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Abstract
Quantum information and communication are modern and promising branches
of science. The improvement they offer exploits quantum entanglement, the key
resource to interesting applications e.g. quantum teleportation, searching algo-
rithms etc. The entangled states suffer from decoherence, noise, in realistic phys-
ical setting; one of the protocols proposed lately uses particular measurement-
based modification on a copy of the state to restore the state and its entangle-
ment. The action of the protocol is nonlinear and it has been shown that in
certain states it induces chaotic dynamics.
Chaos means sensitiveness to initial conditions and perturbations and is often
connected to fractal structures. In this work, we propose a simple chaotic model
which is completely analysed. Many of found phenomena are documented for
the first time in this level of quantum physics, they have no analogy in classical
physics. We also propose whole classes of other protocols and try to investigate
their dynamical regimes. Most of all, we focus on the fractal structures of the
sensitive states. We decide to characterise the structures by their dimension
which is the key structural characteristic of fractals. Using numerical methods
we estimate the dimension of fractal structures and discover surprising features
related both to nonlinear dynamics and quantum physics. The change of the
structure with respect to the purity of initial states can be understood as a phase
transition. Besides the numerical, we also use analytical methods where possible
to demonstrate presence of characteristic features of nonlinear dynamics in the
context of purely quantum systems. Motivated by physical and informational
background we also make notes on the practical aspects of our results. We also
set questions and future directions of this exciting interdisciplinary research.

Abstrakt
Kvantová informace a komunikace jsou slibná odvětv́ı věd. Pokrok, který předsta-
vuj́ı, využ́ıvá kvantového provázáńı, které je kĺıčovým zdrojem k aplikaćım jako
např. kvantová teleportace, vyhledávaćı algoritmus aj. Provázané stavy podléhaj́ı
dekoherenci, šumu v realistickém fyzikálńım prostřed́ı; jeden z nedávných pro-
tokol̊u využ́ıvá modifikaci založenou na měřeńı na kopii stavu k obnoveńı jeho
a jeho provázáńı. Akce protokolu je nelineárńı a ukázalo se, že na určitých stavech
vyvolává chaotickou dynamiku.
Chaos znamená citlivost k počátečńım podmı́nkám a poruchám a je často spojen
s fraktálńımi strukturami. V této práci představujeme jednoduchý chaotický
model, který plně analyzujeme. Nacháźıme mnohé jevy, které dosud nebyly
v této formě v kvantové fyzice objeveny. Dále navrhujeme celou řadu daľśıch
protokol̊u a zkoumáme jejich dynamické režimy. Zejména se pak soustřed́ıme
na fraktálńı struktury citlivých stav̊u. K popisu těchto struktur už́ıváme di-
menzi, která je základńı strukturálńı charakteristikou fraktál̊u. Využit́ım num-
erických metod odhadujeme dimenze fratkálńıch struktur, což vede k řadě ob-
jev̊u v oblasti jak nelineárńı dynamiky, tak kvantové fyziky. Změna struktury
jakožto funkce purity vstupńıch stav̊u může být chápána jako fázový přechod.
Kromě numerických se snaž́ıme využ́ıvat i analytické metody, abychom prokázali
charakteristické jevy nelineárńıch dynamik v kontextu čistě kvantových systémů.
Pro motivaci z pomeźı fyziky a informatiky také interpretujeme výsledky prak-
tickým směrem. Nakonec formulujeme otázky a směrujeme budoućı práci v tomto
zaj́ımavém interdisciplinárńım výzkumu.
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1. Introduction
In the last decades, quantum physics and the theory of information and computa-
tion joined to give rise to a new branch of promising and surprising improvements
to contemporary science. Starting with new quantum protocols that can solve
some tasks in polynomial time and so surpass today’s algorithms requiring ex-
ponential time [59, 13] and ending in whole new protocols beyond the classical
physics, e.g. quantum teleportation, [7]. New findings offer crucial improvements
in various fields of applications, not only in computing and information storage
but also stretching to cryptography or medicine.

Recent papers [35, 36] have shown that there is a new unknown area of study
with great potential. Chaos. a new form of chaotic evolution which is induced by
quantum description itself. Naturally, one can assume that chaos must be present
within the quantum theory at least by the correspondence principle. There must
be a quantum description to systems like three body problem etc. However,
this type of chaos is a consequence of certain types of evolution equations and
not the quantum nature itself. There is a whole branch that aims on studying
quantum description of (semi)classicaly chaotic systems. This branch is today
usually reffered to as quantum chaology. But in this thesis, we aim for something
different. More profound description of certain systems that exhibits chaotic
features thanks to the quantum laws themselves. The chaos studied in our work
neither has any correspondence to classical chaotic systems nor is related to the
field of quantum chaology.

The fundamental cause of the chaos, i.e. exponential sensitivity of the quan-
tum system to its initial conditions [16], lies in its nonlinear evolution. The roots
of the nonlinearity originate from an interaction of the physical system with en-
vironment. The topic of open quantum systems is usually restricted to special
statistical systems (gas and reservoir etc.) but the issue studied in this work
presents a very simple and exact interaction of two qubits where one manifests
(via measurement-based selection) as the environment which results in seemingly
simple nonlinear evolution. However, even such a simple system goes beyond
accessible mathematical theories, these offer no description of the asymptotic dy-
namics at the moment. Furthermore, because there is no analogy to classical
systems, we start to study this field of multidimensional quantum chaos from the
very beginning and give some fundamental knowledge for future research.

However, the task of studying this new type of chaos has a few fundamen-
tal problems. First, the foundation of the topic combines knowledge of many
advanced branches including theory of information and computation, quantum
physics, the theory of complex functions and the theory of chaos. Each of these
branches is quite extensive and requires a different mentality and approach to be
handled successfully. In this work we must join them all to offer our readers some
new interesting findings and move on with the research with great potential.

The particular quantum information protocol we study was proposed in [4] and
improved and modified in [1]. Briefly said, its purpose is to sacrifice some copies of
a piece of information to repair damage that is typically caused by transmission
through environment on other copies. The protocol uses measurement-based
selection to modify the quantum states. While one copy of the state is taken
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as a reservoir, this particular environment action can cause a specifical nonlinear
evolution. The protocol is constructed in the way that it manifests on the density
matrix elements as a function z → z2. The dynamics can be further modified
by an additional unitary operator called twirling operator. In consequence, we
describe a new set of quantum dynamical regimes.

Amongst these regimes the prominent position is taken by the chaotic ones.
So far, the exponential sensitiveness to initial conditions has been revealed for
a particular class of pure states and Hadamard gate as the twirling operator
[36]. Inspired by this, we aim for following goals in this thesis. The chaotic
behaviour is probably not present only for the particular states. We want to ex-
amine asymptotic dynamical regimes for general input states. Special attention
must be dedicated to mixed states which - from their definition of statistical en-
sembles - may exhibit fundamentally different behaviour than pure states. The
chaos in [36] has been related to a fractal structure encountered when studying
a function of a single complex variable. The chaos is often connected to fractal
structures, whence we dedicate particular effort to study such structures in the
context of the purification protocols. To do so, we implement a numeric approach
of dimension estimation known as box-counting. Introducing the fractal dimen-
sion to the topic of the purification protocol is one of the biggest contribution of
this thesis.

We also want to investigate whether the evolution induced by the proposed
protocol possesses other interesting features connected to nonlinear dynamics.
That would be a novel finding for this type of quantum state evolution. We will
try to give a complete characterisation of the asymptotic evolution, in an analytic
approach where possible. However, the topic of multidimensional chaos is very
intricate and so we will have to utilise numerical methods too. One of the side
goal of our thesis is to implement the numerical machinery for the purpose of
analysis of chaos in quantum purification. Particular attention will be devoted
to the box-counting algorithm, as already mentioned.

The next natural step to take is to generalise the protocol [36] and we set
up two main directions based on outlines from [1, 35]. These two generalisations
are another goal achieved in our thesis. One of them relies on using different
twirling operators; we will study the change of the asymptotic evolution based on
the parameters of the protocol. The other direction is based on using a system
of multiple copies to induce nonlinear behaviour of type x → xn. Both of the
generalisations will be proposed in detail with the exact description elaborated.
Both of the generalistions will also be merged together to offer whole new classes
of purification protocols. For these we will give basic overview of dynamical and
chaotical features and compare them to the original protocol.

The results of our work could be of high importance for the practical appli-
cability of the protocol with an impact to more effective quantum information
transmission, e.g. for quantum key distribution, [6, 9, 54]. Even more, our work
could initiate new algorithms exploiting discovered nonlinear features. We will
also give suggestions on next research and will discuss practical aspects of our
theoretical findings.

The framework of this thesis follows a natural line of thoughts outlined in
previous paragraphs. In this work we bring together the indispensable pieces
of the theories. Therefore, in the second chapter 2 the quantum description of
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the physical system is presented together with fundaments of the chaos theory.
Particular attention is then paid to the box-counting method and the topic of di-
mension which we exploit in our work. We also introduce parameterisations and
mathematical conventions that will be used for the rest of the work to compre-
hensively transfer the results to the wider scientific community. The theoretical
background will be developed with respect to the fact that our readers may not
be experienced enough in all the specific branches. We believe that for them we
should offer a comprehensible introduction to basic concepts and instruments.
Even at the cost that a reader familiar with e.g. quantum physics will consider
some passages trivial and not worth of mentioning. We believe that our approach
is appropriate for an interdisciplinary work.

The chapters presenting our results start with the protocol modification for
single qubits. This proposal may be considered a toy model but it is complex
enough to demonstrate the fundamental properties of more general protocols
that will be discussed later. Evolution equations for general (i.e. mixed) input
states are derived. By analytic and numeric means we uncover interesting results
including features related to nonlinear dynamics that have not yet been observed.
One of the conclusions relates to the fractal dimension which undergoes sudden
changes which we interpret as a phase transition. The purity of the state (in
the sense of pure - mixed states) is not a necessary criterion to observe chaotic
features, the mixed states can also exhibit deterministic chaos and form fractal
patterns despite their statistical uncertainty. Other findings including remarks
on convergence speed are related to the practical use of the protocol.

The fourth chapter 4 generalises the protocol by modifying the twirling oper-
ator. We do not analyse all the protocols in detail but at the moment we focus
on basic characterisation, similarities and differences and mainly to support that
the phase transition in the fractal structure is not unique for the Hadamard gate
protocol only. The change of the operator can shift the temperatures of the
transitions and possibly also change the number of phases. Our main goal is
to demonstrate that the twirling gates can affect the chaotic evolution; we want
to present (in)dependence of convergences rates and other nonlinear dynamical
features on the protocol parameters.

The next chapter 5 is dedicated to another generalisation of the previously
defined toy model of the single qubit evolution to implement more involved evo-
lution maps including higher polynomial functions by introducing more copies of
the qubit as the generalised environment. We introduce the concept of the gen-
eral protocol implementation and put forward the mathematical representation of
evolution equations. Furthermore, we reproduce previous results for these newly
defined protocols and compare them with the original protocol. In addition, we
discuss the practical applicability of the protocol, especially in the context of the
convergence speed which is an important aspect for the future use.

Since the original protocol was designed to purify the quantum entanglement
in pairs of qubits, in chapter 6 we come back to the protocol defined on two-qubit
systems and employ the just studied toy model which has a direct analogy in the
two-qubit states evolution; previous results can then be easily recounted in the
context of the two-qubit protocols as well as the capabilities of purifying the quan-
tum entanglement. We recapitulate the findings focusing on the newly present
effect of entanglement which we measure within the concept of concurrence.

5



The final chapter is dedicated solely to a recapitulation of the results and
questions and proposals for the next research.

Results from our third chapter were published as Phase Transition in Iterated
Quantum Protocols for Noisy Inputs in Chaos journal - the paper got a particular
attention as an editor’s pick. The author discovered the topic of phase transitions,
provided methodology, box-counting algorithm and results, co-author Orsolya
Kálmán provided calculations of backward iterations. Other co-authors Igor Jex
and Tamás Kiss helped with the text of the paper. The article can be found in

• Chaos, 29, 033107 (2019); https://doi.org/10.1063/1.5082946

• arXiv database: https://doi.org/10.48550/arXiv.1809.00140

Further results from the fourth chapter onwards are solely the work of the
author and are currently prepared to be published.
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2. On the frontiers of theories
The future of quantum information is very promising. This branch of science
builds the theory of information upon quantum laws of the Universe, [14, 15]. Al-
though there are many similarities with the classical information theory founded
by Shannon, [57] (built upon classical physics), the quantum version is richer. It
offers phenomena like quantum entanglement [18] to benefit from. Protocols pro-
posed in the last decades have exploited the exotic nature of quantum physics to
implement new algorithms supreme to the current state of the art. The key entity
to all parts of the quantum information is the qubit. This quantum analogue of
classical bit contains the quantum essence which is essential to the wonderful ap-
plications while keeping many properties of the classical bit. However, the most
important part of this thesis comes with introducing theory of chaos and joining
it to the quantum information. This chapter serves to recapitulate important
pieces of theory, so they can be put together into the whole mosaic and easily re-
ferred in the later chapters. Also, this basic overview introduce our readers to the
ideas which they may not be familiar with. In this way they get acquaintanced
with the setting of our topic in the conflux of many distant pieces of knowledge.
Reader skilled in a particular topic can probably skip corresponding section and
refer to it only when needed in later chapters.

First after the notation overview, we present a brief overview of quantum
physics. We focus on its axiomatic construction, terms like quantum state and
measurement are formalised so we can later easily watch their role in our prob-
lem. Then we focus on the quantum information branch with detailed description
of qubit and qubit manipulation. The quantum information and communica-
tion protocols often use Fourier transform, Pauli gate, Hadamard gate and other
linear elements. But the most important element for our thesis is the CNOT
(controlled-not) gate. The quantum analogy of the classical CNOT gate com-
bined with measurement performs nonlinear evolution of qubit which is crucial
to our studies. Although the CNOT gate is a linear operator on a pair of qubits,
we can understand the system of target and control qubit as an open system
where the target qubit serves de facto as the environment. The control qubit
modified by this measurement-based modification is then subject to nonlinear
evolution. From this we can see that the protocol goes beyond standard courses
of quantum physics because it involves quantum physics of open systems. This
theory crosses with the theory of information, so we make a few notes on the
branch.

Since we aim to study the chaotic features of the protocol, we also need
to explore the theory of chaos. This field is very intricate and offers only few
tools to manage the general task. Both the theory of chaos and the quantum
physics are still developing but at the moment their cross-section usually focuses
on quantum description of classically chaotic systems. This is commonly referred
to as quantum chaology, [8]. However, the nature of the chaos in our problem
is different - it emerges from deep inside the quantum description of the system
and has no analogy in classical physics. To introduce our readers to the chaos
we set up a definition of chaotic dynamical system followed by manifestation
within physical systems. To use the analytic approach to the chaos we focus

7



then on complex functions of a single complex variable. Knowledge of chaos
generated by these functions has direct use in qubit evolution under protocol of
our interest. The chaos in these functions is contained in sets of points called
Julia sets which often form peculiar fractal structures. These structures usually
exhibit self-similarity and their primary and characteristic property is that their
dimension is not an integer. We devote a section to fractals, concept of the
dimension and the numerical dimension estimation of box-counting approach.

At the end of this theoretical chapter, we finally describe the purification
protocol we are interested in, motivation for its proposal, its basic features and
current state of knowledge. It is the start point of our study that widely extends
our knowledge of nonlinear quantum protocols. At this moment, we only mention
that the original protocol [4] was designed as a nonlinear protocol preserving the
Bell state. We will first offer a different model that is inspired but simplifies
the situation to a single qubit protocol. The results are later generalised to the
original protocol but the single qubit space is much more accessible and still
surprising model.

Because our topic is built upon three stones - quantum theory, theory of
information, and theory of chaos, it is very demanding on completing the pieces
of knowledge into the whole mosaic. In this review, we do not present these pieces
at full details as they can be studied in many books [44, 45, 47, 10, 61]... In this
text we focus on presenting only the crucial and fundamental pieces which fit in
the mosaic built in the next chapter. Of course, we repeat many basic and well-
known concepts. Some readers may find certain passages of the text too simple
and not appropriate for a doctoral thesis but we present them for others that do
not. We expect not only quantum physicist to be interested in the chaos inside
quantum physics but a mathematician to be interested in the quantum physics
inside chaos too. Taking the multidisciplinary topic, we take it as our duty to
give the elementary overview, even though some may consider it unnecessary. If
our readers belong to the experienced society, we hope they will be lenient to our
intentions. On contrary, we hope that any person trying to replicate and improve
our results will use this overview as a brief yet nice introduction.

There is also another reason to rewrite things that have been already written
a hundred times already besides collecting the pieces of the mosaic to one place.
We want to show that our research is based on the very fundaments of the theories.
This is interesting for two reasons - the topic itself is seemingly simple and possibly
can be introduced to wide community to make an impact in multiple fields. On
the other hand, the topic is very delicate and requires precise work and the
ostensible simplicity disappears when the topic is studied deeply.

2.1 Notation
H Hilbert space H ∗ dual space to H ∗

|α⟩ ket, vector ∈H ⟨β| bra, dual vector ∈H ∗

⟨β|α⟩ scalar (inner) product L(H ) space of linear operators on H

|β⟩⟨α| outer product, operator ∈ L(H ), |β⟩⟨α|(|x⟩) := ⟨α|x⟩|β⟩
ρ density operator, corresponding density matrix

8



⊙ Hadamard (elementwise) product ⊗ tensor product
ρ̄ complex conjugate of ρ ρ† Hermitian conjugate
||ψ|| norm of vector ||ψ|| :=

√︂
⟨ψ|ψ⟩ C field of complex numbers

Ff Fatou set of function f Jf Julia set of function f

σ0 :=
(︄

1 0
0 1

)︄
(2.1)

σ1 :=
(︄

0 1
1 0

)︄
(2.2)

σ2 :=
(︄

0 −i
i 0

)︄
(2.3)

σ3 :=
(︄

1 0
0 −1

)︄
(2.4)

1 identity operator, identity matrix
Trρ trace of operator/matrix ρ
n̂ set {1, 2, 3, . . . , n}

{ai}ni=1, {ai}∞
i=1, {ai}i unordered sets; index set depending on context

(ai)ni=1, (ai)∞
i=1, (ai)i sequences; index set depending on context

∂S border of set S
(a; b) open interval {x ∈ R|a < x < b}
[a; b] closed interval {x ∈ R|a ≤ x ≤ b}

[a; b), (a; b] half-closed intervals

(a, b), (a, b, c),

⎛⎜⎝ab
c

⎞⎟⎠ point from R2,R3 or depending on context

Ranges of sum indices or set unions/intersections are omitted when apparent

ρ→ ρ′ evolution induced by one protocol iteration upon state ρ
C = (ρ1, ρ2, . . . , ρn) cycle; ρ1 → ρ2, . . . , ρn → ρ1

ρ
∞→ C asymptotic convergence of state ρ to a state or cycle C

2.2 Quantum physics
Quantum physics was established more than a hundred years ago. The revolution
in physics is connected to names like Planck, de Broglie, Bohr. Further develop-
ment was carried out by Schrödinger, Heisenberg and Dirac. But for the purpose
of this thesis we stress the names of Einstein, Podolsky and Rosen who pointed
out a famous paradox [18] in 1935. Decades later, in 1964 their proposition of
hidden variable theory was refuted by work of John Stewart Bell [5] and the
nonlocality, exotic nature of quantum physics, was confirmed by his inequalities.
The nonlocal character is today embraced in the term of quantum entanglement
which became a peculiar yet important resource of quantum computers. Still,
quantum theory of information had few years ahead to be settled at that time.
Starting with work of David Deutsch in [14], new horizons have been discovered
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allowing for significant improvement in many branches, not only computation.
Still, we find fascinating that the field developed from its very beginnings to an
applied and advanced science bringing new and amazing technologies in less than
a century. How deeply can our lives change in the next hundred years?

2.2.1 Axiomatic foundation of quantum physics
Strict axiomatic construction of quantum physics makes it a precise, logical and
analytical theory. Since the fundaments of the theory are available in vast number
of sources, we only highlight pieces we need to put later work into context, to be-
friend reader with notation and mathematical framework. We follow construction
in [10] as we did in [39] but here we skip mathematical formalism unnecessary
for this work. No doubt the text will be familiar for all people that went through
courses of quantum physics, some information may be even taken for too trivial
but we present them mainly for people of mathematical disciplines. Physicists
can probably skip the following section without any negative consequences.

The very first postulate finds a suitable mathematical structure able to carry
the physical world together with its basic properties. It represents a physical
state as an element of the structure.

Axiom 1. There is a separable complex Hilbert space H corresponding to the
given quantum system. There is a ray in H corresponding to the given state of
considered system.

This space H from 1 is called the state space. Mathematically, it is a complete
topological space equipped with a scalar product. The product plays a crucial role
in the probability character of quantum physics. Physical state is not represented
by a vector but by a one-dimensional subspace Ψ; the state can be represented by
arbitrary vector |ψ⟩ ∈ Ψ, usually a unit vector ||ψ|| = 1 is taken. It is possible to
define the state space as a projective space. Note that the state space is complex
and therefore there are infinitely many unit vectors, they differ in phase eiφ. The
optionality of the phase will be exploited in this work. For simplicity and without
loss of generality, we will not distinguish a state and its arbitrary representative
in this thesis |ψ⟩ ≡ eiφ|ψ⟩ ≡ z|ψ⟩ ≡ Ψ, with arbitrary φ ∈ R, z ∈ C.

Formalism of measurements in quantum physics must respect the crucial idea
of quantum physics that measuring affects the state. Lets consider state Ψ trans-
formed into Φ because of the measurement of an observable. Taking unit repre-
sentatives |ψ⟩, |ϕ⟩ the number P (Ψ,Φ) = | ⟨ψ |ϕ⟩ |2 has the meaning of so called
transition probability, probability that the state Ψ is turned to Φ because of the
measurement. Taking orthonormal basis (|ϕj⟩)j of H any vector can be decom-
posed to

|ψ⟩ =
∑︂
j

⟨ϕj |ψ⟩ |ϕj⟩
label=

∑︂
j

cj |ϕj⟩ . (2.5)

The transition probabilities of |ψ⟩ → |ϕj⟩ are pj = |cj|2 and of course ∑︁j |cj|2 = 1.
Numbers (cj)j are called Fourier coefficients of vector |ψ⟩ with respect to the basis
(|ϕj⟩)j.

To properly introduce observables and their connections to values that can be
measured we have to mention the concept of resolution of the identity also called
completeness relation. Please find more details in [10].
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Axiom 2. An observable of the physical system is represented as some self-adjoint
operator on the corresponding H . Possible values for measurement of observable
A are elements of the spectrum of A.

It is mathematically possible to define an operator on H from arbitrary two
vectors |α⟩ , |β⟩ ∈H using outer product in a following way:

P = |α⟩ ⟨β| ⇔ (∀ |ψ⟩ ∈H )(P |ψ⟩ = ⟨β|ψ⟩|α⟩) (2.6)

When an orthonormal basis (|ϕn⟩)n of H is chosen, particular operators
Pij = |ϕi⟩ ⟨ϕj| can be constructed according to 2.6 and combined, we obtain
so called completeness relation: ∑︂

n

|ϕi⟩ ⟨ϕi| = 1. (2.7)

With two orthonormal bases (|ϕi⟩)i and (|ψi⟩)i of H one can construct simi-
larly Pij = |ϕi⟩ ⟨ψj| , any given operator A on H N can be expressed as

A = 1A1 =
∑︂
i,j

|ϕi⟩ ⟨ϕi|A |ψj⟩ ⟨ψj| =
∑︂
i,j

⟨ϕi|A |ψj⟩ |ϕi⟩ ⟨ψj| , (2.8)

A is then said to have matrix elements ⟨ϕi|A |ψj⟩ with respect to input basis
(|ψi⟩)i and output basis (|ϕi⟩)i. Operator A can be thus represented as a matrix
A with elements Aij = ⟨ϕi|A |ψj⟩. The matrix can be used to evaluate image of
|α⟩: A|α⟩ = ∑︁

i,j Aij⟨ψj|α⟩|ϕi⟩.
In our thesis, the basis will be given by experimental setting, experimen-

tal realisation, e.g. with vertical/horizontal polarisation of photons. All the
calculations will be performed in this computational basis and we will identify
coordinates/matrix elements in this basis with the states/operators.

In the quantum information context of this thesis, observabels with continu-
ous values of measurement will not be discussed. For that reason we now restrict
to observables with purely discrete spectrum σ(A) = {ai}i. Corresponding eigen-
vectors A|αi⟩ = ai|αi⟩ form an orthonormal basis (|αi⟩)i. Previous relations can
be directly reduced to this single basis.

Axiom 3a. For operator A, the probability that a value ai corresponding to unit
vector |αi⟩ is measured on a state described by unit vector |ψ⟩, is equal to p =
⟨αi|A|ψ⟩. When measurement A has the result ai, the system is transformed due
to the measurement to the state described by |αi⟩⟨αi|ψ⟩. If the measured result is
not ai, the system ends up in a state determined by (1− |αi⟩⟨αi|) |ψ⟩.

Axiom 3b. The mean value of an observable A on a state given by unit vector
|ψ⟩ is ⟨A⟩ψ = ⟨ψ |A |ψ⟩.

Natural need of physics is to transfer to statistical ensembles of states. States
we studied so far, rays in H , are called pure states. When they are represented
by a unit vector |α⟩ they can be associated to operator |α⟩⟨α|. Such operator
satisfies certain conditions that lead to the definition of statistical operators. First,
we note that operators Pij = |αi⟩ ⟨αj| satisfy P †

ij = Pji and Pii suit definition of
projection as well as arbitrary operator |α⟩⟨α|/⟨α|α⟩ for any |α⟩ ∈H does.
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Definition 2.2.1 (Projection). Projection is such an operator P on H that
Dom(P ) = H , P = P † and P = P 2.

Note that projection is self-adjoint by definition. The eigenvalues of projection
are {0, 1} which makes them positive operators. The last condition on statistical
operators comes from the requirement on probability distribution. When we
have a system that can be in one of normalised states |αi⟩ with probability pi,
the statistical operator associated to this - so called mixed state - is identified
with

ρ =
∑︂
i

pi |αi⟩ ⟨αi| , (2.9)

where naturally ∑︁i pi = 1. Person not used to the bra-ket notation should be now
pointed out to enjoy that for non-normalised states |αi⟩ one has to replace the
ket-bra product with normalisation factor |αi⟩⟨αi|

⟨αi|αi⟩ that will certainly make obvious
the reason why physicists love this notation so much. We conclude the line of
thoughts with formal definition of statistical operator.

Definition 2.2.2 (Statistical operator). ρ linear operator on H is statistical
operator when it satisfies

1. ρ = ρ† (ρ is self-adjoint),

2. ρ = ρ2 (ρ is idempotent),

3. Tr(ρ) = 1.

The statistical operator expressed as a matrix in a given orthonormal basis is
also called density matrix and we will use the symbol ρ for both the operator and
its matrix. The pure states satisfy Tr(ρ2) = 1 as the result of the fact that there
is a single vector with corresponding probability 1 while other states contribute
with 0 probability. The mixed states (where the probabilities satisfy ∀i : pi < 1)
are then distinguished with Tr(ρ2) < 1. We define a quantity to measure the
purity/mixedness:

Definition 2.2.3. Purity of the state ρ is

P (ρ) = Tr(ρ2) (2.10)

Prominent place is taken by so called maximally mixed state which correspond
to a statistical mix with uniform probabilities, (∀i ∈ d̂)(pi = 1

d
) in d-dimensional

H . The operator assigned to this state is identity up to the dimension factor
ρ = 1

d
1. For simplicity, we will omit the factor and identify the maximally mixed

state as well as the matrix of its matrix elements solely with 1, the renormalisation
will be mentioned if needed.

Now, we can extend previous axioms to statistical ensembles of states:

Axiom 1b. For a state of the physical system H , there is a corresponding sta-
tistical operator ρ on H .

Axiom 3a. For observable A, probability of measuring value a with corresponding
eigenvector α is equal to p = Tr(|α⟩⟨α|ρ). If the measurement result is a the state

after measurement is described by statistical operator ρ′ = |α⟩⟨α|ρ|α⟩⟨α|Tr(|α⟩⟨α|ρ) .
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Axiom 3b. The mean value of an observable A on a state given by ρ is
⟨a ⟩ρ = Tr(Aρ).

Note that the trace cyclic property simplified the formula in 3a

Tr(|α⟩⟨α|ρ|α⟩⟨α|) = Tr((|α⟩⟨α|)2ρ) = Tr(|α⟩⟨α|ρ). (2.11)

These axioms describe a static state (in both pure and mixed states variant). To
evolve the state in time we need to settle a new axiom which leans on a definition
of so-called propagator.

Definition 2.2.4. A class of unitary operators {Ut,s|t, s ∈ R} on H is called
unitary propagator when following conditions are fulfilled.

1. (∀r, s, t ∈ R)(Ut,sUs,r = Ut,r); in particular: Ut,t is identity for ∀t ∈ R.

2. Map (t, s)→ Ut,s is strongly continuous in R2.

The unitarity is a crucial condition which results in reversibility property
Ut,s = U−1

s,t .

Axiom 4. Time evolution of a closed system through time interval J is described
by unitary propagator: ρ(t) = Ut,sρ(s)U−1

t,s resp. |ψ(t)⟩ = Ut,s|ψ(s)⟩ for all times
s, t ∈ J .

Stone theorem, refer [10], guarantees that the propagator is generated by
a self-adjoint operator. Its physical interpretation for conservative systems is the
Hamiltonian H. The dynamical postulate can be then expressed with Ut,s ≡
e−iH(t−s). Direct deduction leads to famous Schrödinger equation

i
d

dt
ρ = Hρ− ρH , resp. i

d

dt
|ψ⟩ = H|ψ⟩. (2.12)

However, for our purposes of discrete quantum evolution induced by iterations
of certain unitary operator (i.e. U † = U−1) we will use in this thesis solely
following form

ρ→ UρU †. (2.13)

2.2.2 Open quantum systems
The reversibility of time evolution is a direct consequence of the unitarity of
the evolution. The basic property of such evolution is isometry, two states can-
not converge to a common state under unitary evolution. a standard process of
statistical ensembles of particles is to reach certain equilibrium, this process is
not compatible with the isometry. The nonunitary (and therefore irreversible)
evolution can be reached by considering multipartite systems with interaction.
While the evolution is unitary on the composite system, particular subsystem
can exhibit nonunitary evolution. The other systems can be understood as en-
vironment, thermal baths etc., in this way we can stretch the theory towards
statistical physics. We now introduce description of composite quantum system,
[12].

First, we have to assign the Hilbert space to the composite system as the
axiom 1 requires. With this we finish the axiom fundament of the quantum
theory.
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Axiom 5. The state space of the composite system is the tensor product of the
subsystem spaces: H = H1 ⊗H2 ⊗ · · · ⊗Hn.

This axiom can be even used in the opposite way to decompose a physical
system into virtual parts, i.e. electron to its position-momentum and its spin
system. For simplicity, we will use following notation of bases. Taking (|αi⟩)i,
(|βj⟩)j, (|γk⟩)k, . . . orthonormal bases of the subsystems, it can be shown that
tensor products of these vectors form the basis of the composite systems. For
the sake of simplicity we designate these vectors with |ijk . . . ⟩ ≡ |αiβjγk . . . ⟩ ≡
|αi⟩ ⊗ |βj⟩ ⊗ |γk⟩ . . . where the context would not allow a confusion.

Consider now system with H composed of two subsystems with corresponding
H1,H2. While it is easy to create the composed state from the known states of
the subsystems ρ = ρ1 ⊗ ρ2, we can ask the opposite question: what are the
states of the subsystems ρ1,2 when we know the state ρ. The answer rises from
the concept of partial trace and formalism of observables. Given observables
Ai on the subsystems Hi one can construct observables on the composite state
A1 ⊗ 1,1⊗ A2 which ignore the other state.

Proposition 2.2.5. For ρ density operator of a system H = HA⊗HB there is
exactly one pair of density operators ρA,B such that for all observables OA,B:

Tr((OA ⊗ 1)ρ) = TrA(OAρA) ,
Tr((1⊗OB)ρ) = TrB(OBρB), (2.14)

where the traces act over corresponding subspaces, as suggested by notation.

These unique subsystem density operators can be extracted using orthonormal
bases (|αi⟩)i, (|βj⟩)j of spaces HA,HB respectively.

ρA ≡ TrBρ =
∑︂
j

(1⊗⟨βj|)ρ(1⊗|βj⟩), ρB ≡ TrAρ =
∑︂
i

(⟨αi|⊗1)ρ(|αi⟩⊗1) (2.15)

The lower index notes the system that is traced out. These equations could
stand as definitions of the partial trace over subsystem B, resp. A; however, they
lack normalisation property that is guaranteed by the density operators with trace
equal to 1. Our readers can easily convince themselves that for general composite
operator OA ⊗OB:

TrA(OA ⊗OB) = TrA(OA) ·OB, TrB(OA ⊗OB) = TrB(OB) ·OA

Tr(OA ⊗OB) = TrB(TrA(OA ⊗OB)) = TrA(TrB(OA ⊗OB)) = TrA(OA) · TrB(OB)
(2.16)

However, the crucial point of the composite systems lies in the fact that there
are states in H = HA ⊗ HB that cannot be expressed as so called product
states ρA⊗ρB. Such states are called entangled states and their exact nature was
a source of a mystery for a time. The measurement performed on one subsys-
tem causes instantaneous collapse of the state of the other subsystem. a famous
paper by Albert Einstein, Boris Podolsky and Nathan Rosen from 1935, [18] ar-
gued that such situation interpreted as instantaneous transfer of information is
in contradiction with the theory of relativity. The explanation was searched in
so-called hidden parameters that are not involved in the quantum description.
Classical correlations could then explain the seeming contradiction. Yet in 1964
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John Bell presented a set of inequalities, [5] that would have to be satisfied in ar-
bitrary hidden variable theory. Such inequalities can be experimentally verified,
e.g. considering spin particles or polarised photons and the experimental results
confirmed that there are no hidden variables. As we write this thesis, it happens
that Nobel prize was awarded to A. Aspect, J.F. Clauser and A. Zeilinger for this
verification. The quantum physics truly allows for entangling two systems beyond
classical correlations. Entanglement has become an important phenomenon, a re-
source that can be used for surprising applications. An example of an entangled
system will be shown in the next paragraphs dedicated to quantum information.

We complete the quantum theory text with a final proposition that sheds
a different light on mixed states.

Proposition 2.2.6 (Mixed state purification). For given mixed state
ρ = ∑︁

i pi|αi⟩⟨αi|, statistical operator on H1 with orthonormal basis (|αi⟩)i, it
is possible to introduce another system with the same state space H2 = H1 with
orthonormal basis (|ωi⟩)i such that state

|P ⟩ :=
∑︂
i

√
pi|αi⟩|ωi⟩ (2.17)

is pure on H1 ⊗H2 and its partial trace over added subsystem yields Tr2P = ρ.

The construction is merely a mathematical trick, with the added subsystem
being virtual without any physical meaning. But still, the state P , called purifi-
cation of ρ, can be used to simplify some deductions because some considerations
are simpler for pure states. We warn now that we will not use this process in our
work. We will work with mixedness of a state, modify it, but we will change the
state itself by discrete time evolution. The evolutions function will be induced by
measurement on a subsystem of composed system. To avoid misunderstanding,
we stress that we do not introduce any virtual systems and purify a state in the
sense of changing its purity due to its time evolution.

There is also another source of possible confusion, caused by using the word
purification for purification of entanglement. Although both processes concern-
ing entanglement and mixedness are called purification, their meaning is very
different. The purification in context of mixed states is taken from the aspect of
state’s purity/mixedness. Purification of entanglement which will be discussed
in the next part aims for, of course, increasing the entanglement in a quantum
state.

It is quite natural to study the composite systems because the basic concept
of thermodynamics lies in interaction of multiple systems, usually introducing
reservoir/bath system. a basic idea developed in the theory is that Hamiltonian
of the composite system is determined by addition of subsystem Hamiltonians
together with the interaction Hamiltonian. However, our research does not go in
this direction so we leave the topic of statistical and thermodynamic branches of
quantum physics and proceed to our field of interest.

2.2.3 Quantum information
Theory of quantum information and communication is a relatively new branch
of science that is supreme to classical information theory in certain way - tasks
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requiring amount of resources exponential to the size of input can be executed
with only polynomial-dependent amount of resources. This relates to NP com-
plete tasks, [11]. There are also completely new quantum algorithms that have
no analogy in classical theory, [59, 7] a wide and comprehensible introduction to
the field is given in [47] from where we extract following overview and where we
took inspiration for the last subsection.

The quantum computation is based on a very simple idea - to build the theory
on the physical laws which are quantum, not classical. David Deutsch in 1985
attempted to construct a machine capable of simulating efficiently any (quan-
tum) physical system, [14, 15]. A quantum analogue of Turing machine, [62] -
universal quantum computer - has been proposed but the construction does not
guarantee it to be more efficient than a classical universal computer. During later
years, Deutsch, Shore and others proposed algorithms, e.g. for a search in an un-
structured list or number factorisation [59] that are proven to best the classical
ones. The unusual character of quantum physics gives a rise to a new resource,
quantum entanglement, which we have already mentioned. a great amount of
popularity was gained by quantum teleportation protocol [7] which exploits the
entanglement but is not the only one. Quantum information and communication
will rely on entanglement.

Now we outline only vital terms and mathematical concept that we will use
later. The essential concept of the whole theory is a qubit, quantum analogue of
the bit. Qubit is a physical system with two possible states of existence, let us
call them 0 and 1, naturally. The corresponding Hilbert space is C2, the basis
vectors corresponding to the states 0, 1 will be marked |0⟩, |1⟩ and they form an
orthonormal basis, the computational basis. a general pure state qubit is given
as a superposition of the basis states

|ψ⟩ = α |0⟩+ β |1⟩ . (2.18)

An additional condition α2 + β2 = 1 is usually set to constrain the qubit repre-
sentation. However, we do not do so always because suitable reparametrisation
of qubits may lead to significant simplifications when handling polynomial equa-

tions. For the sake of simplicity, we shall identify |0⟩ =
(︄

1
0

)︄
, |1⟩ =

(︄
0
1

)︄
.

A two-qubit system is then corresponding to C2⊗C2 with a natural orthonor-
mal basis

|00⟩ =

⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠ , |01⟩ =

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ , |10⟩ =

⎛⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎠ , |11⟩ =

⎛⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎠ (2.19)

formed naturally by qubit pairs with corresponding values.
As we promised, now we show an example of an entangled state. Taking

|Φ+⟩ = 1√
2(|00⟩+ |11⟩) one can easily see that it cannot be decomposed into any

product (α|0⟩+ β|1⟩)⊗ (γ|0⟩+ δ|1⟩). If the first qubit is measured with result 0,
the other qubit necessarily also must yield 0 when measured; vice versa, when one
of the qubits is measured to 1, the other would yield the same output too. This
fact can be used to implement surprising applications, i.e. quantum teleportation
[7].
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The particular state |Φ+⟩ is not the only one with such properties. Other
significant states are |Φ−⟩ = 1√

2(|00⟩ − |11⟩) and |Ψ±⟩ = 1√
2(|01⟩ ± |10⟩). The

importance of these states lies in the fact that they contain maximal amount of
entanglement. Such states are called Bell states and can be distinguished thanks
to following property. Performing the partial traces over (any) one qubit yields
maximally mixed state: TrA|Φ+⟩⟨Φ+| = TrB|Φ+⟩⟨Φ+| = 1

21. In general, if each
subspace H of the composed system has dimension d, the maximally entangled
state in the product space H ⊗n traced over all but one of the subsystems yields
1
d
1.

Measuring the amount of entanglement generally is not an easy question, [52].
While a universal approach can be defined, there is no straightforward method of
its evaluation because it requires finding a minimum of a complicated expression;
for qubit pairs the approach can be fortunately simplified. The general approach
is based on the concept of entropy which we will explore below, now we focus
particularly on binary entropy function:

h(x) = −x log x− (1− x) log(1− x) (2.20)

Given a two-qubit state ρ it can be shown that operator ρ(σ2 ⊗ σ2)ρ̄(σ2 ⊗ σ2)
is positive. Its eigenvalues are used to defined concurrence which is the key
ingredient to entanglement measurement.

Definition 2.2.7 (Entanglement of formation). Given a two qubit state ρ, its
concurrence is defined as

C(ρ) = max {0,
√︂
λ1 −

√︂
λ2 −

√︂
λ3 −

√︂
λ4}, (2.21)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are decreasingly ordered eigenvalues of ρ(σ2⊗σ2)ρ̄(σ2⊗
σ2).

The entanglement of formation is given by the binary entropy function

I(ρ) = h

⎛⎝1 +
√︂

1− C2(ρ)
2

⎞⎠ (2.22)

As an example, for the Bell state |Φ+⟩ the eigenvalues of |Φ+⟩⟨Φ+|(σ2 ⊗
σ2)|Φ+⟩⟨Φ+|(σ2 ⊗ σ2) are λ1 = 1, λ2 = λ3 = λ4 = 0 resulting into concurrence
C(|Φ+⟩⟨Φ+|) = 1 and entanglement of formation I(|Φ+⟩⟨Φ+|) = 1 which is the
maximal value of the binary entropy function. In contrast, factorisable state |00⟩
has all the concurrence eigenvalues equal to zero, that gives C(|00⟩⟨00|) = 0 and
I(|00⟩⟨00|) = 0. a trivial consequence is that for arbitrary ρ: I(ρ) ∈ [0; 1].

Entropy is a celebrity of the information sciences as well as thermodynamics
and other branches of physics and mathematics. Shannon’s definition can be
straightforwardly implemented in quantum information theory:

Definition 2.2.8 (von Neumann’s entropy). For given density operator ρ its
entropy is defined as S(ρ) = Tr(−ρ log ρ).

Expressing eigenvalues {λi}i of ρ the definition reduces to S(ρ) = ∑︁
i−λi log λi

which is the Shannon entropy of the probability distribution. The entropy also
allows comparing two states:

17



Definition 2.2.9 (Relative entropy). For given density operators ρ, σ their rela-
tive entropy is defined as

S(ρ||σ) = Tr (ρ log ρ− ρ log σ). (2.23)

The values of relative entropy are always non-negative (but can be infinite)
and zero is reached if and only if ρ = σ; this statement is usually called Klein’s
inequality. This type of positivity suggests us to use it as an indicator of how
close two quantum states are. However, the relative entropy is not symmetrical
and does not satisfy the triangle inequality. Although it is not a metric, it is
still used to compare two states for other useful properties like convexity and
monotonicity. We leave details to [47] and present another indicator of closeness
of two quantum states. Widespread use has been acquired by approach based on
overlap of quantum states:

Definition 2.2.10 (Fidelity). For two density operators ρ, σ their fidelity is

F (ρ, σ) = Tr
√︂√

ρσ
√
ρ. (2.24)

This quantity is symmetrical and 0 ≥ F (ρ, σ) ≥ 1 while F (ρ, σ) = 1⇔ ρ = σ.
Often, one can find value F 2(ρ, σ) to be used and called fidelity while the value
F (ρ, σ) is called square-root fidelity.

There are of course other ways to measure similarity of two states, with their
own pros and contras. Of course, a good way of measuring is always reached with
properties of a metric. One such metric can be defined based on tracing.

Definition 2.2.11 (Trace distance). For two density operators ρ, σ their trace
distance is

T (ρ, σ) = 1
2Tr

√︂
(ρ− σ)†(ρ− σ). (2.25)

This quantity clearly yields 0 if and only if ρ = σ. On the other hand, the
maximal obtainable value is 1. For the fidelity, the converse is true: F (ρ, σ) =
1 ⇔ ρ = σ while F (ρ, σ) = 0 can be reached for states sharing no common
information.

All three quantities are invariant on unitary transformation of the states:
S(ρ||σ) = S(UρU †||UσU †), F (ρ, σ)=F (UρU †, UσU †), T (ρ, σ) = T (UρU †, UσU †)
for any unitary operator U . This fact can be used when unitary evolution of
a closed system is considered - the distance, the similarity of the states is not
changed. While contemporary papers usually prefer fidelity, we will use the ap-
proach of the trace distance not only because it is a metric but mainly for its
useful properties that will be discussed later. There is a relationship between the
two quantities

1− F (ρ, σ) ≤ T (ρ, σ) ≤
√︂

1− F 2(ρ, σ)⇔ 1− T (ρ, σ) ≤ F (ρ, σ) ≤
√︂

1− T 2(ρ, σ)
(2.26)

which allows for estimating the fidelity from the trace distance if our reader wants
to.

When we have described qubits, we can advance to use them for computation.
Qubit processing is inspired by classical information processing too. NOT gate
is responsible for swapping bit states |0⟩ ↔ |1⟩ forming computational basis. Its
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action on |ψ⟩ can be written as a matrix multiplication where the NOT gate is
represented by matrix X:

X = σ1 =
(︄

0 1
1 0

)︄
; |ψ⟩ → X · |ψ⟩ = α |1⟩+ β |0⟩ . (2.27)

Another important gate is so-called Hadamard gate. It is usually called H in the
literature but for our purposes where we will deal with similar gates, we will use
H1 equally. The matrix representation of the gate is

H1 = H = 1√
2

(︄
1 1
1 −1

)︄
. (2.28)

Its importance lies in its direct application in above mentioned protocols of quan-
tum teleportation, number factorisation, searching algorithm and many others.
The reason is in its ability to create equal superpositions from the basis states:

H|0⟩ = 1√
2

(|0⟩+ |1⟩) , H|1⟩ = 1√
2

(|0⟩ − |1⟩) (2.29)

This gate is new to the information processing since such superpositions do not
exist for classical bits. One can ask what matrices U (or corresponding operators
U) can serve as qubit processing gates.

Proposition 2.2.12. Unitarity is a sufficient property for a matrix U ∈ C2,2 to
serve as a valid single-qubit gate.

This can be even strengthened with following efficiency statement to describe
qubit processing completely.

Proposition 2.2.13. It is possible to build up any single qubit gate using finite
set of gates.

Computation necessarily needs more qubits to perform even the simplest
tasks. a crucial example of a two-qubit gate is the CNOT gate which flips the
value of target qubit when control bit has value 1, otherwise the target qubit is
not modified. The quantum version of the gate can then be written in matrix
representation as

CNOT ≡

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ (2.30)

when the first qubit is the control qubit while the second is the target one. The
matrix multiplication reflects the gate action α|00⟩+ β|01⟩+ γ|10⟩+ δ|11⟩ CNOT→
α|00⟩+β|01⟩+γ|11⟩+ δ|10⟩. One can see that the value of the target qubit after
the CNOT gate can be expressed as addition modulo 2, symbolically: |ij⟩ CNOT→
|i, i⊕2 j⟩. In classical theory of information, thegate performing such addition is
called XOR. It is an irreversible gate in the sense that the result cannot be used
to reconstruct the values of the added qubits. However, CNOT gate performs the
operation no matter whether the control state is measured or not. The collapse
of the wave function effectively happens with the measurement of the qubit and
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until that moment the gate can be reversed by applying it once more - the gate
is inverse to itself.

The importance of this gate is stressed in a following statement that claims
any task can be implemented without a need for three or more qubit gates.

Proposition 2.2.14. Any multiple qubit gate may be made composed of the
CNOT and single qubit gates. Two-qubit states are thus able to simulate any
system.

Two-qubit systems can contain the entanglement which makes them vital
objects to quantum information and communication protocols. Before we dive
into two-qubit entanglement description we study mixed qubit states that will
play the central role in our research.

The statistical operator corresponding to a single qubit can be represented
with a 2 × 2 matrix ρ which must satisfy conditions according to 2.2.2 - self
adjointness, positivity and unit trace. It can be shown that there is one-to-one
correspondence between qubits and matrices

ρ = 1
2

(︄
1 + w u+ iv
u− iv 1− w

)︄
; where w, u, v ∈ R satisfy u2 + v2 + w2 ≤ 1, (2.31)

these are certain combinations of Pauli matrices.

ρ = 1
2(σ0 + uσ1 + vσ2 + wσ3) (2.32)

Reason for the conditions on u, v, w comes from the eigenvalues of ρ that are
1
2(1±

√
u2 + v2 + w2) while Trρ = 1 and self-adjointness are automatically guar-

anteed from the matrix structure for arbitrary w, u, v. We conclude there is
a geometrical representation, called Bloch representation or Fano representation,
[20], for a qubit as a point from a unit ball in a three-dimensional Euclidean space
w, u, v. We will identify the state with its coordinates ρ ≡ (w, u, v), sometimes in
a column form purely for spatial reasons. In this thesis we will use both names
Fano and Bloch for this representation, coordinates, the latter more frequently.

