
Design of Systems Supporting Compliance Management

by

Marek Skotnica

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Doctoral study programme: Informatics

Department of Software Engineering

Prague, January 2023

Supervisor:
doc. Robert Pergl, Ph.D.
Department of Theoretical Computer Science
Department of Software Engineering
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright © 2023 Marek Skotnica

ii

Abstract

Compliance management is understood as complying with internal or external regulations
in a company. To comply with legal regulations alone, it was estimated that the companies
spend 6.2% of their turnover. Therefore, digitalization of compliance management efforts
is desirable, and a discipline of enterprise engineering (EE) can improve state of the art.
Furthermore, a novel field of decentralized compliance management based on blockchain
technology is emerging and needs deeper exploration.

This dissertation thesis provides an overview of the state-of-the-art approaches to de-
signing compliance management systems, their relation to the EE discipline, and its DEMO
methodology. The contributions of this thesis are divided into two areas. The first area is
centralized compliance management systems that focuses on finding and bridging the gaps
between the EE theories and their software implementation. The second area is decentral-
ized compliance management systems that focuses on exploring possibilities of applying
blockchain technology in the compliance domain.

In the first area of the research, we collaborated with an industry partner. We identified
the most significant gap as a need for an execution language for DEMO models. The FAR
ontology and DEMO machine formalizations were designed and developed to bridge this
gap. The industry partner further used the proposed formalizations to develop a software
system successfully deployed to their customers. The second most significant contribution
was an experiment to apply EE theories to improve the quality of process-based software
requirements. The experiment consisted of 32 case studies where 115 276 words of the
legal text were analyzed. The evaluation of the case studies revealed missing process steps
(80.10%) and actor roles.

The second area’s main focus was formalizing a domain-specific language DasCon-
tract to model decentralized compliance processes and then provide support to generate
blockchain smart contracts from the developed formalization. Two complex case studies
were created – a decentralized mortgage and decentralized EU elections to validate the
proposed concept.

iii

Keywords: Compliance, Business Process, Information Systems, Decentralized Compli-
ance, Blockchain, Enterprise Engineering.

iv

Abstrakt

Pojem ř́ızeńı souladu s předpisy je chápán jako dodržováńı interńıch nebo exterńıch předpis̊u
ve společnosti. Jen pro dodržeńı právńıch předpis̊u se odhaduje, že společnosti vynalož́ı
6,2% svého obratu. Proto je potřeba tuto oblast digitalizovat a discipĺına podnikového
inženýrstv́ı by mohla pomoct ke zlepšeńı současného stavu. Nav́ıc se objevuje nová oblast
decentralizovaného ř́ızeńı souladu s předpisy založené na technologii blockchain, která zat́ım
neńı dostatečně prozkoumaná.

Tato disertačńı práce poskytuje přehled o nejmoderněǰśıch př́ıstupech k navrhováńı
systémů ř́ızeńı souladu s předpisy, jejich vztahu k discipĺıně podnikového inženýrstv́ı a
metodice DEMO. Př́ınosy této práce jsou rozděleny do dvou oblast́ı. Prvńı oblast́ı jsou
centralizované systémy ř́ızeńı souladu s předpisy, kde se práce soustřed́ı na nalezeńı a
překlenut́ı mezer mezi teoriemi podnikového inženýrstv́ı a jejich softwarovou implemen-
taćı. Druhou oblast́ı jsou decentralizované systémy ř́ızeńı souladu s předpisy, kde se práce
soustřed́ı na zkoumáńı možnost́ı uplatněńı technologie blockchain v doméně ř́ızeńı souladu
s předpisy.

Na prvńı oblasti výzkumu jsme spolupracovali s pr̊umyslovým partnerem. Nejvýznamněǰśı
mezeru jsme identifikovali jako potřebu prováděćıho jazyka pro DEMOmodely. K překlenut́ı
této mezery byly vyvinuty ontologie a formalizace prováděćıho jazyka pro DEMO modely.
Pr̊umyslový partner využil vyvinutou formalizaci k vývoji softwarového systému úspěšně
nasazeného u svých zákazńık̊u. Druhým nejvýznamněǰśım př́ınosem této práce byl exper-
iment s aplikaćı teoríı podnikového inženýrstv́ı pro zlepšeńı kvality procesńıch model̊u v
softwarových specifikaćıch. Experiment sestával z 32 př́ıpadových studíı, kde bylo analy-
zováno 115 276 slov právńıho textu. Vyhodnoceńı experimentu odhalilo chyběj́ıćı procesńı
kroky (80.10%) a organizačńı role.

Druhá oblast práce se zaměřila předevš́ım na formalizaci a vývoj doménově speci-
fického jazyka DasContract, který vznikl za účelem modelováńı decentralizovaných proces̊u
dodržováńı předpis̊u a následné generováńı smart kontrakt̊u technologie blockchain. Pro
ověřeńı navrženého jazyka byly vytvořeny dvě komplexńı př́ıpadové studie – decentralizo-
vaná hypotéka a decentralizované volby do EU.

v

Kĺıčová slova: soulad s předpisy, podnikový proces, informačńı systém, decentralizace,
blockchain, podnikové inženýrstv́ı

vi

Acknowledgements

First of all, I am extremely grateful to my dissertation thesis supervisor doc. Ing. Robert
Pergl, Ph.D. He provided me with excellent guidance and support in the complex world
of science. Despite all the challenges I have encountered, he was always there, with his
patience and positive attitude. Additionally, I could not have undertaken this journey
without Dr. Steven van Kervel and his ForMetis company. It was a very rewarding
experience working with him and people from ForMetis on applying the research in practice.

Through my PhD journey, I have discovered a passion for learning and teaching. And
that was mostly thanks to the amazing students I had an opportunity to teach and super-
vise. Special thanks to Barbora Hornáčková, Martina Lassaková, and Jan Klicpera who
became co-authors of the papers that are part of this research.

I am also grateful to my colleagues from CCMi research group, namely Dr. Ondřej
Dvořák, Ing. David Šenkýř, and others. I would also like to acknowledge my international
co-authors Marta Apaŕıcio, and Sérgio Guerreiro.

Special thanks go to the staff of the Department of Software Engineering, who main-
tained a pleasant and flexible environment for my research. I would like to express
special thanks to the department management for providing most of the funding for
my research. My research has also been partially supported by the Grant Agency of
the Czech Technical University in Prague, grants No. SGS SGS17/120/OHK3/1T/18,
SGS18/120/OHK3/1T/18, and SGS20/209/OHK3/3T/18. The research was also partially
supported by the ForMetis company.

