.3). Most of these problems are defined
originally only for the linear model since this choice allows to derive nice theoretical properties
and efficient solving algorithms. However, this chapter focuses on the problem formulation
itself rather than on how to solve it. Therefore for all problems, we derive their version with
general model f . The discussion of the theoretical properties for specific forms of f is provided
in Chapter 3, 4, and 5.

Notation 2.2: Classification scores

In Notation 1.2, we defined vector s ∈ Rn of scores of all samples with components defined
for any i ∈ I as

si = f (xi ;w), i ∈ I ,
where f : Rd → R represents an arbitrary model. To simplify the upcoming sections, we
define a sorted version of vector s with non-increasing components and denote it as s[·]. It
means that components of s[·] fulfill

s[1] ≥ s[2] ≥ · · · ≥ s[n−1] ≥ s[n].

Moreover, we denote negative samples as x− and positive samples as x+. Finally, we define
vectors s− ∈ Rn− , s+ ∈ Rn+ of scores of all positive and negative samples with components
defined as

s−j = f (x−j ;w), j = 1, 2, . . . , n−,

s+i = f (x+
i ;w), i = 1, 2, . . . , n+,

and their sorted versions s−[·], s
+
[·] with non-increasing components.

Note 2.3

To improve the readability of the main part of the work, we present results only for hinge
loss. Results for quadratic hinge loss are in appendix

2.2 Ranking Problems

The first category of problems from Section 1.3 is a category of ranking problems. The general
goal of problems from this category is to rank positive (relevant) samples higher than negative
ones. That can be achieved in many different ways, but we focus only on the problems that
concentrate on the high-ranked negative samples and try to push as many positive samples as
possible above them. The simplest case is to maximize the number of positive samples above
the worst negative. Since the worst negative sample is the negative sample with the highest
classification score, the decision threshold for such a case is the highest score corresponding to
the negative sample. Then the aim is to maximize the number of true-positive samples above
this threshold or, equivalently, minimize the number of false-negative negative below it, which
may be written as

minimize
w

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,
t = s−[1].

(2.4)

17

2.3 Accuracy at the Top

Since the decision threshold t in the previous definition is computed from the sorted vector of
negative scores s−[·], it is a function of all negative scores. Therefore, formulation (2.4) is just
a special case of the general formulation (2.1) for C1 = 0 and C2 = 1/n+. The authors in [45]
proposed an efficient method to solve formulation (2.4) and called it TopPush. They replaced
the true counts in the objective function of (2.4) with its surrogate counterpart in the same way
as we did in Section 2.1. The resulting formulation has the following form

minimize
w

λ
2
‖w‖2 +

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,
t = s−[1],

(2.5)

which again falls into our framework (2.3). To stress the origin of this formulation, we denote
it as TopPush. Unfortunately, TopPush formulation can be very sensitive to outliers, especially
when the linear model is used, as shown in Section 3.3. To robustify the formulation, we follow
the idea presented in [43] and replace the highest negative score by the mean of K highest
negative scores. The resulting formulation is as follows

minimize
w

λ
2
‖w‖2 +

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,

t =
1
K

K∑

i=1

s−[i].

(2.6)

To emphasize the similarity with the TopPush, we call this formulation TopPushK. It is also
possible to use the value of K-th highest negative score as the threshold. Such a choice may be
advantageous in some cases, and we will discuss it in Chapter 5. For now, we will stick to the
formulation that uses the mean since it will allow us to derive some nice theoretical properties
in Section 3.1.

2.3 Accuracy at the Top

The second problem from Section 1.3 is the problem of accuracy at the top [11]. This problem
aims to find an ordering of samples so that samples whose scores are among the top τ-quantile
are as relevant as possible. In statistics, the τ-quantile of all scores is defined as follows

t = max

t
∣∣∣∣∣∣∣

1
n

∑

i∈I
1[si≥t] ≥ τ

. (2.7)

All relevant samples should be ranked above the quantile t and all irrelevant samples below
the quantile t in an ideal case. Thus, the main difference to the ranking problems is that the
problem of accuracy at the top considers both classification errors and does not focus only on
false-negative samples. The original formulation [11] considers a balanced dataset with the
same number of positive and negative samples. Paper [31] reformulated the problem for the
unbalanced dataset and derived the following formulation

minimize
w

1
n−

fp(s, t) +
1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,

t = max

t
∣∣∣∣∣∣∣

1
n

∑

i∈I
1[si≥t] ≥ τ

.

(2.8)

18

2 Framework for Classification at the Top

This formulation already falls into our framework (2.1) for C1 = 1/n− and C2 = 1/n+. Moreover,
the authors of [11, 31] used the same surrogate trick to get rid of the discontinuous objective
function, as we used in Section 2.1. Thus, by replacing false-positive and false-negative counts
in the objective function with their surrogate counterparts we get

minimize
w

λ
2
‖w‖2 +

1
n−

fp(s, t) +
1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,

t = max

t
∣∣∣∣∣∣∣

1
n

∑

i∈I
1[si≥t] ≥ τ

.

(2.9)

This formulation falls into our framework (2.3) for C1 = 1/n− and C2 = 1/n+. Even though the
original formulation is presented in [11], we denote the previous formulation as Grill based on
the name of the first author of [31]. There are two reasons for that. The first one is that we used
an unbalanced dataset as in [31]. The second one is that we use an algorithm proposed in [31]
for numerical experiments since the one from [11] is suitable only for a small dataset.

The Grill formulation (2.9) is still challenging to solve due to the form of the decision
threshold (2.7). The authors of [11] removed the necessity to handle the difficult quantile
constraint by setting quantile as one of the samples and solving n independent problems.
However, such an approach is infeasible for a large number of samples. The authors of [31]
proposed the projected gradient descent method, where after each gradient step, the quantile
is recomputed. This approach is suitable for large data but lacks theoretical guarantees. In
the following text, we propose two approximations of the true quantile (2.7) that can be used
to simplify formulation (2.9). The first one is a simple approximation by the mean of nτ-th
highest scores

t =
1
nτ

nτ∑

i=1

s[i]. (2.10)

where for simplicity we assume, that nτ is an integer. The main purpose of (2.10) is to provide
a convex approximation of the non-convex quantile (2.7). In fact, it is known that it is the tight-
est convex approximation of (2.7). Putting (2.10) into the constraint results in the following
problem, which we call TopMeanK

minimize
w

λ
2
‖w‖2 +

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,

t =
1
K

K∑

i=1

s[i],

(2.11)

where K = nτ. Besides changing the form of the decision threshold, we also simplified the
objective function. This change allows preserving the convexity of the formulation for the
linear model as shown in Section 3.1. Even though we start with a different optimization
problem, we derived a very similar formulation to the TopPushK formulation (2.6) from the
previous section. The only difference is that the threshold for TopMeanK is computed from
scores of all samples and not only from the negative ones.

The second option how to approximate the true quantile is to use surrogate counterparts to
replace true counts in (2.7) and solve the following equality

t solves
1
n

∑

i∈I
l(ϑ(si − t)) = τ, (2.12)

19

2.3 Accuracy at the Top

where ϑ > 0 is fixed scaling parameter. Due to the properties of the surrogate function l (see
Notation2.1), the problem above has a unique solution, and we do not have to use the maximum
as in the case of true threshold (2.7). Since this threshold uses the surrogate approximation, we
denote it as surrogate top τ-quantile. We get the following formulation by replacing the true
quantile in the constrain and simplifying the objective function

minimize
w

λ
2
‖w‖2 +

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,
t solves

1
n

∑

i∈I
l(ϑ(si − t)) = τ.

(2.13)

This formulation also used only false negatives in the objective to preserve the convexity for
the linear model. In such a case, the formulation is easily solvable due to the convexity and
requires almost no tuning. Together with the fact that formulation (2.13) provides a good
approximation to the accuracy at the top problem, we named it Pat&Mat (Precision At the Top
& Mostly Automated Tuning).

2.3.1 Threshold Comparison

The previous section introduces three formulations Grill, TopMeanK, and Pat&Mat. While Grill
formulations use true top τ-quantile (2.7) as a threshold, the remaining two formulations use
only its approximations. The following lemma shows that the approximation used by Top-
MeanK is better than the one used by Pat&Mat.

Lemma 2.4: Thresholds relation [76]

Consider fixed vector of scores s and thresholds for Grill, TopMeanK, and Pat&Mat defined
by

t1(s) = max

t
∣∣∣∣∣∣∣

1
n

∑

i∈I
1[si≥t] ≥ τ

, t2(s) =
1
nτ

nτ∑

i=1

s[i], t3(s) solves
1
n

∑

i∈I
l(ϑ(si − t)) = τ.

Then the following inequalities hold

t1(s) ≤ t2(s) ≤ t3(s).

The previous lemma shows that for fixed scores s, the threshold (2.10) for TopPushK is
always lower or equal to the threshold (2.12) for Pat&Mat. These formulations use a surrogate
approximation of the false-negative rate as an objective function. Since this approximation
is a non-decreasing function of t, a lower threshold t means a lower objective function value.
Therefore, TopPushK seems to be a better formulation since it uses a better approximation of
the true quantile. Besides that, it is also easier to compute the threshold for TopMeanK than
for Pat&Mat. However, Chapter 3 shows that Pat&Mat formulation has better properties than
TopMeanK. Moreover, the following section shows how to efficiently compute the threshold for
Pat&Mat with hinge loss as a surrogate function.

2.3.2 Efficient Computing of the Threshold for Pat&Mat

In this section, we show how to efficiently find the threshold (2.12) for Pat&Mat when the hinge
loss is used as a surrogate. Consider function

h(t) =
∑

i∈I
l(ϑ(si − t))−nτ,

20

2 Framework for Classification at the Top

then finding threshold (2.12) for Pat&Mat is equivalent to looking for t̂ such that h(t̂) = 0.
Function h is continuous and strictly decreasing until it hits the global minimum. More-
over, h(t) → ∞ as t → −∞ and h(t) → −nτ as t → ∞. Thus, there is a unique solution to
the equation h(t) = 0. For sorted data, the following lemma advises how to solve this equation.
For better readability, the proof of the lemma is in Appendix A.

Lemma 2.5

Consider vector of scores s and its sorted version s[·] with non-increasing elements as
defined in Notation 2.2, and threshold for Pat&Mat formulation

h(t) =
∑

i∈I
l(ϑ(si − t))−nτ, (2.14)

where ϑ > 0 and l is the hinge loss from Notation 2.1. For all i ∈ I define ti = s[i] + 1
ϑ . Then

for all i = 2, 3, . . . ,n we have

h(ti) = h(ti−1) + (i − 1)ϑ(ti−1 − ti), (2.15)

with the initial condition h(t1) = −nτ.

The previous lemma shows how to compute the values of the function (2.14)from the sorted
vector of classification scores. Therefore, to solve equation h(t) = 0, we can start from initial
point h(t1) = −nτ and use the recurrent relation (2.15) until we find the first threshold for which
the function value of h is non-negative. Denote this threshold as ti . Then, the threshold t̂ can
be found using linear interpolation as follows

t̂ = ti−1 − h(ti−1)
ti − ti−1

h(ti)− h(ti−1)
= ti−1 − h(ti−1)

ti − ti−1

(i − 1)ϑ(ti−1 − ti)
= ti−1 +

1
(i − 1)ϑ

h(ti−1),

where the secon equality follows from (2.15). The whole procedure of finding t̂ is summarized
in Algorithm 1.

Algorithm 1 An efficient algorithm for computing threshold (2.12) for Pat&Mat formulation.
Require: vector s sorted into s[·] and

1: Set t1← s[1] + 1
ϑ , h(t1)←−nτ, and i← 2

2: while h(ti) < 0 do
3: ti ← s[i] + 1

ϑ
4: h(ti)← h(ti−1) + (i − 1)ϑ(s[i−1] − s[i])
5: i← i + 1
6: end while
7: return t̂← ti−1 + 1

(i−1)ϑh(ti−1)

2.4 Neyman-Pearson Problem

The last problem from Section 1.3 is the Neyman-Pearson problem, which is closely related to
hypothesis testing. The hypothesis testing operates with nullH0 and alternativeH1 hypothesis.
The goal is to either reject the null hypothesis in favor of the alternative or not to reject it. Since
this problem is binary, two possible errors can occur. Type I occurs when H0 is true but is re-
jected, and Type II error happens whenH0 is false but fails to be rejected. The Neyman-Pearson
problem [55] minimizes Type II error while keeping Type I error smaller than some predefined
bound. Using our notation for the Neyman-Pearson problem, the null hypothesis H0 states

21

2.4 Neyman-Pearson Problem

that sample x has a negative label. Then Type I error occurs when the sample is false-positive,
while Type II error when the sample is false-negative, see Table 1.1. In other words, Type II
error corresponds to the false-negative rate, and Type I error to false-positive rate. Therefore,
if the bound on the Type I error is τ , we may write this as

tNP = max

t

∣∣∣∣∣∣∣∣
1
n−

∑

i∈I−
1[si≥t] ≥ τ

. (2.16)

Note that we only count the false-positive samples in (2.16) instead of counting all positives
in (2.7). Then, we may write the Neyman-Pearson problem as

minimize
w

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,

t = max

t

∣∣∣∣∣∣∣∣
1
n−

∑

i∈I−
1[si≥t] ≥ τ

.

(2.17)

This problem falls within our framework for (2.1) for C1 = 0 and C2 = 1/n+. Moreover, formula-
tion (2.17) differs from (2.8) by two things. The first one is the absence of a false-positive rate
in the objective function. The second one is that the threshold is computed from negative sam-
ples only. Therefore, we can use the same techniques to approximate both objective function
and the decision threshold.

To follow the previous section, we first derive the Neyman-Pearson alternative to the Grill
formulation. We need to add false-positive counts in the objective function to do that. More-
over, we also need to replace true counts with their surrogate counterparts and add the regu-
larization. The resulting formulation is as follows

minimize
w

λ
2
‖w‖2 +

1
n−

fp(s, t) +
1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,

t = max

t

∣∣∣∣∣∣∣∣
1
n−

∑

i∈I−
1[si≥t] ≥ τ

.

(2.18)

We denote this formulation as Grill-NP to emphasize the relation with the original Grill formu-
lation and the Neyman-Pearson problem.

The second formulation (2.11) from the previous section, uses mean of nτ highest scores to
approximate true quantile (2.7). In the same way, we can approximate true quantile (2.16) by
the mean of n−τ highest of scores corresponding to the negative samples

tNP =
1
n−τ

n−τ∑

i=1

s−[i]. (2.19)

For simplicity, we again assume that n−τ is an integer. Putting (2.19) into the constraint results
in the Neyman-Pearson alternative to TopMeanK defined as

minimize
w

λ
2
‖w‖2 +

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,

t =
1
n−τ

n−τ∑

i=1

s−[i].

(2.20)

22

2 Framework for Classification at the Top

This problem already appeared in [76] under the name τ-FPL. Formulation (2.20) has almost
the same form as formulation (2.11). The only difference is that for τ-FPL we have K = n−τ
while for TopPushK, the value of K is small. Thus, even though we started from two different
problems, we arrived at two approximations that differ only in the value of one parameter. This
slight difference shows a close relationship between the ranking problems and the Neyman-
Pearson problem and the need for a unified theory to handle these problems.

The last formulation (2.13) from the previous sections uses the surrogate approximation of
the true quantile (2.7). The surrogate approximation of the true quantile (2.16) reads

tNP solves
1
n−

∑

i∈I−
l(ϑ(si − t)) = τ. (2.21)

Putting (2.21) into the constraint results in the Neyman-Pearson alternative to Pat&Mat in the
following form

minimize
w

λ
2
‖w‖2 +

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,
t solves

1
n−

∑

i∈I−
l(ϑ(si − t)) = τ.

(2.22)

We call this formulation Pat&Mat-NP to stress the similarity with Pat&Mat. The only difference
between these two formulations is that only negative samples are involved in computing the
decision threshold for Pat&Mat-NP, while Pat&Mat uses all samples. For Pat&Mat we derived
and efficient algorithm (Algorithm 1) for finding the threshold if the hinge loss is used as
surrogate. Similar algorithm can be derived for Pat&Mat-NP.

2.4.1 Threshold Comparison

In Section 2.3.1, we show that the threshold for TopMeanK provides a better approximation
of the true top τ-quantile of all scores than the threshold for Pat&Mat. The only difference
between τ-FPL and TopMeanK is that the former computes the threshold only from negative
samples while the latter uses all samples. The same holds for Pat&Mat-NP and Pat&Mat. There-
fore, we can show the same for τ-FPL and Pat&Mat-NP relations as showed in Section 2.3.1 for
TopMeanK and Pat&Mat. The following lemma shows that the approximation used by τ-FPL is
better than the one used by Pat&Mat-NP.

Lemma 2.6: Thresholds relation [76]

Consider fixed vector of scores s and thresholds for Grill-NP, τ-FPL, and Pat&Mat-NP
defined by

tNP
1 (s) = max

t

∣∣∣∣∣∣∣∣
1
n−

∑

i∈I−
1[si≥t] ≥ τ

, tNP

3 (s) solves
1
n−

∑

i∈I−
l(ϑ(si − t)) = τ,

tNP
2 (s) =

1
n−τ

n−τ∑

i=1

s−[i].

Then the following inequalities hold

tNP
1 (s) ≤ tNP

2 (s) ≤ tNP
3 (s).

Using the same arguments as at the end of Section 2.3.1, τ-FPL is a better formulation in
the sense that for the fixed vector of scores, it provides a lower threshold and lower objective

23

2.5 Summary

function value. However, Chapter 3 shows that Pat&Mat-NP formulation has better properties
than τ-FPL.

Finally, Lemma 2.7 shows that Grill provides a larger threshold under some conditions than
Grill-NP. In the same way, TopMeanK under some conditions provides a larger threshold than
τ-FPL. Since the goal of the presented formulations is to push s+ above s−, we may expect that
the conditions in Lemma 2.7 are satisfied. The importance of these properties is discussed
in Section 3.3, where we show that the formulations with larger thresholds are in some sense
more unstable.

Lemma 2.7

Consider Grill, Grill-NP, TopMeanK and τ-FPL formulations and Notation 2.2. If the fol-
lowing inequality holds

s+[n+τ] > s
−
[n−τ],

then Grill has larger threshold than Grill-NP. In the same way, if the following inequality
holds

1
n+τ

n+τ∑

i=1

s+[i] >
1
n−τ

n−τ∑

i=1

s−[i]

then TopMeanK has larger threshold than τ-FPL.

2.5 Summary

In this chapter, we presented the general framework (2.1) and its surrogate approximation (2.3)
to handle the problem of binary classification at the top. Moreover, we showed that many im-
portant problems might be formulated in a way that falls into the framework. In Table 2.1, we
summarize all formulations introduced in this chapter and show their relation to the general
framework (2.3). All these formulations were derived with general model f even though many
of them have been initially designed only for the linear model. The reason for that is simple.
This chapter aims only to emphasize the similarities between these formulations. The theoret-
ical properties that follow from the concrete form of the model are discussed in the upcoming
chapters.

In Section 2.3.1, we showed that the threshold for TopMeanK better approximates the true
top τ-quantile than the threshold for Pat&Mat. Since both formulations use the same objective
function, that is non-decreasing function of the threshold, TopMeanK provides a lower objec-
tive value for the fixed model. Furthermore, it is easier to compute the threshold for TopMeanK
than for Pat&Mat. Therefore it seems that TopMeanK is a better formulation. To simplify the
problem of finding the threshold for Pat&Mat, we derived an efficient algorithm for finding it
when the hinge loss is used, see Section 2.3.2. Moreover, in the next chapter, we will show that
Pat&Mat has better theoretical properties. A similar relation holds for the τ-FPL and Pat&Mat-
NP, as discussed in Section 2.4.1.

24

2 Framework for Classification at the Top

Label Source Ours C1 C2 Threshold

TopPush (2.5) [45] 7 λ 0 1
n+

s−[1]

TopPushK (2.6) [3] 3 λ, K 0 1
n+

1
K

∑K
i=1 s

−
[i]

Grill (2.9) [31] 7 λ 1
n−

1
n+

max
{
t
∣∣∣ 1
n

∑
i∈I 1[si≥t] ≥ τ

}

TopMeanK (2.11) — 7 λ 0 1
n+

1
K

∑K
i=1 s[i]

Pat&Mat (2.13) [3] 3 λ, ϑ 0 1
n+

1
n

∑
i∈I l(ϑ(si − t)) = τ

Grill-NP (2.18) — 7 λ 1
n−

1
n+

max
{
t
∣∣∣∣ 1
n−

∑
i∈I− 1[si≥t] ≥ τ

}

τ-FPL (2.20) [76] 7 λ 0 1
n+

1
n−τ

∑n−τ
i=1 s

−
[i]

Pat&Mat-NP (2.22) [3] 3 λ, ϑ 0 1
n+

1
n−

∑
i∈I− l(ϑ(si − t)) = τ

Formulation
Hyper-

parameters

Table 2.1: Summary of problem fomrulations that fall in the framework (2.3). Column Formu-
lation shows the name of the formulation that we use in this work. Column Label represents
the label of the formulation in this text. Column Source is the citation of the work where the
formulation was introduced. Column Ours shows whether the formulation was introduced in
any of our previous papers. Column Hyperparameters shows the hyperparameters available
for each formulation. The last three columns show the values of parameters C1, C2 and the
form of the decision threshold for given framework (2.3).

25

26

3
Primal Formulation: Linear Model

In the previous chapter, we introduced the general framework for binary classification at the
top. Table 2.1 summarizes all formulations that fall into this framework. In this chapter, we
focus on the particular case when the model f is linear, i.e., the model is in the following form

f (x;w) = w>x,

wherew ∈ Rd is the normal vector to the separating hyperplane. In such a case, framework (2.3)
simplifies into the form below

minimize
w

λ
2
‖w‖2 +C1 · fp(s, t) +C2 · fn(s, t)

subject to si = w>xi , i ∈ I ,
t = G(s,y).

In the upcoming sections, we provide a theoretical analysis of this unified framework using
linear model. We consider the problem formulations from Chapter 2 and not individual algo-
rithms which specify how to solve these formulations. The theoretical properties we mainly
focus on are as follows:

• Convexity implies a guaranteed convergence for many optimization algorithms or their
better convergence rates [10].

• Differentiability increases the speed of convergence.

• Stability is a general term, by which we mean that the global minimum is not at w = 0.
This actually is the case for many formulations from Table 2.1 and results in the situation
where the separating hyperplane is degenerate and does not actually exist.

We show the results only for formulations from Section 2.2 and 2.3 for better readability. For-
mulations in Section 2.3 are mostly identical to the ones from Section 2.4. The only difference
is that all formulations in Section 2.3 compute the decision threshold from all samples, while
formulations in Section 2.4 use only negative samples. Therefore, the results for both sections
are identical, and we show only the ones for Section 2.3.

3.1 Convexity

Convexity is one of the most important properties in numerical optimization. It ensures that
the optimization problem has neither stationary points nor local minima. All points of interest
are global minima. Moreover, it allows for faster convergence rates. This section shows that
some of the formulations from Table 2.1 are convex and, therefore, easier to solve. The first
result is summarized in the following proposition. Note that we denote the thresholds as func-
tions of weights w. This dependence holds since the thresholds are defined in Section 2.3 as
functions of scores s.

27

3.2 Differentiability

Proposition 3.1

Consider fixed vector of scores s with elements defined as si = w>xi for all i ∈ I .Moreover,
consider thresholds for TopPush, Grill, TopMeanK and Pat&Mat from Section 2.2 and 2.3
defined as

t0(w) = s−[1], t1(w) = max

t
∣∣∣∣∣∣∣

1
n

∑

i∈I
1[si≥t] ≥ τ

,

t2(w) =
1
K

K∑

i=1

s[i], t3(w) solves
1
n

∑

i∈I
l(ϑ(si − t)) = τ,

Then thresholds t0, t2 and t3 are convex functions of weights w, while the threshold t1 is
non-convex.

The proposition says that Grill formulation uses non-convex threshold while TopPush, Top-
MeanK, and Pat&Mat use the convex ones. Moreover, the thresholds for τ-FPL and TopPushK
are convex since both formulations use almost the same threshold as TopMeanK. The same
holds for the thresholds of Pat&Mat and Pat&Mat-NP formulations. Notice that all formula-
tions that have a convex threshold use the same objective function.

Theorem 3.2

If the threshold t = t(w) is a convex function of weights w, then function

L(w) = fn(s, t) =
∑

i∈I+

l(t −w>xi)

is convex.

While the proof of Theorem 3.2 is simple, it points to the necessity of considering only
false-negatives in the objective function. Due to this theorem, almost all formulations from
Table 2.1 are convex optimization problems. There are only two exceptions: Grill and Grill-NP
are not convex problems.

3.2 Differentiability

Similar to convexity, differentiability is crucial for improving the convergence rate. More-
over, differentiability can often be used to derive better termination criteria for numerical al-
gorithms. The next theorem shows which formulations from Table 2.1 are differentiable.

Theorem 3.3

Consider thresholds from Proposition 3.1. Threshold t0, t1 and t2 are non-differentiable
functions of weights w. Moreover, if the surrogate function l is differentiable, threshold t3
is a differentiable function of weights w, and its derivative equals

∇t3(w) =
∑
i∈I l′(ϑ(w>xi − t3(w)))xi∑
j∈I l′

(
ϑ(w>xj − t3(w))

) .

Due to the previous theorem and Theorem 3.2, only Pat&Mat, and Pat&Mat-NP are convex
and differentiable optimization problems. These properties allow us to prove the convergence
of the stochastic gradient descent for these two formulations, as shown in Section 3.4.

28

3 Primal Formulation: Linear Model

−1 0 1 2
−1

0

1

x1

x 2

−1 0 1
w1

w
2

Negative samples Positive samples

Figure 3.1: Distribution of positive (red circles) and negative samples (blue circles) for the
example from Example 3.4. (left) Contour plot of the objective function value for TopPush
with hinge loss as a surrogate and no regularization and its convergence (orange lines) to the
zero vector from 12 different initial points. (right)

3.3 Stability

We first provide a simple example and show that many formulations from Table 2.1 are de-
generate for it. Then we analyze general conditions under which this degenerate behavior
happens.

Example 3.4: Degenerate Behaviour

Consider n negative samples uniformly distributed in [−1,0] × [−1,1], n positive samples
uniformly distributed in [0,1]× [−1,1] and one negative sample at (2,0). An illustration of
such settings is provided in Figure 3.1 (left). If n is large enough, the point at (2,0) is an
outlier and the problem is (almost) perfectly separable using the separating hyperplane
with normal vector w1 = (1,0).

There are two important solutions for Example 3.4. The first is the optimal solution w1 =
(1,0), which generates the optimal separating hyperplane. The second is w0 = (0,0), a degen-
erate solution that does not generate any separating hyperplane. Since the dataset is perfectly
separable by w1, we expect that w1 provides a lower value of the objective function than w0 for
all formulations from Table 2.1. However, it is not happening. Table 3.1 shows the threshold t
and the value of the objective function L for w0 and w1. For the precise computation of the re-
sults, see Appendix B.3. By highlighting the better objective in Table 3.1 by green, we see that
TopPush and TopMeanK has a better objective in w0. It can be shown that w0 is even the global
minimum for these two formulations. This situation raises the question whether some tricks,
such as early stopping or excluding a small ball around zero, cannot overcome this difficulty.
The answer is negative, as shown in Figure 3.1 (right). Here, we run TopPush with hinge loss
as a surrogate and no regularization from several starting points. In all cases, TopPush con-
verges to zero from one of the three possible directions, and all these directions are far from
the normal vector to the separating hyperplane.

The convexity derived in the previous section guarantees that there are no local minima.
However, as we showed in the example above, the global minimum may be at w = 0. Such

29

3.3 Stability

t L t L

TopPush (2.5) 0 2 5
2

TopPushK (2.6) 0 1 2
K

Grill (2.9) 0 2 1− 2τ

TopMeanK (2.11) 0 1− τ 3
2 − τ

Pat&Mat (2.13) 1
ϑ (1− τ) 1 + 1

ϑ (1− τ) 1
ϑ (1− τ)

Grill-NP (2.18) 0 2 −τ
τ-FPL (2.20) 0 1 −1

2τ

Pat&Mat-NP (2.22) 1
ϑ (1− τ) 1 + 1

ϑ (1− τ) 1
ϑ (1− τ)− 1

2

Formulation Label
w0 = (0,0) w1 = (1,0)

1

1
2 + 2

K

3
2 + 2τ(1− τ)

1

1
2 + 1

ϑ (1− τ)

1 + 1
2τ

2

1
2 − 1

8τ(4 + τ)
1
ϑ (1− τ)

Table 3.1: Comparison of formulations from Table 2.1 on the problem from Example 3.4. The
table shows the threshold and the objective function value for two solutions: the optimal solu-
tion w1 = (1,0) and degenerate solution w0 = (0,0). Two formulations have the global minimum
(denoted by green color) at w0, which does not generate any separating hyperplane.

a situation is highly undesirable since w is the normal vector to the separating hyperplane,
and the zero vector provides no information. In the rest of the section, we analyze when this
situation happens. Theorem 3.5 states that if the decision threshold t = t(w) is above a certain
value, then 0 has a better (lower) objective than w. If this happens for all w, then 0 is the global
minimum.

Theorem 3.5

Consider any of these formulations: TopPush, TopPushK, TopMeanK or τ-FPL. Fix any w
and denote the corresponding objective function L(w) and threshold t(w). If we have

t(w) ≥ 1
n+

∑

i∈I+

w>xi , (3.1)

then L(0) ≤ L(w). Specifically, using Notation 2.2 we get the following implications

s−[1] ≥
1
n+

n+∑

i=1

s+i =⇒ L(0) ≤ L(w) for TopPush,

1
K

K∑

i=1

s−[i] ≥
1
n+

n+∑

i=1

s+i =⇒ L(0) ≤ L(w) for TopPushK,

1
K

K∑

i=1

s[i] ≥ 1
n+

n+∑

i=1

s+i =⇒ L(0) ≤ L(w) for TopMeanK,

1
n−τ

n−τ∑

i=1

s−[i] ≥
1
n+

n+∑

i=1

s+i =⇒ L(0) ≤ L(w) for τ-FPL.

30

3 Primal Formulation: Linear Model

The proof of Theorem 3.5 employs the fact that all formulations in the theorem statement
have only false-negatives in the objective. If we use the zero solution w0 = 0, all classification
scores si are equal to zero, the threshold t equals zero, and the objective function L equals
one. On the other hand, if the threshold t is large, many positive samples have scores below
the threshold, and the false-negatives samples have the average surrogate value larger than
one. In such a case, w0 = 0 becomes the global minimum for some formulations. More specifi-
cally, TopPush fails if there are outliers, and TopMeanK fails whenever there are many positive
samples.

Corollary 3.6

Consider the TopPush formulation. If positive samples lie in the convex hull of negative
samples, then w = 0 is the global minimum.

Corollary 3.7

Consider the TopMeanK formulation. If n+ ≥ nτ , then w = 0 is the global minimum.

There are two fixes to the situation described above:

• Include false-positives to the objective. This approach is taken by Grill and Grill-NP and
necessarily results in the loss of convexity as shown in Section 3.1.

• Move the threshold away from zero even when all scores s are zero. This approach is
taken by our formulations Pat&Mat and Pat&Mat-NP and keeps convexity.

The following theorem shows the advantage of the second approach.

Theorem 3.8

Consider the Pat&Mat or Pat&Mat-NP formulation with the hinge loss as a surrogate and
no regularization. Assume that for some w we have

1
n+

∑

i∈I+

w>xi >
1
n−

∑

j∈I−
w>xj . (3.2)

Then there exists a scaling parameter ϑ0 for the surrogate top τ-quantile (2.12) or (2.21)
such that L(w) < L(0) for all ϑ ∈ (0,ϑ0).