The pure states form a subset of the unit ball determined by Trρ2 = 1. That
translates to u2 + v2 + w2 = 1: pure states form the unit sphere, the border
of the unit ball; it is usually called the Bloch sphere. The mixed states, which
can be expressed as convex combinations of pure states as suggested from their
construction as probabilistic mixtures of pure states, then constitute the interior
of the unit ball which we will call analogically Bloch ball. The maximally mixed
state is represented as the identity matrix 1 (up to normalisation factor), the
centre of the ball. To give a deeper insight of the representation we now express
important qubit states writing Bloch coordinates into usual vector of Euclidean
space ρ ≡ (w, u, v).

|0⟩ ⇔ (w, u, v) = (1, 0, 0) , |1⟩ ⇔ (−1, 0, 0)
1√
2(|0⟩ ± |1⟩)⇔ (0,±1, 0)

1⇔ (0, 0, 0)
(2.33)

The purity of the state ρ can be calculated straight as

P (w, u, v) = Trρ2 = 1 + u2 + v2 + w2

2 , (2.34)
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this formula relates the purity/mixedness of the state geometrically to the radius,
Euclidean distance from the origin; in the geometrical representation in Bloch
ball:

√
w2 + u2 + v2 =

√︂
2P (ρ)− 1. This relation is a bijection of the interval of

physically relevant radii ∈ [0; 1] and possible purity values ∈ [1
2 ; 1]. The maximally

mixed state corresponding to the origin has the purity 1
2 ; note that more generally,

if the Hilbert space has dimension d the maximally mixed state has purity 1
d
. We

conclude an important statement that all states with given purity form a sphere
in the Bloch space, we will keep in mind there is a one-to-one relation between
the abstract radius and the purity with actual physical meaning.

The action of a computation gate (unitary operator) U on the qubit is given
according to axiom 5.16 ρ′ = UρU †. Such action does not change the purity due
to the cyclic property of trace: Trρ′2 = Tr(UρU †UρU †) = Tr(U †Uρ1ρ) = Trρ2.

The entropy of a qubit can be directly expressed in the Fano coordinates
ρ ≡ (w, u, v) using the binary entropy function 2.20; this relation is claimed in
[29]:

S(ρ) = −1+
√
u2+v2+w2

2 log
(︂

1+
√
u2+v2+w2

2

)︂
−

−1−
√
u2+v2+w2

2 log
(︂

1−
√
u2+v2+w2

2

)︂ (2.35)

Since the input depends on the radius in the Bloch space (which is directly related
to the purity), it is a remarkable fact that the entropy is solely a function of the
purity of the state. The trace distance of two qubits in terms of Fano coordinates
is actually (half of) Euclidean distance in Fano space. Taking ρ ≡ (w1, u1, v1), σ ≡
(w2, u2, v2) one can calculate

T (ρ, σ) = 1
2
√︂

(w2 − w1)2 + (u2 − u1)2 + (v2 − v1)2, (2.36)

which means that maximal distance of two qubits is 1 which happen for pure
states located antipodally on the Bloch sphere. In our work for the simplicity
and the intuitive geometrical meaning we will use t(ρ, σ) = 2T (ρ, σ), directly the
Euclidean distance in the Bloch space. The rescaling does not change any metric
properties.

The geometrical approach can be generalised to two-qubit systems. As com-
ponent systems, they are described according to axiom 5.17 with 4 × 4 matrix
which can be analogically expressed as combinations of tensor products of Pauli
matrices:

ρ =
3∑︂

i,j=0
αij σi ⊗ σj (2.37)

where α00 = 1
4 (to satisfy Trρ = 1) while other parameters satisfy αij ≤ 1. Last

condition - positivity requirement implies very complicated polynomial inequal-
ities for αij. We now only mention that the geometrical representation space of
qubit pairs is a convex set in 15-dimensional Euclidean space.

Coming back to the single qubits, the spheres of constant purity suggest us-
ing a reparametrisation of the Bloch space from Cartesian-like coordinates to
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spherical coordinates

w =
√

2P − 1 cosϑ P = u2 + v2 + w2 + 1
2

u =
√

2P − 1 sinϑ cosφ , ϑ = arccos w√
2P − 1

v =
√

2P − 1 sinϑ sinφ φ = arctan v
u

(2.38)

where the purity P is purposely used instead of the radius for its physical meaning.
Singularity for u = 0 is avoided by setting φ = sgn(v) π2 in such case. We will
usually plot the w-axis as the vertical while u, v would span the equatorial plane.
This choice is a usual when Cartesian axes x, y, z are discussed in literature but it
is not so usual to put z into the first position in the vector notation (z, x, y) like
we do with (w, u, v). However, there is also another, less obvious parameterisation
involving stereographic projection with respect to the south pole:

P = u2 + v2 + w2 + 1
2 w =

√
2P−11− (x2 + y2)

1 + x2 + y2

x = u√
u2 + v2 + w2 + w

= u√
2P−1 + w

, u =
√

2P−1 2x
1 + x2 + y2

y = v√
u2 + v2 + w2 + w

= v√
2P−1 + w

v =
√

2P−1 2y
1 + x2 + y2

(2.39)

This transformation projects rectangles φ ∈ [0; 2π), ϑ ∈ [0;π] to planes x, y ∈ R.
Such transformation is less suitable to visualise dynamics because effects occur-
ring in the proximity of the north pole are projected towards infinity. However,
it can be used to represent pure qubit as a complex number z ≡ x + iy (with
P = 1), its evolution than can be described via complex function and this allows
to apply known theory of chaos in [36] and our work.

The final note concerns a generalisation of the qubit called qudit. It is
a d-level system with Hilbert space generated by computational base |i⟩, i ∈
{0, 1, 2, . . . , d − 1}. Qubits form a special case with d = 2. Density matrices
of a qudits get more complicated - while the trace condition can be guaranteed
by composing it of analogues to Pauli matrices, the positivity condition imposes
complicated equations on the combination coefficients. The state space of anal-
ogous Fano representation is a convex object in 2d − 1 Euclidean space. We will
not pursue this line of thought in our thesis but we will outline future direction
of research towards this general situation.

2.3 Theory of chaos
At the end of 19th century, Poincaré investigated the problem of three bodies [53]
introducing the chaos as a new physical phenomenon appearing even in simple
models. The definitions of chaos vary in the literature but all have the main fea-
ture in common, it is the exponential sensitivity to initial conditions. This means
that even the smallest perturbations in the initial conditions can dramatically
influence the evolution of the system.
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2.3.1 Chaotic dynamical systems
In this thesis we follow definition as given in Devaney’s book [16] adjusted for
metric spaces as done in [?]. We also find a good source in [61]. First we must
define mathematical structure, where chaotic behaviour will occur.

Definition 2.3.1 (Dynamical system). Let X = (X , ρ) be a complete metric
space, F be one of R, R+, Z, N0. a pair ({St}, X) is called a dynamical sys-
tem when {St} is a set of continuous maps from X into itself such as following
conditions are satisfied:

1. (∀m,n ∈ F)(Sm+n = Sm ◦ Sn),

2. S0 = 1 is identical map.

Set St forms the evolutionary operator while parameter t has the role of time.
According to F we call dynamical system to be reversible continuous, irreversible
continuous, reversible discrete or irreversible discrete respectively.

The protocol of our interest is a scheme that mathematically acts as a map on
a state space (Hilbert space is a complete metric space) corresponding to qubit
or qubit n-tuples or qudits. The scheme is iterated and the iterations of the map
form the discrete time evolutionary operator. At this moment, we list important
yet universal terms needed for general understanding and correct definitions.

Definition 2.3.2. Let f : X → X, g : Y → Y be maps of metric spaces. f and
g are said to be topologically conjugate if there is a homeomorphism h such that
f ◦ h = h ◦ g. Homeomorphism h is then called topological conjugacy.

Definition 2.3.3. Let X be a metric space and f : X → X a map. a point
x ∈ X is periodic, if (∃n ∈ N)(fn(x) = x). a point x ∈ X is preperiodic if
(∃j ̸= k ∈ N)(f j(x) = fk(x)) but x is not periodic.

Definition 2.3.4. f : X → X map on a metric space is topologically transitive if
for any nonempty open sets U, V ∈ X there exists such k > 0 that fk(U)∩V ̸= ∅

Definition 2.3.5 (Chaotic dynamical system). Let (X, ρ) be a complete metric
space with metric ρ, f be a map f : X → X. The dynamical system (X, f) is
chaotic if

1. set of preperiodic points of f is dense in X,

2. f is topologically transitive.

The original Devaney’s definition contained one more point:

3. f has sensitive dependence on initial conditions.

This point means that there is ε such that, for any x ∈ X and any its neigh-
bourhood U , there exist y ∈ U and n ∈ N so that ρ(f ◦n(x), f ◦n(y)) > ε. Later it
was proven, see [45], that this point is a consequence of the first two points and
thus not needed in the definition. Nevertheless, this point is crucial because it is
responsible for unpredictability which is one of three characteristics of chaos. The
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other two are regularity (existence of dense set of periodic points) and indecom-
posability (system cannot be divided into noninteracting subsystems). Chaotic
evolution is well understood for a very particular system - metric space C and evo-
lution functions being iterations of a holomorphic function, or more specifically
a rational polynomial function. We will introduce reader to this field later.

So far the definitions are very abstract but our work is focused on a protocol
that is iteratively applied to a physical state. In this way we deal with a discrete
time evolution where time corresponds to the number of iterations executed.
The metric space will be either Rn or complex space C with Euclidean metric.
Therefore, we restrict now ourselves to these spaces and discrete evolution for the
rest of the work.

One of our interest besides proving chaotic properties will also be to deter-
mine stable regimes (fixed points or cycles). We now resume classification based
on Jacobi matrices for discrete dynamical systems. This theory is slightly dif-
ferent from the theory for continuous time evolution which is studied far more
extensively. Therefore, the discrete version is a little more difficult to search for.
We can recommend sources like [56, 61] to find more details. Nonetheless, our
readers will do well through the rest of this work with only our brief overview.

In following paragraphs consider map f : Rn → Rn that is applied on a vector
(x1, x2, . . . , xn) = x ∈ Rn yielding

(x′
1, x

′
2, . . . , x

′
n) = x′ = f(x) = (f1(x), f2(x), . . . , fn(x)). (2.40)

The question of stability aims at disturbing the initial state. The evolution can
increase the perturbation, decrease it over time, even oscillations without any
converging trend can occur. The basic approach inspired by derivatives and Tay-
lor expansions for functions of a single variable, i.e. n = 1, performs linearisation
of the dynamical system.

Definition 2.3.6. For a map f we call x0 fixed point whenever f(x0) = x0.
This fixed point is asymptotically stable when (∃U neighbourhood of x0)(∀x ∈
U)(limj→∞ f j(x0) = x0), otherwise it is unstable.

Labelling the perturbation with ε at the point x0, for differentiable f we can
expand

f(x0 + ε) = f(x0) + Jε+O (2.41)
where lim

ε→0
||ε|| · ||O|| = 0 holds. The matrix J = J(x0) is called Jacobi matrix (at

the point x0) and is given by

Jij = dfi
dxj

⃓⃓⃓⃓
⃓
x0

(2.42)

where the derivatives are evaluated at the fixed point.

The crucial role in the stability is played by eigenvalues and eigenvectors of the
Jacobi matrix, note that they may be complex. The difference f(x)− f(x0) can
be related to the perturbation x− x0 which can be decomposed into eigenvector
basis, if such exists. The action of the Jacobi matrix then clearly shows the
contractions when corresponding eigenvalues are of magnitude < 1.

Proposition 2.3.7. For the map f with the fixed point x0 and corresponding
Jacobi matrix with eigenvalues λi, i ∈ n̂ we call the fixed point

24



1. hyperbolic when (∀i ∈ n̂)(|λi| ≠ 1), in particular

(a) superattractive when (∀i ∈ n̂)(λi = 0)
(b) attractive when (∀i ∈ n̂)(|λi| < 1) with (∃i ∈ n̂)(|λi| > 0)
(c) repelling when (∀i ∈ n̂)(|λi| > 1)
(d) saddle point when (∃i, j ∈ n̂)(|λi| < 1 ∧ |λj| > 1)

2. nonhyperbolic otherwise.

There is another widely used concept of Lyapunov stability which relaxes the
condition of the asymptotical stability. That allows to include the nonhyperbolic
states to be included into stable regimes.

Definition 2.3.8. The fixed point x0 of map F : Rn → Rn is Lyapunov sta-
ble when (∀U neighbourhood of x0)(∃V neighbourhood of x0)(∀x ∈ U)(∀n ∈ N)
(F n(x) ∈ V ). Otherwise, we say it is unstable.

In this way, the stability can be attributed to a much wider set of states where
eigenvalues with |λ| = 1 emerge. Note that each asymptotically stable state is
also Lyapunov stable while the converse is not true, the behaviour of Lyapunov
stable but asymptotically unstable state is usually indifferent, i.e. the orbit of
a perturbed state oscillates in the vicinity of the unperturbed orbit in a certain
sense. The higher orders of the perturbation must usually be taken into account
to decide properly the local dynamics of such states.

The asymptotic stability on the other hand can be narrowed to the concept of
exponential stability where the rate of convergence is exponential and is described
by Lyapunov coefficients, but for the moment we take that to be beyond the scope
of this work. We only mention to our readers the basic idea - consider a fixed point
that is perturbed by sufficiently small distance in a direction of an eigenvector
corresponding to eigenvalue λ of Jacobi matrix. After n iterations, the perturbed
and original point differ by factor approximately

λn = en lnλ. (2.43)

We take formal definition of the Lyapunov numbers from [34]. When (λi)i is
a sequence of eigenvalues of matrix ACn,n in decreasing order of magnitudes,
|λ1| ≥ |λ2| ≥ . . . |λn| we define ∆j(A) = |λ1λ2 . . . λj|.

Definition 2.3.9. Lyapunov numbers δj for orbit of x0 under map f are

δj = lim
k→∞

k

⌜⃓⃓⎷∆j

(︄
k−1∏︂
n=0

J(x(n)
0 )

)︄
, (2.44)

if the limit exists. Symbol x(n)
0 stands for n-th iterate of point x: fn(x0). Lyapunov

exponents are λj = ln δj.

The connection to stability is typically following, attractive behaviour is im-
plied by negative Lyapunov exponent, repelling behaviour by positive Lyapunov
exponent. There can be exceptions, counterexamples to this naive thought are
offered by Perron, [51].
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In this thesis we aim at purification, i.e. desired state subject to perturbation
will be demanded to converge back to the original one. In this context we will
usually speak of attractive, repelling or saddle points in the sense of the first
definition. The speed of convergence is coded in the magnitude of the eigenvalues.
Eigenvectors corresponding to the real eigenvalues define subspaces at which the
perturbation is simply reduced/increased by the factor of the eigenvalue, complex
eigenvalues encode rotation making the fixed point a vertex. Negative eigenvalues
typically mean oscillations. We show an overview in a figure below.

The fixed points which we take for an obvious concept are not the only im-
portant states. To settle down the terminology and generalise previous concepts,
we now discuss the periodic orbits.

Definition 2.3.10. The orbit of the point x ∈ X in dynamical system is a se-
quence (x, f(x), f 2(x), . . . ) = (fn(x))∞

n=0. When the point is periodic with period
n, we call arbitrary sequence C ≡ (fm(x), fm+1(x), . . . , fm+n−1(x)) cycle and all
these cycles initiated at arbitrary m ∈ N are taken as equivalent.

The stability of the length n cycles is then given by a product of Jacobi
matrices corresponding to all the members of the cycle

J|fn−1x · J|fn−2(x) · ... · J|f(x) · J|x (2.45)

in the same way as in 2.3.7. The evolution for complex eigenvalues of cycles can
be very complicated and we do not need to discuss them in detail because it is
not relevant for the purpose of our work aimed at the purification.

2.3.2 Chaos in physics
Weather and climate are ones of well known examples of chaotic systems driven
by few simple differential equations. Another physical dynamical system is fluid
dynamics where chaos manifests as turbulences. Other applications can be found
in stock exchange price evolution, population growths and other branches of sci-
ence. We shall now return to celestial mechanics where the topic started, [28, 53].
Lagrange and Hamilton mechanics system is manipulated via phase space. Equa-
tions of motion restrict physical evolution to a certain manifold in the phase space.
For an integrable system this manifold has topological structure of toroid, canon-
ical action-angle variables can be defined so that the motion is represented as
orbiting the toroid. Chaos breaks this structure.

To give a taste we consider now three-body system where one body serves
as a perturbation to the two particle system. Phase space of two bodies will be
deformed due to perturbation. When the third body is small enough (like in
Sun - Earth - Moon situation), the toroid in phase space is slightly deformed,
but under rough measures the main toroidal structure is preserved. When the
perturbation is big, the structure of toroid is shattered and does not resemble
toroid in any measure. The small deformation case is usually called soft chaos
while the distorted manifold structure is reason to call this situation hard chaos.

There is an interesting statement from the soft chaos theory. This so-called
KAM theorem (named after Kolmogorov, [38], Arnold, [2], and Moser, [46]) says
that for very small perturbation there exist regions, ‘stability islands’, in the phase
space where motion is realised almost like in the non-perturbed case. These are
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Figure 2.1: Evolution of a ‘bubble’ of initial conditions for integrable systems
(top) and chaotic systems (bottom) in the phase space.

the reason for our solar system not to be torn into pieces by gravity. The Moon
could be catapulted away from Earth instead of being forced to orbit almost
Kepler ellipses if it had possessed much more mass.

Evolution in the phase space is different for integrable systems and chaotic
systems, as it is illustrated in figure 2.1. In both cases, the Liouville theorem
holds. That means that a set of initial conditions represented as some ‘bubble’
in the phase space evolve as incompressible liquid. For integrable system this
initial-state-bubble will preserve relatively decent shape while for chaotic system
this bubble would fill uniformly vast region, possibly even whole phase space in
the limit of infinite time. Two arbitrarily close starting points will eventually get
as far away as wanted - this is the sensitivity to initial conditions, token of chaos.

This thesis deals with quantum information theory which turns trajectories
in phase space into an obsolete approach. Where is chaos hidden in quantum
physics? Construction in 5.16 leads to unitary evolution which is linear and
preserves distance. Such condition is in contradiction with the sensitivity to
initial conditions. However, the unitarity of quantum state evolution follows
from requirement of closed systems. Open systems allow for nonunitary evolution
and so in principle, chaos. They are usually studied with a statistical approach,
a system is described only by mean values which can wash chaotic features. The
protocol of our interest considers a qubit subject to a very specific environment
action which allows to exactly describe its nonlinear evolution precisely.

The evolution map will be multidimensional, and thus no mathematical back-
ground is available to draw results straight from mathematical theorems. How-
ever, under certain restrictions it has been shown [36] that systems of two qubits
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is represented by a complex number and its evolution is described by iterations
of a complex function of a single complex variable which truly induces chaos.
The asymptotic dynamics generate a fractal structure that contains the points
sensitive to initial conditions, the chaotic points. Such fractal structures will be
shown to be a characteristic feature for general protocols and general input states.
We will now present brief overview of the complex functions theory and fractals
because they will be key instruments to understand the purification protocol.

2.3.3 Complex function of a single complex variable
The topic of chaotic maps in mathematics started with works of Gaston Julia and
Pierre Fatou [21, 33] at the beginning of the last century. Without a big responses
at first. With an advance of computers and work of Benôıt Mandelbrot, [40] the
theory got popular thanks to visualisation of the results which include fractals.
Since than, many books have been dedicated to the mathematical analysis of the
chaotic maps, yet the progress has not been general. Narrow branches can give
very interesting findings in particular systems but no complex analytical theory
is available for general chaotic dynamical systems. We will use the knowledge ob-
tained about dynamical systems defined by complex functions of a single complex
variable and for more complicated systems we will be left to numerical effort.

The theory of complex functions of a single complex variable results into
a main idea of separating the function’s domain into two disjoint sets - Fatou and
Julia set - which contain points with regular and chaotic behaviour respectively.
The Julia set usually forms a fractal and it contains the points of seemingly ran-
dom evolution, yet it is deterministic. These points evolve through the whole
Julia set chaotically, exhibiting no convergence, while the points from the Fatou
set are drawn to some attractors. The Julia set is then representing states of trou-
bling behaviour for quantum information protocols aiming at repairing a quantum
state, i.e. making it converge to a certain specific state. In this view, the Julia
set (respectively its analogue in higher dimensions) contains states for which the
protocol fails. That is a natural and practical reason to focus on this topic. On
the other hand, there is a curiosity coming from the fractals that can emerge in
quantum physics in a novel way. But first we introduce the basics of the theory
of complex functions of a single complex variable. It is impossible to encompass
all the works on the topic but for a basic overview we refer to [44, 19, 3, 45, 23]
books which are suitable for a beginner. Some definitions are a straightforward
analogy of before-mentioned; still we write it to settel down notation and show
similarities as well as slight nuances.

First of all, let us settle the manifold which will serve as a domain. The pillar
of our work in the context of the complex functions is in identification of the Bloch
sphere with so called Riemann sphere through stereographic projection 2.39 and
setting z = x+ iy. Riemann sphere Ĉ = C∪∞ is topologically a sphere, a simple
connected manifold in particular. It is one of three canonical models of simple
connected complex manifolds.
Proposition 2.3.11 (Uniformisation theorem). Every simple connected Riemann
surface is conformally isomorphic (i.e. there exists a manifold isomorphism holo-
morphic also with its inverse) to one of following manifolds:

1. a field C,
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2. a disk D,

3. a Riemann sphere Ĉ.

While the pure qubit can be represented as a point of Ĉ, the application of
the protocol of our concern or generally qubit evolution will be represented as
a function f : Ĉ→ Ĉ as long as pure qubit remains pure. Protocols of our concern
satisfy this condition, furthermore their application responds to an iteration of
a rational polynomial functions.

Definition 2.3.12. f : Ĉ → Ĉ is rational polynomial if it can be expressed
as f(z) = P (z)/Q(z) where P,Q are polynomial without a common root. The
degree of rational polynomial function deg(f) is the maximum of the degrees of
its corresponding polynomials.

Definition 2.3.13 (Normal family of functions). Suppose X, Y be Riemann sur-
faces, A be a set of continuous maps X → Y . A is called a normal family of
functions, if for any infinite sequence of functions {fn}∞

n=1 ∈ A there exists a sub-
sequence which converges locally uniformly to a continuous map f : X → Y .

This important property of existence of the locally uniformly convergent sub-
sequence in iterated function implies regular dynamics, i.e. absence of sensitivity
to initial conditions, chaos. This proposition is applied to chained iterations of
the evolution function in our work.

Definition 2.3.14 (Julia set & Fatou set). Let f : S → S be a nonconstant
holomorphic map on a Riemann surface S. For a point z0 ∈ S there is following
dichotomy:

1. There exists a neighbourhood U of z0 such that fn restricted to U forms
a normal family of functions. We say that point z0 is regular or normal.

2. Such the neighbourhood does not exist.

Set of regular points forms Fatou set, F(f). The points satisfying the second
condition form Julia set, J (f).

The Julia set is a crucial object in the theory of complex variables because it
is connected to chaotic behaviour. The Julia set has many properties that earned
it its popularity amongst wide public. The most interesting is its self-similarity
feature, fractal-like structure which adds to this thesis inomittable element of aes-
thetic value. Of course, following properties of Julia set are much more important
for this thesis.

Theorem 2.3.15. The Julia set is fully invariant. This means: (∀n ∈ Z)
(fn(J (f)) = J (f)). Furthermore, Julia set of a function and its n-fold iter-
ate coincide. That means:
(∀n ∈ N)(J (f)) = J (fn)).

Corollary 2.3.16. Because F(f) ∪ J (f) = C from the definition, the same
statement holds for F(f) too.

Proposition 2.3.17. For function f of degree at least 2, the Julia set has fol-
lowing properties: J (f) ̸= ∅, J (f) = J (f) and J (f) has no isolated points.
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Following definition is special case of more general definitions 2.3.3, 2.3.10

Definition 2.3.18. An orbit of a point z is the sequence of its forward images,
i.e. O(z) = (fn(z))n. If (∃n ∈ N)(fn(z) = f(z) ∧ (∀k ∈ ˆ︁n− 1)(fk(z) ̸= z)),
orbit is said to be periodic, we call subset of orbit C ≡ (fn(z))m+n−1

m for arbitrary
m ∈ N a cycle; smallest number n satisfying the condition is called the period of
the cycle. The number λ = (fn)′(z) is called the multiplier or eigenvalue of the
cycle.

Definition 2.3.19. A cycle whose multiplier is

1. λ = 0, is called superattractive,

2. 0 < |λ| < 1, is called attractive,

3. |λ| = 1, is called indifferent,

4. |λ| > 1, is called repelling.

A cycle for which λ = 1 but none of fn is identical map (i.e. λ = eiφ, φ ∈ R∖Q)
is called parabolic. If the orbit is not periodic but (∃m,n ∈ N)(fm(z) = fn(z)),
we call it preperiodic. The eigenvalue characteristics are defined the same way
after omitting the preperiodic part.

Note the similarity with previously stability classification 2.3.7 which is basi-
cally enhanced within the indifferent case. The definition leads us to ideas that
attractive cycles of f belong to F(f), perturbation to the cycle is effaced by the
function iterations. The repelling cycles are part of J (f) as the perturbed and
original orbits diverge. When an indifferent cycle is perturbed, it evolves differ-
ently but stays close to the original one; it cannot be a priori assigned to neither
Julia nor Fatou set. More exactly, these thoughts are summarised and extended
after following definition.

Definition 2.3.20. For each attractive cycle, there is a nonempty open set of
points, whose orbits tend in limit to some point of the cycle. This set is called
basin of attraction, Ω. Each point z ∈ F(f) can be associated with one connected
component Ωz of some basin of attraction, so that z ∈ Ωz. This component is
called immediate basin of attraction. The immediate basin of attraction of a cycle
is meant to be a union of immediate basins of all points of the cycle.

Theorem 2.3.21. Each attractive cycle is contained in the Fatou set. Each
parabolic and each repelling cycle is contained in the Julia set. a whole basin of
attraction Ω of an attracting cycle is contained in the Fatou set. But the boundary
of the basin ∂Ω is a part of the Julia set. Even, the topological boundary of basin
of attraction of any single attractive cycle is equal to the entire Julia set.

Proposition 2.3.22. Rational polynomial function of degree d ≥ 2 has at most
2d−2 attractive or parabolic cycles. There is only a finite number of non-repelling
cycles.

The last proposition is useful as it simplifies search for members of the Ju-
lia/Fatou sets by restricting the number of possible cycles. However, there is
another simplification based on so-called critical points.
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Definition 2.3.23. Critical point z is any point such that the first derivative of
f vanishes there, i.e. f ′(z) = 0.

Proposition 2.3.24. Let f be a rational polynomial function of degree d ≥ 2.
Each immediate basin of attraction contains at least one critical point. Forward
orbit of critical points converge to an attractive or parabolic cycle, if it converges
at all.

Thanks to these propositions one can find cycles, determine their character; in
that way one can find members of the Julia set. The invariance of the Julia/Fatou
set can be augmented to following statements that give a recipe to discover the
whole Julia set from some of its members.

Definition 2.3.25. A property is said to be true for generic x ∈ M if it is true
for all points in some countable intersection of dense open subsets of M.

Theorem 2.3.26. For each z0 ∈ J (f): {z|(∃n ∈ N0)(fn(z) = z0)} = J (f).

Theorem 2.3.27. For generic z0 ∈ J (f): {z|(∃n ∈ N0)(fn(z0) = z)} = J (f).

Briefly, Julia set is sufficiently approximated by preimages of an arbitrary one
of its members found thanks to critical points. We add that while the iteration of
the evolution function on the members of the Julia set causes divergence under
the slightest perturbation, the inverted function must guarantee convergence of
the preimages of points from the Julia set. As the polynomial functions typically
have many preimages of a single point, this backward iteration is often capa-
ble of finding the Julia set very quickly and precisel,y even with low numerical
requirements.

The last proposition to be mentioned serves to accent that the Julia set will
be nonempty in our research, it can take various forms with seemingly different
structures. Yet the structures cannot be arbitrary.

Proposition 2.3.28. If the Julia set has an interior point, then J (f) = C.

This proposition guarantees that there are no ‘islands’ of chaos. If such island
is found somehow, then all the points exhibit chaotic evolution. This property and
many others are in general lost when the evolution in more complicated manifolds
like three-dimensional Euclidean space of Fano representation is studied.

The topic of complex functions is tightly connected to fractals. There is one
that gained much of popularity, it is the Mandelbrot set [40, 41, 58] which is con-
structed in a following way. Consider a family of complex functions fc(z) = z2 +c
with c complex parameter. All such functions have infinity for th attractive crit-
ical point. And for that reason, following definition is correct, even for generali-
sations to polynomial functions of higher degrees:

Definition 2.3.29 (Filled Julia set). For a polynomial function f , set of points
that do not escape infinity,

K(f) = {z ∈ C| lim
n→∞

fn(z)∞}, (2.46)

is called filled Julia set.
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Proposition 2.3.30. For any polynomial function of degree ≥ 2, K(f) is non-
empty compact set. The border of the filled Julia set equals its Julia set, ∂K(f) =
J (f).

Theorem 2.3.31. There is dichotomy - for each polynomial function f of degree
≥ 2, K(f) is either path-connected or totally disconnected, in the latter case
K(f) = J (f)

Definition 2.3.32. Mandelbrot set is defined based on the structure of the Julia
set

M =
{︂
c ∈ C|fc(z) = z2 + c has connected Julia set

}︂
(2.47)

Mandelbrot himself gave a clue how to describe the set easily.

Proposition 2.3.33.

Mf = {c ∈ C|{f ◦n(0)|n ∈ N} is bounded}} (2.48)

This suggests an algorithm that decides whether a point c ∈ C belongs to the
Mandelbrot set. Iterations of initial point 0 are executed. Whenever |z| > 2 it
can be shown that |f(z)| > 2|z| and thus when an iteration of zero escapes ring
|z| < 2 the constant c is assigned to the Mandelbrot set.

There are quite a few reasons why we speak of the Mandelbrot set. One is to
demonstrate that the structure of the Julia set can be disconnected, such case is
problematic for numerical work and will be a major issue in the fourth chapter of
our work. Second reason is that the topic got popular and let to new discipline
which tries to study how that Julia set change when the parameters of functions
are changed. This led to a concept of J-stability,[42], and showed that there are
regions where the structure of the Julia set is stable and there are sudden changes
to it when the regions are crossed. This advanced field is very interesting because
we will encounter similar behaviour. The last reason is that Mandelbrot set is
that its border is a fractal with dimension equal to 2, proven here [58]. With this
fact we connect to the next section.

2.3.4 Dimension
We mentioned that the evolution can induce fractal structures. These structures
will be of our interest as they contain states of chaotic or more complicated
behaviour that goes beyond theory of complex functions. In the Fano space or
a more general space the state can be attractive in one direction while repelling
in another direction, as a saddle point. But probably the most interesting feature
related to chaos is the fractal structure itself. The fundamental characteristic of
fractals is their non-integer dimension. We now present the dimension concept
and ways to estimate the dimension of a set.

General definition was given in [30] by Hausdorff who put together and further
developed previous thoughts of Caratheodory and others. He proposed a class of
measures on arbitrary metric space.
Definition 2.3.34 (Hausdorff d-dimensional measure). In metric space X for
each 0 ≤ d ∈ R and Y ⊂ X we define Hausdorff d-dimensional measure:

Hd(Y ) = supε>0

{︄
inf{Ui}

{︄∑︂
i

|Ui|d
⃓⃓⃓⃓
⃓Y ⊆⋃︂

i

Ui ∧ ∀i ∈ N : |Ui| ≤ ε

}︄}︄
(2.49)
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Figure 2.2: Our implementation of the algorithm to determine the Mandelbrot
set. Complex plane of constants c; when |fnc (z)| ≥ for the first iteration n, the
point c is assigned value n. The value of logarithm − log10 n is coded in colour.
The maximum threshold was set to n = 103, when the state remains in the circle
|z| < 2 for this number of iterations, its orbit is taken for bounded.

Value |U | is the diameter of set U determined by the metric of the space. This
measure typically attains value 0 or infinity. It can be easily seen that for given
set Y if there is d0 such that Hd0(Y ) = 0, then (∀d > d0)(Hd(Y ) = 0). On the
other hand, Hd0(Y ) = ∞ ⇒ (∀d < d0)(Hd(Y ) = ∞). But furthermore, there is
a unique value of D ∈ R separating these two options, typically the D-measure
values a finite nonzero number (but not always, for some cases it can be zero)
while ∀d < D : Hd(Y ) = ∞ and ∀d > D : Hd(Y ) = 0. This is the core idea of
the dimension definition.

Definition 2.3.35 (Hausdorff dimension). Dimension of set Y ⊂ X is:

dim(Y ) = inf
{︂
d ≥ 0|Hd(Y ) = 0

}︂
(2.50)

To give our readers an intuition for the seemingly complicated definition, we
apply it to basic objects. We do not aim for full correctness and leave finding
the infima and suprema to intuitive understanding. Taking a length 1 line seg-
ment (which of course has dimension equal to 1), its optimal covering of maximal
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diameter ε is attained by touching ⌈1
ε
⌉ spheres of diameter ε. To find the supre-

mum of quantity ∑︁
i |Ui|d it is useful to introduce particular values ε = 1

n
for

integer n > 0. One then needs n balls (basically line segments too) yielding∑︁
i |Ui|d = n · n−d = n1−d. The supremum over all values n which can be without

loss of generality taken real, n,∈ R is then equal to zero only when d > 1. The
infimum of such values d is then 1, the dimension of the line. Taking a square of
unit size, one can cut it into n2 squares with side 1

d
. The Hausdorff measure in

such case is taking the supremum of quantity (leaving the correct argumentation
of supremum and coverings to mathematical papers) n2−d. Hausdorff measure is
then equal to zero for d > 2 which gives the dimension of (classically understood
two-dimensional) surface to be equal to 2. Going to higher dimensions one can
catch the idea that the dimension confronts the coverings which are refined to
smaller scales to compare them with the amount of covering sets needed. This
agrees not only with a laic perception of the dimension but also definition of
dimension for vector spaces etc.

However, the general definition 2.3.35 cannot be used straightly to determine
the dimension of a general set, the optimisation of the covering cannot be usually
given/proven. It would not be a simple task even for our simplest toy models of
a line and a square. a practical way to estimate the dimension has been proposed
with an alternative definition. It picks the crucial idea of comparing coverings
of the set as we have just shown. Taking a set of dimension D and series of its
optimal coverings with precise diameters ε from the definition, the Hausdorff D-
measure values a finite number HD(Y ) = ∑︁

εD = Nεε
D where we marked number

of members of the ε-covering with Nε. This relation can be re-expressed:

D =
ln HD(Y )

Nε

ln ε = lnNε

ln 1
ε

− lnHD(Y )
ln 1

ε

(2.51)

Since Hausdorff’s definition contains another optimisation, supremum over ε > 0,
the alternative definition of the dimension takes this into account with realising
that the credible value is obtained in limit ε → 0 as the coverings embrace the
set more precisely. Fraction ln HD(Y )

ln 1
ε

vanishes in such limit.

Definition 2.3.36 (Box-counting dimension). For set Y subset of metric space
X its box-counting dimension is given by

DBC = lim
ε→0

lnNε

ln 1
ε

(2.52)

when the limit exists; Nε is the minimal number of open sets of diameter < ε
requiered to cover Y .

In the case that the limit does not exist, it is possible to define upper and
lower box-counting dimension. There are inequalities amongst the upper/lower
box-counting dimensions and the Hausdorff dimension, see [61]. However, we will
implement the idea in a numerical way where we obtain approximation of the
dimension without elaborating limits or limes superior/inferior. In this approach
an estimate is given; its fidelity is determined by many factors which will be
discussed below and in appendix A.
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The importance of this concept is in the availability of practical realisation.
The definition can be implemented on a computer in a following way: An image
(space X) capturing object (subset Y ) is divided into a grid of boxes (covering
sets), disjoint sets of prescribed diameter (alternatively: volume, surface). For
a two-dimensional image, it can be understood as a kind of pixelisation of the
image. The number of boxes containing the desired set Y is counted to obtain Nε

with ε determined by the size of the pixel. Such pair creates a point (− ln ε, lnNε).
These points for smaller and smaller values of ε (i.e. image pixelised to more
detailed box-grid) lean to a line with slope DBC . The dimension estimate is
taken from a linear fit of the points. Full description of our own box-counting
algorithm is presented in the appendix A with all the details explained and with
some performance enhancements proposed for our purpose. More notes on the
topic of the box-counting dimension with its relation to Hausdorff dimension and
other dimension definitions etc. can be found in [61].

At this place, we only mention that the box-counting method can be seemed as
an instrument of easy implementation. However, one must be very careful about
its proper realisation. The dimension value obtained by the box-counting scheme
can disagree with the Hausdorff dimension. The reason is that the limit in the
definition does not have to exist. Even more, the limit is only computationally
approximated. However, for most objects the box-counting approach gives a good
dimension estimate because for very small ε the box-counting covering gets closer
to the optimal covering. One can also reason that the limit does not have to be
taken and for practical purposes certain scales of epsilons should be considered.
Such argumnets can be found when discussing measuring a length of a coastline
in [40]. The consequences for physical applications should go hand in hand with
physical assumptions.

For our work, the box-counting will be the main idea to estimate the dimen-
sion of fractal structures. More detailed information on exact implementation
and caveats are provided in appendix A. But to give another perspective on the
dimension of fractal structures and to show that the actual concept of dimension
is very complex and intricate, we now give even one more definition. It is illustra-
tive and highlights another typical property of fractals, self-similarity. However,
our definition of self-similarity dimension will be a genuine compromise because
very precise mathematical definition requires several theorems on maps of met-
ric sets. An over-simplified definition is usually presented as in [61] to calculate
the dimension of very simple self-similar sets. We create a definition usable on
a much wider class of objects, although not fully universal. It is not usable for
objects that are composed of objects that continuously change structural proper-
ties, including dimension that can change over its substructures. a more general
approach with its own advantages and disadvantages is called fat fractal [27] in
contemporary literature but we do not go in this direction because we do not
expect to encounter such objects in our research.

Definition 2.3.37 (Self-similarity dimension). Y subset of metric space is self-
similar if there is a finite set of affine isometries {fi}i and scaling factors {γi}i
such that Y = ⋃︁

i fi(γiY ) and all sets fi(γiY ) are disjoint. The self-similarity
dimension of Y is then such number DS that∑︂

i

γDS
i = 1. (2.53)
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The simple variant of the similarity dimension is usually done with setting
∀i : γi = γ. In that case the dimension is given simply DS = lnn

ln γ
1 where n is the

number of scaled copies composing to the original set. However, we find amusing
to think of a more general approach to which we connect the Hausdorff measure
again. The object Y of the dimension D can be evaluated to have certain finite
Hausdorff measure 0 < HD(Y ) < ∞. This measure is by definition scalable:
HD(γY ) = γD · HD(Y ) which can be seen from considering optimal coverings of
the original and scaled sets. The other ingredient is additivity: for any sets Y1, Y2
of the dimension D the definition also implies HD(Y1 ∪ Y2) = HD(Y1) +HD(Y2).
These two conditions are responsible for correctness of our own formula in the
definition.

For readers’ comfort, we can now evaluate the self-similarity of well-known
Koch’s flake, [37]. This set is created from a line segment by iterating following
procedure infinitely many times: Each line segment is divided equally to three
parts, an equilateral triangle is drawn above the middle part and its original base
is erased. Thanks to this procedure, the length of the shape increases by factor 4

3
with each iteration. The length (Hausdorff 1-measure) is infinite. Evaluation of
the similarity dimension is easy as each side of the flake is composed of its 4 copies
scaled by factor 1

3 . We solve 1 = 4
(︂

1
3

)︂DS to get DS = ln 4
ln 3 = log4 3 .= 1.262.

This result matches the box-counting dimension where one intuitively needs 4n
covering sets (number of sides) of diameter ε = 3−n (length of the side). For this
reason, when we take for obvious the covering optimality, there is a relation

lnNε

ln 4 = n = − ln ε
ln 3 ⇒ Nε = ln 4

ln 3 ln 1
ε

(2.54)

from which DBC = log4 3.
Let us now present a more difficult example based on the Koch flake where we

use our enriched definition. Consider similar iterative procedure with replacing
a line segment with 5 lines of 1

4 length and 2 lines of 1
8 length according to

following figure 2.3. In such case, we solve 1 = 5 · 2−2D + 21−3D . The solution is
DS = ln(1+

√
2)

ln 2 .
Furthermore, we can even invert the question - can we find such an iterative

replacement scheme to obtain an object with dimension 2? The answer is positive
but it is not trivial to avoid self-intersections. The answer and more fun can be
found when Peano curves are searched for, [49]. Now let us cut this interesting
topic as it goes beyond the scope of our work. We conclude this section with
statement that the topic of the dimension is very interesting on itself. We can-
not encompass even a small part, especially about relations between presented
definitions. But there are many papers and books on even more concepts and
their mutual relations. We will further restrict to box-counting approach as pre-
cisely described in appendix A for its practical usability. In the appendix we
also present short contemplation on the topic of rough numerical approach versus
exponential instability of the chaos.

1Please note that logarithm properties allow to choose any base b to be applied in the
equation DS = logb n

logb γ .
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Figure 2.3: The iteration of object à la Koch snowflake with multiple scaling
factors. In the top left plot the initial substrate - line segment - is transformed
into a set of lines drawn in the top right figure. Newly created border points
are accented with dots, so it is obvious that the object is composed of 5 lines of
length 1

4 and 2 copies scaled to 1
8 , not 12 copies scaled to 1

8 . Bottom plots show
the object after 2 (left) and 6 (right) iterations. By the iterative scaling, the
longest line segment in the bottom right plot has length of 4−6 .= 2 · 10−4 which
is below the resolution of human eye in the image; for that reason the fractal is
well simulated.

2.4 Chaotic purification protocol
Let us now finally join the previous sections together to introduce our readers
to our own research. The protocol of our concern intents to modify - to repair -
a physical state which typically suffers from decoherence inflicted by its environ-
ment. As the protocol should work on a wide set of damaged states, no unitary
operation is capable of such reconstruction making the whole set of states con-
verge to a single attractor - remember that unitary operators are isometric, we
also discussed the unitary transform when entropy and trace distance were in-
troduced 2.2.11. Therefore, our protocol defines a special open system with the
environment being a copy of the qubit system. The dynamics defined globally
is unitary on a system of joint two copies but when caring for the target system
only, the evolution is nonlinear and can be interpreted as a specific environment
interaction. This nonlinearity is the reason for the sensitiveness to the initial
conditions, i.e. chaos. The core of the protocol was proposed in [4, 1] while its
chaotic features were noted in [35, 36]. We dig deeper into the properties and we
modify the protocol to investigate the quantum chaos in a more general situation,
but that will come in the next chapter. At this place, we describe the original
protocol construction and its action on qubits.

In the paper [1] the crucial concept is proposed with generalised exclusive OR
gate, called GXOR gate. The action of the usual XOR gate defined by modular
addition can be written as

XOR2 |i, j⟩ = |i, i⊕2 j⟩ . (2.55)
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Please note that this gate is exactly the CNOT gate mentioned earlier 2.30, we
stick to the CNOT name in this thesis. However, the XOR gate can be defined
generally for qudits of dimension D:

XORD |i, j⟩ = |i, i⊕D j⟩ (2.56)

This gate is unitary but not self-adjoint for D > 2. Inverse gate to this XORD

has to be expressed by iteration XOR−1
D = XORD−1

D (while CNOT satisfies
CNOT = CNOT−1). This inconvenience can be bypassed by redefining the gate
to generalised GXOR using modular subtraction:

GXORD |i, j⟩ := |i, i⊖D j⟩ (2.57)

Such a modified operator is unitary and self-adjoint for arbitrary D. We let it
act on a system composed of two parts in so called control and target states,
ρc⊗ ρt and then we perform projection (measurement) according to axiom 3a on
a chosen state |s⟩t of the target state. Mathematically, this can be written thanks
to the axioms and 2.2.1 as

S(ρc, ρt) = [(1c ⊗ |s⟩t ⟨s|t)GXOR][ρc ⊗ ρt][(1c ⊗ |s⟩t ⟨s|t)GXOR]†
Tr([(1c ⊗ |s⟩t ⟨s|t)GXOR][ρc ⊗ ρt][(1c ⊗ |s⟩t ⟨s|t)GXOR]†) (2.58)

where indices mark operators or vectors of individual subsystems. This operator
is a map Hc ⊗Ht → Hc and in particular, the original protocol was interested
in taking the target and control systems to be identical copies of systems, ρc =
ρt ∈Hc = Ht = C2. If the projection state is chosen |s⟩t = |0⟩, the measurement
base selection applied to a density matrix (in computational basis) changes it in
following manner:

ρ =

⎛⎜⎜⎜⎜⎝
ρ11 ρ12 . . . ρ1n
ρ21 ρ22 . . . ρ2n
... ... . . . ...
ρn1 ρn2 . . . ρnn

⎞⎟⎟⎟⎟⎠→ ρ′ ≡ ρ⊙ ρ
Tr(ρ⊙ ρ) = 1∑︁

i ρ
2
ii

⎛⎜⎜⎜⎜⎝
ρ2

11 ρ2
12 . . . ρ2

1n
ρ2

21 ρ2
22 . . . ρ2

2n
... ... . . . ...
ρ2
n1 ρ2

n2 . . . ρ2
nn

⎞⎟⎟⎟⎟⎠
(2.59)

Surprisingly, the operation takes a form of Hadamard (elementwise) matrix mul-
tiplication, ⊙. Obviously, the application of the protocol imposes nonlinear
(nonunitary) evolution which has a very simple form of squaring the matrix ele-
ments. This nonlinear map is the core of our research.

We remind that this evolution takes this simple form thanks to the choice of
the computational basis. And it is also important to note that the measurement
demands renormalisation as written in axiom 3a, this will be a typical feature
of following equations too. However, when an additional unitary operation is
applied, the trace does not change, the trace renormalisation can thus be mathe-
matically performed before or after the additional unitary gate, at will. For this
reason, we will sometimes not write the normalisation factor explicitly. We can
finally write a general form of the protocol of our interest for pure and mixed
states:

|ψ⟩ → |ψ′⟩ = U(|ψ⟩ ⊙ |ψ⟩) , ρ→ ρ′ = U(ρ⊙ ρ)U † (2.60)
The unitary gate U will determine characteristics of the protocols, we will

investigate how the choice of U modifies the behaviou; we will refer to it as the
twirling gate or twirling operator.
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Figure 2.4: The nonlinear protocol for two-qubit states based on CNOT gate
enhanced with twirling gate U ⊗ U .

The papers [35, 36] study the protocol with choosing pairs of qubits for the
physical system, i.e. n = 4 in 2.59. And enhances the protocol with Hadamard
twirling gate 2.29

H ⊗H = 1
2

⎛⎜⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎟⎠ . (2.61)

This protocol is schemed in figure2.4. The paper [36] notices that the action
of the protocol on a particular invariant set of pure states takes a simple form
expressible in terms of rational polynomial complex functions. However, two
iterations of the protocol must be executed.

|ψ⟩ ≡

⎛⎜⎜⎜⎝
1
0
0
z

⎞⎟⎟⎟⎠→ |ψ′⟩ = H ⊗H (|ψ⟩ ⊙ |ψ⟩) =

⎛⎜⎜⎜⎝
1 + z2

1− z2

1− z2

1 + z2

⎞⎟⎟⎟⎠→ (2.62)

→ |ψ′′⟩ = H ⊗H (|ψ′⟩ ⊙ |ψ′⟩) ≡

⎛⎜⎜⎜⎝
(1 + z2)2 + (1− z2)2

0
0

(1 + z2)2 − (1− z2)2

⎞⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎝

1
0
0

2z2

1+z4

⎞⎟⎟⎟⎟⎠
Of course, we use the property settled in axiom 1 and take suitable norm of
the vector representing the ray in C4. The evolution function z → 2z2

1+z4 can be
composed of two iterations of

f(z) = 1− z2

1 + z2 , f 2(z) = 2z2

1 + z4 (2.63)
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This function f is studied using the apparatus of the Julia sets from previous
section proving for the first time a new chaotic regime of quantum evolution.
In particular, there is a fractal structure (Julia set) of qubit pairs that undergo
deterministic chaos. Of course, these findings are restricted to a very specific
protocol setting and a very specific set of states. In this thesis, we discover what
happens for a wider set of protocols and states. We will see that the fractal
structures are a general property and chaos is not an exclusive phenomenon in
systems formed of pairs of qubits.

The importance of the results from [36] lies in the fact that the Bell state
|Φ+⟩ is an attractive fixed state and states close to it (and belonging to the
mentioned invariant set of states) are purified by the protocol, i.e. if the Bell state
is disturbed by decoherence or some error due to the transition through realistic
physical channels, this protocol is capable of repairing the damage. Unfortunately,
the paper could not claim that this kind of repair works for a general state
because of considering only the particular invariant set. Yet, we come to the
process of entanglement purification. Such processes aim exactly on restoring
the dissipated entanglement. In this moment, we remind the concurrence based
measure entanglement of formation 2.2.7 and the trace metric 2.2.11 on states to
note that we can measure how much is a state disturbed from |Φ+⟩.

At this place, we would only like to emphasize that this protocol uses a copy
of the qubit as a particular environment and the twirling is the tensor prod-
uct, meaning that both qubits are modified with single qubit Hadamard gates
separately. In consequence, the protocol is LOCC. This abbreviation stands for
local operation and classical communication. The protocol decomposes into two
identical subprocesses which are independently performed on each qubit of the
pair. The pair members do not have to be spatially or temporally close to each
other. This allows this protocol to be used for the quantum communication.
Protocols without LOCC property would require both qubits from the pair to be
processed together in one physical computer. But then they cannot be sent to
two communication parties.

We have put together basic pieces of the puzzle from quantum physics and
theory of chaos so we can discover new results and build a systematic overview of
a new class of quantum protocols. We encourage our readers to find themselves
more detailed works dedicated to the single branches that are wound here together
to rather an overview than a full-fledged book. But we are prepared to not drown
in wild waters of chaotic dynamics of quantum systems. We can now start our own
thinking on the topic trying to discover subtle features of chaos in more general
protocols applied to more general states. Before we jump into fresh waters of
discovery, we now present our key methods that will be used throughout the rest
of the thesis.