Lastly, I would be remiss in not mentioning my family for their infinite patience, care,
and love.

vii

Dedication

To my parents.

viii

Contents

Abbreviations xviii

I Introduction 1

1 Research Overview 3
1.1 Challenges of Centralized Compliance . 5
1.2 Challenges of Decentralized Compliance 6
1.3 Research Problem . 7
1.4 Research Objective and Research Questions 8
1.5 Research Design . 8
1.6 Contributions . 10
1.7 Structure of the Dissertation Thesis . 11
1.8 Chapter Summary . 12

II Literature Review 13

2 Background and State of the Art 15
2.1 Compliance Management . 15

2.1.1 Compliance Management Strategies 16
2.1.2 Business Process Management . 17
2.1.3 Decentralized Compliance and Blockchain 19

2.2 Compliance Management Systems Modeling and Execution 21
2.2.1 Formal Languages . 21
2.2.2 Conceptual and Execution Languages 22

2.3 Enterprise Engineering . 22
2.3.1 Ontology . 23
2.3.2 Important Concepts from PSI Theory 23

ix

Contents

2.3.3 Applying DEMO Methodology to Process Domain Descriptions . . 25
2.3.4 Ontological Quality . 29
2.3.5 How to Read DEMO Models . 31

2.4 Chapter Summary . 31

III Our Approach 33

3 Research Design 35
3.1 Research Methodology . 35
3.2 Research Strategy . 37

3.2.1 Professional Experience . 38
3.2.2 Centralized Compliance Main Cycle 38
3.2.3 Decentralized Compliance Main Cycle 39

3.3 Assumptions, Scope, Limitations . 40
3.4 Chapter Summary . 40

IV Centralized Compliance Management 41

4 Execution of DEMO Aspect Models – FAR Ontology and DEMO Ma-
chine 43
4.1 Fact, Agenda, Rule Ontology . 43

4.1.1 Addressing the DEMOSL-DEMO Machine Deficiencies 44
4.1.2 Fact Axioms . 44
4.1.3 Agenda Axioms . 48
4.1.4 Rules and Dependencies Axioms . 49
4.1.5 Discussion and Evaluation of the FAR Ontology 50

4.2 DEMO Machine . 51
4.2.1 Proof of Concept . 52

4.3 Related Research . 59
4.3.1 The DEMO Engine and the Enterprise Operating System 59
4.3.2 DEMOBAKER . 59
4.3.3 XModel . 59

4.4 Chapter Summary . 60

5 Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method 61
5.1 Introduction . 61
5.2 Related Work - Improving BPM and BPMN 63

5.2.1 Applying EET for Analysis of Existing BPMN Models of Business
Processes . 64

5.2.2 Enhancing the Formal Foundations of BPMN by EET 64

x

Contents

5.3 Analysis of DEMO and BPMN . 65
5.4 Converting DEMO into BPMN . 65

5.4.1 C-acts . 66
5.4.2 C-facts . 66
5.4.3 P-(F)acts . 66
5.4.4 Actors . 66
5.4.5 The Composition Axiom . 67
5.4.6 Revokes . 68
5.4.7 The Resulting BPMN Model . 69
5.4.8 The Execution . 69

5.5 Example – Case Voley . 71
5.6 Discussion and Conclusions . 72
5.7 Chapter Summary . 74

6 An Experiment in the Procedural Law Domain – 32 Case Studies 75
6.1 Experiment Design . 75

6.1.1 Method Overview . 77
6.2 Reference Example – Arbitration Court . 78
6.3 Case Studies Overview . 81
6.4 Evaluation and Discussion . 81

6.4.1 Goal 1 – Feasibility . 81
6.4.2 Goal 2 – Increasing the Quality of Software Requirements 83
6.4.3 Experiment Conclusion . 88
6.4.4 Approach Limitations . 88
6.4.5 Comparison with Other Modeling Techniques 88
6.4.6 Further Research . 89

6.5 Chapter Summary . 90

V Decentralized Compliance Management 91

7 Exploring a Role of Blockchain Smart Contracts in Enterprise Engi-
neering 93
7.1 Evaluation of BC and EE Compatibility 94

7.1.1 Smart Contract Misconceptions . 94
7.1.2 BC as a Transaction Execution System 95
7.1.3 BC as a Notarization System . 95

7.2 Principles to Devise SC from DEMO Models 96
7.2.1 SC based on DEMO . 96
7.2.2 DEMO Transaction As Contract 96
7.2.3 Notarization . 96
7.2.4 Transaction Execution in SC . 97
7.2.5 Extending the DEMO model . 98

xi

Contents

7.2.6 Software Architecture . 98
7.2.7 EIS and BC communication . 99

7.3 Proof of Concept . 99
7.4 Related Research . 101
7.5 Chapter Summary . 102

8 Systems Supporting Decentralized Compliance Management 103
8.1 Overview of Our Approach . 104

8.1.1 Contract Maturity Model . 104
8.1.2 The Concept Architecture . 105
8.1.3 The Proposed Method . 107

8.2 DasContract – a Visual Smart Contract . 108
8.2.1 DasContract Model Specifications 108
8.2.2 DasContract Model Editor . 111

8.3 Code Generation and Execution of DasContract Models 112
8.3.1 Data Model . 112
8.3.2 Process Model . 113
8.3.3 Forms Model . 116
8.3.4 Design, Compilation and Execution 116