This theorem shed some light on the behavior of the formulations. Theorem 3.5 states that
the stability of τ-FPL requires

1
n−τ

n−τ∑

i=1

s−[i] <
1
n+

n+∑

i=1

s+i , (3.3)

while Theorem 3.8 states that the stability of Pat&Mat-NP is ensured by

1
n−

n−∑

i=1

s−[i] <
1
n+

n+∑

i=1

s+i . (3.4)

Consequently, if τ-FPL is stable, then (3.3) is satisfied. The right-hand sides of (3.3) and
(3.4) are the same, while the left-hand side of (3.4) is always smaller than the left-hand side
of (3.3). This means that whenever (3.3) is satisfied, (3.4) is also satisfied. Thus, if τ-FPL is
stable, Pat&Mat-NP is stable as well. At the same time, there may be a considerable difference

31

3.4 Stochastic Gradient Descent

in the stability of both formulations. Since the scores of positive samples should be above the
scores of negative samples, the scores s may be interpreted as performance. Then formula (3.3)
states that if the mean performance of a small number of the worst negative samples is larger
than the average performance of all positive samples, then τ-FPL fails. On the other hand,
formula (3.4) states that if the average performance of all positive samples is better than the
average performance of all negative samples, then Pat&Mat-NP is stable. The former may
well happen as accuracy at the top is interested in a good performance of only a few positive
samples.

In the same way, it can be shown that the stability of TopMeanK implies the stability of
Pat&Mat.

3.4 Stochastic Gradient Descent

In the previous section, we analyzed the formulations from Table 2.1, but we did not consider
any optimization algorithms. In this section we show a basic version of the stochastic gradi-
ent descent and then its convergent version. Due to considering the threshold, the gradient
computed on a minibatch is a biased estimate of the true gradient. Therefore we need to use
variance reduction techniques similar to SAG [62], and the proof is rather complex.

Many optimization algorithms for solving the formulations from Table 2.1 use primal-dual
or purely dual formulations. Authors of [21] introduced dual variables and used alternating
optimization to the resulting min-max problem. In [45, 76], authors dualized the problem and
solved it with the steepest gradient ascent. Authors of [46] followed the same path but added
kernels to handle non-linearity. We follow the ideas of [47] and [1] and solve the problems
directly in their primal formulations. Therefore, even though we use the same formulation for
TopPush as [45] or for τ-FPL as [76], our solution process is different. However, both algorithms
should converge to the same point due to convexity.

For the convergence proof of stochastic gradient descent, we need differentiability. Due to
Theorem 3.3, we have only two formulations that are differentiable: Pat&Mat and Pat&Mat-NP.
Therefore, in the rest of the section, we consider only these two formulations. For simplicity,
we show the proof only for Pat&Mat. The proof for Pat&Mat-NP is almost the same.

The decision in variable Pat&Mat formulation (2.13) is the normal vector of the separating
hyperplane w. Therefore, the gradient descent algorithm uses the following rule

wk+1← wk −αk · ∇L(wk),

where k ∈ N denotes iteration, αk is a step size, and ∇L is a gradient of the objective function.
Since the decision threshold t depends on w, we need to use the chain rule to compute the
gradient of the objective function. For each w, the threshold t can be computed uniquely as
discussed in Section 2.3.2. We stress this dependence by writing t(w) instead of t. Note that
the convexity is preserved. Then we can compute the derivative via the chain rule

L(w) =
1
2
‖w‖2 +

1
n+

∑

i∈I+

l(t(w)−w>xi),

∇L(w) = w+
1
n+

∑

i∈I+

l′(t(w)−w>xi)(∇t(w)− xi),
(3.5)

where we assume λ
2 = 1

2 for simplicity. The only unknown part is the computation of ∇t(w).
Theorem 3.3 shows the computation for Pat&Mat with efficient computation method presented
in Section 2.3.2. Since we derive the gradient for the objective function in (3.5), it is easy to
derive how to apply the stochastic gradient descent. We only have to partition the dataset into
minibatches and provide an update of the weights w based only on a minibatch, namely by
replacing the mean over the whole dataset in (3.5) by a mean over the minibatch.

32

3 Primal Formulation: Linear Model

Even though we focus only on the Pat&Mat formulation, the relations (3.5) can be used for
almost all formulations from Table 2.1. The only two exceptions are Grill and Grill-NP, which
use a slightly different objective function. However, the form on the gradient of the objective
function for these two formulations is very similar. Nevertheless, the rest of the section that
shows the convergence of the stochastic gradient is applicable only for Pat&Mat.

Consider piecewise disjoint minibatches I1
mb, I2

mb, . . . , Immb which cycle periodically, i.e.,
for all k we have I k+m

mb = I kmb. At iteration k we have the decision variable wk and the active
minibatch I kmb. First, we update the vector of scores sk only on the active minibatch by setting

ski =

x>i w

k for all i ∈ I kmb,

sk−1
i otherwise.

(3.6)

We keep scores from previous minibatches intact. We use Section 2.3.2 to compute the surro-
gate quantile tk as the unique solution of

∑

i∈I
l
(
ϑ
(
ski − tk

))
= nτ. (3.7)

This is an approximation of the surrogate quantile t(wk) from (2.12). The only difference from
the true quantile is that we use delayed scores. Then we approximate the derivative ∇L(wk)
from (3.5) by

g(wk) = wk +
1

nkmb,+

∑

i∈I kmb,+

l′(tk − ski)(∇tk − xi), (3.8)

where ∇tk is an approximation of ∇t(wk) from Theorem 3.3. To define the approximation ∇tk ,
we first need to define and artificial variable

ak =
∑

i∈I kmb

l′
(
ϑ
(
ski − tk

))
xi . (3.9)

Note that ak is an approximation of the numerator of ∇t(wk) from Theorem 3.3, but it uses only
the current minibatch. Since our minibatches cycle periodically, we sum the lastm variables ak

and get the approximation of ∇t(wk) computed from all samples and delayed scores

∇tk =
ak +ak−1 + · · ·+ak−m+1

∑
i∈I l′

(
ϑ
(
ski − tk

)) . (3.10)

It would be easier to consider only ak in the numerator of (3.10). However, presented choice
enables us to prove the convergence, and adds stability to the algorithm for small minibatches.

Theorem 3.9

Consider the Pat&Mat formulation, stepsizes αk = 1
k+1α

0, and piecewise disjoint mini-
batches I1

mb, I2
mb, . . . , Immb which cycle periodically I k+m

mb = I kmb. If l is the smoothened
hinge function defined by

l(s) =

0 for s < −1− ε,
1
4ε (1 + s+ ε)2 for − 1− ε ≤ s < −1 + ε,

1 + s otherwise,

(3.11)

where ε > 0, then Algorithm 2 converges to the global minimum of (2.13).

The whole procedure of the stochastic gradient descent for Pat&Mat formulation is sum-
marized in Algorithm 2. Note that there are no vector operations outside of the current mini-
batch I kmb. Moreover, note that a proper initialization for the first m iterations is needed.

33

3.5 Summary

Algorithm 2 Stochastic gradient descent for Pat&Mat formulation

Require: Dataset D, minibatches I1
mb, I2

mb, . . . , Immb, and stepsize αk

1: Initialize weights w0

2: for k = 0, 1, . . . do
3: Select a minibatch I kmb
4: Compute ski for all i ∈ I kmb according to (3.6)
5: Compute tk according to (3.7)
6: Compute ak according to (3.9)
7: Compute ∇tk according to (3.10)
8: Compute g(wk) according to (3.8)
9: Set wk+1← wk −αkg(wk)

10: end for

3.5 Summary

In this chapter, we derived theoretical properties for formulations from Table 2.1 with the
linear model. We focused on the convexity, differentiability, and stability of formulations since
these three properties are crucial for fast and proper convergence. All results are summarized
in Table 3.2. We showed that TopPush, TopPushK, TopMeanK, and τ-FPL are convex, but all
these formulations are vulnerable to having the global minimum at w = 0. On the other hand,
Grill and Grill-NP are stable, but they are not convex or differentiable. Finally, our formulations
Pat&Mat and Pat&Mat-NP satisfy all three theoretical properties.

A similar comparison is performed in Figure 3.2. Methods in green and yellow are convex,
while formulations in red are non-convex. Based on Theorem 3.5, four formulations in yellow
are vulnerable to having the global minimum at w = 0. This theorem states that the higher the
threshold, the more vulnerable the formulation is. The full arrows depict this dependence. If it
points from one formulation to another, the latter one has a smaller threshold and thus is less
vulnerable to this undesired global minima. The dotted arrows indicate that this usually holds
but not always. The precise formulation is provided in Appendix 2.3.1. This complies with
Corollaries 3.6 and 3.7 which state that TopPush and TopMeanK are most vulnerable. At the
same time, it says that τ-FPL is the best one from the yellow formulations. Finally, even though
Pat&Mat-NP has a worse approximation of the true threshold than τ-FPL due to Lemma 2.6,
it is more stable due to the discussion after Theorem 3.8. Similarly, Pat&Mat has a worse
approximation of the true threshold than TopMeanK due to Lemma 2.4, but is more stable.

34

3 Primal Formulation: Linear Model

Label Convex Differentiable Stable

TopPush (2.5) 3 7 7

TopPushK (2.6) 3 7 7

Grill (2.9) 7 7 3

TopMeanK (2.11) 3 7 7

Pat&Mat (2.13) 3 3 3

Grill-NP (2.18) 7 7 3

τ-FPL (2.20) 3 7 7

Pat&Mat-NP (2.22) 3 3 3

Formulation

Table 3.2: Summary of the formulations from Table 2.1. The last three columns show whether
the formulation is differentiable, convex, and stable (in the sense of having global minimum
in w = 0).

TopPush TopPushK

Pat&Mat-NP

τ-FPL

Grill-NP Grill

Pat&Mat

TopMeanK

convex, not stable

convex, stable

not convex, stable

Figure 3.2: Summary of the formulations from Table 2.1. Methods in green and yellow are
convex, while formulations in red are non-convex. Moreover, methods in yellow are vulnerable
to having the global minimum at w = 0. A full (dotted) arrow pointing from one formulation
to another shows that the latter formulation has (usually) a smaller threshold.

35

36

4
Dual Formulation: Linear Model

In Chapter 2, we introduced a general framework for binary classification at the top. More-
over, we showed that several problem classes, considered separate problems so far, fit into
this framework. The summary of all formulations is provided in Table 2.1. In Chapter 3 we
discussed a special case when the linear model is used. Then formulation (2.3) reads

minimize
w

λ
2
‖w‖2 +C1 · fp(s, t) +C2 · fn(s, t)

subject to si = w>xi , i ∈ I ,
t = G(s,y).

(4.1)

Many formulations have nice theoretical properties such as convexity or differentiability in this
specific case. However, many real-world problems are not linearly separable, and in such cases,
the approach from the previous section is not sufficient. In this chapter, we use the similarity
of (4.1) to primal formulation of SVM [18] and derive dual forms for all formulations from
Table 2.1. Then we use the kernel method [63] to introduce nonlinearity into the dual formu-
lations. Moreover, as dual problems are generally computationally expensive, we propose an
efficient method to solve them.

4.1 Derivation of Dual Problems

As discussed in the introduction, this section is dedicated to deriving dual forms for all for-
mulations from Table 2.1. We do not discuss Grill and Grill-NP formulations in the following
text since both formulations are not convex, and therefore their primal and dual formulations
are not equivalent. Since many of the remaining formulations are very similar, we divide them
into two families:

• TopPushK family: TopPush, TopPushK, TopMeanK and τ-FPL.

• Pat&Mat family: Pat&Mat and Pat&Mat-NP.

Both families use surrogate false-negative rate as an objective function. Moreover, all formu-
lations from TopPushK family use the mean of K highest scores of all or negative samples as a
threshold and differ only in the definition of K. Finally, both formulations from Pat&Mat fam-
ily use a surrogate approximation of the top τ-quantile of scores of all or negative samples. In
other words, we have two families of formulations that share the same objective function and
the same form of the decision threshold. Therefore, we derive all results for the general form
of these two families. Before we start, we need to introduce the concept of conjugate functions.

37

4.1 Derivation of Dual Problems

Definition 4.1: Conjugate function [10]

Let l : Rn→ R. The function l? : Rn→ R, defined as

l?(y) = sup
x∈dom l

{y>x − l(x)}.

is called the conjugate function of l. The domain of the conjugate function consists of
y ∈ Rn for which the supremum is finite.

These functions will play a crucial role in the resulting form of dual problems. Recall the
hinge loss and quadratic hinge loss function defined in Notation 2.1

lhinge(s) = max{0,1 + s}, lquadratic(s) = (max{0,1 + s})2.

The conjugate function for the hinge loss can be found in [65] and has the following form

l?hinge(y) =

−y if y ∈ [0,1],

∞ otherwise.
(4.2)

Similarly, the conjugate function for the quadratic hinge was computed in [39] as

l?quadratic(y) =

y2

4 − y if y ≥ 0,

∞ otherwise.
(4.3)

Notation 4.2: Kernel Matrix

To simplify the future notation, we introduce matrix X of all samples. Each row of X
represents one sample and is defined for all i ∈ I as

Xi,• = x>i .

In the same way, we defined matrices X+, X− of all negative and positive samples with
rows defined as

X−i,• = x>i i = 1, ,2, . . . , n−,
X+
i,• = x>i i = 1, ,2, . . . , n+.

Moreover, for all formulations that use only negative samples to compute the threshold t,
we define kernel matrix K− as

K− =

X+

−X−

X+

−X−

>

=

X+X+> −X+X−>

−X−X+> X−X−>

.

and for all formulations that use only all samples to compute the threshold t, we define
kernel matrix K± as

K± =

X+

−X

X+

−X

>

=

X+X+> −X+X>

−XX+> XX>

.

In the rest of the text, matrix K always refers to one of the kernel matrices defined above.

38

4 Dual Formulation: Linear Model

4.1.1 Family of TopPushK Formulations

In this section, we focus on the family of TopPushK formulations. The general optimization
problem that covers all formulations from this family can be written in the following way

minimize
w

1
2
‖w‖2 +C

∑

i∈I+

l(t −w>xi) (4.4a)

subject to sj = w>xj , j ∈ Ĩ , (4.4b)

t =
1
K

K∑

j=1

s[j], (4.4c)

where C ∈ R. The set of indices Ĩ equals I for TopMeanK and I− for other formulations. The
parameter K equals 1 for TopPush, K for TopPushK, nτ for TopMeanK, and n−τ for τ-FPL. Note
that we use an alternative formulation with constant C, since it is more similar to the standard
SVM, and we wanted to stress this similarity. For C = 1/λn+ the new formulation is identical to
the original one.

The following theorem shows the dual form of formulation (4.4). The dual formulation for
TopPush was originally derived in [45]. We only show, that our general dual formulation also
covers this special case. To keep the readability as simple as possible, we postpone all proofs
to Appendix C.

Theorem 4.3: Dual formulation for TopPushK family

Consider Notation 4.2, surrogate function l, and formulation (4.4). Then the correspond-
ing dual problem has the following form

maximize
α,β

− 1
2

α

β

>

K

α

β

−C

n+∑

i=1

l?
(αi
C

)
(4.5a)

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj , (4.5b)

0 ≤ βj ≤ 1
K

n+∑

i=1

αi , j = 1,2, . . . , ñ, (4.5c)

where l? is conjugate function of l and

K K ñ x̃j

TopPush 1 K− n− x−j
TopPushK K K− n− x−j
TopMeanK nτ K± n xj
τ-FPL n−τ K− n− x−j

If K = 1, the upper bound in the second constraint (4.5c) vanishes due to the first con-
straint. Finally, the primal variables w can be computed from dual variables as follows

w =
n+∑

i=1

αix
+
i −

ñ∑

j=1

βj x̃j . (4.6)

39

4.1 Derivation of Dual Problems

4.1.2 Family of Pat&Mat Formulations

In the same way, as for TopPushK family, we introduce a general optimization problem that
covers all formulations from Pat&Mat family and reads

minimize
w

1
2
‖w‖2 +C

∑

i∈I+

l(t −w>xi)

subject to t solves
1
ñ

∑

i∈Ĩ
l
(
ϑ(w>xj − t)

)
= τ,

(4.7)

whereC ∈ R. For Pat&Mat we have Ĩ = I and ñ = n. For Pat&Mat-NP we have Ĩ = I− and ñ = n−.
Again, we use the alternative formulation with constant C. The following theorem shows the
dual form of the formulation (4.7).

Theorem 4.4: Dual formulation for Pat&Mat family

Consider Notation 4.2, surrogate function l, and formulation (4.7). Then the correspond-
ing dual problem has the following form

maximize
α,β,δ

− 1
2

α

β

>

K

α

β

−C

n+∑

i=1

l?
(αi
C

)
− δ

ñ∑

j=1

l?
(
βj
δϑ

)
− δñτ (4.8a)

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj , (4.8b)

δ ≥ 0, (4.8c)

where l? is conjugate function of l, ϑ > 0 is a scaling parameter and

K ñ x̃j

Pat&Mat K± n xj
Pat&Mat-NP K− n− x−j

Finally, the primal variables w can be computed from dual variables as follows

w =
n+∑

i=1

αix
+
i −

ñ∑

j=1

βj x̃j . (4.9)

Note 4.5

For simplicity, the rest of the chapter covers only the TopPushK formulation with hinge
loss. We use this formulation since it is the prototypical example for the TopPushK fam-
ily of formulations. The results for the rest of the formulations from this family can be
derived almost identically. Moreover, results for the Pat&Mat family of formulations can
be derived similarly. Therefore, derivations for the TopPushK family with quadratic hinge
loss and the Pat&Mat family with hinge and quadratic hinge loss are postponed to Ap-
pendix C.

40

4 Dual Formulation: Linear Model

4.2 Kernels

As we mentioned at the beginning of the chapter, our goal is to extend our framework to be
usable for linearly inseparable problems. In two previous sections, we derived dual formula-
tions for TopPushK and Pat&Mat families. In this section, we show how to employ the kernels
method [63] to introduce nonlinearity into these dual formulations. For simplicity, we focus
only on the TopPushK formulation that computes the decision threshold only from negative
samples. As mentioned in Notation 4.2, TopPushK formulation uses kernel matrix K = K−. The
following derivation is the same for all other formulations.

To add kernels, we first realize that primal variables w can be computed from dual vari-
ables α, β using (4.6). Therefore, the classification score for any sample x can be calculated as
follows

s = w>x =
n+∑

i=1

αix
>x+

i −
n−∑

i=1

βix
>x−i . (4.10)

Importantly, all samples xi in the previous formula occur only in the dot product with x and
not separately. This property allows us to use the standard kernel trick from SVMs [18]. The
kernel trick replaces the dot product of the vectors from input space using the so-called kernel
function k : Rd × Rd → R. This function represents a dot product in the space of a higher
dimension

k(x,x′) = φ(x)>φ(x′),

where φ : Rd → RD is a mapping function. The idea is to transform the input vectors using φ
into some feature space in which the classification problem is easier to solve. However, getting
the explicit formula for the mapping function is usually very hard. The kernel trick allows us
to avoid this explicit mapping to the feature space since we can only replace the dot product
in (4.10) by the kernel function k

s =
n+∑

i=1

αik
(
x,x+

i

)
−

n−∑

i=1

βik
(
x,x−i

)
. (4.11)

The downside of this approach is, that we can not compute the primal variables using (4.6)
if we do not know the mapping function φ. We always have to calculate the scores using the
formula above, which is computationally expensive.

Now we must show how to modify the original dual problem (4.5) to incorporate kernels.
Recall the form of the kernel matrix K for TopPushK

K =

X+X+> −X+X−>

−X−X+> X−X−>

.

Since each component of the kernel matrix K is computed as a dot product of two training
samples, we can replace K with a matrix in the following form

K =

k(X+,X+) −k(X+,X−)

−k(X−,X+) k(X−,X−)

. (4.12)

The kernel function k(·, ·) is applied to all rows of both arguments. In other words, if we use
the kernel trick, the original dual problem (4.5) remains almost the same. The only change is
in the construction of the kernel matrix.

41

4.3 Coordinate Descent Algorithm

4.3 Coordinate Descent Algorithm

In the previous sections, we derived dual formulations for TopPushK and Pat&Mat families
of formulations. Moreover, we showed how to incorporate non-linear kernels into these for-
mulations. As a result, we can use all presented formulations even for linearly non-separable
problems. However, the dimension of the dual problems is at least equal to the number of all
samples n, and therefore, it is computationally expensive to use standard techniques such as
gradient descent. To handle this issue, the standard coordinate descent algorithm [15, 34] has
been proposed in the context of SVMs. In this section, we derive a coordinate descent algo-
rithm suitable for our dual problems (4.5, 4.8). We also show that we can reduce the whole
optimization problem to a one-dimensional quadratic optimization problem with a closed-
form solution in every iteration. Therefore, every iteration of our algorithm is cheap. For a
review of other approaches see [6, 73].

Recall that we perform all derivations only for TopPushK with hinge loss. Classification
scores can be computed directly from dual variables as shown in (4.11). Using the defini-
tion (4.12) of kernel matrix K, we can define a vector of scores s by

s = K

α

β

. (4.13)

Note that dual scores are not identical to the primal ones (4.10) (even though we use the same
notation). The main difference is that dual scores use kernel function k. Therefore, they are
equivalent only if the kernel function is defined as a dot product in the input space, i.e.,
if k(x,x′) = x>x′ . To simplify the indexing of the vector of scores (4.13) and kernel matrix K,
we introduce a new notation in Notation 4.6.

Notation 4.6

Consider any index l that satisfies 1 ≤ l ≤ n+ + ñ. Note that the length of dual variable α
is n+ for both formulations (4.5) and (4.8). Therefore, we can define auxiliary index l̂ as

l̂ =

l if l ≤ n+,

l −n+ otherwise.

Then the index l can be safely used for kernel matrix K or vector of scores s, while its
corresponding version l̂ can be used for dual variables α or β.

4.3.1 Update Rules

Consider dual formulation (4.5) from Theorem 4.3 and fixed feasible dual variables α, β. Our
goal in this section is to derive an efficient iterative procedure for solving this problem. We
follow the ideas presented in [15, 34] for solving SVMs using a coordinate descent algorithm.
However, we must modify the approach since we have an additional constraint (4.5b). Due
to this constraint, we always have to update (at least) two components of dual variables α, β.
There are only three update rules which modify two components of α, β, and satisfy con-
straints (4.5b). The first one updates two components of α

αk̂→ αk̂ +∆, αl̂ → αl̂ −∆, s→ s+
(
K•,k −K•,l

)
∆, (4.14a)

where K•,i denotes i-th column of K and indices k̂, l̂ are defined in Notation 4.6. Note that the
update rule for s does not use matrix multiplication but only vector addition. The second rule

42

4 Dual Formulation: Linear Model

updates one component of α and one component of β

αk̂→ αk̂ +∆, βl̂ → βl̂ +∆, s→ s+
(
K•,k +K•,l

)
∆, (4.14b)

and the last one updates two components of β

βk̂→ βk̂ +∆, βl̂ → βl̂ −∆, s→ s+
(
K•,k −K•,l

)
∆. (4.14c)

Using any of the update rules above, the problem (4.5) can be written as a one-dimensional
quadratic problem in the following form

maximize
∆

− 1
2
a(α,β)∆2 − b(α,β)∆− c(α,β)

subject to ∆lb(α,β) ≤ ∆ ≤ ∆ub(α,β)

where a, b, c, ∆lb, ∆ub are constants with respect to ∆. The optimal solution to this problem is

∆? = clip[∆lb , ∆ub]
(γ), (4.15)

where γ = −ba and clip[a, b](x) amounts to clipping (projecting) x to interval [a,b]. Since we
assume one of the update rules (4.14), the constraint (4.5b) is always satisfied after the update.
Even though all three update rules hold for any surrogate, the calculation of the optimal ∆?

depends on the concrete form of surrogate function. In the following text, we show the closed-
form formula for ∆? , when the hinge loss function from Notation 2.1 is used.

Plugging the conjugate (4.2) of the hinge loss into the dual formulation (4.5) yields

maximize
α,β

− 1
2

α

β

>

K

α

β

+

n+∑

i=1

αi (4.16a)

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj , (4.16b)

0 ≤ αi ≤ C, i = 1,2, . . . ,n+, (4.16c)

0 ≤ βj ≤ 1
K

n+∑

i=1

αi , j = 1,2, . . . , ñ. (4.16d)

The form of K and ñ depends on the used formulation as discussed in Theorem 4.3. Moreover,
the upper bound in (4.16d) can be omitted for K = 1. Since we know the form of the optimal
solution (4.15), we only need to show how to compute ∆lb, ∆ub and γ for all update rules (4.14).
The following three propositions provide closed-form formulae for all three update rules. To
keep the presentation as simple as possible, we postpone all proofs to Appendix C.2.1.

Proposition 4.7: Update rule (4.14a) for problem (4.16)

Consider problem (4.16), update rule (4.14a), indices 1 ≤ k ≤ n+ and 1 ≤ l ≤ n+ and Nota-
tion 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb = max{−αk̂ , αl̂ −C},
∆ub = min{C −αk̂ , αl̂},
γ = − sk − sl

Kkk +Kll −Kkl −Klk
.

43

4.3 Coordinate Descent Algorithm

Proposition 4.8: Update rule (4.14b) for problem (4.16)

Consider problem (4.16), update rule (4.14b), indices 1 ≤ k ≤ n+ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Let us define

βmax = max
j∈{1,2,...,ñ}\{l̂}

βj .

Then the optimal solution ∆? is given by (4.15) where

∆lb =

max

{
−αk̂ , −βl̂

}
K = 1,

max
{
−αk̂ , −βl̂ , Kβmax −

∑n+
i=1αi

}
otherwise,

∆ub =

C −αk̂ K = 1,

min
{
C −αk̂ , 1

K−1

(∑n+
i=1αi −Kβl̂

)}
otherwise.

γ = − sk + sl − 1
Kkk +Kll +Kkl +Klk

.

Proposition 4.9: Update rule (4.14c) for problem (4.16)

Consider problem (4.16), update rule (4.14c), indices n+ + 1 ≤ k ≤ ñ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb =

−βk̂ K = 1,

max
{
−βk̂ , βl̂ − 1

K

∑n+
i=1αi

}
otherwise,

∆ub =

βl̂ K = 1,

min
{

1
K

∑n+
i=1αi − βk̂ , βl̂

}
otherwise.

γ = − sk − sl
Kkk +Kll −Kkl −Klk

.

4.3.2 Initialization

For all update rules (4.14) we assumed that the current solution α, β is feasible. So to create
an iterative algorithm that solves problem (4.16) or (C.3), we need to have a way how to obtain
an initial feasible solution. Such a task can be formally written as a projection of random
variables α0, β0 to the feasible set of solutions

minimize
α,β

1
2

∥∥∥α −α0
∥∥∥2

+
1
2

∥∥∥β −β0
∥∥∥2

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj ,

0 ≤ αi ≤ C, i = 1,2, . . . ,n+, ,

0 ≤ βj ≤ 1
K

n+∑

i=1

αi , j = 1,2, . . . , ñ,

(4.17)

where the upper bound in the second constraint depends on the used surrogate function. To
solve problem (4.17), we follow the same approach as in [2]. In the following theorem, we
show that problem (4.17) can be written as a system of two equations of two variables λ and µ.
Moreover, the theorem shows the concrete form of feasible solution α, β that depends only
on λ and µ.

44

4 Dual Formulation: Linear Model

Theorem 4.10

Consider problem (4.17), some initial solution α0, β0 and denote the sorted version (in
non-decreasing order) of β0 as β0

[·]. Then if the following condition holds

K∑

j=1

(
β0

[ñ−K+j] + max
i=1,...,n+

α0
i

)
≤ 0, (4.18)

the optimal solution of (4.17) amounts to α = β = 0. In the opposite case, the following
system of two equations

n+∑

i=1

clip[0, C]

α

0
i −λ+

1
K

ñ∑

j=1

clip[0, +∞)

(
β0
j +λ−µ

)

−Kµ = 0, (4.19a)

ñ∑

j=1

clip[0, µ]

(
β0
j +λ

)
−Kµ = 0, (4.19b)

has a solution (λ,µ) with µ > 0, and the optimal solution of (4.17) is equal to

αi = clip[0, C]

α

0
i −λ+

1
K

ñ∑

j=1

clip[0, +∞)

(
β0
j +λ−µ

)

,

βj = clip[0, µ]

(
β0
j +λ

)
.

Theorem 4.10 shows the optimal solution of (4.17) that depends only on (λ,µ) but does not
provide any way to find such a solution. In the following text, we show that the number of
variables in the system of equations (4.19) can be reduced to one. For any fixed µ, we denote
the function on the left-hand side of (4.19b) by

g(λ;µ) :=
ñ∑

j=1

clip[0, µ]

(
β0
j +λ

)
−Kµ.

Then g is non-decreasing in λ but not necessarily strictly increasing. We denote by λ(µ) any
such λ solving (4.19b) for a fixed µ. Denote z the sorted version of −β0. Then we have

g(λ;µ) =
∑

{j | λ−zj∈[0,µ)}
(λ− zj) +

∑

{j | λ−zj≥µ}
µ−Kµ.

Now we can easily compute λ(µ) by solving g(λ(µ);µ) = 0 for fixed µ. To get the solution effi-
ciently, we derive Algorithm 3, which can be described as follows: Index i will run over z while
index j will run over z+µ. At every iteration, we know the values of g(zi−1;µ) and g(zj−1 +µ;µ)
and we want to evaluate g at the next point. We denote the number of indices j such that
λ − zj ∈ [0,µ) by d. If zi ≤ zj + µ, then we consider λ = zi and since one index enters the

set
{
j
∣∣∣ λ− zj ∈ [0,µ)

}
, we increase d by one. On the other hand, if zi > zj + µ, then we consider

λ = zj + µ and since one index leaves the set
{
j
∣∣∣ λ− zj ∈ [0,µ)

}
, we decrease d by one. In both

cases, g is increased by d times the difference between the new λ and old λ. Once g exceeds 0,
we stop the algorithm and linearly interpolate between the last two values. To prevent an over-
flow, we set zm+1 = +∞. Concerning the initial values, since z1 ≤ z1 + µ, we set i = 2, j = 1 and
d = 1.

45

4.4 Summary

Algorithm 3 An efficient algorithm for computing λ(µ) from (4.17) for fixed µ..

Require: vector −β0 sorted into z
1: i← 2, j← 1, d← 1
2: λ← z1, g←−Kµ
3: while g < 0 do
4: if zi ≤ zj +µ then
5: g← g + d(zi −λ)
6: λ← zi , d← d + 1, i← i + 1
7: else
8: g← g + d(zj +µ−λ)
9: λ← zj +µ, d← d − 1, j← j + 1

10: end if
11: end while
12: return linear interpolation of the last two values of λ

Since λ(µ) can be computed for fixed µ using Algorithm 3, we can define auxiliary func-
tion h in the following form

h(µ) =
n+∑

i=1

clip[0, C]

α

0
i −λ(µ) +

1
K

ñ∑

j=1

clip[0, +∞)

(
β0
j +λ(µ)−µ

)

−Kµ. (4.20)

Then the system of equations (4.19) is equivalent to h(µ) = 0. The following lemma describes
properties of h. Since h is decreasing in µ on (0,∞), any root-finding algorithm such as bisection
can be used to find the optimal solution.