2.5 Attractor maps
The application of the introduced protocol is represented by a map on Riemann
sphere C that makes a single step of discrete time evolution, an iteration. The map
is iterated, its asymptotic evolution can be considered. Originally in an attempt
to purify entanglement in a particular set of two-qubit states. The instantaneous
question arises to analyse asymptotic iterated dynamics on much wider set of
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states; that is the main goal of this thesis.
At this moment, we stand to an interesting task: ‘How to illustrate asymptotic

evolution of general states under repetitive protocol iteration?’ At this place our
own work starts but we keep the text in the theoretical chapter as we create an
intuitive concept which is used as a common instrument in the later text. In the
following, we consider a mixed state of a single qubit to be our input state of the
protocol.

To answer the question, we now present a natural and pictorial concept that
will be called attractor map throughout the thesis. The purity of the state plays
an important physical role and the states of constant purity P form a sphere of
radius

√
2P − 1 in the geometric representation of Bloch coordinates 2.39. The

position on a sphere is canonically given by two coordinates, e.g. spherical as
expressed in 2.39 too. These two angular coordinates run through finite intervals
which can be formally merged to a rectangle [0; 2π)× [0;π]. We identify a point
in such rectangle (for given purity) as a representative of the initial state ρ to be
iterated. Alternatively, the Riemann sphere can be used in projection to Gauss
plane as complex numbers z = x+iy derived in 2.39. Or, another two-dimensional
set can be used as the grid of states to be iterated.

The initial state is therefore coded by two numbers that can be taken for
a position in the attractor map, a pixel in the image. After the protocol is applied
iteratively to the state and its asymptotic evolution is estimated, its asymptotic
regime must be differentiated visually. a natural and easy way to do so is using
colours. The asymptotic state (determined by three coordinates in the Bloch
space) can be assigned a colour in RGB code. However, we must keep in mind
such colours offer no intuitive understanding. Also, optically indistinguishable
colours could mark quite different asymptotic dynamics. Still, for more involved
dynamics where a high number of alternative regimes must be differentiated, the
RGB coding is convenient. We choose to use following code: the components of
RGB vector belong to interval [0; 1] in Matlab, vector (0, 0, 0) means black colour
while (1, 1, 1) stands for white. We assign each state with Bloch coordinates
(w, u, v) its RGB vector using following map:

(r, g, b) = 1
2 (1− u, 1 + v, 1 + w) (2.64)

We sum up that the attractor map is an image (typically rectangular) where
a position of the pixel represents the initial state and its colour refers to the
asymptotic dynamics of the state. As an example, we show now such attractor
map for identity map. This map has trivial evolution, each state converging to
itself asymptotically.

The reason why we introduce the attractor map is not only to make an easier
understanding of the iterated map action, but also to reveal the structure of the
immediate basins of attraction, 2.3.20. These sets are formed by areas of the same
colour in the attractor map. Their border is then naturally formed of states that
are sensitive - their evolution is drawn to different attractors under the smallest
perturbation. We will refer to these always as the (set of) sensitive states through
the rest of the work. For the complex functions these states form the Julia set
and the sensitiveness is exponential for its generic states. In general, nothing
can be said about the actual evolution of the mixed qubits in the Bloch ball,
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Figure 2.5: RGB code of the pure states. At the same time, the image is the
attractor map of identity operator. North pole ϑ = 0 corresponds to state |0⟩
with Bloch vector (w, u, v) = (1, 0, 0) and rgb colour (r, g, b) = (0, 0, 1

2) of light
blue. South pole ϑ = π represents the |1⟩ with Bloch vector (−1, 0, 0) and light
green colour with (0, 1

2 , 0). State 1√
2(|0⟩+ |1⟩) with Bloch vector (0, 1, 0) is found

under spherical coordinates ϑ = π
2 , φ = 0 with turquoise colour (0, 1

2 ,
1
2) and

1√
2(|0⟩ − |1⟩) with Bloch vector (0,−1, 0) is found at ϑ = π

2 , φ = π with colour
(1, 1

2 ,
1
2) in a shade of salmon colour.

but for cases where we iterate a complex function, i.e. pure states, the theory
confirms deterministic chaos is present. These border structures are the states
of our interest, even for protocols that are not represented as complex functions.
The structure is typically a fractal when we deal with complex functions, but
for multidimensional maps we cannot generally expect this. We also have to take
into account that the attractor maps as planar images show only two-dimensional
slices of multidimensional basins of attraction. And in general there might even
be no basins of attraction as there could be a continuum of attractive regimes and
iterating complicated evolution functions could go beyond the standard behaviour
present in known systems. That will not be our case because we will deal with
rational polynomial functions which even in multidimensional space offer only
a restricted set of critical points and attractors. But of course, the sensitive states
could form complicated fractal bodies that might interfere with the experimental
applicability of the protocol. This is one of the reasons to study such structures,
the other is rather a mathematical curiosity unable to guess the evolution of the
sensitive states. Do they share some features known to e.g. logistic function, [43],
or other known chaotic models?

Back to the attractor maps, the structure of the sensitive states visualised as
the border of single-coloured regions can take the fractal form which is charac-
terised by its dimension. Therefore, the next step we introduce is the box-counting
dimension estimation. The borders of the coloured regions in the attractor map
can be detected and we obtain a pixelised image of the structure. The pixels
can easily be understood as points in space if desired. In this way we obtain the
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Figure 2.6: Attractor map for the protocol [36], 2.63 in complex z; the Julia set
of the evolution function 2.63, is the border between red and blue regions; blue
colour codes states converging to |00⟩ after even number of iterations, red colour
codes states converging to the Bell state |Φ+⟩ after even number of iterations.

structure for which we want to determine its dimension.
We apply the box-counting method - detailed information of the algorithm is

provided in appendix A - and we obtain the dimension of a slice of the analogue of
the Julia set. Typically, the slicing will be performed by the spheres of constant
purity as mentioned. It is also possible to compile the attractor maps to obtain
three-dimensional structure but we do not use this approach because it does not
induce uniform distribution of states.

For the introduced protocol with evolution function 2.63 we obtain dimension
value D

.= 1.56. This is our first result, the noninteger dimension indicates how
complicated the structure of the sensitive states is. The Hadamard gate protocol
acting on pure states induces chaotic behaviour in a fractal structure of states.
Even without the theoretical background of the complex functions [44] we could
state now that this structure of borders of self-similar blocks of islands is a fractal
curve of infinite length but zero area.

For the actual result part of our thesis, we will use this procedure for different
protocols which induce different evolution maps of R3 → R3. The fractal struc-
ture will be also estimated by box-counting algorithm in three dimensions but
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Figure 2.7: Attractor map for the protocol [36] translated to spherical coordinates.
The equator ϑ = π

2 is the unit circle |z| = 1 in previous figure, 2.6.

our main interest will be in slicing the space into attractor maps with respect
to the physically relevant parameter, purity. We have it for a natural choice to
deal with multidimensional evolution. The purity can be viewed as a measure
for the disturbance (typically induced by transmission through the environment)
and it is mostly convenient that the states with the same purity form a sphere.
The dynamics can stir the states inside the ball wildly and carry them from the
sphere of initial states away during the evolution, so we stress that the attractor
map represents asymptotic states for states that have initially the same purity
but their attractors can be pure, maximally mixed state or have any other asymp-
totic regime. This approach of slicing the ball of states to spheres with respect to
the purity cannot inherently capture the sensitiveness of the states to perturba-
tion in the radial direction. This effect can be observed by comparing attractor
maps for different values of P or other attractor maps based on another cuts of
the ball of mixed states. The fact that the pure states can be translated to the
complex function theory where chaos can be proven analytically is strongly moti-
vating to dive into the mixed states with respect to the initial purity of the state.
This approach of ours is a novel and unique characterisation of the dynamics of
a quantum system. Following the idea: We know what dynamics governs the
pure states of a particular protocol; now, we also want to explore what happens
for mixed states.
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3. Properties of CNOT based
chaotic protocol
The protocol studied in [36] was first to reveal inherent chaos in the iterative
dynamics of quantum systems in a very particular case of input states. Such fact
was denied years earlier, [8] The primary intent of the protocol was a practical
purpose of purifying entanglement of a two qubit system. a n−qubit system is
fully described as a point from 2n − 1 dimensional Hilbert space - as such, their
multidimensional dynamical regimes get too complicated to be feasibly calculated
and studied. To uncover subtle features of the iterative quantum dynamics, we
first propose a very simple model of single-qubit protocol that is based on the
original two-qubit protocol. The mathematical description of our model coincides
with the originally studied protocol, and thus can be directionally transferred to
generalise the new results to the original protocol and extend our knowledge
of the nonlinear quantum dynamics. Our model takes only a single qubit into
consideration and keeps the crucial element: CNOT operator. Even in spite of its
simplicity, this toy model contains surprisingly rich and counterintuitive chaotic
features that go beyond contemporary knowledge.

3.1 Protocol action on a single mixed qubit
Inspired by the protocol [36] we introduce the scheme of our protocol in 3.1.
The CNOT gate is applied to two identical copies of the input state ρ. After
the conditional flip on the target qubit it is measured and based on the result
the state function of the control qubit collapses. The twirling operator U in
the original protocol [36] is chosen to be the Hadamard gate H1, 2.28. For the
later purposes we choose at this moment slightly different operator determined
by rotation matrix with similar properties

H2 = 1√
2

(︄
1 1
−1 1

)︄
(3.1)

In [39], we have given evidence that such exchange of the twirling gates preserves
crucial features of asymptotic behaviour, we will discuss such changes precisely
later, in the sixth chapter 6. Mathematically, the action of the protocol iteration
reads as

ρ = 1
2

(︄
1 + w u− iv
u+ iv 1− w

)︄
→ ρ′ = 1

2

(︄
1 + w′ u′ − iv′

u′ + iv′ 1− w′

)︄
(3.2)

where matrix ρ′ is obtained through elementwise product

ρ′ = H2(ρ⊙ ρ)H†
2

Tr(H2(ρ⊙ ρ)H†
2)
. (3.3)

Calculation yields following evolution equations:

w′ = u2 − v2

1 + w2 , u′ = − 2w
1 + w2 , v′ = 2uv

1 + w2 (3.4)
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Figure 3.1: Scheme of the single-qubit purification protocol. Now, H2 is used in
place of U .

From these we gain the first interesting statement which was in more general
context mentioned in [1].

Proposition 3.1.1. Pure states remain pure after the protocol iteration. Mixed
states remain mixed.

Proof. The proof is based on simple evaluation

w′2 + u′2 + v′2 = 1
(1+w2)2 (u4 − 2u2v2 + v4 + 4w2 + 4u2v2) =

= 1
(1+w2)2 (4w2 + (u2 + v2)2) = 1

(1+w2)2 (4w2 + (1− w2)2) =
= 1

(1+w2)2 (1 + 2w2 + w4) = 1
(3.5)

using the purity condition u2 + v2 + w2 = 1 at places marked in gray.

This statement seems to impair the protocol with an unpleasant property -
mixed state can never be repaired to a pure one. In the context of the original
two-qubit protocol, the Bell state cannot be never reached exactly if the state is
disturbed to a mixed one. However, this statement does not impose any limits on
a convergence, mixed states can converge (and very fast) towards their attractors
leaning on them with arbitrarily small error demanded by experimental setup. In
consequence, the proposition does not mean any practical inconvenience.

The dichotomy of the previous statement possesses an advantage - the pure
states form an invariant set which can be studied separately. Of course, originally
in the research the dynamics of pure states were investigated; now we aim at the
(more complicated) rest, the evolution of the mixed states. That is a formidable
task, thus we look for other possible invariant sets that might allow for precise
analysis. Before we do so, we make an important remark. Much more information
can be said about protocol iterated twice. The regime of single repetitions of the
protocol exhibits typically non-monotonic behaviour, certain flip that will be
discussed later. Pairwise iterations exhibit much more simple trends, including
monotonicity. The two iteration evolution function follows.

w′′ = 4 w2 − u2v2

(1 + w2)2 + (u2 − v2)2 ,

u′′ = −2(1 + w2)(u2 − v2)
(1 + w2)2 + (u2 − v2)2 , v

′′ = −8uvw
(1 + w2)2 + (u2 − v2)2

(3.6)
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3.2 Attractors and invariant subspaces
Starting with dynamics in the three-dimensional space, we look for attractors
and invariant subsets that can give fundamental and analytical results. We have
suggested that for general mixed states it is natural to examine evolution on
a hypersurface of even purity, spheres P = const. Not only the spheres can be
easily mathematically handled but the purity has physical meaning. However,
the evolution drags the states across the Bloch ball to create complicated orbits
raising and reducing the purity of the state. Brief calculations have shown that
there is no simple universal rule to determine which states increase their purity
through the evolution. That leads us to formulate our observations into following.

Conjecture 3.2.1. There are initial states (w, u, v) with purity exhibiting very
non-monotonic behaviour for arbitrarily long series of iterations before converging
to the corresponding attractor.

We will provide numerical evidence later on this topic when critical states will
be analysed and illustrate with 3.5. For now, we present another statement that
will be proved later. It is fundamental for the global view of the mixed state
evolution which is highly nontrivial and does not allow for the same approach
using complex functions as for pure states.

Proposition 3.2.2. There is no other invariant surface of constant purity besides
P = 1 and P = 0 that is an invariant set.

We excluded the situation of P = 0 intentionally. Such set of states contain
only a single one, the maximally mixed state 1. The completely mixed state is
found to be a new attractor. It is easy to see from 3.4 that it is a fixed point.
Its attractivity comes from analysis of the Jacobi matrix of the evolution map.
Reminding that we order the variables in (w, u, v), the Jacobi matrix at that
point reads

J(w, u, v) =

⎛⎜⎜⎜⎝
−2w(u2−v2)

(1+w2)2
2u

1+w2
−2v

1+w2

2(w2−1)
(1+w2)2 0 0
−4uvw

(1+w2)2
2v

1+w2
2u

1+w2

⎞⎟⎟⎟⎠ . (3.7)

For the maximally mixed state u = v = w = 0 ↔ 1 the Jacobian matrix
has triple degenerated eigenvalue 0 which proves the state is superattractive.
Furthermore, we give an estimate of the radius of the convergence. To do so, we
consider pairwise iteration of the protocol.

Proposition 3.2.3. Qubit satisfying |w|, |u|, |v| < 1/8 converges to the maxi-
mally mixed state. The convergence is exponentially fast in pairwise iterations.

Proof. The rough assumption of a cube |w|, |u|, |v| < 1/8 gives after two iterations
|w′′| ≤ 4w2 ≤ |w|/2, |u′′| ≤ 4u2 ≤ |u|/2, |v′′| ≤ 8|uvw| ≤ |v|/2; the equality
trivially occurs iff w = u = v = 0. If |w|+ |u|+ |v| > 0 we consider 2n iterations
of the protocol: we obtain |w(2n)| < |w|/2n, |u(2n)| < |u|/2n, |v(2n)| < |v|/2n
which means that after even number of iterations the state converge to 1 in
terms of w, u, v at least as the function 2−n, 2n → ∞ in each parameter. We
have not shown yet anything about the odd iterations which could perform some
oscillations and could allow the state to escape in the odd iteration regime. We
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show now this does not happen. From 3.4 and assumption |u| < 1
8 it is obvious

that after 2n + 1 iterations |v(2n+1)| < |v(2n)| < 2−n so we can claim stronger
statement: |v| monotonically decreases to 0. Also, |u(2n+1)| < 2|w(2n)| < 2−n+1

and finally |w(2n+1)| < max{(u(2n))2, (v(2n))2} < max{|u(2n)|, |v(2n)|} < 2−n. We
differentiate iterations from powers with the parentheses here to avoid confusion.

This means the all subsequences w(2n), w(2n+1), u(2n), u(2n+1) converge to 0. In
total, (w, u, v) converges to (0, 0, 0). The convergence of w(n), u(n) is not neces-
sarily monotonic but the subsequences of odd and even iterations are. From the
point of view of attractivity/repelling, the perturbation decays exponentially in
pairwise iterations. The exponential rate is relevant experimentally and is addi-
tional information added to the fact that the maximally mixed state is truly an
attractor.

To finish with the attractors, we claim there is only one more attractor besides
1. More precisely, the other attractor is length-two cycle which will be called
A := (|0⟩, 1√

2(|0⟩ − |1⟩)).

|0⟩ ≡ (1, 0, 0)↔ (0,−1, 0) ≡ 1√
2

(|0⟩ − |1⟩). (3.8)

This pure cycle is already known from the previous papers but working as an
attractor for the pure states. We now answer positively that the cycle is also the
attractor for mixed states. To prove it we write Jacobi matrix of twofold iteration
J(2):⎛⎜⎜⎜⎝

8w(1+u4+v4+2u2v2w2−w4)
((1+w2)2+(u2−v2)2)2

−8u(v6+2u2w2+v2−v2u4+v2w4)
((1+w2)2+(u2−v2)2)2

−8v(u6+2v2w2+u2−u2v4+u2w4)
((1+w2)2+(u2−v2)2)2

−4w(u2−v2)((u2−v2)2−(1+w2)2)
((1+w2)2+(u2−v2)2)2

4u(1+w2)((u2−v2)2−(1+w2)2)
((1+w2)2+(u2−v2)2)2

−4v(1+w2)((u2−v2)2−(1+w2)2)
((1+w2)2+(u2−v2)2)2

−8uv((u2−v2)2+1−2w2−3w4)
((1+w2)2+(u2−v2)2)2

−8vw((u2+v2)2−4u4+(1+w2)2)
((1+w2)2+(u2−v2)2)2

−8uw((u2+v2)2−4v4+(1+w2)2)
((1+w2)2+(u2−v2)2)2

⎞⎟⎟⎟⎠
(3.9)

For the considered attractor cycle by inserting w = 1, u = v = 0 or u = 1, w =
v = 0 we obtain zero matrix proving the cycle is superattractive in the mixed
states. We resume, there are two attractors, both superattractive.

We now make a remark on the pairwise iteration - for the pure states it can
be shown that the basin of attraction of the unique attractor composes of two
parts which are mapped one on another with one or odd number of iterations and
back onto itself for even number of iterations. This flip will proliferate even into
mixed dynamics and will be obvious in further stability discussions. This flip is
responsible for the odd/even regimes above in the proof of 3.2.3. It will also be
present in dynamics of other invariant sets in further text; we conclude that this
flip is a general characteristic of the protocol.

No other attractor or attractor cycle of higher lengths has been found. We
continue with searching for all fixed states or cycles, though unstable. Solving
w = w′, u = u′, v = v′ one can obtain four new states (besides 1). To describe
them easily yet analytically we introduce constant µ which we define as the real
root of polynomial 1− x− x2 − x3. Its value can be expressed analytically

µ = 1
3

⎛⎝−1− 2
3
√︂

17 + 3
√

33
+ 3
√︂

17 + 3
√

33
⎞⎠ .= 0.543689012692076 (3.10)
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and satisfies 1−µ
1+µ = µ2 from its definition. Obsession for such detailed description

of the number comes from the fact that the root of the polynomial 1 − x − x2

is 1
2

(︂√
5− 1

)︂
which is reciprocal value of golden ratio ϕ = 1

2

(︂√
5 + 1

)︂
(root

of 1 + x − x2 satisfying 1 + ϕ = ϕ2) and this number µ can be suggested as
a degree higher analogue (with the ratio-analogue µ−1 being root of 1+x+x2−x3

and satisfying µ−1+1
µ−1−1 = µ−2). Number µ−1 is the limit ratio of two consecutive

members of any sequence (Tn)∞
n=1 satisfying reccurence relation Tn+3 = Tn+2 +

Tn+1 + Tn for all n > n0 ∈ N. Such sequences are called tribonacci sequences
today thanks to Feinberg, [22]. Thanks to this, µ−1 can be found as tribonnaci
number in literature, without physical relations though. Probably the first and
last person to use it in practical applications was Charles Darwin in his famous
On the Origin of the Species to explain elephant population growths. Anyway,
the analogy between ϕ−1 and µ is not complete and we will not need any more
than the above written relations in following text.

Back to the topic of the fixed states, there is a triplet of pure states

B := (µ,−µ̃, 0),B± := (−µ2, µ,±
√︂

1− µ2 − µ4) (3.11)

where number

µ̃ ≡
√︂

1− µ2 = 2µ
1 + µ2 = 1 + µ2

1 + µ
= µ+ µ2 = 1

µ
− 1 = 1− µ3 .= 0.839287 (3.12)

can be expressed analytically as the real root
1
3

(︃
−2 + 3

√︂
19 + 3

√
33 + 3

√︂
19− 3

√
33
)︃

of polynomial −2 + 2x2 + x3. Taking state (µ,−µ̃, 0) one can analyse Jacobi
matrix that has double degenerated repelling eigenvalue −1−µ2 (the real root of
4 + 4x + 2x2 + x3) with eigenvectors (0, 0, 1), (µ̃, µ, 0) and the last eigenvalue
is attractive µ̃ > 0 with eigenvector (−1, 1, 0). We conclude that this fixed
state is a saddle point repelling on the sphere (the eigenvectors span tangential
space to the fixed point on the Bloch sphere) but attractive from the direction
of mixed states. Negative sign of the repelling eigenvalues marks the parity flip,
the state gets flipped to the other side of the fixed point (and repelled). Studying
two-fold iteration, we find eigenvalues 2µ̃ (real root of −16 + 4x2 + x3) with
double degeneracy and the same set of eigenvectors marking repelling directions.
The last eigenvalue marks the attractive direction as earlier, now with the value
1 − µ2 .= 0.704402 (the real root of −4 + 8x − 4x2 + x3). The positivity of the
eigenvalues now mark that the disturbed state remains in the same direction and
does not flip over.

The other two remaining fixed points can be analysed similiarly. However,
their eigenvalues become complex uncovering nontrivial twist, state with such
character is usually called focus. Yet all the eigenvalues satisfy |λ| > 1 and the
states are repelling in all directions (eigenvectors span the tangential plane to
Bloch sphere again and one aiming inside the mixed states). The points act as
repelling vortices.

There is one more fixed state, now mixed: R := (χ, χ− 1, 0) where

χ = 1
3

⎛⎝1− 8
3
√︂

1 + 3
√

57
+ 3
√︂

1 + 3
√

57
⎞⎠ .= 0.361103080528647 (3.13)
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is the real root of 1 − 3x + x2 − x3. The analysis of the Jacobi matrix uncovers
three eigenvalues with |λ| > 1 proving the state is repelling. With value 1− χ .=
0.638897 we can determine the purity of R

P1 = 1
1(1 + χ2 + (1− χ)2) = 1− χ+ χ2 .= 0.769292 (3.14)

which will play an important role later.
With the fixed states done we discover new mixed 2-cycle C by solving u′′ =

u, v′′ = v, w′′ = w:
C := (µ2, 0, 0)↔ (0,−µ, 0) (3.15)

Both of these states naturally share eigenvalues of the two-fold iteration Jacobi
matrix. It is double-degenerate value zero marking superattractivity from di-
rections (0, 0, 1) and (0, 1, 0) for (µ2, 0, 0) resp. (1, 0, 0) for (0,−µ, 0). The last
eigenvalue is again the value 2µ̃ .= 1.678574 marking repelling direction (1, 0, 0)
for (µ2, 0, 0), resp. (0, 1, 0) for (0,−µ, 0). The purity of the state (µ2, 0, 0)

P2 = 1 + µ4

2 = µ (3.16)

will also play an important role with P1.
Let us summarise the fixed states and 2-cycles in following table. No other

cycles of any lengths were found. This is in accordance with theory of complex
functions which allows only a limited number of attractive or parabolic cycles.
The numerically based statement for mixed states is nontrivial.

At this moment, let us stray from the topic for a brief yet interesting remark.
The number µ repeats itself through the text. That is because of its minimal
polynomial which repeats itself in the calculations. We illustrate it with the
saddle fixed state (w, u, v) = (µ,−µ̃, 0). If we take stereographic projection as
explained in 2.39 we obtain point (x, y) = (µ, 0). This property is illustrated in
following figure.

Relations that were mentioned earlier when µ, µ̃ were defined, are now to be
completed with the equations depicted in figures 3.3,3.4. We note that all the
eigenvalues and the eigenvectors can be expressed analytically, yet such form is
too complicated and unnecessary to be explicitly written. All the numerical values
in table 3.1 can possibly be related to µ, µ̃, e.g. 1 + µ − 1

µ̃
= µ2

µ̃
= 1−µ2

2 = µ̃2

2
.=

0.352201 while the square of magnitude of the eigenvalues .= −0.352±1.720i being
numerically identical to 2(1+µ). We have only proven presence of µ̃2µ

µ−µ̃ = µ̃2−2 =
−1− µ2 .= −1.295598 as degenerate eigenvalue of the pure fixed state (µ,−µ̃, 0).
Components of the eigenvectors contain values identical up to multiplications
by imaginary unit i and/or −1 to values to the complex roots of polynomials
x3 + x2 + x − 1, x3 − x2 − x − x, but we do not find any benefit that could
come from precise formulation of such relations at the moment. We conclude
that all numbers (by the way, they are non-constructible) probably posses many
mathematically interesting properties and only finish with mentioning relation
1−µ2−µ4 = µ2(1 + 2µ) that will be used below; our readers might use it if they
try to reproduce our results.

Returning to the protocol action, lets now ascend from the simple cases of fixed
points and 2-cycles towards more complicated invariant sets. One can notice from
the table 3.1 as well as from numerical calculations that the mixed states seem
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Fixed state Eigenvalues Min. polynomial Eigenvector⎛⎜⎝wu
v

⎞⎟⎠≡
⎛⎜⎝0

0
0

⎞⎟⎠ 0 x (w, u, v) ≡ (1, 0, 0)
0 x (0, 1, 0)
0 x (0, 0, 1)⎛⎜⎝ µ

−µ̃
0

⎞⎟⎠ −1− µ2 4+4x+2x2+x3 (0, 0, 1)
−1− µ2 4+4x+2x2+x3 (1 + µ, 1, 0)

µ̃ −2+2x2+x3 (−1, 1, 0)⎛⎜⎝ −µ2

µ
µ
√

1+2µ

⎞⎟⎠ −0.352+1.72i 4+4x+2x2+x3 (0.606+1.420i,−1.115+0.772i, 1)
−0.352−1.72i 4+4x+2x2+x3 (0.606−1.420i,−1.115−0.772i, 1)

1+µ 2−2x+2x2−x3 (−0.534231,−0.534231, 1)⎛⎜⎝ −µ2

µ
−µ
√

1+2µ

⎞⎟⎠ −0.352+1.72i 4+4x+2x2+x3 (−0.606−1.420i, 1.115−0.772i, 1)
−0.352−1.72i 4+4x+2x2+x3 (−0.606+1.420i, 1.115+0.772i, 1)

1+µ 2−2x+2x2−x3 (0.534231,−0.534231, 1)⎛⎜⎝ χ
χ− 1

0

⎞⎟⎠ −1− χ 6+8x+4x2+x3 (1, 1, 0)
+1.130395 4−2x2−x3 (−0.830500, 1, 0)
−1.130395 4−2x2+x3 (0, 0, 1)

Cycle Eigenvalues Minimal polynomial Eigenvector⎛⎜⎝1
0
0

⎞⎟⎠↔
⎛⎜⎝ 0
−1
0

⎞⎟⎠ 0 x (1, 0, 0)
0 x (0, 1, 0)
0 x (0, 0, 1)⎛⎜⎝µ

2

0
0

⎞⎟⎠↔
⎛⎜⎝ 0
−µ
0

⎞⎟⎠ 2µ̃ −16 + 4x2 + x3 (1, 0, 0)↔ (0, 1, 0)
0 x (0, 1, 0)↔ (1, 0, 0)
0 x (0, 0, 1)

Notation State/cycle Character
A (1, 0, 0)↔ (0,−1, 0) pure superattractive sink
1 (0, 0, 0) mixed superattractive sink
B (µ,−µ̃, 0) pure saddle
B± (−µ2, µ,±µ

√
1+2µ) pure repelling foci

C (µ2, 0, 0)↔ (0,−µ, 0) mixed saddle
R (χ, χ− 1, 0) mixed source

Table 3.1: Table of fixed points and cycles. The Bloch coordinates (w, u, v) are
organised into columns or rows for spatial reasons as suggested at the top of the
table. Eigenvalues responsible for repelling behaviour marked in red. Review of
notation and character in the table at the bottom.

to tend to plane (circle) v = 0. Also, all attractors satisfy v = 0. Easily from
the evolution equations 3.4 |v′| <

⃓⃓⃓
2uv

1+w2

⃓⃓⃓
< |v| whenever u < 1

2 . Furthermore, the
Jacobi matrix gives

J(w, u, 0) ·

⎛⎜⎝0
0
1

⎞⎟⎠ =

⎛⎜⎝ 0
0
2u

1+w2

⎞⎟⎠ (3.17)

marking that at least the region enclosed by parabolas 2|u| = 1 + w2 acts in the
attractive way. We are unable to give analytical evidence that all states eventually
converge to the plane v = 0 as we numerically find states that oscillate while
increasing their v for arbitrary amount of iterations before starting to converge
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x

y

0
µ

µ̃

µ

µ̃

−1

−(µ2 + µ3) = µ− 1

−(µ+ µ3) = µ2 − 1

µ2

Figure 3.2: Geometrical interpretation of µ and µ̃, for simplicity in plane. Point
(µ̃, µ) is projected to (µ, 0) by stereographic projection with the pole in (0,−1). At
the same time, point (µ, µ̃) is projected onto (µ2, 0). Dotted lines in bottom right
quadrant represent the definition of µ as a polynomial root, µ3 + µ2 + µ− 1 = 0.

to v = 0. To show such example we analyse iterations of perturbed repelling
state (−µ2 − ε, µ− ε, µ

√
1 + 2µ) where we choose small value ε > 0. The results

can be seen in figure below.
These numerical data connect to our first hypothesis 3.2.1 which we now

support with an example of the convergence resisting state. The observation
also represents an important fact that a quantum physical system may resist
the converging dynamics for a vast number of iterations making the protocol
ineffective for certain inputs. We touch this issue of practical applications in the
overview at the end of this chapter. Now we note that restricting ourselves to
plane v = 0, the state evolution remains restricted to this plane. We claim the
circle

K = {(w, u, v)|u2 + w2 ≤ 1 ∧ v = 0} (3.18)
is invariant. In this circle previous results about the attraction may be repro-
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x

y

0

−1 µ

µ̃

1

−µ

Figure 3.3: Some relations between µ, µ̃ can be visualised in rectangles - the blue
rectangles have the same area µµ̃ = 1 − µ, both the red rectangles have area
µ(1 + µ) = µ̃.

duced for the reason that the dynamics is trivially reduced to evolution func-
tion (w, u) → ( u2

1+w2 ,
−2w
1+w2 ). Most states converge towards 1 or the pure cycle

A ≡ |0⟩ ↔ 1√
2(|0⟩ − |1⟩) in even or odd regime of reaching |0⟩. These regions

of the asymptotic dynamics are separated by a curve passing through all the re-
pelling and saddle critical states. We can visualise the convergence tendencies
in figure 3.6. Only one quadrant w ≥ 0, u ≤ 0 is shown, other quadrants are
mapped onto this quadrant during the first two iterations at most. This fact can
be seen from evolution equations in the plane; when v = 0 is put into 3.6, then
obviously

w′′ = 4w2

(1 + w2)2 + u4 ≥ 0, u′′ = −2u2(1 + w2)
(1 + w2)2 + u4 ≤ 0. (3.19)

Therefore, we could restrict ourselves to a smaller invariant set, quartercircleK ′ =
(w, u, v) ∈ K|w ≥ 0 ∧ u ≤ 0. Thanks to the powers in the evolution functions, the
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x

y

0
µ

µ̃

µ

2

1

µ2−µ2

1 + µ

Figure 3.4: Relations between µ and µ̃ can be visualised by curves passing through
the point [µ, µ̃]. First, there is parabola y = x + x2 and hyperbola y = 1

x
− 1.

But we can find more complicated curves, e.g. y = 2x
1+x2 , y = 2 1−x2

(1+x2)2 drawn in
gray and y = 1+x2

1+x , y = x2+2x−1
1−x dashed in gray. Of course, there are infinitely

many curves meeting at (µ, µ̃) but these could be taken as canonical due to
other properties, e.g. character of the formula, integer coefficients and other
intersections.

asymptotic equations will be shared symmetrically in other quarter circles. With
this finding we discover certain symmetry that will be in our scope in the next
section.

We now bring forth another invariant set that can be visually identified in the
image 3.6. It is the line segment L1 = {(w, u, v)|u2 +v2 +w2 ≤ 1∧v = 0∧w−u =
1} as can be easily verified using u = w − 1 in

w′ − u′ = u2 + 2w
1 + w2 = (w − 1)2 + 2w

1 + w2 = 1 + w2

1 + w2 = 1. (3.20)

This line segment as a one-dimensional object offers a great opportunity to per-
form detailed and precise analysis. The evolution function takes simpler form
when expressed in w which gives

w′ = (1− w)2

1 + w2 , w′′ = l(w) = 2w2

1− 2w + 4w2 − 2w3 + w4 (3.21)
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Figure 3.5: v coordinate of evolved state (−µ2−ε, µ−ε, µ
√

1 + 2µ). Initial states
with different values of ε are chosen, as legend indicates.

Figure 3.6: Illustration of evolution flow in the attractor map in the v = 0 plane.
Only quadrant w ≥ 0, u ≤ 0 considered thanks to symmetries, reflections across
the axes. Blue: convergence to |0⟩ in even number of iterations; red: in even
number; gray: convergence to 1, white: non-physical points outside the Boch
ball.
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We encourage our readers to note that the function domain is restricted to w ∈
(0; 1) and the map l or its multiple iterates are maps of the unit interval onto
itself. The flip of the odd-even convergence to the cycle A manifests as a map of
segment with w ∈ (0;χ) onto segment with w ∈ (χ; 1) and vice versa. The cycle
A and fixed states can be included in the interval if desired. In the next image
we can check differences w′′−w which are more simple to understand because the
odd-iteration flip does not interfere. As has been told, the point w = χ is fixed
and repelling - for higher values w > χ: w′′ > w tending to w−1 while for w < χ
the point gets further to zero, w′′ < w. We can describe the repelling rate with
the slope of the difference function ∆l(w) = w′′ − w = −w(1−2w+w4)

1+w4 . Calculating
the derivative at the fixed point dl

dw
(χ) = (1 + χ)2 .= 1.852602 one can also find

that the difference function has slope (1+χ)2−1 = χ(2+χ) .= 0.852602. This fact
means that a perturbation to the fixed point (with restraint to the invariant set)
is magnified by factor (1 + χ)2 proving the repulsion. Actually, we already know
this because in table 3.1 we listed the eigenvalue λ = −(1+χ) which corresponds
to eigenvector (1, 1, 0) which spans the set L1. For two iterations, the eigenvalue
must be λ2. Similarly, the attraction of the attractive cycle is encrypted in
dl
dw

(0) = dl
dw

(1) = 0 making them superattractive. The superattraction means
that perturbation of order ε is eliminated up to higher orders of at least ε2.

The last invariant set we identify is more complicated due to the iteration flip:
L2 = L

(w
2 ) ∪ L(u)

2 where

L
(w)
2 ={(w, u, v)|w ∈ [0; 1] ∧ u = v = 0}, L(u)

2 ={(w, u, v)|u ∈ [−1; 0] ∧ w = v = 0}
(3.22)

These sets are line segments on the half axes. They are mapped one onto the
other with a single iteration. In other words, L(w)

2 is mapped onto itself with two
iterations while L(u)

2 is mapped onto itself. The evolution map of state (w, u, v)
reduces in these sets to

(w, 0, 0)→ (0, −2
1+w2 , 0)→ ( 4w2

(1+w2)2 , 0, 0) ≡ (w′′, 0, 0) =: (l1(w), 0, 0),
(0, u, 0)→ (u2, 0, 0)→ (0, −2u2

1+u4 , 0) ≡ (0, u′′, 0) =: (0, l2(u), 0).
(3.23)

To not confuse our readers with analysing function w′′ which is different now for
L2 than for L1, we focus on u′′ = l2(u) = −2u2

1+u4 . The function maps [−1; 0] onto
itself, the border points of the attractive cycle can be excluded if desired. Its fixed
point (besides 0 and −1) is, as has been already found, −µ and the derivative
dl2
du

(−µ) = 2µ̃ .= 1.678573 has also been found as the repelling eigenvalue in the
table 3.1. Both sets L1,2 share the property that they are line segments with
attractive border points and one repelling point matching formerly discovered
critical points.

Thanks to the analysis of the dynamics in L1, L2 we can prove proposition
3.2.2:

Proof. For arbitrary value P ∈ (0; 1) ∖ P2, we recall that P2 = µ was defined
earlier 3.16, choose state (

√
2P − 1, 0, 0). This state belongs to L2 and evolves

(with the flip of odd-even iterations) towards the pure cycle or 1. For value P2
we would obtain the mixed cycle which would means no change in purity in two
iterations. But choosing state (0,

√
2P2 − 1, 0) with purity P2 = µ > µ2, this

one is forced to converge to pure cycle A. All the states converge to one of the
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Figure 3.7: Fixed points of functions l, l1, l2 can be found as intersections of
difference functions l(x) − x etc. with x-axis. Mixed fixed points corresponding
to C,R determined by x = µ2, x = χ, x = µ are unstable because difference
functions are increasing. Pure fixed points of C are stable because the difference
functions in x = 0, x = 1 are decreasing. l2 map on [−1; 0] flipped symmetrically
to act on [0; 1] too.

attractors, whence in each sphere of constant purity there is a state that leave
this sphere when evolved.

From the proof we can make the proposition even stronger: there is no n ∈ N
that there could be a sphere of purity 0 < P < 1 that would be mapped onto
itself after n iterations. I.e. there is no sphere invariant on two iterations where
we could think that the parity flip could lead to some purity oscillations.

We sum up the analysis of invariant sets with a statement that many features
of the nonlinear evolution of our model of single qubit chaotic protocol can be
expressed analytically. For the first time as far as we know, the nonlinear feature
of a saddle point (attractive and repelling at the same time depending on per-
turbation) is proven in a regime that is present in pure quantum world without
any analogue to classical physics. This is a natural piece of mosaic but has not
yet been discovered. We have presented all fixed states and cycles and analysed
their properties analytically as well as some interesting invariant subsets.

3.3 Symmetries and backward iterations
After finding the important states, we wish to understand the dynamics of general
states better; symmetries can be very useful to that. The protocol action performs
squaring in terms of the Bloch coordinates and as such there is a multiplet of
states mapped on the same state. For our protocol involving squaring of matrix
elements we find two preimages1 for a general state. To do so, we first rearrange
the map 3.4 yielding equation

w(−1) = −1±
√

1− u2

u
(3.24)

which has discontinuity that must be formally cared of by defining w(−1) = 0
for u = 0. And we also must take the + sign in the solution to satisfy |w| ≤ 1

1There are two more formal solutions to the equation system but those are non-physical
because the corresponding states would have purity P > 1.
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and guarantee the physical meaning of the qubit. In this way a unique value of
w ∈ [−1; 1] is determined and can now be used to express the other variables.
Finally, we get

u(−1) = ±
√
w + iv +

√
w − iv√

1 + u+
√

1− u
= ±

√
2

√︂√
w2 + v2 + w√

1 + u+
√

1− u

v(−1) = ±1
i

√
w + iv −

√
w − iv√

1 + u+
√

1− u
= ±
√

2 sgn(v)

√︂√
w2 + v2 − w√

1 + u+
√

1− u

(3.25)

The relationship between the two solutions could be seen from the original
equations when simultaneously u→ −u, v → −v are substituted. Current preim-
age equations just confirmed there is no other preimage. We now interpret this
relation of preimages: the points on the Bloch space that are reflected over the
w axis are mapped onto the same state. This means that we can restrict our
focus e.g. only on hemisphere v ≥ 0. When obtaining a state with v < 0 we
only change the sign of u, v components, such artificial sign flip does not burden
the asymptotic dynamics of the system, any result can be mirrored over w axis
without loss of any information, dynamical features etc. This symmetry also pro-
liferates into attractor maps. In terms of the spherical angles 2.38 the two mirror
states have their azimuthal angle changed by φ → φ + π. Attractor maps will
contain two identical images in both halves φ ∈ [0;π] and φ ∈ [π; 2π].

Now, consider two states (±w, u, v), these evolve to (w′′, u′′,±v′′) when two it-
erations are applied, 3.6. Additionally, states (w, u,±v) evolve into (w′′, u′′,±v′′).
When we add the hypothesis 3.2.1 that all states converge to the plane v = 0, we
conclude that both states (±w, u, v) share their asymptotic regime. Translated
to the geometric picture of the ball of Bloch coordinates, there is symmetry of
reflection with respect to plane w = 0 and also reflection with respect to plane
v = 0. For this reason alongside with the axial symmetry mentioned earlier we
also claim there is symmetry of reflection with respect to the plane u = 0, this can
also be seen from the equations 3.6. Finally, the compositions of the symmetries
lead to central symmetry with respect to the centre of the ball, maximally mixed
state. In other words, states

(w, u, v), (−w, u, v), (w,−u, v), (w, u,−v), (w,−u,−v), (−w,−u,−v)

converge to t=the same attractor, note that for the case of convergence to the
cycle, the convergence has the same parity regime, i.e. all listed states converge
to e.g. (1, 0, 0) after odd number of iterations. The evolution is symmetrical
in all 8 octants of the Bloch space, whence we can restrict ourselves to only
e.g. w ≥ 0, u ≤ 0, v ≥ 0 if we desire. This restriction significantly reduces
parameter space for the computational work and also imposes symmetries in
the attractor maps - the maps for chosen purity when drawn for whole range
of spherical parameters of the state, φ ∈ [0, 2π), ϑ ∈ [0, π] does not change
when flipped from left to right, upside down or combined; in total, states with
ϑ→ π−ϑ, φ→ 2π−ϑ, φ→ π+ϑ or any of combination of these transformations
evolve to the same asymptotic regime. The restriction is therefore such that
φ ∈ [0, π2 ], ϑ ∈ [0, π2 ] can be considered only. The rest of the attractor map can
be reconstructed by corresponding flips and shifts.

The reason why we have expressed the backward iterations is in 2.3.26. It
is not difficult to realise that when iterations with inverse maps must change
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repelling behaviour to attractive and vice versa. This idea is proceeded to propo-
sition 2.3.26 in the theory of complex functions but must be true even for mixed
states. We can use the backward iterations to numerically approximate the struc-
ture of the sensitive states inside the Bloch sphere but this approach naturally
has a drawback - the structure of the sensitive points exhibits the saddle point
behaviour, the forward-stable iterations change to backward-unstable and the
numerical approximation trying to identify the saddle point can fail just like for
forward iterations. The exponential sensitiveness of the Julia set is the essence
for the numerical estimate of the Julia sets; this property is now lost in the
multidimensional calculus.

In spite of the unsure results, we can try to identify the backward-stable
states and identify them as certain sources while the found (forward) attractors
work as sinks. These terms are widely used in nonlinear dynamics and for their
illustrative meaning we do not explain them in detail, readers can check [61].
We can set up a question: are the sources and sinks also related to exponential
trends similarily to exponential sensitiveness of dynamics of the Julia sets? Is
such evolution bound to some particular states?

The answer is positive in the sense explained below. We studied numerically
evolution (in forward and backward directions) of disturbed fixed points and
cycles A,B, C,R,1; we have found that they work as sources/sinks as expected
based on the table 3.1. The agreement of analytic and numerical results supports
following results. All the states are related to exponential trend in evolution of
disturbed states, such trend is not bound to the closest vicinity of the states but
is a general property in the structure of the sensitive states.

As an example to demonstrate the evolution in the structure of the sensitive
states, we have chosen state

(0.454533790051990,−0.746052079769224, 0) (3.26)

that has been found by evolving perturbed state B in the (forward repelling) di-
rection determined by corresponding eigenvector 3.1; then this state was iterated
backwards. This chosen initial state has been evolved by 50 iterations, both in
forward and backward evolution. This approach guarantees numerical stability
when approaching the forward-stable fixed point (µ,−µ̃, 0) and also backward-
stable towards (χ, 1− χ, 0).

Please note that v = 0 guarantees also v = 0 for all backward and forward
iterations. Because a state with v = 0 always evolve to one with w ≥ 0. We
cannot search for preimages of states with w < 0, the equations 3.24, 3.25 would
yield completely mixed state but such option is not physical but a mathematical
artefact of the equations form. The existence of multiple preimages of a point
is a natural effect of squaring imposed by CNOT operator. For the sake of
simplicity we restrict the backward images to the quadrant w ≥ 0 ∧ u ≤ 0, the
other preimages would create symmetrical branches by reflection around w-axis,
u-axis and combined.

When numerical evolution of 3.26 is determined, we are concerned in the
speed of convergence. And we confirm the rate is exponential by fitting the
coordinates in Gnuplot software. As an example we choose w coordinate plotted
in 3.8 together with exponential fits 3.8. The evolution functions have been
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Figure 3.8: Evolution of the point 3.26 from the sensitive structure. w coordinate
plotted for 50 forward and backward iterations (dots). Exponential fits 3.3, 3.28
marking the convergence to the critical states are dashed.

derived

w(n) = eAn+B + C;
A = 0.1189± 0.0002
B = −2.0172± 0.0036
C = 0.36107± 0.00001

(3.27)

for n forward iterations when n ∈ [20; 50] forward images were used to fit the
dependence and

w(n) = −e−An+B + C;
A = 0.1702± 0.0003
B = −1.6441± 0.0058
C = 0.54370± 0.00001

(3.28)

for n backward iterations when n ∈ [20; 50] was used for the fit.
Similar behaviour is observed for all other critical states that belong to the

structure of sensitive points in the v = 0 invariant set. We do not feel necessary to
publish other fits precisely. Instead, let us make a note on the topic of Lyapunov
exponents. These numbers are defined as exponents in the diverging trends,
we remind definition 2.3.9. As an example we take state (µ2, 0, 0) for pairwise
iteration (remember function l1(w)). The Lyapunov exponents of this fixed state
can be calculated from the definition because eigenvalues of the Jacobi matrix
are 0, µ2 as already known and the Jacobi matrix of n-th iterate equals to n-th
power of the Jacobi matrix of singel iteration, this follows from the fact that the
point is fixed (for two iterations). We redeem

δ1 = 2µ̃, δ2 = 0 (3.29)

Using the logarithm we obtain theoretical value of Lyapunov exponent λ =
log 2µ̃ .= 0.5179. This value has been confirmed by numerical fit of 20 forward
images of point (µ−10−6, 0, 0) with exponent .= 0.5100. The Lyapunov exponent
for the case of evolution of 3.26 (drawn in 3.8) towards state B is theoretically
drawn from eigenvalue µ̃ from 3.1, i.e. δ = log µ̃−1 .= 0.1752, the numerical fit
offered value 0.1702. It is important to realise that the numerical fit is deduced
from an orbit that is calculated for perturbed state while the theoretical value
concerns the fixed point precisely. In the case of the orbit, the formula for the
Lyapunov exponent must use eigenvalues of Jacobi matrices at subsequent points
of the orbit, not the fixed point. However, we demonstrated that both values -
theoretical and numerical - differ only a little, this justifies the use of numerical
methods and serves as a self-control for our results.
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The Lyapunov exponent approach can be useful tool for next studies but for
us it will be too demanding to apply it in the rest of the thesis. We leave the
topic for future research. Now, we want to come back to the concept of sources
and sinks. Last paragraphs showed that the critical states work as sources/sinks
and naturally their role swaps when backward iterations are substituted with
forward iterations. The numerical calculations confirmed attracting/repelling
properties of the sources/sinks in forward and backward directions and uncovered
exponential trends of convergence.

However, to our surprise, we are speaking of convergence in the structure of
sensitive states in plane v = 0. The behaviour of all the points is regular, meaning
no chaos is present in the circle K. There is a continuum (curve) of states that
contradicts expectation of behaviour following the chaos of Julia sets. Julia sets
allow only Lebesgue measure zero set of points that resist chaos. We have shown
with functions l1,2, 3.23 that such states are one-dimensional analytically, the
rest of the curve connecting state R with cycle C and state B was examined
numerically with the same result of regular behaviour. The states, although at
least 1 dimensional still have Lebesgue measure zero. In the rest of the Bloch
ball, the structure of sensitive points never (numerically) form a subset of nonzero
Lebesgue measure that would defy convergence to the global attractors A,1.

When we do not restrict ourselves to the particular sets in v = 0 plane and
evolve general states numerically, we reach following statement where we also
consider backward iterations. The convergence in exponential rate is a dominant
feature of the dynamics induced by our purification protocol.

Statement 3.3.1. Almost every state of the Bloch ball converges to on of attrac-
tors A,1. For backward iterations, almost every state of the Boch ball converges
to attractor R. The convergences are exponential.

We also present an interesting corollary: in the forward iterations, there are
three attractive regimes (towards 1, towards cycle - to |0⟩ in odd number or even
number of iterations) with two basins of attraction associated. In the backward
iterations, there is only one basin of attraction, of the universal attractor R,
which equals to the union of the previous. In addition, there is the structure of
sensitive states which works as universal repeller, similarly to the Julia set in the
complex functions theory.