8.4 Extended Forms Model for Digital Interaction 116
8.5 Case Study: Mortgage . 118

8.5.1 Process Design . 118
8.5.2 Execution . 120
8.5.3 Summary . 120

8.6 Case Study: EU Election . 121
8.6.1 Process Design . 121
8.6.2 Execution . 123
8.6.3 Summary . 125

8.7 Limitations . 126
8.8 Related Research . 126
8.9 Chapter Summary . 127

VI Evaluation and Conclusion 129

9 Evaluation and Contribution 131
9.1 Contributions of the Dissertation Thesis 131

9.1.1 Research Artifacts . 131
9.1.2 Publications . 134
9.1.3 Supervised Theses . 134

9.2 Evaluation of the Research Objective and Research Questions 136
9.2.1 Research Question 1 . 137
9.2.2 Research Question 2 . 139

xii

Contents

9.3 Application of the Contributions . 140
9.4 Chapter Summary . 141

10 Conclusions 143
10.1 Summary . 143
10.2 Future Work . 144

VII Publications 147

Bibliography 149

Reviewed Publications of the Author Relevant to the Thesis 165

Remaining Publications of the Author Relevant to the Thesis 171

Selected Relevant Supervised Theses 173

xiii

List of Figures

1.1 DSR research strategy . 9
1.2 Chapter map of the thesis . 12

2.1 Compliance management strategies [71] . 18
2.2 BPM life-cycle . 19
2.3 Coordination and production worlds [32] . 24
2.4 Complete Transaction Pattern [32] . 25
2.5 Organization layers [32] . 26
2.6 Examples of process structures [32] . 27
2.7 Excerpt from an arbitration court process in DEMO the construction model . 28
2.8 Example of DEMO process decomposition according to the transaction dis-

tinction axiom [28] . 30

3.1 Design science research framework adopted for IS research [74, 162] 36
3.2 Design science research process model (DSR cycle) according to [157] 37
3.3 Our research strategy . 38

4.1 Transaction axiom state machine . 52
4.2 OCD model of the Volley Club [29] . 54

5.1 DEMO complete transaction pattern [33] . 63
5.2 Launching child transactions by using counter 68
5.3 Launching child transactions by using loop . 68
5.4 Waiting for a child transaction . 68
5.5 Transaction in BPMN, happy flow is marked by green colour 70
5.6 Revokes in BPMN . 71
5.7 OCD of Case Voley [33] . 71
5.8 Case Voley converted into BPMN – part 1 . 72
5.9 Case Voley converted into BPMN – part 2 . 73

6.1 Conceptual overview of the proposed method 77

xiv

List of Figures

6.2 High-level construction model . 82
6.3 Construction model of the hearings preparation 83
6.4 Missing coordination acts in all case studies (N=23) 86

7.1 Architecture of an IT system based on EE and BC 99
7.2 Mortgage process changed using smart contract [146] 100

8.1 Relation between conceptualization, abstraction, modeling language and model [60] 105
8.2 A contract maturity model . 106
8.3 A proposed concept architecture . 106
8.4 A DasContract high-level metamodel . 109
8.5 A DasContract process metamodel . 110
8.6 A DasContract data and forms metamodel . 111
8.7 A DasContract process model editor . 112
8.8 A contract snippet used to demonstrate a gateway conversion in Listing 8.2

and user task conversion in Listing 8.3 . 114
8.9 Extended forms metamodel [A.29] . 117
8.10 A screenshot of the extended forms editor [A.29] 118
8.11 Mortgage process model . 119
8.12 Off-chain interaction with the generated mortgage smart contract [A.29] . . . 120
8.13 A DasContract process model of the EU elections 122
8.14 A DasContract data model of the EU elections 123
8.15 A user interface of the closed list vote in a blockchain wallet 123
8.16 A screenshot from Remix simulation . 125

9.1 Research artifacts . 132
9.2 Our research strategy . 137

xv

List of Tables

1.1 Mapping of research questions and DSR strategy 10

3.1 Mapping of our research questions and DSR strategy 39

6.1 One transaction from the extended transaction result table [96] 80
6.2 Case studies overview and discovered acts (N=23) (AC=Arbitration Court,

CCP = Code of Civil Procedure, CP = Criminal Procedure, TR = Tax Reg-
ulations) . 84

6.3 Missing coordination acts in all case studies (N=23) 85
6.4 Missing coordination acts related to the transaction pattern style 87

7.1 The transaction blockchain table template . 98

9.1 Overview of our publications . 134
9.2 Overview of supervised publications related to the research 135
9.2 Overview of supervised publications related to the research 136
9.3 Mapping of our research questions, DSR cycles, and artefacts 138

xvi

List of Algorithms

4.1 Agenda calculation . 53

xvii

Abbreviations

Compliance Abbreviations

CobiT Control Objectives for Information and Related Technologies
EU European Union
GDPR General Data Protection Regulation
GRC Governance, Risk, and Compliance
HIPAA Health Insurance Portability and Accountability Act
ISO International Organization for Standardization
ITIL Information Technology Infrastructure Library
PCI DSS Payment Card Industry Data Security Standard
REA Resource-Event-Agent
SOX Sarbanes–Oxley Act

Blockchain Abbreviations

DAC Decentralized Autonomous Corporation
DAO Decentralized Autonomous Organization
Dapp Decentralized Application
DeFi Decentralized Finance
DiD Decentralized Identity
DS Design Science
ERC Ethereum Improvement Proposals
SC Smart Contract

xviii

Miscellaneous Abbreviations

API Application Programming Interface
BC Blockchain
BPEL Business Process Execution Language
BPM Business Process Management
BPMN Business Process Model and Notation
BPMS Business Process Management System
BPT Business Process Technology
CCO Chief Commercial Officer
CIO Chief Information Officer
CMMN Case Management Model and Notation
CMS Content Management System
DSL Domain Specific Language
DSR Design Science Research
EBNF Extended Backus-Naur Form
EPC Event-driven Process Chain
GPS Global Positioning System
IDE Integrated Development Environment
IS Information System
IT Information Technology
MDD Model-Driven Development
MDE Model-Driven Engineering
MIT Massachusetts Institute of Technology
MVVM Model–View–ViewModel
NLP Natural language processing
OMG Object Management Group
OrgML Organization Markup Language
OT Operational Technology
REST Representational State Transfer
SOAP Simple Object Access Protocol
SPA Single-Page Application
SW Software
TIL Transaction Instance Linking
UI User Interface
UML Unified Modeling Language
USD United States Dollar
UX User Experience
YAWL Yet Another Workflow Language

xix

Abbreviations

Enterprise Engineering Discipline Abbreviations

AM Action Model
C4E Comprehensive, Coherent, Concise, Consistent, and Essential
cAct Coordination Act
CM Construction Model
DELTA Discrete Event in Linear Time Automaton
DEMO Design and Engineering Methodology for Organizations
DEMOSL DEMO Specification Language
EE Enterprise Engineering
EET EE theories
EEWC Enterprise Engineering Working Conference
EIS Enterprise Information System
EO Enterprise Ontology
FAR Fact, Agenda, and Rule
FM Fact Model
OCD Organization Construction Diagram
OER Organization Essence Revealing
PM Process Model
PSD Process Diagram
PSD Process Structure Diagram
PSI Performance in Social Interactions

xx

Part I

Introduction

1

Chapter 1

Research Overview

The rapid evolution and adoption of information technologies and globalization brought
unprecedented opportunities for entrepreneurs from all around the globe. An example of
this is the Amazon company, founded in 1994, and over the years, it became a synonym
for online shopping. For an Amazon customer, the experience of ordering a book is very
convenient, but what goes on behind the scenes is a whole different story. A holistic
network of top-notch technologies supports Amazon’s operations. Hundreds of parties
collaborating, distributed IT systems, sci-fi-looking automated robotic warehouses, and
job positions that did not even exist when the company was started.