Lemma 4.11

Even though λ(µ) is not unique, function h from (4.20) is well-defined in the sense that it
gives the same value for every choice of λ(µ). Moreover, h is decreasing in µ on (0,+∞).

4.4 Summary

In this chapter, we derived dual formulation for TopPushK and Pat&Mat family of formulations.
Moreover, we derived simple update rules that can be used to improve the current feasible solu-
tion. We also showed that these update rules have closed-form formulae, and therefore they are
simple to compute. Finally, we showed how to find an initial feasible solution. For TopPushK
family with hinge loss, we showed the derivation in the previous section, while the derivations
for Pat&Mat family are in Appendix C.2.2. This section combines all these intermediate results
into Algorithm 4 and discusses its computational complexity.

The left column in Algorithm 4 describe the algorithm for TopPushK family while the right
column for Pat&Mat family. In step 2 we initialize α, β and δ to some feasible value using
Theorem 4.10 or Theorem C.17. Then, based on (4.13) we compute scores s. Each repeat loop
in step 3 updates two coordinates as shown in (4.14). In step 4 we select a random index k and
in the for loop in step 5 we compute the optimal (∆l ,δl) for all possible combinations (k, l) as
in (4.14). In step 8 we select the best pair (∆l ,δl) which maximizes the coresponding objective
function. Finally, based on the selected update rule we update α, β, s and δ in steps 9 and 10.

Now we derive the computational complexity of each repeat loop from step 3. The com-
putation of (∆l ,δl) amounts to solving a quadratic optimization problem in one variable. As
we showed in Sections 4.3.1 and C.2.2, there is a closed-form solution and step 6 can be per-
formed in O(1). Since this is embedded in a for loop in step 5, the whole complexity of this

46

4 Dual Formulation: Linear Model

Algorithm 4 Coordinate descent algorithm for TopPushK family of formulations (left) and
Pat&Mat family of formulations (right).

1: Set α, β using Theorem 4.10
2: Set s based on (4.13)
3: repeat
4: Pick random k from {1, . . . ,n+ + ñ}
5: for l ∈ {1, . . . ,n+ + ñ} do
6: Compute ∆l
7: end for
8: Select the best ∆l
9: Update α, β, s according to (4.14)

10:

11: until stopping criterion is satisfied

1: Set α, β, δ using Theorem C.17
2: Set s based on (4.13)
3: repeat
4: Pick random k from {1, . . . ,n+ + ñ}
5: for l ∈ {1, . . . ,n+ + ñ} do
6: Compute ∆l and δl
7: end for
8: Select the best ∆l and δl
9: Update α, β, s according to (4.14)

10: set δ← δl
11: until stopping criterion is satisfied

loop is O(n+ + ñ). Step 9 requires O(1) for the update of α and β while O(n+ + ñ) for the update
of s. Since the other steps are O(1), the total complexity of the repeat loop is O(n+ + ñ). This
holds only if the kernel matrix K is precomputed. In the opposite case, all complexities must
be multiplied by the cost of computation of components of K, which is O(d). This complexity
analysis is summarized in Table 4.1.

K precomputed K not precomputed

Evaluation of ∆l O(1) O(d)

Update of α and β O(1) O(1)

Update of s O(n+ + ñ) O((n+ + ñ)d)

Total per iteration O(n+ + ñ) O((n+ + ñ)d)

Operation

Table 4.1: Computational complexity of one repeat loop (which updates two coordinates of α
or β) from Algorithm 4.

47

48

5
Primal Formulation: Non-Linear Model

In Chapter 2 we introduced a general framework for binary classification at the top samples
and showed multiple formulations that fall into it. All these formulations are summarized
in Table 2.1. In Chapter 3, we discussed the theoretical properties of all formulations for the
special case of a linear model. Since many real-world problems are not linearly separable, in
Chpater 4, we derived dual forms of all formulations and employed non-linear kernels. More-
over, we derived an efficient algorithm to solve these dual formulations. However, it is still
computationally expensive. Especially the evaluation of new samples is costly since the clas-
sification score for every new sample is computed from all training samples. More precisely,
the classification score is calculated only from training samples whose corresponding dual
variables are non-zero. Therefore, the dual formulations are unsuitable for large data. To over-
come this issue, the following chapter is dedicated to our framework (2.3) with an arbitrary
model model f . We can mention neural networks as a prototypical example of such a model.
We will not discuss Grill and Grill-NP formulations from Table 2.1, since their authors intro-
duced in [31] an algorithm to solve this formulation that is suitable even for non-linear models.
Therefore, we focus only on the remaining formulations that use surrogate false-negative rate
as an objective function, i.e., we assume the following general formulation

minimize
w

λ
2
‖w‖2 +

1
n+

∑

i∈I+

l(t(w)− f (xi ;w))

subject to si = f (xi ;w), i ∈ I ,
t = G(s,y),

(5.1)

where f is an arbitrary model. Our goal is to show how to solve this formulation in a suitable
way for large data. The standard approach is to use stochastic gradient descent. To do so, we
need to know the gradient of the objective function, and therefore, we assume that the model f
is differentiable. The optimization problem (5.1) depends on two decision variables w and t.
However, for all formulations from Table 2.1 and each w, the threshold t can be computed
uniquely. We stress this dependence by writing t(w) instead of t. By doing so, we effectively
remove the threshold t from the decision variables and w remains the only decision variable.
Denoting the objective of (5.1) by L(w), the chain rule implies that the gradient is equal to

∇L(w) = λw+
1
n+

∑

i∈I+

l′(t(w)− f (xi ;w))(∇t(w)−∇f (xi ;w)). (5.2)

The only remaining part is the computation of ∇t(w). It is simple for most of the formulations
from Table 2.1. Moreover, Theorem 3.3 shows the computation for Pat&Mat.

The basic idea of the stochastic gradient descent is to split the dataset into several small
minibatches I1

mb, I2
mb, . . . , Immb and at each iteration perform all operations only on one of them.

This approach is easily applicable when for example, cross-entropy is used as an objective
function since cross-entropy is additive and easily decomposable. However, in our case, the

49

5.1 Bias of Sampled Gradient

decision threshold t depends on all scores s, and consequently, the objective function is non-
additive and non-decomposable. Therefore, we cannot compute the true threshold only from
one minibatch, and we need to use some approximation t̂ of it. The most straightforward way
to approximate the true threshold is to use the same rule as for the whole dataset and compute
the sampled threshold t̂ only on data from one minibatch. By replacing all computations on
the whole dataset I with their counterparts computed only on the minibatch Imb, we get the
sampled gradient in the following form

∇L̂(w) = λw+
1

nmb,+

∑

i∈Imb,+

l′
(
t̂(w)− f (xi ;w)

)(
∇t̂(w)−∇f (xi ;w)

)
. (5.3)

where nmb,+ denotes the number of positive samples in the minibatch and t̂ denotes the sam-
pled version of the true threshold t. The whole procedure of stochastic gradient descent for
formulations from Table 2.1 is summarized in Algorithm 5.

Algorithm 5 Stochastic gradient descent for solving problem (5.1).

Require: Dataset D, minibatches I1
mb, I2

mb, . . . , Immb, and stepsize αk

1: Initialize weights w0, k← 0
2: repeat
3: Select a minibatch I kmb
4: Compute scores smb for all i ∈ I kmb as si ← f (xi ;w)
5: Compute sampled thershold t̂← G(smb,ymb)
6: Compute sampled gradient ∇L̂ based on I kmb according to (5.3)
7: Set wk+1← wk −αk · ∇L̂
8: Set k← k + 1
9: until stopping criterion is satisfied

5.1 Bias of Sampled Gradient

In Algorithm 5, we summarized a basic form of the stochastic gradient descent algorithm that
can be used for any formulation from Table 2.1 that uses surrogate false-negative rate as an ob-
jective function. The problem with this approach is that the sampled threshold t̂ is computed
only from data from one minibatch using the same formula as for the whole dataset. However,
such a choice of sampled threshold t̂ underestimates the true value. This issue is especially
evident for TopPush, where the sampled maximum is always smaller or equal to the true max-
imum. The chances that the actual maximum is in the current minibatch are small for large
data. Therefore, the sampled threshold is a biased estimate of the true threshold. Another
example can be the threshold for Pat&Mat formulation. Consider the minibatch of size 32, a
typical size used in many applications. How can we compute, for example, (0.01)-quantile from
only 32 samples? Figure 5.1 illustrates the bias of sampled threshold for Pat&Mat with τ = 0.01
and minibatches of different sizes. The bias between the true and sampled threshold is large,
even for medium-sized minibatches. When the backpropagation is used, the sampling error
is propagated through the whole gradient, and consequently, the sampled gradient is a biased
estimate of the true gradient. This brings numerical issues as discussed in [9].

Convergence proofs of the stochastic gradient descent require that the sampled gradient is
an unbiased estimate of the true gradient [9]. In other words, the bias defined as

bias(w) := ∇L(w)−E∇L̂(w) (5.4)

must equal 0 for all w. A comparison of (5.2) and (5.3) shows that a necessary condition is
that the sampled threshold t̂ is an unbiased estimate of the true threshold t. However, as

50

5 Primal Formulation: Non-Linear Model

100 200 300 400 500 600 700 800 900 1,000

1.6

1.8

2

2.2

2.4

Minibatch size

True threshold
Sampled threshold
Standard deviation

Figure 5.1: The bias between the sampled and true thresholds computed from scores following
the standard normal distribution. The threshold separates the top 1% of samples with the
highest scores.

we discussed above, it is not a case for Algorithm 5. The following proposition quantifies
the difference between the sampled and true threshold for methods that use quantile as the
threshold.

Proposition 5.1: [30]

Consider an absolutely continuous random variable X with distribution function F. Let
X1, X2, . . . , Xn be i.i.d. samples from X and let τ ∈ (0,1). Denote the true quantile t and its
sampled version as t̂

t = F−1(1− τ), t̂ = F−1
n (1− τ),

where Fn is the empirical distribution function. If F is differentiable with a positive gra-
dient at t, then

√
n
(
t − t̂

)
→N

(
0,
τ(1− τ)
F′(t)2

)
,

where the convergence is in distribution andN denotes the normal distribution.

This proposition states that when the minibatch size increases to infinity, the variance of
the sampled threshold is approximately

τ(1− τ)
nF′(t)2 .

Figure 5.1 shows this empirically for the case where the scores follow the standard normal
distribution and τ = 0.01 is the desired top fraction of all samples. The approximation is poor
with both significant bias and standard deviation. The natural choice to mitigate the bias is to
work with large minibatches. Even though this is not a standard way, some works suggest this
route [75]. When the minibatch is large, it contains more samples, and the sampled threshold
is more precise. However, such an approach is not applicable in many cases. For example,
GPUs are often used to speed up the training process. But the usage of GPUs brings memory
constraints, and therefore only small minibatches can be used in such a case.

51

5.2 DeepTopPush

5.2 DeepTopPush

In the previous sections, we derived Algorithm 5 that can be used for any formulation from
Table 2.1 that uses surrogate false-negative rate as an objective function. However, this ap-
proach provides a biased sampled gradient. One way how to reduce the bias is to use large
minibatches, but in many cases, this is not possible. In this section, we derive a new method
DeepTopPush, that mitigates this bias differently.

We start with TopPush formulation presented in [45]. Authors of [45] proposed the TopPush
formulation with a linear model and solved it in its dual form. In Section 2.2 we generalized
this formulation for general model f , and in Chapter 3 we solved the formulation directly in its
primal form for a linear model. For general model f , we stay in the primal form to be able to
employ stochastic gradient descent. It means that we have the following optimization problem

minimize
w

λ
2
‖w‖2 +

1
n+

fn(s, t)

subject to si = f (xi ;w), i ∈ I ,
t = max

j∈I−
sj .

(5.5)

Since the threshold always equals one of the scores, its computation has a simple local formula.
In other words, if the highest negative score corresponds to sample xj? , then the gradient of the
threshold equals ∇t = ∇f (xj? ;w). Therefore, the gradient of the objective function of (5.5) reads

∇L(w) = λw+
1
n+

∑

i∈I+

l′
(
f (xj? ;w)− f (xi ;w)

)(
∇f (xj? ;w)−∇f (xi ;w)

)
. (5.6)

Using the same transition to the minibatches as in previous sections, we get the following
formula for sampled gradient

∇L̂(w) = λw+
1

nmb,+

∑

i∈Imb,+

l′
(
f (xj?mb

;w)− f (xi ;w)
)(
∇f (xj?mb

;w)−∇f (xi ;w)
)
, (5.7)

where j?mb represents the index of the negative sample with the highest score from the current
minibatch. As discussed in the previous section, such a choice of the decision threshold pro-
vides a lower estimate of the true threshold. To improve this approximation, we modify the
idea presented in [1]. The authors of [1] suggest using delayed classification scores to compute
the threshold. We used this approach in Section 3.4 to prove the convergence of stochastic gra-
dient descent for Pat&Mat and Pat&Mat-NP formulation with a linear model. However, even
in such a case, the resulting sampled gradient t̂ is just an approximation of the true gradient t.
To improve this approach, we use the fact that the threshold for TopPush is always equal to the
negative sample with the highest score. When the weights w of model f are updated using
stochastic gradient descent, the scores s usually do not change much. It is true especially for
small learning rates. Therefore, if some negative sample has the highest score, it will likely
have the highest score even after the gradient step. Since we can easily track to which nega-
tive sample this highest score corresponds, we can enhance the next minibatch by this sample.
This approach significantly increases the chance that the minibatch contains the negative sam-
ple with the highest score. In such a case, the sampled threshold t̂ is not just an approximation
but equals the true threshold t. The whole procedure is summarized in Algorithm 6.

52

5 Primal Formulation: Non-Linear Model

Algorithm 6 DeepTopPush as an efficient method for maximizing accuracy at the top.

Require: Dataset D, minibatches I1
mb, I2

mb, . . . , Immb, and stepsize αk

1: Initialize weights w0, k← 0, and random index j?mb
2: repeat
3: Select a minibatch I kmb
4: Enhance minibatch I enh

mb = I kmb ∪
{
j?mb

}

5: Compute scores si ← f (xi ;w) for all i ∈ I enh
mb

6: Find index of sampled thershold j?mb← argmax
{
sj

∣∣∣ j ∈ I enh
mb ∩I−

}

7: Compute sampled gradient ∇L̂ based on I enh
mb according to (5.7)

8: Set wk+1← wk −αk · ∇L̂
9: Set k← k + 1

10: until stopping criterion is satisfied

Note 5.2: Other formulations

Algorithm 6 is applicable only on the TopPush formulation since all other formulations
use more samples to compute the threshold. However, we can modify the algorithm to
be usable, for example, with TopPushK formulation. Since TopPushK uses the mean of K
highest negative scores as a threshold, we need to enhance the current minibatch by K
indices corresponding to the K highest negative scores. However, since our goal was to
use small minibatches, such an approach makes sense only for small K.

5.3 Theoretical Justification

In the previous section, we derived DeepTopPush method for solving the TopPush formulation.
In Section 5.1, we discussed that the convergence proof of stochastic gradient descent requires
that the sampled gradient is an unbiased estimate of the true gradient. Therefore, we are
ultimately interested in the bias of the sampled gradient ∇L̂(w) defined in (5.4). Recall that j?

is the index of true threshold on the whole dataset, while j?mb is the index of sampled threshold
on the minibatch. We split the computation based on whether these two indices are identical
or not.

Lemma 5.3

Let j? be unique. Assume that the selection of positive and negative samples into the
minibatch is independent and that the threshold is computed from negative samples while
the objective is computed from positive samples. Then the conditional expectation of the
sampled gradient satisfies

E
[
∇L̂(w)

∣∣∣j?mb = j?
]

= ∇L(w).

Theorem 5.4

Under the assumptions of Lemma 5.3, the bias of the sampled gradient from (5.4) satisfies

bias(w) = P
[
j?mb , j

?
](
∇L(w)−E

[
∇L̂(w)

∣∣∣j?mb , j
?
])
. (5.8)

The assumptions of Theorem 5.4 hold only for TopPush formulation. The bias (5.8) con-
sists of a multiplication of two terms. As we discussed in the previous sections, there are two
strategies to reduce the bias:

53

5.3 Theoretical Justification

0

4

8

12

T
hr
es
ho

ld

0 2 4 6 8 10
0

45

90

Epoch

G
ra
d
ie
nt

an
gl
e

Figure 5.2: The top figure shows the comparison of the true threshold (red dashed line) and
sampled threshold for TopPush (gray dotted line) and DeepTopPush (blue line). The bottom
figure shows the angle between true and sampled gradients for TopPush (gray dotted line) and
DeepTopPush (blue line). In this case, the red dashed lines represent 0 and 90 degrees angles.
The experiment was performed on the CIFAR10 dataset with a minibatch of size 32 and 10
training epochs.

1. Large minibatches: When the minibatch is large, it contains more samples, and the
chance that j?mb differs from j? decreases. This reduces the first term in (5.8). More-
over, Proposition 5.1 ensures that the difference between the sampled threshold t̂ and
the true threshold t is small. Then the difference between the true gradient (5.6) and the
sampled gradient (5.7) decreases as well. This reduces the second term in (5.8).

2. Enhanced minibatch: The enhanced minibatch increases the chance that j?mb equals j? .
This reduces the first term in (5.8).

The former strategy uses Algorithm 5 while the latter is described only for formulation (5.5) in
Algorithm 6. For clarity, we use the name DeepTopPush for Algorithm 6 that solves formula-
tion (5.5). Similarly, we use the name TopPush if Algorithm 5 is used to solve formulation (5.5).

Figure 5.2 shows the effect of the enhanced minibatch on the training. The top part of the
figure compares the value of the true threshold t and its sampled version t̂ during training. The
red dashed line represents true threshold t. The full blue line shows the sampled threshold ob-
tained by DeepTopPush (enhanced minibatch), while the dotted grey line the same for TopPush.
While the sampled threshold for TopPush jumps wildly, for DeepTopPush is smooth and often
equal to the true threshold. It shows the importance of the enhanced minibatch. Moreover,
Theorem 5.4 implies that for DeepTopPush the sampled gradient is an unbiased estimate of
the true gradient. It is even more pronounced in the bottom part of Figure 5.2, which shows
the angle between the true gradient ∇L and the sampled gradient ∇L̂. This angle is essential
because [56] showed that if this angle is in the interval [0,90), then gradient descent schemes
converge. Which is precisely what happened for DeepTopPush. When the threshold is correct,
the true and sampled gradients are parallel to each other, and the gradient descent moves in
the correct direction.

54

6
Numerical Experiments

In previous sections, we derived a general framework for classification at the top and showed
that multiple well-known formulations fall into it. The summary of all formulations presented
in this work is available in Table 2.1. The goal of this chapter is to verify the properties of these
formulations experimentally.

6.1 Settings

In this section, we describe in detail all settings used for the experiments. The section consists
of five subsections. The first one discusses which formulations from Table 2.1 we use for the
experimental evaluation. In this subsection, we also introduce baseline formulations used for
the comparison. In the second one, we introduce datasets used in the experiments and describe
their structure. A detailed description of the datasets is then provided in separate sections with
their corresponding experiment results. The third and fourth subsections contain a detailed
description of performance metrics. The last subsection contains a description of tools used for
implementation. All codes used for the experiments, as well as all experiment configurations,
are publicly available on GitHub:

https://github.com/VaclavMacha/ClassificationAtTopExperiments.jl

6.1.1 Formulations

Formulations from Table 2.1 can be divided into three categories:

• The first category contains TopPush and TopPushK formulations. These formulations min-
imize the surrogate approximation of the false-negative rate and use the mean of a small
fraction of the negative samples with the highest scores as a threshold.

• The second category consists of Grill, TopMeanK, and Pat&Mat formulations. Similarly to
TopPush and TopPushK, these formulations use the surrogate approximation of the false-
negative rate as an objective function. The Grill formulation also adds the surrogate ap-
proximation of the false-positive rate into the objective function. All three formulations
use some approximation of the top τ-quantile of all scores as a threshold.

• The last category consists of Grill-NP, τ-FPL, and Pat&Mat-NP. These formulations use
the same objectives as their corresponding formulations from the second category. How-
ever, they differ in the definition of the decision threshold. All three formulations use
some kind of approximation of the top τ-quantile of negative scores as a threshold.

To simplify the setup of all experiments, we decided to focus on formulations that only use
negative samples for the threshold computation, i.e., formulations from the first and third

55

 https://github.com/VaclavMacha/ClassificationAtTopExperiments.jl

6.1 Settings

categories. Moreover, we decided to omit the Grill-NP formulation in the final experiments be-
cause of its poor results in preliminary experiments. The performance of selected formulations
can be compared by basic performance metrics, as shown later in Section 6.1.4.

In total, we use four different formulations from Table 2.1, namely TopPush, TopPushK, τ-
FPL, and Pat&Mat-NP. Moreover, for TopPushK, we use two different values of K = {5,10} and
consider the resulting formulations as separate formulations, i.e., we have TopPushK (5) and
TopPushK (10). Similarly, for τ-FPL and Pat&Mat we use two different values of τ = {0.01,0.05}.
For all formulations, we use the hinge loss defined in Notation 2.1 as a surrogate function.

The final number of unique formulations is seven. To show that they bring advantages,
we must compare them to standard methods. In previous chapters, we showed how to solve
presented formulations in their primal (Chapters 3 and 5) and dual form (Chapter 4). When-
ever we use the primal form in the experiments, we use binary cross-entropy defined in the
following way as a baseline formulation

minimize
w

1
n

∑

i∈I
(−yi log(si)− (1− yi) log(1− si))

subject to si = f (xi ;w), i ∈ I .
(6.1)

We decided to use binary cross-entropy since it is one of the most used objective functions for
binary classification in machine learning applications. We will denote binary cross-entropy in
the following text as BinCross. In experiments with dual forms of our formulations, we use
C-SVC variant of SVM [8, 18, 14] defined by

minimize
w,b,ξ

1
2
‖w‖2 +C

∑

i∈I
ξi

subject to yi
(
w>φ(xi) + b

)
≥ 1− ξi , i ∈ I ,

ξi ≥ 0, i ∈ I ,

(6.2)

where yi ∈ {−1,1} for all i ∈ I and φ(xi) maps xi into a higher-dimensional space (see Sec-
tion 4.2). The corresponding dual form is as follows

maximize
α

− 1
2
α>Kα −

n∑

i=1

αi

subject to
n∑

i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1,2, . . . ,n,

(6.3)

where the kernel matrix K is defined for all i, j = 1,2, . . . ,n as

Ki,j = yiyjk(xi ,xj) = φ(xi)
>φ(xj).

Note that the dual form of C-SVC is very similar to the dual forms of our formulations derived
in Chapter 4. We will denote C-SVC as SVM.

In total, we have nine different formulations for experiments, as seen in Table 6.1. BinCross
formulation is used only for experiments with primal forms of our formulations, while SVM is
used only when dual forms are used. The following section discusses which hyper-parameters
are used for each formulation. Since we used a slightly different primal form (standard formu-
lation for SVM) for the derivation of dual forms, we also show how to convert used parameters
to the resulting dual forms and get identical experiment settings.

56

6 Numerical Experiments

6.1.2 Hyper-parameters

The selected formulations differ in the number of available hyper-parameters. Therefore, we
decided to use a fixed value for all but one of the hyper-parameters for each formulation. For
most of the considered formulations, the only hyper-parameter is the regularization constant λ.
In our experiments, we used the following six values of this hyper-parameter

λ ∈
{
0,10−5,10−4,10−3,10−2,10−1

}
.

The only exceptions are the formulations derived from Pat&Mat-NP since they also have the
scaling parameter ϑ. Since the parameter is essential for the approximation quality of the
threshold, we decided to fine-tune this hyper-parameter instead of the regularization con-
stant λ. Therefore, we fixed λ to 10−3 for Pat&Mat-NP formulations and used the following
six different values of the scaling parameter

ϑ ∈
{
10−5,10−4,10−3,10−2,10−1,1

}
.

Since we used a slightly different (but equivalent) primal formulation for the derivation of the
dual forms, we use λ to compute the hyper-parameter C used in these dual forms

C =
1
λñ
,

where ñ = n for SVM and ñ = n+ otherwise. In all experiments, the best hyperparameter is
selected based on the validation data and the appropriate performance metric. A summary of
all used formulations and their hyper-parameters is in Table 6.1.

Formulation Fixed parameters Hyper-parameter Primal Form Dual Form

BinCross — λ 3 7

SVM — λ 7 3

TopPush — λ 3 3

TopPushK (5) K = 5 λ 3 3

TopPushK (10) K = 10 λ 3 3

τ-FPL (0.01) τ = 0.01 λ 3 3

τ-FPL (0.05) τ = 0.05 λ 3 3

Pat&Mat-NP (0.01) τ = 0.01 ϑ 3 3

Pat&Mat-NP (0.05) τ = 0.05 ϑ 3 3

Table 6.1: Summary of all formulations used for experiments. The first column shows the
aliases used for the formulations when describing the experiment results. The second column
shows fixed parameters used for each formulation, while the third column shows which hyper-
parameters are tuned using the validation set. The last two columns indicate whether the
formulation is used in the experiments with primal forms, dual forms, or both.

57

6.1 Settings

6.1.3 Datasets

We consider various datasets summarized in Table 6.2 for the numerical experiments. All these
datasets can be divided into three categories:

1. Image Recognition: In this category, we test formulations from Table 6.1 on datasets
from the domain of image recognition. We use this domain since it is one of the most
popular with plenty of publicly available datasets.

2. Steganalysis: In this category, we use selected formulations in the domain of steganalysis.
In this domain, the problem of maximizing the true-positive rate at the specific level
of the false-positive rate is well-known and essential, as we show at the beginning of
Section 6.3.

3. Malware Detection: In this category, we use selected formulations for malware detection.
Like in steganalysis, maximizing the true-positive rate at the specific level of the false-
positive rate is crucial for malware detection, as discussed at the beginning of Section 6.4.

Each category has a separate section later in the text. It is worth mentioning that not all datasets
used in the experiments are primarily designed for the classification at the top. For example,
all datasets from the first category are general-purpose image classification datasets. We use
these datasets since they are publicly available and well-known. Since all these datasets are
multiclass, we need to adjust the labels to get a binary classification problem. Therefore, for
each data set, we select one class as the positive class and consider the rest as the negative
class. It is also worth noting that the Malware Detection dataset does not include a validation
set. The computational demands of training on this dataset were so large that we were only
able to train four formulations without any hyperparameter tuning. Therefore, there was no
need for a validation set.

MNIST 1 28× 28× 1 45 000 11.3% 15 000 11.2% 10 000 11.4%

FashionMNIST 1 28× 28× 1 45 000 10.0% 15 000 9.9% 10 000 10.0%

CIFAR10 1 32× 32× 3 37 500 10.0% 12 500 9.9% 10 000 10.0%

CIFAR20 1 32× 32× 3 37 500 5.0% 12 500 5.1% 10 000 5.0%

CIFAR100 1 32× 32× 3 37 500 1.0% 12 500 1.0% 10 000 1.0%

SVHN2 1 32× 32× 3 54 944 18.9% 18 313 18.9% 26 032 19.6%

SVHN2-Extra 1 32× 32× 3 453 291 17.3% 151 097 17.1% 26 032 19.6%

Nsf5 — 22510× 1 186 583 9.1% 62 194 9.1% 248 776 9.1%

JMiPOD — 256× 256× 3 186 515 9.1% 62 172 9.1% 248 686 9.1%

Malware — variable 6 580 166 87.22% — — 800 346 91.8%

Dataset y+ d
Train Validation Test

n n+
n n n+

n n n+
n

Table 6.2: Structure of datasets: The training, validation and testing sets show the positive
label y+, the number of features d, samples n and the fraction of positive samples n+

n . Datasets
depicted in red are not publicly available.

58

6 Numerical Experiments

6.1.4 Performance Criteria

In this section, we describe which performance criteria are used for evaluation and how these
criteria are related to the tested formulations.

As we discussed at the beginning of Section 6.1, we decided to only test formulations that
minimize the false-negative rate (or a combination of false-negative and false-positive rate) and
use only negative samples for the threshold computation. This choice allows us to use simple
metrics to compare the formulations. The first metric that we use in the experiments is TPR@K
defined as follows

TPR@K =
1
n+

∑

i∈I+

1[si≥t] where t =
1
K

K∑

j=1

s−[j].

This metric computes the true-positive rate at a threshold t defined as the mean of K-largest
negative scores. For K = 1, the threshold corresponds to the threshold used by TopPush formu-
lation. Otherwise, threshold t corresponds to the threshold used by TopPushK. Moreover, since
minimizing the false-negative rate is equivalent to maximizing the true-positive rate, both Top-
Push and TopPushK should optimize the TPR@K metric. In the upcoming experiments, we use
this metric with three different values of K ∈ {1,5,10}.

The second metric is defined in a similar way

TPR@τ =
1
n+

∑

i∈I+

1[si≥t] where t = max

t

∣∣∣∣∣∣∣∣
1
n−

∑

i∈I−
1[si≥t] ≥ τ

.

This metric computes the true-positive rate at a specific top τ-quantile of negative scores. This
metric is ideal for testing the performance of τ-FPL and Pat&Mat-NP formulations since both
maximize the true-positive rate and use some approximation of the true top τ-quantile of neg-
ative scores as a threshold. In our experiments, we use this metric with two different values
of τ ∈ {0.01,0.05}.

The two previous metrics are specific to the formulations from our framework. However,
we should also test if the baseline formulations work correctly. Since the baseline methods are
designed to optimize overall performance, we use the area under the ROC curve to measure
the overall performance. The summary of all used metrics is in Table 6.3.

1 5 10 0.01 0.05

BinCross 3 — — — — —

SVM 3 — — — — —

TopPush — 3 — — — —

TopPushK (5) — — 3 — — —

TopPushK (10) — — — 3 — —

τ-FPL (0.01) and Pat&Mat-NP (0.01) — — — — 3 —

τ-FPL (0.05) and Pat&Mat-NP (0.05) — — — — — 3

Formulation AUC
TPR@K TPR@τ

Table 6.3: The summary of all used performance metrics used for evaluation. In total, we use
six different metrics and nine different formulations. For each formulation 3denotes the metric
in which the formulation should be the best.

59

6.2 Image Recognition

6.1.5 Critical Difference Diagrams

All metrics from Section 6.1.4 can be used to compare different formulations on a single
dataset. However, these metrics are unsuitable for comparing multiple formulations on multi-
ple datasets. To address this issue, we use the Friedman test [28] as suggested in [19].

Consider that we have m datasets, and k formulations. Then for each dataset i, each for-
mulation j is ranked by rank r ij according to some performance criterium. Any performance
metric from the previous section can be used. The formulation that provides the best result
gets ranked 1; the second best gets ranked 2, and so on. If two formulations provide the same
results, the average ranks are assigned. The average rank overall dataset for formulation j is
computed as

Rj =
1
m

m∑

i=1

r ij .

The Friedman test compares the average ranks of formulations under the null hypothesis,
which states that all formulations are equivalent. Therefore, their average ranks should be
equal. If the null hypothesis is rejected, we proceed with the post hoc Nemenyi test [53] that
compares all formulations to each other. The performance of the two formulations is signifi-
cantly different if the corresponding average ranks differ by at least the critical difference

CD = qα

√
k(k + 1)

6m
,

where critical values qα are based on the Studentized range statistic divided by
√

2, see Table
5(a) in [19]. The results of this post hoc test can be easily visualized using critical difference
diagrams proposed in [19]. The x-axis of such a diagram shows the average rank over all
datasets for each formulation. Formulations that are not significantly different according to
the Nemenyi test are connected using a green horizontal line. As an example, see Figure 6.1.

