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Abstrakt

Disertační práce je zaměřena na konstrukci pokročilého klasifikátoru založeného
na nové teorii. Tato nová teorie využívá velkého množství neperfektních metod
učení, ať už ve formě učení s učitelem, nebo bez učitele, ke konstrukci tzv. skry-
tých tříd. Počet skrytých tříd se předpokládá vyšší než počet výstupních tříd kla-
sifikační úlohy. Hlavní teorie spočívá v otázce optimálního sjednocování skrytých
tříd tak, aby byla dosažena co nejvyšší přesnost, případně citlivost nového klasifi-
kátoru. V práci se pro hodnocení kvality klasifikace využívá tzv. kritická citlivost,
tedy nejnižší přesnost dosažená napříč třídami. Vzhledem k tomu, že nový kla-
sifikátor využívá informace z těchto jiných systémů, tak tyto skryté klasifikátory
musí sami za sebe určit příslušnost výsledné třídy původní úlohy. Tato přísluš-
nost může být výsledkem neperfektního pokusu o klasifikaci do původních tříd,
nebo výsledkem učení bez učitele, například shlukování. Díky tomuto přístupu
je možné data reprezentovat pomocí názoru velkého množství různých klasifiká-
torů, které nemusí využívat všech vlastností ani vzorů z původních dat, může se
jednat rovněž o jakékoli výsledky neperfektního učení. Součástí práce je návrh
nového přístupu k samoorganizaci dat za využití difuze. Veškerá neperfektnost
při vytváření skrytých tříd vede k rozmanitosti nového klasifikátoru. Nový pos-
tup se osvědčil na srovnání použití třinácti klasických metod klasifikace, kde bylo
dosaženo zlepšení výsledků klasifikace hodnocené podle kritické citlivosti.

Abstract

The doctoral thesis focuses on the construction of an advanced classifier based
on a new theory. This new theory is based on the use of a large number of im-
perfect learning methods, whether in the form of supervised or unsupervised
learning, which are used to construct so-called hidden classes. The number of
hidden classes is assumed to be higher than the number of output classes of the
classification task. The main theory lies in the question of the optimal unioning
of hidden classes in order to achieve the highest accuracy or sensitivity of the
new classifier. The so-called critical sensitivity, i.e. the lowest accuracy achieved
across classes, is used to evaluate the quality of classification in the thesis. Since
the new classifier uses information from the other systems, these hidden clas-
sifiers themselves must determine the membership of the resulting class of the
original task. This is obtained either as an imperfect attempt to classify into the
original classes or as a result of unsupervised learning, such as clustering. This
approach allows data to be represented by the results of a large number of dif-
ferent classifiers, which may not use all the properties or patterns of the original
data, and may also include the results of the imperfect learning. Part of the the-
sis is focused on the design of a new approach to self-organization of data using
diffusion. All imperfections in the formation of hidden classes lead to the diver-
sity of the new classifier. The new procedure has been proven by comparing the
use of thirteen traditional classification methods, where an improvement in the
classification results evaluated according to critical sensitivity was achieved.
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Introduction

Introduction

The thesis is focused on a novel imperfect approach to classification tasks. The
importance of such a task remains indisputable in the current world. The classifi-
cation remains important over time and in the current environment of ubiquitous
artificial intelligence. The pressure on quick and somehow right decisions is still
here and it is not likely to disappear in the near future. The decision-making
process is one of the main components of artificial intelligence across scientific
disciplines.

In the first chapter, we provide a summary of classification methods in the vector
space. We presented mainly the methods of the perfect and the imperfect learn-
ing where we expect a potential improvement by using novel learning strategies.
The main idea is that the imperfectness could lead to better results, therefore
improve the traditional, perfect, learning strategies. We do not search for any
extraordinarily good methods, but we focus on relatively good and well known
algorithms that could be improved.

The second chapter is a summary of the main goals of the thesis leading to a novel
imperfect classifier.

In the third chapter, we focus on novel methods for self-organization. We derive
our new method from the traditional Kohonen learning. The aim is to benefit
from the biological processes which can be captured using mathematical equa-
tions.

The main idea of the thesis is presented in the fourth chapter, which deals with
the core contribution of the thesis: a novel theory of the imperfect learning. We
aim to formulate the imperfect learning strategy by using the linear program-
ming theory.

The fifth chapter is focused on the structure of the proposed classifier. We sum-
marize the main options for the data preprocessing and the forming of hidden
classes. The hidden classifier based on the optimal union of hidden classes is a
part of the novel classifier scheme. The approaches for the classifier validation
are also discussed in this chapter.

The experimental part is focused on a detailed analysis of the proposed classifier.
Firstly, we discuss one traditional dataset in detail. Secondly, we compare the re-
sults of the new proposed classifier with the traditional perfect learning strategy
by classification of nine additional datasets. We present also the results on two
specific real datasets.
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Introduction

The implementation of the new classifier is in the Matlab. Therefore, the ba-
sic structure of the proposed classifier and its organization to basic functions
is briefly described in the last chapter.

In the first appendix, we present a brief summary of the basic Matlab functions.
The second appendix presents three main publications related to our research in
the impact journals.
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Chapter 1. Classification Methods in Vector Space

Chapter 1

Classification Methods in Vector
Space

We start this chapter with a definition of the classification task. The presented
notation will be provided throughout the whole thesis. The learning techniques
can be divided into supervised and unsupervised. As a starting point of data
analysis, preprocessing techniques will be presented in this section. Last but not
least, validation approaches will be discussed.

1.1 Classification Task

Basic facts related to the classification into several classes are summarized in
this section. The basic frame of the vector patterns classification [1] into several
classes is established first. Let n,m,N ∈ N be the number of features, patterns,
and classes satisfying N ≥ 2. Let x ∈ Rn be the feature vector and y,y∗ ∈ {1, ...,N }
be the classifier output and its required value, denoting a pattern as p = (x, y∗),
the classifier is defined as a function

c : Rn→ {1, ...,N } (1.1)

and the classifier response is, therefore, y = c(x). Denoting xk ∈ Rn, y∗k ∈ {1, ...,N }
as the feature vector and the given output of the k-th pattern, we define the pat-
tern set as

S = {(xk , y∗k) : k = 1, ...,m}. (1.2)

The pattern set can be represented by any input matrix X ∈ Rm×n and any out-
put vector y∗ ∈ {1, ...,N }m. Any classifier is a complex system that applies various
data processing techniques to obtain the final decision. Selected approaches are
summarised in the following sections.
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Chapter 1. Classification Methods in Vector Space

The basic machine learning techniques used for the classification differ in the
need for previous knowledge of data classification [1]. Therefore we can dis-
tinguish between two main learning techniques: the supervised and the unsu-
pervised techniques. The supervised learning means that we work with labelled
data. When we do not have any previous knowledge of the class identification, we
talk about the unsupervised learning over unlabelled data. The artificial neural
network models are very popular tools for the classification. They can be based
on both the supervised and the unsupervised learning techniques.

The supervised techniques are further divided into density-based, linearity-based,
and iterative ones. Pattern clustering and self-organizing maps represent unsu-
pervised techniques.

1.2 Supervised Learning Techniques

The supervised techniques [2] require a labelled dataset. The task [2] of the su-
pervised learning is based on pairs of input-output data. If the algorithm tries
to label the input into two distinct classes, it is called the binary classification.
Selecting between more than two classes is referred to as the multi-class classi-
fication. We will start with the traditional techniques based on the density and
linear combination. The third supervised learning technique will be focused on
the iterative learning.

1.2.1 Density Based Classification

There are many methods that are based on the model of multidimensional Gaus-
sian normal distribution. The main idea is that every output class is supposed to
have a feature vector belonging to the normal distribution as

X ∼N(µ,Σ) (1.3)

where x is the feature vector, µ is the center of the class x,µ ∈ Rn and Σ ∈ Rn×n

and Σ > 0 is the positive definite covariance matrix. The adequate formula for the
individual class density is

f (x,µ,Σ) = (2π)−n/2|Σ|−1/2 exp
(
−1

2
(x−µ)TΣ−1(x−µ)

)
. (1.4)

But we have N classes denoted asCk for k = 1, ...,N and the number of patterns in
these classes is denoted as mk, mk ≥ 2 and

∑N
k=1mk = m. We calculate the gravity

center of every class as

ek =
1
mk

mk∑
j=1

xk,j (1.5)
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Chapter 1. Classification Methods in Vector Space

and also the estimate of the covariance matrix as

Ck =
1

mk − 1

mk∑
j=1

(xk,j − ek)(xk,j − ek)T . (1.6)

In some applications, we also design the central covariance matrix which is de-
fined as the weighted sum of the individual covariance matrices

C∗ =
1
m

N∑
k=1

mkCk . (1.7)

Linear Discriminant Analysis (LDA)

The hypothesis of the multivariate normal distribution is used in the regularized
form of linear discriminant analysis [3] as follows. We have a regularization pa-
rameter λ ≥ 0. In the given point x and class k we calculate the density using the
central covariance matrix and the density (1.4)

fk = f (x,ek ,C
∗ +λI) (1.8)

for k = 1, ...,N where I ∈Rn×n is identity matrix.

After the class density evaluation, we decide whether the given pattern x belongs
to the j-th class, x ∈ Cj , or not. When fj > fk for all k , j we say that x ∈ Cj ,
therefore y = j. In any case, we say that y = 0 as a symbol of unknown classifier
output.

The role of the regularization parameter λ is cardinal. When λ = 0 the regu-
larization is omitted and the traditional LDA is realized. We use positive λ > 0
whenever the covariance matrix C∗ is degenerated. The optimal value of λ will be
determined experimentally.

Quadratic Discriminant Analysis (QDA)

A similar technique is used in the advanced method of quadratic discriminant
analysis [4]. The method differs only in the covariance matrix where every class
has its own center of gravity and also its covariance matrix

fk = f (x,ek ,Ck +λI) (1.9)

for , k = 1, ...,N and the density (1.4).

Parzen Estimate

Another possibility of calculating the class density fk is to use the Gaussian nor-
mal distribution again but with raw data instead of the center of gravity and by
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Chapter 1. Classification Methods in Vector Space

averaging the individual densities [5]. Resulting formula is

fk =
1
mk

mk∑
j=1

f (x,xk,j ,Hk), (1.10)

where xk,j is the symbol of the j-th vector of the k-th class and the positive
semidefinite matrix Hk ∈ R

n×n,H > 0 is subject to the experimental research
again. There are two traditional rules of thumb for setting this matrix. The matrix
is designed as positive definite but diagonal only.

Therefore, hi,j = 0, i , j and in the case of Scott’s rule [6] we calculate

hk,i,i = σ2
k,im

−2/(n+4)
k . (1.11)

The alternative choice is Silverman’s rule [7] where

hk,i,i = σ2
k,im

−2/(n+4)
k

4
n+ 2

2/(n+4)
. (1.12)

where σ2
k,i is the estimate of variance of the i-th coordinate within the k-th class.

Loftsgaarden-Quesenberry Estimate (LQ)

In case we do not prefer the Gaussian normal distribution we can use the point-
to-point Euclidean distances to design the classifier in an alternative way [8, 9].
First, we calculate the distance of the input vector to all vectors of the class k as

dk,j = ∥x− xk,j∥ (1.13)

for j = 1, ...,mk. Based on the author’s suggestion, we also set the critical parameter

rk = ⌈m1/2
k ⌉ (1.14)

for every class. After denoting the Vn as the volume of n-dimensional unit ball
we directly calculate the class density as

fk =
rk − 1

mkVnd
n
k,rk

, (1.15)

where dnk,rk is the rk-th smallest distance in the k-th class.

k-Nearest Neighbour (k-NN) Estimate

The last presented density-based classifier is the k-NN classifier which is also
based on the Euclidean distances. The main idea of this alternative approach to
the density estimation is to fix the number of points required to estimate the
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Chapter 1. Classification Methods in Vector Space

density. This allows the volume of the enclosing region to accommodate this fixed
number of points [10].

We also calculate the distances between the input vector x and all vectors of over-
all classes. According to

ρi = ∥x− xi∥ (1.16)

for i = 1, ...,m and after sorting the distances, we evaluate the k-th distance as

ρ∗ = ρ(k). (1.17)

Instead of the densities, we calculate only the cardinality in the ρ∗ neighbourhood
for every class as

fj = card{i:ρi ≤ ρ∗& y∗i = j} (1.18)

for j = 1, ...,N .

The final decision about the class membership uses the same algorithm as in the
case of the LDA.

1.2.2 Linearity Based Classification

Presented techniques are based on the linear combination of pattern properties.
Some of them are applicable only to the linearly separable pattern sets.

The linear techniques are based on the weight vector w = (w0,w1, ...,wn) whose
dimension is n + 1 and which is used in the linear optimization tasks. The w0
represents a bias.

Max-Margin (MM) Classifier

The abilities of the linear classification can be demonstrated as a direct appli-
cation of Max-Margin classifier [11]. Traditionally, this classifier is applied only
for N = 2 using the bipolar notation i.e. X ∈Rm×n,y∗ ∈ {±1}m where y∗ = +1 repre-
sentsC1 and y∗ = −1 representsC2. The bipolar response is driven by the formula

y = sign

w0 +
n∑

j=1

wjxj

 (1.19)

where w ∈Rn+1 is an unknown vector satisfyingw0 +
n∑

j=1

wjxi,j

y∗i ≥ 1 (1.20)

for all i = 1, ...,m as separability conditions. Using the maximum margin condi-
tion

n∑
j=1

w2
j = min, (1.21)
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Chapter 1. Classification Methods in Vector Space

the optimum weights are the solution of the quadratic optimization task.

The Max-Margin classifier is applicable only to a linear separable pattern set.

The Max-Margin technique can also be used for the optional number of output
classes N in this way. We perform N Max-Margin classifications using the pre-
vious procedure for every class. The union of rest classes is used as the opposite
one. Finally, we calculate

fk = wk,0 +
n∑

j=1

wk,jxj (1.22)

for every class. The final decision is obtained by the maximization of fk.

Ridge Regression (RR)

The basic approach in regression analysis is represented by the least squares
method. The well-known method approximates the solution of overdetermined
systems by minimizing the sum of the squares of the residuals made in the results
of every single equation.

To face the negative impact of the collinearity on the least squares estimator we
can use the Ridge Regression [12], which provides a means of addressing the
problem of the collinearity without removing variables from the original set of
independent variables.

The relation to generalized inverse regression was presented and the RR was con-
firmed to be a safe procedure for selecting variables and producing coefficients
that predict and extrapolate better than least squares, as summarized in [13].

It is necessary to extend the matrix X first using the first column for the bias input
as

Xxtd = (I|X) ∈Rm×(n+1). (1.23)

When we plan the classification to N classes we also use matrix Y∗,

Y∗ ∈ {0,1}m×(n+1) (1.24)

satisfying
N∑
j=1

y∗i,j = 1 for i = 1, ...,m, (1.25)

which represents the original vector y∗ in an equivalent form.

The result of learning of the RR is the matrix

W =
(
XT

xtdXxtd +λI
)−1

XT
xtdY∗, (1.26)

where λ is a positive regularization parameter that is subject to efficient cross-
validation.
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If we apply the weights potentially to another pattern set we use the formula for
real output first as

Y = XxtdW ∈Rm×N . (1.27)

The classifier into N classes makes a decision on the best output using the for-
mula

ci ∈ argmax
j=1,...,N

yi,j (1.28)

and therefore, the vector c ∈ {1, ...,N }m. There are many approaches to the se-
lection of the class using the vector values of the matrix Y but the mentioned
approach will be preferred in the experimental part.

Kernel Ridge Regression (KRR)

The kernel ridge regression is a special case of the support vector regression,
which has been known in the Bayesian statistics for a long time [14].

Every kernel method is based on the feature mapping

Φ :Rn→H∗ (1.29)

where R
n is the original space of patterns and H∗ is a Hilbert space. There are

many operations permitted in Hilbert space but the kernel methods are based
only on the linearity and the existence of the scalar product. The scalar product
in the Hilbert space is defined as

κ(x,y) = ΦT(x)Φ(y) (1.30)

and it is called the Kernel function [2].

When we have a pattern set of size m we calculate the Gram matrix as

K =
(
κ(xi ,xj)

)m
i,j=1

. (1.31)

There are many possibilities to design the function κ but in the majority of ap-

plication the authors use the Gaussian kernel κ(xi ,xj) = exp
(
− ∥xi−xj∥2

2σ2

)
.

Having the input vector x we also calculate an adequate feature vector in the
Hilbert space as

k = (κ(x,xi))
m
i=1 (1.32)

The KRR [15, 14] yields from the theory of the RR and operates with the regular-
ization parameter λ > 0. Resulting formula is

y = (y∗)T(K +λI)−1k. (1.33)

Therefore, the traditional Kernel Ridge Regression has two parameters σ and λ
which can rapidly change its properties.

27



Chapter 1. Classification Methods in Vector Space

Random Vector Functional Link (RVFL)

The Random Vector Functional Link network is a kind of the multilayer percep-
tron. The output weights are chosen as adaptable parameters and the remaining
parameters are fixed and randomly generated as iid. The RVFL is an efficient
universal approximator that avoids the curse of dimensionality [16].

The feature space of dimension n is extended by J ∈N hidden neurons which are
represented by the traditional hyperbolic tangent perceptrons with the weights
of maximal value vmax.

The adequate matrix of the supporting weights V ∈ [−vmax,+vmax]J×(n+1)
J is gener-

ated using the uniform distribution as vi,j ∽U([−vmax,+vmax]).

The adequate responses of hidden neurons for every pattern are collected in the
matrix H ∈ (−1,+1)m×J , which is calculated as

H = tanh(XxtdWT) (1.34)

where the Xxtd is the original matrix X extended by unit raw for the bias. The
hidden response matrix H is used for the construction of a modified matrix

XRVFL = (Xxtd|H) (1.35)

satisfying
XRVFL ∈Rm×(n+1+J). (1.36)

Finally, we use the ordinary RR, as described above, to calculate the output weights
as

W =
(
XT

RVFLXRVFL +λI
)−1

XT
RVFLY∗. (1.37)

1.2.3 Iterative Learning

The iterative learning of classifiers is a traditional way to obtain unknown weights
of a given classifier using the stochastic and the deterministic techniques. First,
we assume that the classifier has p parameters, where p ∈N. Therefore, we can
formally denote the classifier weights vector as w ∈ R

p, regardless of whether
the structure of the classifier is hierarchical or matrix. In the traditional iterative
learning the algorithms are based on the penalty function as

ϕ : Rn × {1, ...,N } ×Rp→R
+
0 . (1.38)

Using n patterns, we can formulate the total penalty function

Φ(w) =
1
m

m∑
i=1

ϕ(xi , y
∗
i ,w), (1.39)

which is subject to minimization according to unknown weights vector w. This
total penalty can be formulated also in the statistical sense using the mean value
operator E as

Φ(w) = Eϕ(x, y∗,w). (1.40)
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The traditional gradient methods begin with an initial estimate of weight w0 ∈Rp

and use λ > 0 as the learning rate parameter. The short step gradient method for
local minimum finding is based on the iterative formula

wk = wk−1 −λ
∂Φ(wk−1)

∂w
. (1.41)

There are two disadvantages of gradient methods. First, when the convergence is
achieved using a very small value of λ parameters and many steps of learning,
there is no guarantee that the global optimum of function Φ will be found. The
second disadvantage is the higher time complexity caused by the computing time
proportionality to the number of patterns.

Therefore, we generally prefer the stochastic gradient methods, which are based
on the idea that the mean value of ϕ penalty is approximated by the individual
value of a randomly selected pattern. First, we introduce the set of pattern indices
I ∗ = {1, ...,m}, then we select randomly and uniformly the index in the k-th step

ik ∼U(I ∗). (1.42)

Finally, we adopt the weights using the formula

wk = wk−1 −λ
∂ϕ(xik , y

∗
ik

),wk−1)

∂w
. (1.43)

The main advantage of the stochastic approach is in its time complexity reduced
by a factor m but these techniques also find the local minimum of Φ instead of
the global minimum.

In general, the Multi-Layer Perceptron (MLP) and the Radial Basis Function (RBF)
neural network are good examples of the iterative learning networks.

The MLP neural network represents a class of feed-forward artificial neural net-
works [17] and it can also distinguish the linearly non-separable patterns. The
MLP training can be performed by using the optimizer [18] reaching a high level
of accuracy in the classification and the approximation.

The RBF networks [19] are used as an alternative to the two-layer MLP neural
network. The RBF learning algorithm is based on a random setting of the RBF
centers and it is followed by solving the weight problem using the singular-value
decomposition.

The presence of an untrained class and the comparison [20] of the MLP and the
RBF neural networks lead to the identification and the exclusion of some cases of
the untrained classes resulting in an increase in the classification accuracy.

1.3 Unsupervised Learning Techniques

The extraction of features from unlabelled data represents an unsupervised tech-
nique. In this case, the model works on its own to discover the patterns. There is
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no need for the class representation. These techniques are represented mainly by
numerous clustering techniques.

1.3.1 Pattern Clustering

The typical clustering models [21] are connectivity-based, centroid-based, dis-
tribution, density, subspace, graph-based, and neural network ones. Well known
unsupervised neural network model is represented by the Self-Organizing Maps
(SOM). We can also include subspace models as the Principal Component Analy-
sis (PCA) or the Independent Component Analysis which can be also used as the
data preprocessing techniques for the dimension reduction [22] of the original
dataset consisting of a large number of interrelated variables.

One of the unsupervised algorithms is called the K-means, or the easy clusteri-
zation. This method is based on the grouping of the patterns into groups based
on their characteristics. The clusters are made by minimizing the sum of the dis-
tances between each pattern and the center of a cluster. We select the number of
centroids that are established in the data space, for instance, choosing them ran-
domly. Each pattern is assigned to its nearest centroid. In the next step we update
the centroids. The position of the centroid of each group is updated, taking the
average position of the objects belonging to said group as the new centroid [1].

There are also various approaches to the pattern classification. In this subsection,
we focus on the sequential clustering algorithms, such as the SLINK, the CLINK,
and finally the DBSCAN. The SLINK algorithm [23] carries out the single-link
cluster analysis on an arbitrary dissimilarity coefficient and it provides a repre-
sentation of the resultant dendrogram, which can be readily converted into the
usual tree diagram.

SLINK

The SLINK algorithm uses the positive parameter ϵ to select the pattern inter-
connection using the condition di,j = d(xi ,xj) ≤ ϵ, where d is a distance in R

n,
e. g. the Euclidean distance. The pattern pairs satisfying this condition are con-
nected by an edge in the sense of the undirected graph theory. The final struc-
ture of the undirected graph obviously depends on the data and the parameter ϵ.
And every component of the resulting graph, which consists of at least two ver-
tices, is defined here as a cluster. The rest of the patterns are defined as outliers.
The traditional algorithm of Sibson [24] has the time complexity O(m2), which is
problematic for large pattern sets.

There is also an alternative implementation [25], which comes from a reduction
in the number of distance calculations required by the standard implementation
of the SLINK with the time complexity O(m logm) in the case of m patterns. Hier-
archical clustering, which omits the initial sorting and the consecutive clustering
and which has a linear time complexity as an alternative to the single linkage
clustering, has also been presented [26].
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CLINK

An algorithm for a complete linkage clustering the CLINK [27] is based, just as
the SLINK, on the compact representation of a dendrogram. The CLINK algo-
rithm is slightly complicated but it forms more compact clusters in general. First,
we denote the complete graph of n vertices as Kn, where the vertices are fully
interconnected. Every component which is isomorphic with Kn and consist of at
least two points, is the cluster of the CLINK. The remaining vertices are outliers.
But the time complexity of the original algorithm is also O(m2).

The fast algorithms [28] for the CLINK clustering show that the complete linkage
clustering of m points can be computed in O(m log2m) time.

DBSCAN

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [29,
10] represents a non-parametric algorithm with a given set of points in the metric
space and it groups together the points that are closely packed together and mark
outliers.

We will study patterns in the vector space as xk ∈ Rn, k = 1, ...,m, where m,n rep-
resent the number of patterns and the space dimensionality, respectively, but the
DBSCAN is defined in the metric space. After the application of the Euclidean
distance we can define the mutual distances as di,j = ||xi − xj ||2. Various versions
of this algorithm [30, 31] differ in the method of the distance computation. The
inefficient implementations [32, 33] calculate all mutual distances before the data
clustering with the time complexity O(n2) but there are more effective procedures
that rapidly decrease the time complexity of the DBSCAN to O(m logm) as in the
case of the SLINK.

The DBSCAN is driven by two parameters ϵ > 0, kmin ≥ 2, which fully depend on
the user’s opinion. We will set them to obtain the best sensitivity of the resulting
classifier in the process of cross-validation. The DBSCAN generates an undirected
graph G with the vertex set V = {1, ...,m} and the edge set E = {e1, e2, ..., et} and the
pattern xi is placed in the vertex i for i = 1, ...,m. There are three types of vertices:
a hard member, a soft member, and an outlier.

The vertex i is called the hard member when card{j : di,j ≤ ϵ} ≥ kmin. Every edge
e = {i, j} has to satisfy di,j ≤ ϵ. The edge e is called the hard connection when the
vertices i, j are the hard members. A soft connection is the edge e, where the node
i is the hard member but the node j is not. The remaining edges are eliminated.
The resulting graph G has several components. The component is declared as a
cluster when it has two vertices at least. The remaining discrete components are
declared as outliers.

The main advantage of the SLINK, the CLINK, and the DBSCAN is the capacity
for the sequential learning with acceptable time complexity. The hard members
of the DBSCAN, number of clusters, and outliers are invariant to pattern order
during the learning process.
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1.3.2 Self-Organizing Map

The Self-Organizing Map (SOM) is a traditional tool for the data analysis that
transforms the data patterns from the input space into the vertices of an undi-
rected SOM graph with a given topology and unit-length edges. The input pat-
terns are from the metric vector space in many applications. The parameters of
the SOM are the weights that are placed into the vertices and they are the subject
of learning. The Kohonen learning [34] is the first approach frequently used in
many applications [35, 36, 37, 38].

Kohonen Learning

The Kohonen network maps the input vectors (patterns) of arbitrary dimension n
into the vertices of a given undirected graph. One of the main expected results is
that patterns close to one another in the input space are to be close to one another
in the graph. This is called to be topologically ordered. A Kohonen network is
composed of a grid of the output units and N input units. The input pattern is
fed to each output unit. The input lines to each output unit are weighted. These
weights are initialized to small random numbers.

In the case of the Kohonen learning [39] we use rules as follows. The weight of
the i-th neuron is changed in the q-th step by the rule

wi(q) = wi(q − 1) +α(q) · gi,q · (xq −wi(q − 1)) (1.44)

for i = 1, ...,H , xq ∼U(S) is the uniformly selected pattern from S , gi,q is the spatial
gain and α(q) > 0 is the ageing function, which is supposed to be non-increasing.
The winner selection process is called the Kohonen rule [39]

ϕq ∈ argmin
k=1,...,H

∥xq −wk∥2. (1.45)

In the traditional SOM learning, we have to initialize the weights as small random
iid [40] and use the appropriate ageing strategy.