Furthermore, because Amazon is a publicly-traded multinational company, this so-
phisticated network must comply with ever-changing legislative, industry standards, and
regulations. It is also a subject of various improvement initiatives and audits. Dealing
with such issues is a significant problem for all organizations and governments. To com-
ply with legal regulations alone, it was estimated that the companies spend 6.2% of their
turnover [120].

The compliance management we will refer to in this thesis is understood as complying
with internal or external regulations in a company. Internal compliance is understood as
complying with internal company policies such as business processes, business rules, respon-
sibilities for carrying out the work, and organization roles. The scope is further narrowed to
the concepts surrounding business processes, their definition, execution, automation, and
evaluation of whether the operation of companies is executed as wanted. External com-
pliance is understood as complying with legislative regulations, industry standards (such
as ISO standards [82], BASEL [8], or General Data Protection Regulation (GDPR) [46]),
and requirements of subjects cooperating with our enterprise. However, we are not experts
in any particular compliance domain. Our scope is to help translate the expert domain
knowledge and standards into systems that support their execution.

Business process models are blueprints of the organizations. If modeled correctly, they
provide a map of the business operation and help people to build the required infrastruc-
ture for their support. Nevertheless, if we imagine a blueprint for a company like Amazon,
it is incredibly complex, and by the time someone finishes modeling it, it will already

3

1. Research Overview

be obsolete. This hints that we cannot apply traditional engineering techniques to de-
sign enterprises on a larger scale. We would need something more advanced for this task,
something like Google Maps does with the traffic conditions. It shows us live traffic infor-
mation and adjusts our GPS navigation accordingly to reach the destination in the shortest
amount of time. We need a live overview of the operation of an enterprise and be able
to adapt to the ever-changing environment and requirements that surround it. However,
although some software companies offer products that can support these processes, they
could be better. Most companies still use barely-updated word documents to describe the
processes and do ad-hoc Excel analysis to evaluate them. The cost and efforts associated
with introducing such systems usually outweigh the benefits. More advanced approaches
are needed to enable compliance automation.

There are many aspects to solving compliance problems, but blockchain technology has
been the most interesting in recent years. The blockchain is mainly known for its digital
currency use-cases such as Bitcoin [108], but they are the least interesting ones for our
domain. Blockchain technology also enables smart contracts, decentralized identity, decen-
tralized autonomous organizations, and the realization of a concept called decentralized
compliance.

A report The future of compliance by a consultation company KPMG distinguishes
three types of compliance: “Centralized : the compliance function retains direct control
over all compliance-related activities and execution of controls. A common structure in
highly regulated sectors such as financial services. It often involves a large team of ded-
icated compliance officers. Decentralized : Compliance is embedded in existing functions
(finance / human resources etc.). Compliance activities are carried out by function, with
limited central oversight. Hybrid : Responsibilities for compliance activities are delegated
within the organization, but the oversight and ultimate responsibility are borne centrally
or regionally (if the corporation is a large multinational).” [88] The KPMG report also
outlines the trend of “the transformation of the compliance role: from highly centralized
to a hybrid or even a decentralized system” [88]. This trend towards decentralization in
compliance is further supported by the Europeans Commission’s blockchain strategy of
building its pan-European public services blockchain [45].

From an individual’s perspective, decentralized compliance may provide a paradigm
shift in certain areas and make some traditional compliance requirements obsolete. We will
explain this paradigm using the process of taking a mortgage as an example. Currently, a
central authority such as a bank is required to oversee the process of taking a mortgage.
The bank must follow many compliance requirements that result in high costs for the
customer. However, when the mortgage process is decentralized, it is possible to write all
parameters, rules, and steps into a smart contract and upload it to the blockchain, ensuring
that the mortgage is executed between the parties. A bank can be made obsolete in this
case, and because the contract is entirely digitized, the compliance requirements can be
fully automated. This approach may significantly reduce costs for the end customers of
the mortgage process.

Practical use cases of the decentralized compliance approach currently running in an
European Union (EU) blockchain are university applications, diploma verifications, and

4

1.1. Challenges of Centralized Compliance

EU grant applications [41]. Another example is a decentralized validation of tax processes
proposed in [48]. However, all use cases for decentralized compliance are yet to be dis-
covered as the full adoption of blockchain technology is expected in 2030, according to
Gartner [54].

This chapter provides an overview of our research on the design of software systems
supporting compliance management. The research domain and its challenges are intro-
duced and narrowed in Section 1.1 and Section 1.2. The research problem is formulated
in Section 1.3. The research questions and objectives are set in Section 1.4. The research
design is briefly introduced inSection 1.5. The main contributions are summarized in Sec-
tion 1.6. The thesis structure is introduced in the Section 1.7. Finally, this chapter is
summarized in Section 1.8.

1.1 Challenges of Centralized Compliance

According to the KPMG report Innovating compliance through automation, only one in
five enterprises has a well-defined enterprise-wide strategy to automate compliance [89].
The report also states that according to the chief commercial officers (CIOs) and chief
information officers (CCOs) survey, the top challenges to implementing compliance au-
tomation as: dependencies were misunderstood and/or insufficiently managed, attention
from leadership and/or stakeholders, metrics for measuring progress were insufficient, re-
sources to support the automation were unavailable, and data was unavailable or did not
have the anticipated integrity [89].

Further, the top five compliance challenges were identified in [131] as: 1) Siloed func-
tions – Companies only react to single compliance events and therefore disregard a holistic
view of the overall compliance management in an organization. 2) Disconnected systems –
The compliance is managed across multiple business lines, functions, and locations, there-
fore missing ways to exchange and consolidate data. 3) Manual processes – When every
compliance requirement must be processed manually, it leads to tremendous work and
opens the door to human errors. 4) Incomplete or nonexistent metrics – When compliance
requirements are fulfilled through lengthy manual processing, compliance reports are fo-
cused on the past rather than the future. 5) No visibility – Without a holistic view on the
compliance-related activities, it is nearly impossible to identify inconsistencies and gaps in
compliance management. This may result in some compliance issues not being addressed.