6.1.6 Implementation

For the implementation of all experiments, we use the Julia programming language [7]. The
dual formulations are implemented from scratch, while the primal formulations are imple-
mented using Flux.jl [24, 35] library. This library provides all the necessary tools for building
neural networks. Moreover, the library allows the implementation of a custom gradient for any
function, which allows us to implement all formulations from Table 2.1. For experiments with
SVM, we use the Julia wrapper for the LIBSVM library [14].

6.2 Image Recognition

In this section, we present experiments with six well-known image recognition datasets. All
these datasets are publicly available. MNIST [20] and FashionMNIST [74] are grayscale datasets
of digits and fashion items, respectively. CIFAR100 [42] is a dataset of colored images of dif-
ferent items grouped into 100 classes. CIFAR10 and CIFAR20 merge these classes into 10 and
20 superclasses, respectively. Finally, SVHN2 [54] contains colored images of house numbers.
All these datasets are originally divided only into training and test sets. We select 25% sam-
ples from the training set to obtain the validation set. For a more detailed description of the
structure of datasets, see Table 6.2.

None of these datasets are primarily designed for the problem of classification at the top.
We presented these datasets to show that introduced formulations can be helpful even for
general-purpose datasets and may improve performance on specific metrics. However, there
are some drawbacks to using these datasets. For example, many state-of-the-art neural network

60

6 Numerical Experiments

architectures achieve almost the perfect classification on some of these datasets. Therefore,
there is no room for improvement, and we have to use much simpler architectures to show the
behavior of formulations presented in this work (Section 6.2.3).

For comparison we use critical difference diagrams introduced in Section 6.1.5. One of the
basic assumptions of the critical difference diagrams to work appropriately is a large number
of used datasets. Since we performed all experiments for each formulation and each dataset
ten times with different random seeds for train/valid/test split, we decided to consider each
of these runs as a separate dataset. It is important to say that we use this setting only for
the critical difference diagrams. Since the critical diagrams show the relative performance
of the formulations against each other, we can easily see if any formulation is significantly
worse or better. However, the critical diagrams do not provide any information on the actual
performance of the formulations. Therefore, even if one formulation outperforms other tested
formulations, it does not mean that its performance is good.

To address the issue above, we also compare concrete performance metrics on each dataset
separately. Since we have six hyper-parameters for each formulation, we always select the best
result for each formulation on the validation set based on the criterion for which the specific
formulation is optimized. Then for each formulation, we select the median of the best results
from ten independent runs. Moreover, the best result for each dataset is highlighted in green,
while the worst result is highlighted in red.

6.2.1 Primal Formulation: Linear Model

In this section, we present results for a primal form of formulations from Table 6.1 with a linear
model. For training, we use stochastic gradient descent with balanced mini-batches of size 512.
As an optimizer, we use the ADAM [40] with default settings and initial step length α = 0.01,
which we discount every five epochs by the factor of 0.8 using an exponential decay scheme.
We also fix the number of epochs to 100, and repeat each experiment ten times with different
random seeds.

As mentioned earlier, we use critical difference diagrams (Figure 6.1) and medians of ten
independent runs (Table 6.4) for comparison. We make several observations:

• TopPushK formulations provide a slight (not statistically significant) improvement over
TopPush in most of the experiments, as shown in Figure 6.1, where a green line connects
all three formulations for almost all metrics. The only exception is the TPR@τ = 0.01
metric, for which TopPush is significantly worse than other formulations.

• BinCross formulation works best for AUC metric and is not suitable for any other metric;
see Figure 6.1 or Table 6.4. BinCross consistently provides the best results for AUC for
all datasets. On the other hand, BinCross works poorly for metrics that operate at the
absolute top, such as TPR@K = 1, TPR@K = 5, or TPR@K = 10.

• Pat&Mat-NP formulations provide very good results for all metrics. Moreover, Pat&Mat-
NP (0.01) is the best formulation for TPR@τ = 0.01, and Pat&Mat-NP (0.05) for TPR@τ =
0.05. It means that both methods are the best for the criterion for which they are opti-
mized. The same behavior can also be seen in Table 6.4, where Pat&Mat-NP (0.05) is the
best formulation for TPR@τ = 0.01 almost for all datasets.

• τ-FPL (0.05) works very well for both TPR@τ = 0.01 and TPR@τ = 0.05.. The formulation
achieves almost as good results for both metrics as Pat&Mat-NP formulations.

• All formulations provide very poor results for CIFAR and SVHN2 datasets, as shown in
Table 6.4. The use of a simple linear model causes this. However, the obtained results
are still relevant since we compare the relative performance of the formulations to each
other and not the absolute performance.

61

6.2 Image Recognition

AUC

1 2 3 4 5 6 7 8

BinCross
Pat&Mat-NP (0.05)
Pat&Mat-NP (0.01)

τ-FPL (0.05) τ-FPL (0.01)
TopPushK (10)
TopPushK (5)
TopPush

TPR@τ = 0.05

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.05)
Pat&Mat-NP (0.01)

τ-FPL (0.05)
BinCross τ-FPL (0.01)

TopPushK (10)
TopPushK (5)
TopPush

TPR@τ = 0.01

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
Pat&Mat-NP (0.05)

τ-FPL (0.05)
τ-FPL (0.01) BinCross

TopPushK (10)
TopPushK (5)
TopPush

TPR@K = 10

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
TopPushK (5)

TopPushK (10)
TopPush Pat&Mat-NP (0.05)

τ-FPL (0.01)
τ-FPL (0.05)
BinCross

TPR@K = 5

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
TopPushK (10)

TopPushK (5)
TopPush Pat&Mat-NP (0.05)

τ-FPL (0.01)
τ-FPL (0.05)
BinCross

TPR@K = 1

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
TopPushK (10)

TopPushK (5)
TopPush Pat&Mat-NP (0.05)

τ-FPL (0.01)
τ-FPL (0.05)
BinCross

Figure 6.1: Primal formulation with a linear model: Critical difference diagrams (level of
importance 0.05) of the Nemenyi post hoc test for the Friedman test. Each diagram shows the
mean rank of each method, with rank one being the best. The green horizontal lines group
methods with mean ranks that are not significantly different. The critical difference diagrams
were computed for mean rank averages over all datasets.

62

6 Numerical Experiments

TPR@K = 10

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2 SVHN2Extra

BinCross 68.54 85.65 0.04

TopPush 89.38 2.25 4.00

TopPushK (5) 89.60 93.30 3.30 1.10 3.00 0.04 0.06

TopPushK (10) 92.75 3.90 0.70 4.50 0.04

τ-FPL (0.01) 83.35 92.40 2.90 0.80 2.50 0.03

τ-FPL (0.05) 3.60 1.00 0.04

Pat&Mat-NP (0.01) 87.88 92.75 1.10 4.00 0.12

Pat&Mat-NP (0.05) 51.72 81.60 3.80 1.20 3.00 0.06

1.25 1.40 2.00 0.02

93.70 0.40 0.02 0.02

89.64 0.09

0.02

40.26 79.65 5.50 0.09

5.00 0.09

0.14

TPR@τ = 0.05

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2 SVHN2Extra

BinCross 99.30 43.40 32.90 54.50 5.53

TopPush 43.50 6.40

TopPushK (5) 99.21 35.50 20.20 6.78 7.42

TopPushK (10) 99.30 37.90 20.80 46.50 6.15 8.07

τ-FPL (0.01) 99.47 98.75 35.85 24.00 44.00 6.90 7.76

τ-FPL (0.05) 99.56 99.20 39.50 25.70 50.50 8.16 9.69

Pat&Mat-NP (0.01) 99.52 98.85 45.35 33.70 56.00 9.28

Pat&Mat-NP (0.05) 12.25

99.65 5.91

99.12 98.30 31.10 16.30 5.22

98.30 42.50

98.30

12.47

99.65 99.40 46.80 34.80 58.50 9.34

AUC

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2 SVHN2Extra

BinCross

TopPush 65.76 82.10 51.08 51.30

TopPushK (5) 99.80 76.67 50.69

TopPushK (10) 99.82 99.48 77.74 66.87 81.91 51.90

τ-FPL (0.01) 99.84 99.72 77.34 69.24 82.96 51.04 50.62

τ-FPL (0.05) 99.81 99.80 79.41 70.86 84.56 51.78 50.76

Pat&Mat-NP (0.01) 99.85 99.68 82.34 74.56 86.13 56.38 51.93

Pat&Mat-NP (0.05) 99.84 99.81 83.35 75.44 87.22 56.40 52.50

99.86 99.83 84.00 76.26 88.48 57.82 56.10

99.78 99.42 73.84

99.42 65.70 81.52 50.98

50.58

Table 6.4: Primal formulation with a linear model: Each table corresponds to one perfor-
mance metric, and all presented results are medians of ten independent runs for each dataset
and formulation pair. The best result for each dataset is highlighted in green, while the worst
result is highlighted in red. For better readability, we have reduced the number of discussed
metrics compared to Figure 6.1.

63

6.2 Image Recognition

6.2.2 Dual Formulation: Linear Model

In this section, we present results for a dual form of formulations from Table 6.1 with a Gaus-
sian kernel model. For training, we use the coordinate descent algorithm introduced in Sec-
tion 4.3. We set a number of steps to 20 epochs. For all experiments, we use precomputed
kernel matrix with a Gaussian kernel function defined as

k(xi ,xj) = exp

−
∥∥∥xi − xj

∥∥∥2

d

,

where d is the dimension of the primal problem. We used this value of d since it is the default
setting for the Gaussian kernel function in LIBSVM [14]. We only use one kernel function
for computational reasons. In addition, we are more interested in the comparison of methods
between each other than in obtaining the best results possible.

In Figure 6.2, we investigate the convergence of the coordinate descend algorithm intro-
duced in Section 4.3 for three formulations, namely TopPush, TopPushK, and Pat&Mat-NP. In
each column, we show the primal and dual objective function convergence for one formulation.
To solve the primal problem, we used full gradient descent. Computation of the full gradient
is computationally intensive, even for relatively small datasets such as MNIST. Therefore, for
this experiment (and only for this experiment) we use the Ionosphere dataset [66], which is
small. We can see that TopPush and TopPushK converge to the same objective for primal and
dual problems. It means that both problems were solved to optimality. However, there is a
little gap between the optimal primal and dual form solution for Pat&Mat-NP. In other words,
Pat&Mat-NP may suffer from convergence issues when solving the proposed coordinate de-
scent algorithm.

For comparison of all formulations, we use the same two approaches as in Section 6.2.1.
From Figure 6.3 and Table 6.5, we make several observations:

• We observe that some formulations have problems with convergence and, in some cases,
even diverge for some datasets. The improper choice of the kernel function parameters
can be the cause. As a result, CD diagrams may provide unreliable results. If the for-
mulation diverges in some experiments, it immediately obtains very high ranks for these
experiments that skew the final diagram. It is especially evident for Pat&Mat-NP and
SVM formulations.

• Figure 6.3 shows that Pat&Mat-NP formulations provide the worst results for all metrics.
It can be caused by the bad convergence of the coordinate descent algorithm, as shown
in Figure 6.2. However, it is important to say that Figure 6.3 shows only relative results.
From Table 6.5 is clear that even though Pat&Mat-NP usually provides worse results than
other formulations, the results are, in many cases, only slightly worse.

• Similarly to Pat&Mat-NP, the SVM formulation does not perform well for most metrics.
However, as shown in Table 6.5, the results are usually only slightly worse than those of
other formulations.

• Most formulations perform well on the criteria for which they are optimized. The only
exceptions are SVM and Pat&Mat formulations.

• Most formulations provide an AUC greater than 99% on the MNIST and FashionMNIST
datasets. These two datasets are very easy when a non-linear model is used.

• τ-FPL formulations work very well for TPR@τ = 0.01, TPR@τ = 0.05 and AUC metric.

• TopPush, TopPushK (5) and TopPushK (10) provides very good results for TPR@K = 1,
TPR@K = 5 and TPR@K = 10.

64

6 Numerical Experiments

0 0.1 0.2 0.3
t [s]

O
bj
ec
ti
ve

TopPush

0 0.1 0.2 0.3
t [s]

TopPushK

0 0.25 0.5 0.75
t [s]

Pat&Mat-NP

Figure 6.2: Convergence of the objectives for the primal (red line) and dual (blue dashed line)
forms with linear kernel.

6.2.3 Primal Formulation: Non-Linear Model

In this section, we present results for a primal form of formulations from Table 6.1 with a non-
linear model. For training, we use the same setting as in Section 6.2.1. For MNIST and Fash-
ionMNIST datasets, we use a neural network consisting of two convolution layers, followed by
a max pooling layer and one fully connected layer of the proper size for binary classification.
The rest of the datasets use a similar architecture but with three convolutional layers instead
of two. We purposely do not use state-of-the-art architectures since they often lead to a perfect
separation of used datasets. Our goal is to show that formulations from Table 6.1 can improve
specific metrics such as TPR@τ = 0.05 (when compared to BinCross) even with these subpar
architectures.

For comparison of all formulations, we use the same two approaches as in Section 6.2.1.
From Figure 6.4 and Table 6.6, we make several observations:

• Most formulations perform well on the criteria for which they are optimized and provide
almost perfect separation on MNIST dataset and FashionMNIST dataset.

• DeepTopPush does not provide good results. In fact, the formulation is the worst in five
out of six metrics in Figure 6.4. However, it can be caused by using relatively large mini-
batches concerning the size of the datasets. The true power of the DeepTopPush is shown
in Section 6.3 and 6.4.

• BinCross formulation performs consistently very well for all metrics. Nevertheless, Bin-
Cross is the best for neither of the metrics.

• TopPushK (10) fails many times. It is especially evident from Table 6.6. TopPushK (10)
achieves 100% for TPR@K = 10 metric for most datasets, which seems as a very good
result. However, if we take a look at the AUC, we can see that the formulation achieves
0% for the same datasets. The reason for that is simple, TopPushK (10) assigns the same
score to all samples and therefore achieves 100% true-positive rate but also 100% false-
positive rate.

• Pat&Mat-NP formulations provide very good results for all metrics. Moreover, Pat&Mat-
NP (0.01) is the best formulation for TPR@τ = 0.01, and Pat&Mat-NP (0.05) for TPR@τ =
0.05. It means that both methods are the best for the criterion for which they are opti-
mized. This behavior can also be seen in Table 6.4, where Pat&Mat-NP (0.05) is the best
formulation for TPR@τ = 0.01 for all datasets.

• τ-FPL formulations work well on MNIST and FashinMNIST datasets, but are subpar on
the rest.

65

6.2 Image Recognition

AUC

1 2 3 4 5 6 7 8

τ-FPL (0.05)
τ-FPL (0.01)

TopPushK (10)
TopPushK (5) SVM

TopPush
Pat&Mat-NP (0.01)
Pat&Mat-NP (0.05)

TPR@τ = 0.05

1 2 3 4 5 6 7 8

τ-FPL (0.05)
τ-FPL (0.01)

TopPushK (10)
SVM TopPush

TopPushK (5)
Pat&Mat-NP (0.01)
Pat&Mat-NP (0.05)

TPR@τ = 0.01

1 2 3 4 5 6 7 8

τ-FPL (0.05)
τ-FPL (0.01)

SVM
TopPushK (10) TopPush

TopPushK (5)
Pat&Mat-NP (0.01)
Pat&Mat-NP (0.05)

TPR@K = 10

1 2 3 4 5 6 7 8

τ-FPL (0.01)
TopPushK (10)

TopPushK (5)
TopPush SVM

τ-FPL (0.05)
Pat&Mat-NP (0.01)
Pat&Mat-NP (0.05)

TPR@K = 5

1 2 3 4 5 6 7 8

TopPushK (10)
τ-FPL (0.01)

TopPush
TopPushK (5) SVM

τ-FPL (0.05)
Pat&Mat-NP (0.01)
Pat&Mat-NP (0.05)

TPR@K = 1

1 2 3 4 5 6 7 8

TopPush
TopPushK (5)

TopPushK (10)
τ-FPL (0.01) SVM

τ-FPL (0.05)
Pat&Mat-NP (0.01)
Pat&Mat-NP (0.05)

Figure 6.3: Dual formulations with a gaussian kernel: Critical difference diagrams (level of
importance 0.05) of the Nemenyi post hoc test for the Friedman test. Each diagram shows the
mean rank of each method, with rank one being the best. The green horizontal lines group
methods with mean ranks that are not significantly different. The critical difference diagrams
were computed for mean rank averages over all datasets.

66

6 Numerical Experiments

TPR@K = 10

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2

SVM 97.89 9.10 4.90 4.52

TopPush 97.62 94.80 10.45 11.00 5.23

TopPushK (5) 97.97 94.90 10.05 6.00 11.0 5.07

TopPushK (10) 97.97 94.90 9.85 11.00 5.18

τ-FPL (0.01) 95.05 5.90 10.5

τ-FPL (0.05) 92.56 10.15 5.10 10.0 5.24

Pat&Mat-NP (0.01) 88.37 92.50 1.40

Pat&Mat-NP (0.05) 92.50 4.05

95.40 11.50

6.10

6.10

98.02 10.70 5.25

92.20

7.45 5.00 4.02

52.60 7.45 1.30 5.00

TPR@τ = 0.05

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2

SVM 99.74 98.90 60.00 59.00

TopPush 99.74 98.80 57.10 59.50 72.54

TopPushK (5) 98.90 56.25 38.80 71.40

TopPushK (10) 98.90 56.90 38.70 58.00 71.61

τ-FPL (0.01) 98.90 58.10 39.10 59.00 73.52

τ-FPL (0.05) 99.74 44.40 61.00

Pat&Mat-NP (0.01) 44.60 62.50 63.47

Pat&Mat-NP (0.05) 99.38 44.50 63.48

44.80 59.72

37.70

99.82 57.50

99.82

99.82

99.10 60.80 74.26

99.30 98.10 54.70

98.10 54.70 63.50

AUC

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2

SVM 99.94 99.66 90.02 79.75 87.80

TopPush 99.94 99.56 89.35 79.06 92.77

TopPushK (5) 99.95 99.64 89.05 79.13 87.21 92.60

TopPushK (10) 99.95 99.67 89.16 79.27 87.78 92.67

τ-FPL (0.01) 99.68 89.83 79.07 87.64 92.98

τ-FPL (0.05) 99.93 88.56

Pat&Mat-NP (0.01) 87.62 78.82 90.80

Pat&Mat-NP (0.05) 89.52 90.82

90.14

87.03

99.97

99.80 90.34 80.17 93.16

99.78 99.40 89.78

99.78 99.40 87.61 78.76

Table 6.5: Dual formulations with a gaussian kernel: Each table corresponds to one perfor-
mance metric, and all presented results are medians of ten independent runs for each dataset
and formulation pair. The best result for each dataset is highlighted in green, while the worst
result is highlighted in red. For better readability, we have reduced the number of discussed
metrics compared to Figure 6.3.

67

6.2 Image Recognition

AUC

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
BinCross

Pat&Mat-NP (0.05)
τ-FPL (0.05) τ-FPL (0.01)

TopPushK (5)
TopPushK (10)
DeepTopPush

TPR@τ = 0.05

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.05)
Pat&Mat-NP (0.01)

BinCross
τ-FPL (0.05) τ-FPL (0.01)

TopPushK (5)
TopPushK (10)
DeepTopPush

TPR@τ = 0.01

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
Pat&Mat-NP (0.05)

BinCross
τ-FPL (0.05) τ-FPL (0.01)

TopPushK (5)
TopPushK (10)
DeepTopPush

TPR@K = 10

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
TopPushK (10)

BinCross
Pat&Mat-NP (0.05) TopPushK (5)

τ-FPL (0.05)
τ-FPL (0.01)
DeepTopPush

TPR@K = 5

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
BinCross

TopPushK (5)
Pat&Mat-NP (0.05) τ-FPL (0.01)

τ-FPL (0.05)
TopPushK (10)
DeepTopPush

TPR@K = 1

1 2 3 4 5 6 7 8

Pat&Mat-NP (0.01)
BinCross

Pat&Mat-NP (0.05)
τ-FPL (0.05) τ-FPL (0.01)

TopPushK (5)
DeepTopPush
TopPushK (10)

Figure 6.4: Primal formulations with a non-linear model: Critical difference diagrams (level
of importance 0.05) of the Nemenyi post hoc test for the Friedman test. Each diagram shows
the mean rank of each method, with rank one being the best. The green horizontal lines group
methods with mean ranks that are not significantly different. The critical difference diagrams
were computed for mean rank averages over all datasets.

68

6 Numerical Experiments

TPR@K = 10

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2 SVHN2Extra

BinCross 11.40 3.50 5.00 11.34 15.95

DeepTopPush 98.42 97.60 0.20

TopPushK (5) 98.54 97.50 2.00 8.50 10.58 16.12

TopPushK (10) 98.24 96.90 12.55

τ-FPL (0.01) 98.72 97.50 1.00 0.20 9.00 9.52

τ-FPL (0.05) 96.78 96.50 14.80 0.30 8.50 13.05 12.48

Pat&Mat-NP (0.01) 98.54 97.45 4.80 20.00 13.92 19.33

Pat&Mat-NP (0.05) 26.55 5.90 11.50 11.36 15.98

99.26 98.10

0.20 0.00 0.17 0.00

0.00

100.00 100.00 100.00 100.00

0.00

32.45

82.86 94.30

TPR@τ = 0.05

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2 SVHN2Extra

BinCross 83.35 48.00 82.00 94.66 97.71

DeepTopPush 8.90 9.00 40.14

TopPushK (5) 99.85 34.30 7.70 53.50 86.54 93.96

TopPushK (10) 27.95

τ-FPL (0.01) 24.40 11.50 65.50 87.60

τ-FPL (0.05) 82.75 18.00 66.50 94.51 97.52

Pat&Mat-NP (0.01) 91.55 52.20 79.00 95.49 98.43

Pat&Mat-NP (0.05)

100.00 99.90

99.82 99.70 5.85 0.00

100.00

100.00 99.90 0.00 0.00 0.00 0.00

100.00 99.90 0.00

100.00 99.90

100.00 99.90

100.00 99.90 91.75 57.70 85.00 95.53 98.50

AUC

Formulation MNIST FashionMNIST CIFAR10 CIFAR20 CIFAR100 SVHN2 SVHN2Extra

BinCross 96.85 84.67 95.94 98.54 99.20

DeepTopPush 99.98 59.40 56.68 83.12 1.61

TopPushK (5) 99.97 77.10 55.50 84.24 96.57 98.32

TopPushK (10) 74.26

τ-FPL (0.01) 70.96 60.03 90.16 96.68 25.84

τ-FPL (0.05) 99.99 99.97 95.86 68.18 90.76 98.50 99.12

Pat&Mat-NP (0.01) 99.99 97.90 84.38 93.84 98.74

Pat&Mat-NP (0.05) 99.96 99.32

100.00 99.98

99.95 49.51

100.0

100.00 99.98 0.00 0.00 0.00 0.00

100.0 99.98

99.98 99.38

99.96 98.24 88.39 96.56 98.76

Table 6.6: Primal formulations with a non-linear model: Each table corresponds to one
performance metric, and all presented results are medians of ten independent runs for each
dataset and formulation pair. The best result for each dataset is highlighted in green, while
the worst result is highlighted in red. For better readability, we have reduced the number of
discussed metrics compared to Figure 6.4.

69

6.3 Steganalysis

6.3 Steganalysis

In the previous section, we presented results on standard image recognition datasets. Even
though the results are quite good, they did not fully show the importance of the problem of
classification at the top. To show the importance of this problem properly, we need to find
the field where the maximizing true-positive rate at the low false-positive rate is an important
task. Such a field can be, for example, steganalysis.

The standard way to share secret information these days is through encryption. However,
in such a case, the presence of a secret message (even though encrypted) is obvious. Steganog-
raphy aims to hide the fact that communication is taking place by hiding the secret message
within an ordinary file (usually called a cover file) to avoid detection. The secret message is
then extracted at its destination. The secret data can be hidden in almost any type of digital
content. However, the most popular are images. There are two reasons for this. The first of
them is the ubiquity of images on the Internet and, therefore, the ease of using them as cover
files for secret messages. The second reason is their large potential payload, i.e., it is possible
to hide a lot of information in high-resolution images. With an appropriate cover image and
steganography tools, it is possible to create a stego-image (image with a hidden message) that
can not be recognized from the cover image by human perception. However, each tool leaves
a fingerprint or signature in the image that can be used to detect stego images. The field that
tries to detect stego images and possibly decrypt messages from them is called steganalysis.
In steganalysis, the goal is to achieve the best true-positive rate with the lowest possible false-
positive rate. Therefore steganalysis is the domain suitable for the problem of classification at
the top. [52, 67]

For the experiments, we use two private steganography datasets. Both these datasets are
created from the same database of cover images comprising approximately 450 000 images
from Flickr. All these images are in JPEG format with a quality factor of 80. The datasets used
for the experiments differ in the algorithm that was used to generate the stego images. The
stego images for the first dataset were generated using the Nsf5 algorithm [27], while the stego
images for the second dataset were generated using the JMiPOD algorithm [16]. For simplicity,
we have named the datasets according to the stego algorithms used.

6.3.1 Nsf5

As we mentioned before, the stego images in the first dataset were generated using the Nsf5
algorithm [27] using the payload 0.2. Since generating stego images is expensive, only 10%
of all cover images are used to generate their stego counterparts. Moreover, the dataset does
not contain images but 22 500 features extracted using the CC-JRM algorithm [41]. Finally, the
whole dataset is divided into train/validation/test sets in the 0.45/0.05/0.5 ratio. The resulting
sizes of the splits, as well as the number of stego samples in them, are summarized in Table 6.2.

Since the resulting classification task is relatively easy to solve, we decided to use a simple
linear model. The number of training samples and their size is not too large. Therefore we
can load the whole dataset into memory. It allows us to use full gradient descent instead of
its stochastic version. As an optimizer, we use the ADAM [40] with default settings and fixed
step length α = 0.01. We also fix the number of epochs to 1000 for all formulations. Finally, we
repeat each experiment ten times with ten different random seeds.

Figure 6.5 shows ROC curves for the test set of Nsf5 dataset. For simplicity, we show ROC
curves only for one experiment run. Moreover, Table 6.7 shows seven different performance
metrics computed for each formulation. Each shown result in this table is a median of ten
independent runs. BinCross provides inferior results for all metrics. The best and worst results
are highlighted in green and red. Surprisingly, BinCross performs the worst even for the AUC .
On the other hand, DeepTopPush excels at very low false-positive rates, as seen from the table
and the figure. In fact, DeepTopPush provides the best results for four out of seven performance

70

6 Numerical Experiments

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

False positive rate

Tr
u
e
p
os
it
iv
e
ra
te

DeepTopPush
Pat&Mat-NP (10−3)
Pat&Mat-NP (10−4)
Pat&Mat-NP (10−5)
BinCross

Figure 6.5: Nsf5 dataset: ROC curves with logarithmic x-axis.

1 10 5 10−5 10−4 10−3

BinCross

DeepTopPush 98.29 89.56 93.67

Pat&Mat-NP (10−5) 98.81 2.55 23.02 47.24 35.28 95.84

Pat&Mat-NP (10−4) 98.98 0.05 4.34 1.78 79.76

Pat&Mat-NP (10−3) 0.01 0.29 91.98

Formulation AUC
TPR@K TPR@τ

95.84 0.0 0.0 0.0 0.0 0.02 0.7

5.07 35.48 57.66 48.65

91.9

0.0 96.18

99.26 0.0 0.0 0.0

Table 6.7: NSF5 dataset: All presented results are medians of ten independent runs with dif-
ferent random seeds. Each column of the table corresponds to one performance metric, and
every row to one formulation. The best result for each metric is highlighted in green, while the
worst is highlighted in red.

metrics. Note that all these four metrics operate at extremely low false-positive rates. We
can also see that Pat&Mat-NP (10−5) is the best at false-positive rate 10−4. This is probably
caused by the approximation of the true top τ-quantile of all scores of negative samples used
in Pat&Mat-NP formulation. Therefore, Pat&Mat-NP (10−5) is optimized for a false-positive
rate slightly higher than 10−5 and as a consequence outperforms Pat&Mat-NP (10−4) at false-
positive rate 10−4. Similar behavior can be seen for Pat&Mat-NP (10−4) and Pat&Mat-NP (10−3)
at false-positive rate 10−3.

6.3.2 JMiPOD

The second dataset was created in a different way. Firstly only images that can be cropped to
size 256×256 were used. All such images were cropped losslessly using jpegtran library [68] and
the stego images were generated using the JMiPOD algorithm [16] using payload 0.1. As in the
case of Nsf5 dataset, only 10% of all cover images are used to generate their stego counterparts.
Unlike the Nsf5 dataset, JMiPOD dataset contains images and not features extracted from

71

6.3 Steganalysis

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

False positive rate

Tr
u
e
p
os
it
iv
e
ra
te

DeepTopPush
Pat&Mat-NP (10−3)
Pat&Mat-NP (10−4)
BinCross

Figure 6.6: JMiPOD dataset: ROC curves with logarithmic x-axis.

1 10 5 10−5 10−4 10−3

BinCross 97.5

DeepTopPush 60.42 73.67

Pat&Mat-NP (10−4) 97.49 25.66 36.76 45.19 38.28 63.49 77.43

Pat&Mat-NP (10−3) 26.99 38.76 44.83 42.17

Formulation AUC
TPR@K TPR@τ

13.52 24.65 29.54 27.28 44.58 63.84

97.26 34.25 42.57 47.3 43.59

98.0 64.5 78.11

Table 6.8: JMiPOD dataset: All presented results are medians of ten independent runs with
different random seeds. Each column of the table corresponds to one performance metric, and
every row to one formulation. The best result for each metric is highlighted in green, while the
worst is highlighted in red.

them. The entire dataset is divided into train/validation/test sets in the 0.375/0.125/0.5 ratio.
The resulting sizes of the splits and the number of stego images in them are summarized in
Table 6.2.

In this case, the resulting classification task is quite complicated. Therefore we decided
to use pre-trained EfficientNet-B0 [70] as the model. Originally the model was trained for
1000 classes. Therefore, we removed the last fully-connected layer and replaced it with a
randomly initialized fully-connected layer of appropriate size for binary classification. The
resulting model is large, and it is not possible to use a full gradient. For this reason, we use
stochastic gradient descent with balanced mini-batches of size 256. As an optimizer, we use
the ADAM [40] with default settings and fixed step length α = 0.01. Finally, we fix the number
of epochs to 30 for all formulations, and we repeat each experiment ten times with different
random seeds.

Figure 6.6 shows ROC curves for the test set of JMiPOD dataset. Moreover, Table 6.8 shows
seven performance metrics. Each shown result in this table is a median of ten independent
runs. The best and worst results are highlighted in green and red. Since trained models use
stochastic gradient descent, the results are not as evident as for the Nsf5 dataset. BinCross still

72

6 Numerical Experiments

provides the worst results for most metrics, but the differences are much smaller than for the
Nsf5 dataset. We can see that DeepTopPush again provides the best performance for four of
the seven metrics. It shows that the enhanced minibatch used in DeepTopPush Algorithm 6
improves the approximation quality of the true threshold and reduces the bias of the sampled
gradient (as we already showed in Figure 5.2). Even though Pat&Mat-NP (10−3) and Pat&Mat-
NP (10−4) were trained for different levels of false-positive rate, they both perform similarly.
As we said before, the decision threshold t of Pat&Mat-NP model approximates the true top
τ-quantile of all scores of negative samples. Since we use mini-batches with 128 negative
samples, the smallest quantile that can be found on this minibatch is τ = 1

128 ≈ 0.0078. If we
try to approximate smaller quantiles, we always get the same results. Therefore, Pat&Mat-NP
(10−3) and Pat&Mat-NP (10−4) should work almost identically, and we can see from both the
figure and the table, that these two formulations provide similar results. For this reason we
omit Pat&Mat-NP (10−5) in this experiment.