3.4 Phase transition
While almost all states converge, we now ask whether there is truly chaotic evolu-
tion in the mixed states; the token of chaos is the non-converging trend. For that
reason we inspire from the Julia set where chaos is guaranteed and take following
approach.

We recall that like in 2.63, we can reduce the evolution in pure states to
a complex function of a single complex variable. In our case in analogy to 2.63,
again

z′ = f(z) = z2 − 1
z2 + 1 (3.30)

From the attractor map corresponding to the pure states P = 1 we obtain posi-
tions of sensitive points, these numerically approximate the Julia set J (f). We
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know backward iterations map the Julia set onto Julia set, 2.3.26.
Let us now recall here are two preimages of each state, now expressed as

z(−1) = f (−1)(z) = ±
√︄

1 + z

1− z . (3.31)

Looking for preimages of each state, let us now choose only the solution with
negative real part. In this way we obtain a unique inverse map. While the theory
claims that the preimage of the Julia set is the Julia set, all preimages must
be taken into account; the theory does not offer any predictions for particular
preimages of the Julia sets. In this case, all states of the Julia set converge towards
B. If we consider only preimages with negative real part, all states converge
towards state B; when only preimages with positive real part are considered, all
states converge to one of B±. The variations of all preimages are responsible for
generation of the whole structure of the Julia set.

Now, let us repeat the approach for the mixed states. First, let us consider
restriction on preimages with u ≤ 0 which corresponds to previous choice of z
with negative real part. If we take initially all states of chosen value of purity
P and iterate backwards, as soon as P < 1, all the states converge to R. This
state takes over the role of singular repeller. The reason is in the saddle character
of the point B mentioned in 3.1, now repelling for the mixed states in backward
iterations. Even for values P .= 1 the attraction towards this state is overwhelmed
by repelling towards R. When the preimages with positive real part are chosen,
all the states again converge to one of B±.

We just recapitulate that the character of asymptotic behaviour for chains of
positive/negative preimages is the same for pure and mixed states. The converg-
ing exponential trends in the previous section were achieved by taking always the
u ≤ 0 preimage; such artificially selected branches exhibit converging behaviour
on all states. Now, the combination of all possible preimages of the sensitive
states of given initial purity follows the same trend. The structure, even when
simple for lower purity, creates fractal patterns when iterated backwards. The
fractal structure emerges together with its chaotic behaviour!

We have numerically confirmed when considering all preimages that the sen-
sitive states in backward iterations proliferate through the structure of sensitive
states, see 3.9. But there is a new and important discovery. The backward it-
erations do not constitute the whole set of sensitive states. This is a major and
significant difference compared to the pure states where the preimages are dense
in the Julia set. For mixed states the preimages always (with the exception of
mixed cycle C) converge toR or chaotically jump across a substructure of sensitive
states with purity P1 ≤ P < 1. The following is based on numerical observations.
There are two fundamental types of behaviour for sensitive points which probably
makes the set split into two parts. One of the subset is complete analogy of the
Julia set meaning the subset is equal to its preimage, this set possesses fractal
shape. The backward iteration restricted to the other subset is not surjective,
the states are not accessible with backward iterations and possibly exhibit con-
verging dynamics either R or Julia set on the Bloch sphere. Such convergence
has been proven for curves in sets L1, L2 analytically earlier. The subset of the
non-returning states seems to form regular curves but such statement is difficult
to prove numerically. This leads us to following formulation.
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Conjecture 3.4.1. The set of sensitive states consists of two disjoint subsets.
Accesible states are fully invariant on back-iterations and contain chaos in De-
vaney’s definition, and thus form an analogue to the Julia set. Inaccesible states
form regular curves and the inverse evolution function restricted to these states
is not topologically transitive.

Figure 3.9: Sensitive states with purity P = 0.7 (black) iterated backwards (gray)
do not form a dense subset of sensitive states. They proliferate into fractal
bounded by P1 ≤ P < 1. Julia set on Bloch sphere (blue) is connected to
the structure of the preimages.

Concluding that the structure of sensitive states seems to be a complicated,
fractal shaped set with devious dynamics, we seek to prove and characterise the
fractalness with calculating the dimension (in the three-dimensional Bloch space)
D3. Using the third approach to box-counting as explained in A we determined
the sensitive points in 2500×2500×2500 uniform Cartesian grid in octant w, u, v ≥
0. By the box-counting fitting with scaling factors 100 ≤ λ ≤ 250 we arive to

D3 = 2.20± 0.01 (3.32)

We have already introduced the spheres of initial states of fixed purity, now
let us take a look at the structure of sensitive states with respect to this slicing.
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I.e. we choose P and find sensitive states in the sphere of radius
√

2P − 1. In
this way we obtain a slice of the fractal which we now illustrate in the attractor
maps constructed upon the spheres. For the reason of the symmetry in the input
states (w,±u,±v), we restrict the maps only to φ ∈ [0;π), equivalently u ≥ 0.

In case P = 1 we have the Julia set for which the chaos and fractalness are
typical. We now aim for calculating the fractal dimension in the two-dimensional
space D2. We used the second box-counting approach in A. We used 50 ran-
domised boxings with resolution of up to 70002 boxes and we worked in spherical
angles 2.38 in range φ ∈ [0; 2π], ϑ ∈ [0.8994; 2.2422]. This range cuts off the areas
near poles |0⟩, |1⟩ where the fractal is not present.

D2 = 1.563± 0.001 (3.33)

Now let us descend to the mixed states, we define function d(P ) which for the
purity values finds the set of sensitive states and calculate their dimension. For
the box-counting we now used only maximal resolution of 50002 boxes with 10
randomised positions. This we do to reduce the computational time to less than
the maximal allowed time for a doctoral study. From the definition, d(1) = D2
should hold but with the limited resolution and randomisation, the value can
be slightly different. Also, we remind that the box-counting method is very
imprecise, namely for determining the number of boxes. We now present one of
the crucial results of our work, the plot of d(P ).

Figure 3.11: Dimension of sensitive states of purity P , d(P ). Errorbars expressing
the root mean quare error of the linear fit confirm validity of the fit.

The structure seemingly decays with decreasing purity 3.10 and for that rea-
son we had to focus on the structure by selecting such regions of φ, ϑ close to
axis (w, 0, 0) where the structure is present; we show an example of the zoomed
structure for two reasons. First, to show that in spite of the visual impression
from 3.10, the fractal is present for lower values of P . And second, to demonstrate
a case where the structure meets computational precision.

Without this zoom the numerical precision would severely impair dimension
estimate focusing on regular curves spanning the space while the fractal pattern
(scaled down in its absolute size) would be neglected.

Let us draw conclusions from the values of d(P ). While the fractal seems at
the first sight to decay into a rather regular structure of separate islands, the
plot of function d(P ), 3.11, proves (numerically) its preservation. The fractal-
ness disappears locally but globally the structure survives keeping its properties
(i.e. dimension) until the threshold P1 is reached. At that point, the structure
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Figure 3.12: A detail of the fractal structure for P = 0.771, the range of the
spherical angle ϑ is ϑ1 = 1.055788891194002, ϑ2 = 1.055788891194010.

suddenly collapses to a regular group of closed curves that match their visual im-
pression. These curves are retracted to points with lowering P , the points then
disappear. At the value of P2 the last sensitive point of the structure vanishes
and all states converge to 1. As the structure does not exist, its dimension drops
to 0.

The values P1, P2 were numerically found to coincide with the purities of the
familiar states (χ, 1− χ, 0), (µ2, 0, 0):

P1 = 1+χ2+(1−χ)2

2 = 1− χ+ χ2 .= 0.7693
P2 = 1+µ4

2 = µ
.= 0.5437

(3.34)

As a mathematical curiosity, we just drop here a note that while χ is the real
root of x3 − x2 + 3x − 1, P1 is the real root of x3 + 3x2 + x − 3 and µ2 is the
real root of x3 + x2 + 3x − 1. Thanks to these calculations we have found final
relation: 1− 2χ+ 2χ2 = µ, in physical context of trace distance:

t((χ, 1− χ, 0), (0, 0, 0)) = √µ. (3.35)

This finding with the rest of our earlier analysis of µ may indicate some more
profound mathematical connections of the values P1 and P2 that we are unaware
of. We rewrite P1 = 1+µ

2 . For the moment we just prove the expression for P2 in
previous equation for the people that are not that skilled in modular calculations
on the fields of polynomials to immediately see form definition µ3 +µ2 +µ−1 = 0
that:

1 + µ4 = µ+ µ2 + µ3 + µ4 = µ+ µ(µ+ µ2 + µ3) = µ+ µ = 2µ (3.36)

This finding is in agreement with the numerical and analytical findings that
these states work as sources for the structure of sensitive points as discussed in
the section of inverse iterations and previous paragraph of the chaotic evolution

66



in previous paragraphs. Actually, this finding suggests a more fundamental hy-
pothesis: while the point (µ2, 0, 0) is only connected to the sensitive structure
where it acts as a sink, contractive, regular behaviour it relates to the dimension
1. The point (χ, 1−χ, 0) is repelling even in the set of sensitive states, in terms of
the function of complex variables, this equals to the chaos and the points would
be related to the Julia set, which is often fractal. This is associated here with
fractal dimension d(P ) .= 1.56 for P > P1.

The fact of a sudden change in the dimension d(P ) leads us to the idea of phase
transitions. There is a set of sensitive qubits which are in our scope and their
structure has a discontinuity with respect to the initial purity. We identify the
phase with the quality of the structure of the sensitive states; the quantification
is performed via box-counting dimension, which is natural and feasible. The
classical analogue of the phase transition in the usual thermodynamic context
is e.g. the volume that changes suddenly. The term volume can be related to
the dimension thanks to d-dimensional Hadamard measure. The length of the
structure for P < P2 is zero, for P2 < P < P1 the length is finite, though
depending on P . For P2 < P the length is infinite. The length of the curves
cannot be well estimated from the attractor maps or other numerical handles,
one has also to consider the metric, in spherical representation the lengths are
distorted. In the Euclidean metric in the Bloch space the distance is not measured
on the sphere - hyperplane of constant purity. For this ambiguity we prefer
to analyse the dimension of the structure and identify it with the phase. The
dimension is independent of metric and other transformations. The role of the
temperature is taken by the purity of the initial states. The critical temperatures
P1, P2 separate the phase regimes of fractal, regular and empty structure.

Well accepted classification of phase transition was proposed by Ehrenfest,
[17], who defined the order of phase transition in terms of derivatives of Gibbs
energy based on their discontinuity. Such classification had to be generalised
after Onsager found phase transition in Ising model where so called logarithmic
divergence occurs [48]. Brief recapitulation on the topic of phase transitions is
in [32]. Also the topic of quantum phase transition was introduced specifically
for transitions happening at T = 0 e.g. where effects of quantum fluctuations
influence the spin structure. Our transition does not even match this definition.
We deal with a topic that is not directly related to the thermodynamics and Gibbs
free energy is not defined for this concept, only entropy. We must not confuse the
situation with the experimental realisation of a qubit which is often done with
ion traps made of superconducting materials, in this case the thermodynamic
potentials are defined on statistical ensembles but these do not connect to our
case of investigating of abstract single qubit dynamics. We will return to the topic
of phase transition in next section, where another concept will be introduced.

The fact that function d(P ) is discontinuous is very interesting for the fact
that in the theory of complex functions the Julia set is self-similar and the dimen-
sion is the global characteristic, in this case of evolution in three real dimensions
the structure of sensitive states does not have a globally unique dimension charac-
teristic but the dimension is a local characteristic with dependence on the purity.

To end with the topic of dimension, we have also tried to estimate the di-
mension of the fractal on Bloch sphere by the self-similarity concept. While the
attractor map in spherical coordinates ϑ, φ or stereographic projection to z, the
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areas and lengths of the fractal are distorted; we choose to work in the Bloch
sphere (w, u, v) with the physical metric t. We have chosen 10 fractal ‘vertices’
3.13 that demarcate self-similar patterns. Because the structure is stretched over
sphere, it is scaled unevenly and even our generalised formula cannot give pre-
cise results. However we propose to assign each quadrilateral block determined
by four vertices ρ1, ρ2, ρ3, ρ4 ordered along circumference its characteristic length
n(ρ1, ρ2, ρ3, ρ4) defined as square root of spanned ‘area’ which we define as a prod-
uct of the diagonal ‘lengths’:

n(ρ1, ρ2, ρ3, ρ4) =
√︂
t(ρ1, ρ3) · t(ρ2, ρ4) (3.37)

Figure 3.13: Left: Chaotic states on Bloch sphere (gray) with a self-similar unit
(black). Right: 10 particular vertices (black bold points) on zoomed self-similar
unit used for calculations of self-similarity dimension.

For the chosen vertices:
ρ1

.= (µ, µ̃, 0),
ρ2

.= (0.594554257, 0.568553091, 0.568553091),
ρ3

.= (0.254269020, 0.683866678, 0.683866678), n(ρ1, ρ2, ρ3, ρ4) .= 0.716490457598,
ρ4

.= (0, 0.878546813, 0.477656255),
ρ5

.= (0.311938205, 0.881788572, 0.353756232), n(ρ5, ρ7, ρ1, ρ8) .= 0.365128662285,
ρ6

.= (0.395388480, 0.754217263, 0.524236846), n(ρ8, ρ2, ρ7, ρ6) .= 0.299843788600,
ρ7

.= (0.599185696, 0.729694405, 0.329427652), n(ρ6, ρ10, ρ3, ρ9) .= 0.228035791985,
ρ8

.= (0.455273397, 0.796890304, 0.397104490), n(ρ9, ρ4, ρ10, ρ5) .= 0.275436662067,
ρ9

.= (0.283130608, 0.820646402, 0.496363316),
ρ10

.= (0.182787855, 0.802791723, 0.567550922),
(3.38)

and solving equation provided by our definition of self-similarity dimension
2.53

n(ρ1, ρ2, ρ3, ρ4)D = n(ρ5, ρ7, ρ1, ρ8)D + n(ρ8, ρ2, ρ7, ρ6)D+
+ n(ρ6, ρ10, ρ3, ρ9)D + n(ρ9, ρ4, ρ10, ρ5)D (3.39)

leads numerically to
DS

.= 1.559 (3.40)
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which is in surprisingly precise coincidence with the box-counting approach, in
spite of the numerical work. In spit of the fact that the global fractal shape does
not have to exhibit self-similarity with acutal fractal shape - the Koch flake is
usually constructed upon a triangular substrate but it does not consists of smaller
triangles.

To conclude, the fractal dimension of the Julia set has been verified various
algorithms realising box-counting approach and self-similarity approach. The
value 1.56 is preserved for mixed states until the structure collapses to the single
point and vanishes, this transition has signs of phase transition of the second kind
compared to the first kind in the exponential growth of basins of attraction of
the pure attractor A.

3.5 Purification capabilities an consequences for
practical use

Now, as the sensitive states are numerically undetectable because their structure
has dimension < 3, we can ask what percentage of states with fixed initial purity
converge to which attractor and reliably calculate this quantity numerically. This
piece of information is rather indicative because it is impossible to specify which
state converges where, although such information is convenient for practical reali-
sation - if the desired attractor would be too close (e.g. in terms of trace distance
T , 2.2.11) to the basin of attraction of another attractor, perturbations might
cause the protocol to converge to wrong result, to fail.

Because almost all states converge to one of the attractors, pure or maximally
mixed, we will speak of purification. Not in terms of the entanglement purifica-
tion, i.e. increasing concurrence 2.2.7 or the entanglement of formation, but in
the sense of decreasing mixedness, statistical uncertainty of the qubit ensemble.
In the following text we will always mean the purification in this sense and return
to the topic of the entanglement later. We now formulate an important finding
based on numerical evidence also visible in 3.10:

Statement 3.5.1. (∀ε > 0)(∃ρ state)(Tr ρ2 = 1− ε ∧ ρ→ 1).

We arrive to a serious consequence, the protocol aiming for purifying the state
can fail whenever the state is perturbed to a mixed one. However, we will now
show that this problem does not impose disproportional experimental limitation.
We will now examine the evolution on the spheres of constant purity and will try
to give e.g. partition of states of given initial purity that cannot be purified.

Such quantity can be calculated in purely geometric terms of areas on sphere:
we can create a grid of points on a sphere, representatives of small areas, find
their asymptotic regimes and compare the areas of states with different regimes.
But we think it is good to include an additional physical meaning. The pure
attractor pure and maximally mixed state are discerned by their entropy. State
converges to the pure cycle gains zero entropy, maximally mixed state has entropy
1. In consequence, the partition of states converging to 1 also has meaning of
average entropy of the asymptotically evolved states of sphere of constant purity.
We consider this approach to be more valuable as the average asymptotic entropy
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Figure 3.14: Numerical calculation of average entropy e(P ) of asymptotic evo-
lution of states of given purity P . Exponential trends determined in 3.2 drawn
dashed.

contains information about average purity of the states and could be calculated
for a general case where the attractors could be mixed states.

The process was executed in following way: a set of uniformly distributed
points on the sphere of radius corresponding to chosen initial purity P was cre-
ated. These points had been evolved until their asymptotic regime was deter-
mined. The entropy of each of the states is calculated and these values are
averaged. The uniform distribution of the grid points over a sphere has been
implemented using Fibonacci construction, [26], that will be explained later in
a more involved case. Following the line of thought of numerical estimation of
asymptotic dynamics and attractor maps we can reinterpret the scheme by assign-
ing each point (qubit) of the grid a small area on the sphere in the corresponding
Bloch representation. In the attractor map, the pixel (area represented by the
point of the grid) can be coloured just as in the corresponding attractor map
but the map typically distorts the areas due to transformation to spherical an-
gles or due to stereographic projection. Because the Fibonacci construction using
golden ratio guarantees that the points are uniformly distributed, each point has
the same weight and we simply calculate the mean value of the found entropies.
In this way, we assign to each value of purity of initial states P the mean entropy
e(P ) of the asymptotic regimes. In our numerical estimates we could write

e(P ) = 1
N

N∑︂
i=1

S(ρi) (3.41)

where ρi is the asymptotic output produced from input state with initial purity
equal to P . We keep in mind that e(P ) also is the probability of the protocol fail-
ure on random input with purity P because of the dichotomy that the asymptotic
regimes can have only S = 1 or S = 0.

The graph of the function e(P ) is in 3.14 and offers interesting results. First,
we confirm the earlier statement that when the purity is taken P = 1 − ε for
arbitrarily small ε > 0 there are states detected to converge to maximally mixed
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state, e(P ) > 0. When we choose purity in range P ∈ [0.95; 1] the trend seems
to be linear and by fitting in Gnuplot software we found that the trend matches

e(P ) = A · (1− P ), , where A = 1.0576± 0.0002. (3.42)

Our readers could object that we should use a general linear function AP + B,
but we obtained the same coefficients (up to a sign) well within the fit error.

The second conclusion to make from the graph of e(P ) 3.14 relates to the
minimal radius of the immediate basin of attraction of the maximally mixed
state. In terms of thepurity the analytic threshold given earlier was 0.5078125,
now improved to P2

.= 0.543689.

Statement 3.5.2. (∀P < P1 = µ)(∀ρ state)(ρ→ 1) in asymptotic regime.

But we find a new and very interesting result, e(P ) seems to follow exponen-
tial trends in P , immediately after the threshold P2 is exceeded. We have used
Gnuplot software to get a numerical fit on few segments, confirming the piece-
wise exponential trend, results are in 3.2. Only few intervals were fitted, with
growing purity the fit is more demanding, it is even possible that the trend gets
more complicated. The fact that the number of states that can be purified by
the protocol grows exponentially with purity above the threshold P1 is valuable
because it gives a clue about the protocol general purification capabilities. For
purity close to 1 the trend is dominated by linear tendency as said.

P range for fit a B C
[0.5440; 0.6478] −20.206± 0.051 10.243± 0.027 0.5154± 0.0005
[0.6478; 0.7718] −16.254± 0.023 9.512± 0.015 0.2099± 0.0003
[0.7719; 0.8105] −18.374± 0.034 11.753± 0.025 0.1728± 0.0002
[0.8106; 0.8590] −23.140± 0.068 16.180± 0.053 0.1405± 0.0002

Table 3.2: Table of exponential fits of e(P ). For given intervals of P trend
eAP+B + C was used to fit, coefficients found with gnuplot software are written
with corresponding errors of the fit.

The fact that the e(P ) starting to decrease at P2 matches the previously found
fact that (µ2, 0, 0) is the sensitive state with the lowest purity and determines
the phase transition. This state is analytically shown to not converge to the
maximally mixed state. Surprisingly, the next change of trend is found to happen
for value P

.= 0.6478 which is purity of (0,−µ, 0) where another bubbles of
basins of attraction of the pure cycle A emerge. The next value of trend change
also matches with emergence with new bubbles of basins of attraction. But the
trend does not change in P1. The emergence of fractal structure of infinite many
bubbles is restricted to spatially negligible areas and probably as this structure
is increased, the trend of e(P ) becomes more involved.

We can again speak of the phase transition and now we could introduce the
concept of the order of transition. We formulate

71



Conjecture 3.5.3. The phase transition of the entropy trend at temperatures
P = µ, P = 1+µ2

2 , P
.= 0.7719 is fundamentally different from the transition

at P1 = 1+µ
2 . The first kind of transition causes jumps in the average entropy

exponent e(P ) ∼ eAP . The second kind of the transition introduces continuous
change of e(P ).

The order of transition is analogous to Ehrenfest classification where first
order means jumps in the first derivatives of free energy, in our case jump in the
exponent of mean entropy e(P ). The second kind has continuous first derivative
(and jump in second derivative) which corresponds to changing exponent of e(P ).

Following hypotheses are based on numerical observation that new regular
curves emerge and such occasion matches the change of the exponent of e(P ).
Also new sources of fractal structure too, these nests from which the fractal prolif-
erates seem to be created when regular curves touch as the purity increases. First
such situation occurs at R and we come back to our hypothesis of dichotomy of
the structure of sensitive states. But we deferred further investigation because of
lack of numerical capacities and other goals of this thesis. With this we leave the
topic of phase transitions and leave further investigation for professional mathe-
maticians because the dynamics is beyond our current capabilities.

Conjecture 3.5.4. The both types of transition happen at higher values P , tran-
sition temperatures of the first kind and both kind have cluster point at P = 1.

Conjecture 3.5.5. The inaccessible points are bound to a structure of dimension
1 and emerge with increasing purity marking phase transition of the first order.
The accessible points of the structure are bound to the emergence of the fractal
structures of dimension D

.= 1.56, the emergence conditioned by increasing purity
of initial states forms phase transition of second order.

We have discussed the chance that protocol fails on random input of purity P ,
now we want to answer a related question: what partition of all states (regardless
of P ) converges to the maximally mixed state? What partition converges to the
attractive cycle? To which branch in regime of odd/even iterations? To do this,
we have to create a certain metric on how we weigh the states. Taking the same
number of states for certain purity would result into high density of states near
the centre of the Bloch ball. Alternatively, we could assign higher weight to
the states that are close to the pure states because we aim at the purification
capabilities. We decide to use the Euclidean metric which has the meaning of the
trace distance of the quantum states, t, 2.2.11. We create uniformly distributed
Cartesian grid of (w, u, v) points, let the states evolve to determine asymptotic
behaviour and calculate the fractions of individual dynamical regimes. Due to
the symmetries described earlier we can focus on only one octant of the volume
of the Bloch ball. We obtained following results: 27.78% of the states converges
to the maximally mixed state. Regarding the pure cycle, 48.59% of all states
converges to |0⟩ after even number of iterations and the rest 23.64% of states
converge to |0⟩ after odd number of iterations.

The partition of states asymptotically converging to the maximally mixed
states is also rather statistical marker than an exact limitation for the proto-
col usage because the fractal nature of the structure of the sensitive states and
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bubbles of basins of attraction spread through the ball in a complicated man-
ner. Anyway, this marker will be related to other protocols later, where we will
draw conclusions directly related to practical use. At this place, we conclude that
in more than two thirds of the cases (in the Cartesian grid of equidistant state
distribution) the protocol succeeds in the purification.

As optimistic as this number can seem, it offers no information about the speed
of the convergence and purification capabilities for states near |0⟩ whose analogy is
important in the two-qubit protocol. We will now answer both questions relevant
for practical use. To do so, we have to set a threshold where we are experimentally
satisfied with the precision of the convergence. We recall that a mixed state can
never become a pure one but can converge to it. In the literature, fidelity of the
produced state and the desired state is widely used to measure reliability. But
at this place we again choose the trace distance 2.2.11 as a more feasible and
illustrative variable. We choose value t(ρ, |0⟩) = 10( − 6).

We perform following procedure. We choose a value of t which has the mean-
ing of distance of the initial state from |0⟩, (1, 0, 0), the north pole of the Bloch
ball. For this value t ∈ [0; 2] we create an equidistant grid of states using the
Fibonacci algorithm with t = 2T (ρ, |0⟩⟨0|), [26]. This algorithm is more sophis-
ticated because we want to create grid of 1) precise number of points that 2) are
physical states, i.e. belong to the Bloch ball of coordinates all the points have
distance t from the north pole and 3) are distributed uniformly on the section of
the sphere. Therefore, at this place we present our code to create a set of (w, u,
v) coordinates of N such points t far from the state |0⟩.

phi=(1+sqrt(5))/2;
lsp=linspace(0,N-1,N)’;
K=1/2-t/4;
w=1-t*cos(acos(1-2*K*lsp/(N+1)));
u=t*cos(2*pi*(lsp/phi-floor(lsp/fi))).*sin(acos(1-2*K*lsp/(N+1)));
v=t*sin(2*pi*(lsp/phi-floor(lsp/fi))).*sin(acos(1-2*K*lsp/(N+1)));

When the points are created, we iterate the evolution map. After each itera-
tion we check which states converged successfully, record the number of converged
states and delete them from the array of states. For the sake of comprehension
we will speak of convergence speed c, it will be the minimal number of iterations
required to converge to the state within the set threshold. For each value of the
convergence speed, we divide the number of corresponding states by the total
number of states to obtain partition r(c, t) ∈ [0; 1]. Naturally, there can be states
requiring high number of iterations and there are states that converge to the
maximally mixed state, i.e. they never cross the threshold. We fix the number of
50 iteration at this place - if the state does not converge to |0⟩ within this limit,
we assign this value of convergence speed to the state. We obtain a set of data
c, t, r(c, t) that could be either plotted e.g. as a three-dimensional barplot but
for the better comprehensibility we choose a two-dimensional figure with axes c, t
and the partition r ∈ [0; 1] will be coded in greyscale range. Because the partition
r is very small, we show a cumulative histogram instead, R(c, t) = ∑︁

c′≤c r(c′, t)
which gives the partition of states that converged at latest after c iterations.

The conclusions drawn from the histogram is that the protocol is efficient
and there is major part of states that converge to |0⟩ within ≤ iterations. The
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Figure 3.15: Histogram of R(c, t), partition of states that converge to |0⟩ in at
most c iterations when in distance t originally. Value R ∈ [0; 1] coded in greyscale
colorbar, i.e. white colour means all states have already converged.

exponential converging trends studied two sections earlier are now confirmed as
a practical feature of the purification protocol. Now ask the most important
question for the protocol practical applicability: what is the closest state in the
terms of the trace distance that is not purified towards |0⟩? We have performed
numerical evolution on grids of 106 states in initial distance of t from the pole
and we have found that for

t < 1− µ2 .= 0.70440226 (3.43)

all the states converge to the pure cycle. The nearest state to fail to converge was
found to be (µ2, 0, 0), its trace distance is exactly. This distance determines the
maximal allowed perturbation for which the state is still guaranteed to converge
back to the pure cycle. Because of the symmetries, the radius of guaranteed
convergence applies to the south pole |1⟩ as well. In consequence, there also
is another threshold estimated numerically - states with t > 1.7993 are also
guaranteed to converge to the pure cycle.

The presented radii are the maximal and minimal limits on the perturbation
to guarantee the convergence to the attractor. But there is a significant volume
of states outside the limits 0.7044 < t < 1.7993, as can be seen in 3.15. If the
experimental realisation of the qubit cannot guarantee the value of t in prescribed
limits, the protocol may suceed but there is also nonzero probability to fail.
The worst case value was found at t .= 0.9121 for which 78.5% of such initial
states did not converge to |0⟩ in 50 iterations. Still, the chance of ca 21.5% of
purification success is not negligible. Precise probabilities can be given when
practical realisation of the experiment is considered because the states with the
same t do not necessarily have to be experimentally realisable with the same
probabilities. Calculations of such of experimentally influenced probabilities can
be executed according to our recipe with considerations of other factors when
needed, it is not relevant for the purpose of our thesis. On the other hand, the
existence and the value of the minimal radius is an interesting result.

Let us now ask the question on convergence speed from a slightly different
point of view. What is the minimal radius of perturbation t from |0⟩ to suc-
cessfully converge back in at most 2 iterations of the protocol (remember the
pairwise flip so we cannot require one iteration only)? When the threshold
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on convergence is still set to 10−6, we found numerically that the threshold is
t < 0.0009995 .= 10−3 which is in accordance with analytic approach - we have
derived relation for w′′ earlier, 3.6. When u, v

.= 0 and w
.= 1 are considered,

then
w′′ .= 4 w2 − 02 · 02

(1 + 12)2 + (02 − 02)2 = w2 (3.44)

The numerical calculations that estimated limit t .= 10−3 basically confirmed
that such estimates are sufficiently precise in the sense of Taylor approximation
for values as high as w = 10−3 → w′′ = 10−6. For the situation of bigger
disturbance where the approximations are not small we present another example,
when the threshold to say that a state converged to |0⟩ is set to 10−3, the range of
perturbed states increases to t .= 0.031138. Consequently, any state within this
limit converges to |0⟩ closer than 10−6 in at most 4 protocol iterations. Similarly,
all states within radius t < 0.1633 require at most 6 iterations to converge, states
with t < 0.3485 require at most 8 iterations and states with t < 0.4924 require
at most 10 iterations. Similar thresholds could be found for the case of state
initially close to |1⟩.

Current values of t that typically emerge in experimental setups are not known
to us as well as standard threshold on fidelity used to realise protocol of quantum
teleportation, Shor algorithm etc. The same situation is true for trace distance -
we have no knowledge of a widely accepted value of distance to deem two states
experimentally indistinguishable. Such threshold must be merely a convention,
not a physical quantity. But the fact that an error in terms of t ∼ 10−2 can be
corrected with at most four iterations proves very good purification capabilities
of the protocol.

At this place we only mention that two protocol iterations require 4 copies of
the qubit, four iterations require 16 copies of qubit , 2n qubits for n iterations.
That price for the purification is paid exponentially to the iterations required.
The convergence speed is therefore of high importance. We will return to this
topic in the fifth chapter where generalised protocols are introduced. For now,
we conclude e.g. that arbitrary state ρ such that t(ρ, |0⟩⟨0|) < 0.03 at most 16
copies must be sent through the channel and 4 protocol iterations performed to
guarantee succesful purification, that is t(ρ(4), |0⟩⟨0|) < 10−6.

The fact that there is a threshold 3.43 and other specific thresholds can be
found depending on experimental realisation, this means that the protocol is
robust. One could naively expect that the mixedness as an expression of statistical
uncertainty will be amplified by nonlinear protocol, but the converse is true. The
protocol is capable of purifying mixed states. This conclusion is the dedicated to
the protocol [36] and before we proceed on, let us make a short resume.

3.6 Summary
Before we proceed to more general model of the purification protocol, let us
summarise important findings so far. One of the reasons to study the proto-
col [1] is its practical purpose to purify entanglement, namely repair Bell state
that suffers from decoherence that is inevitable during transmission in realistic
channels. We have proposed a toy model of CNOT based protocol which allows
studying interesting dynamics of mixed states. Our model can be represented in
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three-dimensional space equipped with Euclidean-like metric. The role of the Bell
state Φ+ is taken by |1⟩ and the analogy will be discussed in the sixth chapter.
Previous research [35, 36] showed that this state of interest is a part of attractor
length 2 cycle, i.e. the purification protocol works as expected. But only when
restricted to a particular subset of the pure states which is a serious practical
limitation. a state typically evolves to a mixed one due to the decoherence. Our
result is much stronger, we claim that the attractor cycle is attractive for the
mixed states as well, i.e. the protocol can be reliably used to purify (for the
single qubit protocol the purification is meant in the terms of mixedness) even
mixed states. The protocol is robust. We have also given a threshold in terms
of the trace distance on the convergence speed and cost of input states. We also
gave probabilities of the protocol failure when random state of given purity is
used as the input. The question that remains unanswered is whether the original
protocol is robust in the regime of the two-qubit dynamics which is even more
complicated, we will study two-qubit protocol later.

For the first time, we have studied nonlinear evolution of mixed states, evo-
lution equations were derived and analysed both analytically and numerically.
We have dedicated our effort to evolution trends and found that the exponential
trends are the dominant feature of the evolution. We have found all attractors
and cycles and derived their stability. Next, we have introduced the concept of
Lyapunov exponents and calculated some of them in addition to usual stability
characterisation via Jacobi matrices. We have found a peculiar value µ which
proliferates into basically all relevant characteristics. I even used the letter µ to
accent that it has been MY favourite number ever since I started studying it. It’s
mine. My precious.

The most interesting finding is the existence of the fractal structure of sensi-
tive states - their asymptotic evolution is affected by the smallest perturbations.
We have shown that this structure is repelling and possesses also other funda-
mental properties known for the Julia sets, i.e. fractal structure. This result in
multidimensional analogue is highly nontrivial. The preimages of the sensitive
states exhibit unusual evolution that led us to state hypotheses on fundamental
dichotomy. There are true chaotic states in analogue to the Julia sets which are
fully invariant on backward iterations. And there is a set of sensitive points that
cannot be accessed by backward iterations. This feature is crucial difference to
the Julia sets. This structure probably is regular. The dimension of the structure
has been calculated in the Bloch ball with result D3

.= 2.17 and the fractal slices
on spheres of constant purity have D2

.= 1.56, the values have been verified by
multiple approaches, the box-counting and self-similarity.

We have also described the distribution of the fractal structure of sensitive
states in the Bloch ball. We arrived to phase transition which is the main result of
this chapter. The fractal dimension is constant and drops suddenly when purity
is decreased under threshold P1. The phase transition was put into coincidence
with emergence of new curves and fractal nests of sensitive states with increasing
purity. The order of phase transition was introduced when mean entropy e(P )
was introduced, marking whether regular or fractal structure emerges and demon-
strated. e(P ) also has physical meaning of probability of failure of the protocol
on random initial state of purity P . Other experimentally relevant characteristics
were discussed, including speed of convergence.
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4. Protocols with twirling gates

4.1 Twirling operators
After analysing the protocol equipped with the modified Hadamard gate H2 we
propose to change this operator, called twirling operator ; its purpose is to modify
the dynamics. In the most general case it can be any unitary operator U .

A general unitary matrix can be expressed in parametrisation of four angles.
For example as

U = eiα
(︄

cosxeiβ sin xe−iγ

− sin xeiγ cosxe−iβ.

)︄
(4.1)

For any operator U , by modification with an arbitrary constant to U ′ = eiαU
we obtain a different unitary operator. Yet, the evolution of the state UρU † =
U ′ρU ′†. Therefore, we state that such global phase is irrelevant for the physical
application and we sort all unitary operators to classes of equivalence when they
differ in the global phase only. Taking this into account, we can parameterise
all classes of unitary operators in following way which is convenient for further
physical context. The operators depend only on three parameters, angles.

U = TR,where

Tτ =
(︄

1 0
0 e−iτ

)︄
, Rx,ψ =

(︄
cosx sin xe−iψ

− sin xeiψ cosx

)︄
(4.2)

Our motivation to exclude the matrix T lies in time evolution of a free qubit.
If the two levels |0⟩, |1⟩ of the qubit are separated by energy gap of ∆E, then
they gain a relative phase when the qubit is treated as a free particle for a time
period ∆t, as follows from Schrödinger equation:

α|0⟩+ β|1⟩ → α|0⟩+ e− i
h

∆E∆tβ|1⟩ (4.3)

when pure states are considered for the simplicity at the moment. Calling τ =
i
h
∆E∆t we can write the evolution of the free qubit in the matrix form

|ψ⟩ =
(︄
α
β

)︄
→ |ψ′⟩ = Tτ · |ψ⟩ =

(︄
α

e−iτβ

)︄
(4.4)

Please note that the last chapter was dedicated to a special case of protocol
with twirling gate H2 determined by x = π

4 , ψ = τ = 0.
We will use the TR decomposition to introduce new notation. One iteration

of the protocol executed on state ρ will be marked by brackets (representing the
nonlinear action imposed by CNOT gate) and the twirling operators decomposed
to TR product; additionally equipped with index n to symbolise n iterations or
the infinity symbol to mark the state of asymptotic evolution.

ρ′ = TR(ρ⊙ ρ)R†T †

Tr(TR(ρ⊙ ρ)R†T †) ≡ TR[ρ] (4.5)

ρ′′ ≡ TR[TR[ρ]] ≡ TR[ρ]2 , . . . , TR[ρ]∞ ≡ TR[TR[. . . TR[ρ] . . . ]] (4.6)
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4.2 Twirled protocol action
The general recipe 3.2 remains and the calculations of the state evolution ρ′ =
TR[ρ] in terms of Bloch coordinates can be summed up to new three-dimensional
map:

w′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

W

N
cos 2x+

+ U

N
sin 2x cosψ+

+ V

N
sin 2x sinψ

u′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−W
N

sin 2x cos(ψ−τ) +

+ U

N
[cos 2x cosψ cos(ψ−τ) + sinψ sin(ψ−τ)] +

+ V

N
[cos 2x sinψ cos(ψ−τ)− cosψ sin(ψ−τ)]

v′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−W
N

sin 2x sin(ψ−τ) +

+ U

N
[cos 2x cosψ sin(ψ−τ)− sinψ cos(ψ−τ)] +

+ V

N
[cos 2x sinψ sin(ψ−τ) + cosψ cos(ψ−τ)]

(4.7)

where we introduced polynomial factors

N = 1 + w2,W = 2w,U = u2 − v2, V = 2uv. (4.8)

The factors are determined by the elementwise matrix product induced by the
CNOT gate, i.e. measurement based modification. Their nonlinearity is the key
element to the chaotic features. The rest of the formula combining these non-
linear factors represents linear transformation fully encoded in U = TR. The
fact that the unitary operator follows the measurement based selection allows
separating the two parts - nonlinear and geometrical - of the formula. The conse-
quence follows that the twirling can be viewed strictly geometrically in the Bloch
representation as rotations and other isometries. The nonlinear factors stir up
the ball of the initial states inducing whirls and various scaling when trajecto-
ries of states are tracked under protocol iterations. Naturally, when the protocol
is iterated, both nonlinear and unitary parts alternate in each iteration. Even
similar twirlings can result into very different asymptotic dynamics.

4.3 Symmetries
Previous formulas seem to be complicated but numerical calculations can help
to understand the evolution. Thanks to the created attractor maps, we have
discovered various symmetries which are now to be described. Such symmetries
are very important for further analysis as they reduce all possible situations of
both input quantum states and applied purification protocols to far smaller sets
and cases.
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First, we discuss the input states. As the evolution equations contain quadra-
tic terms, we can expect some form of singularity. Checking the action closer, we
can uncover the map is two-fold, always mapping two states onto a single one.
This is true regardless of the twirling parameters because the nonlinearity is the
consequence of the CNOT gate. Of course, the protocol parameters determine
the preimage → image but the two preimages of a single image are connected
by a bond independent of the protocol parameters, lets look at the factors U, V .
Substituting u → −u, v → −v simultaneously gives the same U, V and thus the
same image.

Yes, we have observed this property earlier for H2, now we see it is more
fundamental property of the protocol. We exploit this feature by only consid-
ering half of the Bloch ball of all possible input states, we restrict the spherical
coordinates of the state 2.39 to φ ∈ [0;π), in other words v ≥ 0. The domain
is reduced to a half in size. Alternatively, we could set u ≥ 0 but we made the
choice of v because numerically the states tend to v = 0 for the H2 protocol and
also for other reason that the state u = 1, w = v = 0 plays and will play an
important role in later chapters, it is also suitable for the reason that in spherical
coordinates it has φ = 0. To give a hint now for the symmetries of the future
chapters, we remind that if the state is rotated around the w axis by φ→ φ+ π
the substitution u, v → −u,−v is performed. We can say there is two-fold axial
symmetry around w-axis.

On contrary, the central symmetry (w, u, v) ↔ (−w,−u,−v) is lost, such
states can evolve differently. The restriction of the state parameters to φ, ϑ ∈
[0;π] is the narrowest possible.

The first note to take regarding the protocol parameters, concerns the rota-
tion angle x which is always doubled in the map 4.7, therefore choosing any of
values x, x+ π results into the same evolution equations, i.e. the same protocols.
Therefore, we can restrict ourselves to x ∈ [0;π).

Another symmetries are found, let us take a protocol with x, ψ, τ yields
(w′, u′, v′) when cast upon input state (w, u, v). Protocol with π − x, ψ, τ cast
upon input state (−w, u, v) yields (−w′, u′, v′). That is, the Bloch sphere can
be reflected across plane w = 0, evolved with protocol alternated by x → π − x
and then the outputs reflected back afterwards; we obtain the same state as if
the first protocol would be used straight. These two protocols are not identical,
we might rather use a word conjugate, similarly to 2.3.2. Still, we will also and
equivalently speak of symmetry for following reason. When the attractor maps
for these two protocols are created in spherical coordinates φ, ϑ, the reflection of
input states manifests as an upside-down flip of the map. The reflection of the
output state changes the colour scheme of the map. When RGB code 2.5 is used,
the blue component is inverted for the mentioned protocols.

Another conjugation is found: protocol with x, ψ, π − τ cast upon (w, u,−v)
yields (w′, u′,−v′) and when cast upon (w,−u, v) we get (w′,−u′, v′) . And last,
protocol with x, ψ, τ +π applied to (w, u, v) (or (w,−u,−v)) gives (w′,−u′,−v′).
It follows straight from the goniometric functions of ψ − τ in 4.7. Together with
aforementioned symmetry φ→ φ+ π

2 we conclude the dynamics is equivalent for
both protocols.

As the output states of conjugate protocols after on iteration are connected,
the whole evolution with asymptotic dynamics is. Namely, the fractal structures
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can be mapped one onto another by symmetries. Also, the convergence speed and
other dynamical features are equivalent though not visible in attractor maps. In
[39] we have introduced the concept of equivalence, although for pure states only.
It was represented by special matrices S such that S ⊙ S was a permutation
matrix. The action of S on a qubit changed the evolution scheme in a simple
way modifying the input states and output regimes by permutation of Bloch
coordinates and eventually reverting orientation of the axes. Simply told in the
visualisation, the attractor maps of two different protocols were the same up
to a flip in left-right, up-down and/or diagonal direction and the colour code
was also inverted in corresponding way. Now, we see that such concept is valid
even for mixed states. We could generalise it not only to e.g. arbitrary unitary
transformations of the Bloch coordinate of the input and output states. But the
last symmetry in τ ↔ π − τ is found to possess even stronger property. For
that reason, we introduce and formalise a new concept of our own - asymptotic
equivalence - as follows.

Definition 4.3.1. Two protocols represented by twirling operators R1, T1 and
R2, T2 are asymptotically equivalent whenever there are two unitary operators
U−1

1 = U †
1 , U

−1
2 = U †

2 such that for all ρ states

T1R1[U1ρU
†
1 ]∞ = U2(T2R2[ρ]∞)U †

2 . (4.9)

Let us now discuss the consequences of this definition. When evolution of
certain initial state is performed in a desired way to be purified to a specific
output with one protocol, we can also use a unitary gate and iterate the other
asymptotically equivalent protocol and apply another unitary gate to obtain the
same result. The meaning of the input is the physical qubit, not its geometrical
representation like for symmetries above. Such symmetries may be only purely
abstract concepts without direct physical realisation. Recalling the symmetry
of protocols with τ ↔ π + τ yielding (w, u′, v′); (w,−u′,−v′) on the same input
state, such case is an example of asymptotically equivalent protocols, the unitary
operators are U1 = σ0, U2 = σ3. On the other hand, reflection (w, u,−v) →
(w, u,−v) for protocols τ ↔ π − τ cannot be realised by unitary evolution of
qubit ρ.

This concept motivated by physical purposes is of a crucial practical impor-
tance because, even naively, some gates can be prepared more easily than others.
Iterating the more feasible gates can be executed with higher precision. There-
fore, the whole quantum communication process can have higher probability of
success.

As for the visual interpretation in the Bloch space, resp. the attractor maps,
the structures of the equivalent protocols are related in a unitary manner. Also,
the colour code of the attractors is changed and could be understood as a unitary
transformation in RGB space if represented in a clever way. We conclude that
all the shapes can be shifted, reflected and rotated and gain different colours in
the attractor maps, but in a form determined by properties of unitary opera-
tors. We remind that all unitary operations are isometric and for this reason the
(Hausdorff) dimension of an object cannot change when mapped by an isometric
map. This fact comes from the definition using the diameters of optimal cover-
ings 2.3.35. These values do not change under the unitary transformations. Our
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interest in fractal structures, that are characterised by their dimension, is there-
fore not affected by considering such transformations. In our case, the choice of
a particular member of the class of asymptotically equivalent protocols is not rel-
evant and the investigation of asymptotic properties and fractal structures gives
information about the whole class of protocols.

We conclude that the symmetries and equivalences form classes of protocols
that significantly reduce parameter combinations of protocols to be studied. For
now, we have restricted the values of input states to half of the original range
φ ∈ [0;π), ϑ ∈ [0;π] and the protocol parameters to 1/16 of the original range:
x, τ ∈ [0; π2 ].

There are also symmetries in ψ. Namely, protocol with x, ψ + π, τ yields
(−w′, u′, v′) when acting on (−w, u, v) and protocol with x, π − ψ, τ transforms
(−w, u,−v) into (−w′, u′,−v′). But we will see right next that these can be
related to the symmetries of τ after we present one of the most important result
of the chapter. The next symmetry reduces the parameter space by a whole
degree of freedom.

4.4 Manipulation of time relaxation
The reason to introduce the concept of asymptotic equivalence lies mainly in the
fact that there are symmetries that combine the action on states with the protocol
parameters. We can now focus on the angular factors of ψ, τ which seem in 4.7
to take form similar to goniometrical identities.

Consider now two protocols with the same angle x and different angles ψ1, τ1
and ψ2, τ2. We set up a question whether two protocols can induce the same
dynamics with different pairs of the angles. The answer to this is negative when
one desires each state to evolve to identical output, identical asymptotic regime
regardless of the protocol. However, we can ask only for the asymptotic equiva-
lence of the protocols as such protocols share the same dynamical attributes. In
this case, we surprisingly succeed as following figures suggest.
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Figure 4.1: Attractor map of a protocol with x = 30◦, ψ = 0◦, τ = 137◦. Spherical
angles capture v ≥ 0 hemisphere, the map is repeated to φ → φ + π thanks to
symmetries. Note that north pole |0⟩ is represented by the top of the figure,
ϑ = 0, while the south pole ϑ = π

2 , the bottom line of the figure, represents |1⟩.
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To prove the relation that will be precisely formulated below, we start with
goniometry. The evolution equations 4.7 can be alternatively rewritten using
identities of goniometric functions valid for all angles:

cos2 x cos τ + sin2 x cos(2ψ−τ) = cos(2x) sinψ sin(ψ−τ) + cosψ cos(ψ−τ)
cos2 x cos τ − sin2 x cos(2ψ−τ) = cos(2x) cosψ cos(ψ−τ) + sinψ sin(ψ−τ)
cos2 x sin τ + sin2 x sin(2ψ−τ) =−cos(2x) cosψ sin(ψ−τ) + sinψ cos(ψ−τ)
cos2 x sin τ − sin2 x sin(2ψ−τ) = cos(2x) sinψ cos(ψ−τ)− cosψ sin(ψ−τ)

(4.10)
We have never encountered such equations and we consider them to be pretty

(and) nontrivial, so we decide to accompany them with a proof. Hopefully, our
readers will excuse us if they are not fans of such relations. We show the proof for
only one case, e.g. the last equation, the other cases can be processed analogically.
Tricky expansions are marked in gray. First, we express the left side in the terms
of products of sole cosine/sine factors.

cos2 x sin τ − sin2 x sin(2ψ − τ) =
= cos2 x sin τ(cos2 ψ + sin2 ψ⏞ ⏟⏟ ⏞)− 2 sin2 x sinψ cosψ cos τ+

+sin2 x cos2 ψ sin τ − sin2 x sin2 ψ sin τ⏞ ⏟⏟ ⏞
Combining factors marked with corresponding underlining we obtain

cos 2x sin2 ψ sin τ⏞ ⏟⏟ ⏞−2 sin2 x sinψ cosψ cos τ + cos2 ψ sin τ

where we expand the middle member to

− sin2 x sinψ cosψ cos τ+ cos2 x sinψ cosψ cos τ−
− cos2 x sinψ cosψ cos τ − sin2 x sinψ cosψ cos τ

recognising goniometrical identities again to put back together into

cos 2x sinψ sinψ sin τ + cos 2x sinψ cosψ cos τ+
+ cosψ cosψ sin τ − cosψ sinψ cos τ =

= cos(2x) sinψ cos(ψ − τ)− cosψ sin(ψ − τ)

To come back to the protocols, we can suspect now there is some kind of
self-symmetry. One can elaborate with the help of the figure 4.2 and previous
identities that two protocols with ψ1, τ1, ψ2, τ2 satisfying ψ1− 2τ1 = ψ2− 2τ2 will
share the characteristic dynamics. The evolution of initially same qubits outlined
by equations 4.7 is different but we discover they share a strong connection that
forms one of the most important results of our work.