1.4 Preprocessing Techniques

The first but optional step of any classification is an efficient transformation, that
decreases the number of features but saves information about the pattern differ-
ences.

1.4.1 Data Whitening (DWH)

The main idea of the Principal Component Analysis (PCA) [41] is to reduce the
dimensionality of the original dataset consisting of a large number of interrelated
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variables. The reduction retains the variation present in the data set as much as
possible. The aim is achieved by transforming into a new set of variables called
principal components. These components are uncorrelated and ordered so that
the first few retain the most of the variation present in all of the original variables.

Let D ∈N be a reduced dimension satisfying D < n. The dimensionality reduction
from R

n to R
D using the PCA is based on a linear transformation

z = PCA(x) = WT
1 (x− x0). (1.46)

The PCA is designed to satisfy Ez = 0 and var z = D, where D is a diagonal matrix.
Resulting parameters of the PCA are

W1 ∈Rn×D (1.47)

and

x0 =
1
m

m∑
k=1

xk . (1.48)

The transforming matrix W1 is calculated as follows. First, we shift the input ma-
trix to obtain XS = X−1mxT

0 , where 1m is m-dimensional vector of units. Then we
calculate the covariance matrix A = XT

S XS ≥ 0 and apply the Eigen Value Decom-
position (EVD) to find of eigenvalues v ∈ Rn and eigenvectors λ ≥ 0 in equation
(A−λIn)v = 0 where In ∈Rn×n is an identity matrix.

The solutions can be ordered as λ(1) ≥ λ(2) ≥ ... ≥ λ(D) ≥ 0 with the corresponding
normalized eigenvectors v(1),v(2), ...,v(D). The resulting PCA matrix [41] is

W1 = (v(1),v(2), ...,v(D)) (1.49)

and the dimensionality reduction generates a new feature matrix

Z = XSW1. (1.50)

The data whitening (DWH) [42, 43] represents an improved process of the PCA,
which guarantees the unit covariance matrix of the resulting vector. The trans-
form is defined as

z = DWH(x) = WT
2 (x− x0). (1.51)

The matrix WT
2 is designed to satisfy Ez = 0 and varz = In. Using the result of the

EVD we directly calculate [42]

W2 =

 v(1)√
λ(1)

,
v(2)√
λ(2)

, ...,
v(D)√
λ(D)

 . (1.52)

33



Chapter 1. Classification Methods in Vector Space

Due to duality, we can perform the data whitening for m < n in a more efficient
way. We calculate B = XSXT

S ≥ 0 and perform its EVD. The resulting EVD equation
is (B−λIm)u = 0. The solutions can be ordered again as

λ(1) ≥ λ(2) ≥ ... ≥ λ(D) > 0 (1.53)

with the corresponding normalized eigenvectors u(1),u(2), ...,u(D) ∈ Rm. The re-
sulting whitening matrix is

W2 = XT
S

(
u(1)

λ(1)
,
u(2)

λ(2)
, ...,

u(D)

λ(D)

)
(1.54)

and the data whitening generates a new feature matrix Z = XSW2 in both cases.
The data whitening in its primal or dual form is preferred in this paper for the
optional data preprocessing.

1.4.2 Multiple Discriminant Analysis

Another approach to the dimensionality reduction is based on the knowledge of
class membership. Having information about the classes we can also perform the
linear data transformation to obtain a higher data separation. The classical Fisher
discriminant analysis [44, 45] is designed for two classes but the RAO method
[1, 46] generalized it for a multi-classification task as follows.

The RAO method transforms the data from R
n to R

N−1 for N ≥ 2 using a linear
transformation

z = RAO(x) = WT
3 (x− x0), (1.55)

where W3 ∈Rn×(N−1).

The method is based on the pattern index sets Di ∈ {k ∈N : y∗k = i} for i = 1, ...,N
and their cardinalities mi = cardDi . After the evaluation of the cluster centres

ti =
1
mi

∑
k∈Di

xk (1.56)

we can calculate within the matrix

SW =
N∑
i=1

Si ≥ 0 (1.57)

where
Si =

∑
k∈Di

(xk − ti)(xk − ti)
T. (1.58)
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The total and between matrices are calculated as

ST =
m∑
k=1

(xk − x0)(xk − x0)T, (1.59)

SB = ST −SW =
N∑
i=1

mi(ti − x0)(ti − x0)T. (1.60)

When the pattern set is non-degenerated then SW > 0 and we solve the general-
ized EVD problem, which is driven by equation(

S−1
W SB −λIn

)
e = 0. (1.61)

The solutions of the generalized EVD can be ordered as λ(1) ≥ λ(2) ≥ ... ≥ λ(N−1) ≥
0 with the corresponding eigenvectors e(1),e(2), ...,e(N−1). Finally, the transforma-
tion matrix of the RAO method is

W3 = (e(1),e(2), ...,e(N−1)) (1.62)

and the pattern set has a new feature matrix Z = XSW3 again.

The RAO method is well-informed and the new dimension is fixed to N −1, while
the data whitening has the optional dimension of result and information about
class membership is missing. Therefore, these two approaches can generate differ-
ent matrices W and Z. The RAO method is also useful for the data preprocessing.

1.5 Learning Quality

1.5.1 Quality Measures

The accuracy criterion is used as the traditional measure of a given classifier and
can be expressed as a share of patterns qualified well. Using the concept of the
class sensitivity as a relative frequency of the true classification, we can evaluate
the accuracy for each class. After that, we can use the average sensitivity as a
quality measure.

We prefer the critical sensitivity as the strength criterion of classifier efficiency
which can be maximized via the union of hidden classes. We suppose the param-
eters of classification are set for the complete pattern set to obtain the classifier
with maximum possible critical sensitivity se∗.

1.5.2 Cross-Validation Strategies

In the case of testing the classifier using all training data, we talk about naive
validation.
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After the learning we can perform the cross-validation strategies. When the num-
ber of patterns M is small, we prefer the Leave-One-Out [47, 48] cross-validation
technique, but for a large M we can use the 10-fold [49, 50] cross-validation
scheme, as generally recommended.

1.5.3 SOM Quality Measures

There are two main problems in the SOM learning. First of them is called a butter-
fly structure, when the patterns are mapped in the SOM graph with higher topo-
graphic error. The second problem is in the low accuracy of the self-organization
when the weights of the SOM are far from the pattern set and the quantization
error is higher. We will specify these measures first. The basic way of the quality
measurement design is based on measuring the distances. The Euclidean distance
of points x,y in R

n is denoted d(x,y) = ∥x− y∥2.

Using the pattern xj , we can investigate the distances to weights wk and define
winner as

win(j) ∈ argmin
k=1,...,H

d(xj ,wk) (1.63)

but the function win(j) is stochastic nature due to the possible distance equities.
In some cases we did not find only one winner and the second winner is defined
as

win2(j) ∈ argmin
k∈Mj

d(xj ,wk), (1.64)

whereMj = {1, ...,H} \ {win(j)}.

Using the distances and the winners, we can design traditional measures of vari-
ous nature.

Distance Penalisation

The Quantization Error (QE) is traditionally related to all the forms of vector
quantization and clustering algorithms [51]. Using linear penalisation we di-
rectly penalise the distances between the patterns and the corresponding winner
weights as

QE1 =
m∑
j=1

d(xj ,wwin(j)). (1.65)

The quadratic penalisation

QE2 =
m∑
j=1

d2(xj ,wwin(j)) (1.66)

is also used frequently but it has higher sensitivity to outliers.
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Topographic Error

The general topographic rule is: if two objects are close to one another in real-
ity they must be close to one another also in the map. Using this principle, the
topographic error (TE) [52] is defined as

T E = 1− 1
m

m∑
j=1

gwin(j),win2(j), (1.67)

where G ∈ {0,1}H×H is the SOM topology matrix with gu,v = I(∥pv −pv∥2 ≤ 1). The
main advantage of the TE is its robustness to outliers.

Correlation based measures

The correlations between the mutual distances of patterns and the mutual dis-
tances of winner weights can be directly used as quality measures.

Let i, j be the pattern indices. The mutual pattern distances can be defined as
di,j = d(xi ,xj). The mutual distances of the corresponding weights are ∆i,j =
d∗(wwin(i),wwin(j)), where d, d∗ are the corresponding distances.

Finally, we obtain m(m−1)/2 pairs of corresponding distances and directly calcu-
late the Pearson correlation coefficient r, the Spearmann ρ, or the Kendall τ coef-
ficient as a quality measure. The correlation coefficients are frequently declared
as p–values of independence hypothesis H0 to be comparable with the significant
level 0.05.

Time Complexity of Measures

The evaluations of QE1, QE2 and T E are very fast with the time complexity
O(mnH). The evaluation of correlation measures is more complex. The Pearson
r has the time complexity O(mnH + m2) due to simple statistics over m(m − 1)/2
distance pairs. The Spearmann ρ is complicated by the pair sorting and its time
complexity is O(mnH + m2 log(m)). The Kendall τ is not recommended for large
pattern sets due to the time complexity O(mnH +m4).

Composed Quality Measures

In our research, we prefer the QE1 as the main optimal criterion. Due to its sen-
sitivity to outliers, we propose using of QE2 only as supplementary. Due to the
higher time sentiment, we do not apply the correlation measures. The T E can be
interpreted as a probability of topology saving in a random graph. Comparing
T E as p-value with a critical level of α we can test the hypothesis H0 that the re-
sulting topology is random. Therefore, T E ≤ α indicates a significant topology of
the SOM mapping. Accepting only the significant topology, we can propose only
QE1 to avoid the butterfly effect.
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Chapter 2

Thesis Goals

In this chapter, we summarize the main goals of the thesis. We focus on the sen-
sitivity of the classification results instead of the commonly used accuracy. Our
goal is not only to evaluate and compare the average sensitivity of classes but
also to deal with the individual class sensitivity, i.e. to rely on the so-called criti-
cal sensitivity. Thanks to this approach, we expect to ensure better performance
of the classifier and to achieve a more realistic evaluation of the classifier. The
proposed approach avoids the situation when some of the classes having a small
number of patterns would have a very small sensitivity while achieving a rela-
tively high average sensitivity.

The main goal of this thesis is to propose the construction of a novel classifier
based on a new principle. We propose the critical sensitivity representing the
lowest sensitivity achieved in individual classes, playing the key role when build-
ing and evaluating the performance of the classifier. This means that our effort is
to construct a classifier that ensures the achievement of quality for each individ-
ual class and will not omit the quality of underrepresented classes.

Another goal is to create the concept of the hidden classes, i.e. generally more
classes than the output classes. Our expectation is that such classes could some-
how help the classifier provide better results. The creation of these multiple hid-
den classes aims to improve the classifier to make the right decision in the re-
quired classification into a certain number of classes.

The next goal is to propose an imperfect learning strategy that would be based on
the principle of the pattern set sub-sampling, the traditional classification, and
dealing with the hidden classes concept. Such sub-sampling will subsequently
lead to an increase in the quality of the classifier using the concept of class unifi-
cation.

Another partial goal is to develop at least one new technique for the data self-
organization that could serve as an alternative to the traditional Kohonen learn-
ing. We will therefore focus on the classical Kohonen learning and propose a new
method for the adaptation of the learning weights. Our inspiration in this area
will be the natural processes that are already mathematically describable and
applicable to the process of the self-organization of data.
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The next goal is to compare the effectiveness of individual heuristics with the
traditional approaches using the standard cross-validation, as this approach will
provide an objective comparison of the classifier quality. For this purpose, we
plan to use several traditional and commonly available datasets for the classifi-
cation.

Last but not least, we would like to apply the new classification technique to a
real dataset and present the relevant result of the new classifier, including com-
parisons with the traditional solutions.
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Chapter 3

Diffusion Based Learning

This chapter is focused on the novel approach to learning algorithms of self-
organising maps. The aim is to benefit from a natural process of diffusion and
present an alternative approach to the traditional Kohonen learning. Firstly we
introduce general description of diffusion. Then we present traditional diffusion
learning which is followed by anomalous diffusion.

3.1 Free Diffusion in R
d

Supposing the diffusion of nitric oxide is the main slow learning phenomenon
of neural systems, we have to model this process in a physical, chemical, and
mathematical sense. We decided to analyse only such models of diffusion with the
chemical reaction which offer an analytical solution in the infinite continuum of
the given dimension. There are only two cases that satisfy the previous condition:
traditional diffusion for exponent α = 2 and anomalous diffusion constrained to
the case when α = 1.

The pudding model description begins with remembering basic facts. Let
m,n,H ∈ N be the number of patterns, pattern dimensionality and a number
of the SOM neurons [53]. The individual patterns are xj ∈ Rn, where j = 1, ...,m
and they form the pattern set S = {x1, ...,xm}. The fixed positions of individual
neurons in the continuum are pi ∈RN for i = 1, ...,H and they reflect the topology
of the SOM, which is the subject of network design [54].

The diffusion process in the continuum can be easily expressed using matrix
D ∈ (R+

0 )H×H of distances di,j = ∥pi − pj∥2. These mutual distances indirectly ex-
press the topology of the SOM. In the pudding SOM the neuron distances are not
constrained to integers, which enables better space mapping. Therefore, the re-
sulting SOM is invariant to the transition and rotation of its structure. Let ∆t > 0
be the learning period and the diffusion in continuum will be studied only in
discrete time tk = k ·∆t, where k ∈N0. The result of the SOM learning is the sys-
tem of weights [55] wi ∈ Rn, where i = 1, ...,H of course. We begin with random
weights setting wi(0). The weights evolve during the learning process and their
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values in time tq are denoted as wi(q), where q ∈N0. The pudding model is based
on substrate concentrations in neurons and given time. Being prepared for the
SOM learning, we have to study the concentration profile first using single and
complete activation procedures.

The case of traditional diffusion (α = 2) is discussed in [56] and the main results
introduce us to the formalism of the diffusion process.

3.2 Traditional Approach

The slow information transfer in the nervous system can be modelled as a dif-
fusion process [57] with first-order chemical reaction [58]. The reactant is gen-
erated by single neuron activity [59] and the diffusion process [60] spreads the
substance in the neuron neighbourhood. Our model is based on the second Fick’s
law [61] of diffusion, which is modified by the kinetics of pseudo-monomolecular
[62] chemical reaction. The neuron activity can be modelled as a Dirac impulse
in a given time. The main advantage of these simplifications is the existence of
an analytical solution, which can be obtained as follows.

Let N ∈ N be space dimension, y ∈ R
N be point coordinate, D,t,λ > 0 be the

diffusion coefficient, time and the rate constant of a chemical reaction. The free
diffusion of reacting substrate of concentration c : RN → R

+
0 is driven by partial

differential equation

∂c(y, t)
∂t

= D ▽2 c(y, t)−λc(y, t) (3.1)

with initial condition
c(y,0+) = δ(y), (3.2)

where δ : RN →R
+
0 is the Dirac function.

The fundamental solution of (3.1) is

c(y, t) =
1

(4πDt)N/2
· exp

(
−
∥y∥22
4Dt

)
· exp(−λt). (3.3)

Due to system linearity, time and space invariance of (3.1), we can use the funda-
mental solution to study the multi-neuron system with sequential activities.

To be prepared for the SOM learning, we have to study the concentration profile
first.

Single Activation

The pudding SOM learning is based on the activation of a single neuron. We
will study the j-th neuron, which is supposed to be active in time tk. Therefore,
formally j = ϕk. But it is not necessary to study the substrate concentration at any
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Figure 3.1: Concentration profile for normal diffusive learning after single (left)
and complete (right) activation (N = 2, a = 1,b = 1/10,H = 37,q = 100)

point. The learning is based only on the concentration (3.3) in neuron points. The
concentration in time tq is

c(y,pj , tq) =
1

(4πD(tq − tk))N/2
· exp

− ∥y−pj∥22
4D(tq − tk)

 · exp
(
−λ(tq − tk)

)
(3.4)

for q > k. The formula can be simplified to

c(pi ,pj , tq) =
1

(4πD(q − k)∆t)N/2
· exp

− d2
i,j

4D(q − k)∆t

 · exp(−λ(q − k)∆t) . (3.5)

After the substitution a = 4D∆t > 0, b = λ∆t > 0, we obtain resulting activation
formula

c(pi ,pj , tq) = (πa(q − k))−N/2 · exp

− d2
i,j

a(q − k)
− b(q − k)

 . (3.6)

When min(di,j ≥ 1), we suggest using a = 1,b = 1/10 for the first experiments, as
it will be demonstrated in the next sections.

Complete Activation

The SOM learning is based on substrate concentrations in the q-th step in time
tq. This concentration is the result of previous activation sequence ϕ1,ϕ2, ...ϕq−1
using single activation model (3.6). Due to the linearity of (3.1) we can use the
additivity principle and directly calculate the cumulative concentration in the
i-th neuron and step q as

ci,q =
q−1∑
k=1

c(pi ,pϕk
, tq − tk) =

1
(πa)N/2

·
q−1∑
k=1

exp
(
−

d2
i,ϕk

a(q−k) − b(q − k)
)

(q − k)N/2
. (3.7)
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Figure 3.2: Concentration profile for anomalous diffusive learning after single
(left) and complete (right) activation (N = 2, a = 1,b = 1/10,H = 37,q = 100)

The resulting formula consists of all concentration information that is necessary
for the SOM learning. Therefore, the concentration ci,q is only a function of activa-
tion history, the SOM topology, and parameters a,b. The difference between single
and complete activation is depicted in Figure 3.1 for normal diffusive learning.
The concentration of substrate is very high in the neighbourhood of the last win-
ning neuron in history, which is a result of learning.

3.3 Anomalous Diffusion

As rarely observed in nature, the anomalous diffusion [63] is a more complex al-
ternative to the traditional one. Both formulation and solution of models with
anomalous diffusion are very complicated and not trivial, except for the case
when α = 1, which is sometimes called ballistic diffusion. We will formulate the
model in a general form first. Let 1 ≤ α < 2, Dα > 0 be anomalous exponent and
diffusion coefficient, respectively. The free anomalous diffusion of reacting sub-
strate of concentration c : RN →R

+
0 is driven by partial differential equation

∂c(y, t)
∂t

= Dα ▽(α) c(y, t)−λc(y, t) (3.8)

with initial condition

c(y,0+) = δ(y), (3.9)

where δ : RN →R
+
0 is the Dirac function.

The explicit solution is obtainable only for α = 1. The fundamental solution for
λ = 0 is probability distribution function of multi-varietal Cauchy distribution
[64] for scale γ = D1t

c(y, t) =
Γ (N+1

2 )

Γ (1/2)πN/2
· D1t

(D2
1 t

2 + ∥y∥22)(N+1)/2
. (3.10)
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Using shift theorem [65] of Laplace transform, we obtain the general solution

c(y, t) =
Γ (N+1

2 )

Γ (1/2)πN/2
· D1t · exp(−λt)

(D2
1 t

2 + ∥y∥22)(N+1)/2
(3.11)

and therefore,

c(y,p, tq) =
Γ (N+1

2 )

Γ (1/2)πN/2
·

D1(tq − tk) · exp(−λ(tq − tk))

(D2
1 (tq − tk)2 + ∥y−p∥22)(N+1)/2

, (3.12)

c(pi ,pj , tq) =
Γ (N+1

2 )

Γ (1/2)πN/2
·
D1(q − k)∆t · exp(−λ(q − k)∆t)

(D2
1 (q − k)2(∆t)2 + d2

i,j)
(N+1)/2

. (3.13)

After the substitution a = D1∆t > 0, b = λ ·∆t > 0, we obtain

c(pi ,pj , tq) =
aΓ (N+1

2 )

Γ (1/2)πN/2
·

(q − k) · exp(−b(q − k))

(a2(q − k)2 + d2
i,j)

(N+1)/2
, (3.14)

ci,q =
q−1∑
k=1

aΓ (N+1
2 )

Γ (1/2)πN/2
·
q−1∑
k=1

(q − k) · exp(−b(q − k))

(a2(q − k)2 + d2
i,j)

(N+1)/2
. (3.15)

The learning efficiency depends on concentration profiles. Therefore, it is use-
ful to compare substrate concentrations in the case of anomalous diffusion with
the normal case. Results of single and complete activation are depicted in Figure
3.2 for anomalous diffusive learning. As seen in Figures 3.1 and 3.2, the sub-
strate is more spread out in the case of anomalous diffusion and the difference
between minimal and maximal concentration is smaller. These differences be-
tween normal and anomalous diffusions influence the SOM learning algorithm.
The anomalous and traditional diffusion modelling in more detail is discussed in
[66].

45



Chapter 3. Diffusion Based Learning

46



Chapter 4. Theory of Imperfect Parallel Learning

Chapter 4

Theory of Imperfect Parallel
Learning

In this chapter, we present the general theory and origins of the imperfect learn-
ing. The aim is to underline the motivation for the proposed approach. We sum-
marize basic methods of pattern sub-sampling, feature sub-samplings as well as
the use of imperfect learning algorithms. The following part is focused on the
novel approach based on the hidden classes. Firstly, we provide a basic frame-
work regarding the forming of hidden classes. In the last part, we focus on the
process of optimal union of hidden classes which is focused on the critical sensi-
tivity of final classification and present the related theory.

4.1 Origins of Imperfect Classification

When the classifier learning process is driven by standard perfect algorithms, we
have no guarantee to obtain the requested properties, e.g. perfectness, accuracy,
or sensitivity. This poor quality can be caused by several reasons. One of them
is a non-separable pattern set. Several learning algorithms find only the local
extreme instead of the global one. To prevent such obstacles, we reach the result
in an alternative way, where we do not insist on the algorithm perfectness. This
approach can lead to better performance of classification tasks even when there
is no perfect solution.

Thanks to the stochastic nature of the imperfect learning, we can apply such
algorithm repeatedly NMC times on the pattern set S and obtain desired results.
The evaluation results is discussed in Section 4.3. Therefore, we appreciate all the
imperfect learning results and we store them. Our aim is not to select the best one
but to work further with all the different results of imperfect classifiers providing
different results on the same pattern set. There can be any kind of reason for the
imperfectness.
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One way of the imperfect learning can be represented by selecting only a limited
number of patterns and not the whole pattern set, which is somehow a context-
out approach. Using different subsets of pattern set leads to different classifier
results. The second way is to focus only on some features, which are selected ran-
domly and represent the context-out technique again. Both ways can be combined
as well. The third way is to use any known imperfect method which guarantees to
find only a local extreme. Instead of being stressed by the poorly working original
method, our method yields from it.

4.1.1 Pattern Sub-sampling

Having m patterns, we can randomly select m+ patterns, where m+ ≥ m, and try
the learning of the system by using the potentially incomplete data. Therefore,
the learning is not perfect and the resulting classifier parameters can differ from
the parameters using a complete data set. Using the set I ∗ = {1, ...,m} of pattern
indices, we will define index set

Ik ⊂ I ∗ = {1, ...,m}, (4.1)

which is generated recursively starting with I0 = {}, generating ik ∼ U(I ∗ \ Ik−1),
and updating Ik = Ik−1 ∪ {ik}.

Finally, we create the training pattern set as

T = {(xi ,y∗i ) : i ∈ Im+ ⊂ S} (4.2)

as a randomly generated subset of size m+. But when m+ = m, we directly use
T = S .

4.1.2 Feature Sub-sampling

We can also randomly reduce the feature of the patterns. Therefore, we define
J ∗ = {1, ...,n} and select only n+ features, where n+ ≤ n. The index set

Jk ⊂ J ∗ = {1, ...,n} (4.3)

is generated recursively starting with J0 = {}, generating jk ∼ U(J ∗ \Jk−1), and
updating Jk = Jk−1U{jk}.

Using the reduced vector r of n+ features, we can define the reduced pattern

pred = (r,y∗), (4.4)

where r ∈ Rn+
. When n+ = n, we directly set r = x. Finally, the reduced patterns

form the training pattern set.
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4.1.3 Imperfect Learning Algorithm

The last presented way of the imperfect learning is using an algorithm of stochas-
tic nature. The repeated use of such algorithm leads to different results and
whether the provided result is the best one is irrelevant. The stochastic nature
can be formed by a stochastic estimate of the initial parameter value followed by
a deterministic approach. A typical example of such algorithm is the clustering
by the K-means technique. Another way, independent of the way of forming the
initial parameter, is the stochastic nature of a step in the iterative learning meth-
ods. The typical way is represented by methods which use one of the randomly
selected patterns. There are many methods of such kind, e.g. perceptron learning,
multilayer perceptron, the SOM or the RBF. All these methods are well known in
the literature, very often we speak about stochastic gradient methods or local
minimizers. The best-known methods are represented by Hebb [67], Rosenblatt
[68], Widrow & Hoff [69], and Kohonen learning [34].

The main advantage of the repeated imperfect learning, whether on the complete
or the reduced pattern set, is that the stored and analysed results lead to a classier
with better properties.

4.2 Hidden Classes Forming

After performing random experiments with the classification in the sense of the
sub-sampling in pattern feature space or using the stochastic techniques of learn-
ing, we obtain various results of the classification. We denote M,M∗,H ∈N num-
ber of involved classifiers, reduced number of classifiers, and the resulting num-
ber of hidden classes. Having M classifiers ck : Rn → {0,1, ...,N } for k = 1, ...,M,
we can apply them to the original pattern set and the result can be collected in
matrix Y, Y ∈ {0,1, ...,N }m×M with elements yi,j = cj(xi).

Although each classifier is different, they can lead to the same results for given
pattern set. Therefore, it is necessary to reduce the number of columns first by
eliminating the duplicities. Resulting reduced matrix is U ∈ {0,1, ...,N }m×M∗ con-
sists of M∗ unique responses, where M∗ ≤M.

The hidden class Hj is defined as a set of patterns that produce the same row in
matrix U. Therefore, it is necessary to reduce the rows of U to the unique ones,
which are collected in matrix P, P ∈ {0,1, ...,N }H×M∗ . The matrix P is a condensed
summary of the classification results. Using the Hamming distance ∥...∥H, we can
decide whether x ∈Hj by verification that

∥u−pj∥H < ∥u−pk∥H (4.5)

for all k , j, where u ∈ {0,1, ...,N }M∗ is the reduced response to x. In any cases,
the hidden class is unknown and labelled by zero. The result of partitioning into
hidden classes is a hidden class number j∗ ∈ {0, ...,H}.
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4.3 Union of Hidden Classes

In the case of the classification, we are well motivated to define the final (output)
classes because of their close connection to the solution of the problem. The cardi-
nal question is why to define and use other classes called hidden classes. There is
a good analogy with ore mining. The formulation of the mining problem is clear.
It is necessary to separate the material into two classes: the ore and the residual
material. But for a large stone, the task is too complex. First, it is necessary to
break it into small pieces as symbols of the hidden classes and then carefully sort
them into two output classes: the ore and the rest by using an effective procedure.
Although the technical aspects of the separation are also useful, they are not dis-
cussed here. We will focus on the decision whether a given piece of stone is ore or
not. Using the majority rule, the pieces with more than fifty percent of ore belong
to the first class (ore). It is a traditional approach but with very low efficiency in
general. For example, the concentration of gold is very low, and therefore no piece
of stone would be selected for future gold extraction. This paradox can be easily
solved by using class sensitivity and critical sensitivity, which help to construct
more sophisticated strategies not only for ore mining but mainly for the general
classification of patterns.