In scientific literature, the article [151] states that although the compliance manage-
ment is usually supported by some IT systems, the systems are inadequate and do not
fully address the needs of organizations. Moreover, according to the article, academic re-
search efforts do not align with the needs of organizations. The factors contributing to
inadequate compliance management solutions are: 1) Lack of holistic practices. 2) Lack of
IT support/tools. 3) Lack of compliance knowledge base. [151] The inefficiency of exist-
ing solutions is further supported in [20]: ”Research suggests that Content Management
Systems (CMSs) may in some cases live up to their promise, at least to some degree, but

5

1. Research Overview

so far the available studies also suggest that the impacts of CMSs in reducing regulatory
violations may be rather modest.“.

An extensive survey consisting of 79 papers [71] concludes that: ”None of the surveyed
frameworks fully cover all dimensions of the compliance problem as a number of challenges
still remain“. The most important challenges in [71] were identified as: 1) ”the need
to develop automated techniques for extracting norms from legal documents, and formal
languages expressive enough to model various types of legal norms, and norms pertaining
data and resources“. 2)”there is need for fully automated techniques that are scalable and
computationally efficient“ 3)”there is a huge room for investigation on the issue related to
handling maintainability of ever-changing business processes and legal norms.“

A report from Capgemini [18] suggests that the compliance management challenges
should be tackled via BPM. The report states that using BPM will help improve the
processes and make it easier to respond to regulatory changes as they come. An interest-
ing approach to BPM that could help with compliance-related challenges is presented by
the discipline of Enterprise Engineering (EE) [31]. The EE aims to assist professionals in
mastering the complexity of modern enterprises by providing suitable theories and method-
ologies. The discipline introduces Design and Engineering Methodology for Organizations
(DEMO) [32] based on its formal theories. This methodology introduces a way of mod-
eling that consists of the DEMO specification language and four visual aspect models –
Cooperation Model, Action Model, Process Model, and Fact Model. The DEMO method-
ology provides many benefits over state-of-the-art modeling techniques. However, there are
known gaps between the description of a social system and its information technology sup-
port. The key missing knowledge is the execution of the models and their implementation
in compliance management systems, which are both out-of-scope of the original theories.

The last issue we observed in the academic literature was the need for real-world case
studies. This might be because the implemented compliance management processes and
practices are not publicly available because they are the property of the companies. In our
professional experience, signing a non-disclosure agreement before working with company
processes is common practice. The case studies that are available in the academic literature
are usually simple examples that usually don’t really reflect the scope and size of the real
environment.

1.2 Challenges of Decentralized Compliance

The decentralized way of handling compliance was proposed as a possible future of com-
pliance in KPMG report [88]. However, more profound guidance on implementing decen-
tralized compliance was not provided. The lack of real-world manifestations of blockchain
technology seems to be prevalent. In [134], the article discusses many potential decentral-
ization use cases, however concludes with: “Nevertheless, being relatively infant technol-
ogy, many concerns such as security, privacy, efficiency, scalability, energy consumption,
interoperability, regulatory concerns, etc. are yet to be deeply investigated for its overall
adoption.”.

6

1.3. Research Problem

The potential use cases for decentralization in various industries are well documented.
For example, in healthcare, the article [171] outlines possible use cases in healthcare such as
prescription tracking, patient digital identity, cancer registry sharing, and more. The article
concludes by outlining healthcare challenges: “the complexities associated with healthcare
involvement and regulations create additional challenges inevitably facing blockchain-based
systems, such as system evolvability, information privacy, and communication scalabil-
ity.” [171] and invites further research in the space.

Another domain where decentralization is expected to provide the most significant ben-
efit is finance. According to the article [133], decentralization in finance provides a trustless
version of traditional financial instruments. Moreover, it creates new financial instruments
such as atomic swaps, liquidity pools, decentralized stablecoins, and flash loans. The ar-
ticle concludes with: “While this technology has great potential, there are certain risks
involved. Smart contracts can have security issues that may allow for unintended usage,
and scalability issues limit the number of users.” [133] The mentioned risks are manifested
in real-world decentralized finance systems and are estimated to result in losses of 3 billion
dollars in 2022, according to Bloomberg [2].

1.3 Research Problem

The challenges for centralized and decentralized compliance outlined in the previous sec-
tions are very broad and impossible to achieve in the scope of a single PhD thesis. In this
section, we narrow the scope down to an achievable research problem.

With an increase in compliance management activities, it is hard to gain a holistic
view of an enterprise to implement, enforce and change compliance requirements across
software systems. This results in increased manual labor, risk of penalties for not being
compliant with legal regulations, decreased product quality and decreased ability to evolve
an enterprise’s core business. The EE is a promising area that could help with the outlined
challenges. Although some work is done on applying EE theories and DEMO in BPM
practice, DEMO is formulated as implementation-independent. Therefore, further research
is required in the application of EE theories to the compliance management domain and
process-based IT systems.

The decentralized compliance systems could also benefit from applying BPM practices
and EE theories. The improvements in centralized compliance are expected to carry over
to the decentralized one. The main challenge in decentralized compliance is the need for
more adoption and guidance on implementing such systems safely and methodically.

The common challenge in both centralized and decentralized compliance domains seems
to be a lack of real-world case studies. In the case of centralized compliance, the lack of
published case studies is due to company privacy. In the case of decentralized compliance,
the case studies only exist on a theoretical level. However, the predictions need more
technical detail to make them a reality.

To summarize, we narrow our research to exploring how EE theories can improve state-
of-the-art centralized and decentralized compliance management systems. The focus will be

7

1. Research Overview

on implementing compliance-related business processes with centralized and decentralized
IT systems.

1.4 Research Objective and Research Questions

The research objective is laid out in this section, and the research questions are formulated.

Based on the research problem defined in the previous section, the research objective is
to investigate the state of the art of the EE theories and DEMO methodology, centralized
and decentralized compliance systems, software systems supporting BPM, and blockchain
technology. Investigate the gaps between the DEMO methodology and its application in
the design of centralized and decentralized compliance management systems. For some of
the identified gaps, propose artifacts that could contribute to filling them. Finally, provide
case studies of the proposed approaches that resemble real-world use cases.