6.4 Malware Detection

In the previous section, we presented results from the domain of steganalysis. Another do-
main in which formulations from the presented framework can be very useful is the domain of
malware detection. As an example, consider standard antivirus software on a personal com-
puter. Every user wants to be protected, so the goal of antivirus software is to detect as much
malware as possible. However, if the antivirus is too restrictive, it can easily happen that clean
software is marked as malware, i.e., the antivirus can easily produce false alarms. If the an-
tivirus produces false alarms too often, it can negatively affect the user experience and may lead
to uninstalling the antivirus completely. Therefore, the goal of every antivirus is to maximize
a true-positive rate at a very low false-positive rate, which is precisely what the formulations
from the framework do.

In this section, we present results on a real-world dataset provided by a renowned cyber-
security company. The dataset consists of malware analysis reports of executable files. The
dataset is extremely tough as individual samples are JSON files whose size ranges from 1kB to
2.5MB. The sample structure is highly complicated because each sample has a different num-
ber of features, and features may have a complicated structure, such as a list of ports to which
the file connects. This contrasts sharply with standard datasets, where each sample has the
same number of features, and each feature is a real number. The usual approach to processing
such complicated data is to manually create feature vectors and use them for training instead
of the original data. However, such an approach is extremely time-demanding and requires
expert knowledge of the original data. For this reason, we decided to use a different approach
called Hierarchical Multiple Instance Learning (HMIL) [59]. For the training, we use a publicly
available implementation of HMIL [48, 49], which allows training models directly from JSON
files without requiring complicated feature extraction.

Due to the immense dataset size (see Table 6.2), we train each formulation only once. More-
over, we use only the formulations that worked the best in the previous experiments, i.e., we
use only the BinCross, Pat&Mat-NP (10−2), Pat&Mat-NP (10−3) and DeepTopPush. As an opti-
mizer, we use the ADAM [40] with default settings and fixed step length α = 0.01. We also use
balanced mini-batches of size 2000, which allows us to obtain a very good estimate of the true
thresholds as discussed in Section 5.3. Finally, we fix the number of epochs to 100.

Figure 6.7 shows the ROC curves for all formulations. It is clear that DeepTopPush is the
best at low false-positive rates. Even at the extremely low false positive rate τ = 10−5, DeepTop-
Push correctly identified 46% of malware. We can also see that Pat&Mat-NP (10−3) is the best
at false-positive rate 10−3, which is exactly the point for which the formulation should be opti-
mized. However, at this false-positive rate, DeepTopPush performs almost as well as Pat&Mat-
NP (10−3). Finally, all formulations perform equally well at the false-positive rate 10−2.

73

6.4 Malware Detection

10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

False positive rate

Tr
u
e
p
os
it
iv
e
ra
te

Malware detection

DeepTopPush

Pat&Mat-NP
(
10−2

)

Pat&Mat-NP
(
10−3

)

BinCross

Figure 6.7: Malware detection: ROC curves with logarithmic x-axis.

74

Conclusion

Binary classification is focused on classification performance on all samples. In Chapter 1, we
discussed many problems in which the performance on all samples is not desired and only
performance on a small amount of samples is important. In this work, we studied the problem
of classification at the top, which focuses on these specific problems. In the following list, we
provide the main contributions of this work:

• Introduction of a unified framework for classification at the top: In Chapter 1 we
showed that many well-known categories of problems, such as ranking, accuracy at the
top, or hypothesis testing, are closely related to classification at the top. This leads us
to introduce a unified framework for classification at the top in Chapter 2. We showed
that several known formulations (TopPush, Grill, τ-FPL) fall into our framework and de-
rived some completely new formulations (Pat&Mat, Pat&Mat-NP). The summary of all
presented formulations can be found in Table 2.1.

• Introduction of Pat&Mat and Pat&Mat-NP formulations: In Chapter 2, we introduced
the Pat&Mat formulation as an alternative to the TopMeanK formulation. These two for-
mulations differ only in the decision threshold approximation. Pat&Mat formulation uses
surrogate approximation of the true quantile while TopMeanK approximates the true
quantile using mean. We showed, that the threshold used in Pat&Mat provides worse
approximation of the true threshold, but has better theoretical properties. Similarly, we
introduced the Pat&Mat-NP formulation as an alternative to the τ-FPL formulation.

• Derivation of theoretical properties for a linear classifier: In Chapter 3, we performed
a theoretical analysis of the presented formulations when the linear model is used. We
showed that known formulations suffer from certain disadvantages. TopPush and τ-FPL
are sensitive to outliers and Grill is non-convex. On the other hand, we showed that
newly introduced Pat&Mat and Pat&Mat-NP formulations are both robust and convex.
We also proved the global convergence of the stochastic gradient descent for Pat&Mat
and Pat&Mat-NP.

• Derivation of dual forms and use of non-linear kernels: In Chapter 4, we showed that
all presented formulations (except for Grill and Grill-NP) can be divided into two fami-
lies based on the form of the constraints, namely TopPushK and Pat&Mat family of for-
mulations. We derived dual forms for TopPushK and Pat&Mat family of formulations.
Moreover, for both these formulations we show how to incorporate non-linear kernels.

• Derivation of an efficient algorithm for solving dual forms: In Chapter 4, we proposed
a new coordinate descent algorithm for solving dual forms of TopPushK and Pat&Mat
family of formulations. The resulting algorithm depends on the used surrogate function.
Therefore, we derived the closed-form formulae for selected surrogate functions. Since
the algorithm needs a feasible solution for initialization, we also showed how to find such
a solution.

• Introduction of a modified stochastic gradient descent: In Chapter 5, we study the
primal formulations with non-linear models. More precisely, we used neural networks.

75

6.4 Malware Detection

We showed that when we use a non-linear model, the resulting formulations are non-
decomposable. This property is caused by the special threshold constraint in (2.3) and
prevents us from using stochastic gradient descent in a standard way. We introduced
modified stochastic gradient descent for our formulations. Unfortunatelly, we showed
that modified stochastic gradient descent leads to a biased estimate of the true gradient.

• Introduction of DeepTopPush formulation: As mentioned above, the proposed modified
stochastic gradient descent leads to a biased estimate of the true gradient. In Chapter 5,
we suggested that this can be mitigated by using a large minibatch. However, such an
approach is often not possible. For such cases, we proposed DeepTopPush as an efficient
alternative to TopPush formulation that does not suffer from this issue. For DeepTopPush,
we implicitly removed some optimization variables, created an unconstrained end-to-end
network, and used the stochastic gradient descent to train it. We modified the minibatch
so that the sampled threshold (computed on a minibatch) is a good estimate of the true
threshold (computed on all samples). We showed both theoretically and numerically that
this procedure reduces the bias of the sampled gradient.

• Numerical comparison: In Chapter 6, we performed a numerical comparison of all pre-
sented formulations. We showed a good performance of our newly introduced formu-
lation Pat&Mat-NP, when used in its primal form. We also showed that DeepTopPush
formulation could be beneficial, especially for very large real-world datasets. Lastly, we
demonstrated that standard formulations provide poor results at very low false-positive
rates on steganalysis datasets and malware detection datasets, while the formulations
proposed in this work outperform them.

All codes used for the experiments, as well as all experiment configurations, are publicly avail-
able on GitHub:

https://github.com/VaclavMacha/ClassificationAtTopExperiments.jl

Future Work

The problem of classification at the top is well-defined for binary classification problems. How-
ever, there is no straightforward extension of classification at the top for multiclass problems.
For instance, consider the problem of malware detection. In Chapter 6, we introduced malware
detection as a problem in which we only want to decide whether some binary file is malware.
However, there are plenty of different types of malware families. Therefore it would be better
to formulate the problem as a multiclass classification problem, i.e., one class for clean soft-
ware and one class for each malware family. Any standard multiclass classifier could solve this
problem. However, these do not provide the option to maximize the number of correctly classi-
fied samples with a prescribed level of false alarms. The most straightforward approach would
be to create a two-stage classification. In the first stage, we could use classification at the top to
detect malware with the desired level of false-positive rate (false alarms). Then, in the second
stage, we could use a standard multiclass classifier to find the family to which the detected
malware belongs. The drawback of this approach is that we can only set a global level of false
alarms instead of specific levels for each class. The logic is similar to the problem of accuracy
at the top. However, further research would be needed since there is no straightforward way
to extend accuracy at the top for the multiclass problem.

76

 https://github.com/VaclavMacha/ClassificationAtTopExperiments.jl

Apendices

77

78

A
Appendix for Chapter 2

Lemma 2.7

Consider Grill, Grill-NP, TopMeanK and τ-FPL formulations and Notation 2.2. If the fol-
lowing inequality holds

s+[n+τ] > s
−
[n−τ],

then Grill has larger threshold than Grill-NP. In the same way, if the following inequality
holds

1
n+τ

n+τ∑

i=1

s+[i] >
1
n−τ

n−τ∑

i=1

s−[i]

then TopMeanK has larger threshold than τ-FPL.

Proof:
Since s+ and s− are computed on disjunctive indices, we have

s[nτ] ≥min{s+[n+τ], s
−
[n−τ]}.

Since s[nτ] is the threshold for Grill and s−[n−τ] is the threshold for Grill-NP, the first statement
follows. The second part can be shown in a similar way. �

Lemma 2.5

Consider vector of scores s and its sorted version s[·] with non-increasing elements as
defined in Notation 2.2, and threshold for Pat&Mat formulation

h(t) =
∑

i∈I
l(ϑ(si − t))−nτ, (2.14)

where ϑ > 0 and l is the hinge loss from Notation 2.1. For all i ∈ I define ti = s[i] + 1
ϑ . Then

for all i = 2, 3, . . . ,n we have

h(ti) = h(ti−1) + (i − 1)ϑ(ti−1 − ti), (2.15)

with the initial condition h(t1) = −nτ.

79

Proof:
Observe that

h(tj) = h
(
s[j] +

1
ϑ

)
=

∑

i∈I
l
(
ϑ
(
si −

(
s[j] +

1
ϑ

)))
−nτ

=
∑

i∈I
max

{
0, 1 +ϑ

(
si − s[j] − 1

ϑ

)}
−nτ

=
∑

i∈I
max

{
0, ϑ

(
si − s[j]

)}
−nτ

=
j−1∑

i=1

ϑ(s[i] − s[j])−nτ,

where the last equality holds since ϑ > 0 and s[i] − s[j] ≤ 0 for all i ≥ j. From here, we ob-
tain h(t1) = −nτ . Moreover, we have

h(tj) =
j−1∑

i=1

ϑ(s[i] − s[j])−nτ

=
j−2∑

i=1

ϑ(s[i] − s[j]) +ϑ(s[j−1] − s[j])−nτ

=
j−2∑

i=1

ϑ(s[i] − s[j] + s[j−1] − s[j−1]) +ϑ(s[j−1] − s[j])−nτ

=
j−2∑

i=1

ϑ(s[i] − s[j−1]) +
j−2∑

i=1

ϑ(s[j−1] − s[j]) +ϑ(s[j−1] − s[j])−nτ

= h(tj−1) + (j − 1)ϑ(s[j−1] − s[j])
= h(tj−1) + (j − 1)ϑ(tj−1 − tj),

which finishes the proof. �

80

B
Appendix for Chapter 3

B.1 Convexity

Proposition 3.1

Consider fixed vector of scores s with elements defined as si = w>xi for all i ∈ I .Moreover,
consider thresholds for TopPush, Grill, TopMeanK and Pat&Mat from Section 2.2 and 2.3
defined as

t0(w) = s−[1], t1(w) = max

t
∣∣∣∣∣∣∣

1
n

∑

i∈I
1[si≥t] ≥ τ

,

t2(w) =
1
K

K∑

i=1

s[i], t3(w) solves
1
n

∑

i∈I
l(ϑ(si − t)) = τ,

Then thresholds t0, t2 and t3 are convex functions of weights w, while the threshold t1 is
non-convex.

Proof of Proposition 3.1 on page 28:
From Notation 2.2, threshold t0 is just a maximum from vector s− of scores of all negative
samples. Since maximum is a convex function, threshold t is a convex function of weights w.
Moreover, it is easy to show that the quantile t1 is not convex. Due to [43], the mean of the K
highest values of a vector is a convex function. Therefore, threshold t2 is a convex function
of weights w. It remains to analyze threshold t3. Let us define function g as follows

g(w, t) :=
1
n

∑

i∈I
l(w>xi − t)− τ.

where we set ϑ = 1 for simplicity. Then t3 is defined via an implicit equation g(w, t) = 0.
Since l is convex, we immediately obtain that g is jointly convex in both variables.

To show the convexity, considerw, w̃ ∈ Rd and the corresponding thresholds t = t3(w), t̃ =
t3(w̃). Then for any λ ∈ [0,1], we have

g(λw+ (1−λ)w̃, λt + (1−λ)t̃) ≤ λg(w, t) + (1−λ)g(w̃, t̃) = 0. (B.1)

The inequality follows from the convexity of g and the equality from g(w, t) = g(w̃, t̃) = 0,
which holds due to the definition of t3. From the definition of t3, we also have

g(λw+ (1−λ)w̃, t3(λw+ (1−λ)w̃)) = 0. (B.2)

81

B.2 Differentiability

Since g is non-increasing in the second variable, from (B.1) and (B.2) we deduce

t3(λw+ (1−λ)w̃) ≤ λt + (1−λ)t̃ = λt3(w) + (1−λ)t3(w̃),

which implies that function w 7→ t3(w) is convex. �

Theorem 3.2

If the threshold t = t(w) is a convex function of weights w, then function

L(w) = fn(s, t) =
∑

i∈I+

l(t −w>xi)

is convex.

Proof of Theorem 3.2 on page 28:
Due to the definition (2.2), the objective function L equals to

L(w) = fn(s, t(w)) =
∑

i∈I+

l
(
t(w)−w>xi

)
.

Here we write t(w) to stress the dependence of t on w. Since w 7→ t(w) is a convex function,
we also have that w 7→ t(w) −w>x is a convex function. From its definition, the surrogate
function l is convex and non-decreasing. Since the composition of a convex function with a
non-decreasing convex function is a convex function, this finishes the proof. �

B.2 Differentiability

Theorem 3.3

Consider thresholds from Proposition 3.1. Threshold t0, t1 and t2 are non-differentiable
functions of weights w. Moreover, if the surrogate function l is differentiable, threshold t3
is a differentiable function of weights w, and its derivative equals

∇t3(w) =
∑
i∈I l′(ϑ(w>xi − t3(w)))xi∑
j∈I l′

(
ϑ(w>xj − t3(w))

) .

Proof of Theorem 3.3 on page 28:
The non-differentiability of t0, t1 and t2 happens whenever the threshold value is achieved
at two different scores. The result for t3 follows directly from the implicit function theorem.

�

82

B Appendix for Chapter 3

B.3 Stability

Example 3.4: Degenerate Behaviour

Consider n negative samples uniformly distributed in [−1,0] × [−1,1], n positive samples
uniformly distributed in [0,1]× [−1,1] and one negative sample at (2,0). An illustration of
such settings is provided in Figure 3.1 (left). If n is large enough, the point at (2,0) is an
outlier and the problem is (almost) perfectly separable using the separating hyperplane
with normal vector w1 = (1,0).

Additionally to the assumptions from Example 3.4, we consider the hinge loss function and
no regularization for all formulations from Table 2.1. We also assume that n is large, and the
outlier may be ignored for the computation of thresholds that require a large number of points.

TopPush formulation (2.5):

• For w0 = (0,0)>, all scores are equal to 0. Since the threshold t is the largest negative
score, it also equals 0. Consequently, the value of the objective function is

L(w0) =
1
n+

∑

i∈I+

max{0, 1 + (0− 0)} = 1.

• For w1 = (1,0)>, the largest negative score equals 2; therefore t = 2. Then, the value of the
objective function is

L(w1) ≈
∫ 1

0
max{0, 1 + (2− si)} =

∫ 1

0
(3− s)ds =

5
2
,

where we can remove the max operator since all positive samples are uniformly dis-
tributed in [0,1]× [−1,1], and their scores are uniformly distributed in [0,1].

TopPushK formulation (2.6):

• For w0 = (0,0)>, the threshold and the objective function is the same as for TopPush.

• For w1 = (1,0)>, the threshold is the mean of K largest negative scores. The largest nega-
tive score equals 2 and for sufficiently large n, the rest of K largest negative scores equal 0.
Therefore, the threshold is t = 2

K . Then, the value of the objective function is

L(w1) ≈
∫ 1

0
max

{
0, 1 +

(2
K
− s

)}
ds =

∫ 1

0

(
1 +

2
K
− s

)
ds =

1
2

+
2
K
,

where we can remove the max operator since all positive scores are uniformly distributed
in [0,1].

Grill formulation (2.9):

• For w0 = (0,0)>, all scores equal 0 and the threshold (top τ-quantile) is also 0. The objec-
tive reads

L(w0) =
1
n+

∑

i∈I+

max{0, 1 + (0− 0)}+ 1
n−

∑

i∈I−
max{0, 1 + (0− 0)} = 1 + 1 = 2.

83

B.3 Stability

• For w1 = (1,0)>, all scores are uniformly distributed in [−1,1] and the top τ-quantile of
all score equals t = 1− 2τ. Then for τ ≤ 1

2 , the value of the objective function is

L(w1) ≈
∫ 1

0
max{0, 1 + (1− 2τ − s)}ds+

∫ 0

−1
max{0, 1 + (s − 1 + 2τ)}ds

=
∫ 1

0
max{0,2(1− τ)− s}ds+

∫ 0

−1
max{0, s+ 2τ}ds

=
∫ 1

0
(2(1− τ)− s)ds+

∫ 0

−2τ
(s+ 2τ)ds

=
3
2
− 2τ(1− τ)

TopMeanK formulation (2.11):

• For w0 = (0,0)>, the threshold and objective function is the same as for TopPushK.

• For w1 = (1,0)>, the threshold is the mean of K = nτ largest scores. Since all scores are
uniformly distributed in [−1,1], the top nτ fraction of all scores is uniformely distributed
in [1−2τ,1]. Therefore the threshold is t = 1−τ. Then, the value of the objective function
is

L(w1) ≈
∫ 1

0
max{0, 1 + (1− τ − s)}ds =

∫ 1

0
(2− τ − s)ds =

3
2
− τ,

Pat&Mat formulation (2.13):

• For w0 = (0,0)>, we have

τ =
1
n

∑

i∈I
max{0, 1 +ϑ(0− t)} = 1

n

∑

i∈I
(1−ϑt) = 1−ϑt,

which implies that threshold t equals

t =
1− τ
ϑ

. (B.3)

Consequently, the value of the objective function is

L(w0) =
1
n+

∑

i∈I+

max{0, 1 + (t − 0)} = 1
n+

∑

i∈I+

(1 + t) = 1 + t, (B.4)

where the last equality follows the fact that t ≥ 0.

• Forw1 = (1,0)>, the computation is similar. All scores are uniformly distributed in [−1,1].
Then, if the scaling parameter ϑ satisfies ϑ ≤ τ , we have

τ =
1
n

∑

i∈I
max{0, 1 +ϑ(si − t)} ≈ 1

2

∫ 1

−1
max{0, 1 +ϑ(s − t)}ds =

1
2

∫ 1

−1
(1+ϑ(s− t))ds = 1−ϑt.

which again implies that threshold t is t = 1
ϑ (1 − τ). Note that we could ignore the max

operator in the relation above, since

1 +ϑ(s − t) ≥ 1 +ϑ(−1− t) = 1 +ϑ
(
−1− 1− τ

ϑ

)
= τ −ϑ ≥ 0,

where the last inequality follows from the assumption ϑ ≤ τ. Finally, since positive scores
are uniformly distributed in [0,1], the value of the objective function is

L(w1) =
1
n+

∑

i∈I+

max{0, 1 + (t − si)} ≈
∫ 1

0
max{0, 1 + t − s}ds =

∫ 1

0
(1 + t − s)ds =

1
2

+ t

84

B Appendix for Chapter 3

Grill-NP formulation (2.18):

• For w0 = (0,0)>, the threshold and objective function is the same as for Grill.

• Forw1 = (1,0)>, negative scores are uniformly distributed in [−1,0] and the top τ-quantile
of negative score equals t = −τ. Then, the value of the objective function is

L(w1) ≈
∫ 1

0
max{0, 1 + (−τ − s)}ds+

∫ 0

−1
max{0, 1 + (s+ τ)}ds

=
∫ 1−τ

0
(1− τ − s)ds+

∫ 0

−1
(1 + τ + s)ds = 1 +

1
2
τ2

τ-FPL formulation (2.20):

• For w0 = (0,0)>, the threshold and objective function is the same as for TopPushK.

• For w1 = (1,0)>, the threshold is the mean of n−τ largest negative scores. Since neg-
ative scores are uniformly distributed in [−1,0], top n−τ fraction of negative scores is
uniformely distributed in [−τ,0]. Therefore the threshold is t = −1

2τ. Then, the value of
the objective function i

L(w1) ≈
∫ 1

0
max

{
0, 1 +

(
−1

2
τ − s

)}
ds =

∫ 1− 1
2τ

0

(
1− 1

2
τ − s

)
ds =

1
2
− 1

8
τ(4 + τ)

Pat&Mat-NP formulation (2.22):

• For w0 = (0,0)>, we have

τ =
1
n−

∑

i∈I−
max{0, 1 +ϑ(0− t)} = 1

n−

∑

i∈I−
(1−ϑt) = 1−ϑt,

which implies that threshold is t = 1−τ
ϑ . Consequently, the value of the objective function

is
L(w0) =

1
n+

∑

i∈I+

max{0, 1 + (t − 0)} = 1
n+

∑

i∈I+

(1 + t) = 1 + t,

where the last equality follows the fact that t ≥ 0.

• For w1 = (1,0)>, the computation is similar. Negative scores are uniformly distributed
in [−1,0]. Then, if the scaling parameter ϑ satisfies ϑ ≤ 2τ , we have

τ =
1
n−

∑

i∈I−
max{0, 1 +ϑ(si − t)} ≈

∫ 0

−1
max{0, 1 +ϑ(s − t)}ds

=
∫ 0

−1
(1 +ϑ(s − t))ds = 1−ϑt − 1

2
ϑ.

which implies that threshold is t = 1
ϑ (1−τ)− 1

2 .Note that we could ignore the max operator
in the relation above, since

1 +ϑ(s − t) ≥ 1 +ϑ(−1− t) = 1 +ϑ
(
−1− 1− τ

ϑ
+

1
2

)
= τ − 1

2
ϑ ≥ 0,

where the last inequality follows from the assumption ϑ ≤ 2τ. Finally, since positive
scores are uniformly distributed in [0,1], the value of the objective function is

L(w1) =
1
n+

∑

i∈I+

max{0, 1 + (t − si)} ≈
∫ 1

0
max{0, 1 + t − s}ds =

∫ 1

0
(1 + t − s)ds =

1
2

+ t.

85

B.3 Stability

Theorem 3.5

Consider any of these formulations: TopPush, TopPushK, TopMeanK or τ-FPL. Fix any w
and denote the corresponding objective function L(w) and threshold t(w). If we have

t(w) ≥ 1
n+

∑

i∈I+

w>xi , (3.1)

then L(0) ≤ L(w). Specifically, using Notation 2.2 we get the following implications

s−[1] ≥
1
n+

n+∑

i=1

s+i =⇒ L(0) ≤ L(w) for TopPush,

1
K

K∑

i=1

s−[i] ≥
1
n+

n+∑

i=1

s+i =⇒ L(0) ≤ L(w) for TopPushK,

1
K

K∑

i=1

s[i] ≥ 1
n+

n+∑

i=1

s+i =⇒ L(0) ≤ L(w) for TopMeanK,

1
n−τ

n−τ∑

i=1

s−[i] ≥
1
n+

n+∑

i=1

s+i =⇒ L(0) ≤ L(w) for τ-FPL.

Proof of Theorem 3.5 on page 30:
All mentioned formulations use a surrogate approximation of the false-negative rate as the
objective function L. The objective function has the following form

L(w) =
1
n+

∑

i∈I+

l(t −w>xi)

Due to l(0) = 1 and the convexity of l, we have l(s) ≥ 1 + cs, where c equals to the derivative
of l at 0. Then we have

L(w) ≥ 1
n+

∑

i∈I+

(1 + c(t −w>xi)) = 1 + c

t −

1
n+

∑

i∈I+

w>x

 ≥ 1,

where the last inequality follows from assumption (3.1). Now we realize that for any for-
mulation from the statement, the corresponding threshold for w = 0 equals to t = 0, and
thus L(0) = 1. But it implies that L(0) ≤ L(w). The second part of the result follows from the
form of thresholds t(w). �

Theorem 3.8

Consider the Pat&Mat or Pat&Mat-NP formulation with the hinge loss as a surrogate and
no regularization. Assume that for some w we have

1
n+

∑

i∈I+

w>xi >
1
n−

∑

j∈I−
w>xj . (3.2)

Then there exists a scaling parameter ϑ0 for the surrogate top τ-quantile (2.12) or (2.21)
such that L(w) < L(0) for all ϑ ∈ (0,ϑ0).

86

B Appendix for Chapter 3

Proof of Theorem 3.8 on page 31:
Recall that we use linear model and Notation 2.2 and let us define the following auxiliary
variables

smin = min
i∈I

si , smax = max
i∈I

si , s̄ =
1
n

∑

i∈I
si .

Using the definition of s̄ we get the following relation

s̄ =
1
n

∑

i∈I+

si +
1
n

∑

i∈I−
si <

1
n

∑

i∈I+

si +
n−
nn+

∑

i∈I+

si =
1
n+

∑

i∈I+

si , (B.5)

where the inequality follows from (3.2), and the last equality follows from

1
n

+
n−
nn+

=
1
n

(
1 +

n−
n+

)
=

1
n
n+ +n−
n+

=
1
n
n
n+

=
1
n+
.

Since the average of all elements of a vector is smaller or equal to its maximum, we get the
following relation

s̄ <
1
n+

∑

i∈I+

si ≤max
i∈I+

si ≤max
i∈I

si = smax

where the first inequality follows from (B.5). The lower bound for s̄ can be computed in a
similar way.

Combining all results above, we have smin < s̄ < smax. Then we can define

ϑ0 = min
{

τ
s̄ − smin

,
1− τ
smax − s̄

, τ

}
.

Note that ϑ0 > 0. Now we fix any ϑ ∈ (0,ϑ0) and define

t =
1− τ
ϑ

+ s̄.

Then for any i ∈ I , we obtain

1 +ϑ(si − t) ≥ 1 +ϑ(smin − t) = 1 +ϑ
(
smin − 1− τ

ϑ
− s̄

)
= τ −ϑ(s̄ − smin),

where the first equality follows from the definition of t. From the definition ϑ0 we deduce

0 < ϑ ≤ ϑ0 ≤ τ
s̄ − smin

.

Since s̄ − smin > 0, we get the following inequality

1 +ϑ(si − t) ≥ τ −ϑ(s̄ − smin) ≥ τ − τ
s̄ − smin

(s̄ − smin) = 0 (B.6)

Combining the definition of the hinge loss function from Notation 2.1 and the inequality
above, we have

l(ϑ(si − t)) = max{0,1 +ϑ(si − t),0} = 1 +ϑ(si − t).
Finally, replacing the hinge loss in the left-hand side of (2.12) leads to

1
n

∑

i∈I
l(ϑ(si − t)) =

1
n

∑

i∈I
(1 +ϑ(si − t)) = 1−ϑt +

ϑ
n

∑

i∈I
si = 1−ϑ

(1− τ
ϑ

+ s̄
)

+ϑs̄ = τ,

87

B.4 Stochastic Gradient Descent

where the third equality employs the definition of s̄ and t. But this means that t is the
threshold corresponding to w, i.e. it solves (2.12).

In the same way, as we derived (B.6), we get

1 + t − si ≥ 1 + t − smax = 1 +
1− τ
ϑ

+ s̄ − smax ≥ 1− τ
ϑ

+ s̄ − smax ≥ 0, (B.7)

where the last inequality follows from the definition of ϑ0. Then for the objective, we have

L(w) =
1
n+

∑

i∈I+

l(t − si) =
1
n+

∑

i∈I+

(1 + t − si) = 1 + t − 1
n+

∑

i∈I+

si < 1 +
(1− τ
ϑ

+ s̄
)
− s̄ = 1 +

1− τ
ϑ

,

where the second equality follows from (B.7), the only inequality from (B.5). Using (B.3)
and (B.4), we finally get

L(w) < 1 +
1− τ
ϑ

= L(0).

Thus, we finished the proof for Pat&Mat. The proof for Pat&Mat-NP can be performed iden-
tically. �

B.4 Stochastic Gradient Descent

The proof of convergence of stochastic gradient descent for Pat&Mat and Pat&Mat-NP is di-
vided into three parts. In Section B.4.1, we prove a general statement for convergence of
stochastic gradient descent with a convex objective function. In Section B.4.2 we apply it to
Theorem 3.9. Finally, in Section B.4.3, we provide auxiliary results.

B.4.1 General Results

Consider a differentiable objective function L and the optimization method

wk+1 = wk −αkg(wk), (B.8)

where αk > 0 is a stepsize and g(wk) is an approximation of the gradient ∇L(wk). Assume the
following:

(A1) L is differentiable, convex, and attains a global minimum;

(A2)
∥∥∥g(wk)

∥∥∥ ≤ B for all k;

(A3) the stepsize is non-increasing and satisfies
∑∞
k=0α

k =∞;

(A4) the stepsize satisfies
∑∞
k=0(αk)2 <∞;

(A5) the stepsize satisfies
∑∞
k=0

∥∥∥αk+1 −αk
∥∥∥ <∞.

Assumptions (A3)-(A5) are satisfied for example for a stepsize defined by

αk =
α0

k + 1
.

88

B Appendix for Chapter 3

Theorem B.7

Assume that the assumptions (A1)-(A4) are satisfied. If there exists some C such that for
a global minimizer w∗ of L we have

∞∑

k=0

αk
〈
g(wk)−∇L(wk), w∗ −wk

〉
≤ C, (B.9)

then the sequence {wk} generated by (B.8) is bounded and L(wk) → L(w∗). Thus, all its
convergent subsequences converge to some global minimum of L.

Proof:
Note first that the convexity of L from (A1) implies

〈
∇L(wk), w∗ −wk

〉
≤ L(w∗)−L(wk). (B.10)

Then we have
∥∥∥wk+1 −w∗

∥∥∥2
=

∥∥∥wk −αkg(wk)−w∗
∥∥∥2

=
∥∥∥wk −w∗

∥∥∥2
+ 2αk

〈
g(wk), w∗ −wk

〉
+ (αk)2

∥∥∥g(wk)
∥∥∥2

≤
∥∥∥wk −w∗

∥∥∥2
+ 2αk

〈
g(wk), w∗ −wk

〉
+ (αk)2B2

=
∥∥∥wk −w∗

∥∥∥2
+ 2αk

〈
g(wk) +∇L(wk)−∇L(wk), w∗ −wk

〉
+ (αk)2B2

≤
∥∥∥wk −w∗

∥∥∥2
+ 2αk

〈
g(wk)−∇L(wk), w∗ −wk

〉
+ 2αk

(
L(w∗)−L(wk)

)
+ (αk)2B2,

where the first inequality follows from assumption (A2) and the second one from the prop-
erties of inner product and (B.10). Summing this expression for all k and using (B.9) leads
to

limsup
k→∞

∥∥∥wk −w∗
∥∥∥2 ≤

∥∥∥w0 −w∗
∥∥∥2

+ 2C + 2
∞∑

k=0

αk(L(w∗)−L(wk)) +
∞∑

k=0

(αk)2B2.