A general classification task distributes m patterns into N classes, and our method
is based on the preprocessing which places them into H hidden classes. The main
idea of this is to break down a complex task into more simple ones, where we will
enable its fast solution using very fast algorithms. One of the algorithms that are
directly offered for this purpose is the cluster analysis. The formation of hidden
classes is very intuitive in this case. For such purpose, we focus on self-organizing
maps and present an innovative approach based on the chemical reaction.

There are many approaches to the performance of hidden classification using var-
ious kinds of local classifiers, and they are generally imperfect. Any hierarchical
classifier consists of one hidden layer at least. There are many possibilities for de-
signing such a hidden layer. We prefer the parallel system of imperfect classifiers.
The imperfect classifier is any system that classifies the patterns to given output
classes but with low efficiency. Having many classifiers of such kind, we can use
them for alternative pattern description and forming of the hidden classes. As in
real life, we can focus only on several cases and particular features. The imper-
fect classifier can be learned in any traditional way of the perfect classification
but only using several patterns and several properties. This approach is called
context out learning here.

After forming the hidden classes, we face a major challenge to form the final
classes. The aim is to find an optimal way to unite these hidden classes. We search
optimal method to put together the hidden classes so that they can form the final
classes for classification. Our approach is based on the basic characteristics of
classification quality, which are frequently used in many applications: accuracy,
class sensitivity, and critical sensitivity.
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The presented novel approach of vector pattern multi-classification is based on
the combination of the approaches mentioned above. Basic assumptions are the
following. Let N,M,n be the number of output classes, the number of patterns,
and the number of pattern dimensions that are unlimited in general. But there
is a threshold value n∗ of pattern dimension, which switches between determin-
istic and random sub-sampling approaches. In both cases, the first step of clas-
sification is the dimensionality reduction using the data whitening or the multi-
class discriminant analysis which converts the data into the space of dimension
D ≤ n. In the second step, the reduced data are clustered using the DBSCAN tech-
nique and the hidden classes are formed. Optimal unions of these hidden classes
(OUHC) are performed in the last step of the multiple classifications.

Presenting a new way of the classification requires sufficient testing. Our aim
is to present the result of the new classifier on standard classification tasks and
present the comparison with standard methods. For this purpose we use the iris
dataset.

Our aim is to present how an imperfect procedure can bring better results than
the application of sophisticated and at the same time computationally very de-
manding alternatives. The imperfect approaches can be represented by the sub-
sampling. The initial phase is usually the data preprocessing.

Both supervised and unsupervised approaches to the pattern classification can
be used to form hidden classes inside the final classifier. The system of hidden
classes arises from the uncertainty of class membership, the imperfectness of
classification, or any context-out approach. We will apply a deterministic ap-
proach which is based on the relationship between the hidden groups and the
output classes [70] as follows.

The aim is to optimize this relationship as the best mapping from the hidden to
the output classes. The strict classifier is defined as mapping c :LH →LN from
the setLH of hidden class indices to the setLN of final class indices, whereLn =
{1, ...,n}. This mapping can be expressed via the matrix X ∈ {0,1}N×H , where xi,j =
1 if dk ∈ Hj ⇒ dk ∈ Ci . Therefore, xi,j = 1 just when for any pattern belonging
to Hj it also belongs to Ci . The uniqueness conditions

∑N
i=1xi,j = 1 have to be

satisfied for j = 1, ...,H .

The relation between the classes and the hidden groups is presented via the con-
tingency table F ∈ NN×H

0 , where fi,j = card{k : dk ∈ Ci
⋂
Hj} is the result of the

pattern counting. Here, fi,j is the number of patterns belonging to both class Ci
and group Hj as joint frequency, which can be relativized as

qi,j =
fi,j∑H
k=1 fi,k

, (4.6)

where i = 1, ...,N , j = 1, ...,H .
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The accuracy of a given classifier can be expressed as

acc =
1
m

N∑
i=1

H∑
j=1

fi,jxi,j . (4.7)

Using the concept of the class sensitivity as a relative frequency of the true clas-
sification, we can calculate it for i = 1, ...,N as

sei =
H∑
j=1

qi,jxi,j . (4.8)

An average sensitivity can be defined as

ase =
1
N

N∑
i=1

sei . (4.9)

A lower estimate of the class sensitivity is defined as a critical sensitivity

se∗ = min{sei : i = 1, ...,N }. (4.10)

We prefer the critical sensitivity as the strength criterion of the classifier effi-
ciency and maximize it via the union of hidden classes. The accuracy criterion is
also used as the traditional measure by many authors.

In accordance with [70], we will maximize the critical sensitivity se∗. An adequate
mixed binary optimization task is

se∗ = max (4.11)

subject to
N∑
i=1

xi,j = 1 for j = 1, ...,H, (4.12)

H∑
j=1

qi,jxi,j − se∗ ≥ 0 for i = 1, ...,N, (4.13)

xi,j ∈ {0,1} for i = 1, ...,N, j = 1, ...,H, (4.14)

se∗ ∈ [0,1] (4.15)

with real artificial variable se∗. The inequalities (4.13) guarantee that se∗ is the
lower bound of the critical sensitivity during the optimization process.

52



Chapter 4. Theory of Imperfect Parallel Learning

After the specification of se∗, we can yield from the task degeneration and solve
additional binary programming task, which guarantees the same critical sensi-
tivity and maximizes accuracy as

acc =
1
M

N∑
i=1

H∑
j=1

fi,jxi,j = max (4.16)

subject to
N∑
i=1

xi,j = 1 for j = 1, ...,H, (4.17)

H∑
j=1

qi,jxi,j ≥ se∗ for i = 1, ...,N, (4.18)

xi,j ∈ {0,1} for i = 1, ...,N, j = 1, ...,H. (4.19)
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Chapter 5

Imperfect Classifier

We summarize the results from the previous theoretical parts in this chapter,
which means that we obtain the classifier description. Firstly we demonstrate
the structure of the proposed classifier. We discuss the applicable data transfor-
mations and classification methods. The crucial part is represented by hidden
classification followed by a summary of validation methods.

5.1 Classifier Structure

The proposed classifier design is captured in Figure 5.1. In this figure, we see q
imperfect classifiers in the central part being at the same level of importance for
us. It means that we consider all individual results with the same importance.
The individual results represent the core of the proposed system. The layer of
imperfect classifiers represents a hidden layer of our system.

In the proposed system, we use parallel classifiers after a previous preparation
of input data. Before using the classifiers, we decide on an optional non-linear
transformation, and subsequently, we can still perform an optimal linear trans-
formation. The first transformation aims to make the dataset linearly separable.
While the goal of the linear transformation is, for example, to lose as little data
variance as possible when reducing the dimensions or reaching the separable
classes. This approach enables us to obtain a lower dimension of the dataset and
to maintain the variance. The choice of preprocessing methods is user-based, and
we assume that all the classifiers in the third hidden layer work with the same
dataset. Each classifier has its unique view of the dataset.

The next step of the proposed classifier is based on a hidden classifier. This hid-
den classifier creates the final vector description of the initial dataset. In the next
step, the final classification processes OUHC to obtain the right representatives
of classes. The learning of the final classification in general means obtaining the
system parameters. Optional nonlinear transformation can be learned by specific
methods, while linear transformation is usually learned by the traditional classi-
fiers described in the next section.
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Figure 5.1: Classifier Structure

The imperfect classifiers can be learned in any way, whether deterministic or
stochastic, on a training set. It should be noted that it is typical that the non-
perfect classifiers do not have to learn on the whole set by a non-perfect algorithm
but they can learn by a perfect algorithm on parts of a dataset (4.2) or on parts of
properties (4.4), which was described in Sections 4.1.1 and 4.1.2. It is important
that, this way we achieve a variety of classifiers on the training set. If it is not the
case, we suggest removing the redundant classifiers. Then it is important to real-
ize that when we know the results of classifiers on an imperfect set and we have
formed the hidden classes described in Section 4.3. These hidden classes can be
unified using linear programming methods for critical sensitivity maximization
(4.11-4.15) and additionally for accuracy maximization (4.16-4.19) to create the
final classifier. Therefore, the result of learning is not only the set of imperfect
classifiers but also the elimination of redundancy and the formation of certain
patterns and subsequent optimal unification. The classifier itself then uses these
learning outcomes to classify a particular object x. The system of proposed clas-
sifiers contains many possibilities to combine the classification approaches and
their responses [71].

5.2 Applicable Non-Linear Transformations

When we decide to apply the non-linear transformations, we have the opportu-
nity to use the following, commonly used methods. The first one is focused on
non-negative values when we can use logarithmic transformation

y = lnx, for x > 0. (5.1)
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The next possibility is to use Box-Cox transform [72]

y =
xα − 1
α

, for x > 0,α , 0. (5.2)

In the case when α→ 0, the Box-Cox transform (5.2) approaches the logarithmic
one (5.1). These transformations are recommended for all positive features which
differ significantly in order.

Another option applicable to all the variables is to use polynomial expansion,
which means constructing a polynomial base in n-dimensional space of finite
order. The advantage of using the polynomial expansion on centred data is that
we usually end up with a second-order or third-order polynomials.

In addition, it makes sense to use any other transformations associated with a
particular application for which there exist any technical or economic reasons.
We can use the transformation only on selected variables or omit the non-linear
transformation completely.

5.3 Applicable Linear Transformations

The goal of the linear transformations is to reach selected basic data properties.
For example, zero mean values, a unit covariance matrix, a diagonal covariance
matrix, or to obtain data with higher separability between classes.

We can perform linear transformation also without any knowledge of class affilia-
tion. The main aim is to extract anything from the raw dataset. A method suitable
for those purposes is the Principal Component Analysis (1.46), where we obtain
a lower number of classes, a diagonal covariance matrix, and zero means. The ap-
plication makes sense if we want to get a lower number of components than the
size of the original data. If we also insist on certain standardization of data, then
we should use the data whitening (1.52), which will ensure that the covariance
matrix will be an identity one. In this case, it is up to us whether we keep the
number of components or reduce it.

If we know the affiliation to the classes, we offer the use of multi-class discrimi-
nation analysis inspired by the RAO method (1.55 - 1.62), which creates weights
differently to maximize the differences between the classes. The method gener-
ates a fixed number of coordinates that is one less than the number of classes.

5.4 Applicable Classification Methods

In the research part, we have presented a number of learning principles that can
be used in classification tasks. All principles used in our proposed classifier are
located in the central part as parallel classifiers in the sense of Section 5.1. The
supervised learning techniques are summarized in the first part of Table 5.1. The
unsupervised learning techniques are listed in the second part of Table 5.1.
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Table 5.1: List of Classification Techniques

Abbreviation Method Section
k-NN k-Nearest Neighbour [10] 1.2.1
RR Ridge Regression [14] 1.2.2
KRR Kernel Ridge Regression [14] 1.2.2
LDA Linear Discriminant Analysis [3] 1.2.1
QDA Quadratic Discriminant Analysis [4] 1.2.1
RVFL Random Vector Functional Link [16] 1.2.3
MM Max-Margin [11] 1.2.2
Parzen Parzen Windows [5] 1.2.1
LQ Loftsgaarden-Quesenberry [9] 1.2.1
K-means K-means Clustering [10] 1.3.1
SOM Self-Organizing Map [39] 1.3.2
SLINK Single Linkage [23] 1.3.1

DBSCAN
Density-Based Spatial Clustering

1.3.1
of Applications with Noise [10]

If we want to perceive the resulting classifier very optimistically, we can get the
first optimistic (naive) idea of the quality of the classifier directly on the learning
set. We will create a contingency table that will compare the actual class affili-
ations and the proposals of the resulting classifier. From this contingency table,
we can easily obtain the accuracy (4.7), sensitivity (4.9), and critical sensitivity
(4.10) of the classifier. Such an approach represents a very straight, very opti-
mistic, and very misleading idea. Therefore, we will test the classifiers using the
cross-validation technique.

5.5 Formation of Hidden Classes

After finishing the first three layers of the proposed classifier, which means fol-
lowing the optional transformation and learning the central part of the proposed
classifier, we have to formulate what we call a hidden class. For each pattern, we
obtain a group of results in a vector, which means forming a new set of patterns.
The fundamental theory of this is described in Section 4.2.

The natural part of the formation of new patterns is, firstly, the removal of redun-
dant duplicate columns, and secondly, the unification, which means the search
for unique patterns that will become representatives of the hidden classes. The
number of patterns thus determines the number of hidden classes. Therefore, it
is clear to which hidden and final class the vector belongs. The process of OUHC
is described in Section 4.3.

If we solve the network response to a specific vector, we must first undergo op-
tional preprocessing and go through all the classifiers of the central layer of the
proposed classifier, thus obtaining the one integer pattern that we either find
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Figure 5.2: Simple Cross-Validation Scheme

immediately and know which class it belongs to or we do not find it, and we
investigate which pattern it is closest to in terms of Hamming distance (4.5). If
there is no decision after that, the classifier’s response is that it does not know the
class affiliation for the pattern.

5.6 Validation Methods

There are three approaches recommended for the validation. The first approach
depicted in Figure 5.2 is used mainly for problems where the pattern sets arose
over time, so we usually know the history and we can distinguish between an-
cient and recent history. In this case, the systems typically learn from the older
history and verify against the recent history. This approach is thus typical for the
classification systems used for time-series predictions across a variety of disci-
plines.

If we build predictors for time series, we have to create a training set from data
within a certain time, so the first part of the patterns is used for the training
and the remaining part for the verification. According to the Figure 5.2 we see
that we are creating the hidden classes and a final classifier from the training
subset. Then we let the rest of the data into the finished classifier and find out the
classifier’s responses. Finally, we perform the statistical analysis and construct
the contingency tables.

If the pattern number has nothing to do with time, cause, and effect, then system-
atic or the random pattern selection should be preferred. If we have little data or a
powerful computer technology, then the cross-validation method is offered. This
method is depicted in Figure 5.3. The Leave-One-Out method, mentioned in Sec-
tion 1.5.2, proceeds in such a way that the k-th pattern is used for validation,
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Figure 5.3: Advanced Cross-Validation Scheme

while the other patterns form a training set and we learn only one row of the
contingency table. In contrast to Figure 5.2, we receive only one-row response in
each step, therefore, we have to collect all responses as seen in Figure 5.3 when
we collect all responses for k = 1, ...,m. If we gradually exhaust all patterns in
the cycle, it is a time-consuming process, but we learn the truth about the actual
behaviour of the classifier.

The third validation method to be used is M-fold validation. This method rep-
resents a compromise validation solution between the naive and the Leave-One-
Out approach. To ensure the fairness of this method, we first randomly shuffle
the patterns and then divide them into groups of almost equal sizes. In the k-th
step, the validation subset is the k-th group, and the remaining data are in the
training set. In this case, the response collection consists of as many patterns as
there are members in the M-fold. If we go through all the piles in the cycle, we
get the overall response, which we analyse again. The 10-fold validation is most
often used in the literature, but from the point of view of statistical stability, we
recommend taking into account the total number of samples and the 50-fold val-
idation has proved its worth. Therefore, the advanced cross-validation scheme of
M-fold validation is formally the same (see Figure 5.3) but with K = 1, ...,M, and
every validation subset consists of approximately m/M patterns.
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Chapter 6

Experimental Part

In this chapter, we demonstrate the properties of a proposed imperfect classifier.
We follow previously defined approach and the aim is to present an indepen-
dent comparison of new classifier results. In all presented results we use the data
preprocessing in four basic forms. The first one is using the RAO method and
the other three are represented by the one-, two-, and three-dimensional data
whitening. The aim of the testing is discussed in more detail in the first part of
this chapter.

The standard datasets have been used for the perfect learning and the proposed
imperfect learning. Firstly, we focus on the iris dataset using 14 referential meth-
ods in detail. For each method, we provide the comparison of results for the per-
fect and the proposed imperfect learning together with the method’s optimal pa-
rameter settings. The perfect learning means the method is used in a standard
way for the original dataset together with the standard techniques of preprocess-
ing. The imperfect learning means using the same method with the pattern and
feature reduction together with the repeated learning.

In the next part, we present the selected methods for another ten standard datasets
in order to present a general picture of the proposed classifier behaviour. The crit-
ical sensitivity as a benchmark remains to evaluated. The aim is to present and to
compare the results following this classification approach.

In the last part of this chapter, we present a proposed classifier for the classifica-
tion of the real dataset used for the leaves classification and crisis prediction. In
the first case, the description of ten different trees is represented by the mathe-
matical interpretation of their photographs taken under different conditions. The
second task is based on the economic descriptors for different economies.

6.1 Aims of Testing

The testing objectives are as follows. We aim to find the basic rules of the imper-
fect classifier design on the given datasets and to compare them with the individ-
ual cases. It means if one type of the classifier used individually is better or worse
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when used in the imperfect parallel mode. We aim to find out which classifiers
are improved by this approach and which ones are not affected.

The first goal is to investigate whether the individual or the parallel use leads to
better results related to the classifier type. If the classifier has low classification
capabilities, for example, due to its linearity, then under what conditions will it
be possible to improve it by the imperfect learning and under what conditions?
The second question is whether the imperfect classifier over-performs the tradi-
tional one when efficient on a given dataset. The goal also is to investigate the
optimal number of those imperfect classifiers and evaluate the level of imperfec-
tion leading to the best results. We also investigate whether the imperfectness
principle or the classification technique is enough, it may not, for example, con-
verge well, or whether it is more appropriate to do the imperfection by choosing
patterns and properties.

6.2 Preludium: Iris Flower Classification

Firstly, we present the effect of imperfections by a method that is perfect in it-
self and has few parameters. The goal is to demonstrate whether we are able to
improve the given method. We have selected a traditional classification task for
this purpose, the IRIS dataset. We focus on fourteen different methods as stated
in Table 6.1. The optimal settings for each method for the perfect learning as well
as for the imperfect learning are included in mentioned table. The main purpose
of the comparison is to present the power of the proposed method compared to
the perfect ones.

Firstly, we demonstrate the results for all the classifiers and one dataset, the iris
dataset, using the cross-validation. For all tasks, we investigate different prepro-
cessing regarding the data dimension. It means we have used the RAO method
as well as the data whitening for D ∈ {1,2,3}. The basic framework of proposed
preprocessing is used in both the perfect and the imperfect learning.

We search for the best results for the same parameter settings in both cases.
Therefore, the initial setting of the method’s parameters is the same for the per-
fect and the imperfect learning. It means we use the same parameters in both
cases to find the best results.

In the case of the imperfect learning, we focused also on the impact of the num-
ber of repeated preprocessing, selecting a different number of the patterns and
the features. The experiments led us to the proposed reduction to 2/3 in the case
of the number of patterns and a ten to twenty percent lower number of the fea-
tures. Therefore, in the case of the iris dataset, the number of the features after
reduction for the imperfect learning strategy is set as m∗ = 100 and the number of
features is set as n∗ = 3. The sufficient number of repetitions is 100. The detailed
comments on the results for individual methods are as follows.

The important results represented by the values of the critical sensitivity together
with the parameter settings for concrete methods are summarized in Table 6.1.
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This table shows the parameter setting for each classifier to obtain the best clas-
sification results. The detailed results for each method are captured in Figures
6.1 to 6.15. Each figure covers four preprocessing techniques - the RAO method
preprocessing and the data whitening for the three-dimensionality reductions.

Using k-NN classifier directly we reach the critical sensitivity at 0.94, for exam-
ple using the RAO method preprocessing and the parameter k = 3. Using the
imperfect learning, we reach the same value of the critical sensitivity at 0.94, for
example for the RAO method preprocessing and k=7. Therefore, we see that in
the case of k-NN classifier, the imperfect learning brings the same results without
any improvement. All results for the different values of k settings are captured in
Figure 6.1.

The direct ridge regression reaches the highest critical sensitivity at 0.68 and it
is constant for λ close to zero and the RAO method preprocessing. The imperfect
learning leads to critical sensitivity at 0.82 for the parameter λ close to zero as
well for both the RAO method preprocessing and three-dimensional data whiten-
ing. The classification results are significantly better for the imperfect learning
techniques compared to the perfect ones. All the results for different settings of
parameter λ are captured in Figure 6.2.

The presented classification based on the kernel ridge regression is devoted to
the best set of the parameter λ in the previous case of the ridge regression. The
highest value of the critical sensitivity for the perfect learning is 0.94. This value
was reached for example for the RAO method preprocessing and the parameter
σ = 0.5. The imperfect learning leads to the critical sensitivity at 0.96 for ex-
ample for the two-dimensional whitening and σ = 0.1. The already high critical
sensitivity in the case of the perfect learning strategy was increased to 0.96 using
the imperfect learning. All the results for different settings of parameter σ are
captured in Figure 6.3.

The direct classification using the LDA method reaches the critical sensitivity
at 0.96, for example for the RAO method preprocessing and parameter λ = 0.1.
When we used the imperfect learning strategy, we reached the critical sensitivity
at 0.98, for example in the case of the two-dimensional data whitening and λ =
0.01. For the LDA, the high critical sensitivity was increased to 0.98 using an
imperfect learning strategy. All the results for the different settings of parameter
λ are captured in Figure 6.4.

The direct use of the QDA method leads to the critical sensitivity at 0.96, for
example for the three-dimensional data whitening and the parameter λ = 0.01.
When we used the imperfect learning strategy, we reached the critical sensitivity
at 0.98, for example in the case of the three-dimensional data whitening and
λ = 0.01. For the QDA there is the similar optimal setting for the perfect and the
imperfect cases, but the imperfect learning reaches the higher critical sensitivity.
All the results for the different settings of parameter λ are captured in Figure 6.5.

The highest critical sensitivity of 0.96 was reached using the perfect learning and
the RVFL method, for example for the two-dimensional data whitening and pa-
rameter J = 50, λ = 0.2. The imperfect learning leads to the critical sensitivity
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up to 0.98, for example for the three-dimensional data whitening, J = 50, and
λ = 0.2. Even the high critical sensitivity in the case of the perfect learning was
increased by the imperfect learning. The results for J = 50 and the different set-
tings of parameter α are captured in Figure 6.6.

The MM method and perfect learning was not able to maximize the critical sen-
sitivity above zero due to the character of the given dataset. Three-dimensional
data whitening led to critical sensitivity of 0.95. Therefore, in this case, imperfect
learning significantly improved the classifier results.

Using the traditional Parzen method, we reached the critical sensitivity at 0.96
with the RAO method preprocessing and parameter h = 0.66. When we use the
imperfect learning, the highest critical sensitivity is 0.96, for example for the
RAO method preprocessing and parameter h = 0.53. In this case, the highest crit-
ical sensitivity is the same for the perfect and the imperfect learning. All the
results for the different settings of parameter h are captured in Figure 6.7.

The perfect learning using the LQ method led to the critical sensitivity of 0.96
reached for example for the RAO method preprocessing and the parameter k = 5.
In the case of the imperfect learning the highest critical sensitivity is 0.94 for the
RAO method preprocessing and the parameter k = 1. The LQ method provided
better results for the perfect cases and our imperfect learning was not able to
reach higher critical sensitivity. The critical sensitivities for the different settings
of parameter k are captured in Figure 6.8.

The highest critical sensitivity by using the K-means classifier is 0.96, for example
for the RAO method preprocessing and k = 14. When we use imperfect learning,
the critical sensitivity is up to 0.96, for example for the RAO method preprocess-
ing and k = 1. This classifier method provided the same results of the critical
sensitivity for the perfect and the imperfect cases. The obtained results for the
different settings of parameter k are captured in Figure 6.9.

To present comparable results for the SOM we focus on different sizes of hexago-
nal maps (H). The size of the map is presented as a total number of nodes in the
map. Firstly, we focus on the traditional Kohonen learning and we use a novel
diffusion strategy of learning.

In the case of the traditional Kohonen learning, we reached the critical sensitivity
of 0.92. This value was reached by the RAO method preprocessing, smaller sizes
of maps, and using the three epoch learning strategy. The imperfect learning led
to the critical sensitivity of 0.94, which was reached for the map with nineteen
nodes. In this case, the use of the imperfect learning improved the classifier re-
sults. The final values of sensitivities for the different sizes of maps are captured
in Figure 6.10.

In the case of the diffusion learning, we reached the critical sensitivity of 0.94.
This value was reached using the RAO method preprocessing, smaller sizes of
maps, and a single epoch learning strategy. The imperfect learning led to the crit-
ical sensitivity of 0.94, which was reached for the map with seven nodes. The
perfect and the imperfect learning reached the same critical sensitivity. The re-
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sults for the different sizes of maps are captured in Figure 6.11.

The SLINK method was implemented as a special case of the DBSCAN, where
the clusters are only pairs. The highest critical sensitivity in the case of the per-
fect learning was reached at 0.88 using the RAO method preprocessing and for
example ϵ = 0.15. The imperfect learning was able to reach the critical sensitivity
up to 0.96, for example for one-dimensional data whitening and ϵ = 0.07. The
results for the different values of ϵ are captured in Figure 6.12.

In the case of the DBSCAN and the perfect learning, the highest critical sensi-
tivity reached 0.86 for example for the RAO method preprocessing, minimal five
points in the cluster, and ϵ = 0.17. For the same minimal size of the cluster, the
RAO method preprocessing, and ϵ = 0.2 we reached the critical sensitivity at 0.92.
In this case, the imperfect learning improved the classifier results significantly.
The final values of the sensitivities for different values of ϵ are captured in Figure
6.13. The results for the bigger clusters, up to seven points in cluster, are depicted
in Figures 6.14 and 6.15.

The previous results generally show that higher critical sensitivities are reached
in the case of the imperfect learning strategies. The highest improvement is seen
for the RR, the KRR, the LDA, the QDA, the RVFL, the MM, the SLINK, and the
DBSCAN. There were similar results for the Parzen method, the K-means, and the
SOM. In the case of the LQ, the perfect learning strategy provided higher critical
sensitivity.

6.3 Other Testing Datasets Results

To demonstrate the results of the proposed approach we have selected nine addi-
tional classification tasks [73] next to the basic iris dataset presented previously.
The list of benchmark datasets is included in Table 6.2 together with the number
of patterns, their dimensionality, and the number of classes.

The main aim is to present whether the proposed imperfect classifier is compa-
rable to the perfect one. The methods used for the comparison are selected based
on the iris results. We have selected the methods that provided high values of the
critical sensitivity, i.e. the KRR, the LDA, the QDA, the RVFL, the MM, the Parzen
method, the K-means, and the SLINK. These are the methods providing the crit-
ical sensitivities higher than 0.95 for the iris dataset and the imperfect learning.
The complete results of this subset of methods are summarized in Table 6.3. The
individual results are commented on as follows.