Two main research questions are defined based on the formulated research objective to
explore centralized and decentralized aspects of compliance management systems design.
Both main research questions have two sub-research questions designed to fill the gaps in
the current state-of-the-art as described in the previous sections.

Research Question 1. How to design software systems to support business process man-
agement requirements based on EE theories and DEMO methodology?

Sub-research Question 1. How to support the execution of DEMO models in software
systems using an execution language?

Sub-research Question 2. How should DEMO models be transformed into Business
Process Model and Notation (BPMN) models?

Research Question 2. How to digitize business processes using blockchain smart con-
tracts in a methodical way and eliminate programming errors while avoiding a dependency
on a particular blockchain implementation?

Sub-research Question 3. How can blockchain smart contracts be used in the imple-
mentation of a software system based on DEMO methodology?

Sub-research Question 4. Is it feasible to generate blockchain smart contracts from a
high-level modeling language in an automated methodological way?

1.5 Research Design

In our interdisciplinary research, we use the Design Science Research (DSR) [74, 169]
strategy to work on the research objective and research questions. In this section, the
research design is summarized and discussed in detail later in Chapter 3.

8

1.5. Research Design

The DSR research strategy of this thesis is outlined in Section 1.5. First, an extensive
literature review is performed to identify the gaps in existing knowledge and prevent dis-
covering what was already done. Building on top of existing knowledge is also crucial to
maintain the scope of this research.

Literature Review (Chapter 2)

Research Design (Chapter 3)

Design Science Research Strategy (Section 3.3)

Centralized Compliance Cycle

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a

methodology for
centralized
compliance

management

Sub-Cycle 1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Findings, Evaluation, and Contribution (Chapter 9)

Sub-Cycle 2: Conversion of DEMO to
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Centralized Compliance Main Cycle

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a DEMO

execution
language to

enable
development of
an IS based on

DEMO
methodology

Cycle 1.1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Cycle 1.2: Conversion of DEMO into
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a

methodology for
centralized
compliance

management

Sub-Cycle 1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Sub-Cycle 2: Conversion of DEMO to
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Decentralized Compliance Main Cycle

Awareness
Need for

decentralized
compliance

management
systems

Suggestion
Develop a method

to build a
methodology for

decentralized
compliance

management

Development
 Develop a

methodology for
decentralized
compliance

management

Cycle 2.1: Exploring a Role of Blockchain in
Enterprise Engineering (Chapter 7)

Awareness Suggestion

Development Evaluation

Cycle 2.2: DSL to Design and Generate
Blockchian Smart Contracts (Chapter 8)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Knowledge
Contribution

Knowledge
Contribution

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to enable a
centralized BPMS

based on the
DEMO

methodology

Awareness
Need for

centralized
compliance

management
systems based on

EE theories

Development
 Develop a proof

of concept
implementation

independent
 decentralized

BPMS

Suggestion
Develop a method

to enable an
implementation

independent
decentralized

BPMS

Figure 1.1: DSR research strategy

The DSR strategy used in this thesis consists of several research cycles. After each
research cycle, a knowledge contribution is made. This allows adjustment of the research
according to the findings from each finished cycle. The DSR approach also allows the
utilization of different research techniques. As outlined in Section 1.5 our research strategy
consists of two main research cycles.

The first main research cycle concerns centralized compliance management (visualized
in light blue) and contains two sub-cycles. The first sub-cycle is focused on a formalization
of the execution of DEMO models. The second sub-cycle focuses on converting DEMO
models into executable BPMN models.

The second main research cycle concerns decentralized compliance management (vi-

9

1. Research Overview

sualized in light purple). The first decentralized sub-research cycle explores the role of
blockchain technology in the EE discipline. The second decentralized sub-research cycle is
focused on creating a domain specific language (DSL) to design and generate blockchain
smart contracts.

The table Table 1.1 provides a mapping of the research cycles to the research questions
formulated in Section 1.4.

Table 1.1: Mapping of research questions and DSR strategy

Research
Question

Centralized
Cycle

Cycle 1.1
Chapter 4

Cycle 1.2
Chapter 5

Decentralized
Cycle

Cycle 2.1
Chapter 7

Cycle 2.2
Chapter 8

RQ 1 X
SRQ 1 X X
SRQ 2 X X
RQ 2 X
SRQ 3 X
SRQ 4 X X

1.6 Contributions

This section provides an overview of the most significant contribution of the thesis. The
contributions consist of research artifacts and publications. The research artifacts are fur-
ther narrowed into four categories - formalizations, methods, experiments, and case studies.
The artifacts are outlined in Section 9.1.1. The publications are of two categories, the first
is the seven peer-reviewed papers published/co-authored by the author, and the second is
22 student theses supervised by the author that contributed to the overall research.

A summary of the most important contributions:

◦ The research contributed to the publication of 7 peer-reviewed papers with 49 cita-
tions (Section 9.1.2). The main author supervised 22 student theses relevant to this
thesis (Section 9.1.3), and 3 received the dean’s award.

◦ A formalization of execution of DEMO aspect models called the DEMO Machine
(Chapter 4) that allowed:

– An implementation of a DEMO-based BPM system in a professional company
(Section 9.3).

– Development of a method that converts DEMO models into executable BPMN
models (Chapter 5).

– The FAR ontology was used to allow modeling of REA compliant accounting
systems in [78].

10

1.7. Structure of the Dissertation Thesis

◦ Conducted an experiment to improve the quality of software specifications for com-
pliance management systems (Chapter 6) in the domain of procedural law.

– The experiment consisted of 32 case studies where 115 276 words of the legal
text were analyzed in approximately 2 440 hours.

– The evaluation of the case studies revealed missing process steps (80.10%) and
actor roles.

◦ A domain-specific language DasContract to model blockchain smart contracts was
formalized.

– A method to convert the DasContract models into executable blockchain smart
contract code was described (Section 8.3).

– An open-source proof-of-concept implementation of the DasContract model ed-
itor and an algorithm to generate executable blockchain smart contracts was
created (Section 8.2.2).

– Two case studies were created and modeled in the DasContract language based
on the possible real-world utility of blockchain.

1.7 Structure of the Dissertation Thesis

The thesis structure follows the research design strategy outlined in Section 1.5. The
chapter map is shown in Section 1.7. The thesis consists of seven parts:

1. Introduction: Describes a motivation behind our research together with formulating
the research problem, research objective, and research question. There is also a list
of the most important contributions of this thesis.