Using assumption (A4) results in the existence of some Ĉ such that

limsup
k→∞

∥∥∥wk −w∗
∥∥∥2

+ 2
∞∑

k=0

αk
(
L(wk)−L(w∗)

)
≤ 2Ĉ. (B.11)

Since αk > 0 and L(wk) ≥ L(w∗) as w∗ is a global minimizer of L, we infer that sequence {wk}
is bounded and (B.11) implies

∞∑

k=0

αk
(
L(wk)−L(w∗)

)
≤ Ĉ.

Since L(wk)−L(w∗) ≥ 0, due to assumption (A3) we obtain

lim
k→∞

L(wk) = L(w∗),

which implies the theorem statement. �

B.4.2 Proof of Theorem 3.9

For the proof of Theorem 3.9, we consider a general surrogate function l that satisfies:

89

B.4 Stochastic Gradient Descent

−2 −1.5 −1 −0.5 0

0

0.25

0.5

0.75

1

s

l(
s)

lhinge(s)
lsmooth hinge(s,0.25)
lsmooth hinge(s,0.5)
lsmooth hinge(s,0.75)

Figure B.1: Comparison of the hinge loss and its smoothened version with ε = 0.25, ε = 0.5,
and ε = 0.75.

(S1) l(s) ≥ 0 for all s ∈ R, l(0) = 1 and l(s)→ 0 as s→−∞;

(S2) l is convex and strictly increasing function on (s0, +∞), where s0 := sup{s | l(s) = 0};

(S3) l′
l is a decreasing function on (s0, +∞);

(S4) l′ is a bounded function;

(S5) l′ is a Lipschitz continuous function with Lipschitz constant D.

For simplicity, we also assume that the scaling parameter for the threshold in the Pat&Mat
formulation is ϑ = 1, and regularization parameter is λ = 1.All requirements above are satisfied
for the hinge loss smoothened on an ε-neighborhood of -1

l(s) =

0 for s < −1− ε,
1
4ε (1 + s+ ε)2 for − 1− ε ≤ s < −1 + ε,

1 + s otherwise.

Figure B.1 shows the comparison of the hinge loss and its smoothened version with different ε.

Theorem 3.9

Consider the Pat&Mat formulation, stepsizes αk = 1
k+1α

0, and piecewise disjoint mini-
batches I1

mb, I2
mb, . . . , Immb which cycle periodically I k+m

mb = I kmb. If l is the smoothened
hinge function defined by

l(s) =

0 for s < −1− ε,
1
4ε (1 + s+ ε)2 for − 1− ε ≤ s < −1 + ε,

1 + s otherwise,

(3.11)

where ε > 0, then Algorithm 2 converges to the global minimum of (2.13).

90

B Appendix for Chapter 3

Proof of Theorem 3.9 on page 33:
We intend to apply Theorem B.7 and thus, we need to verify its assumptions. Recall the form
of the objective function

L(wk) =
1
2

∥∥∥wk
∥∥∥2

+
1
n+

∑

i∈I+

l(t(wk)− x>i wk).

The objective is a combination of squared norm of weights, which is strictly convex func-
tion, and a surrogate approximation of false-negative rate, which is convex function due to
Theorem 3.2. Therefore, the objective L is a strictly convex function. Moreover, it is also dif-
ferentiable due to Theorem 3.3 and differentiability of smoothened hinge loss l. As a result,
Assumption (A1) is satisfied.

Lemma B.10 says that
∥∥∥g(wk)

∥∥∥ ≤
∥∥∥wk

∥∥∥ + B̂ for all k. To show that Assumption (A2) is
satisfied, we have to show, that

∥∥∥wk
∥∥∥ is uniformly bounded. Consider sufficiently large k

such that αk < 1. Then

∥∥∥wk+1
∥∥∥ =

∥∥∥wk −αkg(wk)
∥∥∥ =

∥∥∥∥∥∥∥∥∥
(1−αk)wk −αk 1

nkmb,+

∑

i∈I kmb,+

l′(tk − ski)(∇tk − xi)

∥∥∥∥∥∥∥∥∥

≤ (1−αk)
∥∥∥wk

∥∥∥+αk

∥∥∥∥∥∥∥∥∥

1

nkmb,+

∑

i∈I kmb,+

l′(tk − ski)(∇tk − xi)

∥∥∥∥∥∥∥∥∥
≤ (1−αk)

∥∥∥wk
∥∥∥+αkB̂,

where the first inequality follows from the triangle inequality and the last from the proof of
Lemma B.10. Now we have two possible cases

• If
∥∥∥wk

∥∥∥ ≤ B̂, then we get

∥∥∥wk+1
∥∥∥ ≤ (1−αk)

∥∥∥wk
∥∥∥+αkB̂ ≤ (1−αk)B̂+αkB̂ = B̂.

• If
∥∥∥wk

∥∥∥ > B̂, then we get

∥∥∥wk+1
∥∥∥ ≤ (1−αk)

∥∥∥wk
∥∥∥+αkB < (1−αk)

∥∥∥wk
∥∥∥+αk

∥∥∥wk
∥∥∥ =

∥∥∥wk
∥∥∥.

Therefore, for sufficiently large k,we have
∥∥∥wk

∥∥∥ ≤max
{
B̂,

∥∥∥w0
∥∥∥
}
.Combining this with Lemma B.10,

we get
∥∥∥g(wk)

∥∥∥ ≤ B, for some B, and Assumption (A2) is satisfied.
Assumptions (A3)-(A5) are imposed directly in the statement of this theorem.
It remains to verify (B.9). For simplicity, we will do so only for ϑ = 1 and for 2 mini-

batches of the same size. However, the proof would be identical for different ϑ and more
minibatches. From the assumptions, we have two minibatches I kmb and I k+1

mb , which are
pairwise disjoint and cover all samples. Moreover, for all k, we have I kmb = I k+2

mb . Further-
more, the assumptions imply that the number of positive samples in each minibatch is equal
to nkmb,+ = 1

2n+, where n+ is the total number of positive samples.

First we estimate the difference between ski defined in (3.6) and x>i w
k . For any i ∈ I kmb we

have ski = x>i w
k . Since we have two disjoint minibatches, due to the construction (3.6) we get

sk−1
i = sk−2

i = x>i w
k−2 = x>i

(
wk +αk−2g(wk−2) +αk−1g(wk−1)

)

= x>i w
k +αk−2x>i g(wk−2) +αk−1x>i g(wk−1).

(B.12)

91

B.4 Stochastic Gradient Descent

Similarly, due to the construction of ski from (3.6), we have for i < I kmb

ski = sk−1
i = x>i w

k−1 = x>i (wk +αk−1g(wk−1)) = x>i w
k +αk−1x>i g(wk−1). (B.13)

Recall that we already verified (A1)-(A5). Combining (A2) with (B.12) and (B.13) yields the
existence of some C2 such that for all i ∈ I we have

∥∥∥ski − x>i wk
∥∥∥ ≤ C2α

k−1,
∥∥∥sk−1
i − x>i wk

∥∥∥ ≤ C2

(
αk−1 +αk−2

)
. (B.14)

This also immediately implies
∥∥∥tk − t(wk)

∥∥∥ ≤ C2α
k−1,

∥∥∥tk−1 − t(wk)
∥∥∥ ≤ C2

(
αk−1 +αk−2

)
. (B.15)

Moreover, we know that l′ is Lipschitz continuous with Lipschitz constant D according
to (S5). Then due to (B.14) and (B.15) we get

∥∥∥l′(tk − ski)− l′(t(wk)− x>i wk)
∥∥∥ ≤D

∥∥∥tk − ski − t(wk) + x>i w
k
∥∥∥ ≤ 2C2Dα

k−1. (B.16)

In an identical way, we can derive the following relations
∥∥∥l′(tk−1 − sk−1

i)− l′(t(wk)− x>i wk)
∥∥∥ ≤ 2C2D

(
αk−1 +αk−2

)
,

∥∥∥l′(ski − tk)− l′(x>i wk − t(wk))
∥∥∥ ≤ 2C2Dα

k−1,
∥∥∥l′(sk−1

i − tk−1)− l′(x>i wk − t(wk))
∥∥∥ ≤ 2C2D

(
αk−1 +αk−2

)
.

(B.17)

Now we need to estimate the distance between ∇t(wk) and ∇tk . By plugging (3.9) into (3.10),
we get

∇tk =

∑
i∈I kmb

l′(ski − tk)xi +
∑
i∈I k−1

mb
l′(sk−1

i − tk−1)xi
∑
i∈I l′(ski − tk)

.

Moreover, using Theorem 3.3 and the fact that we have only two minibatches and therefore
for any k we have I = I kmb ∪I k−1

mb , we get

∇t(wk) =

∑
i∈I kmb

l′(x>i w
k − t(wk))xi +

∑
i∈I k−1

mb
l′(x>i w

k − t(wk))xi
∑
i∈I l′(x

>
i w

k − t(wk)) .

From Lemma B.9 we deduce that the denominators in the relations above are bounded
away from zero uniformly in k. Assumption (A4) implies αk → 0. This allows us to use
Lemma B.11 which together with (B.17) implies that there is some C3 such that for all suffi-
ciently large k we have ∥∥∥∇tk −∇t(wk)

∥∥∥ ≤ C3

(
αk−1 +αk−2

)
. (B.18)

Using the assumptions above, we can simplify the terms for g(wk) from (3.8) and ∇L(wk)

92

B Appendix for Chapter 3

from (3.5) to

g(wk) = wk +
2
n+

∑

i∈I kmb,+

l′(tk − ski)(∇tk − xi),

g(wk+1) = wk+1 +
2
n+

∑

i∈I k+1
mb,+

l′(tk+1 − sk+1
i)(∇tk+1 − xi),

∇L(wk) = wk +
1
n+

∑

i∈I+

l′(t(wk)− x>i wk)(∇t(wk)− xi),

∇L(wk+1) = wk+1 +
1
n+

∑

i∈I+

l′(t(wk+1)− x>i wk+1)(∇t(wk+1)− xi).

Due to the assumptions, we have I+ = I kmb,+∪I k+1
mb,+ and ∅ = I kmb,+∩I k+1

mb,+, which allows us to
write

n+

(
g(wk) + g(wk+1)−∇L(wk)−∇L(wk+1)

)
(B.19a)

=
∑

i∈I kmb,+

l′(tk − ski)(∇tk − xi)−
∑

i∈I kmb,+

l′(t(wk)− x>i wk)(∇t(wk)− xi) (B.19b)

+
∑

i∈I kmb,+

l′(tk − ski)(∇tk − xi)−
∑

i∈I kmb,+

l′(t(wk+1)− x>i wk+1)(∇t(wk+1)− xi) (B.19c)

+
∑

i∈I k+1
mb,+

l′(tk+1 − sk+1
i)(∇tk+1 − xi)−

∑

i∈I k+1
mb,+

l′(t(wk)− x>i wk)(∇t(wk)− xi) (B.19d)

+
∑

i∈I k+1
mb,+

l′(tk+1 − sk+1
i)(∇tk+1 − xi)−

∑

i∈I k+1
mb,+

l′(t(wk+1)− x>i wk+1)(∇t(wk+1)− xi). (B.19e)

Then relations (B.16) and (B.18) applied to Lemma B.12 imply
∥∥∥∥∥∥∥∥∥

∑

i∈I kmb,+

l′(tk − ski)(∇tk − xi)−
∑

i∈I kmb,+

l′(t(wk)− x>i wk)(∇t(wk)− xi)

∥∥∥∥∥∥∥∥∥
≤ C4

(
αk−1 +αk−2

)

for some C4, which gives a bound for (B.19b). Bound for (B.19e) is obtained by increasing k
by one. Bounds for (B.19c) and (B.19d) can be find similarly using (B.17). Altogether, we
showed ∥∥∥g(wk) + g(wk+1)−∇L(wk)−∇L(wk+1)

∥∥∥ ≤ C1(αk−2 +αk−1 +αk +αk+1) (B.20)

for some C1.
We now estimate

αk
〈
g(wk)−∇L(wk), w∗ −wk

〉
+αk+1

〈
g(wk+1)−∇L(wk+1), w∗ −wk+1

〉

=
〈
g(wk)−∇L(wk), αk(w∗ −wk)

〉
+
〈
g(wk+1)−∇L(wk+1), αk+1(w∗ −wk+1)

〉

=
〈
g(wk)−∇L(wk) + g(wk+1)−∇L(wk+1), αk(w∗ −wk)

〉

+
〈
g(wk+1)−∇L(wk+1), αk+1(w∗ −wk+1)−αk(w∗ −wk)

〉
.

(B.21)

To estimate the second part of the right hand side of (B.21), we make use of Lemma B.10 to

93

B.4 Stochastic Gradient Descent

obtain the existence of some C5 such that
〈
g(wk+1)−∇L(wk+1), αk+1(w∗ −wk+1)−αk(w∗ −wk)

〉

≤ 2B
∥∥∥αk+1(w∗ −wk+1)−αk(w∗ −wk)

∥∥∥
= 2B

∥∥∥αk+1(w∗ −wk +αkg(wk))−αk(w∗ −wk)
∥∥∥

= 2B
∥∥∥(αk+1 −αk)w∗ + (αk −αk+1)wk +αkαk+1g(wk)

∥∥∥
≤ C5

∥∥∥αk+1 −αk
∥∥∥+C5(αk)2 +C5(αk+1)2.

(B.22)

In the last inequality we used the inequality 2ab ≤ a2 + b2. To estimate the first part of the
right hand side of (B.21), we can apply (B.20) together with the boundedness of {wk} to obtain
the existence of some C6 such that

〈
g(wk)−∇L(wk) + g(wk+1)−∇L(wk+1), αk(w∗ −wk)

〉

≤ C6(αk−2)2 +C6(αk−1)2 +C6(αk)2 +C6(αk+1)2.
(B.23)

Plugging (B.22) and (B.23) into (B.21) and summing the terms yields (B.9). Then the assump-
tions of Theorem B.7 are verified and the theorem statement follows. �

B.4.3 Auxiliary Results

Lemma B.9

Let l satisfy (S1)-(S3). Then there exists some Ĉ > 0 such that for all k we have

Ĉ ≤
∑

i∈I
l′(ski − tk), Ĉ ≤

∑

i∈I
l′(x>i w

k − t(wk)).

Proof:
First, we will find an upper bound of ski − tk . Fix any index i0. Since l is nonnegative due
to (S1), equation (3.7) implies

nτ =
∑

i∈I
l(ski − tk) ≥ l(ski0 − t

k).

Since l is a strictly increasing function due to (S2) and nτ > 0, we get

l−1(nτ) ≥ ski0 − t
k . (B.24)

Since i0 was an arbitrary index, it holds true for all indices. Then (S3) which leads to a
further estimate

∑

i∈I
l′(ski − tk) =

∑

i∈I
l(ski − tk)

l′(ski − tk)
l(ski − tk)

≥
∑

i∈I
l(ski − tk)

l′(l−1(nτ))
l(l−1(nτ))

= nτ
l′(l−1(nτ))
l(l−1(nτ))

= l′(l−1(nτ)),

where the inequality follows from (B.24) and the following equality from (3.7). Due to (S2)
we obtain that l′(l−1(nτ)) is a positive number, which finishes the proof of the first part. The
second part can be obtained in an identical way. �

94

B Appendix for Chapter 3

Lemma B.10

Let l satisfy (S1)-(S4). Then there exists some B̂ such that for all k we have
∥∥∥∇L(wk)

∥∥∥ ≤
∥∥∥wk

∥∥∥+ B̂,
∥∥∥g(wk)

∥∥∥ ≤
∥∥∥wk

∥∥∥+ B̂.

Proof:
By applying norm to the gradient (3.5) of the objective function L, we get

∥∥∥∇L(wk)
∥∥∥ ≤

∥∥∥wk
∥∥∥+

∥∥∥∥∥∥∥∥
1
n+

∑

i∈I+

l′(t(wk)− x>i wk)(∇t(wk)− xi)
∥∥∥∥∥∥∥∥
,

where the inequality follows from the triangle inequality. Due to (S4) the derivative l′ is
bounded by some Ĉ1. Then Theorem 3.3 and Lemma B.9 imply

∥∥∥∇t(wk)
∥∥∥ ≤ Ĉ1

∑
i∈I ‖xi‖∑

i∈I l′(x
>
i w

k − t(wk)) ≤
Ĉ1

Ĉ2

∑

i∈I
‖xi‖,

which is independent of k. Then (3.5) and again the boundedness of l′ imply the existence
of some B̂ such that

∥∥∥∇L(wk)
∥∥∥ ≤

∥∥∥wk
∥∥∥ + B̂ for all k. The proof for g(wk) can be performed

identically. �

Lemma B.11

Consider uniformly bounded positive sequences ck1, c
k
2, d

k
1 , d

k
2 , α

k and positive constants
C1, C2 such that for all k we have

∥∥∥ck1 − ck2
∥∥∥ ≤ C1α

k ,
∥∥∥dk1 − dk2

∥∥∥ ≤ C1α
k , dk1 ≥ C2, dk2 ≥ C2.

If αk→ 0, then there exists a constant C3 such that for all sufficiently large k we have
∥∥∥∥∥∥
ck1
dk1
− c

k
2

dk2

∥∥∥∥∥∥ ≤ C3α
k .

Proof:
Since dk1 and dk2 are bounded away from zero and since αk→ 0, we have

∥∥∥∥∥∥
ck1
dk1
− c

k
2

dk2

∥∥∥∥∥∥ ≤max

ck1
dk1
− c

k
1 +C1α

k

dk1 −C1αk
,
ck1
dk1
− c

k
1 −C1α

k

dk1 +C1αk

.

The first term can be estimated as
∥∥∥∥∥∥
ck1
dk1
− c

k
1 +C1α

k

dk1 −C1αk

∥∥∥∥∥∥ =

∥∥∥∥∥∥
(ck1 + dk1)C1α

k

dk1(dk1 −C1αk)

∥∥∥∥∥∥ ≤
(ck1 + dk1)C1α

k

C2|dk1 −C1αk |
.

Since αk→ 0 by assumption, for large k we have
∥∥∥dk1 −C1α

k
∥∥∥ ≥ 1

2C2. Since the sequences are
uniformly bounded, the statement follows. �

95

B.4 Stochastic Gradient Descent

Lemma B.12

Consider scalars ai , ci and vectors bi , di . If there is some Ĉ such that |ai | ≤ Ĉ and ‖di‖ ≤ Ĉ,
then ∥∥∥∥∥∥∥

n∑

i=1

aibi −
n∑

i=1

cidi

∥∥∥∥∥∥∥
≤ Ĉ

n∑

i=1

(|ai − ci |+ ‖bi − di‖).

Proof:
It is simple to verify

∥∥∥∥∥∥∥

n∑

i=1

aibi −
n∑

i=1

cidi

∥∥∥∥∥∥∥
≤

n∑

i=1

‖di‖|ai − ci |+
n∑

i=1

|ai |‖bi − di‖,

from which the statement follows. �

96

C
Appendix for Chapter 4

C.1 Derivation of Dual Problems

C.1.1 Family of TopPushK Formulations

Theorem 4.3: Dual formulation for TopPushK family

Consider Notation 4.2, surrogate function l, and formulation (4.4). Then the correspond-
ing dual problem has the following form

maximize
α,β

− 1
2

α

β

>

K

α

β

−C

n+∑

i=1

l?
(αi
C

)
(4.5a)

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj , (4.5b)

0 ≤ βj ≤ 1
K

n+∑

i=1

αi , j = 1,2, . . . , ñ, (4.5c)

where l? is conjugate function of l and

K K ñ x̃j

TopPush 1 K− n− x−j
TopPushK K K− n− x−j
TopMeanK nτ K± n xj
τ-FPL n−τ K− n− x−j

If K = 1, the upper bound in the second constraint (4.5c) vanishes due to the first con-
straint. Finally, the primal variables w can be computed from dual variables as follows

w =
n+∑

i=1

αix
+
i −

ñ∑

j=1

βj x̃j . (4.6)

97

C.1 Derivation of Dual Problems

Proof:
We show the proof only for TopPushK formulation, i.e., the decision threshold is computed
only from negative samples. The proof for the remaining formulations is identical. Firstly,
we derive an alternative formulation to formulation (4.4). Using Lemma 1 from [57], we can
rewrite the formula for the decision threshold to the following form

K∑

j=1

s−[j] = min
t

Kt +

n−∑

j=1

max{0, s−j − t}

.

By substituting this formula into the objective function of (4.4), we get

n+∑

i=1

l

1
K

K∑

j=1

s−[j] − s+i

 =

n+∑

i=1

l

1
K

min
t

Kt +

n−∑

j=1

max
{
0, s−j − t

}

− s+i

= min
t

n+∑

i=1

l

t +

1
K

n−∑

j=1

max
{
0, s−j − t

}
− s+i

.

where the last equality follows from the fact that the surrogate function l is non-decreasing.
The max operator can be replaced using an auxiliary variable z ∈ Rn− that fulfills zj ≥ s−j − t
and zj ≥ 0 for all j = 1, . . . , n−. Furthermore, we use auxilliary variable y ∈ Rn+ defined for
all i = 1, . . . , n+ as

yi = t +
1
K

n−∑

j=1

zj − s+i .

The combination of all the above relations and the use of a linear model yields to

minimize
w, t,y,z

1
2
‖w‖22 +C

n+∑

i=1

l(yi)

subject to yi = t +
1
K

n−∑

j=1

zj −w>x+
i , i = 1, 2, . . . , n+,

zj ≥ w>x−j − t, j = 1, 2, . . . , n−,

zj ≥ 0, j = 1, 2, . . . , n−,

The Lagrangian of this formulation is defined as

L(w, t,y,z;α,β,γ) =
1
2
‖w‖22 +C

n+∑

i=1

l(yi) +
n+∑

i=1

αi

t +

1
K

n−∑

j=1

zj −w>x+
i − yi

+
n−∑

j=1

βj
(
w>x−j − t − zj

)
−

n−∑

j=1

γjzj ,

with feasibility conditions βj ≥ 0 and γj ≥ 0 for all j = 1, . . . , n−. Since the Lagrangian L is
separable in primal variables, it can be minimized with respect to each variable separately.

98

C Appendix for Chapter 4

Then the dual objective function (to be maximized) reads

g(α,β,γ) = min
w

1
2
‖w‖22 −w>

n+∑

i=1

αix
+
i −

n−∑

j=1

βjx
−
j

 (C.1a)

+ min
t
t

n+∑

i=1

αi −
n−∑

j=1

βj

 (C.1b)

+ min
y

C
n+∑

i=1

(
l(yi)− αiC yi

)
(C.1c)

+ min
z

n−∑

j=1

1
K

n+∑

i=1

αi − βj −γj

zj (C.1d)

From optimality conditions with respect to w, we deduce

w =
n+∑

i=1

αix
+
i −

n−∑

j=1

βjx
−
j =

X+

−X−

>
α

β

 =⇒ 1

2
‖w‖22 −w>

n+∑

i=1

αix
+
i −

n−∑

j=1

βjx
−
j

 = −1

2

α

β

>

K−

α

β

,

where we use Notation 4.2. It mean, that we get the first part of the objective function (4.5a),
ane we also get the relation (4.6) between primal and dual variables.

Optimality condition with respect to t reads

n+∑

i=1

αi −
n−∑

j=1

βj = 0,

and implies constrain (4.5b).
Similarly, optimality condition of (C.1d) with respect to z reads for all j = 1, . . . , n− as

1
K

n+∑

i=1

αi − βj −γj = 0.

Plugging the feasibility condition γj ≥ 0 into this equality and combining it with the feasi-
bility conditions βj ≥ 0, yields constraint (4.5c).

Finally, the second part of the objective function (4.5a) follows from Definition 4.1 of the
conjugate function. Using the definition, minimization of (C.1c) with respect to y yields

Cmin
yi

(
l(yi)− αiC yi

)
= −Cl?

(αi
C

)
,

for all i = 1, . . . , n+, which finishes the proof for TopPushK. For TopPush, we have K = 1.
From (4.5b) and non-negativity of βj we deduce that the upper bound in (4.5c) is always
fulfilled and can be omitted. �

99

C.1 Derivation of Dual Problems

C.1.2 Family of Pat&Mat Formulations

Theorem 4.4: Dual formulation for Pat&Mat family

Consider Notation 4.2, surrogate function l, and formulation (4.7). Then the correspond-
ing dual problem has the following form

maximize
α,β,δ

− 1
2

α

β

>

K

α

β

−C

n+∑

i=1

l?
(αi
C

)
− δ

ñ∑

j=1

l?
(
βj
δϑ

)
− δñτ (4.8a)

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj , (4.8b)

δ ≥ 0, (4.8c)

where l? is conjugate function of l, ϑ > 0 is a scaling parameter and

K ñ x̃j

Pat&Mat K± n xj
Pat&Mat-NP K− n− x−j

Finally, the primal variables w can be computed from dual variables as follows

w =
n+∑

i=1

αix
+
i −

ñ∑

j=1

βj x̃j . (4.9)

Proof:
For simplicity, we show the proof only for Pat&Mat-NP, i.e. the threshold is computed only
from negative samples. Let us first realize that formulation (4.7) is equivalent to the follow-
ing formulation

minimize
w, t,y,z

1
2
‖w‖22 +C

n+∑

i=1

l(yi)

subject to
n−∑

j=1

l(ϑzi) ≤ n−τ,

yi = t −w>x+
i , i = 1, 2, . . . , n+,

zj = w>x−j − t, j = 1, 2, . . . , n−.

The corresponding Lagrangian then reads

L(w, t,y,z;α,β,δ) =
1
2
‖w‖22 +C

n+∑

i=1

l(yi) +
n+∑

i=1

αi(t −w>x+
i − yi)

+
n−∑

j=1

βj(w
>x−j − t − zj) + δ

n−∑

j=1

l(ϑzj)−n−τ

.

with feasibility condition δ ≥ 0. Since the Lagrangian L is separable in primal variables, it
can be minimized with respect to each variable separately. Then the dual objective function

100

C Appendix for Chapter 4

(to be maximized) can be rewritten as follows

g(α,β,δ) = min
w

1
2
‖w‖22 −w>

n+∑

i=1

αix
+
i −

n−∑

j=1

βjx
−
j

 (C.2a)

+ min
t
t

n+∑

i=1

αi −
n−∑

j=1

βj

 (C.2b)

+ min
y

C
n+∑

i=1

(
l(yi)− αiC yi

)
(C.2c)

+ min
z

δ
n−∑

j=1

(
l(ϑzj)−

βj
δ
zj

)
(C.2d)

− δn−τ. (C.2e)

Note that the resulting dual function is very similar to one (C.1) for TopPushK. In fact,
the first three parts of (C.1) and (C.2) are identical. Therefore, we only have to show how to
minimize (C.2) with respect to z. For that, we can use the conjugate function as in the case
of minimization of (C.1) with respect to y. Then, for all j = 1, . . . , n−, we get

δmin
z

(
l(ϑzj)−

βj
δϑ
ϑzj

)
= −δl?

(βi
δϑ

)
,

where the equality follows from Definition 4.1 of a conjugate function. Plugging this back
into (C.2d) yields the third part of the objective function (4.8a), which finishes the proof.

�

C.2 Coordinate Descent Algorithm

C.2.1 Family of TopPushK Formulations

Hinge Loss

Proposition 4.7: Update rule (4.14a) for problem (4.16)

Consider problem (4.16), update rule (4.14a), indices 1 ≤ k ≤ n+ and 1 ≤ l ≤ n+ and Nota-
tion 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb = max{−αk̂ , αl̂ −C},
∆ub = min{C −αk̂ , αl̂},
γ = − sk − sl

Kkk +Kll −Kkl −Klk
.

Proof of Proposition 4.7 on page 43:
Constraint (4.16b) is always satisfied from the definition of the update rule (4.14a), and
constraint (4.16d) is always satisfied since no βj was updated and the sum of all αi did not
change. Constraint (4.16c) reads

0 ≤ αk̂ +∆ ≤ C =⇒ −αk̂ ≤ ∆ ≤ C −αk̂ ,
0 ≤ αl̂ −∆ ≤ C =⇒ αl̂ −C ≤ ∆ ≤ αl̂ ,

which gives the lower and upper bound of ∆.

101

C.2 Coordinate Descent Algorithm

Using the update rule (4.14a), objective function (4.16a) can be rewritten as a quadratic
function with respect to ∆

−1
2

[Kkk +Kll −Kkl −Klk]∆
2 − [sk − sl]∆− c(α,β).

Finally, the optimal solution ∆? is given by (4.15). �

Proposition 4.8: Update rule (4.14b) for problem (4.16)

Consider problem (4.16), update rule (4.14b), indices 1 ≤ k ≤ n+ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Let us define

βmax = max
j∈{1,2,...,ñ}\{l̂}

βj .

Then the optimal solution ∆? is given by (4.15) where

∆lb =

max

{
−αk̂ , −βl̂

}
K = 1,

max
{
−αk̂ , −βl̂ , Kβmax −

∑n+
i=1αi

}
otherwise,

∆ub =

C −αk̂ K = 1,

min
{
C −αk̂ , 1

K−1

(∑n+
i=1αi −Kβl̂

)}
otherwise.

γ = − sk + sl − 1
Kkk +Kll +Kkl +Klk

.

Proof of Proposition 4.8 on page 44:
Constraint (4.16b) is always satisfied from the definition of the update rule (4.14b). Con-
straint (4.16c) reads −αk̂ ≤ ∆ ≤ C − αk̂ . Using the definition of βmax, constraint (4.16d) for
any K ≥ 2 reads

0 ≤ βmax ≤ 1
K

n+∑

i=1

αi +
∆

K
=⇒ Kβmax −

n+∑

i=1

αi ≤ ∆,

0 ≤ βl̂ +∆ ≤ 1
K

n+∑

i=1

αi +
∆

K
=⇒ −βl̂ ≤ ∆ ∧ ∆ ≤ 1

K − 1

n+∑

i=1

αi −Kβl̂

.

The combination of these bounds yields the lower bound ∆lb and upper bound ∆ub. If K = 1,
the upper bound in (4.16d) is always satisfied due to (4.16b) and the lower and upper bound
of ∆ can be simplified.

Using the update rule (4.14b), objective function (4.16a) can be rewritten as a quadratic
function with respect to ∆

−1
2

[Kkk +Kll +Kkl +Klk]∆
2 − [sk + sl − 1]∆− c(α,β).

Finally, the optimal solution ∆? is given by (4.15). �

102

C Appendix for Chapter 4

Proposition 4.9: Update rule (4.14c) for problem (4.16)

Consider problem (4.16), update rule (4.14c), indices n+ + 1 ≤ k ≤ ñ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb =

−βk̂ K = 1,

max
{
−βk̂ , βl̂ − 1

K

∑n+
i=1αi

}
otherwise,

∆ub =

βl̂ K = 1,

min
{

1
K

∑n+
i=1αi − βk̂ , βl̂

}
otherwise.

γ = − sk − sl
Kkk +Kll −Kkl −Klk

.

Proof of Proposition 4.9 on page 44:
Constraint (4.16b) is always satisfied from the definition of the update rule (4.14c), and
constraint (4.16c) is satisfied since no αi is updated. Constraint (4.16d) for any K ≥ 2 reads

0 ≤ βk̂ +∆ ≤ 1
K

n+∑

i=1

αi =⇒ −βk̂ ≤ ∆ ≤ 1
K

n+∑

i=1

αi − βk̂ ,

0 ≤ βl̂ −∆ ≤
1
K

n+∑

i=1

αi =⇒ βl̂ −
1
K

n+∑

i=1

αi ≤ ∆ ≤ βl̂ ,

which gives the lower and upper bound of ∆. If K = 1, the upper bound in (4.16d) is always
satisfied due to (4.16b) and the lower and upper bound of ∆ can be simplified.