There are the same or better results for all methods for the imperfect learning and
the Cancer (Wisconsin) dataset [74]. The best results for the imperfect learning
were reached for the QDA, the Parzen method, the K-means, and the SLINK,
when the critical sensitivity reached 0.98 and it was higher than in the case of the
perfect learning in all the cases.
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Table 6.1: IRIS Flower Classification

Method
Perfect Learning Imperfect Learning

se∗ Parameters se∗ Parameters

k-NN 0.94
RAO; k=3, 5-20

0.94
RAO, k=7,10,11

D=2; k=3,6,11 D=3, k=5

RR 0.68 RAO, λ = 0 0.82
RAO, λ = 0
D=3, λ = 0

KRR 0.94
RAO, σ ∈ [0.5,1.0]

0.96
D = 2, σ ∈ [0.1,0.8]

D=2, σ ∈ [0.3,0.4] D=3, σ ∈ [0.6,0.7]
D=3, σ ∈ [0.5,1.0]

LDA 0.96
RAO, λ ∈ [0.01,0.13]

0.98
D=2, λ ∈ [0,0.02]

D=3, λ ∈ [0,0.04] D=3, λ ∈ [0,0.01]

QDA 0.96 D=3, λ ∈ [0,0.02] 0.98 D=3, λ ∈ [0,0.02]

RVFL
0.96

RAO, J = 50, λ ∈ [0,0.05]
0.98 D=3, J = 50, λ ∈ [0.2,0.4]

D=2, J = 50, λ ∈ [0.1,0.4]
D=3, J = 50, λ ∈ [0.1,0.4]

MM 0.00 - 0.95 D=3

Parzen 0.96 RAO, h ∈ [0.6,0.7] 0.96
RAO, h ∈ [0.5,0.8]
D=2, h ∈ [0.55,0.65]

LQ 0.96 RAO, k=5 0.94
RAO, k=1,2,4,5,6,8,12,14

D=2, k=1,9

K-means 0.96 RAO, k=14,16,23,26 0.96 D=2, k=22

SOM (Kohonen) 0.92 RAO 0.92 RAO

SOM (Diffusion) 0.94 RAO 0.94 RAO, D=1

SLINK 0.88 RAO, ϵ ∈ [0.1,0.2] 0.96 D=1, ϵ ∈ [0.05,0.1]

DBSCAN 0.86 RAO, minpts = 5, ϵ ∈ [0.15,0.2] 0.92 RAO, minpts = 5, ϵ ∈ [0.1,0.3]
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Figure 6.1: Critical sensitivity of k-NN for IRIS Flower

Table 6.2: Datasets for Assessment

Dataset m n N m∗ n∗

Iris [73] 150 4 3 100 3
Cancer (Wisconsin) [74] 699 9 2 466 6
Digits [73] 3823 64 10 2550 48
Cryotherapy [75, 76] 90 6 2 60 4
Wine [73] 178 13 3 120 10
Glass [73] 214 9 2 143 6
Ionosphere [73] 351 33 2 234 22
Cancer (Coimbra) [77] 116 10 2 78 7
Transfusion [78] 748 4 2 499 3
Liver [73] 345 6 2 230 4
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Figure 6.2: Critical sensitivity of RR for IRIS Flower
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Figure 6.3: Critical sensitivity of KRR for IRIS Flower
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Figure 6.4: Critical sensitivity of LDA for IRIS Flower
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Figure 6.5: Critical sensitivity of QDA for IRIS Flower

71



Chapter 6. Experimental Part

-8 -7 -6 -5 -4 -3 -2 -1 0

log
10

0.85

0.9

0.95

1

s
e
*

Imperfect

Perfect

(a) RAO

-8 -7 -6 -5 -4 -3 -2 -1 0

log
10

0.85

0.9

0.95

1

s
e
*

Imperfect

Perfect

(b) Whitening (D=1)

-8 -7 -6 -5 -4 -3 -2 -1 0

log
10

0.85

0.9

0.95

1

s
e
*

Imperfect

Perfect

(c) Whitening (D=2)

-8 -7 -6 -5 -4 -3 -2 -1 0

log
10

0.85

0.9

0.95

1

s
e
*

Imperfect

Perfect

(d) Whitening (D=3)

Figure 6.6: Critical sensitivity of RVFL (J=50) for IRIS Flower
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Figure 6.7: Critical sensitivity of Parzen method for IRIS Flower
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Figure 6.8: Critical sensitivity of LQ for IRIS Flower
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Figure 6.9: Critical sensitivity of K-means for IRIS Flower
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Figure 6.10: Critical sensitivity of Kohonen SOM with Hexagonal Topology for
IRIS Flower
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Figure 6.11: Critical sensitivity of Diffusion SOM with Hexagonal Topology for
IRIS Flower
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Figure 6.12: Critical sensitivity of SLINK for IRIS Flower
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Figure 6.13: Critical sensitivity of DBSCAN (D+1) for IRIS Flower
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Figure 6.14: Critical sensitivity of DBSCAN (D+2) for IRIS Flower
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Figure 6.15: Critical sensitivity of DBSCAN (D+3) for IRIS Flower
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Table 6.3: Critical Sensitivity of Imperfect Learning
(Perfect Learning Results in Brackets)

Dataset KRR LDA QDA RVFL MM Parzen K-means SLINK

Iris 0.96 0.98 0.98 0.98 0.95 0.96 0.96 0.96
(0.94) (0.96) (0.96) (0.96) (0.00) (0.96) (0.96) (0.92)

Cancer 0.97 0.97 0.98 0.97 0.97 0.98 0.98 0.98
(Wisconsin) (0.97) (0.94) (0.97) (0.97) (0.94) (0.97) (0.97) (0.96)

Digits 0.85 0.96 0.96 0.94 0.92 0.97 0.60 0.80
(0.79) (0.89) (0.93) (0.90) (0.88) (0.96) (0.46) (0.72)

Cryotherapy 0.98 0.92 0.88 0.95 0.93 0.98 0.94 0.98
(0.94) (0.71) (0.50) (0.81) (0.71) (0.88) (0.83) (0.95)

Wine 0.93 0.93 0.94 0.92 0.40 0.75 0.89 0.64
(0.77) (0.75) (0.77) (0.81) (0.31) (0.73) (0.73) (0.52)

Glass 0.96 0.94 0.90 0.94 0.92 0.95 0.96 0.94
(0.92) (0.78) (0.90) (0.94) (0.88) (0.94) (0.95) (0.92)

Ionosphere 0.79 0.79 0.84 0.84 0.72 0.83 0.77 0.80
(0.78) (0.75) (0.79) (0.82) (0.72) (0.77) (0.75) (0.79)

Transfusion 0.43 0.69 0.69 0.41 0.73 0.62 0.65 0.62
(0.38) (0.63) (0.65) (0.39) (0.64) (0.62) (0.66) (0.62)

Cancer 0.71 0.72 0.75 0.75 0.67 0.73 0.65 0.71
(Coimbra) (0.58) (0.47) (0.34) (0.58) (0.48) (0.61) (0.60) (0.61)

Liver 0.62 0.66 0.63 0.66 0.55 0.65 0.63 0.60
(0.55) (0.57) (0.27) (0.62) (0.17) (0.67) (0.63) (0.62)

Leaves 0.97 0.99 0.97 0.95 0.94 0.78 0.82 0.73
(0.94) (0.88) (0.89) (0.92) (0.70) (0.79) (0.63) (0.62)

Crisis 0.90 0.92 0.94 0.90 0.86 0.93 0.94 0.88
(0.83) (0.85) (0.83) (0.82) (0.81) (0.89) (0.83) (0.67)
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As a dataset classifying into ten classes we used the Digits dataset [73]. This ro-
bust dataset shows increases in the critical sensitivities for all the imperfect learn-
ing methods. The highest critical sensitivity is 0.97 and it was reached by using
the imperfect learning strategy and Parzen method.

For the Cryotherapy dataset [75] the imperfect learning was able to reach the
critical sensitivity at 0.98 for the KRR, the Parzen method, and the SLINK. In all
the cases we see better results compared to the perfect learning.

The critical sensitivity higher than 0.90 for the Wine dataset [73] was reached
for the KRR, the LDA, and the QDA methods. The perfect learning strategies
provided a lower level of the critical sensitivity in all the cases.

Using the imperfect learning strategy and Glass dataset [73], we were able to
reach the critical sensitivity at 0.96 for the KRR and the K-means. The perfect
learning strategy led to the same critical sensitivity as the imperfect one when
using the QDA and the RVFL methods.

The highest critical sensitivity for the Ionosphere dataset [73] was 0.84 in the
case of the QDA and the RVFL methods when the imperfect learning strategy
was applied. In this case, the imperfect learning strategy led to at least the same
results as the perfect learning.

The imperfect learning was able to reach the critical sensitivity at only 0.73 for
the Transfusion dataset using the MM. In the case of the K-means method better
results were reached for the perfect learning strategy.

Cancer (Coimbra) dataset [77] reached the critical sensitivity at 0.75 for the QDA
and the RVFL when using an imperfect learning strategy. The sensitivities were
higher for all the methods in comparison to the perfect learning.

The lowest levels of critical sensitivities were reached for the Liver dataset [73].
The highest critical sensitivity was only 0.66 for the LDA and the RVFL when
using the imperfect learning strategy. In the case of the Parzen method and the
SLINK, the perfect learning provided higher values of the critical sensitivity com-
pared to the imperfect learning.

There is no clear suggestion for an individual universal method for all the pre-
sented datasets. Based on the first six datasets presented in Table 6.3, where the
critical sensitivities higher than 0.90 were reached, we can summarize the results
as follows. The critical sensitivity above 0.90 was reached for the LDA and the
RVFL in all cases. In the case of all datasets assessment, we would be not able to
provide any method with the critical sensitivity higher than 0.90.

For first six datasets presented in Table 6.3, the sensitivities higher than 0.85 were
reached for the KRR, the LDA, the QDA, and the RVFL methods.

Therefore, we can generally propose the imperfect learning as a method which is
able to reach higher critical sensitivity in most cases. In the case of method, we
propose the LDA and the RVFL.
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6.4 Real Application

In this section, we present the results for two real world datasets for classification,
which are not so famous and popular compared to the previous ones presented in
Table 6.2. As a practical example of how the new classifier works, we decided to
present the results for following classification tasks. The first is the dataset repre-
senting tree leaves [79], the second is based on the economic indicators used for
pre and post crisis assessment [70]. The first dataset is focused on the recogni-
tion of ten tree leaves, the second task classifies the economic indicators into two
groups, before and after crisis.

6.4.1 Leaves

The first dataset is generated from the photographs of the leaves, it is so called
Czech leave dataset and it was presented in [79, 80]. This dataset represents the
description of the real leaves of ten trees: Ginkgo Biloba, Acer Platanoides, Be-
tula Pendula, Salix Fragilis, Fagus Sylvatica, Populus Canadensis, Tilia x Vulgaris,
Quercus Robur, Populus Tremula, and Prunus Avium. The total number of fea-
tures is two hundred and eighty six, formed by the functional values of eleven
harmonic components sampled for twenty six frequencies. The total number of
patterns is nine hundred. Therefore, it means m = 900,n = 286, and N = 10.

The pattern set was formed by taking photographs from nine views – one from
the top and eight from various angles and distances. There are differences be-
tween harmonics of the same leaf photographed at various angles and distances.
Affine invariant characteristics were formed from this primary representation.
The advantage of these characteristics is in their preservation during translation,
rotation, scaling and other geometric affine transformation. The detail descrip-
tion regarding the feature extraction and its characteristics is available in [80].

For comparison of the perfect and the imperfect learning we follow our approach
and we apply the basic dimensionality reduction, the RAO method preprocessing
and the data whitening. In case of the imperfect learning, we deal with the reduc-
tion of number of patterns to six hundred, and the reduction of number of fea-
tures to one hundred and ninety one. Therefore, it means m∗ = 600 and n∗ = 191.
The number of repeated learning was sufficient at level of fifty. The classifier re-
sults for seven selected methods providing the best results are presented in the
bottom of the Table 6.3.

The highest value of critical sensitivity reached 0.99 in the case of the LDA method
and the proposed imperfect learning strategy. Therefore, the suggestion proposed
in Section 6.3 works for this task. Moreover, the results show the imperfect learn-
ing over-performing the perfect strategy for all the presented methods.
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6.4.2 Crisis

The crisis dataset is based on economic indicators and was presented in [70].
This dataset represents behaviour of nine indicators of twenty eight European
countries in given years. The indicators are total population, unemployment rate,
gross domestic product, private final consumption, gross fixed capital formation,
domestic demand, exports of goods and services, imports of goods and services,
and gross national savings. The total number of features is nine, total number
of patterns is six hundred and forty four. For each country we have included
indicators in twenty three years, from which sixteen classified as before and seven
as after crisis. Therefore, it means m = 644,n = 9, and N = 2. The pattern set was
formed by taking indicators from the annual report as proposed in [70].

For comparison of the perfect and the imperfect learning we follow our approach
and we apply the basic dimensionality reduction, the RAO method preprocessing
method and the data whitening. In case of the imperfect learning, we deal with
the reduction of number of patterns to four hundred and thirty, and the reduction
of number of features to six. Therefore, it means m∗ = 430 and n∗ = 6. The number
of repeated learning was sufficient at level of fifty. The classifier results for seven
selected methods providing the best results are presented in the bottom of the
Table 6.3.

The highest value of the critical sensitivity reached 0.94 in the case of the QDA
and the K-means method for the proposed imperfect learning strategy. The re-
sults show the imperfect learning over-performing the perfect strategy for all
presented methods. The methods proposed in Section 6.3 succeed in this case as
well. Moreover, the imperfect learning reached critical sensitivity above 0.90 for
the most methods.
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Chapter 7

Implementation in Matlab

We used Matlab for the proposed classifier implementation. We have proposed
general implementation of selected methods via separate functions for learning,
classification, and validation. In this chapter we present brief summary of used
functions together with basic description.

Table 7.1: Supporting and Learning Functions

Name Description Parameters

DWH Data whitening (1.4.1) Dred ∈N
RAO RAO method (1.4.2) -

DBSCANLEARN DBSCAN (1.3.1) ϵ > 0,minpts > n
DBSCANLEARN SLINK (1.3.1) ϵ > 0,minpts = 2
DIFFSOMLEARN Diffusion SOM (1.3.2) H , a, b
KMEANSLEARN K-means (1.3.1) K ≥ 2
KNNLEARN k-NN (1.2.1) k ∈N
KOHONENLEARN SOM (1.3.2) H , k, R
KRRLEARN KRR (1.2.2) λ > 0, σ > 0
LDALEARN LDA (1.2.1) λ > 0
LQLEARN LQ (1.2.1) k ∈N
MMLEARN MM (1.2.2) -
PARZENLEARN Parzen (1.2.1) h > 0
QDALEARN QDA (1.2.1) λ > 0
RRLEARN RR (1.2.2) λ > 0
RVFLLEARN RVFL (1.2.3) J ∈N, λ > 0

Firstly, we present a summary of supporting and learning functions. We use two
basic functions for the preprocessing, the RAO method preprocessing and data
whitening via universal function for different sizes of dimensionality reductions.
The basic functions are presented in Table 7.1 together with the main changing
parameters.
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We have set special functions for optimal unioning of the hidden classes. These
functions are summarized in Table 7.2.

Table 7.2: Functions for Optimal Union of Hidden Classes

Name Description
OUHC_ACC_MAX Accuracy maximization
OUHC_SESTAR_MAX Critical sensitivity maximization
HIDDEN_CLASSES Hidden classes formation
HIDDEN_LEARN Learning of hidden classes unioning
HIDDEN_RESP Classification by hidden classes

Thirdly, we use special function for different validation techniques. In table 7.3 is
presented a summary of functions used for the validation and quality evaluation
of proposed classifier. The classifier proposes naive, m-fold as well as the Leave-
One-Out validation technique. The final classifier characteristics are based on the
relevant contingency table.

Table 7.3: Functions for Validation

Name Description
CROSS_NAIVE Naive validation
CROSS_MFOLD M-fold cross-validation
CROSS_L1OUT Leave-One-Out cross-validation
CROSS_STAT Evaluation of accuracy and sensitivities
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Conclusions

We have presented the novel imperfect approach to classification tasks. To pro-
vide a comprehensive overview of the current state of the art in classification
methods, we conducted a thorough review of existing literature and identified a
range of traditional classification methods and approaches for the data cluster-
ing. To evaluate the effectiveness of our approach, we conducted a series of rigor-
ous experiments, using a range of data sets and comparing our approach with the
selected traditional methods. Our results demonstrate that the novel approach is
able to outperform the traditional methods.

In the novel theory of imperfect learning, we build on the critical sensitivity as
the main benchmark for the classifier assessment. The reason is not to omit the
classes with a low number of representatives because we focus on the lowest class
accuracy among all the classes as a benchmark for the evaluation of classifica-
tion. There is usually no previous knowledge regarding the different importance
of the individual classes, therefore the critical sensitivity has no prejudices and
guarantees equal importance of all the classes. We have formulated the imperfect
learning strategy using the linear programming theory.

In a separate chapter, we have proposed novel methods for the self-organization
derived from the traditional Kohonen learning strategy. Our approach is based on
the idea that diffusion is a fundamental process in nature, occurring in everything
from chemical reactions to the movement of particles in a fluid. By incorporating
the diffusion into the learning process, we are able to create a more dynamic and
flexible approach to the self-organization. We have developed two novel learning
strategies based on the diffusion - the traditional diffusion and the anomalous
diffusion - both of which demonstrate improvements or at least comparability
in the most cases over the traditional Kohonen learning. Such self-organization
proposed new ways of explanation and it could serve as a valuable alternative to
the Kohonen learning.

We have presented the novel theory of hidden classes and their unioning. These
hidden classes can be formed in several ways. The traditional imperfect super-
vised learning strategies can be used as well as the unsupervised learning tech-
niques. There is no need for perfect classification for the formation of the hidden
classes. Therefore, it is not a hard task to generate a higher number of the hid-
den classes. The imperfectness can be led by selecting only a limited number of
features or patterns. It is crucial to obtain a higher number of the classes com-
pared to the original classification task. The core theory of the new approach is
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the optimal unioning of hidden classes.

Our novel multi-classifier has a five-layer structure. The first layer is for the op-
tional nonlinear transformation, the second layer is for the optional linear trans-
formation. The third layer is formed by the imperfect classifiers which lead to
so-called hidden classifiers, and in the last layer, there is the final classifier. The
theory of optimal unioning based on the linear programming theory is the core
part of the final classification. The proposed classifier is flexible and the user is
able to use individual settings.

In the experimental part, we provided a detailed analysis of the novel classifier
in ten different traditional datasets. We have compared the results with the tradi-
tional perfect learning strategies. The novel classifier is able to over-perform the
perfect approach in most cases. Additionally, we have presented the results on
two specific real datasets, where the competitiveness of the novel classifier was
confirmed.

The classifier engine is built in Matlab and the basic structure and its organi-
zation to elementary functions are briefly summarized in the last chapter. The
selected source code examples are presented in the annex.
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Appendix A

Source Code Examples

A.1 Data Transforming

For the optional data preprocessing, we present source codes of two basic func-
tions used for data transformation. Firstly, there is shown the code for the RAO
method and secondly, the code used when data whitening is required.

The RAO method source code:

function [ex,W,Y]=RAO(X,ystar)

% RAO discriminant analysis

H=max(ystar);

m=size(X,1);

ex=mean(X,1);

for k=1:m

X(k,:)=X(k,:)-ex;

end

ST=X’*X;

SW=0*ST;

for k=1:H

B=X(ystar==k,:);

m=size(B,1);

bx=mean(B,1);

for j=1:m

B(j,:)=B(j,:)-bx;

end

SW=SW+B’*B;

end

SB=ST-SW;

M=pinv(SW)*SB;

M=(M+M’)/2;

[W,L]=eig(M);

lambda=diag(L);
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[lambda,ind]=sort(lambda,’descend’);

lambda=lambda(1:H-1);

ind=ind(1:H-1);

W=W(:,ind);

W=W(:,lambda>0);

n=size(W,2);

for k=1:n

[~,ind]=max(abs(W(:,k)));

ind=ind(1);

W(:,k)=W(:,k)*sign(W(ind,k));

end

Y=X*W;

ex=ex’;

The DWH source code:

function [ex,W,Y,lambda]=DWH(X,D)

[m,n]=size(X);

ex=mean(X,1);

for k=1:m

X(k,:)=X(k,:)-ex;

end

if m<n

A=X*X’/sqrt(m-1);

else

A=X’*X/(m-1);

end

[E,LAMBDA]=eig(A);

if m<n

W=zeros(m,D);

for k=1:D

W(:,k)=E(:,end-k+1)/max(LAMBDA(end-k+1,end-k+1),1e-100);

end

W=X’*W;

else

W=zeros(n,D);

for k=1:D

W(:,k)=E(:,end-k+1)/max(LAMBDA(end-k+1,end-k+1),1e-100)^(1/2);

end

end

lambda=diag(LAMBDA);

lambda=cumsum(lambda(end:-1:1));

lambda=100*lambda(1:D)’/lambda(end);

Y=X*W;

ex=ex’;
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A.2 Learning and Classification Functions

In this section, we present four selected methods used for learning itself and
responses. The methods were selected based on the results in Section 6.3 for the
KRR, the LDA, the QDA, and the RVFL methods.

A.2.1 KRR

The source code of the learning function for the KRR method is as follows.

function resplearn=KRRLEARN(X,ystar,par)

sigma=par(1);

lambda=par(2);

m=size(X,1);

N=max(ystar);

Y=zeros(m,N);

for k=1:m

Y(k,ystar(k))=1;

end

G=ones(m,m);

for i=1:m-1

for j=i+1:m

G(i,j)=exp(-norm(X(i,:)-X(j,:))^2/2/sigma^2);

G(j,i)=G(i,j);

end

end

A=pinv(G+lambda*eye(m,m))*Y;

resplearn={A,X,sigma};

The source code of the function generating response for the KRR method is as
follows.

function y=KRRRESP(x,resplearn)

A=resplearn{1};

X=resplearn{2};

sigma=resplearn{3};

m=size(X,1);

ke=ones(m,1);

for i=1:m

ke(i)=exp(-norm(X(i,:)-x’)^2/2/sigma^2);

end

y=A’*ke;

[~,ind]=max(y);

if length(ind)==1

y=ind;
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else

y=0;

end

A.2.2 LDA

The source code of the learning function for the LDA method is as follows.

function resplearn=LDALEARN(X,ystar,par)

lambda=par(1);

[m,n]=size(X);

N=max(ystar);

MU=zeros(N,n);

SIGMA=zeros(n,n);

for k=1:N

ind=find(ystar==k);

mpatt=length(ind);

if isempty(ind)

MU(k,:)=inf;

%SIGMA(:,:,k)=0;

continue

end

B=X(ind,:);

MU(k,:)=mean(B,1);

sss=cov(B)+lambda*eye(n,n);

SIGMA=SIGMA+sss*mpatt;

end

SIGMA=SIGMA/m;

SIGMAINV=pinv(SIGMA);

logdet=log(det(SIGMA));

resplearn={MU,SIGMAINV,logdet};

The source code of the function generating response for the LDA method is as
follows.

function y=LDARESP(x,resplearn)

MU=resplearn{1};

SIGMAINV=resplearn{2};

logdet=resplearn{3};

N=size(MU,1);

d=zeros(N,1);

for k=1:N

mu=MU(k,:);

d(k)=logdet+(x-mu’)’*SIGMAINV*(x-mu’);

end

[~,ind]=min(d);
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if length(ind)==1

y=ind;

else

y=0;

end

A.2.3 QDA

The source code of the learning function for the QDA method is as follows.

function resplearn=QDALEARN(X,ystar,par)

lambda=par(1);

n=size(X,2);

N=max(ystar);

MU=zeros(N,n);

SIGMAINV=zeros(n,n,N);

logdet=zeros(N,1);

for k=1:N

ind=find(ystar==k);

if isempty(ind)

MU(k,:)=inf;

SIGMAINV(:,:,k)=inf;

logdet(k)=inf;

continue

end

B=X(ind,:);

MU(k,:)=mean(B,1);

SIGMA=cov(B)+lambda*eye(n,n);

SIGMAINV(:,:,k)=pinv(SIGMA);

logdet(k)=log(det(SIGMA));

end

resplearn={MU,SIGMAINV,logdet};

The source code of the function generating response for the QDA method is as
follows.

function y=QDARESP(x,resplearn)

MU=resplearn{1};

SIGMAINV=resplearn{2};

logdet=resplearn{3};

N=length(logdet);

d=zeros(N,1);

for k=1:N

mu=MU(k,:);

d(k)=logdet(k)+(x-mu’)’*SIGMAINV(:,:,k)*(x-mu’);

end

101



Appendix A. Source Code Examples

[~,ind]=min(d);

if length(ind)==1

y=ind;

else

y=0;

end

A.2.4 RVFL

The source code of the learning function for the RVFL method is as follows.

function resplearn=RVFLLEARN(X,ystar,par)

J=par(1);

qmax=par(2);

q0max=par(3);

lambda=par(4);

[m,n]=size(X);

N=max(ystar);

Y=zeros(m,N);

for k=1:m

Y(k,ystar(k))=1;

end

Q=[q0max*unifrnd(-1,1,1,J);

qmax*unifrnd(-1,1,n,J)];

XNEW=[ones(m,1),X];

G=tanh(XNEW*Q);

REG=eye(n+J+1,n+J+1);

REG(1,1)=0;

XNEW=[XNEW,G];

W=pinv(XNEW’*XNEW+lambda*REG)*XNEW’*Y;

resplearn={Q,W};

The source code of the function generating response for the RVFL method is as
follows.

function y=RVFLRESP(x,resplearn)

Q=resplearn{1};

W=resplearn{2};

x=[1;x];

g=Q’*x;

x=[x;g];

y=W’*x;

[~,ind]=max(y);
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if length(ind)==1

y=ind;

else

y=0;

end

A.3 General Source Code Examples

In this section, we first present the functions used for hidden learning and hid-
den classification. Then we show the source code of Leave-One-Out and M-fold
validations. Finally, we present the accuracy and sensitivity evaluation function.