Theorem 4.4.1. Two purification protocols T1R1[.], T2R2[.] with parameters
x1, ψ1, τ1 and x2, ψ2, τ2 are asymptotically equivalent when

x1 = x2, ψ1 − 2τ1 = ψ2 − 2τ2. (4.11)

Defining τ0 ≡ τ1 − τ2 and T0 =
(︄

1 0
0 e−iτ0

)︄
, following equation holds.

T0 · T1R1[ρ] · T †
0 = T2R2[T0 · ρ · T †

0 ] (4.12)
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Proof. The proof is direct yet subtle because the manipulation of the expressions
is demanding even for computer. Examining directly the action of operator T0,

for the moment with unknown phase τ0, upon the state ρ = 1
2

(︄
1 + w u− iv
u+ iv 1− w

)︄

we get T0ρT
†
0 = 1

2

(︄
1 + w (u− iv)eiτ0

(u+ iv)e−iτ0 1− w

)︄
. If such modified state is taken

as the input for the iteration of the protocol, it is sufficient to substitute u →
u cos τ0 + v sin τ0, v → −u sin τ0 + v cos τ into the evolution equations. Because
the coordinate w remains unaffected, quadratic factors N,W,U, V change to
N,W,U cos(2τ0)+V sin(2τ0),−U sin(2τ0)+V cos(2τ0). The fact that U, V change
the same way as u, v, only the angle gets doubled, is the base pillar of this proof.

To continue, we have to compare the states obtained at both sides (left L,
right R) of the equation of the equation 5.15. To show that they are identical,
we have to show all their Bloch coordinates are identical. For simplicity, we start
with w′ coordinate. Since the operator T0 does not modify w coordinate we can
write straightforwardly the result w′

L using angles x1, ψ1, τ1 and for the right side
one has to use the angles x2, ψ2, τ2 and modify factors U, V because of the prior
operation of T0 to get coordinate w′

R:

w′
R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W
N

cos 2x2 +
+
(︂

U
N

cos 2τ0 + V
N

sin 2τ0
)︂

sin 2x2 cosψ2 +
+
(︂
−U
N

sin 2τ0 + V
N

cos 2τ0
)︂

sin 2x2 sinψ2

(4.13)

When we want to prove w′
L = w′

R, we have to confirm in addition to equality of
x1, x2 also

cos(2τ0) cosψ2 − sin(2τ0) sinψ2 = cosψ1
sin(2τ0) cosψ2 + cos(2τ0) sinψ2 = sinψ1

(4.14)

which is trivial because

cos(2τ0) cosψ2 − sin(2τ0) sinψ2 = cos(ψ2 + 2τ0) (4.15)

and we sum up

w′
L = W

N
cos 2x1 + U

N
sin 2x1 cosψ1 + V

N
sin 2x1 sinψ1

w′
R = W

N
cos 2x2 + U

N
sin 2x2 cos(ψ2 + 2τ0) + V

N
sin 2x2 sin(ψ2 + 2τ0)

(4.16)

The equality holds (for all input states, i.e. for all w, u, v) if and only if x1 =
x2 ≡ x, we write this explicitly to accent that different x1,2 values cannot give
the same equations. For the sake of simplicity, we will from now on write only
the unique x. The other angles must satisfy 2τ0 = ψ1−ψ2. We took the value τ0
for unknown, but we have just obtained a restriction for it.

Calculations of the other Bloch coordinates are technically demanding but as
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they are carried out in the same way as before we write only the results:

u′
L =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−W
N

sin 2x cos(ψ1−τ1 −τ0) +

+ U

N
[cos 2x cos(ψ1−τ1 −τ0) cosψ1 + sin(ψ1−τ1 −τ0) sinψ1] +

+ V

N
[cos 2x cos(ψ1−τ1 −τ0) sinψ1 − sin(ψ1−τ1 −τ0) cosψ1]

u′
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−W
N

sin 2x cos(ψ2−τ2) +

+ U

N
[cos 2x cos(ψ2−τ2) cos(ψ2+2τ0) + sin(ψ2−τ2) sin(ψ2+2τ0)] +

+ V

N
[cos 2x cos(ψ2−τ2) sin(ψ2+2τ0)− sin(ψ2−τ2) cos(ψ2+2τ0)]

v′
L =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−W
N

sin 2x sin(ψ1−τ1 −τ0) +

+ U

N
[cos 2x sin(ψ1−τ1 −τ0) cosψ1 − cos(ψ1−τ1 −τ0) sinψ1] +

+ V

N
[cos 2x sin(ψ1−τ1 −τ0) sinψ1 + cos(ψ1−τ1 −τ0) cosψ1]

v′
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−W
N

sin 2x sin(ψ2−τ2) +

+ U

N
[cos 2x sin(ψ2−τ2) cos(ψ2+2τ0)− cos(ψ2−τ2) sin(ψ2+2τ0)] +

+ V

N
[cos 2x sin(ψ2−τ2) sin(ψ2+2τ0) + cos(ψ2−τ2) cos(ψ2+2τ0)]

(4.17)
Both of the equalities are satisfied simultaneously when the already known

restriction 2τ0 = ψ1−ψ2 is satisfied and in addition, another restriction emerges:
ψ2 − τ2 = ψ1 − τ1 − τ0. These equations can be used to eliminate unknown τ0 to
obtain restriction solely on ψ1,2, τ1,2 and then to express unknown parameter τ0
that fits demanded equations:

ψ1 − 2τ1 = ψ2 − 2τ2 (4.18)

τ0 = ψ1 − ψ2

2 = τ1 − τ2 (4.19)

This completes the proof of equation 5.15, now we rearrange

T1R1[ρ] = T †
0 · T2R2[T0 · ρ · T †

0 ] · T0 (4.20)

to realise that for arbitrary n ∈ N we can inductively follow:

T2R2[T0 · ρ · T †
0 ]n = T2R2[T2R2[T0 · ρ · T †

0 ]]n−1 =
= T2R2[T0T

†
0 · T2R2[T0 · ρ · T †

0 ] · T †
0T0]n−1 = T2R2[T0 · T1R1[ρ] · T †

0 ]n−1

= T2R2[T0 · T1R1[ρ]2 · T †
0 ]n−2 = · · · = T0 · T1R1[ρ]n · T †

0
(4.21)

In the limit n → ∞ we obtain the statement about asymptotic equivalency of
the protocols and so complete the proof.

T2R2[T0 · ρ · T †
0 ]∞ = T0 · T1R1[ρ]∞ · T †

0 (4.22)
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There is a natural consequence following from the proof. The equivalence of
the protocols is not true for only asymptotic regime but for arbitrary number of
iterations k ∈ N, just as we have seen for other symmetries.

T †
0 · T1R1[ρ]k · T0 = T2R2[T0 · ρ · T †

0 ]k (4.23)

However, this fact is not of much importance because we focus on the asymptotic
evolution, fractal structures etc. We could have proposed a theorem with single
iteration and derive the asymptotic equivalence from it, but we wanted to accent
the asymptotic dynamics. The important knowledge of relation between unitary
gates of the asymptotically equivalent protocols in 4.3.1, U1 = U2 = T0, is relevant
for experimental application. And it also gives relation between corresponding
fractal structures.

We now discuss various ideas that accompany and accent the importance of
this theorem. Let us start with a word commutation. This can come into one’s
mind when seeing relation 4.20. The fact that such equation holds is highly non-
trivial, it is nontrivial even for linear operators A,B where TAρA†T † ̸= BTρT †B†

generally. Especially if A = B we come to the commutation relation AT = TA
and the existence and properties of operator T can fill the books on their own.
For unitary operators A,B, T there must be relation of similarity, B = TAT †

satisfied to validate TAρA†T † = BTρT †B† for all input states ρ. The fact that
a similar relation is valid for nonlinear operator based on the CNOT gate (here
represented by brackets [.]) is very interesting, even more for the fact that the
T0 is of the form of the free time evolution operator. The discovery of the exact
relation amongst the angles is the culmination of our general result.

Let us now explain the theorem in the geometrical representation in the Bloch
space. The action of T0 upon a qubit makes it rotate around w-axis by angle
τ0. This prominent role of the w-axis is the reason why we use the notation
(w, u, v). The equation 4.20 is interpreted in following way now. When we take
two protocols satisfying theorem conditions and we apply the first one on the
whole Bloch sphere of initial states, we obtain the same results as if we would
first rotate the ball by the angle τ0 = τ1− τ2 around the w-axis, apply the second
protocol and then rotate back, i.e. by −τ0 around the w-axis. Furthermore, this
geometrical representation works not only for a single iteration but also for any
number of iterations, as the proof showed. Of course, in this geometric point of
view, the rotation there and back that is performed between two iterations act
together simply as the identity.

Ultimately, in the asymptotic regime we arrive to the attractor maps that
for these two equivalent protocols are connected in following way. In spherical
angles φ, ϑ for fixed P , we will see that the pattern corresponding to the first
protocol is shifted by angle τ0 = τ1 − τ2 to the left, i.e. φ → φ + τ0 compared
to the pattern in the map of the second protocol. In other words, when param-
eter τ is increased by τ0 while keeping ψ − 2τ , the image is shifted to the right
by τ0. This is the result of the T0 action on the initial state ρ. The final rota-
tion of the T2R2[T0 · ρ · T †

0 ] imposed by T †
0 transforms the output state which is

represented by colour. This means that the patterns in the attractor maps will
have modified colours. When the colour coding would be determined as a func-
tion of the spherical coordinates, let us symbolically write the RGB coding as
R1 = R(P, φ, ϑ), G1 = G(P, φ, ϑ), B1 = B(P, φ, ϑ), one can see that this scheme
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is also shifted to R2 = R(P, φ− τ0, ϑ), G2 = G(P, φ− τ0, ϑ), B2 = B(P, φ− τ0, ϑ).
Geometrically, one could suggest that the natural coordinates for this pro-

tocol are the cylindrical
√
u2 + v2, φ, w. However, our analysis showed that the

evolution equations do not simplify in a manner that would offer an advantage.
While the purity as a spherical radius is physically more relevant parameter, we
keep the spherical coordinates. Still, the cylindrical symmetry is important and
we have to be aware of it.

The strictly abstract representation above is also important for another reason
- the physical understanding of the situation. The action of T0, seen as a rotation
in the Bloch space in fact is the free time evolution of the qubit 4.4, that was our
motivation to decompose the twirling operator U = TR. We now interpret the
equation 4.20 in the context of experimental execution of the protocol. Taking the
two equivalent protocols with x, ψ1, τ1;x, ψ2, τ2 according to the theorem again,
we can execute the first protocol with x, ψ1, τ1 and than leave the state evolve
freely for the period corresponding to the relative phase τ0 = τ1 − τ2 or we can
first let the state evolve freely for τ0 and then execute the other protocol with
x, ψ2, τ2. We obtain the same results in both cases. The same conclusion is valid
for arbitrary number of iterations.

Now we have discovered the reason why the theorem has such significant
importance. We are given a guide to realise the protocol experimentally. So
far, the idea of the use of the protocol did not take into account that the qubit
is sent across the universe and it evolves (for this moment let us say) freely.
The protocol also is assumed to be performed multiple times to guarantee that
the state is purified sufficiently. The single iteration steps cannot be executed
instantaneously and by practical limitations are separated by short time gaps
when the qubit evolves freely. If we are to apply the protocol then, the initial
state is changed which can affect the convergence etc. However, now, we can use
another protocol to eliminate the effect of the free time evolution. By changing
the twirling gate angles ψ, τ in a manner preserving value ψ − 2τ , the time gap
is virtually manipulated.

Before we analyse this thought in detail, let us make one more point on the
importance of the theorem 5.15. When the subsequent iterations of the protocol
application are performed, each iteration with different twirling - TiRi for i-th
iteration - but all these operators satisfy ψi− 2τi = const. for the same constant,
the time evolution operators Ti can be commuted out of the iterations. The whole
series of iteration can be executed by certain time evolution on the input state,
a series of iterations with modified rotations and a final time evolution of the
output state.

Let us write down basic consequences of 4.20 to obtain and interpret some
practical results. First of all, as we have already mentioned, the time gap τ can
be manipulated at the cost of alteration of ψ, we now list exact prescriptions to
elementary situations of protocol applications.

• Adding the time relaxation to the protocol.

R1[R1[R1[. . . R1[ρ] . . . ]]]→ T · (TR2[TR2[TR2[. . . TR2[T † · ρ · T ] . . . ]]]) · T †

(4.24)
If the protocol iterations are executed immediately but we need certain time
evolution, resp. the phase τ to take place, we can implement it without
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actually leaving the system to evolve freely. The required time for protocol
implementation can dramatically decrease. Gate R2 must be chosen with
ψ2 = ψ1 + 2τ .

• Eliminating the time relaxation from the protocol.

TR1[TR1[TR1[. . . TR1[ρ] . . . ]]]→ T † · (R2[R2[R2[. . . R2[T · ρ · T †] . . . ]]]) · T
(4.25)

On contrary, if the protocol iterations are separated by time evolution (for
example due to transmission of state or due to technological realisation)
we can modify the protocol to undo this unwanted phase τ with setting
ψ2 = ψ1 − 2τ .

• Changing the time relaxation of the protocol from τ1 to τ2.
The most general case has the same equation 4.25, with the meaning that
the time delay between protocol iterations can be lengthened or shortened at
will by premodification of the input state and postmodification of the output
state with the time relaxations by τ = τ1−τ2 and change ψ2 = ψ1+2τ2−2τ1

All these options are still considering one particularly desired protocol, but
we can turn the thinking another way around. Let us assume we have a protocol
with a known attractor (w, u, v) but we desire experimentally to achieve another
attractor. Now, we claim that any attractor

(w, u cos τ0 − v sin τ0, u sin τ0 + v cos τ0) (4.26)

is achievable by some another protocol obtained by setting corresponding angles
ψ, τ . Proof is obvious from 4.20. Or, in case we have only limited experimental
possibilities to prepare input state, we can use another protocol with suitable ψ, τ
to simulate another input state. The possibilities are the same as listed above
but there is a limitation, the states must share common coordinate w. At this
moment it is not clear, whether there can be protocol found to have an attractor
of specific w; we will resolve this problem later.

We conclude that the symmetry has crucial experimental significance. The
relation ψ2 − ψ1 = 2(τ2 − τ1) is key ingredient to transfer the protocol from
theory to practical use which is burdened with certain time relaxation between
the protocol iterations. We are aware of the fact that the evolution between
the iterations is not typically free as considered in our text. However, when the
perturbations are small, the purification capabilities of the protocol together with
the manipulation of time relaxation are very promising for experimental success
of the protocol. Or at least much more promising than so far.

Let us now finish the topic of symmetries started in previous section. For
the purpose of our work of exploring chaotic features of the protocols, we draw
following conclusions. The symmetries of the initial states allow to take only
P ∈ [1

2 ; 1], φ ∈ [0;π), ϑ ∈ [0;π] and protocols with x ∈ [0; π2 ], ψ = 0, τ ∈ [0; π2 ]. All
the other protocols with ψ ̸= 0 can be transformed using the symmetries or the
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theorem 5.15 to case ψ → 0, τ → τ − ψ
2 . The evolution equations 4.7 reduce to

w′ = +W
N

cos 2x +U

N
sin 2x + 0

u′ = −W
N

sin 2x cos τ +U

N
cos 2x cos τ + V

N
sin τ

v′ = +W
N

sin 2x sin τ −U
N

cos 2x sin τ + V

N
cos τ

(4.27)

which are significantly simplified compared to the original equations.
Another alternative to setting ψ = 0 could be made based on equations written

in 4.10, we could set ψ → 2τ − ψ ← τ . Such protocol would induce evolution
equations

w′ = W

N
cos 2x +U

N
sin 2x cosψ +V

N
sin 2x sinψ

u′ = − W

N
sin 2x +U

N
cos 2x cosψ +V

N
cos 2x sinψ

v′ = 0 −U
N

sinψ +V

N
cosψ

(4.28)

These equations may seem more simple, in particular for ψ = 0 where the
Bloch coordinate evolution is separated in U, V,W,N factors. However, these
factors contain all the coordinates, so even in this case, deriving some statements
e.g. about convergence in v → 0 would be highly nontrivial. For the reason of
the physical interpretation of τ as the time we prefer the protocol setting with
ψ = 0.

Another easy and reasonable option to rewrite the equations is obtained for
transforming ψ → 1

3(2τ − ψ) ∧ τ → 2
3(2τ − ψ) to guarantee property 2ψ − τ = 0

for the protocol angles which simplifies equations, it may be better seen in the
identities 4.10 we have proven. In this case, the evolution equations are

w′ =

⎧⎪⎪⎨⎪⎪⎩
W

N
cos 2x+

+ U

N
sin 2x cosψ + V

N
sin 2x sinψ

u′ =

⎧⎪⎪⎨⎪⎪⎩
−W
N

sin 2x cosψ+

+ U

N
[cos2 x cos 2ψ − sin2 x] + V

N
cos2 x sin 2ψ

v′ =

⎧⎪⎪⎨⎪⎪⎩
+W
N

sin 2x sinψ+

− U

N
cos2 x sin 2ψ + V

N
[cos2 x cos 2ψ + sin2 x]

(4.29)

but these have shape very similar to 4.27. The relation τ = 2ψ also is of no
importance to physics, therefore we stick to the variant where τ = 0 is set.
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The very last option we list is to set τ → 0, ψ → ψ− 2τ , we obtain equations

w′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

W

N
cos 2x+

+ U

N
sin 2x cosψ+

+ V

N
sin 2x sinψ

u′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−W
N

sin 2x cosψ+

+ U

N
[cos 2x cosψ cosψ + sinψ sinψ] +

+ V

N
[cos 2x sinψ cosψ − cosψ sinψ]

v′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−W
N

sin 2x sinψ+

+ U

N
[cos 2x cosψ sinψ − sinψ cosψ] +

+ V

N
[cos 2x sinψ sinψ + cosψ cosψ]

(4.30)

It would be similarly good to take these instead of 4.27 but we prefer the first
variant for the context of time evolution; also, other equations will be more simple
in next text due to one nullified factor in w′.

Let us conclude that there is an equivalence class on the purification protocols
characterised by ψ − 2τ = const. For further purposes of fractal analysis the
equivalence brings significant reduction of protocol parameters. The degree of
freedom in the choice of parameters is reduced from 3 to 2. It is enough to analyse
the asymptotic dynamics for one representative of the class, all other cases can be
converted to such representative by prescribed formulas, no dynamical regimes
will be missed in our research.

4.5 Inverse iterations, stability, invariant sets
Let us proceed to backward iterations which can be used to detect fractal struc-
tures. Even though we have found the inaccessible states in last chapter, back-
ward iterations still may be an important tool helping to approximate the fractals.
For pure states, the backward iterations still are perfectly valid instrument of Ju-
lia set detection regardless of the twirling parameters. We split the deriving of the
equations into two parts. First, multiplying and adding/subtracting equations 4.7
we get relations

u′ sin(ψ−τ)− v′ cos(ψ−τ) = U
N

sinψ − V
N

cosψ,
u′ cos(ψ−τ) + v′ sin(ψ−τ) =

(︂
U
N

cosψ + V
N

sinψ
)︂

cos 2x− W
N

sin 2x. (4.31)
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continuing with multiplying these equations and equation for w′ with factors
cos(ψ − τ) etc. we can enjoy surprising fun1 coming to

W

N
=

⎧⎪⎪⎨⎪⎪⎩
w′ cos 2x−

−u′ sin 2x cos(ψ − τ)−
− v′ sin 2x sin(ψ − τ)

U

N
=

⎧⎪⎪⎨⎪⎪⎩
w′ sin 2x cosψ+

+u′ [cos 2x cos(ψ − τ) cosψ + sin(ψ − τ) sinψ] +
+ v′ [cos 2x sin(ψ − τ) cosψ − cos(ψ − τ) sinψ]

V

N
=

⎧⎪⎪⎨⎪⎪⎩
w′ sin 2x sinψ+

+u′ [cos 2x cos(ψ − τ) sinψ − sin(ψ − τ) cosψ] +
+ v′ [cos 2x sin(ψ − τ) sinψ + cos(ψ − τ) cosψ]

(4.32)

which can be also derived by application of (TR)−1 twirling operator to the ρ′.
With the factors W

N
, U
N
, V
N

we invert them using their definitions 4.8. Again
like in the previous chapter we start with w which is determined solely by W

N
.

The inverse function is surprisingly

w =

√︂
1 + W

N
−
√︂

1− W
N√︂

1 + W
N

+
√︂

1− W
N

(4.33)

which allows to express N and U, V right after. Realising that in complexification
U + IV=(u+ iv)2, we finish

u = Re(
√
U + IV ), u = Im(

√
U + IV ) (4.34)

Let us follow the case for H2 from the last chapter and first study the pure
states. It is reasonable because

Proposition 4.5.1. Pure states remain pure under iteration of any protocol, i.e.
with arbitrary x, ψ, τ .

Proof. For any protocol we use trace cyclic property Tr(TR(ρ ⊙ ρ)R†T †) =
Tr([ρ]) = Tr(H2(ρ ⊙ ρ)H†

2) which in other words is the known fact that the
unitary gate does not change the purity. We have proven the purity of evolved
state H2(ρ ⊙ ρ)H†

2 in previous chapter; now we add that the unitary twirling
cannot change the purity of the evolved state.

In this case, we can perform the identification of the Bloch sphere with Rie-
mann sphere again. Evolution function z′ = fx,ψ,τ (z) can be derived from the

mixed states or more easily straight from the definition
(︄

1
z′

)︄
= 1

ν
TR ·

(︄
1
z2

)︄
where

norm ν is physically irrelevant. We state that evolution function of the twirled
protocol is

fx,ψ,τ (z) = e−iτ z
2 cosx− eiψ sin x

cosx+ z2e−iψ sin x (4.35)

f−1
x,ψ,τ (z) =

√︄
−ze

iτ cosx+ ei sinψ sin x
ze−i(τ+ψ) sin x− cosx (4.36)

1No sarcasm intended.
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We recall the asymptotic equivalence and at this place we set ψ = 0 to simplify
notation with

fx,0,τ ≡ fx,τ . (4.37)
Complete characterisation of asymptotic dynamics can be easily performed

for particular angles x = 0 and x = π
2 for which the functions reduce to

f0,τ (z) = e−iτz2, fπ
2 ,τ

(z) = −ei(−τ) 1
z2 (4.38)

In the case of x = 0: all states with |z| < 1 converge to 0, all states with |z| > 1
converge to ∞. These states are attractors. The states on the unit circle belong
to the Julia set and exhibit chaos with number eiτ belonging to it as a parabolic
state. The case of x = π

2 has attractive cycle 0↔∞ attracting all states except
for the unit circle which is the Julia set again.

But for the case x = 0 we can easily stretch the analysis to the mixed states
where we afford to write evolution equations into a compact matrix form embrac-
ing rotation by angle τ around w-axis:

w′ = W

N
,

(︄
u′

v′

)︄
=
(︄

cos τ sin τ
− sin τ cos τ

)︄
·
(︄
U
N
V
N

)︄
. (4.39)

First, w′ = 2w
1+w2 is solely function of w, with following property: w′ = w ⇔

w ∈ {−1, 0, 1} while |w′| > |w| ∧ sgn(w)=sgn(w′) for other w values. States with
w = ±1 are |0⟩, resp.|1⟩ and serve as attractive for all states with w > 0, w < 0
respectively. Mixed states of equatorial plane w = 0 are attracted to maximally
mixed state because u′2 + v′2 = U2+V 2

N2 =
(︂
u2+v2

1+w2

)︂2
< u2 + v2 which follows from

mixedness condition u2 + v2 < 1− w2. Also, stability analysis by Jacobi matrix
confirms that the equatorial plane is repelling, 1 is a saddle point and we for
the first time encounter situation when (mathematically) almost all states are
purified, equator u2 + v2 = 1 ∧ w = 0 contains chaos and the rest of equatorial
plane is attracted in the plane to a single state yet repelled from the plane to
the poles. Because experimentally w = 0 can never be sustained precisely, any
state would eventually converge to either |0⟩ or |1⟩ which are represented by
z =∞, z = 0 in the complex representation of the pure states.

We have mentioned the Jacobi matrix - it can be calculated not only for
x = 0 ∨ x = π

2 but generally for protocol with any x, τ at any point (w, u, v):

J = 2

⎛⎜⎝J11 J12 J13
J21 J22 J23
J31 J32 J33

⎞⎟⎠ (4.40)

J11 = (1− w2) cos 2x− w (u2 − v2) sin 2x
(1 + w2)2

J12 = u sin 2x
1 + w2 , J13 = −v sin 2x

1 + w2

J21 = −cos τ ((1− w2) sin 2x+ w (u2 − v2) cos 2x) + 2uvw sin τ
(1 + w2)2

J22 = u cos τ cos 2x+ v sin τ
1 + w2 , J23 = u sin τ − v cos τ cos 2x

1 + w2
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J31 = sin τ ((1− w2) sin 2x+ w (u2 − v2) cos 2x)− 2uvw cos τ
(1 + w2)2

J32 = v cos τ − u sin τ cos 2x
1 + w2 , J33 = u cos τ + v sin τ cos 2x

1 + w2

together with its eigenvalues and eigenvectors that can be expressed analyt-
ically as radices of multivariable polynomials (in Bloch coordinates) of degree
8.

To start with more general case let us set τ = 0, which is also very convenient
because equations 4.27 reduce this time to(︄

w′

u′

)︄
=
(︄

cos 2x sin 2x
− sin 2x cos 2x

)︄
·
(︄
W
N
U
N

)︄
, v′ = V

N
. (4.41)

where evolution of v is partially separated and as a consequence, circle K, i.e.
physical states in the plane v = 0, form an invariant set. When we realise that
pure states are also invariant, we have just proven

Proposition 4.5.2. Purification protocol with τ(= ψ) = 0 and arbitrary x has
invariant sets K and ∂K.

This property was present in case x = π
4 studied earlier, now it is more general.

When we restrict to the pure states in this plane, i.e. w2 + u2 = 1 ∧ v = 0, the
main meridian of the Bloch sphere, we could introduce a polar coordinate on this
circle ∂K but we can also realise that these states are the set of real numbers
in the approach of complex functions where states are represented by z ∈ C.
Therefore, we can have the evolution function

fx,0(z) = z2 cosx− sin x
cosx+ z2 sin x (4.42)

restricted to the real domain. Existence of invariant sets K, ∂K is reason why
protocols with ψ = τ = 0 deserve particular care and their own section. But
before, we wish to illustrate various types of evolution induced by these evolution
functions. We will now plot orbits of state |0⟩, i.e. z = 0. This state has no
particular importance in general, though it is a member of the attractor cycle for
x = π

4 , τ = 0. The state can converge to a fixed state or a cycle of some period
(not necessarily 2). Or it can be a part of the Julia set yielding chaotic evolution.
We have also detected quasi-periodic behaviour which probably occurs near the
transition between the chaotic and regular evolution. In following figures we let
the state evolve for 1000 iterations to settle down the initial evolution and settle
towards the asymptotic regime. Then, another 1000 iterations are performed.
Because the state described as fnx,τ (z) ∈ C can be understood as a discrete time
signal, we can perform its Fourier transformation to find the lengths of the cycles
from the frequency spectrum. The spectrum for x = π

4 , τ = 0 where the state
oscillates between two states z = 0 ↔ 1 would have a single peak at frequency
1
2 marking cycle of length 2; the length of the cycle is the period, the reciprocal
value of the frequency. Multiple frequencies present in the spectrum mean that
the cycle is composed of multiple subcycles. We can illustrate this in an analogy
of moons orbiting planets orbiting stars orbiting galaxies... with various periods.
For chaotic evolution, the spectrum contains all frequencies.
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Figure 4.3: A sequence from the orbit of z = 0 for protocol with x = 34◦, τ = 76◦.
The state converges to cycle of period 60; the cycle consists of distinct triplets of
close points.

Figure 4.4: A sequence from the orbit of z = 0 for protocol with x = 34◦, τ = 76◦.
The state chaotically jumps across the whole Bloch sphere but not uniformly,
many points of the orbit concentrate into several clusters.

4.6 Universality
We remind that we consider only x ∈ [0; π2 ]. Case of x → π − x is conjugate
to protocol with x when w → −w is also transformed. In the complexification,
such transformation reads z → z−1. For all protocols with ψ = τ = 0 we can
compute the fixed points resp. 2-cycles amongst pure states. The polynomial
equation fx,0(z) = z resp. f 2

x,0(z) = z is of degree 3 resp. 5. The case of
fixed point is therefore analytically solvable, either all fixed points are real or
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there is 1 real and 2 complex conjugate. It is in principle possible to express the
fixed points in radicals - they are solutions of a cubic equation, but they have
similar shape to value of µ, 3.10, of course enhanced with general parameter x.
We do not present exact form because it is too complicated and can be easily
determined in mathematical software, we used Mathematica. The case of 2-
cycles is much more interesting because with the knowledge of fixed points we
can reduce the degree 5 polynomial equation to quadratic equation of states that
satisfy fx,0(z) ̸= z ∧ f 2

x,0(z) = z, these states will be determined precisely and
play crucial role later.

Before we present the overview of the fixed points and 2-cycles, we present
two critical values of x:

xb = acos1
2

√︂
3(3−

√
3) .= 0.223297 .= 12.8◦

xc = atan
√︂
−3 + 2

√
3 .= 0.598031 .= 34.4◦

(4.43)

These determine whether the states are real and also if they are attractive. For
fixed states:

• 0 ≤ x < xb

There are three distinct real fixed points f(z) = z ∈ R

• xb < x < π
2

There is a single real fixed point and two complex conjugate fixed points.

• x = xb

There is one fixed point and one double degenerate fixed point, all real. For
xb it is

z1
.= −0.189591, z2 = z3

.= 2.296630 (4.44)

Recall that symmetry x → π − x must change z → z−1. The case x = π − xb
would induce fixed point and degenerate dublet

z−1
1

.= −5.274511, z−1
2 = z−1

3
.= 0.435421. (4.45)

We have succeeded to determine that numbers −z2, z
−1
2 are the real roots of

polynomial z4 + 2z3 + 2z + 1, namely −z−1
2 = 1

2(−1 −
√

3 + 4
√

12) is important.
Now, searching for 2-cycles:

• 0 ≤ x < xc

There is an imaginary 2-cycle.

• xc < x < π
2

There is a real 2-cycle.

• x = xc

The 2-cycle degenerates towards the real fixed point. There is triple degen-
erate fixed point −z−1

2 .
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Figure 4.5: Left: All 5 states satisfying f 2
x,0(z) = z regardless of attrac-

tive/repelling character, depending on x of the protocol with ψ = τ = 0. De-
generate radices highlighted with bold points. Right: Separate plots of the real
and imaginary parts of the solutions. Nodes highlighted in both the real and
imaginary parts for given x belong to single complex numbers z1,2, z

−1
1,2 .

Regarding the stability of the solutions, let us note that the derivatives may be
positive, negative and also imaginary; we have found they always have absolute
value ≤ 4. In consequence, the points can be attractive, repelling and also work
as a focus. For practical purposes, we now list the attractive cases:

• x = 0
Superattractive states z = 0 and z =∞.

• x = π
2

Superattractive cycle z = 0↔∞.

• 0 < x < xb

Two (real) fixed points satisfying z < 0 ∨ z > z2.

• xb < x < xc

Single attractor, the fixed point satisfying z < 0.

• xc < x < π
2

The (real) cycle. Superattractive for x = π
4 , the known protocol from

previous chapter.
By exact calculations of the derivatives in Mathematica we have just arrived to

an important piece of information: all attractors are real. The proof of following
proposition is then obvious if we realise from 2.39 that case of z ∈ R is equivalent
to v = 0.
Proposition 4.6.1. For arbitrary x ∈

[︂
0; π2

]︂
, any protocol with parameters ψ =

τ = 0 has pure attractors only in invariant plane v = 0, i.e. in the circle ∂K.
Another observation is that the 2-cycle is real if and only if it is attractive.

This is convenient because surprisingly, for x the cycle is determined by simple
equations

−1 +
√
−2 cos 2x− cos 4x

1 + cos 2x+ sin 2x ↔ −1−
√
−2 cos 2x− cos 4x

1 + cos 2x+ sin 2x . (4.46)
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Such simple formula cannot be given for the fixed points; the solution is analytic
though because a cubic equation is solved. We leave the formula to be calculated
in mathematical software if one needs to. Let us now look at the situation from
another point of view. We now ask not what z is fixed for given x but we ask
if/what x can be chosen so that given z ∈ R is attractor. We find and conclude
the answer is positive in following cases of the fixed states.

• z ∈ (−z−1
2 ; 0]

Value x ∈ [0;xc) can be found that f(z) = z is attractive.

• z ∈ (z2;∞)
Value x ∈ [0;xb) can be found.

While for 2-cycles we have possibilities:

• z < 0 except for z = −z−1
2

x ∈
[︂
xc; π2

]︂
exists such that z is part of a 2-cycle.

• z ∈ [0;−z1)
There are two values in x ∈ [π4 ; π2 ] such that z is a member of 2-cycle.

• z = z1

z is 2-cycle member for unique value x = atan
√︂

3 + 2
√

3 .= 1.196062.

The intervals of z typically are not closed because at the border points the
derivatives have absolute value equal to 1 marking indifferent points. The partic-
ular case of protocol with x = xc is to discussion. There is the triple degenerate
fixed point z = −z−1

2 which is the reason why it is excluded from previous list
with z < 0. Let us recall the transformation from complex to spherical coordi-
nates of the qubit 2.38 Whenever z is real, the Bloch coordinates of pure states
are simple to calculate: w(z) = 1−z2

1+z2 , u(z) = 2z
1+z2 , v = 0. For this reason, we

find special value wc = w(z−1
2 ),−wc = w(z2), these numbers are the real roots of

polynomial w4 + 6w2 − 3 and can be expressed analytically.

wc =
√︂
−3 + 2

√
3 .= 0.681250 (4.47)

Let us appreciate that we find relation xc = atan wc and also z−1
2 =

√︂
1−wc

1+wc
.

The triple degenerate fixed point in Bloch coordinates reads (wc,−
√︂

1− w2
c , 0)

where−
√

1− w2 = −
√︂

4− 2
√

3 and this state can be put into Jacobi matrix 4.40.
Obtained eigenvalues are

λ1,2 = −1 with eigenvectors (0, 0, 1), (
√︂

2√
3 , 1, 0)

λ3 = 1
2 with eigenvector (−

√︂
1 + 2√

3 , 1, 0)
(4.48)

The state is indifferent in the pure states with eigenvalues −1. The same result is
obtained via multiplicator f ′

xc,0(z
−1
2 ) = −1. For the first time we detect indifferent

behaviour in our chaotic model of quantum dynamics. And we state that the pro-
tocol is not capable of convergence to the critical point in pure states. However,
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the state is attractive in direction towards mixed states, this can be understood
as certain purification. But in experimental realisation the exact evolution can
be undeniably influenced by perturbations and lead to undesired evolution. But
besides this exceptional value, we have demonstrated the attractivity for all other
cases, the last parsing of attractors is a key to prove next proposition.

Proposition 4.6.2. For arbitrary value w ∈ [−1; 1] except wc there can be found
x ∈ [0; π2 ] such that there is pure state (w,

√
1− w2, 0) or (w,−

√
1− w2, 0) which

is an attractor of the purification protocol with parameters x, ψ = τ = 0. x value
can always be chosen so that the state is a member of attractive length-2 cycle.
For w ∈ [−1;−wc)∪ (wc; 1] there exists such x that (w,−

√
1− w2, 0) is attractive

and fixed, for w ∈ [−wc;wc] no x can be found that state with Bloch coordinate
w is attractive and fixed.

Proof. First lets discuss case of w = ±1 for which we can choose x = 0 for
z = 0, z =∞ fixed and x = π

2 for cycle z = 0↔ 1 which match w = ±1.
Considering |w| < 1, we put the mosaic together. We have relation of z(x) ∈ R

determining attractive cycle for x ∈ (xc; π2 ), we also have coordinate transforma-
tion 2.38, namely z(w) = ±

√︂
1−w
1+w ∈ R. For given w let us choose the negative z.

For arbitrary z ≤ 0 except −z−1
2 (which corresponds to excluded wc), a protocol

can be found such that z is a member of its attractive 2-cycle. The reason is in
4.46 which can be inverted at cost of high effort. For z < −z−1

2 (i.e. w < wc),
inverting branch z = −1−

√
−2 cos 2x−cos 4x

1+cos 2x+sin 2x we obtain

x = atan1− z2 −
√

1− 4z − 6z2 − 4z3 + z4

2z (4.49)

while for z−1
2 < z one has to take

x = atan1− z2 +
√

1− 4z − 6z2 − 4z3 + z4

2z . (4.50)

With z > 0 one could even take x from both branches. But for our cause, we
restrict to z ≤ 0. Combining x(z(w)) we can find value x for the protocol which
has a state with w for a member of attractive 2-cycle. Because the state is pure
by construction and previous finding 4.6.1, one can either use transformation
u(z) = 2z

1+z2 or relation w2 + u2 = 1 to verify u = ±
√

1− w2 at the same time.
Because of the evolution equations 4.27 and the combination of square roots
and tangens function, the attractor is (w,−

√
1− w2, 0) when x ∈ [0; π4 ] while

(w,
√

1− w2, 0) is the attractor for x ∈ [π4 ; π2 ]. For x = π
4 the u component is

zero. Universal value v = 0 is the consequence of the restriction to real z.
Because exact prescription for x(z(w)) is of utter bitterness, we do not write

it but present its graph 4.6.
If we desire z to be the fixed state and not only a member of 2-cycle, z can be

chosen from (−z−1
2 ; 0] ∪ (z2,∞) only. We do not present inverted function x(z)

for its extreme complexity, but it exists because it is based on solving a cubic
equation. Realising that value w is determined only by z2 (or |z| if one desires),
there are values of w that correspond to z ∈ [z2; z−1

2 ] that cannot be reached.
These values satisfy w ∈ [−wc;wc].
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Figure 4.6: Graph of composition function x(z(w)) that assigns to coordinate w
corresponding protocol parameter x such that one of states (w,±

√
1− w2, 0) is

attractor.

We have now shown that there is a range of states with |w| < wc for which
protocol cannot be found so that an attractive pure state with w and v = 0 exists.
While the condition v = 0 could be seen restrictive, we recall we have determined
by derivative analysis that only fixed states and 2-cycles in plane v = 0 can be
attractive. Therefore, the following is proved.

Proposition 4.6.3. For all w ∈ [−wc, wc] there is no protocol with x, ψ = τ = 0
such that an attractive fixed state with (w, u, v) exists for some u, v.

But in spite of this inconvenience we are able to construct a protocol with
arbitrary state (w,−

√
1− w2, 0) except for w = wc being the attractor, at the

cost of pairwise iterations at worst. The attractive 2-cycles play prominent role
in the protocol dynamics.

In the previous section dedicated to the manipulation of the time relaxation we
mentioned that viewed physically, the attractor can be changed at cost of change
parameters while ψ − 2τ and x are preserved. These two pieces of information
together form a strong statement, one of the most important results of our work.

Theorem 4.6.4 (Protocol universality theorem). For arbitrary pure state
(w, u, v) with w ̸= wc, protocol with x, τ, ψ can be found such that the state is
attractive.

Proof. For given state we have to discern case of w = ±1 for which we can choose
τ = ψ = 0 and x = 0 ∨ x = π

2 .
In case |w| < 1, from previous 4.6 we can find protocol with x, ψ = τ = 0 and

attractive cycle (w,−
√

1− w2, 0). Recalling the asymptotic equivalence 5.15, we
introduce protocol with x, ψ = 2τ, τ which is equivalent because ψ − 2τ = 0 for
any choice of τ . The attractors of such protocol are modified 4.26 by τ0 = −τ to

(w,±
√

1− w2 cos τ,±
√

1− w2 sin τ). (4.51)
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When the angle τ is set so

τ = acos ±u√
1− w2

(4.52)

then we have protocol with x, ψ = 2acos ±u√
1−w2 , τ = acos ±u√

1−w2 which has
(w, u, v) for attractor.

The advantage of the proof is that it is constructive. We add a note that the
construction may not be unique because there can be other values x yielding the
same w and with the principle of asymptotic equivalence other protocols may be
found, even such that (w, u, v) is fixed. On the other hand, if one wished for
a protocol such that (w, u, v) would be a pure repelling state, there is no such
fixed state or cycle with |z| > z2. For this reason, states with w < −wc cannot
be repelling for any protocol.

One could object that the protocol is not universal, we cannot find any x
to have (wc, u, v) for an attractor. But we have to recall that the protocol has
another degree of freedom in τ where we can search for a suitable protocol. But
another option will be presented in next chapter; therefore, we do not inspect
this possibility in detail.

Instead, we can ask ourselves a question, how the fixed states (regardless of the
attractive/repelling regimes) of the protocol depend on the twirling parameters.
We focus only on mixed states and now present the mixed fixed points for range
x, τ ∈ [0; π2 ], we detected them in Mathematica software by solving numerically
the fixed state equations w′ = w ∧ u′ = u ∧ v′ = v. For the other values of the
angles, the points can be found from the symmetries. We have found out that
the points lie on approximately but not exactly a conic surface, see 4.7. We have
succeeded to determine by fitting numerically obtained coordinates w, u, v of the
fixed points that they satisfy relation

u2 + v2 = w4 + 3w2. (4.53)

Although we do not have an analytic proof, even to numerically find such relation
for the fixed states in a three-dimensional nonlinear dynamics, that is a surprising
success. Based on this, we believe that this equation can be obtained by a clever
manipulation of the fixed state equations. However, it is too much effort at the
moment, without a practical potential. We drop the topic for mathematicians.

The fact that the number of attractors changes when x is changed is another
well-known effect of nonlinear dynamics. We illustrate it with a plot of w=w(x)
and u = u(x) coordinates of attractors when x is varied.

Now, we turn to another fact that is tightly bound to chaos. For the first
time we encounter the effect of bifurcation, well known for example in logistic
map, [43] that was first introduced in population models by Verhulst [63, 64].
The bifurcation points are exactly xb, xc where the attractivity of the fixed states
or 2-cycles changes to indifferent character. Numerically, for x .= xc it can be
seen that the all states z ∈ C evolve towards a cluster in the vicinity of the
state (wc,−

√︂
1− w2

c , 0) where they stop converging, probably due to numerical
precision, and orbit indifferently in the neighbourhood of the fixed point/cycle.

We will discuss the bifurcations in the next chapter where they will become
a more prominent phenomenon. At this place, we only warn that this single
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Figure 4.7: The mixed fixed states (in black) of all the protocols lie on a conic-like
surface u2 +v2 = w4 +3w2 (sketched in grey). States for only x, τ ∈ [0; π2 ] plotted.
If plotted for all possible angles, they would stretch over the whole surface.

example of bifurcation is shown when τ = ψ = 0 is taken. When τ is changed,
the bifurcation will not only happen at different x but will also lead to different
attractor regimes with cycles of various lengths.

We touch now the topic of convergence speed. While the universality theorem
claims almost all pure states (truly in Lebesgue style, wc is a parallel on the Bloch
sphere) can be attractive, it does not offer any information about the radius of
the basin of attraction, i.e. affordable perturbation that can be corrected by the
protocol, and the speed of convergence. For the moment, we just claim that the
multiplicator of fixed state or cycle is close to 1 when x to near xc are used. We
can therefore understand the situation in the way that the convergence speed
diminishes when attractor with w closer to wc is required.

Also, the stability is guaranteed in the pure states, it is not guaranteed that
the state is attractive for mixed states too. We will answer partially this question
in following sections dedicated to dimension and phase transition.
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Figure 4.8: Bifurcation of attractors of protocols with τ = 0. Bloch coordinates
w, u plotted depending on x. One of the fixed attractor suddenly disappears, the
other is split into a cycle.

4.7 Julia set dimension
In the previous chapter we have seen that the evolution function fπ/4,0,0 in pure
states has fractal shaped Julia set with dimension D

.= 1.56, this structure per-
sisted in the dynamics of the mixed states. Now, we would like to know what
Julia sets are generated by protocol with general twirling operators. We follow
the same approach - we create the attractor maps of Bloch sphere for parameters
in range x, τ ∈ [0; π2 ], ψ = 0. We detect the Julia set as the border of basins of
attraction and apply the box-counting algorithm. For the sake of computational
time, we only perform one box randomisation and maximal covering of 50002

boxes. In this way we obtain a function d(x, τ). When an estimate > 2 is ob-
tained (highest value was a single value ca 2.2, other values were typically below
2.05), we treat it as a numerical artefact of the box-counting algorithm and set
it to value 2 exactly. Because of the two variables, we code the dimension with
colour in the x, τ plane. Results which can be found in the next figure form one
of the biggest discoveries of our work.

The first observation is that there is another symmetry. Yes, it emerges only
when ψ = 0, for that reason we did not mention it earlier. Now, let a protocol
with x, ψ = 0, τ act on state (w, u, v) to get (w′, u′, v′). When we take protocol
with x, ψ = 0, π2 − τ and let it act on state (−w, v, u), we obtain (−w′, v′, u′).
The proof is based on fact that permutation u ↔ v and sign change w → −w
causes U → −U,W → −W but V → V,N → N . At the same time the change
τ → π

2 − τ causes sin τ ↔ cos τ . All these changes put into equations 4.27
give the sign change of w and swap u with v. When one would like to improve
this symmetry to general ψ, they could compose this symmetry with the time
relaxation manipulation - after setting ψ = 0, than using this symmetry and then
use the time relaxation again to restore ψ. But, although the fractal structure
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Figure 4.9: Dimension d(x, τ) of Julia set for protocols with arbitrary x, τ coded
in colour. Generalised Mandelbrot set consists of points with d(x, τ) ≥ 1, that is,
pixels of red - yellow - green tones. Dark blue pixels stand for protocols where
no structure was detected by the box-counting algorithm.

would be the same, the executed time changes induce a shift in the input/output
states. I.e. the attractor maps of such conjugate protocols are flipped upside
down, flipped left to right and shifted by some φ and also the colours are shifted,
this transformation is not obvious, at least not at the first sight. But we can
exploit this last symmetry to reduce parameter range to τ ∈ [0; π4 ].

Even more interesting observation in 4.9 is that there is a metastructure, the
function d(x, τ) seems to create fractal shape on itself. This is similar to existence
of Mandelbrot set, 2.47. The Mandelbrot set is based on dichotomy of Julia sets
that are connected/totally disconnected which is equivalent to bound/unbound
evolution of critical point 0, 2.3.33. We are unable to give similar proposition
for rational polynomial functions of our case. But instead, we have another
observation. In 4.9 there is an area where no structure is detected. This is not
because the Julia set would be empty - for functions of degree ≥ 2 the Julia set
is nonvacuous, 2.3.17. But we now testify that our approach based on the edge
detection of the fractal structure A has critical disadvantage. While it works well
to find fractal structures which are connected, or at least behave as connected
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when handled numerically, we encounter problems when Julia set is discontinuous,
when it is Cantor dust [40] - chaotic states cannot be detected by our approach
because the Julia set is numerically unstable on (forward) iterations. This can
lead to wrong dimension estimate d(x, τ) = 0. On the other hand, it has its
advantage because parameters for which the Julia set numerically behaves as
totally disconnected are automatically highlighted in the plot of d(x, τ).

Because all the dimension estimates obtained in 4.9 (whenever a structure
was detected) were either ≥ 1 or were very close to this value and visual control
suggested that the lower value was only a numerical artefact of imperfect box-
counting method, we decided to perform following refactorisation: the points
with dimension estimate < 1 were set to 1 precisely, points where no structure
was detected were assigned black colour. In this way we have reduced the colour
range to d(x, τ) ∈ [1; 2] which allows to visually perceive better details of the
fractal metastructure, see 4.10.

Figure 4.10: Dimension d(x, τ) with refinement of colours to highlight fine struc-
ture. All values d < 1 were artificially set to 1.

The Mandelbrot set is defined for quadratic functions as a set of parameters
for which the Julia set is connected. We now propose its generalisation for our
evolution maps 4.35. Our theoretical instruments are limited, we restrict ourselves
to numerical analysis, therefore we will build next definition on the second box-
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counting approach from A.

∼
M=

{︄
(x, τ) ∈

[︃
0; π2

]︃×2
⃓⃓⃓⃓
⃓J (fx,τ ) has box-counting dimension estimate ≥ 1

}︄
(4.54)

Let us take the protocols with τ = 0 and x ∈ (xb;xc). These have a single
attractor, fixed state. Working numerically, all states will be found to converge
to the attractor which leads us to {(x, 0)|xb < x < xc} ̸⊂

∼
M. As soon as there

are two attractive points or a cycle with two disjoint parts of Fatou set separated
by (therefore connected) Julia set, the connectedness requires dimension ≥ 1.
Therefore, {(x, 0)|x < xb ∨ x > xc} ⊂

∼
M. More general situation for τ ̸= 0 has

not been analysed in detail and is left to numerical calculations. It is suggested
to us in analogy to Mandelbrot set:

Conjecture 4.7.1.
∼
M is compact, ∂

∼
M is fractal.

At the moment we do not have instruments to proceed with this conjecture
and we propose it to be a subject to further studies. Our finding that such
structure exists is already very interesting, let us look at another properties.