2. Literature Review : Provides an overview of existing literature in the context of our
research.

3. Our Approach: Provides an overview of our research design used to answer the
research questions.

4. Centralized Compliance Management : Presents our contributions related to central-
ized compliance management.

5. Decentralized Compliance Management : Presents our contributions related to decen-
tralized compliance management.

6. Conclusions : Summarizes the results of our research, evaluates the research ques-
tions, and presents our research contributions. Lastly, it suggests possible topics for
further research and concludes the thesis.

11

1. Research Overview

7. Publications : Contains the cited sources used in this thesis. Provides a list of the
reviewed publications of the author relevant to the thesis and a list of the relevant
supervised theses.

Part I Introduction

Chapter Map

Chapter 1 Research Overview

Part II Literature Review

Chapter 2 Background and State-of-the-Art

Part III Our Approach

Chapter 3 Research Design

Part IV Centralized Compliance Management

Chapter 4
Execution of DEMO Aspect Models –

FAR Ontology and DEMO Machine

Part V Decentralized Compliance Management

Chapter 5
Converting DEMO PSI Transaction Pattern into BPMN:

A Complete Method

Chapter 7
Exploring a Role of Blockchain Smart Contracts in Enterprise

Engineering

Chapter 8
Towards Systems Supporting Decentralized Compliance

Management

Part VI Evaluation and Contribution

Chapter 9 Evaluation and Contribution

Chapter 10 Conclusion

Part VII Publications

Bibliography

Remaining Publications of the Author Relevant to the Thesis

Reviewed Publications of the Author Relevant to the Thesis

Selected Relevant Supervised Theses

Chapter 6
An Experiment in the Procedural Law Domain – 32 Case Studies

Figure 1.2: Chapter map of the thesis

1.8 Chapter Summary

In this chapter, we introduced the main challenges of centralized and decentralized com-
pliance management. The scope of the research was narrowed to an achievable research
problem and research objective. Research questions were formulated, and a research strat-
egy was outlined to answer them. Furthermore, the assumptions, scope, and limitations
were discussed. A summary of the main contributions was provided. Moreover, the struc-
ture of the thesis is outlined.

12

Part II

Literature Review

13

Chapter 2

Background and State of the Art

This chapter introduces a theoretical background, state-of-the-art, and related research.
Compliance management is an extensive area; therefore, this chapter summarizes only the
most essential sources and points to other sources for further details.

In Section 2.1, compliance management is introduced, and a high-level overview of
compliance management strategies is presented. An introduction to blockchain technology
relevant to decentralized compliance management can also be found in Section 2.1. Later,
approaches to modeling and execution of business processes based on the compliance rules
are summarized in Section 2.2. The enterprise engineering discipline is introduced in
Section 2.3 as an application of the EE theories and methodologies to the domain of
compliance management is the main focus of our research. The section also includes a
guide on how to read the DEMO models (Section 2.3.5) to make this thesis more accessible
for an audience not familiar with EE.

2.1 Compliance Management

Although our work is focused only on compliance management, the term compliance is
usually used together with risk and governance management. GRC management is a
broad topic. We do not focus on being experts in any particular domain; instead, we aim
to help the domain experts translate their requirements into high-quality models that can
be later executed in software systems. Our supervised work by M. Mužák [A.26] provides
a more profound overview of the GRC topic.

Governance has almost as many definitions as people talking about it. It generally
means who is responsible for what. In practice, it is a sensitive and political topic. For our
purposes of supporting the governance with IT, we choose this one: “IT governance is the
organizational capacity exercised by the board, executive management and IT management
to control the formulation and implementation of IT strategy and ensure the fusion of busi-
ness and IT.”[163] The governance in IT is usually implemented in companies by following
a set of standards such as Information Technology Infrastructure Library (ITIL) [22], The
CobiT Framework [64], and ISO 27001 [81].

15

2. Background and State of the Art

Risk is a susceptible area in organizations because it is about managing the damage
when something goes wrong. Risk management usually balances between carefully identify-
ing and preventing the risks on one side and evaluating whether the cost of identifying and
preventing the risk is no higher than the damage caused by letting the dangerous situation
happen. For our work related to IT support of risk management systems, we picked the
following definitions: “There are three fundamental qualities of information which are vul-
nerable to risk and which, therefore, need to be protected at all times, namely availability,
integrity, and confidentiality.”[65] “The risks that threaten the security of its information
and computer resources need to be assessed and managed in a proper way, and the nec-
essary security controls need to be implemented and managed effectively.”[7] The most
common standard to implement risk management in IT is ISO 31000 [79].

Compliance generally means fulfilling the organization’s values, policies, and proce-
dures. They can be either external – legal requirements, industry standards, customer
rights, or internal – stakeholder requirements, governance, risk policies, organization strat-
egy, processes, and know-how on delivering products to the customer. Our work focuses
only on the procedural part of compliance and its support by software systems. We adopt
our definition of compliance from Gartner: “The process of adhering to policies and deci-
sions. Policies can be derived from internal directives, procedures, requirements, or external
laws, regulations, standards, and agreements.” [55]. Examples of external compliance re-
quirements are: BASEL [8] and The Sarbanes-Oxley Act (SOX) [3] – financial regulations
for banks, GDPR [46] – a regulation to protect the personal information of EU citizens,
HIPAA [75] – American healthcare regulations, PCI DSS [123] – regulations for merchants
accepting credit cards. The internal company processes are usually hard to get by as they
are a part of the organization’s know-how and are protected by non-disclosure agreements.

The maturity of GRC management in organizations can be measured by the GRC
Capability Model that consists of 4 integrated components [104]:

◦ Learn: Examine and analyze context, culture, and stakeholders to learn what the
organization needs to know to establish and support objectives and strategies.

◦ Align: Align performance, risk and compliance objectives, strategies, decision-making
criteria, actions, and controls with context, culture, and stakeholder requirements.

◦ Perform: Address threats, opportunities, and requirements by encouraging desired
conduct and events and preventing what is undesired through applying proactive,
detective, and responsive actions and controls.

◦ Review: Conduct activities to monitor and improve the design and operating effec-
tiveness of all actions and controls, including their continued alignment with objec-
tives and strategies.