The source code of hidden learning function is as follows:

function [redresp,C,r]=HIDDEN_LEARN(X,ystar)

global ssemin

resp=MULTI_LEARN(X,ystar);

YCOL=FORALL_RESP(X,resp);

[c,C,redresp]=HIDDEN_CLASSES(resp,YCOL);

mixed=0;

F=OUHC_CONTING(ystar,c);

if ssemin<=0

[~,~,semin]=OUHC_SESTAR_MAX(F,mixed);

end

r=OUHC_ACC_MAX(F,semin,mixed);

The source code of hidden classification function is as follows:

function [c,C,redresp,Y]=HIDDEN_CLASSES(resp,YCOL)

[Y,ind]=unique(YCOL’,’rows’);Y=Y’;

redresp=resp(ind);

[C,~,c]=unique(Y,’rows’);

The Leave-One-Out validation technique is represented as follows:

function y=CROSS_L1OUT(X,ystar)

y=0*ystar;m=length(ystar);

for k=1:m

BX=[X(1:k-1,:);X(k+1:m,:)];

by=[ystar(1:k-1);ystar(k+1:m)];

sx=X(k,:);

[redresp,C,r]=HIDDEN_LEARN(BX,by);

y(k)=HIDDEN_RESP(sx’,redresp,C,r);

end
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The M-fold validation technique is represented as follows:

function y=CROSS_MFOLD(X,ystar,M)

y=0*ystar;m=length(ystar);

H=floor(m/M);

res=mod(m,M);

for k=1:res

level=(k-1)*(H+1)+1;

BX=[X(1:level-1,:);X(level+H+1:m,:)];

by=[ystar(1:level-1);ystar(level+H+1:m)];

[redresp,C,r]=HIDDEN_LEARN(BX,by);

for kkk=level:level+H

sx=X(kkk,:);

y(kkk)=HIDDEN_RESP(sx’,redresp,C,r);

end

end

for k=1:M-res

level=(k-1)*H+1+(H+1)*res;

BX=[X(1:level-1,:);X(level+H:m,:)];

by=[ystar(1:level-1);ystar(level+H:m)];

[redresp,C,r]=HIDDEN_LEARN(BX,by);

for kkk=level:level+H-1

sx=X(kkk,:);

y(kkk)=HIDDEN_RESP(sx’,redresp,C,r);

end

end

Basic characteristics for classifier assessment are calculated using two following
functions:

function [acc,ase,sestar,se]=CROSS_STAT(F)

m=sum(sum(F));

acc=sum(diag(F))/m;

N=size(F,1);

se=zeros(N,1);

for k=1:N

s=sum(F(k,:));

if s>0

se(k)=F(k,k)/s;

else

se(k)=1; %optimism

end

end

ase=mean(se);

sestar=min(se);
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function F=CROSS_CONTING(ystar,y)

m=length(ystar);

N=max(ystar);

H=N+1;

F=zeros(N,H);

for k=1:m

i=ystar(k);

j=y(k);

if j==0

j=H;

end

F(i,j)=F(i,j)+1;

end
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Neural Processing Letters, 2022, 54.2: 835-852.

R. Hrebik, J. Kukal, Optimal unions of hidden classes, Central European Journal of
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Abstract
Our paper presents a novel approach to pattern classification. The general disadvantage of 
a traditional classifier is in too different behaviour and optimal parameter settings during 
training on a given pattern set and the following cross-validation. We describe the term 
critical sensitivity, which means the lowest reached sensitivity for an individual class. This 
approach ensures a uniform classification quality for individual class classification. There-
fore, it prevents outlier classes with terrible results. We focus on the evaluation of critical 
sensitivity, as a quality criterion. Our proposed classifier eliminates this disadvantage in 
many cases. Our aim is to present that easily formed hidden classes can significantly con-
tribute to improving the quality of a classifier. Therefore, we decided to propose classifier 
will have a relatively simple structure. The proposed classifier structure consists of three 
layers. The first is linear, used for dimensionality reduction. The second layer serves for 
clustering and forms hidden classes. The third one is the output layer for optimal cluster 
unioning. For verification of the proposed system results, we use standard datasets. Cross-
validation performed on standard datasets showed that our critical sensitivity-based classi-
fier provides comparable sensitivity to reference classifiers.

Keywords Pattern classification · Data clustering · Dimensionality reduction · Hidden 
classes · Multi-classifier

List of Symbols

Sets
S   Pattern set
ℕ  Natural numbers
ℝ  Real numbers
C   Output class
H   Hidden class
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Variables
n  Number of features
m  Number of patterns
H  Number of hidden classes
N  Number of classes
D  Reduced dimension
p  Pattern vector
X  Input matrix
y  Classifier output vector
y∗  Desired output vector
y  Classifier output/response
y∗  Desired output value
w  Weight vector
w0  Bias

Functions
c  Classifier

1 Introduction

There exist a lot of different classifiers designed for classification from n-dimensional 
space. These classifiers are usually used for classification in two or more classes and are 
based on various principles. For example, linear combination (Orozco-Alzate et al. 2019), 
use of mutual distances (Shahid and Singh 2019; Liu and Wang 2022; Veneri et al. 2022), 
variants of gradient boosting (Bentejac et  al. 2021; Liang and Sur 2022), adaboost (Hu 
et al. 2020), and bagging (Medina-Pérez et al. 2017; Jafarzadeh et al. 2021).

Our new approach is based on an assumption that for data with a complex structure, it 
is beneficial to divide the data into an unspecified number of sub-groups. These artificial 
groups, so-called hidden classes, can be formed easily using unsupervised or supervised 
learning techniques. We can use small low-level classifiers with limited validity and focus 
on data belonging to these classes. The way how we form hidden classes is not crucial, but 
they could be helpful for the final classification, which will be improved subsequently by 
their optimal unification. Such an optimal union leads to better classification results than 
using only the original datasets. This idea is the cornerstone of the proposed classifier. Fur-
thermore, it is necessary to emphasize that we focus on the sensitivity of each, individual 
class, and not omit any of them.

We propose using simple clustering methods resulting in more clusters than the final 
classes, which will not be many or few. After forming such clusters, we propose a union of 
them with the optimal union method (Hrebik et al. 2019). Such unioning enables the for-
mation of a classifier with the highest possible critical sensitivity. Our aim is to introduce a 
novel classifier suitable for processing data with a higher dimension, so dimension reduc-
tion must also be part of our classifier. Dimensionality reduction can be optional, but in our 
opinion, it generally increases the efficiency of the system and our recommendation is data 
whitening, thanks to which we get a dimensionless description.

A separate part of our paper considers meaning of critical sensitivity and why we propa-
gate this criterion. The basic idea is that in the case of classification into classes, we have a 
separately evaluated percentage of correctly classified patterns for each class, which we refer 
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to as the sensitivity of the relevant class. However, most classifiers maximize their accuracy 
on all data, which, of course, represents an unbalanced evaluation. We focus on the class pro-
viding worst results, and this sensitivity we note as critical sensitivity. Even simple clustering 
methods, such as DBSCAN, can provide high-quality clusters, which by unification will create 
a classifier in which even the worst class will have sufficient level sensitivity. Therefore, even 
in the case of an unbalanced size of classes, using our proposed classifier, we do not omit 
even the smallest one because of a low number of patterns. Our proposed method focuses on 
generating hidden classes from current datasets. Some authors suggest to generate synthetic 
samples (Rekha and Madhu 2022).

In this section, we provide a brief basic summary of the current state of research. Pattern 
recognition (Duda et al. 2012) represents a common aim of artificial intelligence and machine 
learning. In the case of machine learning, we distinguish between unsupervised and super-
vised approaches. The typical clustering models (Karlsson 2010) are connectivity, centroid, 
distribution, density, subspace, graph-based, and neural network ones (Back et al. 2018; Shi 
et al. 2019; Lin et al. 2020). A well-known unsupervised neural network model is represented 
by self-organizing maps (SOM). We can include subspace models as Principal Component 
Analysis or Independent Component Analysis as data processing techniques for dimension 
reduction (Eldar and Oppenheim 2003; Jolliffe 2011; Nguyen and Holmes 2019) of an origi-
nal dataset consisting of a large number of interrelated variables. Dimensionality reduction 
leads to data representation using fewer features. Another approach to dimension reduction 
represent linear discriminant analysis into two classes (Eldar and Oppenheim 2003; Croux 
et al. 2008) or more classes (Rao and Toutenburg 1995).

Our proposed approach consists of three steps:

• Dimensionality reduction and standardization,
• Data clustering in the space of reduced dimension,
• Hidden class forming and their optimal union to desired output classes.

Dimensionality reduction is based on data whitening (Eldar and Oppenheim 2003) or multi-
class discriminant analysis, as an alternative, in the first step. The following clustering is per-
formed by parameter-driven DBSCAN (Ester et  al. 1996) generating several classes, their 
structure, and outliers. Proposed clustering technique is quick and can be reduced to the 
SLINK (Sibson 1973) algorithm in many cases. In the last step, we define hidden classes as 
clusters from the previous step. The relationship between these hidden classes and output 
classes learned is optimized using a binary programming technique that is focused on the 
maximization of classifier critical sensitivity.

We summarize several principles of multi-classifiers in the second section focusing on data 
whitening, multiple discriminant analysis, data clustering, and the concept of hidden classes. 
We discuss the framework and structure of a novel multi-classifier in the third section. The 
numerical experiments on basic pattern sets and resulting optimal settings and quality meas-
ures are summarized in the next section. The last section concludes our proposed classifier.

2  Multi‑classification preliminaries

Basic facts related to the classification into several classes are summarized in this sec-
tion. The optional methods of preprocessing are discussed first as unsupervised and super-
vised approaches. Data clustering is then discussed as a method of how to generate hidden 
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classes. Finally, the concept of unioning of hidden classes is presented as a kernel of the 
novel approach.

2.1  Multi‑classification Task

Basic frame of classification of vector patterns (Duda et al. 2012) into several classes is 
established first. Let n,m,N ∈ ℕ be number of features, patterns, and classes satisfying 
N ≥ 2 . Let x ∈ ℝ

n be the feature vector and y, y∗ ∈ {1, ...,N} be a classifier output and its 
required value, denoting a pattern as p = (x, y∗) , the classifier is defined as a function

and the classifier response is therefore y = c(x) . Denoting xk ∈ ℝ
n , y∗

k
∈ {1, ...,N} as a fea-

ture vector and given output of k-th pattern, we define a pattern set as

The pattern set can be represented by any input matrix X ∈ ℝ
m×n and any output vector 

y∗ ∈ {1, ...,N}m . Any classifier is a complex system that applies various data processing 
techniques to obtain the final decision. Selected approaches are summarised in the follow-
ing subsections.

2.2  Data whitening

The first but optional step of any classification is an efficient transformation that decreases 
the number of features but saves information about pattern differences. The main idea of 
principal component analysis (PCA) (Jolliffe 2011) is to reduce the dimensionality of the 
original dataset consisting of a large number of interrelated variables. The reduction retains 
as much as possible of the variation present in the data set. The aim is achieved by trans-
forming into a new set of variables called principal components. These components are 
uncorrelated and ordered so that the first few retain most of the variation present in all of 
the original variables.

Let D ∈ ℕ be reduced dimension satisfying D < n . The dimensionality reduction from 
ℝ

n to ℝD using PCA is based on a linear transformation

The PCA is designed to satisfy E z = 0 and var z = D , where D is a diagonal matrix. 
Resulting parameters of PCA are W1 ∈ ℝ

n×D and

The transforming matrix W1 is calculated as follows. First, we shift the input matrix to 
obtain XS = X − 1mx

T
0
 , where 1m is m-dimensional vector of units. Then we calculate a 

covariance matrix A = XT
S
XS ≥ 0 and apply Eigen-Value Decomposition (EVD) as finding 

of eigenvalues v ∈ ℝ
n and eigenvectors � ≥ 0 in equation (A − �In)v = 0 where In ∈ ℝ

n×n 
is identity matrix.

The solutions can be ordered as �(1) ≥ �(2) ≥ ... ≥ �(D) ≥ 0 with corresponding normal-
ized eigenvectors v(1), v(2), ..., v(D) . Resulting PCA matrix (Jolliffe 2011) is

c ∶ ℝ
n
→ {1, ...,N}

S = {(xk, y
∗
k
) ∶ k = 1, ...,m}

(1)z = PCA(x) = WT
1
(x − x0)

(2)x0 =
1

m

m∑

k=1

xk
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and the dimensionality reduction generates new feature matrix Z = XSW1.
Data Whitening (DWH) (Eldar and Oppenheim 2003) represents improved process of 

PCA, which guarantees unit covariance matrix of resulting vector. The transform is defined as

The matrix WT
2
 is designed to satisfy E z = 0 and var z = �n . Using the result of EVD we 

directly calculate (Eldar and Oppenheim 2003)

Due to duality, we can perform the data whitening for m < n in more efficient way. We 
calculate B = XSX

T
S
≥ 0 and perform its EVD. Resulting EVD equation is (B − �Im)u = 0 . 

The solutions can be ordered again as �(1) ≥ �(2) ≥ ... ≥ �(D) ≥ 0 with corresponding nor-
malized eigenvectors u(1), u(2), ..., u(D) ∈ Rm . Resulting whitening matrix is

and the data whitening generates new feature matrix Z = XSW2 in both cases. Data whit-
ening in primal or dual form is preferred in this paper for optional data preprocessing.

2.3  Multiple discriminant analysis

Another approach of dimensionality reduction is based on knowledge of class membership. 
Having information about classes we can also perform linear data transformation to obtain 
higher data separation. Classical Fisher discriminant analysis (FDA) (Mika et al. 1999; Croux 
et al. 2008) is designed for two classes but Rao (Rao and Toutenburg 1995; Duda et al. 2012) 
generalized it for multi-classification task as follows.

The Rao method transforms the data from ℝn to ℝN−1 for N ≥ 2 using a linear 
transformation

where W3 ∈ ℝ
n×(N−1).

The method is based on pattern index sets Di ∈ {k ∈ ℕ ∶ y∗
k
= i} for i = 1, ...,N and their 

cardinalities mi = cardDi . After the evaluation of cluster centres

we can calculate within matrix

where

(3)W1 = (v(1), v(2), ..., v(D))

(4)z = DWH(x) = WT
2
(x − x0)

(5)W2 =

�
�(�)
√
�(1)

,
�(�)
√
�(2)

, ...,
v(D)
√
�(D)

�

(6)W2 = XT
S

(
�(�)

�(1)

,
�(�)

�(2)

, ...,
u(D)

�(D)

)

(7)z = RAO(x) = WT
3
(x − x0)

(8)ti =
1

mi

∑

k∈Di

xk

(9)SW =

N∑

i=1

Si ≥ 0
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The total and between matrices are calculated as

When the pattern set is non-degenerated then SW > 0 and we solve generalized EVD prob-
lem which is driven by equation

Solutions of generalized EVD can be ordered as �(1) ≥ �(2) ≥ ... ≥ �(N−1) ≥ 0 with corre-
sponding eigenvectors e(1), e(2), ..., e(N−1) . Finally, the transformation matrix of Rao method 
is

and the pattern set has new feature matrix Z = XSW3 again.
The Rao method is well informed and the new dimension is fixed to N − 1 but the data 

whitening has the optional dimension of result and the information about class member-
ship is missing. Therefore, these two approaches can generate different matrices W and Z . 
The Rao method is also useful for data preprocessing.

2.4  DBSCAN technique

There are also various approaches to pattern classification. In this section, we focus on 
modern sequential clustering algorithms as SLINK, CLINK and finally DBSCAN. The 
SLINK algorithm (Sibson 1973) carries out single-link cluster analysis on an arbitrary dis-
similarity coefficient and provides a representation of the resultant dendrogram which can 
readily be converted into the usual tree-diagram. There exist also alternative implementa-
tion (Goyal et al. 2020) which comes from a reduction in the number of distance calcula-
tions required by the standard implementation of SLINK with time complexity O (m logm) 
in the case of m patterns. Hierarchical clustering omitting the initial sorting and consecu-
tive clustering (Schmidt et al. 2017) having a linear time complexity as alternative to single 
linkage clustering has also been presented.

An algorithm for a complete linkage clustering (Patel et  al. 2015) is based, same as 
SLINK, on a compact representation of a dendrogram. Fast algorithms (Banerjee et  al. 
2021) for CLINK clustering show that complete linkage clustering of m points can be com-
puted in O (m log2m) time.

The density-based spatial clustering of applications with noise (DBSCAN) (Ester et al. 
1996) represents a non-parametric algorithm with a given set of points in some metric 
space and groups together points that are closely packed together and marks outliers.

We will study patterns in vector space as xk ∈ ℝ
n, k = 1, 2, ...,m , where m, n are number 

of patterns and space dimensionality but the DBSCAN is defined in metric space. After 

(10)Si =
∑

k∈Di

(xk − ti)(xk − ti)
T

(11)ST =

m∑

k=1

(xk − x0)(xk − x0)
T

(12)SB = ST − SW =

N∑

i=1

mi(ti − x0)(ti − x0)
T

(13)
(
S−1
W
SB − ��n

)
e = 0.

(14)W3 = (e(1), e(2), ..., e(N−1))
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application of Euclidean distance we can define mutual distances as di,j = ||xi − xj||2 . Vari-
ous versions of this algorithm (Antony and Deshpande 2016; Bai et al. 2017) differ in the 
method of distance computation. The inefficient implementations (Shen et al. 2016; Schu-
bert et  al. 2017) calculate all mutual distances before data clustering but there are more 
effective procedures that rapidly decrease the time complexity of DBSCAN to O (m logm) 
as in the case of SLINK.

The DBSCAN is driven by two parameters 𝜖 > 0 , kmin ≥ 2 which fully depends on 
users opinion. We will set them to obtain the best sensitivity of resulting classifier in the 
process of cross-validation. The DBSCAN generates an undirected graph G with vertex 
set V = {1, 2, ...,m} and edge set E = {e1, e2, ..., et} and the pattern xi is placed in vertex i 
for i = 1, 2, ...,m . There are three types of vertices: a hard member, a soft member and an 
outlier.

The vertex i is called the hard member when card{j ∶ di,j ≤ �} ≥ kmin . Every edge 
e = {i, j} has to satisfy di,j ≤ � . The edge e is called a hard connection when the vertices i, j 
are hard members. A soft connection is the edge e where the node i is the hard member but 
the node j is not. Remaining edges are eliminated. Resulting graph G has several compo-
nents. The component is declared as a cluster when it has two vertices at least. Remaining 
discrete components are declared as the outliers.

The main advantage of SLINK, CLINK, and DBSCAN is in the ability of sequential 
learning with acceptable time complexity. Exactly, the hard members of DBSCAN, num-
ber of clusters, and outliers are invariant to pattern order during the learning process.

2.5  Union of hidden classes

Both supervised and unsupervised approaches to the pattern classification can be used 
to form hidden classes inside the final classifier. The system of hidden classes arises 
from uncertainty of class membership, imperfectness of classification or any context 
out approach. We will apply a deterministic approach which is based on the relationship 
between hidden groups and the output classes (Hrebik et al. 2019) as follows. The aim is 
to optimize this relationship as the best mapping from the hidden to the output classes. 
The strict classifier is defined as mapping c ∶ LH → LN from the set LH of hidden class 
indices to the set LN of final class indices, where Ln = {1, ..., n} . This mapping can be 
expressed via the matrix � ∈ {0, 1}N×H , where xi,j = 1 iff dk ∈ Hj ⇒ dk ∈ Ci . Therefore, 
xi,j = 1 just when for any pattern belonging to Hj  it also belongs to Ci . The uniqueness con-
ditions 

∑N

i=1
xi,j = 1 have to be satisfied for j = 1, ...,H.

The relation between the classes and the hidden groups is presented via the contingency 
table 𝔽 ∈ ℕ

N×H
0

 , where fi,j = card{k ∶ dk ∈ Ci

⋂
Hj} is the result of pattern counting. 

Here, fi,j is the number of patterns belonging to both class Ci and group Hj  as joint fre-
quency, which can be relativized as

where i = 1, ...,N , j = 1, ...,H.
There are two approaches to evaluating the quality of a classifier. One of them is accu-

racy, which is the success of the classifier as a whole, i.e. the proportion of successfully 
classified patterns and all patterns. The main disadvantage of such approach is the imbal-
ance in results for individual classes. Against this, there is another concept based on 

(15)qi,j =
fi,j

∑H

k=1
fi,k
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sensitivity, which is very often used in medicine when we evaluate the percentage of suc-
cess in classifying a sick patient. If, on the other hand, we are interested in the percent-
age of success in determining whether a patient is healthy, then medicine uses the term 
specificity. If we do not know in advance how many classes there will be in the task, it is 
more advantageous to call the classical sensitivity the sensitivity for the first class ( se1 ) and 
the specificity the sensitivity of the second class ( se2 ) and generally introduce seN , which 
is actually the success rate of the classifier for the given class, i.e. the number of correct 
individuals in that class relative to the total number of individuals in that class. It is obvi-
ous that if we want to have strict requirements for the classifier, it is not a good idea to 
maximize its accuracy, but to maximize the so-called critical sensitivity, which is nothing 
but the smallest value of the individual seN . When we substitute the values fi,j and xi,j into 
those definitions, we receive the following formulas.

The accuracy of given classifier can be expressed as

Using the concept of class sensitivity as a relative frequency of true classification, we can 
calculate it for i = 1, ...,N as

An average sensitivity can be defined as

A lower estimate of class sensitivity is defined as a critical sensitivity

We prefer critical sensitivity as the strength criterion of classifier efficiency and maximize 
them via the union of hidden classes. The accuracy criterion is also used as the traditional 
measure which is frequently used by many authors.

In accordance with Hrebik et al. (2019), we will maximize the critical sensitivity se∗ . 
An adequate mixed binary optimization task is

subject to

(16)acc =
1

m

N∑

i=1

H∑

j=1

fi,jxi,j

(17)sei =

H∑

j=1

qi,jxi,j

(18)ase =
1

N

N∑

i=1

sei

(19)se∗ = min{sei ∶ i = 1, ...,N}

(20)se∗ = max

(21)
N∑

i=1

xi,j = 1 for j = 1, ...,H

(22)
H∑

j=1

qi,jxi,j − se∗ ≥ 0 for i = 1, ...,N
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with real artificial variable se∗ . The inequalities Eq. (22) guarantee that se∗ is a lower bound 
of critical sensitivity during the optimization process.

From the theoretical point of view it is necessary to think whether this task has a solu-
tion in general. If we choose se∗ = 0 then all inequalities Eq. (22) holds regardless of what 
the values of x are. This means that if the task was too complicated, then in the worst pos-
sible scenario it will case that the optimal value of critical sensitivity will be se∗ = 0 , as a 
symbol that the original task has no solution, but the system of inequalities Eq. (22) has 
a solution. So, if we obtain se∗ = 0 , it means that the given task cannot be solved by the 
given method. In the case of degeneration, the task can have more solution. Therefore is 
important following consideration.

After the specification of se∗ , we can yield from the task degeneration and solve addi-
tional binary programming task which guarantees the same critical sensitivity and maxi-
mize accuracy as

subject to

3  Framework of multi‑classification

The novel approach of vector pattern multi-classification is based on a combination of the 
approaches mentioned above. Basic assumptions and procedures are summarized in this 
section.

3.1  Assumptions

Let N, M, n be number of output classes, number of patterns, and number of pattern dimen-
sions that are unlimited in general. But there is a threshold value n∗ of pattern dimension 
which switch between deterministic and random sub-sampling approaches. In both cases, 
the first step of classification is dimensionality reduction using data whitening or multi-
class discriminant analysis which converts the data into the space of dimension D ≤ n . 
In the second step, the reduced data are clustered using the DBSCAN technique and the 

(23)xi,j ∈ {0, 1} for i = 1, ...,N, j = 1, ...,H

(24)se∗ ∈ [0, 1]

(25)acc =
1

M

N∑

i=1

H∑

j=1

fi,jxi,j = max

(26)
N∑

i=1

xi,j = 1 for j = 1, ...,H

(27)
H∑

j=1

qi,jxi,j ≥ se∗ for i = 1, ...,N

(28)xi,j ∈ {0, 1} for i = 1, ...,N, j = 1, ...,H
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hidden classes are formed. Optimal unions of these hidden classes are performed in the last 
step of the multiple classifications.

3.2  Classification for n ≤ n
∗

The learning strategy of classification is based on the pattern dimension. When the patterns 
are not too large we will proceed with the whole set of patterns. In the case of data whit-
ening we use learning procedure with parameters D, kmin, � . But in the case of multi-class 
discriminant analysis, we have only two free parameters kmin, � because of D = N − 1 . In 
the first step we transform data matrix X ∈ ℝ

M×n to Y ∈ ℝ
M×D using data whitening Eqs. 

(1–5) or using Rao method Eqs. (7–14). Then we use the DBSCAN technique for clus-
tering in ℝD with parameters kmin, � . Every cluster forms a new hidden class of patterns 
and the outliers which are also localized by the DBSCAN are ignored. Finally, the optimal 
union of hidden classes Eqs. 20–24) is performed.

There are no problems with large pattern number M because both data whitening, Rao 
method, and DBSCAN are designed for a large amount of data patterns. But the parameters 
of DBSCAN must be selected to generate not too large number H of hidden classes.

3.3  Approximated classification for n > n
∗

When the pattern vector length n is too large its reduction is necessary preprocessing step 
which is a kind of context out data whitening. We select nred ≤ n∗ first and create a random 
sub-sample of m patterns which are supposed to be representatives of the given pattern 
set. When m ≤ n∗ , the dual form of learning Eq. (6) is performed as an alternative data 
whitening which produces the weight matrix W ∈ ℝ

n×nred . Using this matrix we transform 
the original data to obtain a matrix Xred ∈ ℝ

M×nred . This matrix of reduced patterns is used 
instead of the original pattern set using the learning strategy (Sect. 3.2). This process is 
of a stochastic nature and nred,m are two additive parameters that control the preliminary 
dimensionality reduction. Therefore, the novel classification algorithm is also applicable to 
long pattern vectors but with context out imperfectness related to the random sampling of 
patterns.

3.4  Classification verification

We suppose the parameters of classification are set on the complete pattern set to obtain the 
classifier with maximum possible critical sensitivity se∗ . The role of parameter � for fixed 
D, kmin is crucial and can rapidly change the class sensitivities but the critical sensitivity 
peaceful-wise continuous function of � and therefore there is an interval of � which maxi-
mizes se∗ . After this preliminary parameter setting we have to perform the cross-validation. 
When the number of patterns M is small, we prefer Leave-One-Out (Wong 2015; Gronau 
and Wagenmakers 2019) cross-validation technique but for large M we can use 10-fold (Xu 
et  al. 2018; Steyerberg 2019) cross-validation scheme as generally recommended. When 
we map the role of parameter � in the case of cross-validation the values of se∗ are not so 
high in many cases. The interval of an optimal � can be also different in the case of cross-
validation. There are no general rules and this phenomenon will be studied experimentally 
in the next section.
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3.5  Classifier structure

The new classifier serves to ensure that for all patterns xk ∈ ℝ
n, k = 1, 2, ...,m , where 

m,  n are number of patterns and space dimensionality, recognized to which class 
Ci, i = 1, 2, ...,N belongs. The new classifier consists of three parts, and the proposed struc-
ture is captured in Fig. 1. The first part of the system, is a linear transformation that dis-
plays all patterns from dimension n to a lower dimension D. Either multiple discriminant 
analysis (Sect. 2.3) or data whitening (Sect. 2.2) is used for this transformation. The second 
part of the system uses the standard DBSCAN tool with parameters � and kmin (Sect. 2.4). 
Depending on these parameters, individual patterns are classified unsupervised into H 
classes, representing hidden classes. The third part of the system is optimal union using 
binary programming techniques (Sect.  2.5). This creates a system that unambiguously 
assigns each x on the input to which class it belongs.