We can see from 4.9 that there are regions of very similar colours. This sig-
nalises that the dimension of the corresponding fractal does not change suddenly.
Such situation happens e.g. near x = π

4 , τ = 0 which is the known case related to
entanglement purification. But then there are sudden changes to the structure,
i.e. when τ

.= 12◦, x
.= 20◦ is changes slightly. We could again speak of a phase

transition but we have found that there is already a concept called J-stability,
[42, 24]. In this concept families of functions are studied depending on param-
eters. J-stability means that the Julia set is deformed in a continuous manner
when the parameters are changed. We observe such behaviour. However, the
change of the Julia set is related to conjugation of functions in the sense 2.3.2,
we have not found such conjugation map so far.

4.8 Protocol robustness
The fact that Julia set is typically J-stable when x, τ are changed is vital for
practical realisation of the protocol. The stability of the Julia set implies that
the protocol is resistant to imprecision in physical realisation of the gates. So far,
we have discussed only perturbations to the input states but the gates are also
physical objects realised only with certain fidelity. We want to claim

Statement 4.8.1. Purification protocol with x = π
4 , (ψ =)τ = 0 is robust to

perturbation of gates, i.e.

(∃ε0, δ0 > 0)(∀ε < ε0)(∃δ ≥ δ0)(||U −H2|| < ε⇒ t(U [ρ]∞, |0⟩) < δ) (4.55)

Of course, this statement has limitations, therefore we do not dare to call it
a proposition. We rather want to suggest the idea fo the would-be proposition.
First, we do not give precise relation between ε and δ and boundaries on maximal
ε0, δ0. Exact proof of mathematical style needs to consider some operator norm
||.|| which probably could be chosen convenientely. And also a detailed analysis
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of dynamics in mixed states, like we did in previous chapter. We substitute this
approach with numerical instead. But before we do so, we mention more general
case. In realistic physical scenario, the gate can be perturbed differently in each
step of the protocol iteration. Therefore we come up with stronger statement:

Statement 4.8.2. Purification protocol with H2, i.e. x = π
4 , (ψ =)τ = 0 is robust

to time-dependent perturbation of gates. Let us mark Ui the twirling gate of i-th
iteration.

(∃ε0, δ0 > 0)(∀εi < ε0)(∃δi ≥ δ0) (4.56)
((∀i ∈ N)(||Ui −H2|| < ε)⇒ t(. . . Ui[. . . U1[ρ] . . . ] . . . ,A) < δ)

We remind that A is the pure attractive cycle |0⟩ ↔ |0⟩− |1⟩ , the distance is
meant in the sense of the closest distance to any member of the cycle. We support
the statement with following numerical observations. For easier orientation, we
express x, τ in degrees.

• When x ∈ [35◦; 55◦], τ ∈ [−10◦; 10◦] was uniformly and independently cho-
sen for each iteration, all pure states converge to one of two possible regimes,
analogue of parity 2-cycle that evolves chaotically in time.

• When x ∈ [30◦; 60◦], τ ∈ [−15◦; 15◦] was uniformly and independently cho-
sen for each iteration, all pure states converge to a single unique regime
(cycle, with different parity regimes), this analogue of fixed point evolves
chaotically in time. This is probably caused by the fact that at some point,
a protocol is chosen with a single fixed attractor, that is the area marked
in 4.10 with the black colour to be ̸⊂

∼
M.

Thanks to this observation we limit ourselves to watch only orbit of e.g. |0⟩.
We introduce parameter ∆ to characterise random twirling: x is chosen uniformly
and independently from interval 45◦± ∆

2 , τ from 0◦± ∆
2 and we restrict to ∆ ≤ 10

to guarantee x > xc, so the dynamics would globally evolve to a 2-cycle. We
conclude that under these conditions the orbit behaves similarly to the cycle
|0⟩ ↔ |0⟩ − |1⟩. The points jump across approximately rectangular areas on the
Bloch sphere, see 4.11. We aim at describing maximal deviation of the state from
|0⟩ for given ∆. For that we perform 106 iterations and from the even parity
branch (when the state is close to |0⟩) we calculate trace distance of the orbit
point ρn from the initial state (and desired attractor), t(ρn, |0⟩⟨0|). Maximal
value obtained for all even n ∈ ·106 is assigned to value ∆. The following figure
represents a certain form of numerical stochastic proof to previous statements.
Although, the norm, distance between operators is not defined in a traditional
way and is left to rather easy than reasonable concept of changing parameters
x, τ . The conclusion from the numerical results can be made as already said, the
protocol with H2 is robust not only to perturbation of the initial pure state but
also to the perturbation in the twirling gate realisation.

We recall that the concept of J-stability tells that there are regions in the
Mandelbrot set where the Julia set is continuously changing. The same effect
seems to manifest here; it results into bounds on the state evolution. When
a threshold of ‘small’ deviation in the twirling gate is exceeded, the rectangular
shaped areas not only dissolve but the attractor regimes and fractal structures
change suddenly which results into random evolution over all the Bloch sphere.
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Figure 4.11: Range of x, τ sets limits on scattering of state’s evolution. 106

iterations of |0⟩ plotted on the Bloch sphere, in spherical coordinates 2.38. Left
top x ∈ [35◦; 55◦], τ ∈ [−10◦; 10◦], right top x ∈ [35◦; 55◦], τ ∈ [−5◦; 5◦], left
bottom x ∈ [40◦; 50◦], τ ∈ [−10◦; 10◦], right bottom x ∈ [40◦; 50◦], τ ∈ [−5◦; 5◦].

Figure 4.12: Maximal distance of 5 ·105 pairs of iteration of state |0⟩ with random
twirling with x ∈ [45◦ − ∆

2 ; 45◦ + ∆
2 ], τ [−∆

2 ; ∆
2 ].
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Still, the orbit typically seems to form clusters near the unperturbed attractor.
It is probably no surprise that twirling chosen with arbitrary random parameters
x, τ make the state evolve chaotically over the Bloch sphere. Such a case is of no
practical importance unless we wish to create a random state generator. But of
course, to guarantee that the twirling gates are chosen randomly enough, that is
probably even more difficult than to prepare a random state.

We have not yet explicitly spoken of the mixed states. The pure states remain
pure, the unitary twirling regardless of the perturbation also preserves the purity.
It could be possible that the mixed states could be driven towards the maximally
mixed state. When we remember we estimated radius of basin of attraction, it
is probably not surprising that numerical calculations confirmed that when the
twirling is close to the original gate in the sense of close values of x, τ , the same
behaviour - converging to chaotically evolving pure cycle - was verified even for
mixed states from vicinity of |0⟩.

We conclude based on numerical evidence:

Statement 4.8.3. The protocol with x = π
4 , ψ = τ = 0 is robust to perturbations

both of the state and the twirling gate.

4.9 Atlas of attractor maps
In figure 4.9 there are also other clear areas of similar fractal dimension than
the neighbourhood of H2. These correspond to fundamentally different fractal
structures induced by other protocols. We now offer a very brief excerpt from an
atlas, a selection of attractor maps, typical representatives of fractal structures
so that readers get some impression of what structures can be encountered. All
maps are for pure states, Bloch sphere.

We discern five basic types of structures. The first is similar to the case of
x = ψ = τ = 0 - in this case the sensitive states form an equator on the Bloch
sphere, a one-dimensional object. For increasing x the shape of the set seems to
be continuously deformed. The sensitive structure probably remains connected
and separates two basins of attraction. We cannot confirm visually whether the
object is indeed a fractal or a one-dimensional object, though very deformed. The
dimension estimate is very close to 1 but that can be both because the shape is
fractal and because of numerical artefacts of the box-counting algorithm.

The next type of typical structure is the disconnected Cantor dust which we
already acknowledged. This structure emerges e.g. for x ∈ (xb;xc), τ = ψ = 0.
All pixels in the attractor maps converge to the unique dynamical regime of the
map and while points of the Julia set cannot be numerically captured. Because
the box-counting algorithm based on edge detection cannot succeed, we used the
approach with inverse iterations to verify and estimate the dimension. Choosing
x = π

6 , τ = 0 we calculated backward iterations by un-twirling

sin 2xw′ + cos 2xu′ = u2 − v2

1 + w2 , sin 2xu′ − cos 2xw′ = −2w
1 + w2 (4.57)

and then using the inverse map that has already been found 3.24, 3.25. After we
had chosen a point on the Bloch sphere, we calculated 10 backward iterations,
from these points we chose randomly only a quarter of them and iterated these
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Figure 4.13: Attractor maps of fractals separating two regions. Left: x = 24◦, τ =
45◦, right: x = 56◦, τ = 90◦.

backwards 22 more times. Ca 4·106 obtained points were processed with the third
box-counting algorithm based on rounding. The result d(π6 , 0) = 1.408 ± 0.004.
This result is very interesting because the structure which is visually disconnected
and also shattered beyond the resolution of one of our box-counting approach; yet
the structure is so complicated that its dimension exceeds 1. This means that the
fractal proliferates through the pure states so that it is more complicated than
a line. It is structurally much closer to the fractal studied earlier for H2 than to
any ordinary curve. The calculated dimension estimate is probably valid for the
whole region, similarly to the case of J-stability near H2 where value D

.= 1.56
changed only slightly.

At this place we arrive to a very troubling conclusion. There are fractals
that cannot be captured and estimated by our box-counting algorithm based on
the edge command. It is for the reason that a disconnected repelling structure
cannot be numerically reached. The alternative and the usual way to obtain
the Julia set cannot generally be used for the analysis inside the Bloch ball of
mixed states. We have discovered inaccessible states earlier for the protocol
H2, 3.4.1. It is highly probable that the structure of sensitive states cannot
be captured by any numerical means. We decided to use backward iterations
for input state (0.01, 0.01, 0.01) and we converged close to the Bloch sphere, to
purity values P > 0.87 after 30 iterations. Although this finding imposes severe
limitations to future numerical research, we will find out later in the section about
the phase transition that even for the Cantor dust in pure states the box-counting
is able to detect the fractal structure in the mixed states where fractal shaped
islands form that are basin of attraction of the mixed attractor. In this point
of view, the case of pure states may be viewed as an exceptional. But still, the
numerical results must be accepted only as approximative and possibly burdened
with computational artefacts.

The third type of structure is in a sharp contrast to the Cantor dust, the basins
of attraction entangle into each other in a complicated way and their borders grow
through the space. They can fill a majority of the attractor map, this results into
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Figure 4.14: Attractor maps with Cantor dust. The Julia set points obtained by
backward iterations marked in black. Left: x = 30◦, τ = 0◦, right: x = 18◦, τ =
0◦.

resemblance of white noise. The concept of white noise would be obtained if
each point would evolve randomly, i.e. each state is sensitive. The corresponding
structure fills the space completely and so has Hausdorff dimension equal to 2.
Such structure is an extremal case to all structures in two-dimensional space.
The structure does not have to be connected or possess any other convenient
properties but can be formally assigned area. An example of two-dimensional
disconnected structure are pairs of rational numbers, Q2. During writing of our
thesis, a paper was published,[25], where a particular case of x = π

4 , ψ = 3π
2 , τ = 0

and pure states is shown in framework of Latté maps. The action of map

fπ/4,3π/2,0(z) = z2 + i

iz2 + 1 , (4.58)

induces dynamics that is exponentially sensitive at any point of the Riemann
sphere z ∈ C which results into white noise, J (fπ/4,3π/2,0) = C. Figure 4.15 sug-
gests that similar effect can be present to not only the single choice of parameters.
However, the proof in [25] relies on conjugation of functions which is extremely
difficult in general cases. Our work intends to focus more on the dimension of
the structure, therefore we leave this topic to future research. At this place, we
only comment that our numerical approach based on the box-counting idea must
be taken precautiously. It is also possible that the dynamics is so diverging in
the vicinity of the Julia set that the points are significantly deviated by com-
putational precision. Or it may be also possible that the Cantor dust structure
spreads through the space that it seems to turn to the white noise case.

As a special case of these seemingly white noise maps we present a map in
4.15 that seem to consist of lakes of white noise and islands of stability. In spite
that visual appearance suggests such possibility, it is forbidden by proposition
2.3.28. The Julia set cannot have both regions of stability and regions of chaos.
In this case the shape of the Julia set is very complicated so numerical calculations
cannot capture it but the Julia set must be composed of fractal curves or Cantor
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dust only.

Figure 4.15: Attractor maps resembling white noise. Left: x = 45◦, τ = 30◦,
right: x = 54◦, τ = 41.5◦.

The fourth type of structure can be represented e.g. by the known case
x = π

4 , τ = 0. The fractal forms borders between recurring islands of basins
of attraction (corresponding to regimes of even-odd convergence). These islands
can be deformed and twisted, but their structure is preserved in certain range of
parameters.

Figure 4.16: Attractor maps with recurring islands of basins of attraction. Left:
x = 56◦, τ = 90◦, right: x = 36◦, τ = 84◦.

The last and probably the most appealing type of structures are the most
complicated. These are transitions amongst previous cases. Typical features of
this type are spiral-shaped whirls. The spiral arms can be different in number
and size. The transition from one type of the structure to another happens by
distortion of the structure type, the shape is suddenly twisted and stretched to
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spiralling objects which proliferate across the Bloch ball. Then they dismantle
into Cantor dust or refactor to regular islands again. The orientation of the spiral
whirl changes often in the transition.

Figure 4.17: Fractal structure suddenly changes, switching amongst previous
types. Left top: x = 56◦, τ = 64.75◦, right top: x = 54◦, τ = 45◦, left bottom:
x = 58◦, τ = 45◦, right top: x = 32◦, τ = 48.5◦.

From the numerical analysis, we find out that the transition matches with
ocurrence of the bifurcations. During the transitions, a cycle of certain period
can split into cycles of longer/shorter periods. The spirals change their number
of arms in these bifurcations. After the spirals disentangle, islands of a wide
variety of colours can remain, the length of the attractive cycles is not in principle
restricted. There is an effect called period-doubling well known for the logistic
map, [43] during which the cycle splits to new cycles with double period. We
find its analogue in our protocols now, although the lengths of the cycles can
vary significantly. In figure 4.18 we show such bifurcating transition from cycle
with period 7 and one fixed point for protocol with x = 28◦, τ = 34.15◦ to
a cycle with period 17 and single fixed point for protocol with x = 28◦, τ =
35.55◦. It is possible that a dominant effect of bifurcation is that one member of
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the cycle is split in two but it is possible that the splitting may be much more
involved. The evolution near the bifurcation angles is very involved and we do
not dare to specify some patterns in it. But the presence of bifurcations is a very
interesting phenomenon on its own. The structure-shattering effect accompanying
the bifurcations also seem to separate regions we connected to the concept of J-
stability a while ago, the transition amongst the stable regions is very violent
and sudden with a typical feature of slow convergence of the evolution requiring
thousands of iterations to determine the asymptotic evolution reliably.

Figure 4.18: Fractal structure is shattered to reconstitute into a cycle of different
period. All attractor maps with same axial system taken for x = 28◦. Left:
τ = 34.15◦, centre: τ = 35◦, left: τ = 35.55◦.

4.10 Phase transition
New protocols and new fractal structures bring a new question - was the phase
transition - i.e. the sudden drop of the fractal dimension with decreasing purity
- an unique phenomenon for the particular twirling gate H2 or is its ocurrence
a general feature of chaotic dynamics in purification protocols? We have seen
that not only dimension d(P ) - which now can be straightforwardly extended
to d(P ;x, τ) to respect parameters of the new protocols - exhibits interesting
behaviour. We recall the mean entropy 3.41 which now can be also extended to
e(P ;x, τ) for protocols with corresponding twirling gates. We focused mainly on
protocols with τ = 0, therefore we only consider now on e(P ;x, 0), when we code
the value e with colour plotted in axes x, P . We remind that thevalue of ψ is
not important because this degree of freedom is eliminated by the asymptotic
equivalence 5.15. Let us first look at the e(P ;x, τ) restricting ourselves to τ = 0.
Then, being a two-variable function, we can code its value with colour in the x, P
plane.

We have argued that for x = ψ = τ = 0 the two attractors attract all
states except for plane v = 0. In other words, all states were numerically (and
in consequence also must be experimentally) purified. To our big surprise this
behaviour is quite common; there is a wide range of x (with τ = 0) bordered with
values approximately equal to 21.85◦, 60◦ in which the transition of exponential
trends of e(P ) occurs. Also, in other words, the protocols can fail to purify certain
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Figure 4.19: e(P ;x, 0), coded in colour.

initial states when 21.85◦ .= xk ≤ x ≤ 60◦ while outside this interval it is capable
of experimentally purifying all states except for 1. We now present for better
comprehensibility a plot in style of the previous case of x = π

4 to demonstrate the
piecewise exponential trends of e(P ) which are generally present.

Inside the interval x ∈ [21.85◦; 60◦] where the protocol can fail, there seems
to be one exceptional value x .= 30◦. When we realise that the fixed state must
be repelling to be numerically unstable, we raise a question about its stability.
We can recall the Jacobi matrix 4.40. In case of (ψ =)τ = 0 and evaluated at the
maximally mixed state w = u = v = 0 we find surprisingly simple eigenvalues
and eigenvectors:

λ1 = 2 cos 2x with (−2cos 2x
sin 2x , 1, 0); λ2,3 = 0 with (0, 0, 1), (0, 1, 0) (4.59)

The maximally mixed state is therefore superattracting in the w = 0 plane di-
rections for all x. However, the superattractivity is granted in the last direction
only when x = π

4 . Solving the equation |2 cos 2x| = 1 to find indifferent states,
we arrive to following conclusion:

• x = π
6 ∨ x = π

3

1 is indifferent.

• x < π
6 ∨ x >

π
3

1 is repelling. It belongs to the structure of sensitive states.

• π
6 < x < π

3

1 is attractive.

Because in interval x ∈
(︂
xk,

π
6

)︂
the protocol can fail as can be seen from

e(P ;x, 0) > 0 in 4.19, there are states that do converge neither to pure states nor
to 1. We have just discovered an exciting fact.
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Figure 4.20: e(P ;x, 0) for specific values of x. Exponential trends remain char-
acteristic.

Theorem 4.10.1. There are protocols with mixed attractors, different from 1.

Proof. We show an example. Choosing x = 27◦, τ = 0◦ we have found fixed
state w .= −0.07011936, u .= 0.12167875, v = 0 which has two complex conjugate
eigenvalues with magnitude .= 0.690817 and one real with value .= 0.242164.
This makes it an attractive focus. The maximally mixed state has eigenvalues
0,
√︂

1
2(5−

√
5) > 0 which makes it a saddle point.

We have detected mixed attractors only for protocols in specific parts of range
xk < x < 60◦ and we have also detected saddle states able to numerically attract
significant amount of states. That is a surprising property. For choice x = 0 =
τ we have found there are three mixed fixed states (besides 1), two of them
repelling, one of them attracting in one direction and unstable focus in another
plane determined by complex eigenvectors. In spite of the instability of the focus,
the numerical iteration converged to a very good proximity of the state. However,
maximal vigilance is needed with numerical calculations in spite of this example
of successful convergence to a focus.

The information that there can be nontrivial mixed attractive states is im-
portant mainly for experimental realisation. When the state converges to the
maximally mixed state, results of its measurement are random. Different attrac-
tive mixed state would show bias in measurements. Because such mixed state
ρ has entropy 0 < S(ρ) < 1, the mean entropy e(P ;x, τ) looses its meaning of
probability, now 1− e(P ) is not the chance that a random state of initial purity
P converges to a pure attractor, at least on interval (xk, 30◦). But it remains an
interesting indicator of the statistical uncertainty of the output of the protocol.

Coming back to the topic of dimension, now we present d(P ;x, τ) for few
pairs of selected parameters. We have numerically confirmed that in the vicinity
of the x = π

4 , τ = 0 case the phase transition is preserved, only the temperatures
change slightly; we are unable to give a formula though. The fractal dimension
also seem to deviate but we cannot distinguish with our computation precision
and methods whether it is not only a numerical artefact. Then, we have focused
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Figure 4.21: d(P ;x, 0) for specific values of x. Piecewise trend is characteristic.
Black: x = 54◦, τ = 45◦, blue: x = 36◦, τ = 84◦, red: x = 24◦, τ = 45◦

on other, new types of fractal structures. For these, the phase transition is also
clearly observable.

Although we have not enough sources to check each combination even numer-
ically, we conjecture the following proposition:

Conjecture 4.10.2. For arbitrary x, τ, (ψ, ) the function d(P ;x, τ) is piecewise
constant.

The special cases where the temperature of the phase transition is very near
values P = 1 or P = 1

2 are presented, this is a new observation. We have seen
in e(P ) that all states can be purified except for 1, in this case the transition
probably occurs exactly at 0, an example is the case x = 24◦, τ = 45◦. Also, the
two temperatures for transitions fractal → regular → empty can possibly merge
together to a single transition fractal → empty; we see this for x = 54◦, τ = 45◦.
This might be connected to nonexistence of the inaccessible points which we found
earlier, 3.4.1. But we have not supported this idea yet even numerically and
leave this question to future research. It is questionable whether we should keep
speaking of phase transition even in these degenerate cases. Any structure must
collapse to a single point at P = 1

2 because the sphere of constant purity actually
is a single point. One should not forget, that the original case of two transitions
is still present for large set of parameters. We also tried to understand what
happens to the fractal (more precisely, its slice on the sphere of constant purity)
with decreasing purity. We have confirmed that the fractals decay in a similar
way to the prototypical case of x = π

4 , τ = 0, small islands of convergence to
1 (or another mixed attractor) appear suddenly and grow. These islands then
merge together until they consume the whole sphere of constant purity. For those
x for which 1 is not the attractor, the basin of attraction of the pure attractor
can surround the maximally mixed state and therefore, the structure of sensitive
states disappears for low values of P . We have seen this in case of H2 protocol,
but at that case the 1 was the attractor.

We conclude that the phase transition is not a unique phenomenon bound
to a singlet of parameters. The sudden change of the dimension is probably
a fundamental characteristic of the evolution maps 4.7. Let us accent now another
important observation, that the dimension never increases when the purity is
decreased, the fractals can only decay and there are probably ”sources” of the
fractal structure, similarly to fixed state R in previous chapter.
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Figure 4.22: The purity dependent decay of the fractal structure for protocol
with x = 54◦, τ = 45◦. Case P = 1 shown in 4.17. The gray colour stands for
convergence to 1. Left top: P = 0.9, right top: P = 0.8, left bottom: P = 0.72,
right bottom: P = 0.62

Conjecture 4.10.3. For arbitrary x, τ, (ψ, ) the function d(P ;x, τ) is non-
decreasing with increasing P .

We support this with figure 4.23where d(P ;x, τ) is again plotted as in 4.10; but
this time the initial states are mixed, taken from the sphere of constant purity.
We see now how the Mandelbrot set analogue changes when we decrease the
purity. Actually, we did not define the set for mixed states and we do not mean
to for following reason. The concept is bound to the Julia set which is not defined
in three-dimensional dynamics. Also, the original idea of the Mandelbrot set is
built upon the connectedness. When the fractal structure is elevated into the
third dimension, it may automatically become connected even though the Julia
set for the pure states is totally disconnected. And at last, in the following figure
the would-be analogue to the Mandelbrot set seems to stretch to the whole plane
x, τ . This happens because for P < 1 we detect basins of attraction belonging to
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the mixed attractor. These may be connected to the inaccessible points with no
chaotic behaviour and may be connected; that would interfere with the original
purpose of definition of

∼
M.

Figure 4.23: d(P ;x, τ) for specific values of P . Cases with no detected structure
in black. Left top: P=0.9, right top: P=0.8, Left bottom: P=0.7, right bottom:
P=0.6.

We kindly remind that these conjectures are based on numerical calculations
and would deserve also other forms of verification; hopefully an analytic approach
will be also available in the future. Let us conclude that the phase transition of
the fractal structure is an interesting phenomenon which significantly deepens
our understanding not only in the field of the chaotic dynamics but mainly in
quantum physics. Such regimes have not yet been observed and the existence
of metastructure in the plot of d(P ;x, τ) 4.9 is one of few physical models that
is capable to join theory of chaos and Mandelbrot set to a real physical setting.
We have searched only to find a specific temperature complexification to analyse
phase transitions in Ising model, [50], and specifically designed circuits to realise
coupled logistic maps, [31]. The case of Ising model is rather a mathematical
trick, our twirling protocols are a dynamical model to which the (generalised)
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Mandlebrot set belongs as its integral part. Let us summarise this chapter with
particular focus on the experimental view of our discoveries.

4.11 Practical use of generalised protocols
We have brought three main experimental results in this chapter. First important
theorem 5.15 allows us to modify the time gap between the protocol iterations
at cost of additional unitary transformation of the input and output state, this
modification is executed by free time evolution. This is crucial for realistic im-
plementation where the iterations cannot be implemented instantaneously.

Also, an attractor of some protocol can be modified in certain way by changing
the twirling parameters. The next fundamental theorem states that a protocol
can be designed so that an arbitrary prescribed state is its attractor. There is
a single exception of family of states with w = wc, these exceptional states can
be reached by other protocols and will be treated in next chapter. Therefore, our
protocol is universal for purification purposes.

The last result of significant experimental importance was based on numerical
evidence where both the input state and the protocol twirling gates could be
perturbed. We have shown that the protocol is robust, i.e. the output is deviated
only in a restricted way under certain assumptions.
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5. Protocols of higher degrees
We have just seen that the protocol based on the CNOT gate could be enhanced
with twirling operators; we focused on the symmetries attractors, fractal struc-
tures, also convergence speed. All of them were determined by parameters of
the twirling gates. There were protocols found, namely with τ = ψ = 0, x .= xc
where the convergence was slow, even changed to indifferent character of fixed
points/cycles. We now come to idea whether the convergence speed can be al-
tered so that the protocol would converge faster to its attractor. The CNOT gate
manifested as Hadamard elementwise product and in consequence it induced map
of type z → z2. Can we realise polynomial functions of higher degree?

5.1 Protocol setting
We propose now to use generalised gate cluster defined on a multiplet of qubits.
The scheme of the protocol is below; its purpose is, physically said, to use more
copies of a state to repair its another copy.

Figure 5.1: Scheme of the n qubit protocol based on CNOT gates.

Also, the protocol as designed in [1] allowed for two basic possibilities, projec-
tion onto |0⟩ or onto |1⟩. The protocol that we have studied so far used the first
option. Let us study the results when the other base state is used. At first, for
the sake of simplicity, consider only two qubit case - let us simplify the basis of
the composed system C2

c⊗C2
t and use notation as suggested in theoretical chapter

?? In this case, the measurement based selection with the projection onto |1⟩t
transforms the input control state ρ to (in Bloch representation):

ρ′ = 1
ν

(︄
(1 + w)(1− w) (u− iv)(u+ iv)
(u+ iv)(u− iv) (1− w)(1 + w)

)︄
. (5.1)

where norm ν guarantees Tr ρ = 1. When we adopt the X matrix representation
of NOT matrix as we wrote earlier 2.27, we find out we can write

ρ′ = ρ⊙ (XρX). (5.2)
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When multiple qubits are used as the target qubits, each measured qubit im-
plements the post-selection, mathematically as the elementwise product, either
with ρ for the case of projection onto |0⟩, or with XρX in case of projection
onto |1⟩. The fact that projections onto orthogonal subspaces (subsystems) are
commutative (independent) and the tracing over measured subsystems is inde-
pendent too, 2.16, goes hand in hand with the observation that the elementwise
product is commutative, the output state does not depend on order of the per-
formed measurements. The elementwise product can be thus shortened to powers
- in case that protocol uses 1 control qubit, m target qubits with projection onto
|0⟩ and n onto |1⟩, the output state is

ρ′ = ρ⊙m+1 ⊙ (XρX)⊙n

Tr ρ⊙m+1 ⊙ (XρX)⊙n (5.3)

To make the text more comprehensible and give a simple clue to what protocol
we are dealing with, let us introduce a new notation inspired by another often
used convention of qubit notation, |+⟩, |−⟩, let us think of Positive and Negative.
Protocol with this number of qubits - 1 control, m and n target with projections
onto |0⟩ and |1⟩ will be called Pm+1Nn. Because we will focus on the case of
projections onto |0⟩, we will briefly write Pk instead of PkN0 and also Nk instead
of P1Nk. The original protocol from the third chapter is therefore P2 as it uses
1 qubit to repair another. The parameterisation of the twirling operator (which
is the single unitary gate applied after the nonlinear part) will be again used,
the same as in the previous chapter, i.e. decomposition with parameters x, ψ, τ .
To mark that the nonlinear operation is based on measurements of m+ n qubits
modifying +1 qubit, we will use brackets with indices; again in case n = 0 it will
be omitted:

ρ→ U [ρ]m+1,n (5.4)
The fact that projections act independently gives trivial consequences:

Lemma 1. Consider protocol equipped with arbitrary twirling operator U and
protocol with no twirling, i.e. identity in place of the unitary gate 1. Then

U [ρ]k,k = U [1[ρ]1,1]k,0 = U [1[ρ]k,0]1,1. (5.5)

More generally, if m + 1, n have common divisor q, m + 1 = qm̃, n = qñ, it can
be put into relation instead of 1. We may write

U [ρ]qm̃,qñ = U [1[ρ]m̃,ñ]q,0 = U [1[ρ]q,0]m̃,ñ. (5.6)

Proof. The proof comes from associativity and commutativity of the elementwise
product, which is trivial for arbitrary matrices A,B of the same size. For any
integers p, q, r:

(A⊙ B)⊙p = A⊙p ⊙ B⊙p, (A⊙q)⊙r = A⊙q+r (5.7)

This fact is relevant experimentally because the order of measurements is irrel-
evant. Of course, we have a silent and non-physical assumption of instantaneous
protocol application. It is only natural that the measurements can be executed
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at any order when they are performed at the same time. But also, this lemma
gives computational advantage. The evolution equations can be split into two
successive iterations which can be computationally more convenient, i.e. equa-
tions for P8 with polynomials of degree 8 can be reduced to triple iterations of
only quadratic equations for protocol P2.

5.2 Protocol N1

When the simplest protocol with alternative projection N1 with trivial twirling
U = 1 is taken, we see from 5.1 that the evolution equation in terms of Bloch
coordinates are very dull.

w′ = v′ = 0, u′ = u2 + v2

2(1− w2) ; w′′ = v′′ = 0, u′′ = u′2

2 (5.8)

From the second iteration on, the evolution drags any mixed state along u axis
to the maximally mixed state with function of type z → z2. All the pure states
are mapped onto state u = 1, w = v = 0 which is a representation of |0⟩ + |1⟩
and remain there fixed. All mixed states are converging to the maximally mixed
state.

For this reason, such protocol has no purification potential. The only use can
be to homogenise the input states; this reduces experimental utilisability of the
protocol for purification. Because any protocol PmNn with n ≥ 1 induces at
least partially such homogenisation, we defer to study these protocols and focus
on protocols Pm only. This does not mean that nonlinear dynamics and chaos
are not present in such protocols but we keep in mind the physical motivation
lying primarily in the purification properties.

5.3 Multiple qubit protocols Pn
Because the protocol manifests as the elementwise product on the density matri-
ces, we can suspect that the evolution equations of Pn will contain higher powers
of the Bloch coordinates. Because of this, we will speak of n as of the degree of
the protocol. After we present the new evolution equations which also include
twirling operators, we follow the line of thought from previous chapters.

5.4 Action and symmetries of Pn
The elementwise product of n qubits density matrices gives (without renormali-
sation)

ρ⊙n =
(︄

(1 + w)n (u− iv)n
(u+ iv)n (1− w)n

)︄
, (5.9)
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this lead us to define generalised version of polynomial factors:

Wn = 1
2((1 + w)n − (1− w)n) =

n∑︁
odd k=1

(︄
n
k

)︄
wk,

Nn = 1
2((1 + w)n + (1− w)n) =

n∑︁
even k=0

(︄
n
k

)︄
wk

Un = Re (u+ iv)n =
n∑︁

even k=0

(︄
n
k

)︄
ukvn−k(−1) k

2

Vn = Im (u+ iv)n =
n∑︁

odd k=1

(︄
n
k

)︄
ukvn−k(−1) k−1

2

(5.10)

Note that Wn +Nn = (1 + w)n, Un + iVn = (u+ iv)n The factors Wn

Nn
, Un

Nn
, Vn

Nn
are

then combined with geometrical factors induced by the twirling operator. This
geometrical part of the protocol is for each n identical to the previous case n = 2,
only with general polynomial factors, 4.7.

Let us write now a special case of n = 3, x = π
4 , τ = ψ = 0 which will be

studied more extensively.
w′ = u3 − uv2

1 + 3w2

u′ = −3w + w3

1 + 3w2

v′ = −3u2v − v3

1 + 3w2

(5.11)

We write it to make an observation, the degree of the polynomials in the nu-
merators and denominators are at most but not necessarily equal to n - the
denominator Nn for odd n has degree n − 1 only. This affects number of fixed
points etc.

First, let us again write down maybe trivial but very important fact

Proposition 5.4.1. 1 is a fixed state for arbitrary protocol.

Proof. It is probably not necessary to explain that elementwise product of ar-
bitrary number of identity matrices gives the identity matrix just like the post-
modification with unitary matrix according to time evolution 2.13.

Let us search now for the symmetries in the input states.

Theorem 5.4.2. Protocol Pn induces n-fold rotational symmetry around the w-
axis in the Bloch space of input states.

Proof. When u → ũ = cos 2π
n
u + sin 2π

n
v and v → ṽ = − sin 2π

n
u + cos 2π

n
v are

simultaneously substituted in the input state, than

(ũ+ iṽ)n = ((cos 2π
n
− i sin 2π

n
)u+ (i cos 2π

n
+ sin 2π

n
)v)n =

= (cos 2π
n
− i sin 2π

n
)n(u+ iv)n =

=
(︂
e−i 2π

n

)︂n
(u+ iv)n = (u+ iv)n

(5.12)

Therefore, the values Un, Vn are the same for both inputs. Because w was not
modified, w′, u′, v′ must be identical for both inputs (w, u, v) and (w, ũ, ṽ).
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Let us appreciate for the moment that thanks to this proposition, we can
restrict the studied input states to a spherical section φ ∈ [0; 2π

n
). Now it is

obvious that the coordinate w has unique role in all considered protocols and
that was the reason why we highlight it from the beginning of our work.

Regarding the symmetries in terms of the protocol parameters, we again find
the symmetry in x→ π+x which is direct consequence of the geometrical action
of twirling and represents the same protocol without any conjugation. Then we
recall the symmetry in x→ π− x. It is also valid, but not so trivially. When the
parameter is changed then cos 2x → cos 2x while sin 2x → − sin 2x. This effect
in the evolution equations for u′, v′ can be undone by transforming Wn

Nn
→ −Wn

Nn
.

Therefore, the equation for w′ will be then kept when w → −w additionally.
These two conditions are valid thanks to the definition of the factors Wn, Nn. We
have purposely written them in 5.10 to show that Wn has only odd powers of w
while Nn has only even powers. From this fact we deduce

w → −w ⇒ Wn

Nn

→ −Wn

Nn

. (5.13)

and the symmetry is proved - when protocol with x, ψ, τ gives (w′, u′, v′) from the
input (w, u, v), then protocol with π−x, ψ, τ acting on (−w, u, v) gives (−w′, u′, v′)
for the output.

Next symmetries could be also studied be we will derive them later. At this
moment, we are very curious what happens with the time relaxation symmetry,
5.15. We can confirm that the theorem remains valid when it is modified to suit
general n.

Theorem 5.4.3. Two protocols Pn with parameters x1, ψ1, τ1, x2, ψ2, τ2 are
asymptotically equivalent when

x1 = x2 ∧ (n− 1)ψ1 − nτ1 = (n− 1)ψ2 − nτ2 (5.14)

Defining τ0 ≡ τ1−τ2
n−1 and T0 =

(︄
1 0
0 e−iτ0

)︄
, following equation holds.

T0 · T1R1[ρ]n · T †
0 = T2R2[T0 · ρ · T †

0 ]n (5.15)

Proof. Just like in case of n = 2 we need to realise that when protocol is applied
to evolve the ansatz state T0ρT

†
0 , now the rotation in the Bloch ball is powered

by n in contrast to factor 2 in 4.13. Identical rotation was argued a while before
in the proof of the n-fold symmetry, 5.12. When we follow the proof and compare
the w′ coordinates for both sides, we now come to

x1 = x2 ∧ ψ1 = ψ2 + nτ0 (5.16)

Comparing u′, v′ we obtain the same condition as before

ψ2 − τ2 = ψ1 − τ1 − τ0 (5.17)

The two conditions together make the statement

τ0 = τ1 − τ2

n
∧ (n− 1)ψ1 − nτ1 = (n− 1)ψ2 − nτ2 (5.18)

which completes the proof. Because the equation holds for one iteration, again, it
inductively holds for any number of iterations and also the asymptotic regime.
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We believe that there is a synergy in the proof and reformulation of the same
theorem for pure states in the complex representation which will make further
text more comprehensible. Also, we will later verify that the pure states form an
invariant set for arbitrary protocol.

Proof. Considering pure state z, the action of the time evolution with parameter
τ shifts it to e−iτz. Let us naturally introduce fn;x,ψ,τ for the evolution function
corresponding to the Pn protocol with parameters x, ψ, τ . Therefore, the theorem
can be reformulated to

e−iτ0fn;x1,ψ1,τ1(z) = fn;x2,ψ2,τ2(e−iτ0z) (5.19)

When we derive from TR(
(︄

1
z

)︄
⊙
(︄

1
z

)︄
) the evolution function generally:

fn;x,ψ,τ (z) = e−iτ z
n cosx− eiψ sin x

cosx+ zne−iψ sin x (5.20)

From this we can already see that to identify x1 = x2 ≡ x is necessary; the left
side of the theorem is

e−iτ0 · e−iτ1
zn cosx− eiψ1 sin x
cosx+ zne−iψ1 sin x (5.21)

and the right side is

e−iτ2
zne−inτ0 cosx− eiψ1 sin x
cosx+ zne−inτ0e−iψ1 sin x = e−i(τ2+nτ0) zn cosx− ei(ψ2+nτ0)

cosx+ zne−i(ψ2+nτ0) sin x (5.22)

Comparing both sides, one obviously gets ψ1 = ψ2 + nτ0 and the exponential
factor requires τ0 + τ1 = τ2 + nτ0. These two equations form the statement.

The consequences of the theorem are the same as for the case n = 2, therefore
we do not repeat them again here. Let us rather ask about the other symmetry
of the protocol in τ . We will use the previous theorem to choose ψ2 = ψ1 + 2π.
This formal choice translates into next equation when the equivalence principle
is used.

τ1 − τ2 = 2πn− 1
n

= 2π − 2π
n

(5.23)

This means that two protocols with the same x and τ must give the same output
for the same input when τ → τ + 2π

n
. Of course, we could use any multiple 2kπ,

so all the k protocols τ → τ + 2kπ
n

are equivalent. The symmetry is now also
n-fold, we could say in this sense. Similarly, one could find symmetry in ψ, but
we will again set ψ = 0 in the rest of the chapter.

The last and most complicated symmetry we found in the last chapter allowed
to choose τ → π

2 − τ , now for general n the situation is more complicated.

Theorem 5.4.4. Two protocols with common x, ψ = 0 and τ, τ̃ = π
n
− τ are

conjugate if and only if n is even.

Proof. We must distinguish four cases, the reason for this is in the essential
property i0 = i4 = 1, i1 = i, i2 = −1, i3 = −i. But for any of following cases we
remember that whenever w → −w is changed, than Wn → −Wn, Nn → Nn is
true.
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1. n ≡ 2 mod 4:
In this case, when v ↔ u is substituted, let us write ũ = v, ṽ = u, in
the input state (this case we discussed earlier), we find that generally the
corresponding nonlinear factors will be

Ũ + iṼ = (ũ+ iṽ)n = (v + iu)n (5.24)

while for the first protocol on the first input state it is U + iV = (u+ iv)n.
When we use the binomial theorem, we can compare both variants. Because
n = 4k + 2 for some k ∈ N, we get

(u+ iv)4k+2 = u4k+2 + i

(︄
4k + 2

1

)︄
u4k+1v −

(︄
4k + 2

2

)︄
u4kv2 − . . .

· · ·+
(︄

4k + 2
1

)︄
u1v4k+1 − v4k+2

(v + iu)4k+2 = v4k+2 + i

(︄
4k + 2

1

)︄
v4k+1u−

(︄
4k + 2

2

)︄
v4ku2 − . . .

· · ·+
(︄

4k + 2
1

)︄
v1u4k+1 − u4k+2

(5.25)
Comparing the real and imaginary parts we see that Ũ = −U and Ṽ = V .
Recalling the evolution equations

w′ = Wn

Nn
cos 2x+ Un

Nn
sin 2x

u′ = −Wn

Nn
sin 2x cos τ + Un

Nn
cos 2x cos τ + Vn

Nn
sin τ

v′ = Wn

Nn
sin 2x sin τ − Un

Nn
cos 2x sin τ + Vn

Nn
cos τ

(5.26)

and for the other protocol we use Ũn = −Un and W̃ n = −Wn:

w̃′ = −Wn

Nn
cos 2x− Un

Nn
sin 2x

ũ′ = Wn

Nn
sin 2x cos τ̃ − Un

Nn
cos 2x cos τ̃ + Vn

Nn
sin τ̃

ṽ′ = −Wn

Nn
sin 2x sin τ̃ + Un

Nn
cos 2x sin τ̃ + Vn

Nn
cos τ̃

(5.27)

While the equation for w shows that the substitution w → −w in the input
state goes well with w̃′ = −w′, the other coordinates must be handled. If
we try to identify ũ′ ?= −u′ cosα + v′ sinα, ṽ′ ?= u′ sinα + v′ cosα we find
another nice opportunity to use goniometric relations.

ũ′ ?= (Wn

Nn
sin 2x− Un

Nn
cos 2x) cos(α− τ) + Vn

Nn
sin(α− τ)

ṽ′ ?= −(Wn

Nn
sin 2x+ Un

Nn
cos 2x) sin(α− τ) + Vn

Nn
cos(α− τ)

(5.28)

The identification matches for α− τ = τ̃ = π
n
− τ , i.e. α = π

n
.

We finish concluding: when protocol with x, ψ = 0, τ acts on input state
(w, u, v) yielding (w′, u′, v′) then protocol with x, ψ = 0, π

n
− τ acting on

(−w, v, u) yields (−w′,−u′ cos π
n

+v′ sin π
n
, u′ sin π

n
+v′ cos π

n
). One can easily

see that this formula reduces to previously studied for n = 2.

2. n ≡ 0 mod 4:
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When we take ũ = v cos π
n
− u sin π

n
, ṽ = v sin π

n
+ u cos π

n
then

(ũ+ iṽ)n = (v cos π
n
− u sin π

n
+ iv sin π

n
+ iu cos π

n
)n =

= (v(cos π
n

+ i sin π
n
) + iu(cos π

n
+ i sin π

n
))n =

= (eiπ
n )n(v + iu)n = −(v + iu)n

(5.29)

At this time we can write n = 4k for some k ∈ N, therefore

(u+ iv)4k = u4k + i

(︄
4k
1

)︄
u4k−1v −

(︄
4k
2

)︄
u4k−2v2 − . . .

· · · − i
(︄

4k
1

)︄
u1v4k−1 + v4k

(v + iu)4k = v4k + i

(︄
4k
1

)︄
v4k−1u−

(︄
4k
2

)︄
v4k−2u2 − . . .

· · · − i
(︄

4k
1

)︄
v1u4k−1 + u4k

(5.30)

Without the previous transformation 5.29 this would mean Ũ = U, Ṽ = −V
but adding minus sign by the additional transformation we have Ũn

Ñn
=

−Un

Nn
, Ṽ n

Ñn
= Vn

Nn
, taking w̃ = −w we again have W̃n

Ñn
= −Wn

Nn
. The rest

of the proof is the same as for the previous case. We conclude that if
protocol with x, ψ = 0, τ acting on (w, u, v) yields (w′, u′, v′) then protocol
with x, ψ = 0, π

n
− τ acting on −w, v cos π

n
− u sin π

n
, v sin π

n
+ u cos π

n
yields

(−w′,−u′ cos π
n

+ v′ sin π
n
, u′ sin π

n
+ v′ cos π

n
).

3. n ≡ 1 mod 4 ∨ n ≡ 3 mod 4:
In this case, (v + iu)n gives Ũn = ±Vn, Ṽ n = ±Un. No transformation can
disentangle this cross-connection. Therefore, we get to compare

w′ = Wn

Nn

cos 2x+ Un
Nn

?= Wn

Nn

cos 2x± Vn
Nn

= w̃′ (5.31)

which can never be satisfied. Therefore, such symmetry does not exist.

We should highlight that this theorem discovers one fundamental difference
between protocols with odd versus even degree n. We conclude that the restric-
tions can be now made:

x ∈ [0;π), ψ = 0, τ ∈ [0; π
n
), φ ∈ [0; 2π

n
), ϑ ∈ [0;π] for n odd

x ∈ [0;π), ψ = 0, τ ∈ [0; π
2n), φ ∈ [0; 2π

n
), ϑ ∈ [0;π] for n even (5.32)

and all the dynamical features will be explored.
We might also want to elaborate inverse map formulas to apply backward

iterations to determine the Julia set. We have already argued the inversion of
the geometrical part 4.32, therefore we just derive the inversion formulas for the
nonlinear factors here. From w′, u′, v′ one obtains Wn

Nn
, Un

Nn
, Vn

Nn
. The first factor is

only function of w and one can easily check it is bijection it is a bijection on [0; 1]
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for arbitrary n. Therefore, it can be inverted immediately. We have found that
the function is surprisingly dual:

w =
n

√︂
1 + Wn

Nn

n

√︂
1 + Wn

Nn

(5.33)

Let us make a short note that through our thesis we are often encountering
functions of type

z → 1− zn
1 + zn

(5.34)

which especially for n = 1 is the well-known Möbius transform which is equal
to its own inverse function. a similar pattern now rules the inverse map which
was also found earlier 4.33. The case n = 2 drives the evolution in the original
protocol applied to the pure states. One can check, that for arbitrary n,

fn; π
4 ,0,0(z) = 1− zn

1 + zn
(5.35)

which is a remarkable fact.
Back to the inverting formulas, with w in our hands, we can express solely

Un, Vn and compose them formally into Un + iVn. From definition formula 5.10
we get

u = Re(
√︂
Un + iVn), v = Im(

√︂
Un + iVn). (5.36)

Note that because w → Wn

Nn
is a bijection, there is only a single solution for

w when looking for preimages. The complex number Un + iVn can be formally
multiplied by unit e2πi before taking the n-th square root; in this way we obtain
n preimages. These naturally belong to sphere sections which were found when
discussing the n-fold symmetry. We mention this not only because the preim-
ages are distributed symmetrically in the Bloch sphere but to stress that there
are exactly n preimages. Purely mathematically, solving 3 equations with multi-
variate rational polynomials factors leads to many other solutions but those are
non-physical as they are outside the Bloch ball.

5.5 Asymptotic regimes of general protocols
Our readers are now probably curious whether the properties of protocol with
n = 2 are preserved for higher degrees. Yes, they are. We have promised to show

Proposition 5.5.1. Pure states form the invariant set for any protocol Pn with
arbitrary twirling x, ψ, τ .

Proof.

w′2 + u′2 + v′2 = ((1+w)n−(1−w)n)2+|2(u+iv)n|2
((1+w)n+(1−w)n)2 =

= (1+w)2n−2(1−w2)n+(1−w)2n+4(u2+v2)n

(1+w)n+(1−w)n =
= (1+w)2n+2(1−w2)n+(1−w)2n

((1+w)n+(1−w)n)2 = 1
(5.37)

where we used definition Un + iVn = (u+ iv)n with realising |u+ iv|2 = u2 + v2 =
1− w2 because of the purity condition w2 + u2 + v2 = 1.
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And a trivial observation is that, again, the maximally mixed state 1 is fixed
state of any protocol. But we do not say anything about its stability

Now let us demonstrate the protocol action for some trivial cases. Let us
start with the simplest case, x = 0. In this case, w′ = Wn

Nn
. Because difference

w′ − w > 0 is true for all w > 0 while w′ − w < 0 when w < 0, one does not
have problems to realise that all state except for the equatorial plane w = 0
converge to the poles depending on the hemisphere they belong to. Case with
x = π

2 turns the poles into a cycle again. The equator is the Julia set for both
these trivial protocols. All other states, i.e. those in the equatorial plane with
w = 0, u2 + v2 < 1 converge to the maximally mixed state.

We can also see that when τ = 0 is set (additionally to ψ = 0), equations
4.27 again separate the evolution of v component which again makes circle K (in
plane v = 0) and its border ∂K invariant sets, this information will be straight
used in following.

The protocol with H2 was a prominent protocol because it allowed to purify
towards state |0⟩. Let us take a closer look at the dynamics of protocol of higher
degree with this twirling gate. While our readers might be scared that another
extensive chapter with detailed analysis similar to chapter 3 would follow, we can
calm them. The evolution equations of higher degrees cease to be solvable eariler
than one would hope for. Software Mathematica which we use to solve equa-
tions cannot give neither analytical nor even numerical answers. Furthermore,
the Jacobi matrices of longer cycles are also not manageable. Therefore, we typi-
cally restrict to numerical evolution to obtain attractor maps and we identify the
attractors this way.