Using the update rule (4.14c), objective function (4.16a) can be rewritten as a quadratic
function with respect to ∆

−1
2

[Kkk +Kll −Kkl −Klk]∆
2 − [sk − sl]∆− c(α,β).

Finally, the optimal solution ∆? is given by (4.15). �

Quadratic Hinge Loss

The second considered surrogate function is the quadratic hinge loss from Notation 2.1. Plug-
ging the conjugate (4.2) of the quadratic hinge loss into the dual formulation (4.5) yields

maximize
α,β

− 1
2

α

β

>

K

α

β

+

n+∑

i=1

αi − 1
4C

n+∑

i=1

α2
i (C.3a)

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj , (C.3b)

0 ≤ αi , i = 1,2, . . . ,n+, (C.3c)

0 ≤ βj ≤ 1
K

n+∑

i=1

αi , j = 1,2, . . . , ñ, (C.3d)

Similarly to the previous case, the form of K and ñ depends on the used formulation and the
upper bound in (C.3d) can be omitted for K = 1.

103

C.2 Coordinate Descent Algorithm

Proposition C.6: Update rule (4.14a) for problem (C.3)

Consider problem (C.3), update rule (4.14a), indeices 1 ≤ k ≤ n+ and 1 ≤ l ≤ n+ and Nota-
tion 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb = −αk̂ , ∆ub = αl̂ , γ = − sk − sl + 1
2C (αk̂ −αl̂)

Kkk +Kll −Kkl −Klk + 1
C

.

Proof:
Constraint (C.3b) is always satisfied from the definition of the update rule (4.14a). Con-
straint (C.3d) is also always satisfied since no βj was updated and the sum of all αi did not
change. Constraint (C.3c) reads

0 ≤ αk̂ +∆ =⇒ −αk̂ ≤ ∆,

0 ≤ αl̂ −∆ =⇒ ∆ ≤ αl̂ ,

which gives the lower and upper bound of ∆.
Using the update rule (4.14a), objective function (C.3a) can be rewritten as a quadratic

function with respect to ∆

−1
2

[
Kkk +Kll −Kkl −Klk +

1
C

]
∆2 −

[
sk − sl +

1
2C

(αk̂ −αl̂)
]
∆− c(α,β).

Finally, the optimal solution ∆? is given by (4.15). �

Proposition C.7: Update rule (4.14b) for problem (C.3)

Consider problem (C.3), update rule (4.14b), indeices 1 ≤ k ≤ n+ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Let us define

βmax = max
j∈{1,2,...,ñ}\{l̂}

βj .

Then the optimal solution ∆? is given by (4.15) where

∆lb =

max

{
−αk̂ , −βl̂

}
K = 1,

max
{
−αk̂ , −βl̂ , Kβmax −

∑n+
i=1αi

}
otherwise,

∆ub =

+∞ K = 1,

1
K−1

(∑n+
i=1αi −Kβl̂

)
otherwise,

γ = − sk + sl − 1 + 1
2Cαk̂

Kkk +Kll +Kkl +Klk + 1
2C

.

Proof:
Constraint (C.3b) is always satisfied from the definition of the update rule (4.14b). Con-
straint (C.3c) reads −αk̂ ≤ ∆. Using the definition of βmax, constraint (C.3d) for any K ≥ 2
reads

0 ≤ βmax ≤ 1
K

n+∑

i=1

αi +
∆

K
=⇒ Kβmax −

n+∑

i=1

αi ≤ ∆,

0 ≤ βl̂ +∆ ≤ 1
K

n+∑

i=1

αi +
∆

K
=⇒ −βl̂ ≤ ∆ ∧ ∆ ≤ 1

K − 1

n+∑

i=1

αi −Kβl̂

.

104

C Appendix for Chapter 4

The combination of these bounds yields the lower bound ∆lb and upper bound ∆ub. If K = 1,
the upper bound in (C.3d) is always satisfied due to (C.3b) and the lower and upper bound
of ∆ can be simplified.

Using the update rule (4.14b), objective function (C.3a) can be rewritten as a quadratic
function with respect to ∆

−1
2

[
Kkk +Kll +Kkl +Klk +

1
2C

]
∆2 −

[
sk + sl − 1 +

1
2C

αk̂

]
∆− c(α,β).

Finally, the optimal solution ∆? is given by (4.15). �

Proposition C.8: Update rule (4.14c) for problem (C.3)

Consider problem (C.3), update rule (4.14c), indices n+ + 1 ≤ k ≤ ñ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb =

−βk̂ K = 1,

max
{
−βk̂ , βl̂ − 1

K

∑n+
i=1αi

}
otherwise,

∆ub =

βl̂ K = 1,

min
{
βl̂ ,

1
K

∑n+
i=1αi − βk̂

}
otherwise,

γ = − sk − sl
Kkk +Kll −Kkl −Klk

.

Proof:
Constraint (C.3b) is always satisfied from the definition of the update rule (4.14c). Con-
straint (C.3c) is also always satisfied since no αi is updated. Constraint (C.3d) for any K ≥ 2
reads

0 ≤ βk̂ +∆ ≤ 1
K

n+∑

i=1

αi =⇒ −βk̂ ≤ ∆ ≤ 1
K

n+∑

i=1

αi − βk̂ ,

0 ≤ βl̂ −∆ ≤
1
K

n+∑

i=1

αi =⇒ βl̂ −
1
K

n+∑

i=1

αi ≤ ∆ ≤ βl̂ ,

which gives the lower and upper bound of ∆. If K = 1, the upper bound in (C.3d) is always
satisfied due to (C.3b) and the lower and upper bound of ∆ can be simplified.

Using the update rule (4.14c), objective function (C.3a) can be rewritten as a quadratic
function with respect to ∆

−1
2

[Kkk +Kll −Kkl −Klk]∆
2 − [sk − sl]∆− c(α,β).

Finally, the optimal solution ∆? is given by (4.15). �

105

C.2 Coordinate Descent Algorithm

Initialization

Theorem 4.10

Consider problem (4.17), some initial solution α0, β0 and denote the sorted version (in
non-decreasing order) of β0 as β0

[·]. Then if the following condition holds

K∑

j=1

(
β0

[ñ−K+j] + max
i=1,...,n+

α0
i

)
≤ 0, (4.18)

the optimal solution of (4.17) amounts to α = β = 0. In the opposite case, the following
system of two equations

n+∑

i=1

clip[0, C]

α

0
i −λ+

1
K

ñ∑

j=1

clip[0, +∞)

(
β0
j +λ−µ

)

−Kµ = 0, (4.19a)

ñ∑

j=1

clip[0, µ]

(
β0
j +λ

)
−Kµ = 0, (4.19b)

has a solution (λ,µ) with µ > 0, and the optimal solution of (4.17) is equal to

αi = clip[0, C]

α

0
i −λ+

1
K

ñ∑

j=1

clip[0, +∞)

(
β0
j +λ−µ

)

,

βj = clip[0, µ]

(
β0
j +λ

)
.

Proof of Theorem 4.10 on page 45:
The Lagrangian of (4.17) reads

L(α,β;λ,p,q,u,v) =
1
2

∥∥∥α −α0
∥∥∥2

+
1
2

∥∥∥β −β0
∥∥∥2

+λ

n+∑

i=1

αi −
ñ∑

j=1

βj

−
n+∑

i=1

piαi +
n+∑

i=1

qi(αi −C1)−
ñ∑

j=1

ujβj +
ñ∑

j=1

vj

βj −

1
K

n+∑

i=1

αi

.

The KKT conditions then amount to

∂L
∂αi

= αi −α0
i +λ− pi + qi − 1

K

ñ∑

j=1

vj = 0, i = 1,2, . . . ,n+, (C.4a)

∂L(·)
∂βj

= βj − β0
j −λ−uj + vj = 0, j = 1,2, . . . , ñ, (C.4b)

the primal feasibility conditions (4.17), the dual feasibility conditions λ ∈ R, pi ≥ 0, qi ≥ 0,

106

C Appendix for Chapter 4

uj ≥ 0, vj ≥ 0 and finally the complementarity conditions

piαi = 0, i = 1,2, . . . ,n+, (C.4c)

qi(αi −C1) = 0, i = 1,2, . . . ,n+, (C.4d)

ujβj = 0, j = 1,2, . . . , ñ, (C.4e)

vj

βj −

1
K

n+∑

i=1

αi

 = 0, j = 1,2, . . . , ñ. (C.4f)

Case 1: The first case concerns when the optimal solution satisfies
∑
i αi = 0. From the pri-

mal feasibility conditions, we immediately get αi = 0 for all i and βj = 0 for all j. Then (C.4d)
implies qi = 0 for all i and all complementarity conditions are satisfied. Moreover, optimality
condition (C.4a) implies

λ = α0
i + pi +

1
K

ñ∑

j=1

vj .

Since the only condition on pi is the non-negativity, this implies

λ ≥ max
i=1,...,n+

α0
i +

1
K

ñ∑

j=1

vj .

Similarly, from optimality condition (C.4b) we deduce

vj = β0
j +λ+uj ≥ β0

j +λ ≥ β0
j + max

i=1,...,n+

α0
i +

1
K

ñ∑

i=1

vi .

Since we need to fulfill vj ≥ 0, this amounts to

vj ≥ clip[0, +∞)

β

0
j + max

i=1,...,n+

α0
i +

1
K

ñ∑

i=1

vi

.

Summing this with respect to j and using the substitution v̄ = 1
K

∑
i vi results in

Kv̄ −
ñ∑

j=1

clip[0, +∞)

(
β0
j + max

i=1,...,n+

α0
i + v̄

)
≥ 0. (C.5)

Denote by β0
[j] the sorted version of β0

j . Then the function on the left-hand side of (C.5)

as a function of v̄ is increasing on
(
−∞, −β0

[n+−K+1] −maxi α
0
i

]
and non-increasing otherwise.

Thus, (C.5) can be satisfied if and only if its function value at −β0
[n+−K+1] −maxi α

0
i is non-

negative

K

(
−β0

[n+−K+1] − max
i=1,...,n+

α0
i

)
−

ñ∑

j=1

clip[0, +∞)

(
β0
j + max

i=1,...,n+

α0
i − β0

[n+−K+1] − max
i=1,...,n+

α0
i

)

= K
(
−β0

[n+−K+1] − max
i=1,...,n+

α0
i

)
−

K∑

j=1

(
β0

[n+−K+j] − β0
[n+−K+1]

)
= −

K∑

j=1

(
β0

[n+−K+j] + max
i=1,...,n+

α0
i

)
≥ 0,

which is precisely condition (4.18).

107

C.2 Coordinate Descent Algorithm

Case 2: If (4.18) holds true, then from the discussion above we obtain that the optimal
solution satisfies

∑
i αi > 0. For simplicity, we define

ᾱ =
1
K

n+∑

i=1

αi , β̄ =
1
K

ñ∑

j=1

βj , v̄ =
1
K

ñ∑

j=1

vj .

For any fixed i, the standard trick is to combine the optimality condition (C.4a) with the
primal feasibility condition 0 ≤ αi ≤ C1, the dual feasibility conditions pi ≥ 0, qi ≥ 0 and the
complementarity conditions (C.4c, C.4d) to obtain

αi = clip[0, C1]

(
α0
i −λ+ v̄

)
. (C.6)

Similarly for any fixed j, we combine the optimality condition (C.4b) with the primal
feasibility condition 0 ≤ βj ≤ ᾱ, the dual feasibility conditions uj ≥ 0, vj ≥ 0 and the comple-
mentarity conditions (C.4e, C.4f) to obtain

βj = clip[0, ᾱ]

(
β0
j +λ

)
, (C.7)

vj = clip[0, +∞)

(
β0
j +λ− ᾱ

)
. (C.8)

Summing equations (C.6), (C.7) and (C.8) respectively with respect to i and j results in

Kᾱ =
n+∑

i=1

clip[0, C1]

(
α0
i −λ+ v̄

)
, (C.9a)

Kβ̄ =
ñ∑

j=1

clip[0, ᾱ]

(
β0
j +λ

)
, (C.9b)

Kv̄ =
ñ∑

j=1

clip[0, +∞)

(
β0
j +λ− ᾱ

)
. (C.9c)

We denote µ = ᾱ. Then (4.19a) results by plugging (C.9c) into (C.9a) while (4.19b) follows
from (C.9b) and

∑
i αi =

∑
j βj . �

Lemma 4.11

Even though λ(µ) is not unique, function h from (4.20) is well-defined in the sense that it
gives the same value for every choice of λ(µ). Moreover, h is decreasing in µ on (0,+∞).

Proof of Lemma 4.11 on page 46:
Recall that based on (4.19b) we defined

g(λ;µ) :=
ñ∑

j=1

clip[0, µ]

(
β0
j +λ

)
−Kµ,

and solutions of g(λ;µ) = 0 for a fixed µ are denoted by λ(µ).
Let us first consider the case, when the solution to g(λ) = 0 is not unique. Since func-

tion g(·; µ) is non-decreasing and K is an integer, it can happen only if the solution λ(µ)
satisfies

β0
[j] +λ(µ)

≥ µ for j = ñ−K + 1, . . . , ñ,

≤ 0 otherwise.

108

C Appendix for Chapter 4

Here, we again denote β0
[·] to be the sorted version of β0

j . Then h defined in (4.20) equals to

h(µ) =
n+∑

i=1

clip[0, C1]

α

0
i −λ(µ) +

1
K

ñ∑

j=ñ−K+1

(
β0
j +λ(µ)−µ

)

−Kµ

=
n+∑

i=1

clip[0, C1]

α

0
i −µ+

1
K

ñ∑

j=ñ−K+1

β0
j

−Kµ.

This implies the first statement of the lemma that h is independent of the choice of λ(µ).
In the previous paragraph, we prove, that h gives the same value for every choice of λ(µ).

Now we need to show that h is a decreasing function for the arbitrary choice of λ(µ). Fix
any µ2 > µ1 > 0. From (4.19b) we have

ñ∑

j=1

clip[0, µ1]

(
β0
j +λ(µ1)

)
−Kµ1 = 0, (C.10)

ñ∑

j=1

clip[0, µ2]

(
β0
j +λ(µ2)

)
−Kµ2 = 0. (C.11)

Equation (C.10) implies that at most K values of β0
j + λ(µ1) are greater or equal than µ1. If

we increase the upper bound in the projection, at most K values can increase, which results
in

ñ∑

j=1

clip[0, µ2]

(
β0
j +λ(µ1)

)
≤

ñ∑

j=1

clip[0, µ1]

(
β0
j +λ(µ1)

)
+K(µ2 −µ1) = Kµ2, (C.12)

where the equality follows from (C.10). Comparing (C.11) and (C.12) yields λ(µ2) ≥ λ(µ1).
Now define

J =
{
j
∣∣∣∣ β0
j +λ(µ1) ≥ 0

}

and observe that due to (C.10) we have |J | ≥ K . Moreover, the definition of J and (C.10) yields

∑

j∈J
clip[0, µ1]

(
β0
j +λ(µ1)

)
−Kµ1 =

ñ∑

j=1

clip[0, µ1]

(
β0
j +λ(µ1)

)
−Kµ1 = 0. (C.13)

Then we have

ñ∑

j=1

clip[0, µ2]

(
β0
j +λ(µ1) +µ2 −µ1

)
≥

∑

j∈J
clip[0, µ2]

(
β0
j +λ(µ1) +µ2 −µ1

)

=
∑

j∈J
clip[µ2−µ1, µ2]

(
β0
j +λ(µ1) +µ2 −µ1

)

=
∑

j∈J
clip[0, µ1]

(
β0
j +λ(µ1)

)
+ |J |(µ2 −µ1)

= Kµ1 + |J |(µ2 −µ1) ≥ Kµ1 +K(µ2 −µ1) = Kµ2,

where the first equality follows from the definition of J and the second equality is a shift
by a µ2 − µ1. The third equality follows from (C.13) and finally, the last inequality follows
from |J | ≥ K . The chain above together with (C.11) implies λ(µ2)−µ2 ≤ λ(µ1)−µ1. Combining
this with µ2 > µ1 and λ(µ2) ≥ λ(µ1), this implies that h from (4.20) is non-increasing which is
precisely the lemma statement. �

109

C.2 Coordinate Descent Algorithm

C.2.2 Family of Pat&Mat Formulations

In this section, we derive a coordinate descent algorithm for solving dual formulation (4.8)
for the family of Pat&Mat formulations. We follow the same approach as for TopPushK family
in Section4.3.1, i.e. we use update rules (4.14). In this case, we must also consider the third
primary variable δ. Then the dual formulation (4.8) can be rewritten as a one-dimensional
quadratic problem

maximize
∆

− 1
2
a(α,β,δ)∆2 − b(α,β,δ)∆− c(α,β,δ)

subject to ∆lb(α,β,δ) ≤ ∆ ≤ ∆ub(α,β,δ)

where a, b, c, ∆lb, ∆ub are constants with respect to ∆. The form of the optimal solution is the
same as for problem (4.5) and reads

∆? = clip[∆lb , ∆ub]
(γ).

Since we assume one of the update rule (4.14), the constrain (4.8b) is always satisfied after the
update. The exact form of the update rules depends on the surrogate function. Moreover, the
form of optimal δ also depends on the surrogate function. The upcoming text follows the same
order as in the previous section. Therefore, we introduce concrete forms of update rules for
hinge and quadratic hinge loss function and then show how to find an initial feasible solution.

Hinge Loss

We again start with the hinge loss function from Notation 2.1. Plugging the conjugate (4.2) of
the hinge loss into the dual formulation (4.8) yields

maximize
α,β,δ

− 1
2

α

β

>

K

α

β

+

n+∑

i=1

αi +
1
ϑ

ñ∑

j=1

βj − δñτ (C.14a)

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj , (C.14b)

0 ≤ αi ≤ C, i = 1,2, . . . ,n+, (C.14c)

0 ≤ βj ≤ δϑ, j = 1,2, . . . , ñ, (C.14d)

δ ≥ 0. (C.14e)

Since we know the form of the optimal solution (4.15), we only need to show how to com-
pute ∆lb, ∆ub and γ for all update rules (4.14). However, in this case, constants ∆lb, ∆ub and γ
also depend on the third dual variable δ. We do not perform a joint maximization in (αk̂ , βl̂ , δ)
but perform a maximization with respect to (αk̂ , βl̂), update these two values and then optimize
the objective with respect to δ. Then for fixed feasible solution α and β, maximizing objective
function (C.14a) with respect to δ yields

maximize
δ

− ñτδ
subject to 0 ≤ βj ≤ δϑ, j = 1,2, . . . , ñ,

δ ≥ 0.

Since ñτ ≥ 0, we have to find the smallest possible δ that satisfies constraints above. Such δ is
in the following form

δ∗ =
1
ϑ

max
j∈{1,2,...,ñ}

βj . (C.15)

The following three propositions provide closed-form formulae for all three update rules.

110

C Appendix for Chapter 4

Proposition C.11: Update rule (4.14a) for problem (C.14)

Consider problem (C.14), update rule (4.14a), indices 1 ≤ k ≤ n+ and 1 ≤ l ≤ n+ and
Notation 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb = min{−αk̂ , αl̂ −C}, ∆ub = max{C −αk̂ , αl̂},
γ = − sk − sl

Kkk +Kll −Kkl −Klk
, δ? = δ.

Proof:
Constraint (C.14b) is always satisfied from the definition of the update rule (4.14a). Con-
straint (C.14d) is also always satisfied since no βj was updated and the sum of all αi did not
change. Constraint (C.14c) reads

0 ≤ αk̂ +∆ ≤ C =⇒ −αk̂ ≤ ∆ ≤ C −αk̂
0 ≤ αl̂ −∆ ≤ C =⇒ αl̂ −C ≤ ∆ ≤ αl̂

which gives the lower and upper bound of ∆.
Using the update rule (4.14a), objective function (C.14a) can be rewritten as a quadratic

function with respect to ∆

−1
2

[Kkk +Kll −Kkl −Klk]∆
2 − [sk − sl]∆− c(α,β).

The optimal solution ∆? is given by (4.15). Finally, since optimal δ is given by (C.15) and
no βj was updated, the optimal δ does not change. �

Proposition C.12: Update rule (4.14b) for problem (C.14)

Consider problem (C.14), update rule (4.14b), indices 1 ≤ k ≤ n+ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Let us define

βmax = max
j∈{1,2,...,ñ}\{l̂}

βj .

Then the bounds from (4.15) are defined as ∆lb = max{−αk̂ , −βl̂} and ∆ub = C − αk̂ and
there are two possible solutions

1. ∆?1 is feasible if βl̂ +∆?1 ≤ βmax and is given by (4.15) where

γ = − sk + sl − 1− 1
ϑ

Kkk +Kll +Kkl +Klk
, δ∗1 =

βmax

ϑ
.

2. ∆?2 is feasible if βl̂ +∆?2 ≥ βmax and is given by (4.15) where

γ = − sk + sl − 1− 1−ñτ
ϑ

Kkk +Kll +Kkl +Klk
, δ∗2 =

βl̂ +∆?2

ϑ
.

The optimal solution ∆? is equal to one of them, which maximizes the original objective
and is feasible.

Proof:
Constraint (C.14b) is always satisfied from the definition of the update rule (4.14b). Con-
straint (C.14c) reads −αk̂ ≤ ∆ ≤ C − αk̂ . Using the definition of βmax, constraint (C.14d)

111

C.2 Coordinate Descent Algorithm

reads βmax ≤ δϑ and 0 ≤ βl̂ + ∆ ≤ δϑ. Since the optimal δ is given by (C.15), there are only

two possible choices: δ?1 = βmax
ϑ and δ?2 = βl̂+∆

ϑ . If δ is feasible, all upper bounds in con-
straint (C.14d) hold. Therefore, we can simplify the constraints to −βl̂ ≤ ∆, which in combi-
nation with bounds for αk̂ gives the lower and upper bound of ∆. Now let us discuss how to
select optimal δ :

1. Using δ?1 and the update rule (4.14b), objective function (C.14a) can be rewritten as a
quadratic function with respect to ∆ as

−1
2

[Kkk +Kll +Kkl +Klk]∆
2 −

[
sk + sl − 1− 1

ϑ

]
∆− c(α,β).

The optimal solution ∆?1 is given by (4.15) and is feasible if βl̂ +∆?1 ≤ βmax.

2. Using δ?2 and the update rule (4.14b), objective function (C.14a) can be rewritten as a
quadratic function with respect to ∆ as

−1
2

[Kkk +Kll +Kkl +Klk]∆
2 −

[
sk + sl − 1− 1− ñτ

ϑ

]
∆− c(α,β).

The optimal solution ∆?2 is given by (4.15) and is feasible if βl̂ +∆?2 ≥ βmax.

The optimal solution is the one, which maximizes the objective (C.14a) and is feasible. �

Proposition C.13: Update rule (4.14c) for problem (C.14)

Consider problem (C.14), update rule (4.14c), indices n+ + 1 ≤ k ≤ ñ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Let us define

βmax = max
j∈{1,2,...,ñ}\{k̂,l̂}

βj .

Then the bounds from (4.15) are defined as ∆lb = −βk̂ and ∆ub = βl̂ and there are three
possible solutions

1. ∆?1 is feasible if βmax ≥max{βk̂ +∆?1,βl̂ −∆?1} and is given by (4.15) where

γ = − sk − sl
Kkk +Kll −Kkl −Klk

, δ∗1 =
βmax

ϑ
.

2. ∆?2 is feasible if βk̂ +∆?2 ≥max{βmax,βl̂ −∆?2} and is given by (4.15) where

γ = − sk − sl + ñτ
ϑ

Kkk +Kll −Kkl −Klk
, δ∗2 =

βk̂ +∆?2

ϑ
.

3. ∆?3 is feasible if βl̂ −∆?3 ≥max{βk̂ +∆?3,βmax} and is given by (4.15) where

γ = − sk − sl − ñτϑ
Kkk +Kll −Kkl −Klk

, δ∗3 =
βl̂ −∆?3
ϑ

.

The optimal solution ∆? is equal to one of them, which maximizes the original objective
and is feasible.

Proof:
Constraint (C.14b) is always satisfied from the definition of the update rule (4.14c). Con-
straint (C.14c) is also always satisfied since no αi is updated. Using the definition of βmax,

112

C Appendix for Chapter 4

constraint (C.14d) reads

βmax ≤ δϑ,
0 ≤ βk̂ +∆ ≤ δϑ,
0 ≤ βl̂ −∆ ≤ δϑ.

Since the optimal δ is given by (C.15), there are only two possible choices

δ?1 =
βmax

ϑ
, δ?2 =

βk̂ +∆

ϑ
, δ?3 =

βl̂ −∆
ϑ

. (C.16)

If we use any of these choices which is feasible, all upper bounds in constraint (C.14d) hold,
i.e. we can simplify the constraints to

0 ≤ βk̂ +∆ =⇒ −βk̂ ≤ ∆,

0 ≤ βl̂ −∆ =⇒ ∆ ≤ βl̂ ,

which gives the lower and upper bound of ∆. Now let us discuss how to select optimal δ :

1. Using δ?1 from (C.16) and the update rule (4.14c), objective function (C.14a) can be
rewritten as a quadratic function with respect to ∆ as

−1
2

[Kkk +Kll −Kkl −Klk]∆
2 − [sk − sl]∆− c(α,β).

The optimal solution ∆?1 is given by (4.15) and is feasible if

βmax ≥max{βk̂ +∆?1, βl̂ −∆?1}.

2. Using δ?2 from (C.16) and the update rule (4.14c), objective function (C.14a) can be
rewritten as a quadratic function with respect to ∆ as

−1
2

[Kkk +Kll −Kkl −Klk]∆
2 −

[
sk − sl +

ñτ
ϑ

]
∆− c(α,β).

The optimal solution ∆?2 is given by (4.15) and is feasible if

βk̂ +∆?2 ≥max{βmax,βl̂ −∆?2}.

3. Using δ?3 from (C.16) and the update rule (4.14c), objective function (C.14a) can be
rewritten as a quadratic function with respect to ∆ as

−1
2

[Kkk +Kll −Kkl −Klk]∆
2 −

[
sk − sl − ñτϑ

]
∆− c(α,β).

The optimal solution ∆?3 is given by (4.15) and is feasible if

βl̂ −∆?3 ≥max{βmax,βk̂ +∆?3}.

The optimal solution is the one, which maximizes the objective (C.14a) and is feasible. �

113

C.2 Coordinate Descent Algorithm

Quadratic Hinge Loss

The second considered surrogate function is the quadratic hinge loss from Notation 2.1. Plug-
ging the conjugate (4.3) of the quadratic hinge loss into the dual formulation (4.8) yields

maximize
α,β,δ

− 1
2

α

β

>

K

α

β

+

n+∑

i=1

αi − 1
4C

n+∑

i=1

α2
i (C.17a)

+
1
ϑ

ñ∑

j=1

βj − 1
4δϑ2

ñ∑

j=1

β2
j − δñτ (C.17b)

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj , (C.17c)

αi ≥ 0, i = 1,2, . . . ,n+, (C.17d)

βj ≥ 0, j = 1,2, . . . , ñ, (C.17e)

δ ≥ 0, (C.17f)

Similar to the previous case, we perform maximization only with respect to (αk̂ , βl̂). Then for
fixed feasible solution α, β, we need to maximize the objective function (C.17a-C.17b) with
respect to δ, which leads to the following problem

maximize
δ

− (ñτ)δ −

1
4ϑ2

ñ∑

j=1

β2
j

1
δ

subject to δ ≥ 0,

with the optimal solution that equals to

δ∗ =

√√√√
1

4ϑ2ñτ

ñ∑

j=1

β2
j . (C.18)

The following three propositions provide closed-form formulae for all three update rules.

Proposition C.14: Update rule (4.14a) for problem (C.17)

Consider problem (C.17), update rule (4.14a), indices 1 ≤ k ≤ n+ and 1 ≤ l ≤ n+ and
Notation 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb = −αk̂ ,
∆ub = αl̂ ,

γ = − sk − sl + 1
2C (αk̂ −αl̂)

Kkk +Kll −Kkl −Klk + 1
C

,

δ? = δ.

Proof:
Constraint (C.17c) is always satisfied from the definition of the update rule (4.14a). Con-
straint (C.17e) is also always satisfied since no βj was updated. Constraint (C.17d) reads

0 ≤ αk̂ +∆ =⇒ −αk̂ ≤ ∆,

0 ≤ αl̂ −∆ =⇒ ∆ ≤ αl̂ ,

114

C Appendix for Chapter 4

which gives the lower and upper bound of ∆.
Using the update rule (4.14a), objective function (C.17a-C.17b) can be rewritten as a

quadratic function with respect to ∆

−1
2

[
Kkk +Kll −Kkl −Klk +

1
C

]
∆2 −

[
sk − sl +

1
2C

(αk̂ −αl̂)
]
∆− c(α,β).

The optimal solution ∆? is given by (4.15). Finally, since optimal δ is given by (C.18) and
no βj was updated, the optimal δ does not change. �

Proposition C.15: Update rule (4.14b) for problem (C.17)

Consider problem (C.17), update rule (4.14b), indices 1 ≤ k ≤ n+ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb = max{−αk̂ ,−βl̂},
∆ub = +∞,

γ = − sk + sl − 1 + αk̂
2C − 1

ϑ + βl̂
2δϑ2

Kkk +Kll +Kkl +Klk + 1
2C + 1

2δϑ2

,

δ? =

√
δ2 +

1
4ϑ2ñτ

(∆?2 + 2∆?βl̂).

Proof:
Constraint (C.17c) is always satisfied from the definition of the update rule (4.14b). Con-
straints (C.17d) and (C.17e) reads

0 ≤ αk̂ +∆ =⇒ −αk̂ ≤ ∆,

0 ≤ βl̂ +∆ =⇒ −βl̂ ≤ ∆,

which gives the lower bound of ∆. In this case, ∆ has no upper bound.
Using the update rule (4.14b), objective function (C.17a-C.17b) can be rewritten as a

quadratic function with respect to ∆

−1
2

[
Kkk +Kll +Kkl +Klk +

1
2C

+
1

2δϑ2

]
∆2

−
[
sk + sl − 1 +

αk̂
2C
− 1
ϑ

+
βl̂

2δϑ2

]
∆− c(α,β).

The optimal solution ∆? is given by (4.15). We know that the optimal δ∗ is given by (C.18),
then

δ∗ =

√√√√√
1

4ϑ2ñτ

∑

j,l̂

β2
j + (βl̂ +∆?)2

 =

√
δ2 +

1
4ϑ2ñτ

(∆?2 + 2∆?βl̂).

�

115

C.2 Coordinate Descent Algorithm

Proposition C.16: Update rule (4.14c) for problem (C.17)

Consider problem (C.17), update rule (4.14c) indices n+ + 1 ≤ k ≤ ñ and n+ + 1 ≤ l ≤ ñ and
Notation 4.6. Then the optimal solution ∆? is given by (4.15) where

∆lb = −βk̂ ,
∆ub = βl̂ ,

γ = − sk − sl + 1
2δϑ2 (βk̂ − βl̂)

Kkk +Kll −Kkl −Klk + 1
δϑ2

,

δ? =

√
δ2 +

1
2ϑ2ñτ

(∆?2 +∆?(βk̂ − βl̂)).