4  Experimental part

To demonstrate the results of proposed approach we have selected ten basic classification 
tasks (Dua 2020). This approach allow clear comparison with other classification methods. 
All datasets analysed during the current study are available in the repositories referred in 
Table 1, mainly in UC Irvine Machine Learning Repository (Dua 2020). The table includes 
also the number of patterns, their dimensionality, and the number of classes. For compari-
son of our results, we work with relevant papers presenting classification results. The main 
aim is to confirm that our method is comparable with other ones. As our approach based 
on critical sensitivity is not commonly used we compare the basic criteria of classification 
accuracy. We present and compare both cases’ optimal setting on the training set as well as 
the leave-one-out cross-validation.

4.1  Case study: iris flower classification task

As the primal research dataset, we decided to use the well-known and widely used iris 
dataset (Swain et al. 2012). Iris dataset contains three classes of fifty instances each, where 
each class refers to a type of iris plant. One class is linearly separable from the other two, 
the latter is not linearly separable from each other. Every iris pattern is a four-dimensional 
real positive vector.

First of all, we have to prepare the data for our model. We can use the data whitening 
or Rao method. Our aim is to demonstrate using of DBSCAN. We test different values of � 

Fig. 1  Classifier structure
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and investigate results for kmin from 2 to 5. The � values in the testing examples we set from 
0 to 1.26. The optimal settings with the highest value of se∗ are summarized in Table 2 for 
training set and in Table 3 for Leave-One-Out cross-validation.

We can confirm the best results using kmin = 2 , Rao method and � from �min = 0.08 to 
�max = 0.09 in naive case. Leave-One-Out cross-validation led to the wider interval of � 
reaching 0.04 to 0.14 for the same setting. The value of critical sensitivity is above ninety 
percent in both cases. The reached maximum accuracy value is fully comparable to other 
presented results (Kulluk et al. 2012; Ozyildirim and Avci 2014; Asafuddoula et al. 2017; 
Yin and Gelenbe 2018) summarized in Tables 4 and 5 along with reached minimum and 
maximal accuracy together with placement among benchmark techniques.

4.2  Application to other pattern sets

We have applied our novel method also to nine other datasets: Wine, Glass, Cancer (Wis-
consin), Haberman, Liver, Ionosphere, Cancer (Coimbra), Transfusion, and Cryotherapy 
described in Table 1. Most of the tasks are classification into two classes. In the case of 
the Glass dataset, there is known also an alternative task to seven classes. The results of 
training are collected in Table 2 as optimal values of classification parameters and adequate 

Table 1  Datasets for Assessment

Dataset m n H

Iris (Dua 2020) 150 4 3
Wine (Dua 2020) 178 13 3
Glass (Dua 2020) 214 9 2
Cancer (Wisconsin) (Dua 2020; Basavegowda and Dagnew 2020) 699 9 2
Haberman (Dua 2020) 306 3 2
Liver (Dua 2020) 345 6 2
Ionosphere (Dua 2020) 351 33 2
Cancer (Coimbra) (Dua 2020; Patrício et al. 2018) 116 10 2
Transfusion (Dua 2020; Yeh et al. 2009) 748 4 2
Cryotherapy (Dua 2020; Khozeimeh et al. 2017, 2017) 90 6 2

Table 2  Optimal setting on training set

Dataset D k
min

�
min

�
max

acc ase se ∗

Iris 0 2 0.0832 0.0912 0.9800 0.9800 0.9600
Wine 3 2 0.2188 0.3468 0.7809 0.7820 0.7746
Glass 2 2 0.2042 0.3981 0.9626 0.9687 0.9571
Cancer (Wisconsin) 1 2 0.0126 0.0145 0.9757 0.9765 0.9738
Haberman 0 2 0.0130 0.0440 0.7582 0.7605 0.7556
Liver 0 2 0.0224 0.0501 0.7536 0.7582 0.7517
Ionosphere 0 2 0.0016 0.0029 0.9203 0.9203 0.9200
Cancer (Coimbra) 0 2 0.0316 0.1148 0.7931 0.7945 0.7813
Transfusion 0 2 0.0028 0.0759 0.7580 0.7561 0.7640
Cryotherapy 2 2 0.0050 0.0912 0.9556 0.9554 0.9524
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values of accuracy and sensitivities. The proposed method has been also treated by leave-
one-out cross-validation. Obtained results are summarized in Table  3 in a similar way. 
There are no dramatic changes in parameter setting and resulting accuracy and sensitivities 
in Tables 2 and 3. The SLINK algorithm as DBSCAN for kmin = 2 is a good choice in a 
majority of cases. But the type dimension of primal coordinate reduction is task sensitive. 
The Rao technique multi-class discriminant analysis is useful in many cases.

As seen in Tables 4 and 5 our method is comparable with standard techniques of clas-
sification. To see how competitive our results are, we went through several papers on this 
topic (Kulluk et al. 2012; Ozyildirim and Avci 2014; Rani and Ganesh 2014; Abdar et al. 
2017; Asafuddoula et al. 2017; Kahramanli 2017; Aslan et al. 2018; Li and Chen 2018; 
Talabni and Engin 2018; Yin and Gelenbe 2018; Austria et al. 2019; Chan and Chin 2019; 
Kraipeerapun and Amornsamankul 2019; Rahman et  al. 2020). The rank of our novel 
method has been evaluated for every dataset and during both training and cross-validation 
processes. Comparison results including the rank among others is in Tables 4 and 5. The 
proposed method is in the second quartile related to the involved referential methods in 
most cases. As the use of datasets varies, also the number of used benchmark techniques 
for comparison is variant and summarized in the following paragraphs.

Table 3  Optimal setting under leave-one-out cross-validation

Dataset D k
min

�
min

�
max

acc ase se ∗

Iris 0 2 0.0426 0.1445 0.9533 0.9533 0.9200
Wine 3 2 0.2188 0.2454 0.7416 0.7437 0.7292
Glass 2 2 0.2512 0.3802 0.9439 0.9295 0.9019
Cancer (Wisconsin) 1 2 0.0100 0.0501 0.9700 0.9692 0.9668
Haberman 0 3 0.0010 0.0021 0.7124 0.5829 0.3704
Liver 0 2 0.0018 0.0631 0.6841 0.6626 0.6552
Ionosphere 0 2 0.0135 0.234 0.8832 0.8530 0.7460
Cancer (Coimbra) 0 2 0.0851 0.1318 0.7069 0.7056 0.6923
Transfusion 0 2 0.0010 0.0097 0.6865 0.6279 0.5506
Cryotherapy 2 2 0.0224 0.0912 0.9556 0.9554 0.9524

Table 4  Accuracy compared 
classifiers for training

Dataset Training

Proposed Best Worse Rank

Iris 0.9800 0.9820 0.7993 2/18
Wine 0.7809 1.0000 0.3952 13/18
Glass 0.9626 0.9930 0.3546 2/11
Cancer (Wisconsin) 0.9757 1.0000 0.8920 5/14
Haberman 0.7582 0.7850 0.7353 4/9
Liver 0.7536 0.9233 0.5043 7/16
Ionosphere 0.9263 1.0000 0.8664 7/11
Cancer (Coimbra) 0.7931 0.8000 0.7350 3/5
Transfusion 0.7580 0.9318 0.7500 3/5
Cryotherapy 0.9556 0.9590 0.8540 2/11
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According to Kulluk et al. (2012) for training and cross-validation comparison we used 
five different variants of harmony search algorithms and standard backpropagation algo-
rithm. For training, we compared the results with approximator using a spiking random 
neural network using five other benchmarks (Yin and Gelenbe 2018). For cross-validation 
results comparison we used generalized classifier neural network and its logarithmic learn-
ing implementation, probabilistic neural network and standard multilayer perceptron as 
presented in Ozyildirim and Avci (2014). The results of an incremental ensemble classifier 
method (Asafuddoula et al. 2017) were also used as a benchmark.

Comparison of training and testing for Haberman and Liver datasets is included for 
product-unit neural networks as a special class of feed-forward neural network, together 
with results for backpropagation and Levenberg–Marquardt algorithms, as presented in 
Kahramanli (2017).

For Ionosphere and Transfusion datasets, we used also method proposed in Chan and 
Chin (2019) to tackle the problem of imbalanced data based on cosine similarity together 
with results for synthetic minority oversampling technique and adaptive synthetic sampling 
approach. The Liver dataset is compared to the results of two proposed methods Boosted 
C5.0 and CHAID based on the decision trees and five other methods (backpropagation, 
NB tree, decision tree, C5.0, support vector machine, and basic neural network) presented 
in Abdar et al. (2017). The training results for Transfusion dataset were obtained by the 
naive Bayesian classifier, implementation of algorithm iterative Dichotomiser 3, and ran-
dom tree, all presented in Rani and Ganesh (2014).

Both breast cancer datasets, Cancer Wisconsin and Coimbra, were compared with 
five different classification models including decision tree, random forest, support vec-
tor machine, neural network and logistics regression as presented in Li and Chen (2018). 
Coimbra dataset is compared with results of an artificial neural network, standard extreme 
learning machine, support vector machine and K-nearest neighbour presented in Aslan 
et al. (2018), and additionally to ten classification algorithms and their variations including 
logistic regression, k-nearest neighbour, support vector machine, decision tree, random for-
est, gradient boosting method, and naive Bayes presented in Austria et al. (2019).

In the case of Cryotherapy dataset, we used comparison with four methods using kernel 
functions for improving the learning capacity of support vector machine presented in Tal-
abni and Engin (2018). Seven methods additional methods for Cryotherapy, two methods 

Table 5  Accuracy compared 
classifiers for cross-validation

Dataset Testing (cross-validation)

Proposed Best Worse Rank

Iris 0.9533 1.0000 0.8200 8/18
Wine 0.7416 0.9882 0.3539 11/17
Glass 0.9439 0.9660 0.3084 4/13
Cancer (Wisconsin) 0.9700 0.9700 0.7077 1/22
Haberman 0.7124 0.7843 0.6111 5/10
Liver 0.6841 0.9883 0.4174 12/19
Ionosphere 0.8832 0.9375 0.5755 13/20
Cancer (Coimbra) 0.7069 0.7430 0.5814 7/16
Transfusion 0.6865 0.7861 0.5849 6/8
Cryotherapy 0.9556 0.9778 0.5372 4/12
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based on the combination of cascade generalization and complementary neural network, 
and five existing methods (neural network, stacked generalization, cascade generalization, 
complementary neural network, the combination of stacked generalization as presented in 
Kraipeerapun and Amornsamankul (2019). Cryotherapy results were also compared with 
proposed using of support vector machine and nine standard methods k-nearest neighbours, 
binary logistic regression, linear discriminant analysis, quadratic discriminant analysis, 
classification and regression trees, random forest, adaptive boosting, gradient boosting, and 
bagging, presented and summarized in Rahman et al. (2020).

Results for training using Iris, Wine, Glass, Haberman, Liver and Ionosphere datasets 
are compared also with 1-NN classifier and two its variants, namely the Hypersphere Clas-
sifier and the Adaptive Nearest Neighbor Rule, as presented in Orozco-Alzate et al. (2019). 
Results of Fuzzy Pattern Trees using Grammatical Evolution, called Fuzzy Grammati-
cal Evolution (Murphy et al. 2022), is used for comparison on Iris, Wine, Haberman and 
Transfusion datasets.

For additional comparison we have included also average accuracy results for cross-val-
idation of scalable ensemble technique XGBoost, random forest, gradient boosting, Light-
GBM using selective sampling of high gradient instances and Ordered CatBoost modifiing 
the computation of gradients to avoid the prediction shift as presented in Bentejac et al. 
(2021) for Iris, Wine, Cancer (Wisconsin), Liver, and, Ionosphere. Cross-validation results 
in case of hybrid classification model named HyCASTLE (Veneri et  al. 2022) is also 
included for Iris, Glass and Haberman.

Based on all previous experiments we see our method as quite robust. Robustness means 
a similar parameter setting in the training and cross-validation processes in this case. The 
novel method is therefore comparable with current methods and its learning is very simple 
and robust related to the parameter value. Moreover, we present additionally the values of 
critical sensitivities, which we believe are relevant for the classifier quality.

5  Conclusion

The proposed type of pattern classifier with embedded dimensionality reduction and hid-
den class forming has been tested. Based on training and cross-validation using ten stand-
ard datasets, the new type of classifier has several advantages evaluated below.

Using a training materialized for direct verification or leave-one-out cross-validation, 
we set DBSCAN parameter kmin = 2 in most cases to obtain the best value of critical sen-
sitivity of a given system. Therefore, there is no need to use general DBSCAN approach 
because its reduced version the clustering algorithm SLINK produces less compact hidden 
clusters. It is usually the main weakness of the SLINK approach, but in our case, the opti-
mal unioning of hidden classes eliminates this disadvantage. The future realization of this 
classifier can use only SLINK instead.

The most important property of this classifier is similar behavior during learning on the 
training set and the cross-validation. We suppose that selected method of dimensionality 
reduction and length of resulting vectors depend only on the dataset but are independent of 
the verification strategy.

There is also a similarity in the range of parameter �[�min, �max] . Moreover, the optimal 
� is included in the optimum range of cross-validation. Therefore the optimal set of param-
eter � can be directly used as relevant estimate of � for the leave-one-out cross-validation 
processes.
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The proposed method aims the critical sensitivity maximization, which produces 
non-trivial unions of hidden classes. But the authors of referential techniques are ori-
ented mainly to the accuracy evaluation of classifiction, which complicates the method 
comparison.

There are several general recommendations for the setting of a classifier. The user 
decides first whether to apply multi-class discriminant analysis or whether he prefers 
data whitening of given dimension D. The SLINK method with parameter � is suggested 
for hidden class forming. The optimal values of D and � can be estimated using only the 
training set for verification. Finally, the leave-one-out cross-validation is a simple process 
focused only on parameter � improvement, which remains unchanged in many cases. The 
proposed classifier, represents a comparable alternative to other pattern classification tech-
niques focusing on critical sensitivity.

The main advantage of the proposed classifier is that it successfully avoids the curse of 
dimensionality and includes automatic reduction and standardization of the input dataset. 
All cluster analysis is carried out in dimensionless coordinates and thus offers a wide range 
of uses for a whole range of applications. It is a relatively simple classifier having compa-
rable properties comapred to more complicated ones. As one of the other applications, we 
can recommend, for example, the recognition of unstructured data such as strings, trees, 
and graphs. In such a case, it is necessary to set correctly a suitable feature description, 
which precedes the reduction layer of our classifier.
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Abstract
The traditional self-organized map (SOM) is learned by Kohonen learning and the most
common 2-dimensional grids defining the structure of the map are the hexagonal grid and the
rectangular grid. A novel model of self-organization is based on hexagonal grid and diffusion
modeling in continuous space which is a good approximation of endorphins propagation and
nitric oxide generation in the real brain. Therefore the structure of the system is described by
neuron coordinates instead of neighborhood relationships in traditional SOM. The discussed
neuron activation using the diffusion process and novel diffusive learning algorithm is based
on this activation mentioned above. The novel structure and algorithm are demonstrated on
simple examples and real economic applications.

Keywords Self organization · Kohonen map · Diffusion learning · SOM · Topographic error

1 Introduction

There are many approaches to how to perform modeling of self-organization. We analyze
self-organizationwith a given grid, and thereforewe focus on the self-organizedmaps (SOM).
The models can be directly inspired by the anatomy and physiology of the neuronal system
or rather by other ideas that are easy to realize. Our research is inspired by the Pudding model
of an atom in physics [3,33], where the nucleus of atoms are supposed as points (raisins) in
the electron continuum (pudding). Using self-organization, we will place individual neurons
instead of the atom nucleus into the continuum that would transfer the information in the
system. The second inspiration is strongly related to brain physiology study concerning slow
signal propagation in the central nervous system.

Self-organized maps are useful in digital image processing and image denoising as well
[34]. The weights of the neurons in a trained SOM can also help when choosing whether
to shrink or expand the current contour during the optimization process performed itera-
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tively. The model can handle images that contain objects characterized by complex intensity
distributions [1].

Nitric oxide (NO) represents the final product of endorphins degradation and a well-
known neurotransmitter in the mammal brain due to its ability to diffuse isotropically in
aqueous and lipid environments [28]. Using NO as an intracellular signaling molecule in the
nervous system has been confirmed by many studies [13,18]. The information transmission
by neurons, in vertebrates and invertebrates, has also been discussed by many authors [9,12,
14,26]. The ways of intervening cellular or membrane structures discussed in [22,35]. The
whole surface of the neuron is, therefore, a potential release site for NO. In marked contrast
to conventional transmitter release, being restricted to the synaptic zone [17,27,32].

These physiological studies serve as a background model for the realization of artifi-
cial self-organization systems. Lopez et al. [23,24] developed two pure informatics models
yielding from the simplification of nitric oxide dynamic but not focused on the physical
description of the diffusion process. Moreover, in these studies, the spatial effect is modeled
as a multi-compartment discrete system.

Previous studies motivate us to introduce a novel model of SOM learning. In contrast to
them, we focus on unbounded space diffusion with a simple chemical reaction. The main
advantages of the novel model are:

– The SOM neurons being in any Euclidean space, moreover, irregular spacing is also
permitted.

– The diffusion process enables modeling short and long-distance learning without the
necessity of the SOM topology declaration.

– The nitric oxide is also slowly degraded by following chemical reaction avoiding its
cumulation in the brain.

– Model linearity and absence of finite boundaries when spreading the chemical reaction
guarantee the existence of a fundamental solution of model equations in a simple form,
which is easy to pre-calculate to save the time complexity of a novel learning algorithm.

Our motivation was to design SOM with free but fixed positions of individual neurons. In
this case, the neuron distances are not integer as in traditional graph SOM are, which enables
a more sensitive perception of SOM distances as Euclidean once. The cardinal question
is how to design the SOM model with this property but in the simple possible form. The
main advantage of the novel method is in the model simplicity and generality. But the novel
SOMmodel is also a simplification of the slow information transfer mechanism in the brain.
Individual neurons are supposed to be generators of nitric oxide propagated by the diffusion
process with a chemical reaction of the first order as the simplest model of nitric oxide
degradation. The simplification of biological reality is in several assumptions. The brain
matter is supposed to be a continuum in the physical sense, and the space is unconstrained.
The other chemical substances like endorphins and intermediates are organic molecules
of larger size, and their diffusion is extraordinarily slow. Therefore, the only diffusion of
small nitric oxide molecules is supposed in this simple model of the brain. The biological
background of a new model is crucial for result interpretation driven by natural processes.

In this paper, we came back to the origins of diffusion [5,6] and primal neurophysiological
studies [13,18] to obtain a novel structure and adequate learning algorithm of pudding SOM,
as a simplification of the real nitric oxide diffusion process. The proposed novel SOMmethod,
based on a simple diffusion model, will be described in the next section.
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2 Diffusion with Chemical Reaction

The slow information transfer in the nervous system can bemodeled as a diffusion process [6]
with first-order chemical reaction [10]. The reactant generated by single-neuron activity and
the diffusion process spread the substance [3] in the neuron neighborhood. Ourmodel derived
from the classical diffusion process in the unconstrained continuum built on a traditional
substance behavior model, described by the second Fick’s law [4]. Due to the degradation
of nitric oxide, the modified diffusion model by the kinetics of pseudo-monomolecular [31]
chemical reaction. At the beginning of the learning process, zero concentration of nitric
oxide is supposed. The neuron activity causes endorphin generation and, therefore also nitric
oxide appears close to the given neuron. From the concentration point of view, it is only
a Dirac impulse at a given point and time. These simplifications enable us to obtain an
analytical solution of the diffusion equation and following a dimensionless approach which
will reduce the number of model parameters. But these advantages will be lost when the
reaction kinetic is nonlinear, and the diffusion coefficient is a function of concentration, or
space is geometrically constrained. We can obtain the analytical solution as follows.

Let N ∈ N be space dimension, y ∈ RN be point coordinate, D, t, λ > 0 be diffusion
coefficient, time and rate constant of chemical reaction.The free diffusionof reacting substrate
of concentration c : RN → R+

0 is driven by partial differential equation

∂c(y, t)
∂t

= D �2 c(y, t) − λc(y, t) (1)

with initial condition

c(y, 0+) = δ(y), (2)

where δ is Dirac function. The free diffusion is constraint by boundary condition

lim‖y‖→+∞ c(y, t) = 0 (3)

The fundamental solution of (1) is

c(y, t) = 1

(4πDt)N/2 · exp
(

−‖y‖22
4Dt

)
· exp(−λt). (4)

Due to the system linearity, time, and space invariance of (1), we can use the fundamental
solution to the study of multi-neuron systems with sequential activities. We can describe the
novel model in a more formal style based on previous formulas of physical and chemical
origin.

3 PuddingModel of SOM

Our model of the self-organized map based on specific assumptions:

– Finite number of neurons placed in fixed positions like raisins in a pudding.
– Unconstrained continuum surrounding the neurons as an analogy of the pudding base.
– Neuron interconnections omitted.
– The pattern set stays outside the pudding and only sequentially activates individual neu-

rons.
– Neuron activities generate the concentration profile of the substrate in the pudding.
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– The nitric oxide as neurotransmitter takes part in complex biochemical kinetics of axon
recovery.

– Substrate concentration influences the learning rates of individual neurons.
– The learning process changes weights as neuron properties.

The Pudding model description begins with remembering basic facts. Let m, n, H ∈ N
be the number of patterns, pattern dimensionality, and the number of SOM neurons [15].
The individual patterns are x j ∈ Rn , where j = 1, . . . ,m and form the pattern set S =
{x1, . . . , xm}. The fixed positions of individual neurons in continuum are pi ∈ RN for
i = 1, . . . , H and reflects the topology of SOM [25] which is subject of network design.
The diffusion process in continuum can be easily expressed using matrix D ∈ (R+

0 )H×H

of distances di, j = ‖pi − p j‖2. These mutual distances indirectly express the topology
of SOM. The traditional Kohonen SOM is based on a connectivity graph, where the neuron
distances are integers as the traditional distances in an undirected graph. The Pudding SOM is
comparable with traditional SOMonly when the nearest neighbor neurons have unit distance.
In Pudding SOM the neuron distances are not constrained to integers which enables better
space mapping. Therefore the resulting SOM is invariant to the translation and rotation of its
structure. Let �t > 0 be learning period and the diffusion in continuum will be studied only
in discrete-time tk = k · �t , where k ∈ N0. The result of SOM learning [30] is the system
of weights wi ∈ Rn , where , i = 1, . . . , H of course. We begin with random weights setting
wi (0). The weights evolve during learning process and their values in time tq are denoted as
wi (q), where q ∈ N0. The Pudding model is based on the substrate concentrations in neurons
and given time. Prepared for SOM learning, we have to study the concentration profile first
using single and complete activation procedures.

3.1 Single Activation

The Pudding SOM learning is based on the activation of single neuron. We will study j-
th neuron which is supposed to be active in time tk . Therefore, formally j = ϕk . The
concentration profile in RN is depicted on the left part of Fig. 2 for N = 2. But it is not
necessary to study the substrate concentration in any point. The learning is based only on the
concentration (4) in neuron points. The concentration in time tq is

c(y,p j , tq − tk) = 1

(4πD(tq − tk))N/2 · exp
(

− ‖y − p j‖22
4D(tq − tk)

)

· exp (−λ(tq − tk)
)

(5)

for q > k. We can simplify the formula as follows to

c(pi ,p j , tq − tk) = 1

(4πD(q − k)�t)N/2 · exp
(

− d2i, j
4D(q − k)�t

)

· exp (−λ(q − k)�t) . (6)

After the substitution a = 4D�t > 0, b = λ�t > 0 we obtain resulting activation formula

c(pi ,p j , tq − tq) = (πa(q − k))−N/2 · exp
(

− d2i, j
a(q − k)

− b(q − k)

)
. (7)

The parameters a, b are dimensionless diffusion and chemical kinetic rates. Both diffusion
and chemical reactions occur during nitric oxide activation in the brain. As seen, the diffusion
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parametera is useful for the distance effect.Whena is small, the neurondistancesdi, j strongly
decrease the activation concentration but higher values of a cause only symbolic influence of
the distances. The kinetic parameter b is useful for washing out nitric oxide. A small value
of b causes the accumulation of nitric oxide after several steps of complete activation will
be discussed in the next sections. But higher values of b cause fast washing out with too
small activation concentration. Therefore, it is necessary to select the compromise value of
both parameters related to neuron distances. When min(di, j ) = 1, then we suggest to use
a = 1, b = 1/10 for the first experiments as will be demonstrated in next sections.

3.2 Complete Activation

The SOM learning is based on the substrate concentrations in q-th step in time tq . This
concentration is a result of previous activation sequence ϕ1, ϕ2, . . . ϕq−1 using the single
activation model (7). Due to the linearity of (1) we can use the additivity principle and
directly calculate the cumulative concentration in i-th neuron and step q

ci,q =
q−1∑
k=1

c(pi ,pϕk , tq − tk)

= 1

(πa)N/2 ·
q−1∑
k=1

exp

(
− d2i,ϕk

a(q−k) − b(q − k)

)
(q − k)N/2 . (8)

The resulting formula consists of all concentration information that is necessary for SOM
learning. Therefore, the concentration ci,q is only a function of activation history, SOM
topology and parameters a, b. The impact of parameters a, b is captured in Fig. 1. But
history is a result of learning and will be studied in the next section.

The full concentration profile in 2D Pudding model after 99 random activation steps
(q = 100) is depicted on the right part of Fig. 2. Based on previous dimensionless description
of diffusion process, we can benefit from the substance concentration profile, and we can
formulate the algorithm for diffusive learning in the next section.

From the practical point of view, formula (7) enables pre-calculation for various neuron
pairs and time shift s = q−k. The second advantage of (7) is in limit behaviour for s → +∞
when the activation concentration approaches zero value. Let L ∈ N be maximum memory
size. Practical implementation of complete activation is based on approximation formula

ci,q =
q−1∑

k=max(1,q−L)

c(pi ,pϕk , tq − tk). (9)

The history length is set to L ≥ 10/b to guarantee a low concentration in the omitted steps
of the complete activation.