Now specifically for n = 3: besides 1 stable fixed state there are four other
fixed states, all of them unstable, pure with v ̸= 0. When looking for length 2
cycles we find two composed of four additional states conjugate to previous fixed
points by specific sign changes. There is also a cycle (0, 0, 1) ↔ (0, 0,−1), all of
them repelling. One could expect that aprotocol with n = 3 could have attractive
length 3 cycle, possibly containing |0⟩, but such expectation is wrong. There are
many 3-cycles, none of them attractive but we finally find the single and only
pure attractor:

C ′ ≡ (1, 0, 0)→ (0,−1, 0)→ (−1, 0, 0)→ (0, 1, 0) ⟲ (5.38)

Physically, when norms are omitted:

C ′ ≡ |0⟩ → |0⟩ − |1⟩ → |1⟩ → |0⟩+ |1⟩ ⟲ (5.39)

Theorem 5.5.2. For protocols Pn with x = π
4 , ψ = τ = 0, cycle C is pure

attractor for arbitrary n even, C ′ is pure attractor for n odd.

Proof. The density matrices corresponding to members of the cycles are

ρ ∈
{︃1

2(σ0 ± σ2),±σ1

}︃
. (5.40)

For all of these matrices we can easily verify ρ⊙3 = ρ. Therefore, ρ⊙n = ρ = ρ⊙3

for arbitrary n odd and ρ⊙n = ρ⊙2 for n pure. The output of the nonlinear
parts of the protocol is the same for all even cases and the same for all odd cases
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(but different for odd versus even). The twirling is also the same for arbitrary
protocols, whence the output states are the same for all the odd/even degree
protocols.

Regarding the attractivity, the Jacobi matrix of the state |0⟩ can be estimated
to give the result. Because the function u′ is always a function of w only (this
is the result of particular twirling leading to u′ = −Wn

Nn
), the Jacobi matrix must

have (J21, 0, 0) in the second row. The member in the first column can be found
for general n as

J21 = −n(1− w2)n−1

N2
n

(5.41)

and when we consider we are evaluating the matrix at w = 1, we find J21 = 0, the
second row guarantees one zero eigenvalue, i.e. superattractivity in one direction.
The other directions are similar - because the nominators Un, Vn are polynomials
where each member is of degree n formed solely of u, v, then the derivatives
contain also such polynomials, only a degree lower. But because we want to
determine the Jacobi matrix at u = v = 0, all these polynomials yield 0; no
matter what other factors appear thanks to derivatives of the denominator, the
first and last row of the Jacobi matrix must contain only zeros.

To conclude, the Jacobi matrix belonging to |0⟩ is zero and for any cycle
containing this state, the Jacobi matrix of the cycle is by the chain rule 2.45

J = J1 · . . . ·

⎛⎜⎝0 0 0
0 0 0
0 0 0

⎞⎟⎠ · . . . =

⎛⎜⎝0 0 0
0 0 0
0 0 0

⎞⎟⎠ . (5.42)

This means that the cycle is superattractive regardless of n.

Theorem 5.5.3. 1 is mixed attractor for arbitrary protocol Pn with x = π
4 , ψ =

τ = 0.

Proof. As before, demanding u = v = 0 results into zeros in the first and last row
of the Jacobi matrix. The second row contains again (J21, 0, 0) but for this case
w = 0 the Jacobi matrix is

J =

⎛⎜⎝ 0 0 0
−n 0 0
0 0 0

⎞⎟⎠ (5.43)

which again makes all eigenvalues zero, meaning the state is superattractive.

What we cannot proof at the moment and remains supported by only numer-
ical calculations is

Statement 5.5.4. There are no other attractors besides 1, C, resp. 1, C ′ for all
protocols Pn with n even, resp. odd and twirling parameters x = π

4 , ψ = τ = 0.

Let us now show the evolution in the invariant plane v = 0 for n = 3. Because
of the attractor cycle which goes hand in hand with sign changing during protocol
iteration, we cannot now restrict the analysis to only one quarter, e.g. w ≥ 0, u ≤
0 like for n = 2.

The attractor map in the circle K is - regarding the structure although not
exact proportions - identical to the case of n = 2, only now the basins of attraction
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Figure 5.2: Attractor map of P3 protocol with H2 twirling gate. Flow of points
after four consecutive iterations is illustrated with arrows. White points are non-
physical states outside the Bloch balls.

must be composed of four parts because of the 4-cycle. The members of the cycle
are ‘the apices’, the intersections of the u,w axes and the circumference ∂K.
Then there are four peculiar states. Being in the circle ∂K which in the complex
representation of pure states means z ∈ R, we can recall the evolution function
5.35 and find these states form a length four cycle. There are 72 complex solutions
to f 4

3; π
4 ,0,0

(z) = z, then solution z = ±i forming the mentioned length two cycle,
and of course cycle C ′ with z = (0,−1,∞, 1). But the reason why we are speaking
of the 4-cycles is the newly found

Φ ≡ ϕ→ ϕ− 1→ −ϕ→ −ϕ+ 1 ⟲ (5.44)
where ϕ is the golden ratio, satisfying ϕ−1 = ϕ−1. This fact is very interesting,

although probably only as a mathematical curiosity. When we would consider
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higher values of n and we repeat this process, we find for low values of n that

fn; π
4 ,0,0(z) = z leads to single real root of zn+1 − zn + z + 1 for n even,

f 4
n; π

4 ,0,0
(z) = z leads to

{︄
2 real roots of − zn+1 + zn + z + 1

and 2 real roots of zn+1 + zn + z − 1

}︄
for n odd.

(5.45)
The four roots for n odd form a 4-cycle. The structure of the roots belong rather
to mathematical research, and so we leave the deeper connections that could be
found in this topic for other research.

Let us come back to the invariant sets. There were invariant subsets of K in
the n = 2 case, namely line segments L2. These have to be extended for odd n
to the whole axed range

L±
2 = {(w, 0, 0)|w ∈ [−1; 1]} ∪ {(0, u, 0)|u ∈ [−1; 1]} (5.46)

but not necessarily for even n. There is again the flip between the w, u axes,
regardless of n. While for n even only the positive w semiaxis is mapped onto
negative u semiaxis and vice versa, for n odd the semiaxes are jumped across, in
the counterclockwise sense. When we take state (0, u, 0), after two iterations it
is brought to (0, u′′, 0), where

u′′ = (1− un)n − (1 + un)n
(1− un)n + (1 + un)n =: l2,n(u) (5.47)

where it is obvious that l2,n(−u) = l2,n(u) for n even and l2,n(−u) = −l2,n(u)
for n odd. Plots of these functions for a few values of n are below in 5.3 and
suggest the idea we pursued when defining the protocols with higher degrees,
that the convergence may be faster. These plots prove it, although for a very
special set of all possible mixed states. With increasing n the u coordinate is
drawn significantly closer to the attractive values 0, 1 after only a pair of protocol
iterations.

Figure 5.3: Functions l2,n restricted to negative u semiaxis. The odd n degree
shows the flip to positive semiaxis.

Much bigger surprise is found when we try with L1 set. We cannot avoid now
writing evolution equations in K from which also l2,n was derived:

w′ = 2un
(1 + w)n + (1− w)n , u

′ = −(1 + w)n − (1− w)n
(1 + w)n + (1− w)n (5.48)
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The L1 set was defined by condition w = 1+u. Let us study whether w′ = 1+u′.
That is equivalent to

2un = −(1 + w)n + (1− w)n + (1 + w)n + (1− w)n = 2(1− w)n (5.49)

When n is even, then inserting 1− w = −u satisfies the equation. However, not
for n odd. The reason is the sign change which causes the state to jump across
different quadrants during evolution; more precisely, in the u,w axes and maps
like 5.2, the state rotates counterclockwise: with w, u > 0 the state evolves to
w′ > 0, u′ < 0, then w′′, u′′ < 0, after third iteration w′′′ < 0, u′′′ > 0 and cycle
ends in w′′′′, u′′′′ > 0 again. With this idea we can prove that the line segment
w = 1 + u is mapped onto segment w = −1 − u, then to w = −1 + u and to
w = 1− u before the cycle starts to repeat. Therefore, in case of odd n one has
to extend L1 to

L±
1 =

{︄
(w, u, 0)|w, u ∈ [−1; 1] ∧

(︄
w = 1 + u ∨ w = 1− u∨
∨w = −1 + u ∨ w = −1− u

)︄}︄
. (5.50)

The actual convergence is not influenced by the particular quadrant, the evo-
lution is symmetrical in reflection around the w, u axes. The importance of these
subsets is that we are unable to look for mixed cycles or fixed states because of the
limited computational possibilities in three-dimensional space. But the calcula-
tions suggest that the only cycles and fixed points belong to these one-dimensional
subsets where the evolution is (more) solvable.

Also, we can look for a fixed state without considering four iterations to repeat
the cycle. Setting the input state to (w, 1−w, 0) that has w > 0 and is the member
of the cycle, then it must be mapped onto (w,w − 1, 0). In this way we derive
evolution function

l1,n(w) := 2(1− w)n
(1 + w)n + (1− w)n (5.51)

which determines the fixed points when l1,n(w1) = w1 is solved; w1 > 0 is gained
in this procedure. The invariant cycle is then

(w1, w1 − 1, 0)→ (−w1, w1 − 1, 0)→ (−w1, 1− w1, 0)→ (w1, 1− w1) ⟲ (5.52)

for n odd; for n even this cycle is reduced to a single fixed state

(w1, w1 − 1, 0). (5.53)

Although the values of fixed points for each n can be given in terms of roots
of exact polynomials, such solution cannot be given in radicals as soon as n = 5,
this is a well known situation from algebra. Therefore, we present a table of the
states for given n, also with their purity calculated as P = 1− w1 + w2

1.
Note that function l1,n does not describe the evolution properly, artificially

constructed above only one branch of L±
1 it is not defined on [−1; 0) and must

be reevaluated for other quadrants. The function l1,n changes with degree n in
a manner similar to l2,n. When increases, the convergence towards attractors
determined is faster and the value of the fixed point w1 separating the points
converging to the two dynamical regimes tends to 0. That means that the con-
vergence is faster but the analogue to the basin of attraction of |0⟩ − |1⟩ shrinks
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n w1 w1 − 1 P
2 χ

.= 0.361103 χ− 1 .= −0.638897 1− χ+ χ2 .= 0.769292
3 0.288392 −0.711608 0.794778
4 0.242592 −0.757408 0.816259
5 0.210707 −0.789293 0.833691
6 0.187050 −0.812950 0.847938
7 0.168703 −0.831297 0.859758
8 0.154003 −0.845997 0.869714
9 0.141924 −0.858076 0.878218
16 0.093829 −0.906171 0.914975
32 0.055509 −0.944491 0.947572

Table 5.1: Table of cycles in L±
1 for Pn protocols with H2 twirling.

n w2 P −u2 P

2 µ2 .= 0.295598 µ
.= 0.543689 µ

.= 0.543689 1+µ2

2
.= 0.647799

3
√

5−2 .= 0.2361 5−2
√

5 .= 0.5279 ϕ−1 .= 0.6180 5−
√

5
4

.= 0.6910
4 0.199069 0.519814 0.667961 0.723086
5 0.173428 0.515039 0.704408 0.748095
6 0.154425 0.511924 0.732464 0.768252
7 0.139681 0.509755 0.754878 0.784920
8 0.127852 0.508173 0.773283 0.798983
9 0.118117 0.506976 0.788721 0.811041
16 0.079112 0.503129 0.853376 0.864125
32 0.047556 0.501131 0.909207 0.913328

Table 5.2: Table of cycles in L±
2 for Pn protocols with H2 twirling.

while the basin of attraction of |0⟩ grows. The same trend is found from 5.3 -
basin of attraction of the maximally mixed state (in L±

2 determined by u = 0),
i.e. interval of u converging to 0 is growing, determined by (u2; 0], the values
are given below in table 5.2. The fixed points determined by l2,n(u) = ±u that
separates the two asymptotic regimes tend to 1 with growing n. This means that
the convergence is faster but the basin of attraction of the pure attractor shrinks.

On the other hand, the evolution on subset (w, 0, 0) of L±
2 is also faster and

the basin of attraction of the pure attractor grows with growing n. We are also
interested in the invariant states in the L2 set, the states (w2, 0, 0) mapped onto
itself after four iterations (onto itself or (−w2, 0, 0) after two iterations depending
on parity of n). We present the w2 values in a table below, together with the
purity values of corresponding states P = 1+w2

2
2 . We also decide to accompany

these states with the states from the other branch, we will write coordinates of
states (0, u2, 0) that are mapped onto themselves after four iterations, for analogy
to protocol P2 or other even n we write w ≥ 0, u ≤ 0. Note that there are also
states (±1, 0, 0), (0,±1, 0), (0, 0, 0) as the solutions to corresponding equations.
As a kind of a trivial solution, we do not present them.

We have probably given enough clues to guess the general evolution in K for
higher n. To support readers’ intuition and sketch the change for increasing n,
we present the attractor maps in a quadrant of K.
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Figure 5.4: Attractor maps of Pn protocols in quadrants of v = 0 plane. Other
quadrants can be added symmetrically with respect to parity of n; for odd n the
map in the whole range w, u ∈ [−1; 1] is analogous to 5.2. Speed of convergence
increases with n. Immediate basins of attraction of |0⟩ and |1⟩ grow, immedi-
ate basins of attraction of |0⟩ ± |1⟩ shrink, invariant points/cycles tend to the
maximally mixed states or the pure attractors.
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5.6 Universality of Pn protocols
While the case x = π

4 , ψ = τ = 0 is well documented now, we recall that when
changing x in n = 2 case one could find attractors with other values of w, except
for a single value wc. We will not give exact prescriptions for what attractive
states and cycles are available when x is chosen. Instead, we give a statement
without a general proof, only numerical evidence.

Statement 5.6.1. Pn protocols with n even and ψ = 0 are universal, i.e. for
each except one value of w = wc,n depending on n, for arbitrary state (w, u, v),
parameters x, τ can be found such that (w, u, v) is a member of attractive 2-cycle
of the protocol. For values w such that wc,n < |w| ≤ 1, x, τ can be found for state
(w, u, v) so it is fixed attractive state.

The critical values wc,n decrease towards 0 with increasing degree n. Also,
the corresponding parameters xc,n - where the bifurcation occurs - tend to grow
to π

4 . Let us present the attractors of protocols with x, ψ = τ = 0 like we already
have - with the plot of their w and u coordinates. To make the plots clear, we
separate the coordinates.

Figure 5.5: The bifurcation of attractors Pn with n even according to legend,
w, u coordinates of attractors drawn separately. Critical angles where bifurcation
occurs tend to x = π

4 with increasing n.

There is an observation that emerged to us after more detailed calculations.

Conjecture 5.6.2. With n → ∞, the state (w,−
√

1− w2, 0) can be made at-
tractive fixed state of the protocol when x is chosen so that acos |w|

2 = x < π
4 . For

the same x, state (−w,
√

1− w2, 0) is a fixed attractor too. State (w,
√

1− w2, 0)
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can be made a member of attractive 2-cycle when acos |w|
2 = x > π

4 . In this case,
the other member of the cycle is (−w,−

√
1− w2, 0).

This proposal does not distinguish parity of n because in the limit of high n
the behaviour coincides, except for certain vicinity of x .= π

4 .
Now, we want to discuss the case of low odd n. These protocols are funda-

mentally different to those with n even. Not only because of the 4-cycles, but
also in the bifurcation when the attractors depending on x are plotted. The bi-
furcation is obviously more dramatical for n = 3 and the same trend holds for
greater values of n odd. With n growing, the region where the bifurcations occur
is more and more restricted towards x = π

4 .

Figure 5.6: Bifurcation of attractors in protocols P3 with τ = 0. w, u coordinates
drawn separately, v = 0 always. For higher n the bifurcations are restricted closer
to x = π

4 , the curves tend to ± sin 2x,± cos 2x

These plots remind very well of logistic function. In our context, we will try
to connect them to the change of fractal structures. it is the best time to uncover
what fractal structures are offered by general protocols.

5.7 Fractal structures and phase transition in
Pn protocols

Because the pure states in the complex number representation again evolve with
rational polynomial functions, now with degree n, we are guaranteed to have
non-vacuous Julia sets in the pure states. We will again use the box-counting
method to estimate its dimension, we will use notation d(n;x, τ) for the dimension
estimate of the Julia set induced by protocol Pn with twirling gate parameters
x, τ . For the rest of the chapter we assume ψ = 0.

First, for n = 3 we show the dimension estimate d(3;x, τ) again in plane coded
with colour similarly to 4.9. This time for the sake of computational time we
have chosen only one randomisation box to average over, the results are therefore
burdened with higher error which leads to increased individual variation in the
pixels. The maximal box resolution remains 50002. We have (similarily to the
case n = 2) seldom points with d < 1 as random errors, we have them rounded
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to 1. Only 36 of these error points were below ∈ (0.98, 0.916) and a single value
dropped to ca 0.885; 2256 values were in interval [0.98; 1.02]. We believe that this
is a very convincing result in favour of our box-counting algorithm even when the
statistical approach with random boxing was not implemented; it justifies us to
consider the corrected points being random errors.

Figure 5.7: Dimension d(3;x, τ) represented by colour in plane x, τ .

This case has one big difference to case n = 2, the generalised Mandelbrot set
- let us naturally index it with the degree n = 3 -

∼
M3 seems now to be equal

to the whole parameter space x ∈ [0; π2 ], τ ∈ [0; π6 ]. This means that the totally
disconnected structure, Cantor dust as in 4.10, 4.14 has not been identified for
any pair of parameters x, τ . We will see in a moment, this is another canonical
difference between protocols with odd and even n. We formulate a conjecture.

Conjecture 5.7.1. ∂
∼
M3= ∅ for protocols P3.

When we check the fractal structures visually, we can now discern all the
previously identified types (save for the Cantor dust), i.e.

1. single fractal curve separating two immediate basins of attraction,

2. recurring islands of multiple basins of attraction, now with resemblance of
symmetries of higher orders,
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3. shattered structure resembling white noise and islands of regular evolution
in regions of white noise,

4. island of stability surrounded by white noise,

5. transient structures exhibiting complicated morphology of spiral shaped
recurring islands. These structures typically combine multiple features of
the previous and usually shatter across the attractor map.

Compared to the case n = 2, there is a feature often visible of pairs of whirls
rotating in opposite directions. These whirls seem to shatter across the Bloch
sphere in bifurcation and can create also structures resembling dendrites. Let us
now present a short excerpt of the atlas of P3 maps that speaks for itself.

Figure 5.8: Fractal structures for P3 protocols often contain pairs of whirls. Top
left: x = 32◦, τ = 0◦, top centre: x = 38◦, τ = 120◦, top right: x = 68◦, τ = 32.6̄◦,
bottom left: x = 68◦, τ = 106.6̄◦, bottom centre: x = 69◦, τ = 18.6̄◦, bottom right:
x = 69◦, τ = 23.3̄◦.

Now, for more general n, our readers will probably be disappointed, but no
new features are discovered. We state based on numerical evidence an important
conclusion.
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Figure 5.9: Fractal structures for x close to 0 or π
2 separate attractor basins of

two fixed states or regimes of attractive cycles. Left: x = 16◦, τ = 12◦, centre:
x = 69◦, τ = 26.6̄◦, right: x = 72◦, τ = 72◦.

Figure 5.10: A common type of structure resembles regular islands in a sea of
white noise. But these are only complicated recurring islands of basins of attrac-
tion. Some of the islands may resemble structure of the Mandelbrot set, 2.2. Left:
x = 29◦, τ = 10.6̄◦, centre: x = 39◦, τ = 84◦, right: x = 45◦, τ = 30◦.

Statement 5.7.2. All protocols Pn with n even are canonically similar to case
P2. All protocols Pn with n odd are canonically similar to case P3.

We lack any apparatus that could compare the generalised Mandelbrot sets
∼
Mn. Therefore, we do not dare to speak of some continuous transformations
or to use any mathematical concepts. Not even to mention that the fractal
structures can oppose the concept of continuity. While we tried to be precise and
analytical, or at least well established numerically, now we must condemn that
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Figure 5.11: Fractal structures often consist of recurring islands similarly to the
case of the original protocol P2 with H2. Left: x = 33◦, τ = 0◦, centre: x =
41◦, τ = 9.3̄◦, right: x = 54◦, τ = 66◦.

Figure 5.12: Spiral shaped fractals often appear as a transition between different
types of structure. Left: x = 28◦, τ = 12◦, centre: x = 32◦, τ = 28◦, right:
x = 49◦, τ = 44◦.

the conclusions on the topic of the metastructure can be done only vaguely and
rather in a popular and not an academic manner of speech. Hopefully our readers
will forgive us using simply the word ’similar’ to compare the Mandelbrot sets.
Let the readers judge themselves.

However, we believe that new discoveries can rather inspire future research
that will settle down the terminology, mathematical formalism and build a stable
and precise background. We would certainly support any future research on
the topic of the multivariate rational polynomial functions and the chaos they
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Figure 5.13: Bifurcations in P3 protocols dramatically influence fractal struc-
tures. Left: x = 25◦, τ = 112.6̄◦, centre: x = 25◦, τ = 113.3̄◦, right:
x = 25◦, τ = 114◦.

induce. Most examples of studied chaos concern continuous time evolution, e.g.
weather, stock exchange and resulted later into few important concepts, let us
mention strange attractor [55] as an example. We believe that this new field
tightly bound to quantum physics opens a whole new branch of science.

Let us satiate our curiosity on new fractal shapes induced by protocols with
higher degrees, overview is presented in 5.16-5.22.

While it could seem from this overview that such complicated patterns are the
characteristic, the opposite is true. We submit that the majority of protocols for
high n generates simpler structures resembling Koch flakes, 2.3, their symmetry
obviously reflects the degree of the protocol. In the overview, we highlighted the
interesting representatives. The fact that exotic fractals are restricted closer to
x = π

4 is observable in 5.14, 5.15 and also in 5.5, although only τ = 0 is considered
there, just like in a figure 5.26 presented later.

The new fractal structures are just one of two main questions we would like
to answer in this section. The other touches the mixed states again; we seek
whether the phase transition is also present in case of n > 2 and what similarities
or differences can be found. We will now deeply study the popular case of x = π

4
with various n. First, we tried to determine the box-counting dimension of the
whole structure of the sensitive states in the three-dimensional space. We used
again the third approach from appendix A based on rounding just like in the third
chapter. Because the structure is distributed near the Bloch sphere for higher n,
we have determined the sensitive points in 20003 boxes grid of interval [0; 1]×3

from which only those with 0.5 ≤ w2 + u2 + v2 ≤ 1 were kept. After performing
the box-counting fit with λ ∈ [100; 250], we obtained:

The slight decrease of the result is most probably induced by the fact that
the structure is more spatially restricted for higher n which effectively reduces
the resolution that is key to the box-counting estimate. Now, let us proceed to
employ the second approach of box-counting based on edge command to estimate

143



Figure 5.14: Generalised Mandelbrot sets for Pn protocols. Left column from
top: n = 4, 6, 8, right column from top: n = 5, 7, 9.

the dimension of the fractal slices on the hyperspheres of constant purity aiming to
verify the presence of the phase transition. We plot the function of the dimension
estimates d(P ;n; π4 , 0) for various n.
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Figure 5.15: Generalised Mandelbrot sets for Pn protocols with higher n keep
their shape. Left: n = 16, right column from top: n = 17.

Figure 5.16: Fractal patterns generated by P4 protocols. From left to right:
x = 32◦, τ = 14.5◦; x = 44◦, τ = 16.5◦; x = 48◦, τ = 7.5◦.

n 3D box-counting dimension
2 2.206± 0.002
4 2.198± 0.002
6 2.191± 0.002
8 2.186± 0.002

n 3D box-counting dimension
3 2.202± 0.002
5 2.192± 0.002
7 2.187± 0.002
16 2.178± 0.003

Table 5.3: Table of dimension estimates of the fractal structures in the Bloch
space, generated by protocols Pn with H2 twirling.

145



Figure 5.17: Fractal patterns generated by P5 protocols. From left to right:
x = 36◦, τ = 22.4◦; x = 48◦, τ = 18.4◦; x = 62◦, τ = 0◦.

Figure 5.18: Fractal patterns generated by P6 protocols. From left to right:
x = 34◦, τ = 6.6̄◦; x = 42◦, τ = 9◦; x = 48◦, τ = 12◦.
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Figure 5.19: Fractal patterns generated by P7 protocols. From left to right:
x = 34◦, τ = 0◦; x = 38◦, τ = 144

7
◦; x = 48◦, τ = 128

7
◦; x = 52◦, τ = 176

7
◦.

Figure 5.20: Fractal patterns generated by P8 protocols. Left: x = 34◦, τ = 1.5◦,
centre: x = 50◦, τ = 3.75◦, right: x = 52◦, τ = 8.25◦.
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Figure 5.21: Fractal patterns generated by P9 protocols. From left to right:
x = 42◦, τ = 11.3̄◦; x = 48◦, τ = 0◦; x = 50◦, τ = 0◦; x = 50◦, τ = 13.3̄◦.

Figure 5.22: Three fractal patterns generated by P16 protocols. From left to
right: x = 42◦, τ = 11.3̄◦; x = 48◦, τ = 0◦; x = 50◦, τ = 0◦; x = 50◦, τ = 13.3̄◦.
Right: Fractal pattern for P17, x = 38◦, τ = 0◦.
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Figure 5.23: Three fractal patterns generated by Pn protocols with x = 18◦, τ =
0◦. From left to right: n = 6, n = 7, n = 8, n = 9, n = 16.
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Figure 5.24: The attractor maps and Julia sets of the protocols Pn with H2
twirling gate. Top from left to right: n = 4, 5, 6. Bottom from left to right:
n = 7, 8, 9, 10, 16, 27.
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The conclusion is unquestionable and leads us to formulation:

Conjecture 5.7.3. The dimension of the sensitive states for protocols Pn with
x = π

4 , ψ = τ = 0 is the same regardless of n with value ca D
.= 2.21. The

dimension of the Julia set of functions

fn,π
4 ,0,0(z) (5.54)

is equal to D
.= 1.56 regardless of the degree n. The phase transition in the terms

of quality structure changing its phase fractal → regular → empty is present for
all degrees n and the temperatures exhibit monotonic tendency - increasing to
P = 1 for the transition fractal → regular and decreasing to P = 1

2 for transition
regular → empty.

Let us also show how the pattern of the Mandelbrot metastructure changes
when the dimension is determined on spheres of lower initial purity.

The phase transition temperature matches again the purity of the prominent
states - the fixed repelling states (w1, w1 − 1, 0) in L±

1 seem to be the points of
the lowest purity where the fractal structure emerges from, transition fractal →
regular occurs at the purity of these points, the values are noted in table5.1. The
transition regular → empty again seems to occur at the states (w2, 0, 0) in the
L±

2 invariant set, this is the sensitive state of the least purity. The temperatures
of the transition being the purity of these states are already presented in table
5.2.

We want to stress now that the transition where the structure of sensitive
states is emptied means again that all states with purity smaller than the transi-
tion temperature belong to the attractor basin of 1. The fact that this transition
temperature decreases with growing n implies that the protocol may be more
efficient to purify states. More precisely, the probability of failure on a random
input of purity P may be smaller. We recall we defined the average entropy func-
tion, now enhanced with the degree e(P ;n;x, τ), we recall the results for n = 2
are in 4.19, which has the meaning of the protocol failure when the attractors are
only either pure or maximally mixed for the protocols of arbitrary degrees. The
mixed attractive states can be found for higher n; this prevents us from setting
formal conlcusions from 5.26.

We now show plots of e(P ;n;x, 0) to confirm our suspicion, again we choose
τ = 0 to visualise the results.

Based on this numerical evidence, we can confirm that the protocols Pn are
not only capable of repairing more damage states, i.e. the transition temperature
is lower, but also offer higher probability of success. Of course, this probability
takes the assumption of random input of given purity. We now want to give
information more relevant for experimental application, but that deserves a new
section. For this moment, let us remind that the exponential trends in e(P ;n)
are also present for higher n, just like we have shown in 4.20.

We are now ought to finish the topic of phase transition. We have now dis-
cussed a special case of x = π

4 , τ = 0. It is impossible to check all possible degrees
n, all possible parameters x, τ but we will give now one stand-for-all example to
support our last conjecture.
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Figure 5.25: The fractal structures generally decay with decreasing P . The metas-
tructure changes, giving rise to regions in black (not present for pure states) which
stand for protocols where no sensitive states are detected on given purity sphere.
Dimension estimate coded in colorbar.

Conjecture 5.7.4. The phase transition is a common feature to all protocols Pn
with all twirling gates determined by x, ψ, τ . The dimension can only decrease
with decreasing purity.

Again, we do not specify exactly what ‘common’ means. The case x = ψ =
τ = 0 always induce exactly a circle on a sphere of constant purity. Therefore,
the d(P ;n; 0, 0) = 1 for all P > 1

2 . Because the fractal is no fractal but regular
curve, we can take it as a special case of fractal with dimension 1 and assign the
transition to P = 1, the transition at P = 1

2 is only the consequence of the sphere
of constant purity collapsing to a point; we can speak again of the transition. But
these cases are merely an issue of terminology, not the phase transition. For this
reason, we do not aspire to give a precise classification for these marginal cases.
The common situation of 0 < x < π

2 suits the concept of the phase transition
well.
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Figure 5.26: e(P ;n;x, 0) for values n = 3, n = 4, n = 5, n = 6, n = 7, ordered
from the top to bottom.

Figure 5.27: The phase transition is a generally present feature of the protocol
dynamics. The case of n = 3, x = 36◦, τ = 0◦; we do not show dimension values
below 1 that correspond to the fact that no structure was detected.
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5.8 Convergence speed and practical use of Pn
protocols

Our purification is proposed to repair a state damaged by decoherence. The
physical motivation is to send through a communication channel state, thath is
an attractor, for simplicity we again choose |0⟩. Therefore, we again try to find the
maximal trace distance t of the input from |0⟩ for which the purification must be
successful. Just like in the third chapter we now can answer this question together
with analysis of convergence speed. We ask the readers to remind themselves
the histogram 3.15 that described R(c, t) percentage of states with initial trace
distance t converge within precision t < 10−6 after at most c iterations. Now, we
present the same histograms for higher degrees, R(n; c, t).

Figure 5.28: Histograms of number of partition of all states R (coded with colour)
with initial distance t from |0⟩ that converge to this state in at most c iterations.
Cases for protocols Pn with degree as inscribed in plots.

It is obvious from the figures that the protocols are more efficient with in-
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creasing n. Again, we were numerically convinced that the closest state (to |0⟩ in
terms of t) is the (w, 0, 0) member of the mixed 2-cycle for even n, resp. 4-cycle
for odd n, which belongs to L2 resp. L−

2 invariant subset, the one with w > 0.
We have identified these states in this chapter in table 5.2 with values w2. Trans-
lated to the trace distance, we conclude that maximal perturbations to |0⟩ that
can be successfully corrected by the protocol are basically already noted in the
table 5.2 as t = 1 − w2. We remind that this result is again based on numerical
calculations.

Also, the convergence speed is improved. Of course, the effect of 4-cycles
impedes the utilisability of the odd-n protocols. For this reason, it is more suitable
to use e.g. n = 4 instead of n = 3 when two iterations are sufficient instead of
four. With this we come to the last and possibly the most important question.
What is the price of the purification? When we realise that Pn protocol requires
n copies of qubit to produce a single copy of repaired state, the cost is exponential
with number of iterations nc. The trivial example of two iterations for n = 4 and
four iterations for n = 3 require 42 = 16 and 34 = 81 copies. While this seems to
favour the higher degrees n, it is vital to realise that the histograms R(n; c, t) do
not offer significant improvement for states with small t. In this case, comparing
e.g. 4 iterations of P2 and 2 iterations of P8 means 24 = 16 versus 82 = 64 copies.
The base of the exponential plays a crucial role for small number of iterations.
We must conclude that the exponential cost is such a drawback that protocol P2
seems to be the most suitable for the practical use.

The use of higher degree Pn protocols can be suitable when state with high
perturbation t must be treated. We can of course combine protocols and therefore
we suggest for the cases of high t to first use protocol with high n and then protocol
P2 to finish the converging trend at lower costs.

The cost of qubit copies might not be a problem for situations e.g. in photonic
signals where we could generate large amount of input states. However, we must
remember that the CNOT operators are burdened with experimental imprecision.
The lower amount of these operations the better. Final compromise must be
chosen with respect to experimental setup, expectations and relevance that is
required from purity of the state etc. But P2 can be generally recommended as
an interesting protocol well capable of purification of mixed states.
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6. Entanglement purification
So far, we were studying, modifying and improving a toy model with a single
qubit that could be modified to increase its purity, in other word mixedness, the
statistical uncertainty. Although such purification showed interesting results, the
aim of the original proposition of the protocol was in purification of entanglement.
Being the important source for quantum information and communication, we now
return to the topic of the entanglement purification and come back to protocols
defined on qubit pairs. We can straightforwardly merge our definition of the
twirling modified Pn protocol 5.1 with the original proposition 2.4. Our scheme
from previous chapter is simply taken twice - with one part identified as the target
and the other as the control subsystem.

The reason why we studied the protocols Pn extensively with the focus on
case x = π

4 , τ will now be revealed to derive conclusions to the two-qubit dynamics
form the previous single-qubit case. Let us recall that the original protocol used
the Hadamard gate 2.28 for the twirling. However, the name of Hadamard is
used for a whole class of matrices.

Definition 6.0.1. We say A ∈ Rn,n is Hadamard matrix when

1. (∀i, j ∈ n̂)(Aij = ±1)

2. AAT = n1

In spite of the requirement on the entries of Hadamard matrices to be real,
we can consider redefining them on complex numbers and take them as unitary,
for this we have to renormalise the matrix by factor 1√

n
. When such matrix is

to be used for the evolution operator we can omit the norm and renormalise the
density matrix later, we will use this to make the expressions more condense and
comprehensive. We now designate four particular cases in R2,2 (up to the norm

1√
2):

These unitary matrices can act as the single qubit gates.
If we consider the action of the single qubit protocol P2 with H2 twirling on

the qubit in the Bloch parameterisation, we realise we are in the thirdd chapter
of our thesis, to accent the similarities and differences, we write the output after
one and two protocol iterations:

ρ =
(︄

1 + w u− iv
u+ iv 1− w

)︄
→ ρ′ =

(︄
1 + w2 + u2 − v2 −2(w + iuv)
−2(w − iuv) 1 + w2 − u2 + v2

)︄
→ (6.1)

→ ρ′′ =
(︄

1 + 6w2 + w4 + u4 − 6u2v2 + v4 −2(1 + w2)(u2 − v2) + 8iuvw
−2(1 + w2)(u2 − v2)− 8iuvw 1− 2w2 + w4 + u4 + 2u2v2 + v4

)︄
If we use H1 instead, we obtain

ρ =
(︄

1 + w u− iv
u+ iv 1− w

)︄
→ ρ′ =

(︄
1 + w2 + u2 − v2 +2(w + iuv)

+2(w − iuv) 1 + w2 − u2 + v2

)︄
→ (6.2)

→ ρ′′ =
(︄

1 + 6w2 + w4 + u4 − 6u2v2 + v4 2(1 + w2)(u2 − v2)− 8iuvw
2(1 + w2)(u2 − v2) + 8iuvw 1− 2w2 + w4 + u4 + 2u2v2 + v4

)︄
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From these we discover following conjugacy of the two protocols. When protocol
with H1 is used on input (w, u, v) to obtain (w′, u′, v′), protocols with H2 used
on (w,−u,−v) gives (w′,−u′,−v′). For the visualisation in the attractor maps,
the two maps are symmetrical. They contain two identical blocks in φ ∈ [0;π)
and φ ∈ [π; 2π) when working in spherical coordinates 2.38 again. The analogous
situation is valid for any pairHi, Hj. This symmetry is a key ingredient to findings
that follow. For simplicity, we will now introduce new notation that will serve
mainly to capture the structure of the matrix. We shortcut the Bloch coordinate
formulas to capital letters. For the case of protocol with H1 we write

ρ = 1
2

(︄
1 + w u− iv
u+ iv 1− w

)︄
=:
(︄
A Z̄
Z Ā

)︄
→ ρ′ =:

(︄
A′ Z̄

′

Z ′ Ā
′

)︄
→ ρ′′ =:

(︄
A′′ Z̄

′′

Z ′′ Ā
′′

)︄
(6.3)

Heading towards the entanglement, we now consider the two-qubit situation.
Our physically motivated request is for the protocol to be LOCC, i.e. the two-
qubit gate should be a tensor product of single-qubit gates. Thanks to this, the
operation can be performed separately on the subsystems. Therefore, we now
construct

Hij = Hi ⊗Hj (6.4)

Proposition 6.0.2. Taking identical notation as in 6.3, the two-qubit protocol
with H11 acting on the state

ρ =

⎛⎜⎜⎜⎝
A 0 0 Z̄
0 0 0 0
0 0 0 0
Z 0 0 Ā

⎞⎟⎟⎟⎠ (6.5)

yields after one and two iterations:⎛⎜⎜⎜⎜⎝
A′ Z̄

′
Z̄

′
A′

Z ′ Ā
′
Ā

′
Z ′

Z ′ Ā
′
Ā

′
Z ′

A′ Z̄
′
Z̄

′
A′

⎞⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝
A′′ 0 0 Z̄

′′

0 0 0 0
0 0 0 0
Z ′′ 0 0 Ā

′′

⎞⎟⎟⎟⎟⎠ (6.6)

Proof. The proof can be mechanically performed by direct calculation. The main
ingredient is the combination of plus and minus signs in the Hadamard matrices.

The consequences of this proposition are very important: the nonlinear dy-
namics studied for the single qubit case is now directly translated to a par-
ticular invariant subset of the two-qubit states. The attractor maps, conver-
gences etc., all results from the third chapter are now valid (under the symmetry
u→ −u, v → −v) for the subset of two-qubit mixed states

X1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

⎛⎜⎜⎜⎝
1 + w 0 0 u− iv

0 0 0 0
0 0 0 0

u+ iv 0 0 1− w

⎞⎟⎟⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓w, u, v ∈ R, w2 + u2 + v2 ≤ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.7)
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Let us now study the evolution when more general Hij is used as the twirling
gate. We will list only few examples and will focus on the structural shape of the
density matrices

H12 : ρ′ =

⎛⎜⎜⎜⎜⎝
A′ −Z̄ ′

Z̄
′ −A′

−Z ′ Ā
′ −Ā′

Z ′

Z ′ −Ā′
Ā

′ −Z ′

−A′ Z̄
′ −Z̄ ′

A′

⎞⎟⎟⎟⎟⎠ , ρ′′ =

⎛⎜⎜⎜⎜⎝
A′′ 0 0 −Z̄ ′′

0 0 0 0
0 0 0 0
−Z ′′ 0 0 Ā

′′

⎞⎟⎟⎟⎟⎠

H13 : ρ′ =

⎛⎜⎜⎜⎜⎝
Ā

′
Z ′ Z ′ Ā

′

Z̄
′
A′ A′ Z̄

′

Z̄
′
A′ A′ Z̄

′

Ā
′
Z ′ Z ′ Ā

′

⎞⎟⎟⎟⎟⎠ , ρ′′ =

⎛⎜⎜⎜⎜⎝
0 0 0 0
0 A′′ −Z̄ ′′ 0
0 −Z ′′ Ā

′′ 0
0 0 0 0

⎞⎟⎟⎟⎟⎠

H14 : ρ′ =

⎛⎜⎜⎜⎜⎝
Ā

′ −Z ′ Z ′ −Ā′

−Z̄ ′
A′ −A′ Z̄

′

Z̄
′ −A′ A′ −Z̄ ′

−Ā′
Z ′ −Z ′ Ā

′

⎞⎟⎟⎟⎟⎠ , ρ′′ =

⎛⎜⎜⎜⎜⎝
0 0 0 0
0 A′′ Z̄

′′ 0
0 Z ′′ Ā

′′ 0
0 0 0 0

⎞⎟⎟⎟⎟⎠

H21 : ρ′ =

⎛⎜⎜⎜⎜⎝
A′ Z̄

′ −Z̄ ′ −A′

Z ′ Ā
′ −Ā′ −Z ′

−Z ′ −Ā′
Ā

′
Z ′

−A′ −Z̄ ′
Z̄

′
A′

⎞⎟⎟⎟⎟⎠ , ρ′′ =

⎛⎜⎜⎜⎜⎝
0 0 0 0
0 A′′ Z̄

′′ 0
0 Z ′′ Ā

′′ 0
0 0 0 0

⎞⎟⎟⎟⎟⎠

H22 : ρ′ =

⎛⎜⎜⎜⎜⎝
Ā

′
Z̄

′
Z̄

′
A′

−Z ′ −Ā′ −Ā′ −Z ′

−Z ′ −Ā′ −Ā′ −Z ′

A′ Z̄
′

Z̄
′

A′

⎞⎟⎟⎟⎟⎠ , ρ′′ =

⎛⎜⎜⎜⎜⎝
Z̄

′′ 0 0 A′′

0 0 0 0
0 0 0 0
Ā

′′ 0 0 Z ′′

⎞⎟⎟⎟⎟⎠
... ... ...

(6.8)

We see that the evolution is very similar and creates specific structures in
the density matrices. The sign changes are irrelevant for asymptotic evolution
because the elementwise product ρ⊙ ρ is not changed by any sign change in any
matrix element. We introduce

X2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

⎛⎜⎜⎜⎝
0 0 0 0
0 1 + w u− iv 0
0 u+ iv 1− w 0
0 0 0 0

⎞⎟⎟⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓w, u, v ∈ R, w2 + u2 + v2 ≤ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.9)

and while X1 ∪ X2 form matrices with element sturcture

X =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
• 0 0 •
0 • • 0
0 • • 0
• 0 0 •

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.10)

we add dual matrix structures, now without direct physical meaning of the density
matrices

O =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

0 • • 0
• 0 0 •
• 0 0 •
0 • • 0

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.11)
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It is possible to show explicitly following statement but the proof will not be
presented in full, it is easy and straightforward, just too long. We have verified
in Mathematica following:

Proposition 6.0.3. Protocol P2 with arbitrary Hij evolves a density matrix
which is a convex combination of arbitrary matrices from X1 and X2 to a lin-
ear combination of X and O structures and then back to X with next iteration.
That is, density matrices with X structure are invariant on two iterations.

We have given exact relations between the structures in [39] and we have also
shown there that more structures can be introduced with similar behaviour. Var-
ious combinations of Hadamard and Pauli matrices create a complicated system
of sets that are mapped one onto another and invariant on two iterations. In
this thesis, we focus on chaotic features, whence we will not further analyse all
the possibilities and only refer to [39] leaving the detailed description of connec-
tions and symmetries for future work; we will now restrict ourselves only to the
interpretation of our results from this thesis for the two-qubit case.

What we also will not discuss in detail (but is interesting) is the exact action
of the protocol on the convex combination of two density matrices, not only from
X1 and X2 but also of two matrices from the same set. The reason is simple,
transformation z → z2 changes λρ1 + (1− λ)ρ2 to λ2ρ⊙2

1 + 2λ(1− λ)ρ⊙
1 ρ2 + (1−

λ)2ρ⊙2
2 . The output is not a convex combination of the component outputs; the

formulas become extremely difficult to handle even after a single iteration.
We will now focus on the protocols leading to the Bell states - these belong

to the X structures; therefore, we leave the other structures aside.
The observation about the invariance of X structure can be now generalised

to arbitrary protocol Pn wiht Hij twirling. The reason is that the invariance is
a consequence of the Hadamard property of the twirling gates, not the element-
wise product (note it is also called Hadamard product, that is rather confusing
coincidence at this moment). Higher order of the protocol can influence the con-
vergence speed, attractor maps but not the structure X . In case of the odd n
four iterations are needed but 4 is even number and the X is invariant on even
number of iterations.

Because all considered two-qubit protocols are equivalent (even H11 and H22
induce the same evolution equations without any sign changes) to the single qubit
version with H2, we will interpret previous results to the current protocols acting
on states from X1, resp. X2. We translate now the Bloch parameterisation for
X1:

|0⟩ → w = 1, u = v = 0→ |00⟩
|1⟩ → w = −1, u = v = 0→ |11⟩

|0⟩+ |1⟩ → u = 1, w = v = 0→ |00⟩+ |11⟩ ≡ Φ+

|0⟩ − |1⟩ → u = −1, w = v = 0→ |00⟩ − |11⟩ ≡ Φ−

(6.12)

and for X2:

|0⟩ → w = 1, u = v = 0→ |01⟩
|1⟩ → w = −1, u = v = 0→ |10⟩

|0⟩+ |1⟩ → u = 1, w = v = 0→ |01⟩+ |10⟩ ≡ Ψ+

|0⟩ − |1⟩ → u = −1, w = v = 0→ |01⟩ − |10⟩ ≡ Ψ−

(6.13)
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In this correspondence we have arrived to situation where the Bell states are
attractors, they form 2-cycles:

Φ+ ↔ |00⟩, Ψ+ ↔ |01⟩ (6.14)

In the last chapters we focused on |0⟩, the role of w coordinate was prominent,
and we showed the convergence rates towards this state. However now, the other
member of the attractor cycle is physically important to us. We can cheat with
performing one iteration of the protocol and transform the Bell state to the
separable state and apply the previous results for this case. But we also decide to
offer another approach. We must be aware that the shrinking basin of attraction
can cause us to take the perturbed inital state from the immediate basin of
attraction of the separable member of the cycle and although we would converge
to the cycle, ti would be in the wrong parity regime, we would obtain its separable
member i.e. |00⟩.

To describe the maximal allowed perturbation, we would like to change the
approach and recall the concurrence, 2.2.7. For states ρ in X1,2 it can be precisely
expressed in terms of (w, u, v) because we have calculated the eigenvalues of
ρ(σ2 ⊗ σ2)ρ̄(σ2 ⊗ σ2):

λ1,2 = 1
2

(︂√
1− w2 ±

√
u2 + v2

)︂
> 0

λ3,4 = 0
(6.15)

The concurrence is then

C(w, u, v) =
√
u2 + w2 (6.16)

which means that the surfaces of constant concurrence and therefore also surfaces
of constant entanglement of formation are coaxial cylinders with axis coinciding
with w-axis. The concurrence has straightforward geometrical meaning of the
distance from w-axis. Therefore, we will not further process it to the entanglement
of formation which lacks such geometrical interpretation.

However, this means that we cannot use concurrence to give a threshold on
purification capabilities, e.g. like that the states with concurrence higher than
certain value are always purified to the Bell state. State with (0, 1√

2 ,
1√
2) evolves

towards |00⟩ after even number of iterations, state (0, 1, 0) after odd (when pro-
tocol with n even is chosen); both states have concurrence 1, thus are maximally
entangled but belong to different asymptotic regime. We will therefore use the
trace distance again so we can at least estimate average improvement of the
concurrence. Consider state ρ at distance t from the attractive Bell state. We
calculate its concurrence C(ρ) and concurrence after two iterations C(ρ′′) and
determine the difference caused by the evolution C(ρ)− C(ρ′′). When we calcu-
late this difference for an ensemble of such initial points, we can evaluate average
improvement of concurrence, let us call it Γ(n; t); it is naturally not only the
function of the initial trace distance from the Bell state but also the order of the
protocol. Because some states could be purified while others could be made more
separable, that means the protocol fails, we will set Γ(n; t) = 0 whenever a state
(with t) is detected with C(ρ)− C(ρ′′) < 0.

The conclusion to take from these plots for various n is following. The Pn
protocols provide slightly better purification capabilities with higher order n.
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Figure 6.1: Average improvement of concurrence for protocols Pn with Hadamard
twirling.

However, the difference is negligible when t is small. Soon, the effect of shrink-
ing basins of attraction causes that the high order protocols are not capable of
purifying most of the states (even with small t) because they belong to the other
parity branch of the cycle or even to the basin of attraction of the analogue to
the maximally mixed attractor.

We have not yet mentioned the role of this analogue of 1. Depending on the set
X1,2 it is either |00⟩⟨00|+ |11⟩⟨11| or |01⟩⟨01|+ |10⟩⟨10|. These are indeed mixed;
with purity 1

2 they are the most mixed in the sets X1,2 but not the maximally
mixed state of all two-qubit space.

As an optimal degree of the protocol we can recommend values n = 2, n =
3, n = 4 based on the plots 6.1. These values offer good improvement of the
concurrence which must be also balanced with respect to the costs. We once
again stress that the price is exponential in the number of copies of the state,
now the Bell pair. Therefore, we must be able to produce tens of copies to be
able to iterate the protocol repeatedly. The exact choice must be made based on
specific experimental setting and capabilities but the choice of n = 2 seems to be
a good compromise.

While we now cared for the protocols with Hadamard gates, one could raise
a question on protocols with different twirling operatorss. Unfortunately, general
twirling gate does not invoke similar structures, invariant sets. The evolution,
although restricted to initial state determined by three parameters w, u, v is now
affected by another, structural mixing of the density matrix elements which turn
the evolution to happen in the whole 15-dimensional state space of qubit pairs.
This causes that we are unable to give general evolution formulas. We have proven
that the Bell states are attractors for a significantly wider classes of states than
was previously known; we have even described the fractal structures, determined
its dimension and found the phase transition. But he most important question
that is still to be answered, is the character of dynamics in the 15-dimensional
space. The multidimensional perturbations might discover that the Bell state is
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sensitive to certain perturbations, we have seen that saddle states can exist. It
is also possible that the dynamics would be sensitive to defects of experimental
realisation of the gates. Nevertheless, current progress in the chaotic dynamics
and fractal structures in quantum physics is very inspiring and hopefully will
encourage future research in this field.
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7. Resume
Chaos and quantum information have a surprising overlap. Our models of the
purification protocols have no analogue in classical physics, and therefore we find
a new manifestation of chaos in the quantum laws of the Universe. The motivation
in quantum information processing and quantum communication, nowadays very
promising branches, gives our research priority. The chaotic dynamics can have
both detrimental and improving effects for practical applications, and therefore
it is vital to understand this highly nontrivial area.