Proof:
Constraint (C.17c) is always satisfied from the definition of the update rule (4.14c). Con-
straint (C.17d) is also always satisfied since no αi is updated. Constraint (C.17e) reads

0 ≤ βk̂ +∆ =⇒ −βk̂ ≤ ∆,

0 ≤ βl̂ −∆ =⇒ ∆ ≤ βl̂ ,

which gives the lower and upper bound of ∆.
Using the update rule (4.14c), objective function (C.17a-C.17b) can be rewritten as a

quadratic function with respect to ∆ as

−1
2

[
Kkk +Kll −Kkl −Klk +

1
δϑ2

]
∆2 −

[
sk − sl +

1
2δϑ2 (βk̂ − βl̂)

]
∆− c(α,β).

The optimal solution ∆? is given by (4.15). We know that the optimal δ∗ is given by (C.18),
then

δ∗ =

√√√√√
1

4ϑ2ñτ

∑

j<{l̂ ,k̂}
β2
j + (βk̂ +∆?)2 + (βl̂ −∆?)2

 =

√
δ2 +

1
2ϑ2ñτ

(∆?2 +∆?(βk̂ − βl̂)).

�

Initialization

As in the case of problem (4.5), all update rules (4.14) assume that the current solution α, β, δ
is feasible. So to create an iterative algorithm that solves problem (C.14) or (C.17), we need to
have a way how to obtain an initial feasible solution. Such a task can be formally written as a
projection of random variables α0, β0, δ0 to the feasible set of solutions

minimize
α,β,δ

1
2

∥∥∥α −α0
∥∥∥2

+
1
2

∥∥∥β −β0
∥∥∥2

+
1
2

(δ − δ0)2

subject to
n+∑

i=1

αi =
ñ∑

j=1

βj ,

0 ≤ αi ≤ C1, i = 1,2, . . . ,n+,

0 ≤ βj ≤ C2δ, j = 1,2, . . . , ñ, ,

δ ≥ 0,

(C.19)

116

C Appendix for Chapter 4

where the upper bounds in the second and third constraints depend on the used surrogate
function and are defined as follows

C1 =

C for hinge loss,

+∞ for quadratic hinge loss,
C2 =

ϑ for hinge loss,

+∞ for quadratic hinge loss.

We show the way how to solve (C.19) only for hinge loss, since it is trivial to solve it for
quadratic hinge. Again, we will follow the same approach as in [2] to solve this optimization
problem. In the following theorem, we show that problem (C.19) can be written as a system of
two equations of two variables λ and µ. The theorem also shows the concrete form of feasible
solution α, β, δ that depends only on λ and µ.

Theorem C.17

Consider problem (C.19) and some initial solution α0, β0 and δ0. Then if the following
condition holds

δ0 ≤ −C2

ñ∑

j=1

clip[0, +∞)

(
β0
j + max

i=1,...,n+

α0
i

)
. (C.20)

the optimal solution of (C.19) amounts to α = β = 0 and δ0 = 0. In the opposite case, the
following system of two equations

0 =
n+∑

i=1

clip[0, C1]

(
α0
i −λ

)
−

ñ∑

j=1

clip[0, λ+µ]

(
β0
j +λ

)
, (C.21a)

λ = C2δ
0 +C2

2

ñ∑

j=1

clip[0, +∞)

(
β0
j −µ

)
−µ. (C.21b)

has a solution (λ,µ) with λ+µ > 0 and the optimal solution of (C.19) is equal to

αi = clip[0, C1]

(
α0
i −λ

)
,

βj = clip[0, λ+µ]

(
β0
j +λ

)
,

C2δ = λ+µ.

Proof:
The Lagrangian of (C.19) reads

L(α,β;λ,p,q,u,v) =
1
2

∥∥∥α −α0
∥∥∥2

+
1
2

∥∥∥β −β0
∥∥∥2

+
1
2

(δ − δ0)2 +λ

n+∑

i=1

αi −
ñ∑

j=1

βj

−
n+∑

i=1

piαi +
n+∑

i=1

qi(αi −C1)−
ñ∑

j=1

ujβj +
ñ∑

j=1

vj(βj −C2δ).

117

C.2 Coordinate Descent Algorithm

The KKT conditions then amount to the optimality conditions

∂L
∂αi

= αi −α0
i +λ− pi + qi = 0, i = 1,2, . . . ,n+, (C.22a)

∂L(·)
∂βj

= βj − β0
j −λ−uj + vj = 0, j = 1,2, . . . , ñ, (C.22b)

∂L(·)
∂δ

= δ − δ0 −C2

ñ∑

j=1

vj = 0, (C.22c)

the primal feasibility conditions (C.19), the dual feasibility conditions λ ∈ R, pi ≥ 0, qi ≥ 0,
uj ≥ 0, vj ≥ 0 and finally the complementarity conditions

piαi = 0, i = 1,2, . . . ,n+, (C.22d)

qi(αi −C1) = 0, i = 1,2, . . . ,n+, (C.22e)

ujβj = 0, j = 1,2, . . . , ñ, (C.22f)

vj
(
βj −C2δ

)
= 0, j = 1,2, . . . , ñ. (C.22g)

Case 1: The first case concerns when the optimal solution satisfies δ = 0. From the primal
feasibility conditions, we immediately get αi = 0 for all i and βj = 0 for all j. Then (C.22e)
implies qi = 0 and all complementarity conditions are satisfied. Moreover, (C.22a) implies
for all i

λ = α0
i + pi .

Since the only condition on pi is the non-negativity, this implies λ ≥maxi α
0
i .

Similarly, from (C.22b) we deduce

vj = β0
j +λ+uj ≥ β0

j +λ ≥ β0
j + max

i=1,...,n+

α0
i .

Since we also have the non-negativity constraint on vj , this implies

vj ≥ clip[0, +∞)

(
β0
j + max

i=1,...,n+

α0
i

)
.

Condition (C.22c) implies

δ0 = −C2

ñ∑

j=1

vj ≤ −C2

ñ∑

j=1

clip[0, +∞)

(
β0
j + max

i=1,...,n+

α0
i

)
,

which is precisely condition (C.20).

Case 2: If (C.20) holds true, then from the discussion above we obtain that the optimal
solution satisfies δ > 0. For any fixed i, the standard trick is to combine the optimality
condition (C.22a) with the primal feasibility condition 0 ≤ αi ≤ C1, the dual feasibility con-
ditions pi ≥ 0, qi ≥ 0 and the complementarity conditions (C.22d, C.22e) to obtain

αi = clip[0, C1]

(
α0
i −λ

)
. (C.23)

118

C Appendix for Chapter 4

Similarly for any fixed j, we combine the optimality condition (C.22b) with the primal
feasibility condition 0 ≤ βj ≤ C2δ, the dual feasibility conditions uj ≥ 0, vj ≥ 0 and the
complementarity conditions (C.22f, C.22g) to obtain

βj = clip[0, C2δ]

(
β0
j +λ

)
, (C.24)

vj = clip[0, +∞)

(
β0
j +λ−C2δ

)
. (C.25)

Note that we now obtain the following system

n+∑

i=1

clip[0, C1]

(
α0
i −λ

)
−

ñ∑

j=1

clip[0, C2δ]

(
β0
j +λ

)
= 0,

δ − δ0 −C2

ñ∑

j=1

clip[0, +∞)

(
β0
j +λ−C2δ

)
= 0.

Here, the first equation follows from plugging (C.23) and (C.24) into the feasibility con-
dition

∑
i αi =

∑
j βj while the second equation follows from plugging (C.25) into (C.22c).

Finally, system (C.21) follows after making the substitution C2δ = λ+µ. �

System (C.21) is relatively simple to solve, since equation (C.21b) provides an explicit for-
mula for λ. Let us denote it as λ(µ), then we denote the right-hand side of (C.21a) as

h(µ) :=
n+∑

i=1

clip[0, C1]

(
α0
i −λ(µ)

)
−

ñ∑

j=1

clip[0, λ(µ)+µ]

(
β0
j +λ(µ)

)
. (C.26)

Then the system of equations (C.21) is equivalent to solving h(µ) = 0. The following lemma
states that h is a non-decreasing function in µ on (0,∞) and thus the equation h(µ) = 0 is simple
to solve using any root-finding method. Note that if δ0 < 0, then it may happen that λ+µ < 0 if
the initial µ is chosen large. In such a case, it suffices to decrease µ until λ+µ is positive.

Lemma C.18

Function h is non-decreasing in µ on (0,∞).

Proof of Lemma C.18 on page 119:
Consider any µ1 < µ2. Then from (C.21b) we obtain both λ(µ1) ≥ λ(µ2) and µ1 + λ(µ1) ≥
µ2 +λ(µ2). The statement then follows from the definition of h in (C.26). �

119

120

D
Appendix for Chapter 5

Lemma 5.3

Let j? be unique. Assume that the selection of positive and negative samples into the
minibatch is independent and that the threshold is computed from negative samples while
the objective is computed from positive samples. Then the conditional expectation of the
sampled gradient satisfies

E
[
∇L̂(w)

∣∣∣j?mb = j?
]

= ∇L(w).

Proof of Lemma 5.3 on page 53:
If j? is unique, then the true threshold t is a differentiable function of weights w. The dif-
ferentiability of L and L̂ follows from the chain rule. If j?mb = j? holds, then the sampled
gradient equals to

∇L̂(w) = λw+
1

nmb,+

∑

i∈Imb,+

l′(t − f (xi ;w))
(
∇f (xj? ;w)−∇f (xi ;w)

)
. (D.1)

The summands are identical to the ones in (5.2). Since the sum is performed with respect
to positive samples, the threshold is computed from negative samples, the lemma statement
follows. �

Theorem 5.4

Under the assumptions of Lemma 5.3, the bias of the sampled gradient from (5.4) satisfies

bias(w) = P
[
j?mb , j

?
](
∇L(w)−E

[
∇L̂(w)

∣∣∣j?mb , j
?
])
. (5.8)

Proof of Theorem 5.4 on page 53:
The law of total expectation implies

E∇L̂(w) = P
[
j?mb = j?

]
E
[
∇L̂(w)

∣∣∣j?mb = j?
]
+P

[
j?mb , j

?
]
E
[
∇L̂(w)

∣∣∣j?mb , j
?
]
,

from where the statement follows due to definition (5.4) and Lemma 5.3. �

121

122

Bibliography

[1] Lukáš Adam and Martin Branda. Machine learning approach to chance-constrained prob-
lems: An algorithm based on the stochastic gradient descent. 2019. arXiv: 10.48550/ARXIV.
1905.10986.

[2] Lukáš Adam and Václav Mácha. “Projections onto the canonical simplex with additional
linear inequalities”. In: Optimization Methods and Software 37.2 (2022), pp. 451–479. doi:
10.1080/10556788.2020.1797023.

[3] Lukáš Adam et al. “General framework for binary classification on top samples”. In:
Optimization Methods and Software 37.5 (2022), pp. 1636–1667. doi: 10.1080/10556788.
2021.1965601.

[4] Shivani Agarwal. “The infinite push: A new support vector ranking algorithm that di-
rectly optimizes accuracy at the absolute top of the list”. In: Proceedings of the 2011
SIAM International Conference on Data Mining (SDM). SIAM. 2011, pp. 839–850. doi:
10.1137/1.9781611972818.72.

[5] Charu C Aggarwal. Artificial Intelligence. A Textbook. Cham: Springer International Pub-
lishing, 2021. isbn: 978-3-030-72357-6. doi: 10.1007/978-3-030-72357-6.

[6] Zeynep Batmaz et al. “A review on deep learning for recommender systems: challenges
and remedies”. In: Artificial Intelligence Review 52.1 (2019), pp. 1–37. doi: 10 . 1007 /
s10462-018-9654-y.

[7] Jeff Bezanson et al. “Julia: A fresh approach to numerical computing”. In: SIAM review
59.1 (2017), pp. 65–98. doi: 10.1137/141000671.

[8] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A training algorithm for
optimal margin classifiers”. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory. COLT ’92. Pittsburgh, Pennsylvania, USA: Association for Computing
Machinery, 1992, pp. 144–152. isbn: 089791497X. doi: 10.1145/130385.130401.

[9] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization methods for large-scale
machine learning”. In: SIAM Review 60.2 (2018), pp. 223–311. doi: 10.1137/16M1080173.

[10] Stephen Boyd and Lieven Vandenberghe. Convex optimization. 1st ed. Cambridge Uni-
versity Press, 2004. isbn: 978-0521833783.

[11] Stephen Boyd et al. “Accuracy at the top”. In: Advances in neural information processing
systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc., 2012.

[12] Andrew P Bradley. “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”. In: Pattern recognition 30.7 (1997), pp. 1145–1159. issn:
0031-3203. doi: 10.1016/S0031-3203(96)00142-2.

[13] Kay Henning Brodersen et al. “The Balanced Accuracy and Its Posterior Distribution”.
In: 2010 20th International Conference on Pattern Recognition. IEEE. 2010, pp. 3121–3124.
doi: 10.1109/ICPR.2010.764.

123

https://arxiv.org/abs/10.48550/ARXIV.1905.10986
https://arxiv.org/abs/10.48550/ARXIV.1905.10986
https://doi.org/10.1080/10556788.2020.1797023
https://doi.org/10.1080/10556788.2021.1965601
https://doi.org/10.1080/10556788.2021.1965601
https://doi.org/10.1137/1.9781611972818.72
https://doi.org/10.1007/978-3-030-72357-6
https://doi.org/10.1007/s10462-018-9654-y
https://doi.org/10.1007/s10462-018-9654-y
https://doi.org/10.1137/141000671
https://doi.org/10.1145/130385.130401
https://doi.org/10.1137/16M1080173
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1109/ICPR.2010.764

Bibliography

[14] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A Library for Support Vector Machines”.
In: ACM Transactions on Intelligent Systems and Technology (TIST) 2.3 (2011), pp. 1–27.
issn: 2157-6904. doi: 10.1145/1961189.1961199.

[15] Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. “Coordinate Descent Method for Large-
scale l2-loss Linear Support Vector machines”. In: Journal of Machine Learning Research
9.7 (2008), pp. 1369–1398.

[16] Rémi Cogranne, Quentin Giboulot, and Patrick Bas. “Steganography by Minimizing Sta-
tistical Detectability: The Cases of JPEG and Color Images”. In: Proceedings of the 2020
ACM Workshop on Information Hiding and Multimedia Security. IH&MMSec ’20. Denver,
CO, USA: Association for Computing Machinery, 2020, pp. 161–167. isbn: 9781450370509.
doi: 10.1145/3369412.3395075.

[17] Corinna Cortes and Mehryar Mohri. “AUC Optimization vs. Error Rate Minimization”.
In: Advances in Neural Information Processing Systems. Ed. by S. Thrun, L. Saul, and B.
Schölkopf. Vol. 16. MIT Press, 2003.

[18] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learning
20.3 (1995), pp. 273–297. doi: 10.1007/BF00994018.

[19] Janez Demšar. “Statistical comparisons of classifiers over multiple data sets”. In: Journal
of Machine Learning Research 7 (2006), pp. 1–30.

[20] Li Deng. “The MNIST Database of Handwritten Digit Images for Machine Learning Re-
search [Best of the Web]”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.
doi: 10.1109/MSP.2012.2211477.

[21] Elad ET Eban et al. “Scalable Learning of Non-Decomposable Objectives”. In: Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics. Ed. by Aarti
Singh and Jerry Zhu. Vol. 54. Proceedings of Machine Learning Research. PMLR, 2017,
pp. 832–840.

[22] James P Egan and James Pendleton Egan. Signal detection theory and ROC-analysis. Aca-
demic press, 1975.

[23] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition Letters 27.8
(2006), pp. 861–874. issn: 0167-8655. doi: 10.1016/j.patrec.2005.10.010.

[24] “Flux: Elegant Machine Learning with Julia”. In: Journal of Open Source Software (2018).
doi: 10.21105/joss.00602.

[25] Yoav Freund and Robert E Schapire. “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting”. In: Journal of Computer and System Sciences
55.1 (1997), pp. 119–139. issn: 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1504.

[26] Yoav Freund et al. “An Efficient Boosting Algorithm for Combining Preferences”. In:
Journal of Machine Learning Research 4 (2003), pp. 933–969.

[27] Jessica Fridrich, Tomáš Pevný, and Jan Kodovský. “Statistically Undetectable Jpeg Steganog-
raphy: Dead Ends Challenges, and Opportunities”. In: Proceedings of the 9th Workshop on
Multimedia & Security. MM&Sec ’07. Dallas, Texas, USA: Association for Computing Ma-
chinery, 2007, pp. 3–14. isbn: 978-1-59-593857-2. doi: 10.1145/1288869.1288872.

[28] Milton Friedman. “A Comparison of Alternative Tests of Significance for the Problem
of m Rankings”. In: The Annals of Mathematical Statistics 11.1 (1940), pp. 86–92. issn:
00034851.

[29] Giorgio Giacinto and Fabio Roli. “Intrusion detection in computer networks by multiple
classifier systems”. In: 2002 International Conference on Pattern Recognition. Vol. 2. IEEE.
2002, pp. 390–393. doi: 10.1109/ICPR.2002.1048321.

124

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/3369412.3395075
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.21105/joss.00602
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1145/1288869.1288872
https://doi.org/10.1109/ICPR.2002.1048321

Bibliography

[30] Peter W. Glynn. “Importance Sampling For Monte Carlo Estimation Of Quantiles”. In:
Mathematical Methods in Stochastic Simulation and Experimental Design: Proceedings of the
2nd St. Petersburg Workshop on Simulation. Citeseer. St Petersburg, Russia: Publishing
House of Saint Petersburg University, 1996, pp. 180–185.

[31] Martin Grill and Tomáš Pevný. “Learning combination of anomaly detectors for security
domain”. In: Computer Networks 107 (2016), pp. 55–63. issn: 1389-1286. doi: 10.1016/j.
comnet.2016.05.021.

[32] James A Hanley and Barbara J McNeil. “The meaning and use of the area under a receiver
operating characteristic (ROC) curve.” In: Radiology 143.1 (1982), pp. 29–36. doi: 10 .
1148/radiology.143.1.7063747.

[33] Mohammad Hossin and Md Nasir Sulaiman. “A review on evaluation metrics for data
classification evaluations”. In: International Journal of Data Mining & Knowledge Manage-
ment Process 5.2 (2015). doi: 10.5121/ijdkp.2015.5201.

[34] Cho-Jui Hsieh et al. “A Dual Coordinate Descent Method for Large-Scale Linear SVM”.
In: Proceedings of the 25th International Conference on Machine Learning. ICML ’08. Helsinki,
Finland: Association for Computing Machinery, 2008, pp. 408–415. isbn: 9781605582054.
doi: 10.1145/1390156.1390208.

[35] Michael Innes et al. Fashionable Modelling with Flux. 2018. arXiv: 10.48550/ARXIV.1811.
01457.

[36] Thorsten Joachims. “Optimizing Search Engines Using Clickthrough Data”. In: Proceed-
ings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’02. Edmonton, Alberta, Canada: Association for Computing Machinery,
2002, pp. 133–142. isbn: 158113567X. doi: 10.1145/775047.775067.

[37] Thorsten Joachims. “A Support Vector Method for Multivariate Performance Measures”.
In: Proceedings of the 22nd International Conference on Machine Learning. ICML ’05. Bonn,
Germany: Association for Computing Machinery, 2005, pp. 377–384. isbn: 1595931805.
doi: 10.1145/1102351.1102399.

[38] Frederick Kaefer, Carrie M Heilman, and Samuel D Ramenofsky. “A neural network ap-
plication to consumer classification to improve the timing of direct marketing activities”.
In: Computers & Operations Research 32.10 (2005), pp. 2595–2615. issn: 0305-0548. doi:
10.1016/j.cor.2004.06.021.

[39] Takafumi Kanamori, Akiko Takeda, and Taiji Suzuki. “Conjugate Relation Between Loss
Functions and Uncertainty Sets in Classification Problems”. In: Journal of Machine Learn-
ing Research 14.1 (2013), pp. 1461–1504.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014.
arXiv: 10.48550/ARXIV.1412.6980.

[41] Jan Kodovský and Jessica Fridrich. “Steganalysis of JPEG images using rich models”.
In: Media Watermarking, Security, and Forensics 2012. Ed. by Nasir D. Memon, Adnan M.
Alattar, and Edward J. Delp III. Vol. 8303. International Society for Optics and Photonics.
SPIE, 2012, pp. 81–93. doi: 10.1117/12.907495.

[42] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
ages. Citeseer, 2009.

[43] Maksim Lapin, Matthias Hein, and Bernt Schiele. “Top-k Multiclass SVM”. In: Advances
in Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Asso-
ciates, Inc., 2015, pp. 325–333.

[44] Daniel Lévy and Arzav Jain. Breast mass classification from mammograms using deep con-
volutional neural networks. 2016. arXiv: 10.48550/ARXIV.1612.00542.

125

https://doi.org/10.1016/j.comnet.2016.05.021
https://doi.org/10.1016/j.comnet.2016.05.021
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1145/1390156.1390208
https://arxiv.org/abs/10.48550/ARXIV.1811.01457
https://arxiv.org/abs/10.48550/ARXIV.1811.01457
https://doi.org/10.1145/775047.775067
https://doi.org/10.1145/1102351.1102399
https://doi.org/10.1016/j.cor.2004.06.021
https://arxiv.org/abs/10.48550/ARXIV.1412.6980
https://doi.org/10.1117/12.907495
https://arxiv.org/abs/10.48550/ARXIV.1612.00542

Bibliography

[45] Nan Li, Rong Jin, and Zhi-Hua Zhou. “Top Rank Optimization in Linear Time”. In: Ad-
vances in Neural Information Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27.
NIPS’14. Curran Associates, Inc., 2014, pp. 1502–1510.

[46] Václav Mácha, Lukáš Adam, and Václav Šmídl. Nonlinear classifiers for ranking problems
based on kernelized SVM. 2020. arXiv: 10.48550/ARXIV.2002.11436.

[47] Alan Mackey, Xiyang Luo, and Elad Eban. Constrained Classification and Ranking via
Quantiles. 2018. arXiv: 10.48550/ARXIV.1803.00067.

[48] Šimon Mandlík et al. Mill.jl and JsonGrinder.jl: automated differentiable feature extraction
for learning from raw JSON data. 2021. arXiv: 10.48550/ARXIV.2105.09107.

[49] Šimon Mandlík et al. “JsonGrinder.jl: automated differentiable neural architecture for
embedding arbitrary JSON data”. In: Journal of Machine Learning Research 23 (298 2022),
pp. 1–5.

[50] Charles E Metz. “Basic principles of ROC analysis”. In: Seminars in Nuclear Medicine 8.4
(1978), pp. 283–298. issn: 0001-2998. doi: 10.1016/S0001-2998(78)80014-2.

[51] Tom M Mitchell and Tom M Mitchell. Machine learning. Vol. 1. 9. McGraw-hill New York,
1997.

[52] Tayana Morkel, Jan HP Eloff, and Martin S Olivier. “An overview of image steganog-
raphy”. In: Proceedings of the Fifth Annual Information Security South Africa Conference
(ISSA2005). 2. 2005, pp. 1–11.

[53] Peter Bjorn Nemenyi. Distribution-free Multiple Comparisons. Princeton University, 1963.

[54] Yuval Netzer et al. “Reading digits in natural images with unsupervised feature learn-
ing”. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011. NIPS’11.
2011, pp. 1502–1510.

[55] Jerzy Neyman and Egon Sharpe Pearson. “On the problem of the most efficient tests of
statistical hypotheses”. In: Philosophical Transactions of the Royal Society of London. Series
A, Containing Papers of a Mathematical or Physical Character 231.694-706 (1933), pp. 289–
337.

[56] Jorge Nocedal and Stephen Wright. Numerical optimization. New York, NY, USA: Springer
Science & Business Media, 2006. isbn: 978-0-387-22742-9. doi: 10.1007/b98874.

[57] Wlodzimierz Ogryczak and Arie Tamir. “Minimizing the sum of the k largest functions
in linear time”. In: Information Processing Letters 85.3 (2003), pp. 117–122. issn: 0020-
0190. doi: 10.1016/S0020-0190(02)00370-8.

[58] Patrick Pantel, Dekang Lin, et al. “Spamcop: A spam classification & organization pro-
gram”. In: Proceedings of AAAI-98 Workshop on Learning for Text Categorization. 1998,
pp. 95–98.

[59] Tomáš Pevný and Petr Somol. “Using Neural Network Formalism to Solve Multiple-
Instance Problems”. In: Advances in Neural Networks - International Symposium on Neural
Networks (ISNN 2017). Ed. by Fengyu Cong, Andrew Leung, and Qinglai Wei. Springer.
Cham: Springer International Publishing, 2017, pp. 135–142. isbn: 978-3-319-59072-1.
doi: 10.1007/978-3-319-59072-1_17.

[60] Cynthia Rudin. The P-Norm Push: A Simple Convex Ranking Algorithm That Concentrates
at the Top of the List. Vol. 10. 2009, pp. 2233–2271.

[61] Karen Scarfone, Peter Mell, et al. “Guide to intrusion detection and prevention systems
(idps)”. In: National Institute of Standards and Technology - special publication (2007). doi:
10.6028/NIST.SP.800-94.

126

https://arxiv.org/abs/10.48550/ARXIV.2002.11436
https://arxiv.org/abs/10.48550/ARXIV.1803.00067
https://arxiv.org/abs/10.48550/ARXIV.2105.09107
https://doi.org/10.1016/S0001-2998(78)80014-2
https://doi.org/10.1007/b98874
https://doi.org/10.1016/S0020-0190(02)00370-8
https://doi.org/10.1007/978-3-319-59072-1_17
https://doi.org/10.6028/NIST.SP.800-94

Bibliography

[62] Mark Schmidt, Nicolas Le Roux, and Francis Bach. “Minimizing finite sums with the
stochastic average gradient”. In: Mathematical Programming 162.1-2 (2017), pp. 83–112.
doi: 10.1007/s10107-016-1030-6.

[63] Bernhard Scholkopf and Alexander Smola. “Learning with kernels: support vector ma-
chines, regularization, optimization, and beyond”. In: Journal of the American Statistical
Association 98.462 (2003), pp. 489–489. doi: 10.1198/jasa.2003.s269.

[64] Shashank Shanbhag and Tilman Wolf. “Accurate anomaly detection through parallelism”.
In: IEEE network 23.1 (2009), pp. 22–28. doi: 10.1109/MNET.2009.4804320.

[65] Shai Shnlev-Shwartz and Tong Zhang. “Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization”. In: Mathematical Programming 155.1-2 (2014),
pp. 105–145. doi: 10.1007/s10107-014-0839-0.

[66] Vincent G Sigillito et al. “Classification of radar returns from the ionosphere using neu-
ral networks”. In: Johns Hopkins APL Technical Digest 10.3 (1989), pp. 262–266.

[67] Joshua Silman. “Steganography and steganalysis: an overview”. In: (2001).

[68] The Independent JPEG Group’s JPEG software. Libjpeg. 2014. url: https://github.com/
LuaDist/libjpeg.

[69] Vaibhav Swaminathan et al. “Autonomous Driving System with Road Sign Recognition
using Convolutional Neural Networks”. In: 2019 International Conference on Computa-
tional Intelligence in Data Science (ICCIDS). 2019, pp. 1–4. doi: 10.1109/ICCIDS.2019.
8862152.

[70] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks”. In: Proceedings of the 36th International Conference on Machine Learn-
ing. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Ma-
chine Learning Research. PMLR, 2019, pp. 6105–6114.

[71] Dirk Tasche. A plug-in approach to maximising precision at the top and recall at the top.
2018. arXiv: 10.48550/ARXIV.1804.03077.

[72] Giuseppe Viale. “The current state of breast cancer classification”. In: Annals of Oncology
23 (2012), pp. 207–210. doi: 10.1093/annonc/mds326.

[73] Tino Werner. A review on ranking problems in statistical learning. 2019. arXiv: 10.48550/
ARXIV.1909.02998.

[74] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. 2017. arXiv: 10.48550/ARXIV.1708.07747.

[75] Yang You et al. Large batch optimization for deep learning: Training bert in 76 minutes. 2019.
arXiv: 10.48550/ARXIV.1904.00962.

[76] Ao Zhang et al. tau-FPL: Tolerance-Constrained Learning in Linear Time. 2018. arXiv: 10.
48550/ARXIV.1801.04701.

[77] Xi-Zheng Zhang. “Building Personalized Recommendation System in E-Commerce us-
ing Association Rule-Based Mining and Classification”. In: 2007 International Conference
on Machine Learning and Cybernetics. Vol. 7. IEEE. 2007, pp. 4113–4118. doi: 10.1109/
ICMLC.2007.4370866.

127

https://doi.org/10.1007/s10107-016-1030-6
https://doi.org/10.1198/jasa.2003.s269
https://doi.org/10.1109/MNET.2009.4804320
https://doi.org/10.1007/s10107-014-0839-0
https://github.com/LuaDist/libjpeg
https://github.com/LuaDist/libjpeg
https://doi.org/10.1109/ICCIDS.2019.8862152
https://doi.org/10.1109/ICCIDS.2019.8862152
https://arxiv.org/abs/10.48550/ARXIV.1804.03077
https://doi.org/10.1093/annonc/mds326
https://arxiv.org/abs/10.48550/ARXIV.1909.02998
https://arxiv.org/abs/10.48550/ARXIV.1909.02998
https://arxiv.org/abs/10.48550/ARXIV.1708.07747
https://arxiv.org/abs/10.48550/ARXIV.1904.00962
https://arxiv.org/abs/10.48550/ARXIV.1801.04701
https://arxiv.org/abs/10.48550/ARXIV.1801.04701
https://doi.org/10.1109/ICMLC.2007.4370866
https://doi.org/10.1109/ICMLC.2007.4370866

	Introduction
	Introduction to Classification at the Top
	Binary Classification
	Performance Evaluation
	Confusion Matrix
	ROC Analysis

	Classification at the Top
	Ranking Problems
	Accuracy at the Top
	Hypothesis Testing

	Summary

	Framework for Classification at the Top
	Surrogate Formulation
	Ranking Problems
	Accuracy at the Top
	Threshold Comparison
	Efficient Computing of the Threshold for Pat&Mat

	Neyman-Pearson Problem
	Threshold Comparison

	Summary

	Primal Formulation: Linear Model
	Convexity
	Differentiability
	Stability
	Stochastic Gradient Descent
	Summary

	Dual Formulation: Linear Model
	Derivation of Dual Problems
	Family of TopPushK Formulations
	Family of Pat&Mat Formulations

	Kernels
	Coordinate Descent Algorithm
	Update Rules
	Initialization

	Summary

	Primal Formulation: Non-Linear Model
	Bias of Sampled Gradient
	DeepTopPush
	Theoretical Justification

	Numerical Experiments
	Settings
	Formulations
	Hyper-parameters
	Datasets
	Performance Criteria
	Critical Difference Diagrams
	Implementation

	Image Recognition
	Primal Formulation: Linear Model
	Dual Formulation: Linear Model
	Primal Formulation: Non-Linear Model

	Steganalysis
	Nsf5
	JMiPOD

	Malware Detection

	Conclusion
	Apendices
	Appendix for Chapter 2
	Appendix for Chapter 3
	Convexity
	Differentiability
	Stability
	Stochastic Gradient Descent
	General Results
	Proof of Theorem 3.9
	Auxiliary Results

	Appendix for Chapter 4
	Derivation of Dual Problems
	Family of TopPushK Formulations
	Family of Pat&Mat Formulations

	Coordinate Descent Algorithm
	Family of TopPushK Formulations
	Family of Pat&Mat Formulations

	Appendix for Chapter 5
	Bibliography