4 Diffusive Learning of SOM

A novel learning algorithm is devoted to Kohonen learning rules [21] as follows. The weight
of i-th neuron is changed in q-th step by the following rule

wi (q) = wi (q − 1) + α(q) · ci,q · (xq − wi (q − 1)) (10)
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Fig. 1 Learning rate as a function of neuron distance
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Fig. 2 Concentration profile after single (left) and complete (right) activation (N = 2, a = 1, b = 1/10, H =
37, q = 100)

for i = 1, . . . , H , xq ∼ U(S) is uniformly selected pattern fromS, ci,q is substrate concentra-
tion according to (8) and α(q) > 0 is ageing function which is supposed to be non-increasing.
The winner is also selected according to Kohonen rule [21] as

ϕq ∈ argmin
k=1,...,H

‖xq − wk‖2. (11)

The main difference between the traditional SOM learning [2] and our approach is in the
application of diffusive Eq. (1) which generates the concentration profile (8). The learning
feedback is driven bywinner indexϕq from (11)which is used in the next step of concentration
calculations (8).
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As in the traditional SOM learningwe have to initialize theweights [2] and use appropriate
ageing strategy.We recommend to generate the initial weights from themultivariate Gaussian
distribution as

wi (0) ∼ N(EX, varX/100) (12)

for i = 1, . . . , H . The ageing function α(q) can be constant in the first experiments, but
satisfying α(q) · ci,q ≤ 1 to avoid learning instability.

The time complexity of diffusive SOM initialization is the same as the traditional graph
SOMone. But the time complexity of a single learning step is higher. In the case of traditional
Kohonen learning the single-step consisting of (11) and (10) uses 2Hn multiplications. But
the diffusive SOM learning step is extended by cumulative concentrations calculation in H
neurons using memory size L . Therefore, the time complexity of the diffusive SOM learning
step is 2Hn + HL .

We will compare the novel method with traditional SOM learning, referred to as Graph
SOM, using both artificial and natural pattern sets. Therefore, it is necessary to introduce a
set of quality measures for this comparison.

5 Quality Measures

The basic way to design qualitymeasurement is based onmeasuring distances. The Euclidean
distance of points x, y in Rn is denoted d(x, y) = ‖x − y‖2.

Using the pattern x j we can investigate the distances to weights wk and define winner as

win( j) ∈ argmink=1,...,H d(x j − wk) (13)

but the function win(j) is of stochastic nature due to possible distance equities. In some cases
we found the winner but one i. e. the second winner which is defined as

win2( j) ∈ argmink∈M j
d(x j − wk), (14)

where M j = {1, . . . , H}\{win( j)}.
By using the system of distances and winners, we can design traditional measures of

different nature.

5.1 Distance Penalization

The Quantization Error (QE) is traditionally related to all forms of vector quantization as
well as too clustering algorithms [29]. Using linear penalization, we directly penalize the
distances between patterns and corresponding winner weights as

QE1 =
m∑
j=1

d(x j ,wwin( j)). (15)

The quadratic penalisation

QE2 =
m∑
j=1

d2(x j ,wwin( j)) (16)

is also frequently used but has higher sensitivity to outliers.
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5.2 Topographic Error

The general topographic rule is: if two objects are close in reality they must be close also in
the map. Using this principle the topographic error (TE) [16] is defined as

TE = 1 − 1

m

m∑
j=1

gwin( j),win2( j), (17)

where G ∈ {0, 1}H×H is SOM topology matrix with gu,v = I(‖pv − pv‖2 ≤ 1). The main
advantage of TE is in its robustness to outliers. Therefore we use this criterion as main quality
measure in this study.

5.3 Correlation BasedMeasures

The correlations betweenmutual distances of patterns andmutual distances ofwinnerweights
can serve directly as quality measures.

Let i, j be pattern indices. Themutual pattern distances can be defined as di, j = d(xi , x j ).
The mutual distances of corresponding weights are δi, j = d(wwin(i),wwin( j)).

Finally, we obtain m(m − 1)/2 pairs of corresponding distances and directly calculate
the Pearson correlation coefficient r , Spearmann ρ, or Kendall τ coefficients as a quality
measure. The correlation coefficients declared as p-values of independence hypothesis H0

being comparable with a significant level of 0.05.

5.4 Time Complexity of Measures

The evaluations of QE1, QE2 and TE are very fast with the time complexity O(mnH). The
evaluation of correlationmeasures is amore complex task. The Pearson r has time complexity
O(mnH +m2) due to simple statistics over m(m − 1)/2 distance pairs. The Spearmann ρ is
complicatedwith pair sorting and its time complexity is O(mnH+m2 log(m)). TheKendall τ
is not optimal for largepattern sets due to thehigher timecomplexityO(mnH+m4). Therefore
even the positive correlation between data distances and winner distances corresponds to the
general requirement of mapping property between two metric spaces time complexity of its
evaluation is the reason to focus on previously mentioned measures.

Wewill investigate the newly proposedmethod experimentally in both artificial and nature
data case studies. We aim to perform a fair comparison of Pudding SOM and traditional
Kohonen learning (Graph SOM) as an efficient tool for data analysis in hexagonal topology.
Therefore, we use the hexagonal equidistant topology of Pudding SOM despite the ability of
any irregular neuron placing in the case of a novel SOMmethod. The first case study focuses
on the traditional iris flower task.

6 Case Study I: Iris Flower Patterns

We studied different topologies and a various number of neurons for the Pudding SOMand its
learning. The results and comparison to traditional SOMwere quite comparable for different
scenarios. Therefore, as a representative example with high clarity demonstration, we have
chosen the following settings. We have selected a hexagonal grid with nineteen neurons
placed in 2D space with unit neighborhood distances, i. e. H = 19, N = 2.
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Table 1 Topographical error [%]
as function of diffusivity and
reaction rate

a b

1/50 1/20 1/10 1/5 1/2

1/3 0.1133 0.0467 0.0933 0.1133 0.1000

1/2 0.0067 0.1133 0.0400 0.0533 0.0267

1 0.0133 0.0400 0.0000 0.0133 0.0267

2 0.0267 0.0267 0.0333 0.0267 0.0400

5 0.0133 0.0133 0.0133 0.0133 0.0133

Table 2 Quality of SOM learning for hexagonal test

Measure Pudding SOM Graph SOM

Average Min Max Average Min Max

QE1 0.2112 0.2038 0.2224 0.2314 0.2277 0.2519

QE2 0.2343 0.2051 0.2743 0.2557 0.2335 0.2701

TE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

p-value of r 0.0770 0.0750 0.0841 0.0941 0.0915 0.0998

p-value of ρ 0.0860 0.0779 0.0941 0.1102 0.1021 0.1231

p-value of τ 0.2627 0.2520 0.2701 0.2697 0.2599 0.2902

Artificial two-dimensional data were generated in the first case as follows. The total
number of 5000patternswasgenerated randomly fromseven classeswith uniformprobability.
Origin is a center point of the first class. The centers of the remaining six classes are in the
unique distance in the vertices of the hexagon. Individual patterns were generated from this
Gaussian mixture with standard deviation σ = 0.2. The initial weights of Pudding SOM
were set according to (12) and ageing factor was set to α = 0.1. The role of parameters
a, b was studied for memory size L = 10/b to obtain the best setting with a minimum
possible topographic error. After 10,000 steps of diffusive learning, we obtained TE included
in Table 1. Based on experimental evidence, guaranteed substrate washing out, and therefore
short memory effect, we suggest using learning parameters a = 1, b = 0.1 adopted in the
rest of the study.

Using this setting, we compared Pudding SOMwith traditional Kohonen SOM, referred to
as Graph SOM. Basic quality measures are included in Table 2 and capture statistics based on
100 launches of the methods. The topographic error is zero in both cases, i.e. both traditional
and novel SOM learning maps the data in neurons perfectly. The remaining quality measures
differ slightly, and therefore, the Pudding SOM seems to be a good alternative to Kohonen
SOM. Resulting weights are depicted in Fig. 3, meanwhile the density map figure (pattern
number in given neuron) and traditional U-map [7] are depicted in Fig. 4. Due to the nature
of the Pudding model, all the neuron and SOM properties were interpolated on the convex
hull of SOM neurons using cubic interpolation. This convention is useful for weight and
density interpretation. As seen, the novel algorithm can map the weights proportionally to
data coordinates, and corresponding contours are approximately uniformly placed parallel
lines in Fig. 3. The density map shows higher central density and six density regions in the
network corners. Meanwhile, U-map is approximately constant due to data homogeneity.

The traditional iris flower task [11] originally designed for classifier testing, but we apply
it in the case of SOM learning with final class density evaluation. The total number of 150
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Fig. 3 Resulting weights w1 (left) and w2 (right) for hexagonal test
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Fig. 4 Density map (left) and U-map (right) for hexagonal test

patterns of three classes (Iris setosa, Iris virginica, Iris versicolor) described by four properties
(sepal length, sepal width, petal length, petal width). The initial weights, aging factor, and
the number of learning steps were the same as in the previous case. The resulting weight
maps are depicted in Fig. 5 as nonlinear mapping of individual iris properties into Pudding
SOM. Except for the second property (w2) containing saddle points, the remaining properties
mapped monotonically, which is not the property of Pudding SOM but the property of the
given dataset. We can also study class densities as the number of patterns of class insight
individual neurons. We can interpolate these properties, and resulting maps are included in
Fig. 6 together with the traditional U-map. We can interpolate the Pudding SOM learning
results using class membership knowledge. As seen in Fig. 6 the class of Iris setosa is well
separated in the left corner, but the remaining two classes are not separable but placed in
the opposite part of SOM. We observe iris versicolor species concentrated in the middle and
right top, but the iris virginica species placed near the SOM bottom. Patterns do not occupy
the remaining part of SOM, maximal values in the U-map confirming that.

The subjective evaluation followed by quality measures evaluation and their comparison
with the results of traditional Graph SOM [15] with Kohonen learning, Gaussian characteris-
tic, and following learning strategy. The SOMwith H = 19 was learned for E = 9 with α =
(0.1, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01), R = (5, 3, 3, 1.5, 1, 0.7, 0.5, 0.3, 0.2)
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Fig. 5 Resulting weights w1 (left top), w2 (right top), w3 (left bottom), w4 (right bottom) for iris flowers

and Nk = 1000. Table 3 summarize the results. As seen, the topographic error of the novel
Pudding SOM is the same as in the traditional case. Therefore, the novel SOM saves the
topographic property in a particular case when the neurons are placed equidistantly in hexag-
onal topology. In other cases, not using the grid equidistant, there would be hardly possible
to directly compare Pudding and traditional graph SOM because the Pudding SOM is a more
general and complex structure in general. The other quality measures of Pudding SOM are
worse but comparable in this case.

This section shows the main properties and advantages of the novel method. The proposed
method is fully comparable with the traditional one and enables the straight biological-
backed result interpretation. The following section consists of tasks related tomacroeconomic
indicators and their behavior.

7 Case Study II: Relationships Among Country Economies

After preliminary testing, we applied the Pudding SOM to macroeconomic issues [20] of
economic crisis prediction and analysis within thirty-five countries in the world listed in
the Table 4. We use the economic indicators as the data input. Data come from Statistical
Annex of European Economy presented by the European Commission in autumn 2017 [8].
We study indicators observed in the years 1993–2017. Selected indicators are the total pop-
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Fig. 6 Resulting class densities—setosa (left top), versicolor (right top), virginica (left bottom) and U-map
(right bottom) for iris flowers

Table 3 Quality of SOM learning for iris flower

Measure Pudding SOM Graph SOM

Average Min Max Average Min Max

QE1 0.4034 0.3839 0.4216 0.3247 0.3119 0.3508

QE2 0.4546 0.4446 0.4698 0.3596 0.3436 0.3976

TE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

p-value of r 0.0230 0.0219 0.0256 0.0141 0.0123 0.0201

p-value of ρ 0.0320 0.0299 0.0356 0.0166 0.0158 0.0173

p-value of τ 0.1472 0.1352 0.1559 0.1212 0.1021 0.1397

ulation, unemployment rate, gross domestic product at current market prices, private final
consumption expenditure at current prices, gross fixed capital formation at current prices,
domestic demand including stocks, exports of goods and services, imports of goods and ser-
vices and gross national saving. So that nine indicators are monitored in total. We applied
logarithmic differences as data preprocessing [19].
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Table 4 List of countries

BE Belgium MT Malta PL Poland

DE Germany NL Netherlands RO Romania

EE Estonia AT Austria SE Sweden

IE Ireland PT Portugal UK United Kingdom

EL Greece SI Slovenia MK Macedonia

ES Spain SK Slovakia TR Turkey

FR France FI Finland ME Montenegro

IT Italy BG Bulgaria RS Serbia

CY Cyprus CZ Czech Republic AL Albania

LV Latvia DK Denmark US United States

LT Lithuania HR Croatia JP Japan

LU Luxembourg HU Hungary

7.1 Crisis Analysis usingMacroeconomic Indicators

In crisis prediction, the individual pattern characterized an object with a unique country,
year pair. Therefore, we obtain 35 × 24 = 840 patterns from ninth dimensional space of
indicators. Performing principal component analysis as necessary preprocessing, we use only
twomajor components saving 67.4%of data variance. The PCA1 is driven by increasing gross
national savings (0.181), increasing gross fixed capital formation (0.052), and decreasing
the unemployment rate (−0.046). This PCA1 saves only 39.3% of variance. Meanwhile,
the PCA2 is driven by increasing the unemployment rate (0.186), decreasing imports of
goods and services (−0.087), and increasing gross national savings (0.070). We applied both
Pudding SOM and Graph SOM on the data after dimensionality reduction. Being focused
on topographic error in this study we obtained TE = 0.0050 for Pudding SOM but only
TE = 0.0634 for Graph SOM. The remaining quality measures are worse but comparable.
We present the obtained result in Fig. 7. As seen, the first component has a maximum value
in the right bottom corner of SOM and the minimum value at the opposite left top corner. The
second component has a maximum value in the left middle corner, but the minimum value
is in the right top. The Pudding SOM mapping is monotonic in both cases but nonlinear
due to pattern set character. The density map has three significant areas of higher pattern
concentration. They are localized in the SOM center, the right top and left middle corners.
The U-map has higher values near the left top and left middle corners. It corresponds with a
higher gradient of PCA2 mapping.

ThepreviousPCAandPuddingSOManalysiswas basedonly onmacroeconomic indicator
changes without prior information about the crisis occur in a given country. We demonstrate
the usefulness of Pudding SOM in Fig. 8, where the complete density map is formally split
into two parts using the same patterns and previous SOM learning results. The patterns
of individual country states as (country, year) pairs for the years up to 2008 declared as
before crisis ones, and the rest patterns as after crisis patterns. The patterns before the crisis
are localized near the SOM center and right top corner again, but the density in the left
middle corner is small. The rest of the patterns after the crisis have different density maps.
These patterns are placed in the SOM center again but spread in the right direction. We
observe the second-densitymaximum localized in the leftmiddle corner. Themacroeconomic
interpretation is straightforward. The majority of countries do not significantly change their
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Fig. 7 Resulting weights PCA1 (left top) and PCA2 (right top), density (left bottom) and U-map (right bottom)
for 9th dimensional macroeconomic patterns

economic indicators after the crisis. But some countries move from the right top corner into
the leftmiddle ones, i.e. they change the PCA2 fromminimal to themaximal value. Therefore,
some countries had increased the unemployment rate, decreased import rate, and increased
gross national savings as a crisis consequence.

7.2 SOM of Country Economies

Using the same data set, we can characterize the country’s economy as an object which
consists of nine indicators from all years. Therefore we obtained 35 patterns from the 216th-
dimensional space of indicator history. After applying the 2D principle component analysis,
we get the PCA1 with 40.8% of the variance, and the first two components save 54.6%. We
can interpret the PCA1 as an adaptivity of the country’s economy to novel situations, and the
PCA2 is about the richness of its economy (gross domestic product, gross national savings).
The data after dimensionality reduction were analyzed using both Pudding SOM and Graph
SOM. Being focused on a topographic error in this study, we obtained TE = 0.0000 in
both cases. Figure 9 captures the results of Pudding SOM. As seen, the first component has
a maximum value at the top of SOM and the minimum value at the bottom. The second
component has a maximum value in the right middle corner of SOM and a minimum in
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Fig. 8 Resulting class densities of 9th dimensional macroeconomic patterns: before crisis (left) and after crisis
(right)

the left middle–bottom part. The density map has a maximum in the right top corner (DE,
DK, FR, IT, JP, NL, TR). The lower density is in the bottom part of SOM as a symptom of
emptiness. The U-map has a maximum in the SOM bottom, where the country with different
behavior (BG) is. We observe the minimum in the right top corner, where the country’s
economic differences are not significant.

Figure 10 captures the resulting Pudding SOMwith country economies labels. The coun-
tries are placed not just formally over the SOMdue to extreme but not necessarily problematic
properties of the Bulgarian economy in a given period. The remaining countries separated by
five empty neurons forming a relative compact domain with a spectrum of stable countries
(UK, MT, US, etc.) through countries in the middle range (CZ, SK, PL, HU, etc.) to unsta-
ble countries (RS, LV, LT, EE, ME). We observe two countries placed in the same neuron
or its neighborhood being similar in economic changes, which is a direct macroeconomic
interpretation of zero topographical error in this case.

8 Conclusions

We can conclude that the novel structure of the SOM, representing an artificial neuronal
network, was successfully developed together with a learning algorithm. It consists of iso-
lated neurons placed in N -dimensional continuum. The neuron connectivity is not explicitly
declared, but the neurons communicate via diffusion of nitric oxide in the unconstrained
continuum. The resulting algorithm has a physiological, physical, and chemical background,
but the processes are simplified to obtain a learning system that is easy to perform. Therefore,
the novel learning method has several parameters. The diffusion process is driven by dimen-
sionless diffusion parameter with recommended value a = 1 and kinetic parameter with
recommended value b = 0.1 for equispaced neurons. The learning parameter α has a simi-
lar meaning as in the Kohonen approach and can be investigated experimentally as usual. In
irregular Pudding SOM topology, the parameters a, b can be set experimentally. The Pudding
SOM learning is possible just through a single epoch, i. e. with a constant value of learning
parameter α, which is the main advantage comparing multi-epoch Kohonen learning.

After preliminary numerical experiments, we suggest using novel Pudding SOM next
to the traditional Kohonen SOM (Graph SOM) not only due to better topographic error
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Fig. 9 Resulting weights for map of economies: PCA1 (left top) and PCA2 (right top), density (left bottom)
and U-map (right bottom) for country classification using 216th dimensional patterns

Fig. 10 Resulting map of economies
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and comparable quantization errors and correlation coefficients in the case of single epoch
learning but mainly due to the biological background of the method. The neurons do not
directly interact as in the traditional approach but affect each other via diffusion parameter.
Therefore the presented method allows the direct interpretation based on natural processes.

We applied the Pudding SOM to the macroeconomic indicators of several countries.
Resulting SOMcan indicate both the changes during economic crisis and similarity of country
behavior measured by macroeconomic indicator changes.
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Abstract The cluster analysis is a traditional tool for multi-varietal data processing.
Using the k-means method, we can split a pattern set into a given number of clusters.
These clusters can be used for the final classification of known output classes. This
paper focuses on various approaches that can be used for an optimal union of hid-
den classes. The resulting tasks include binary programming or convex optimization
ones. Another possibility of obtaining hidden classes is designing imperfect classifier
system. Novel context out learning approach is also discussed as possibility of using
simple classifiers as background of the system of hidden classes which are easy to
union to output classes using the optimal algorithm. All these approaches are useful
in many applications, including econometric research. There are two main method-
ologies: supervised and unsupervised learning based on given pattern set with known
or unknown output classification. Preferring supervised learning, we can combine the
context out learning with optimal union of hidden classes to obtain the final classifier.
But if we prefer unsupervised learning, we will begin with cluster analysis or another
similar approach to also obtain the hidden class system for future optimal unioning.
Therefore, the optimal union algorithm is widely applicable for any kind of classi-
fication tasks. The presented techniques are demonstrated on an artificial pattern set
and on real data related to crisis prediction based on the clustering of macroeconomic
indicators.
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1 Introduction

Multidimensional statistical methods represent traditional tools for decision support
and pattern classification, e.g., multi-step decision making processes and hierarchical
systems. The paper deals with alternative approaches to two-step decision processes
that are based on the solution of optimization tasks. The first step of a deterministic
decision process can be imperfect, but the second step is designed to enhance the
perfectness of the whole system.

The novel methodology is based on cluster analysis, which is commonly used in
datamining and statistical data analysis (Santi et al. 2016; Shi 2013). TheAkaike Infor-
mation Criterion (AIC) and the Bayesian Information Criterion (BIC) (Konishi and
Kitagawa 2008; DiStefano 2015) can be used to select an optimum number of clusters.
The interrelation between two systems of classes is represented by a contingency table
(O’Brien 1989), which is frequently used in statistics and displays the frequency of
events (Kateri 2014; Harshbarger and Reynolds 2015). Biased estimates of adequate
probabilities can be improved by using the Bayesian approach (Wang et al. 2016) for
bias reduction. Individual tasks can be solved by binary programming (Weber 1978)
or convex programming techniques (Hiriart-Urruty and Lemarechal 1996).

The aim of this research is to design a new method for the optimal union of hidden
classes and apply the method to real macroeconomic data. The classification task
is formulated in the second section using a contingency table as task support. In
the third section the various deterministic approaches to achieve the optimal union
of hidden classes are discussed. The original methods can be improved using the
Bayesian approach as presented in the fourth section. When a randomized decision is
made, we can use mixed strategies as demonstrated in the fifth section. The method
of class union is applied to macroeconomic data related to the task of predicting the
EU countries crisis in the sixth section which is followed by the concluding remarks.

2 Formulation of the problem

In the case of classification we are well motivated to define the final (output) classes
because of their close connection to the solution of the problem. The cardinal question
is why to define and use another classes called hidden classes. There is a good analogy
with oremining. The formulation ofmining problem is clear. It is necessary to separate
the material into two classes: the ore and the residual material. But for a large stone
the task is too complex. First, it is necessary to break it into small pieces as symbols
of hidden classes and then carefully sort them into two output classes: the ore and
the rest by using an effective procedure. Although technical aspects of separation are
also useful, they are not discussed here. We will focus on the decision whether given
piece of stone is or is not ore. Using majority rule, the pieces with more than fifty
per cent of ore belong to the first class (ore). It is a traditional approach but with
very low efficiency in general. For example the concentration of gold is very low and
therefore no piece of stone would be selected for future gold extraction. This paradox
can be easily solved by using cluster sensitivity and critical sensitivity which help to
construct more sophisticated strategies not only for ore mining but mainly for general
classification of patterns.
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Table 1 Contingency table as F
H1 H2 H3 H4 H5

C1 3 98 7 11 0

C2 7 4 31 10 1

C3 1 5 27 9 0

A general classification task distributes m patterns into N classes, and our method
is based on preprocessing which places them into H hidden classes. Cluster analysis
is a good example of formation of hidden classes. There are many other approaches
to performing hidden classification using various kinds of local classifiers, and they
are generally imperfect.

Our approach is based on basic characteristics of classification quality which are
frequently used inmany applications: accuracy (Taylor 1997), class sensitivity (Chang
and Slikker 1995) and critical sensitivity (Novakova 2008).

Novel formulation of cluster unioning is based on followingnotation. The pattern set
S = {d1, . . . , dm} is partitioned into a disjoint system of non-empty classes Ci ⊂ S
for i = 1, . . . , N . The disjoint system of hidden non-empty groups H j ⊂ S for
j = 1, . . . , H is also known as the result of imperfect classification. The relation
between the classes and the hidden groups is presented via the contingency table
F ∈ NN×H

0 , where fi, j = card{k : dk ∈ Ci
⋂

H j } is the result of pattern counting.
Here, fi, j is the number of patterns belonging to both classes Ci and groups H j as
joint frequency, which can be relativized as

qi, j = fi, j
∑H

k=1 fi,k
, (1)

where i = 1, . . . , N , j = 1, . . . , H .
An example of data partition for three classes and five hidden groups is illustrated in
Table 1. The rows represent the output classes, the columns represent hidden classes
and the values represent number of patterns as usual in contingency tables. This exam-
ple of a contingency table will help us recognize the differences among the various
unioning strategies.

The paper focuses on the optimal union of hidden classes for the best classification
performance using various approaches.

2.1 Other clustering techniques

One of the methods for assessing cluster stability is represented by statistical model
of cluster stability which is based on combination of clustering algorithm, yields and
estimate of the data partition, namely, the number of clusters (Volkovich et al. 2008).
Such approach offers the possibility of evaluating the goodness of a cluster by the
similarity amongst the entire cluster and its core. The resemblance among appropriate
probability distributions is measured by two-sample tests or by probability distances.
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The distances are calculated on clustered samples drawn from the source population
according to two different distributions.

One of another approaches offers an algorithm based on self-learning K -means
clustering (Volkovich et al. 2013 2013). This method offers an algorithm for simul-
taneous learning the Mahalanobis like distance and K -means clustering aiming to
incorporate data rescaling and clustering, so that the data separability grows itera-
tively in the rescaled space with its sequential clustering. At each step of the algorithm
execution, a global optimization problem is resolved in order to minimize the cluster
distortions resting upon the current cluster configuration. The other methodology is
based on the probabilistic binomial model of the K -nearest neighbours classification
which is the approach based on similarities between the observed and the expected
number of neighbours (Volkovich et al. 2011).

Another possible way of research is based on fuzzy approach. The comparison
of K-means clustering with fuzzy clustering can be found in Bolin et al. (2014).
Hybrid system combining fuzzy clustering and MARS was also discussed as suitable
approach for the bankruptcy prediction problem (Andrés et al. 2011). The hybrid
model outperformed the other systems, both in terms of the percentage of correct
classifications and in terms of the profit generated by the lending decisions.

Another practical use of clustering techniques concerns gene–environment net-
works under ellipsoidal uncertainty where the functionally related groups of genes
and environmental factors are identified by clustering techniques and the correspond-
ing uncertain countries are represented in terms of ellipsoids (Kropat et al. 2010).Other
research models in the form of time-continuous and time-discrete dynamics, whose
unknown parameters are estimated under constraints on complexity and regulariza-
tion by various kinds of optimization techniques, ranging from linear, mixed-integer,
spline, semi-infinite and robust optimization to conic, e.g., semi-definite programming
are also presented in Weber et al. (2011).

Clustering can be useful also in searching algorithm for analysis of time series
representing the health trajectories of individuals and Markov models (Ghassempour
et al. 2014). The problem is challenging because categorical variables make it difficult
to define a meaningful distance between trajectories. The approach is based on hidden
Markov models and mapping each trajectory into such model, defining a suitable dis-
tance between models and clustering these models with a method based on a distance
matrix.