After introduction, in the theoretical chapter, we put together the elemen-
tary knowledge needed for our cause. Because the intersection of the involved
disciplines may be not familiar to some readers, we focused mainly on the com-
prehensibility and illustrative approach allowing the readers to follow our lines of
thought even when their knowledge is limited in some advanced areas.

Now let us summarise the main results of our research. The second chapter
studied for the first time a chaotic model of mixed state dynamics. This model
of single qubit dynamics corresponds to previously known case of the pure state
evolution. The protocol is based on measurement-based selection and modifica-
tion which manifests as nonlinear evolution in the open quantum system. Our
main contribution lies in the detailed and analytic description of the mixed state
evolution. Besides the peculiar geometrical and algerbaic properties of the fixed
states and cycles that were found, we focused on the character of the dynamics,
i.e., we identified attractors and for the first time we identified saddle states and
foci in the purely quantum system.

We have introduced a concept of sensitive states that serves as an analogue of
the Julia set, the set of chaotic states known from the theory of complex functions.
The sensitive structure was characterised by its dimension which was estimated
and checked by various approaches; the main accent was put on the box-counting
method. The dimension approximately equals to ca 2.20 proved the existence
of the fractal shaped structure in the mixed states. A very peculiar statement
was constructed based on numerical evidence - the fractal structure changes its
quality, i.e. dimension, in the three-dimensional space. When sliced into surfaces
according to spheres of states of constant initial purity, we found that the slices
also form fractal structures and their dimension is piece-wise constant function
of the purity. The specific dependence, when the structure quality is unchanged
until suddenly changed from fractal (with dimension ca 1.56) to regular (with di-
mension 1) and to empty (with dimension 0) when certain thresholds are crossed,
is highly nontrivial and can be understood as a phase transition; that is our first
fundamental result. The phase in this interpretation is the structure described
by its dimension. The role of the temperature is played by the initial purity.

We attempted to classify the phase transition, we used the concept of entropy
to introduce the mean entropy function. Based on numerical evidence, we argued
that this function has two; modes of sudden changes, these can be assigned to the
transitions of the first and second kind. Because these transitions in the mean
entropy function can be related to the transition of the structure, the classification
can also be used in the context of the structure transition, although it does not
have a direct physical - standard - form and application.

163



The exponential trends identified in the mean entropy function also allowed us
to interpret the purification capabilites of the protocol; these were also described
using the concept of trace distance. We have calculated thresholds representing
practical limitations of the protocol. We have also described the efficiency of
the protocol by describing convergence speed in a certain sense. With this, the
complete analysis of the protocol was finished.

Next chapter introduced generalisations to the previous mode; we used the
twirling operators to enhance the dynamical regimes and to offer a whole new field
to study. We have focused on symmetries which allowed us to radically reduce
the set of studied protocols. Only one represenant of whole classes of equivalent
protocols is enough to fully describe nonlinear dynamics, fractal structures etc.
One of the symmetries has stronger, physics related properties which led us to
establish a concept of asymptotic equivalency more formally, this equivalency
connects fractal structures induced by equivalent protocols; this allowed us to
reduce a whole degree of freedom in the choice of the twirling parameters. This
symmetry was interpreted in terms of time evolution and allowed to introduce,
change, or eliminate time relaxation between iterations of the protocol. This
equivalency is our second fundamental result. At the same time, the theorem
allows for modifying protocol parameters in order to modify the attractors in
a desired way. Formulas for the processes are presented and also interpreted in
the geometrical representation.

The next fundamental result of our work is that our protocol is universal, i.e.
the setting of the twirling operator can be done in a way to set arbitrary state
(with a singular exception) to be the attractor of the protocol. Protocol for the
exceptional case was offered in next chapter. Exact prescription was given to find
protocolar parameters x, ψ, τ from the state parameters w, u, v.

We also presented changes to the fractal structure corresponding to new pro-
tocols. We have found that there are regions in the protocol parameter space
x, τ where the induced fractal structure seems to be qualitatively the same or
very close, as far as the numerical estimates allow. These regions seem to fit the
concept of J-stability. Sudden and dramatic changes to the fractal structure have
also been detected; these are known from the J-stability concept as well. We have
also introduced the concept of the Mandelbrot set to our evolution functions to
highlight the analogy of our physically motivated research to the abstract analysis
of very simple complex functions. The fact that there is a fractal metastructure
above the fractal structures corresponding to various protocols is highly nontrivial
and very interesting.

We have classified the fractal structures into basic groups and have demon-
strated their shapes. All possible variants of the Julia set were encountered, from
Cantor dust to white noise. The phase transition was shown to be a common
feature of the fractal structures for arbitrary twirling. Because the topic is very
new and the multidimensional dynamics is a demanding and complicated field,
we have raised many new questions for future research; our observations were
often presented as conjectures. We believe that future research in this field may
be fruitful and can open a whole new door to human knowledge.

Among the questions or conjectures that deserve to be put on a more solid
ground, we have put forward:

• What are the properties of the metastructure we described as the generalised
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Mandelbrot sets,
∼
Mn?

• What relationship is there amongst these sets for various n? Is there some
link amongst the fractal structures of protocols with different n? In the
special case of x = π

4 , ψ = τ = 0 the fractals seem to have the same
structure (i.e. dimension) regardless of n.

• Is there a way to decide whether the Julia set of a rational polynomial
function is connected/disconnected? Is there an analogue to the Mandelbrot
theorem?

• Is it possible to characterise symmetries that can be seen in the fractal
structures, at least for some particular fractal shapes?

• Is it possible to give a better proof than numerical estimates on an ensemble
of chosen protocols, that the phase transition, i.e., sudden change of the
structure of the sensitive states with the purity, is a general feature of the
protocols? Is the function of dimension d(P ;n;x, τ) non-decreasing with
increasing purity for all parameters?

These questions are now summed also to include the higher orders n. We
come to an important thought - is it possible that the functions that come from
the physical context of the purification protocols are restricted in some way?
Is it possible that general rational polynomial functions can exhibit more exotic
features? Do the physical laws manifest as certain restrictions to these functions?
Can other rational polynomial functions be achieved by other physical settings?

In the third chapter, we have also detected bifurcation - a change in the
number of attractors when the parameters of the protocol are changed. This
effect is well known in chaotic dynamics. Its presence in the quantum purification
protocols puts another piece of knowledge into the mosaic of quantum chaos.

The last important result from the third chapter was that the purification of
state |0⟩ is robust. I.e., when the state is perturbed and when even the protocol
gates are perturbed, the output state also changes in a manner consistently small
with the perturbations.

The fourth chapter, introduced further generalisation to the protocols. By
considering mutliplets of qubits, we realised evolution driven by polynomials of
higher degrees. Motivated by the idea that the degree of protocol can improve the
convergence speed and therefore the purification capabilities, we have offered new
protocol schemes and have also given corresponding evolution equations. In this
way we produced the most general single-qubit protocol based on CNOT gate.
We presented some basic findings on the nonlinear dynamics, mainly about the
symmetries and phase transitions again. In the protocols of higher degree we have
found a fundamental difference between protocols of odd and even degree while
each of these groups share basic properties. This concerns also the generalised
Mandelbrot set, we have not identified (by the box-counting method) the presence
of Cantor dust fractal in the odd n degree protocols.

We mainly focused on protocols with a particular twirling with Hadamard type
matrix; for these protocols we found that the odd - even dichotomy manifests in
following way: All Pn protocols with n even have C ≡ |0⟩ ↔ |0⟩+|1⟩ for attractor;
protocols with n odd have 4-cycle C ≡ |0⟩ → |0⟩− |1⟩ → |1⟩ → |0⟩− |1⟩ → |0⟩ for
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attractor. Also, we provided by numerical calculations that the fractal structure
of the Hadamard twirling protocol is the same regardless of the degree n. The
fractal in the three-dimensional Bloch space retains the dimension value near
2.20 and the slicing of the fractal still keeps the values near 1.56. The very slight
decrease of the dimension estimate that can be detected is with high probability
an artefact of numerical methods which work in rough precision ranges.

We have also analysed the convergence speed and compared it to the cost
which is paid in the copies of qubits that are discarded during the protocol iter-
ation. We have argued that the lower n may be much more suitable for practical
applications.

The last chapter offered a direct use of previous research for two-qubit pro-
tocols. The protocols with Hadamard gates played a crucial role for two reasons
- they purify the Bell states which is desirable for practical purposes, and their
structure allowed to transfer single-qubit dynamics to particular subsets of more
general two-qubit protocols. We argued that for the purpose of the entangle-
ment purification the protocols with low n are a good compromise between the
costs and gained purification. Still, the complete characterisation of the dynamics
caused by arbitrary protocol in the two-qubit scenario is not viable because the
chaotic dynamics in 15-dimensional space is still far beyond current state of the
art, despite our significant advancements.

Let us formulate another set of questions for the future research

• What is the dynamics of the purification protocol P2 with Hadamard gate
twirling in the 15-dimensional space? Can it be approximated at least
numerically on some neighbourhood of the Bell state? Is the protocol robust
to perturbations of both the state and the gates as we have shown in the
single qubit case?

• What dynamical regimes can be found in the dynamics driven by rational
polynomial functions of 15 variables, in the two-qubit states? Are there
also states of saddle point and focus types? Are there more complicated
bifurcations when the twirling parameters are changed?

• Are there some invariant sets of two-qubit states for protocols with other
than Hadamard twirling that would allow to simplifying and analysing the
dynamics?

• Is the phase transition also present in the two-qubit systems?

And one of the most important question rises from the fact that we used the
CNOT gate to construct the protocol. This gate is one particular case of so
called Controlled-U gates. These gates execute/execute not the U unitary gate
on the target qubit based on the state of the control qubit. Our brief sketches
suggest that such protocols can induce different evolution functions, although
also rational polynomial.

• What dynamical regimes are present in the Controlled-U protocols?

• Can Controlled-U protocols be used as the purification protocols in the
sense of mixedness of qubits?
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• Are Controlled-U protocols capable of purifying entanglement? Can they
be more efficient?

• Do Controlled-U protocols induce chaos? What fractal structures are gen-
erated? Do the structures also undergo phase transition?

In the very end we also propose to define the purification protocols on qudits
and study the chaotic evolution in the corresponding spaces, this may be an
acceptable next step in the field.

Succeeding in identification of the basic chaotic features in the quantum in-
formation processing, we believe that the field has much to offer not only to
abstract mathematical studies but also to the physical applications leading to
secure communication, faster information processing etc. in the near future.
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A. Box-counting dimension

A.1 The idea of box-counting
The concept of the box-counting dimension was formally introduced as a mathe-
matical definition in 2.3.36 where we also mentioned it can be taken as a reason-
ably efficient dimension estimate. However, the exact implementation is neither
obvious nor easy process because the suggested algorithm inherently contains few
caveats one must take care of. In this section we present the box-counting algo-
rithm which we develop on our own (using only the basic idea of box covering).
We have two reasons to write our own algorithm. First, we tailor the algorithm
precisely to our use, we do not have any collisions with data types, and we know
exactly how the program is written. We also can give the code so the process
is controllable by other researchers who are invited to inspect the algorithm for
eventual collaboration on this topic. The other reason is that the algorithm is
based on a simple idea. Probably it is expected everyone can spend time to create
their own.

First, we would like to remind that some books, e.g. [61] use similar but not
the same approach to explain the idea itself. And yes, the idea is simple to under-
stand. Therefore, we build our algorithm from the very beginning, which is also
good to obtain some intuition of how the algorithm works and what problems
we can expect. In order to avoid general troubles and minimise complications,
we tested and ‘calibrated’ the method on various objects to be most accurate for
our purposes. We have even performed three different codes with three different
approaches to self-check the results. The following text is written into compre-
hensive though lengthy form because we wish that any reader can take this text
for a guide from zero knowledge to full understanding of the algorithm and our
code.

Let us first briefly explain our first approach based on the idea of image pro-
cessing. For simplicity, we now restrict ourselves only to objects1 with dimension
0 < D < 2 embedded into two-dimensional manifold (generalisation to higher di-
mensions will be obvious) which is clearly motivated for our use of attractor maps
2.7. We intend to apply the process to our attractor maps which are represented
as matrices of certain size n × n. The object of our interest is the structure
(pixels) separating regions of different asymptotic regimes (colours). The first
idea of box-counting is to relieve the optimality of the covering in the dimension
formula 2.3.35. Instead, we split the matrix into a grid of m ×m submatrices -
boxes. Such boxes have side ε = n

m
. We usually choose n to have many common

divisors so that we avoid dividing matrix into uneven boxes. Such approach is
also possible though, as well as with overlapping boxes, see [61]. But for the sake
of simple programming, we do not choose to complicate the algorithm. In the
case of general rectangular matrix of size n1 × n2 we would divide the matrix
into m1×m2 boxes and we would have to look for common divisors which is just
a minor technical issue not changing the algorithm; without loss of generality we
can continue with n1 = n2 = n. We calculate number of boxes Nε that cover the

1Working in certain coordinate systems we identify the object with corresponding coordinate
representation.

171



object, this is executed by checking if the submatrix (box) contains more than
one unique value. For this reason, maximal suitable boxing layout can be done
for m = n

2 . a single pixel represents a set of states we consider to have the same
dynamical regime and only a box of minimal size 2×2 can cover more asymptotic
regimes and thus the structure of sensitive states.

The second idea of the box-counting approximates the scaling limit ε in 2.3.35.
When we repeat preceding step for various (increasing) values of m, we decrease
ε towards 2 .= 0, we can simulate the limit in the dimension formula. The third
idea simplifies determining D when the first two ideas are realised. From 2.3.35
we can see that the dimension D manifests as a slope of line y = Dx when we
denote y = logNε and x = log 1

ε
. In this way we can estimate the dimension

when fitting the set of such calculated points (x, y) with a line.
Here, we present the sketch of our first box-counting algorithm, merely to

illustrate the algorithmic line of thought, in the way we realised it in the MATLAB
software. The box-counting itself is realised with repeating following steps on
a picture with resolution n× n:

• Choose m ∈ n̂ such that m|n. Divide the picture into m × m squares
(containing ε = n

m
pixels);

• Create zero matrix M of size m×m;

• For element of matrixM (indexing the boxes) we take the corresponding box
in the n× n matrix (the attractor map) and check whether the submatrix
contains more than unique value (i.e. covers the structure separating basins
of attraction, structure of our interest). If yes, we inscribe value 1 to the
matrix element in M .

• Sum elements of M , the sum equals to the number of covering boxes Nm.

• Create a point (logm, logNm) =: (x, y).

When these steps are iterated for all possible m we obtain a set of points which
we fit with y = Dx+R as suggested earlier;

y = logN = D log 1
ε

= D log m
n

= D logm−D log n = Dx+ R̃ (A.1)

It is important to realise that in this procedure we approximate limε→0 (the
size of the boxes goes to 0) with limm→ n

2
.=∞, i.e. the image is divided into as many

boxes as possible. This is one of the serious sources of error. For this reason, very
detailed attractor maps must be created to ensure that ε→ 2 simulates the limit
0 well. We expressed the dimension as a slope fit in terms of m, the density of
the box grid. This results into a new term R̃ = −D log n which is the shift of the
line. Now, we remind that the dimension does not depend on the absolute size
of the picture. This corresponds to the value of n. When we say the picture has
‘size’ n = 1 the shift term R̃ vanishes. We conclude the shift is not important
for the dimension estimation, it can be simply related to the absolute size of the
picture.

On the other hand, a shift is always present due to the numerical imprecision.
We will comment this together with other problems now; the approximation of
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the limit ε → 0 is not the only source of error. Another source comes from
omitting the optimality of the covering and also, we must not forget the finite
precision of computation. In the following text, we also show some examples
where the problems can be fatal for dimension estimation.

Since the first idea of the box-counting method reduces the optimal covering
of the object to some rigid grid of boxes, this results in deviations from the line
y = Dx formulated earlier. These deviations can be not only random but also
systematic because the rigid boxes cover the object in a far-from-optimal manner.
For example, the rigid box grid can cover the object of interest with a vast number
of boxes with only the tips of their corners: Imagine a square picture where our
object of interest is its diagonal line. When we cut the square into m×m squares,
m of them (lying exactly on the diagonal) would cover the line. The line would
run through the corner points of these boxes precisely. When the line would be
shifted slightly to a side, the line would outreach the squares, and we would need
additional m− 1 squares to cover the whole line. In total, we would obtain

D ∼ log(2m− 1)
logm . (A.2)

This of course leads to D = 1 when the limit m→∞ is performed. As we work
numerically, we can only choose m far away from ∞. When we choose m = 103

the dimension estimate is deflected to D ∼ 1.1, for m = 106 the result would
be D ∼ 1.05. But grids of orders of 106 × 106 pixels are not well manageable in
common computers. It is vital to understand that the box-counting method can
be very imprecise, yielding rather indicative values. It has no sense to present it to
three decimal ciphers because the error can easily be deviated by 10%. However,
this example is taken in a very specific way and the fractals in our calculations
do not suffer from this effect that much. The issue springs from the alignment of
the structure with the box grid. For most of the fractals and in particular fractals
in our work such a situation does not occur. Another example of the systematic
error in the method can be the Sierpinski carpet, [60] see figure A.1. In this case
the structure of the fractal matches the box grid again and this leads to similar
pathology of deviation of the dimension estimate.

The Sierpinski carpet is created in the following way: Starting with a square,
divide it into nine equal squares and remove the middle one. This step is iterated
on all subsequently obtained squares infinitely many times. In this way, each
arbitrary piece of the surface gets eventually punctured at a certain step. Consider
that each iteration reduces the area of the carpet to 8/9 of the original area.
Executing this reduction infinitely many times we find that the carpet has zero
area, similarly its perimeter grows to infinity. Truly, we will find below that the
carpet is neither a surface nor a curve because its dimension will be 1 < D < 2.
It can be proven that the carpet is equal to its border and for that reason we can
look at the structure in two ways , as an area that is iteratively punctured, or
square perimeters that are iteratively multiplied and rescaled.

Let us first take it as an area which is more suitable to the pixel representation.
The construction of the Sierpinski carpet is very favourable when approached in
pixelised form (in finite approximation, of course) - it is very easy to specify what
pixel should have which colour (carpet present/not present). We use an easy idea
to draw the carpet: Construct an elementary unit - a square (initially a pixel of
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Figure A.1: Simplified model of the Sierpinski carpet simulates finite resolution of
pictures in computer. Two possible coverings with identical box grid demonstrate
the position dependence in the box-counting method. The grid at the top contains
12 boxes that do not cover the blue region. In contrast, the grid at the bottom
contains only 4 such boxes. In case we would be interested in the curve separating
blue and white regions, the upper grid coincides with the curve - the dimension
cannot be estimated correctly in this case.

value 1). Set eight copies of the elementary unit along an empty unit (initially
a pixel of value 0). Take this square of nine units as a new elementary unit and
repeat. In this way, we weave the carpet to arbitrary size. At certain step, the
initial square (pixel) becomes so small compared to the size of the whole carpet
that it is indistinguishable from the true carpet element for the computer. When
we reach this situation, we successfully simulate the carpet’s structure.

Now, we want to determine the dimension of the Sierpinski carpet. We will
use the box-counting method, the box covers the carpet when it contains at least
one pixel of it, this is different to the situation when we aim at border structure,
such box has to contain both of covering and not covering pixels. Suppose we
have just performed the first iteration of the carpet’s creation algorithm, we set
the absolute measure by setting the side of the whole carpet to have length 1.
The step of the creation algorithm divided it into nine equal squares and deleted
the middle one. If we identify the structure of the carpet with the box-covering
structure, we need 8 squares of side 1/3 to cover the carpet. When we continue
to another iteration we need 64 squares of side 1/9. Proceeding to n iterations,
we cover the carpet with grid of squares of side 1/3n, we need 8n of such squares.
In this line of thought, we can even perform the limit n → ∞ and see that the
box-counting dimension is log3 8. We would obtain this number even if we would
allow the squares to float, not to be set in a fixed grid. This covering with squares
is very well set but we illustrate now what happens when the grid of boxes would
be shifted. As shown in the figure A.1 when we would displace the box grid for
a unit, the covering would not be optimal, more boxes would be needed. This
also demonstrates that the box-counting dimension depends on the location of
the grid vs. the object.

To translate the situation back to the situation where we intend to detect the
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border of a fractal, we understand previous pixels of the structure as covering
pixels of the structure iterated to the next level. It can be easily imagined that
each coloured pixel in figure A.1 stands for eight coloured and one uncoloured
subpixels, therefore covers the structure of the carpet understood as a set of
curves. This duality of the area and border curve will lead us to improvement of
the first version of the box-counting algorithm.

Back to the topic of imprecise estimates, a pathological situation occurs when
we would want to capture the dimension of the border of the model of the Sier-
pinski carpet from the figure as it is in A.1 in the aforementioned way. We mark
the box as ’covering’ when it contains pixels of both colours. We can see that
in the figure A.1 the original and the shifted grid yield different number of cov-
ering boxes. If we would choose the box grid which is a level finer, each box
would contain just a single colour and therefore no border would be detected.
This situation when the box grid coincides with the fractal generally lowers the
box-counting dimension, while the situation where the box grid is abundantly
covering the object increases the value; both situations can generally happen in
our later computation. But we can avoid this pitfall when we use different grids
(which is equivalent to use rotated, shifted, even stretched pictures of the object)
and decide the optimal dimension value.

We conclude there is an error connected to the setting of the object within
the picture. This error (which comes from omitting the minimum and covering
optimisation in the dimension definition) can lead to false dimension estimate.
It also increases variance in the line fitting. To avoid this problem, we could
use different pictures of the same fractal - shifted and rotated - to check how
this issue affects the dimension estimate. We have two complementary options -
either we modify the box grid, or an object. These two approaches are dual in
the sense that the transformation of a deformed grid can be executed inversely to
both the grid and the untouched structure by which we obtain the original grid
and deformed structure. Such transformation must possess certain properties to
guarantee that the structure dimension does not change, e.g. the structure is not
deformed into a single point. It is not in our scope to find such properties but we
can certainly propose following.

Proposition A.1.1. For F Lipschitz continuous map with Lipschitz constant
λ > 0 on a metric space X, DBC(Y ) = DBC(F (Y )) is true for any Y subset of
X.

Proof. Taking the λ the Lipschitz constant of F and {Ui}i covering of Y . Then,
diameters can be estimated |F (Ui)| ≤ λ|Ui|. Therefore, when there were Nε

boxes of diametres at most ε, the same boxes mapped via F give the covering
of diameter at most ε′ = λε; the number of boxes does not change, N ′

ε′ = Nε.
Therefore, the dimension D ′

BC calculated on the image F (Y )

D ′
BC = lim

ε′→0

lnN ′
ε′

ln 1
ε′

= lim
λε→0

lnNε

ln 1
λε

= lim
ε→0

lnNε

ln 1
ε

= DBC , (A.3)

just because λ is a nonzero constant.

The second problem of box-counting approach has been already touched, it
connects to the omitting of the limit in the dimension definition 2.3.36. For some
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objects the limit can be reached very slowly and numerical threshold in m cannot
get near. This can of course lead to defects in the dimension estimate.

The third problem is related to the picture of the object. We use matrices of
pixels, i.e. the infinitely recurring fractal structure cannot inherently be captured.
Finite resolution of the picture affects the resulting dimension in a following way.
As the number of boxes approaches the resolution of the picture the object seems
more and more coarse and the fractal fine structure is lost to the boxes, see A.2.
In the extreme case when the number of the boxes is equal to the resolution size
of the picture, we cannot capture the fractal as a curve separating two regions
(each pixel contains a single colour, i.e. belongs to a single region). We remind
this issue happened for model of the Sierpinski carpet for certain setting of the
box grid.

Figure A.2: Resolution of a picture affects the dimension estimate. When a poor
picture is used or the box size approaches the size of a pixel, the box-counting
method fails to detect borders between black and white regions. TheLeft picture
represents a poor resolution picture. However, at the same time it represents
a single box capturing a detail of the fractal when ε = n/m = 15.

In the figure A.3 we show points [logm, logNm] as m initiates at 1 (whole
picture is taken as a single box) and then m is growing until m×m approaches
resolution n × n of the picture of the fractal. We discuss now three significant
regions, exact sizes of the regions must be decided from picture to picture, given
values are just orientational:

• m small (ca. m < n
100) - in this mode the box grid is too rough to capture

the details and self-similarity of a fractal. The position of the object in
the picture strongly influences the Nm. Points fluctuate along the line
determining the dimension;

• m intermediate - in this mode the boxes can capture the self similarity
of a fractal. Also, each of the box contains enough pixels so the fractal
actually has its shape. Because the grid is fine enough as well as each box
contains fine details of the object, this region is the most reliable to extract
the dimension from;
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Figure A.3: Points (logm, logNm) form a line, its slope equals to box-counting
dimension. Points with low m (blue colour) are affected by the object setting,
points with high m (red colour) are deviated by the relative low resolution of the
picture. Gray line is the fit of chosen intermediate m values (black colour).

• m big (m ∼ n) - in this mode the resolution of the picture decreases the
Nm because the boxes contain too few pixels to distinguish where object
is and is not. This leads to underestimating the dimension when the fit is
made in this region too. In extreme case the estimate might fail like in the
Sierpinski carpet example. This mode is equivalent to using a picture with
poor resolution, as illustrated in A.2.

To obtain the most accurate dimension estimate, we exploit the middle region
1≪ m≪ n. In order to have sufficiently many points to fit a line in this region we
need to use a picture with high resolution. However, higher resolution naturally
leads to longer computation times. We usually used pictures with resolution
5040 × 5040 pixels and we used n

100 < m ≤ n
10 in our calculations, experiments,

and verifications.
The last note is that a similar approach can be generalised into a d−dimensio-

nal space by taking a (hyper-)cube of size n, divide it into mD boxes of character-
istic size ε = n

m
and then the process of the slope fitting is the same as discussed.

We sum up that the box-counting method uses very simple ideas to approxi-
mate the fractal dimension. However, the ideas induce few troubles which we are
aware of. We suggested and implemented few improvements to reduce the error.
In spite of our effort, this implementation of box-counting algorithm remains very
inaccurate and serves rather as an indicative instrument than an exact estimator.

A.2 Improved box-counting algorithm
Previous approach naively followed the ideas of the covering set by dimension
definition 2.3.36. Yet it was too robust as it needed an image of high resolu-
tion which was later analysed. We now present our own idea and more efficient
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implementation. To do so, we realise few issues that we further combine.
The basic thought of previous approach was that the pixel represented an

elementary volume of a basin of attraction, a point and its immediate neigh-
bourhood where we approximated that the dynamical regime is the same for all
states. The smallest box to detect the border between two different regimes was
of size 2× 2 pixels which dramatically influenced necessary resolution. Now, we
realise that two neighbouring pixels of different regimes (colors) imply existence
of a point somewhere in between them that belongs to the border of basins of
attraction, the structure of our interest. We relieve the idea of pixe as a volume
representant but take it as a single initial state given by some coordinates. If
two neighbouring pixels differ in their asymptotic evolution, it implies existence
of point in between them that truly is the border point. For the purpose of nu-
merical approximation, we can assign the point the average position of the two
neighbouring points and include it into the structure we are investigating. In this
way we can use each pair of pixels to be an efficient box instead of 2 × 2 box.
Furthermore, this detection of the border states can be performed efficiently via
edge command in MATLAB.

What we have just performed could be called duality of the representative and
the box; it can be illustrated in figure A.5. Each box is represented by a state.
Existence of grid of points implies existence of another grid of points which are
positioned in the midst of neighbouring points, these can be taken as represen-
tatives of another boxing, this new conjugate boxing is efficiently taken for the
algorithm. The point of the new grid is set to belong to the sensitive struc-
ture whenever the two (conjugate) neighbouring points differ in their asymptotic
regime. This approach is far more successfull in capturing the object of our inter-
est from the image of the same resolution. However, there is a major drawback -
computational time. To compare all pairs of neighbouring points is very inefficient
and for that reason we used the MATLAB edge command with Sobel’s method
and threshold 0.2 through our thesis which can detect such borders in a fast,
optimised way. But a cost must be paid for this, the command creates a matrix if
the same size as the input has (the new conjugate grid should be 1 pixel smaller
in each size), thus the border states are slightly distorted. To justify the use of
the distorted grid, it mainly represents the shift of the all points, such shift does
not effect the dimension estimate. And the edge command is optimised to detect
the borders.

The second major improvement to our box-counting algorithm gets inspira-
tion from the fact that alignment of the fractal structure with the box structure
can fail to detect borders precisely. For example, when the structure of Koch
flake-like pinnacles penetrates only small parts of the boxes. The repositioning of
the grid can uncover such pathology without making. For this reason we propose
to randomise the points representing the original box grid where the evolution
is calculated. The representative point can be taken anywhere in the box with
uniform distribution. Such approach is correct, this statement can be sustained
by following arguments. The box in the box counting method does not have to
be a square generally, the definition requires coverings of certain size, not ac-
tual shapes. In literature, e.g. [61], spheres can be used generally, rectangles.
Other grids can be thought of. Our suggestion is to use de facto boxes of random
polygonal shapes completely filling the space. In the limit of good resolution
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Figure A.4: The first approach of our box-counting algorithm uses boxes of at
least 2× 2 pixels; left. The improved algorithm uses command to detect borders
of basins of attraction. The dual grid of new boxes symbolically shifted to dashed
lines for better visualisation and can be understood as representatives of points
of the structure; middle. The best option is any border point to the structure
individually, each point can be understood as a single box; right.

Figure A.5: Rigid boxes around uniform grid of points (gray dots) cannot cap-
ture complicated shape; left. Randomised points represent the same boxes but
can offer better approximation of the structure (black dots), especially when the
randomisation is repeated; right. Randomised boxes capture 5 more points of the
structure and better simulate the fractal distribution in space in this case.

ε→ 0 the dimension estimate must agree for any shapes. Second and related ar-
gument is that more detailed resolution would detect a pathological structure, by
the random repositioning of the representative point we virtually simulate higher
resolution. The actual advantage of the randomised boxes lies in the repeating
the process, in such case new positions can detect structure points not detected
in previous setting. It is computationally more efficient (time, memory) to repeat
the algorithm many times on a smaller matrix than one time on a large matrix.
Another argument lies in the proposition A.1.1 which explains that certain well-
behaved distortion does not change the dimension of the object. The distortion
in our proposal is only chosen locally, not globally.

We now list the full code which we used to detect the structure of sensitive
points and its dimension. We add comments to make it comprehensible, in par-
ticular we dedicate a few sentences to improvements. This MATLAB code could
be transferred and is ready to use for the reader on their own. First of all, we
write a help script that iterates the evolution function of one iteration of the
general protocol Pn with twirling gate, 5.10, 4.7. This could be implemented as
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a function but for the memory manipulation we chose the form of a script.

% ITERATE
D0=((1+W).ˆpower+(1-W).ˆpower)/2;
D1=((1+W).ˆpower-(1-W).ˆpower)/2;
D2=real((U+I*V).ˆpower);
D3=imag((U+I*V).ˆpower);

A=(cos(2*x)*D1+sin(2*x)*cos(psi)*D2+sin(2*x)*sin(psi)*D3)./D0;
B=((-sin(2*x)*cos(psi-tau))*D1+ ...
...+(sin(psi)*sin(psi-tau)+cos(psi)*cos(psi-tau)*cos(2*x))*D2+ ...
...+(-cos(psi)*sin(psi-tau)+sin(psi)*cos(psi-tau)*cos(2*x))*D3)./D0;
C=((-sin(2*x)*sin(psi-tau))*D1+ ...
...+(-sin(psi)*cos(psi-tau)+cos(psi)*sin(psi-tau)*cos(2*x))*D2+ ...
...+(cos(psi)*cos(psi-tau)+sin(psi)*sin(psi-tau)*cos(2*x))*D3)./D0;

This code transforms arrays of coordinates w, u, v using protocol parameters
- the order of protocol (how many qubits are used) power and angles x, psi, tau,
as intuitively suggested. We also need to manage the inputs and outputs. As the
code must be given mentioned parameters; we can restrict the input states with
discovered symmetries. We cast the inital set of all parameters into vector

ParameterSetting=[power,P,x,psi,tau,phi1,phi2,theta1,theta2];

where the P selects the purity of intial states and the spherical angles of in the
initial state space are chosen in range φ ∈ (phi1, phi2), ϑ ∈ (theta1, theta2).

The range however does not focus on fractal and can cover areas of basins
of attraction which only effectively decrease the resolution of the box-counting.
For that reason, we used following detection script that cuts off the areas where
the structure of sensitive states is not present. We also developed a method
of zooming on the areas with higher density of the structure based on Fourier
transformation but we do not present it here because we did not use it. The
reason is that we had to manually control whether the zooming converged well
due to precision limitations. We only give the brief code that cuts off the areas
without structure, in a form of script again.

%FRAMECUT
care=2;
% care=2 guarantees that the border of the structure is not
% cut off by setting a two pixel offset to the cut.
EDGE=(sum(M,1));
shiftor=find(EDGE,1)-care;
phi1new=phi1+(shiftor-1)*(phi2-phi1)/(phires-1);
EDGE=fliplr(EDGE);
shiftor=find(EDGE,1)-care;
phi2new=phi2-(shiftor-1)*(phi2-phi1)/(phires-1);

EDGE=(sum(M,2))’;
shiftor=find(EDGE,1)-care;
theta1new=theta1+(shiftor-1)*(theta2-theta1)/(thetares-1);
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EDGE=fliplr(EDGE);
shiftor=find(EDGE,1)-care;
theta2new=theta2-(shiftor-1)*(theta2-theta1)/(thetares-1);

changeindex=0;
% changeindex controls whether the cut effectively reduced the
% range of angles. If not, the cutting process is not iterated
% more by the main body of the main programme.
if theta2new-theta1new>0

if theta1<theta1new
theta1=theta1new;changeindex=1;

end
if theta2>theta2new
theta2=theta2new;changeindex=1;

end
end
if phi2new-phi1new>0

if phi1<phi1new
phi1=phi1new;changeindex=1;
end
if phi2>phi2new
phi2=phi2new;changeindex=1;
end

end

Now we present the main body of the program, we expect the vector of the
parameters ParameterSetting which was defined earlier to be loaded. If not, we
add command

load(’ParameterSetting.mat’)

to the main body. We break the code of the program into blocks for better
commenting.

% 2DIMSCALE
power=ParameterSetting(1); P=ParameterSetting(2);
x=ParameterSetting(3);
psi=ParameterSetting(4);
tau=ParameterSetting(5);

phi1=ParameterSetting(6); phi2=ParameterSetting(7);
theta1=ParameterSetting(8); theta2=ParameterSetting(9);

ResSizeHolder=[];
ResultVector=[];
repindex=10;

At this moment the setting is prepared for calculations and variables -
ResSizeHolder to store the points (logm, logNm) to be fitted and ResultVector
to store the results are created. Variable repindex determines how many times
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the grid with randomised boxes will be constructed to reduce effect of numerical
deviations. Its role will be specified below. Next part of the code creates the grid
of initial states which is first compressed into complex variable Z which could be
used to implement pure states dynamics easily. Because we focus on mixed states
we do not write this case here.

resolution=5000;
xs=round(resolution*(x2-x1)/(y2-y1));
ys=round(resolution*(y2-y1)/(x2-x1));
if xs<resolution/50

xs=round(resolution/50);ys=round(resolution/xs);
elseif ys<resolution/50
ys=round(resolution/50);xs=round(resolution/xs);
end
xspace=linspace(x1,x2,xs); yspace=linspace(y1,y2,ys);
[X,Y]=meshgrid(xspace,yspace);
Z=X+1i*Y;

When the grid of xs× ys pixels (states) is created, we introduce the random
shift by uniform distribution in both directions with rand command. We perform
the box-counting for a number of such disturbed grids to obtain a statistics. The
number of attempts is fixed in repindex variable. Usually, we used value of 10
for prcise estimates as a compromise between statistics and computation time but
for overviews we restricted to a single repetition. Qualitatively same results were
also obtained when the grid was rotated and shifted globally but the rotations
notably change the range of the ϕ, ϑ so we decided to use the random shift in
each pixel.

for randrep=1:repindex
Xran=real(Z)+(2*rand(ys,xs)-1)*(x2-x1)/(2*xs);
Yran=imag(Z)+(2*rand(ys,xs)-1)*(y2-y1)/(2*ys);
U=sqrt(2*P-1)*sin(Yran).*cos(Xran);
V=sqrt(2*P-1)*sin(Yran).*sin(Xran);
W=sqrt(2*P-1)*cos(Yran);

After creating the grid of w, u, v coordinates we let the states evolve and find
the structure of sensitive states using the edge command. The iterations are
calculated until the edge command yields the same structure. In such case, we
take the convergence to be precise enough. The number of iteration is stored for
later use. We note that the convergence deduced form unchanged edge structure
does not imply the true convergence for cases where the convergence is too slow
to cause changes in less than 100 iterations. However, such cases are extremely
rare for rational polynomial maps and for that we neglect them. We could typi-
cally encounter such effects if we would investigate the evolution on a very small
neighbourhood of a fixed point/cycle with eigenvalues of Jacobi matrix |λ| .= 1.

itindex=0;
for it=1:100

Iterate
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end
itindex=itindex+it;
M1=edge(A,’sobel’,0.2)+edge(B,’sobel’,0.2)+ ...

... +edge(C,’sobel’,0.2);
M1(M1>1)=1;
for it=1:100

Iterate
end
itindex=itindex+it;
M2=edge(A,’sobel’,0.2)+edge(B,’sobel’,0.2)+ ...

... +edge(C,’sobel’,0.2);
M2(M2>1)=1;

while M1˜=M2
M1=M2;
for it=1:100

Iterate
end
itindex=itindex+it;
M2=edge(A,’sobel’,0.2)+edge(B,’sobel’,0.2)+ ...

... +edge(C,’sobel’,0.2);
M2(M2>1)=1;
end

ResSizeHolder=vertcat(ResSizeHolder, ...
... [sqrt(xs*ys),sum(sum(M2))]);

end

We would like to stress at this place that we use idea we mentioned earlier
that the absolute size of an image projects only into the shift and not the slope
of the fitting line. For this reason we can use characteristic length of the covering
sets in definition 2.3.35 resp. 2.3.36; so we use √xs · ys. The fact that the boxes
can be rectangular and not only squares comes from the fact that scaling one
side by certain factor cannot change the dimension of an object, we recall A.1.1.
This factor plays a similar role as the absolute size of the image and proliferates
only into the shift of the fit. We do not write explicit equations which are the
same as but we put accent onto the intuition that an object cannot change its
dimension by scaling; such scaling only changes the Hausdorff measure (length,
area, volume). Alternatively, in the dimension definition one can substitute the
diameter of the covering set with the square root of the area without disturbing
convergences - the factors of proportionality only modify the value of the measure,
not its convergence to zero or infinity which is the core of the dimension definition.
For example when the covering sets would be squares then

√︂
A(U) = 1√

2 |U | where
A stands for area, for circles

√︂
A(U) =

√
π

2 |U |, generally
√︂
A(U) = λ|U | where

λ ∈ (0,∞), therefore for covering {Ui}i we can identify infimum/supremum values
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of all such factors λi, labeling them 0 < λinf ≤ λsup <∞2 and write

∑︂
i

√︂
A(U)

d

=
∑︂
i

λdi |Ui|d ≤ λdsup
∑︂
i

|Ui|d,
∑︂
i

√︂
A(U)

d

≥ λdinf
∑︂
i

|Ui|d (A.4)

Because the only possibilities for quantity ∑︁i |Ui|d are converging to 0, converging
to infinity or converging to a finite nonzero number, the value ∑︁i

√︂
A(U)

d
must

also reach 0, ∞ or finite number respectively. We believe that these thoughts
must have been written many times or taken for obvious so they are not explic-
itly written in todays literature. For that reason we do not cast the idea into
formal proof but rather its sketch in this appendix. Formal proof is beyond the
scope of this thesis and would require to discuss the area measure which for our
case coincides with standard Lebesgue measure in Euclidean spaces. One could
also use the Hausdorff d-measure which coincides with the Lebesgue measure for
d ∈ N. We just add a final note that this topic can be related to the proposition
A.1.1 where the structure is deformed without changing its dimension.

The algorithm now created a single point (logm, logNm); to fit the linear trend
we need more such points, therefore we repeat the process with other values of
resolution. This resolution which determines the precision of the initial states
can also be implemented by using command round and the box structure would
be implemented by comparing the number of unique points under rounding to
different levels of precision. We use the approach of setting the value of resolution
to avoid more involved discussions of the scaling and also to obtain the statistics
by randomising the boxes.

for resolution=4000:-1000:1000
xs=round(resolution*(x2-x1)/(y2-y1));
ys=round(resolution*(y2-y1)/(x2-x1));
if xs<resolution/50
xs=round(resolution/50);ys=round(resolution/xs);
elseif ys<resolution/50
ys=round(resolution/50);xs=round(resolution/xs);
end
xspace=linspace(x1,x2,xs); yspace=linspace(y1,y2,ys);
[X,Y]=meshgrid(xspace,yspace);
Z=X+1i*Y;

for randrep=1:repindex
Xran=real(Z)+(2*rand(ys,xs)-1)*(x2-x1)/(2*xs);
Yran=imag(Z)+(2*rand(ys,xs)-1)*(y2-y1)/(2*ys);
B=sqrt(2*P-1)*sin(Yran).*cos(Xran);
C=sqrt(2*P-1)*sin(Yran).*sin(Xran);
A=sqrt(2*P-1)*cos(Yran);
for it=1:itindex
Iterate
end

2These values cannot attain 0 or ∞ as the corresponding sets would cover 0 or infinite area.
Such situation is not possible.
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M2=edge(A,’sobel’,0.2)+edge(B,’sobel’,0.2)+edge(C,’sobel’,0.2);
M2(M2>1)=1;

ResSizeHolder=vertcat(ResSizeHolder, ...
... [x,fi,omega,P,sqrt(xs*ys),sum(sum(M2))]);
end
end

The chosen values of resolution are a compromise between precision and com-
putation time that was made after evaluating the dimension estimates for various
fractals of our interest and for various values of the resolution. At this moment
we have a set of points to fit as in A.3 which we do by linear model. Of course,
only in case that the structure is present. The ResultVector that stores the
result contains the slope of the linear fit, i.e. the dimension, the shift, sum of
squared errors and root-mean-squared error. These results and the algorithm can
be reforged to one’s desired way of use, e.g. to work as a for cycle for various
protocol settings etc., that is merely a cosmetic issue.

if sum(sum(M2))>0
mdl=fitlm(log(DetailSizeHolder(:,5)),log(DetailSizeHolder(:,6)));
ResultVector(1)=mdl.Coefficients.Estimate(2);
ResultVector(2)=mdl.Coefficients.Estimate(1);
ResultVector(3)=mdl.SSE;
ResultVector(4)=mdl.RMSE;
end
save("ResultVector.mat","ResultVector")
clearvars

A.3 Fast algorithm
The third alternative to previous algorithms uses a trick to implement the box
grid. When the structure is determined, it is represented by point coordinates
which are given to some precision. The precision itself forms a box! Rounding
points naturally offers boxes of size 10−n. Such boxes are too rough to pro-
vide good dimension estimate so we propose to use additional scaling. With
this approach, we aim at determining the box-counting dimension in the three-
dimensional space where creating 5000× 5000× 5000 grid of points overwhelms
RAM capacities of computers. Therefore, we can part by part determine po-
sitions of points of the structure as shown in the right scheme in A.5. These
points are determined only a single time and for the highest resolution only.
In our context of the Bloch space the three coordinates (w, u, v) are real num-
bers from [−1; 1], 2.31, and these can be trustfully set to precision at most in
the ε = 10−15 order in double format standardly used in MATLAB. The fol-
lowing procedure is applied to the structure: for scaling factor λ ∈ [1, 1015] all
the structure points are rescaled and rounded (marked with square brackets)
(w, u, v) → ([λw], [λu], [λv]). Number of unique rescaled points Nλ is summed
and a point is created (log λ, logNλ). Repeating this process for various lambdas
is equivalent to the choice of various m earlier. Reader can easily grab the anal-
ogy when realising that for λ = 1 all points are rounded to points with integer
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coordinates like (0, 0, 0), (1, 0,−1) etc. This essentially marks the occupation of
27 sub-cuboids that the cube [−1; 1]× [−1; 1]× [−1; 1] can be divided into. When
the scaling factor is taken to reach the precision 1

ε
= 1015, after rescaling each

point has a distinct triplet of integers and the number Nλ represent the total
number of points we have detected to approximate the structure.

A natural and significant advantage lies in only single calculation of the struc-
ture which is the demanding part. Still, the rounding executed with round com-
mand and finding Nλ with unique command are still computationally demanding
in big structures. And there is the disadvantage in this approach that we are also
relieving the randomised boxes that can approximate the structure better.

For practical reasons we do not choose a grid of fine resolution and calculate
the structure from a grid of 2000× 2000× 2000 equidistantly distributed points
in the cube [−1; 1] × [−1; 1] × [−1; 1], the points outside the Bloch sphere are
excluded then. With this precision the points are separated only by distance of
orders of 10−4 at the closest and so the scaling λ is sufficient to be taken in range
∈ [1, 104]. Symmetries can restrict the studied volume e.g. to octant w, u, v ≥ 0.
and thus improve the algorithm. This method has been again tested and gave the
same qualitative results for the case of fractals measured by previous methods.

With the scaling factor λ close to 1 and close to the resolution 1
ε

we again
encounter the effect shown in A.3. Therefore, only small set of λ is used to
guarantee good estimate. Major advantage compared to the first naive algorithm
is that the boxes were limited to m|n to avoid problems with overlapping or cut
boxes. The parameter λ can be chosen as an arbitrary real number.

We used this method as a faster alternative for determining the fractal di-
mensions in the three-dimensional Bloch space at the cost of worst dimension
estimate and the lack of randomness exploited in the previous version of our box-
counting algorithm. The cost is compensated by major advantage of computation
feasibility which can be even parallelised in separate regions of the Bloch space.

A.4 Numerical methods and fractal structures
Of course, the box-counting dimension estimation relies on numerical methods.
We now present short contemplation on the topic of rough numerical approach
versus exponential instability of the chaos. The first question to object is: ”Is it
correct and reliable to use the box-counting method?” The answer is yes, when the
fractal structure can be obtained with sufficiently high precision and the fractal
is no pathological case, e.g. Sierpinski carpet. However, our improved algorithm
succeeds even in such cases.

Of course, we should be aware of using numerical methods when creating the
pictures of a fractal, searching for their structure. As sketched in the theory
chapter wehre we explain our concept of attractor maps 2.5, the fractal will
be a curve (surface) separating basins of attraction. The basins are formed by
states with the same asymptotic state, the fractal states are inherently sensitive
to perturbation. Second and the most important question to object is: ”Is it
correct to use a computer to determine asymptotic evolution of a state?” When we
consider that the chaos equals to the exponential sensitivity of the evolution to the
initial conditions, we must answer NO! Each computer can use only approximate
calculations up to some precision (in our case of double format in MATLAB
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it makes 10−15). Even when we choose to start at a state the is determined
exactly in this precision, after a single application of protocol we would most
probably have to floor the result. In principle, this small deviation can drive
this approximate result to another attractor due to the sensitivity to the initial
conditions. However, we may ask the last question. ”Is the numerical imprecision
in determining the fractal structure relevant for the dimension estimate?” The
states belonging to the fractals will actually never be acquired precisely in position
and the border point can be assigned to a next neighbouring pixel. But because
the box-counting only counts number of covering boxes and not exact position,
a slight shift of a structure by one pixel due to numerical imprecision is not
relevant as it does not change number Nε. This argument justifies the utilisation
of the method.

Another thought supporting the use of the box-counting and numerical meth-
ods comes from the evolution equations themselves. The functions 5.10, 4.7,
driving the evolution of the mixed states are rational polynomial. Therefore,
various inequalities could be derived which restrict behaviour to regular mode on
wide domains. Because the evolution functions are continuous up to few poles
we do not expect drastic changes when we lower the purity of the states up to
some pathological phenomena that may occur at the poles of the functions. We
could expect that the known picture 2.6 for pure states will change reasonably,
possibly continuously, when the purity of the initial state would decrease. We
have seen in the third and fourth chapters that such expectation is true even for
generalised protocols. However, there are pathological exceptions in cases where
the protocol evolves each state chaotically (for pure single-qubit states it means
that the Julia set of the evolution function equals to C) as mentioned in 2.3.28).

Attractors are characterised by the contractive behaviour on the open subsets
of their basins of attraction - computational error is reduced during the evolution
and the computer can be successful in determining the asymptotic evolution of
the state. In contrast, a perturbation of the repulsive states expands a certain
neighbourhood during the evolution. In this case, numerical calculations are not
reliable. On the other hand, the inverse map must be contractive on that neigh-
bourhood. In consequence, if we suspect that the protocol would induce chaotic
behaviour (expanding) in all states, we could alternatively examine the inverse
map which should be regular (contracting) in all states. The contractiveness of
the map makes numerical calculations resistant and from numerical calculations
the convergence is very fast. Together with the fact that the Julia set has zero
area we see that numerical calculations are pretty reliable.

In any case, it is important to be aware of the intricate nature of the chaotic
dynamics. Cautiousness is needed especially in case where we reach beyond the-
oretical support of [44] and in pathological cases.
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