In case of high dimension the cluster analysis faces the problem of overfitting
and poor generalization performance and the sheer time taken for conventional algo-
rithms to process large amounts of high-dimensional data. In this case a masked
EM algorithm was introduced allowing accurate and time-efficient clustering of up
to millions of points in thousands of dimensions (Kadir et al. 2014). The proposed
model handles simultaneously the heterogeneity across stock markets and over time,
i.e., time-constant and time-varying discrete latent variables capture unobserved het-
erogeneity among and within stock markets, respectively. The results show a clear
distinction between two groups of stock markets, each one characterized by different
regime switching dynamics that correspond to different expected return-risk patterns,
which is consistent with stylized facts in financial econometrics.
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A model-based clustering technique was also introduced as a data analytic tool
for financial time series analysis taking into account both time-constant unobserved
heterogeneity and hidden regimes within time series using maximum likelihood, a
generalization of the BaumWelch algorithm for the hidden Markov models (Dias
et al. 2015). The results showed that the statistical methodology performed well in
capturing the different regime dynamics of stock markets. It clearly distinguished two
groups of countries with different observed patterns.

3 Deterministic case

The hidden classes should be useful in final classification as discussed in previous
section. But it is necessary to design the algorithms which will transform the hidden
classes into the output ones. The deterministic approach is based on assumption that
every hidden class belongs to just one output class. This fact is a kind ofmappingwhich
is easy to represent by binary matrix where every column consists of just one unit.

The novel deterministic approach is based on the relationship between hidden
groups and the output classes. Our aim is to optimize this relationship as the best
mapping from hidden to output classes. Here, strict classifier is defined as mapping

c : LH → LN

from the set LH of hidden class indices to the set LN of final class indices, where
Ln = {1, . . . , n}. This mapping can be expressed via the matrix

X ∈ {0, 1}N×H , where xi, j = 1 iff dk ∈ H j ⇒ dk ∈ Ci . Therefore, xi, j = 1 just
when for any pattern belonging toH j it also belongs toCi . The uniqueness conditions∑N

i=1 xi, j = 1 have to be satisfied for j = 1, . . . , H .
There are many quantitative measures for classification efficiency.
First, the accuracy of classification can be expressed as

acc = 1

m

N∑

i=1

H∑

j=1

fi, j xi, j (2)

and this will be the subject of maximization.
Using the concept of class sensitivity as a relative frequency of true classification,

we can calculate it by the equation

sei =
H∑

j=1

qi, j xi, j (3)

for i = 1, . . . , N .
Average sensitivity can be defined as

ase = 1

N

N∑

i=1

sei . (4)
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The lower estimate of class sensitivity is defined as critical sensitivity

se∗ = min{sei : i = 1, . . . , N }. (5)

We can now formulate several linear programming tasks related to optimum classifier
design using the planning matrix X ∈ {0, 1}N×H , where xi, j = 1 indicates H j as a
part of Ci .

3.1 Accuracy maximization

If we decide to maximize the accuracy of the system without any constraints, the
critical sensitivity is frequently very low. To avoid this effect we can constrain the
critical sensitivity as follows. Let s∗ ∈ [0, se∗] be the minimum acceptable class
sensitivity. Maximizing the accuracy (2) with guaranteed class sensitivities sei ≥ s∗
for all classes, we obtain optimization task

acc = 1

M

N∑

i=1

H∑

j=1

fi, j xi, j = max (6)

subject to

N∑

i=1

xi, j = 1 for j = 1, . . . , H, (7)

H∑

j=1

qi, j xi, j ≥ s∗ for i = 1, . . . ,N, (8)

xi, j ∈ {0, 1} for i = 1, . . . ,N, j = 1, . . . ,H, (9)

which is a binary programming task (Weber 1978). Having no prior knowledge of the
value of se∗, we start with s∗ = 0. Unfortunately, unbalanced classes can be obtained
in this case. Therefore, this method can be efficient only when s∗ > 0.

In the case of the frequency matrix presented in Table 1, s∗ = 0 and the accuracy
maximization, the class C1 is formed by H2 and H4, the class C2 is formed by H1,
H3 and H5, and the class C3 is empty. The value of acc was determined to be 0.6916
with ase = 0.5506 and se∗ = 0, and this is the main disadvantage of accuracy
maximization without enforcing value of s∗.

3.2 Mean sensitivity maximization

The better performance of classification system can be obtained in the case of mean
sensitivity maximization with constrained critical sensitivity as in the previous case.
Using the minimum acceptable sensitivity s∗ again, we can maximize the mean sensi-
tivity (4) with guaranteed class sensitivities sei ≥ s∗ for all classes. Resulting binary
optimization task is
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ase = 1

N

N∑

i=1

H∑

j=1

qi, j xi, j = max (10)

subject to
N∑

i=1

xi, j = 1 for j = 1, . . . , H, (11)

H∑

j=1

qi, j xi, j ≥ s∗ for i = 1, . . . ,N, (12)

xi, j ∈ {0, 1} for i = 1, . . . ,N, j = 1, . . . ,H. (13)

In the case of the frequencymatrix presented inTable 1, s∗ = 0 and themean sensitivity
maximization, the classC1 is formed byH2, the classC2 is formed byH1 andH5, the
class C3 is formed byH3 andH4. The value of ase was determined to be 0.6105 with
acc = 0.6105 and se∗ = 0.1509. The previous two approaches offered a relatively
low value of se∗, which is their main disadvantage.

3.3 Maximization of se∗

The inefficiency of previous two approachesmotivates us to focus on themaximization
of critical sensitivity which is the last but efficient possibility of improving the system
of class unioning. The authors suggest this approach as amain tool for optimal unioning
of hidden classes. In the case of class equity, we can use a minimax approach and
maximize critical sensitivity (5). An adequate non-linear optimization task is

se∗ = min{sei : i = 1, . . . ,N} = max (14)

subject to
N∑

i=1

xi, j = 1 for j = 1, . . . , N , (15)

xi, j ∈ {0, 1} for i = 1, . . . ,N, j = 1, . . . ,H. (16)

This task can be converted into a linear optimization task

se+ = max (17)

subject to

N∑

i=1

xi, j = 1 for j = 1, . . . , H, (18)

H∑

j=1

qi, j xi, j − se+ ≥ 0 for i = 1, . . . ,N, (19)
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Table 2 Non-Bayesian approach to class union

Maximization acc ase se∗ C1 C2 C3

acc 0.6916 0.5506 0.0000 H2 ∪ H4 H1 ∪ H3 ∪ H5

ase 0.6105 0.6105 0.1509 H2 H1 ∪ H5 H3 ∪ H4

se∗ 0.6105 0.6020 0.3396 H2 H1 ∪ H3 ∪ H5 H3

xi, j ∈ {0, 1} for i = 1, . . . ,N, j = 1, . . . ,H, (20)

se+ ∈ [0, 1]. (21)

Here se+ is not only value of objective function (14) but also artificial variable (21).
The inequalities (19) guarantee that se+ is a lower bound of critical sensitivity se∗
during optimization process and se+ = se∗ in the optimum point.

In the case of the frequency matrix presented in Table 1 and the maximization of
se∗, the class C1 is formed by H2, the class C2 is formed by H1, H4, and H5, and
the class C3 is formed by H3. The value of se∗ was determined to be 0.3396 with
acc = 0.6105 and ase = 0.6020. This approach is preferred in the experimental part
of our study and can be also used for s∗ determination in the acc and asemaximization
tasks.

The results of the previous three approaches are presented in Table 2.

4 Bayesian approach

Respecting the basic principles of mathematical statistic, we use the pattern set as
statistical sample but we suppose it will be efficient on the whole statistical ensemble.
Therefore, we have to correct relative joint frequencies as characteristics of statistical
sample to conditional probabilities which describe the statistical ensemble. The main
disadvantage of the relative joint frequencies qi, j lies in their poor statistical properties.
They can be interpreted as biased estimates of conditional probability of the patterns
belonging to H j when belonging to Ci as

pi, j = prob(d ∈ H j |d ∈ Ci ). (22)

Using a natural Bayesian approach (Wang et al. 2016), we assume uniform prior
probabilities (Jaynes 1968) and calculate posterior probabilities as

qBAYi, j = f BAYi, j
∑H

k=1 f BAYi,k

, (23)

where
f BAYi, j = fi, j + 1. (24)

This approach is preferred in the experimental part of our study as it is an improve-
ment of the previous methods, where qBAYi, j is used instead of qi, j . After applying the
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Table 3 Bayesian approach to class union

Maximization acc ase se∗ C1 C2 C3

acc 0.6681 0.5398 0.0000 H2 ∪ H4 H1 ∪ H3 ∪ H5

ase 0.5931 0.5931 0.1724 H2 H1 ∪ H5 H3 ∪ H4

se∗ 0.5931 0.5854 0.3621 H2 H1 ∪ H3 ∪ H5 H3

Bayesian approach to the illustrative example, we obtain similar results presented in
Table 3. The cluster union structure is the same as without Bayesian correction in this
case, but not generally.

5 Mixed strategy

There are applications where the stochastic decision process is permitted, i.e., repeated
classification of given pattern can generate various class numbers. If permitted, this
approach can increase the mean sensitivity of classification. This novel approach is
not preferred in this paper but it is included for completeness and as inspiration for
future applications.

When we randomize the union of hidden groups H j , the planning matrix X ∈
[0, 1]N×H consists of probabilities

xi, j = prob(d ∈ Ci |d ∈ H j ) (25)

in which H j forms Ci . Using an exponent α ≥ 1, we can design an optimization task

Q =
N∑

i=1

(1 − sei )
α = min (26)

subject to

N∑

i=1

xi, j = 1 for j = 1, . . . , N , (27)

sei ≥ s∗ for i = 1, . . . ,N, (28)

0 ≤ xi, j ≤ 1, (29)

which is a convex programming task (Hiriart-Urruty and Lemarechal 1996). This
approach is included for completeness and it improves asemaximization when α = 1.
This optimization task can be converted into a linear programming task when α = 1
and when α → ∞. It can also be converted into a quadratic programming task when
α = 2. Using optimal matrix X, we classify unknown patterns as follows: when
classified into H j we apply roulette wheel to probabilities xi, j for i = 1, . . . ,N and
generate random index i according to these probabilities.
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6 Context out classifier system

The algorithm of optimal unions of hidden classes as developed in previous sections
is rarely directly applicable to real data. It is necessary to have another algorithm
which creates the hidden classes automatically from the pattern features. There are
many possibilities of designing such preprocessing. We prefer the parallel system
of imperfect classifiers. The imperfect classifier is any system which classifies the
patterns to given output classes but with low critical sensitivity. Having a lot of such
classifiers we are able to use them for alternative pattern description and forming of
hidden classes.As in real lifewe can focus only on several cases and particular features.
The imperfect classifier can be learned in any traditional way of perfect classification
but only using several patterns and several properties. This approach is called context
out learning here.

We would like to demonstrate the applicability of previous theory in the area of
imperfect learning. Having m patterns from N classes where each pattern is a vector
from Rn , we can define context out classifier as follows: having original pattern set
X ∈ Rm×n , y∗ ∈ {1, . . . , N }m , we select K patterns and L properties randomly to
obtain context out sample XCO ∈ RK×L , y∗

CO ∈ {1, . . . , N }K . Therefore, we plan to
design context out classifier which makes only imperfect response related to original
pattern set. Any traditional classification principle can be used to obtain its response
y ∈ {1, . . . , N }m for the complete set.

This imperfect classification procedure can be repeatedG-times usingMonte Carlo
approach. Resulting responses y1, . . . , yG form matrix YG ∈ {1, . . . , N }m×G where
i-th row represents i-th pattern as row vector ri = yi,1, . . . , yi,G of imperfect member-
ships. Only unique columns are saved of course. There are NG possible values of ri but
we will focus on unique rows. Their number is constrained as 1 ≤ H ≤ min(m, NG).
Obviously, the unique rows represent the hidden classes. Previous theory of hidden
class union is therefore directly applicable to any kind of context out classifier system.

6.1 Max margin context out classifier

The abilities of context out classification can be demonstrated as direct application of
max margin classifier (Boser et al. 1992). Traditionally, this classifier is applied only
for N = 2 using bipolar notation as follows: XCO ∈ RK×L , y∗

CO ∈ {±1}K where
+1 represents C1 and −1 represents C2. The bipolar response is driven by formula
y = sign(w0 + ∑L

j=1 w j xCO, j ) where y ∈ Rn+1 is unknown vector satisfying

(w0 + ∑L
j=1 w j xCO,i, j )y∗

CO,i ≥ 1 for all i = 1, . . . , K as separability conditions.

Using maximum margin condition
∑L

j=1 w2
j = min, the optimum weights are the

solution of quadratic optimization task.
Themaxmargin classifier is applicable only to linear separable pattern set.When the

context out pattern set does not satisfy this condition we select another one randomly.
Our testing example is focused on the case of separable dataset but with non-linear
decision rule. Therefore, the separation rule exists but it is non-linear. This testing
example will demonstrate the efficiency of imperfect linear classifier for the solution
of non-linear classification task.
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In our testing example the points close to origin form the first class, i.e. y =
+1 for ‖x‖2 ≤ ρ, while the far points form the second class and y = −1 for ‖x‖2 ≥ R,
where 0 < ρ < R. The patterns with ‖x‖2 ∈ (ρ, R) are prohibited in order to
avoid class mixing. The coordinates of individual patterns are generated randomly as
xi ∼ N(0, I) with eliminated prohibited patterns.

6.2 Testing results

The context out classification approach with embedded max margin method and fol-
lowed by union of hidden classes has been tested on artificial example according to
the non-linear classification task mentioned above. We generate 100 two-dimensional
patterns using ρ = 1 and R = 1.1. We design ten random context out classifiers based
on five samples and two properties as a model of complete pattern description in the
first case. The results of imperfect learning are depicted in Fig. 1a as switching lines
of imperfect classifier. Any plane segment consisting of at least one pattern represents
unique hidden class. There are 25 hidden classes in Fig. 1a. Using maximization of
critical sensitivity with Bayesian correction, we obtain se1 = 0.9500, se2 = 0.9000
and se∗ = 0.9000.

Using 20 context out classifiers to previous case, we obtain the better classification
systems with H = 39, se1 = 0.9750, se2 = 0.9667 and se∗ = 0.9667, which is
depicted in Fig. 1b.

The experiments get more interesting in the case of L = 1 when the pattern dimen-
sionality is also reduced. Whenm = 100, K = 5, L = 1, G = 10, we obtain H = 17,
se1 = 0.7750, se2 = 0.7667 and the imperfect classifiers are depicted in Fig. 1c.

When the number of generation is increased to G = 20, we obtain H = 34,
se1 = 0.9250, se2 = 0.9167 and se∗ = 0.9667, and the imperfect classifiers are
depicted in Fig. 1d.

Using higher values of G, we obtain systems with se∗ = 1.0000 in previous two
cases. But the number of classifiers and hidden classes is too large and resulting system
has a lowpractical importance. The combination of context out learningwith imperfect
classifiers and hidden class unions is also suitable for solving the linear inseparable
problems.

7 Case study: crisis prediction

The newmethod is demonstrated on real data used for predicting the EU crisis based on
macroeconomic indicators. The indicators were evaluated using statistical data from
the European Commission (2015). The nine main indicators were selected based on
our previous research (Hrebik and Kukal 2015), and these are included in Table 4.
Annual data on the 28 EU countries from 1993 to 2017 was processed by logarithmic
transformation, and the resulting pattern consisted of nine logarithmic differences in
the corresponding indicators. Each country was represented by twenty four patterns,
and the maximal values of the differences are shown in Table 5. The main idea for
crisis prediction was to perform cluster analysis on the hidden classes according to the
pattern properties of each country first. We defined two output classes that present the
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Fig. 1 Context out learning for different parameters. a K = 5, L = 2, G = 10, b K = 5, L = 2, G = 20,
c K = 5, L = 1, G = 10, d K = 5, L = 1, G = 20

economic indicators before the crisis (1993–2008) and after the crisis (2010–2017).
The Optimal union of the hidden classes into the two output classes was the main
objective of the following numerical experiments.

We analysed the results of se∗ maximization for a number of hidden classes with
the value of H = 2, . . . , 20 for each country. This corresponds to 23 patterns per
country. The respective number of hidden classes was selected tomaximize the critical
sensitivity. As an alternative, we used AIC minimization, which also determined the
optimal number of hidden classes but without knowledge of the output value. The BIC
was not optimal for our purpose because it generated a very low number of classes
with small critical sensitivity. The AIC generated similar results as in the case of se∗
maximization as demonstrated in Table 6. The pair Hopt and se∗

opt represents the result
of se∗ maximization with the knowledge of the output value for each country. By
minimizing AIC, we obtained the pair HAIC and se∗

AIC without prior knowledge of the
crisis status. These two approaches slightly differ in the number of hidden classes but
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Table 4 List of descriptors i Variable Explanation

1 TP Total population

2 UR Unemployment rate

3 GDP Gross domestic product at current market prices

4 PFC Private final consumption expenditure at current prices

5 GFC Gross fixed capital formation at current prices

6 DD Domestic demand including stocks at current prices

7 E Exports of goods and services at current prices

8 I Imports of goods and services at current prices

9 GNS Gross national saving

Table 5 Maximal values of absolute logarithmic differences

Country TP UR GDP PFC GCF DD E I GNS

Belgium 0.00869 0.20854 0.07289 0.02172 0.07893 0.03373 0.13982 0.16728 0.18158

Germany 0.00913 0.18805 0.06353 0.03727 0.08158 0.02683 0.14045 0.15143 0.11197

Estonia 0.02148 0.89794 0.34200 0.07250 0.31805 0.08263 0.21123 0.23667 0.23448

Ireland 0.02999 0.62861 0.20250 0.06591 0.17480 0.04896 0.11461 0.11983 0.24273

Greece 0.00828 0.34320 0.09539 0.03934 0.19416 0.02679 0.20830 0.22314 0.59250

Spain 0.01953 0.46000 0.08392 0.01942 0.18369 0.03781 0.13634 0.24476 0.06328

France 0.00750 0.20679 0.05324 0.01815 0.07020 0.01228 0.12833 0.14253 0.14175

Italy 0.00771 0.24201 0.14034 0.01829 0.06863 0.02592 0.18232 0.18160 0.09579

Cyprus 0.02633 0.40968 0.10805 0.09861 0.22839 0.07445 0.09359 0.15101 0.34260

Latvia 0.02123 0.82098 0.50905 0.17530 0.35091 0.14066 0.45519 0.25068 0.87294

Lithuania 0.02253 0.86681 0.45046 0.07411 0.37330 0.09289 0.39897 0.38724 0.29069

Luxembourg 0.02474 0.37949 0.13948 0.07262 0.13778 0.08004 0.12675 0.15509 0.17939

Malta 0.01072 0.14058 0.13630 0.05389 0.23159 0.06185 0.16801 0.17165 0.37205

Netherlands 0.00757 0.26028 0.07916 0.03598 0.07809 0.01561 0.13036 0.13084 0.10970

Austria 0.00967 0.25672 0.07098 0.03019 0.04960 0.02368 0.16962 0.15653 0.14660

Portugal 0.00707 0.20661 0.08123 0.02292 0.15234 0.03711 0.13767 0.18232 0.19307

Slovenia 0.00984 0.29335 0.23349 0.06612 0.19730 0.03993 0.14850 0.20493 0.19259

Slovakia 0.00591 0.26176 0.21145 0.06321 0.22688 0.12197 0.16796 0.18160 0.24914

Finland 0.00488 0.24784 0.16361 0.05873 0.06782 0.02425 0.21706 0.18814 0.18924

Bulgaria 0.02831 0.41522 0.32243 0.19842 0.76461 0.11754 0.32568 0.40767 2.83741

Czech Republic 0.01031 0.42050 0.15415 0.03737 0.13782 0.03815 0.19777 0.15858 0.14781

Denmark 0.00610 0.56798 0.07405 0.03341 0.14477 0.03038 0.14153 0.17680 0.18831

Croatia 0.02888 0.24039 0.34817 0.04841 0.24512 0.05836 0.17959 0.19691 0.34877
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Table 5 continued

Country TP UR GDP PFC GCF DD E I GNS

Hungary 0.00523 0.28117 0.17981 0.07504 0.11123 0.06198 0.43393 0.23402 0.28104

Poland 0.00950 0.37013 0.17792 0.03649 0.14505 0.03987 0.14818 0.14680 0.29663

Romania 0.03321 0.44183 0.26711 0.07002 0.38996 0.06283 0.20107 0.21092 0.30956

Sweden 0.02112 0.29171 0.17546 0.05454 0.08589 0.02428 0.11253 0.11692 0.18172

United Kingdom 0.00897 0.30538 0.21514 0.01603 0.11155 0.01298 0.07884 0.08140 0.26905

Table 6 Optimum number of
hidden classes for crisis
prediction

Country Hopt se∗opt HAIC se∗AIC se∗COL

Belgium 20 0.8750 20 0.8750 0.8750

Germany 14 0.8750 14 0.8750 0.8750

Estonia 16 0.8750 20 0.8750 0.8750

Ireland 19 0.9333 16 0.8666 0.9333

Greece 15 0.9333 17 0.9333 0.9333

Spain 15 1.0000 20 1.0000 1.0000

France 20 0.8750 18 0.8666 0.8750

Italy 12 0.9333 20 0.9333 0.9333

Cyprus 13 1.0000 20 1.0000 1.0000

Latvia 20 1.0000 20 1.0000 1.0000

Lithuania 19 0.8750 19 0.8750 0.8750

Luxembourg 15 0.9333 19 0.9333 0.8750

Malta 16 0.9333 20 0.9333 0.9333

Netherlands 19 0.9333 20 0.9333 0.9333

Austria 20 0.9333 20 0.9333 0.8750

Portugal 19 1.0000 19 1.0000 1.0000

Slovenia 20 0.9333 19 0.8666 0.9333

Slovakia 20 0.9333 17 0.8750 0.9333

Finland 19 0.8750 19 0.8750 0.8750

Bulgaria 20 1.0000 20 1.0000 1.0000

Czech Republic 20 1.0000 20 1.0000 1.0000

Denmark 9 0.8666 19 0.8666 0.8666

Croatia 17 0.9333 19 0.9333 0.9333

Hungary 15 1.0000 19 1.0000 1.0000

Poland 10 0.9333 19 0.9333 0.9333

Romania 19 1.0000 20 1.0000 1.0000

Sweden 16 0.9333 13 0.8666 0.9333

United Kingdom 19 0.8750 20 0.8666 0.8750
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provide very similar values of critical sensitivity. Therefore, crisis prediction can be
based on cluster analysis with AICminimization without loss in the prediction quality.

The same data sets of individual countries were also classified using context out
learning as reference method. In the first case we used G = 20 random classifiers
and the resulting sensitivities se∗

COL were very similar to se∗
OPT as seen in the Table

6. Therefore, the context out learning also generates efficient prediction system when
the number of classifiers is higher.

8 Conclusions

A novel method of optimal cluster union was designed and tested. The main advan-
tage of this approach is the maximization of critical sensitivity or its control at least.
The cluster unioning was demonstrated on simple example as efficient but of narrow
application range. From the perspective of future applications the method is a bridge
between hidden and output classes. There are at least two ways to form the hidden
classes: imperfect classification and cluster analysis, which enables to solve more
complex task. As in real life the imperfect classification with inefficient decision rule
is based on context out approach when only several data patterns are observed and
also the set of properties is reduced. Using Monte Carlo approach and the strategy
of this context out learning, we obtain alternative pattern description which naturally
forms hidden classes. This novel approach was demonstrated on linear inseparable
classes with a set of imperfect linear classifiers. When the number of imperfect clas-
sifiers is large the sensitivity of cluster unioning is relatively high. The context out
learning seems to be inefficient but in the combination with optimal class unions it is
a perspective tool for complex decision making.

The second approach combines the cluster unioningwith traditional cluster analysis
which can be helpful in the case of crisis prediction. An optimal number of clusters
was found for each country. We identified three groups of countries as a side effect of
our study.

The first group is represented by countries, in which the indicators can easily facil-
itate crisis prediction. These are the countries with se∗ = 1, namely Spain, Cyprus,
Latvia, Portugal, Bulgaria, the Czech Republic, Hungary, and Romania. The second
group is represented by countries, in which it can be more difficult to predict any
upcoming crisis. In this case, the value of se∗ is lower than 0.875, specifically for
Belgium, Germany, Estonia, France, Lithuania, Finland, Denmark, and the United
Kingdom. The third group is a compromise between the first and the second group.

The countries in the first group seem to be very sensitive to crisis origins and
macroeconomic symptoms, while the sensitivity of the countries forming the second
group is significantly lower. Our hypothesis is that they have their own stabilisation
mechanism against economic crisis, which can explain the lower predictability of
macroeconomic behaviour.

Selection of the hidden class number was primarily based on se∗ maximization as
left maximum position. A second possible way was to employ the information criteria
AIC and BIC. The values of BIC were not recommended because of the small number
of clusters with very low values of critical sensitivity. In most cases, AIC suggests
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the optimal number of hidden classes with the highest values of critical sensitivity.
When AIC was used to select the optimal number of hidden classes, the error of
critical sensitivity was up to 0.0667. Using context out learning with twenty imperfect
classifiers is efficient alternative to cluster analysis in this case with the error of critical
sensitivity up to 0.0583.

Acknowledgements The authors would like to acknowledge the support of the research grants SGS
17/196/OHK4/3T/14 and SGS 17/197/OHK4/3T/14.

References

Andrés JD, Lorca P, de Cos Juez FJ, Sánchez-Lasheras F (2011) Bankruptcy forecasting: a hybrid approach
using fuzzy c-means clustering and multivariate adaptive regression splines (mars). Expert Syst Appl
38(3):1866–1875

Bolin JH, Edwards JM, Finch WH, Cassady JC (2014) Applications of cluster analysis to the creation of
perfectionism profiles: a comparison of two clustering approaches. Front Psychol 5:343

BoserBE,Guyon IM,VapnikVN, (1992)A training algorithm for optimalmargin classifiers. In: Proceedings
of the fifth annual workshop on computational learning theory, COLT ’92, New York, NY, USA, pp
144–152

Chang L, Slikker W (1995) Neurotoxicology: approaches and methods. Elsevier, Amsterdam
Dias JG, Vermunt JK, Ramos S (2015) Clustering financial time series: new insights from an extended

hidden Markov model. Eur J Oper Res 243(3):852–864
Directorate General for Economic and Financial Affairs (ECFIN), Statistical annex to European economy.

Autumn 2015, Technical report, EuropeanCommission (2015). http://ec.europa.eu/economy_finance/
publications/eeip/2015-sa-autumn_en.htm

DiStefano J (2015) Dynamic systems biology modeling and simulation. Elsevier, Amsterdam
Ghassempour S,Girosi F,MaederA (2014)Clusteringmultivariate time series using hiddenMarkovmodels.

Int J Environ Res Public Health 11(3):2741–2763
Harshbarger R, Reynolds J (2015) Mathematical applications for the management, life, and social sciences.

Cengage Learning, Boston
Hiriart-Urruty J, Lemarechal C (1996) Convex analysis and minimization algorithms I: fundamentals.

Springer, Berlin
Hrebik R, Kukal J, (2015) Multivarietal data whitening of main trends in economic development. In:

Martincik D, Irgincova J, Janecek P (eds) Mathematical methods in economics, University of West
Bohemia, Plzeň, pp 279–284
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