2.1.1 Compliance Management Strategies

In [71], the authors provide an extensive overview of the state-of-the-art business process
compliance and a schematic overview of compliance management strategies. The schema

16

2.1. Compliance Management

is presented in Figure 2.1 and we cite it’s description of the strategies [71]:

◦ Design-time (otherwise, pre-execution time) is a preventive compliance manage-
ment strategy where business processes are assessed for any non-compliant patterns at
the very early stages of the process design. As such, in this approach, the compliance
requirements are captured through a logic-based requirements modeling framework
and propagated into business processes. Any non-compliant issues can be detected in
the very early stages, thus saving an enterprise’s efforts, time, and financial resources.

◦ Run-time (otherwise, execution-time) compliance checking is a strategy by which
enterprises use specialized software products that produce compliance reports while
the processes are being executed. This approach has a limited scope because it still
falls in the after-the-fact category. Also, it requires human intervention to rectify the
detected problems.

◦ Auditing (otherwise, post-execution) is a strategy by which specialized compliance
consultants manually analyze the logs generated by the processes to detect possible
violations. The main drawback of this strategy is the use of manual checks, which re-
quires a great deal of time and resources, and the use of manual checks is thus a costly
venture. However, the increased pressure and threat of possible criminal prosecutions
make the auditing method a less attractive compliance reporting strategy.

Our research is focused on applying the EE theories to the design-time process en-
gineering and then enabling the creation of an information system based on compliant
business process models. The used approaches will be further elaborated in Section 2.2
and Section 2.3.

2.1.2 Business Process Management

Gartner IT Glossary defines BPM as: “A discipline that uses various methods to discover,
model, analyze, measure, improve and optimize business processes. A business process co-
ordinates people’s behavior, systems, information, and things to produce business outcomes
in support of a business strategy. Processes can be structured and repeatable or unstruc-
tured and variable. Though not required, technologies are often used with BPM. BPM is
key to aligning IT/OT investments to business strategy.” [55]. We do also include an am-
bitious definition: “Business Process Management (BPM) is a comprehensive system for
managing and transforming organizational operations, based on what is arguably the first
set of new ideas about organizational performance since the Industrial Revolution.” [68]

The BPM usually consists of parts shown in Figure 2.2:

1. Design – Identifying existing processes and defining new ones

2. Model – Modeling the theoretical design using some tool. It can be a BPMS as well
as a paper document.

17

2. Background and State of the Art

Figure 2.1: Compliance management strategies [71]

3. Execute – Put the process into the production environment so people can start acting
according to it.

4. Monitor – Monitor metrics that are important for the process.

5. Optimize – Improve the process using the metrics captured in the previous step.

6. Re-engineering – Sometimes, the solution becomes so complex that it is better to
re-engineer the whole process.

18

2.1. Compliance Management

Figure 2.2: BPM life-cycle

2.1.3 Decentralized Compliance and Blockchain

Blockchain (BC) is a technology popularized in a whitepaper [108] by Satoshi Nakamoto1

It is mainly known for its use with Bitcoin as it is its underlying technology. It is a new way
of looking at transactions, assets exchange, or even whole organizations. It introduces a
decentralized, autonomous, replicated, and secure database. Based on cryptography offers
a trustless [126] network with no need for an intermediary, resulting in significant resource
and also time-saving. The possibilities for applying this technology are extensive, and it
could be effectively used in most parts of our world.

The public blockchains’ primary use is the decentralized finance (DeFi) used for decen-
tralized exchanges and crypto loans. However, there are many problems DeFi is currently
facing. The first one is network congestion, which increases the transaction processing
time and price (up to 12 USD per transaction [170]). Another issue is the smart contract
programming errors. In one of the many incidents, an input error led to a token price
plunging 25% [110]. Furthermore, according to the CoinGeco survey [21], only 40% of the
DeFi users can read and understand the smart contract’s source code.

A part of our research builds on top of blockchain technology and shows how to use it
for the design and execution of decentralized compliance systems. The topic was explored
in our publications [A.4, 138, A.6], as well as in many of our supervised theses [A.21, A.17,
A.27, A.28, A.30, A.29].

1Satoshi Nakamoto is probably a pseudonym for either one person or a group of people, the identity
is currently unknown.

19

2. Background and State of the Art

2.1.3.1 Private and Public Blockchain

The original intention of blockchain and bitcoin-like implementation was to create a public
network, but due to some limitations, it brings, private blockchains have been developed
as well. The main disadvantage of a public blockchain is the computational power it needs
to maintain the ledger when used on a large scale. The second issue is the openness of the
system and a consequent lack of privacy of transactions and their content. The difference
between public and private blockchain is based on controlling who can be part of the
network; in more detail, it means who can participate in the network and in which parts,
who can execute the consensus protocol, and manage the ledger. It is also referred to as
a permissioned blockchain, in contrast to the public blockchain, which is permissionless.
It requires an invitation to join a private blockchain, where the access control mechanism
may vary [150]. This means that in a private blockchain, there is control over the extent
to which it is decentralized and anonymous [124]. Private blockchains are faster, as there
is a reduced number of processing nodes, and the transaction costs might be lower [124].
On the other hand, this access control brings extra costs and complexity to the process of
maintaining or joining the blockchain. There are also hybrid solutions combining private
and public blockchains referred to as “consortium blockchains” [124].

2.1.3.2 Smart Contracts

The idea of smart contracts (SC) [152] is to offer more complex solutions than only sell
and buy transactions. A smart contract is a transaction embedded in blockchain that
contains enhanced logic – an executable contract has its own data storage and can access
other resources to evaluate its current state and perform actions – a contract made of code.
“A smart contract is a set of commitments that are defined in digital form, including the
agreement on how contract participants shall fulfill these commitments.” [109]

The main characteristic of a programmable smart contract is that it does not require
trust between parties. After its creation in blockchain, it would execute itself immutably.
The parties would not need to be in further contact or use an intermediary; it would
be autonomous instead. Smart contracts are not doing something that was not possible
before; however, they reduce the complexity of common problems, and they help with
automation [149].

2.1.3.3 Dapps, DAOs, and DACs

Smart contracts have the potential not just to be simple contracts between several par-
ties, but over time they could become very complex systems involving many parties and
resources. The definition of decentralized applications (Dapps) can vary, but in general,
it refers to open-source autonomous applications that use the decentralized network and
executes across decentralized network nodes [27]

When further enhancing Dapps and creating applications that handle complicated func-
tionality, they interconnect. This all happens in an autonomous decentralized manner; we

20

2.2. Compliance Management Systems Modeling and Execution

may create decentralized autonomous organizations (DAOs) and even decentralized au-
tonomous corporations (DACs). DAOs and DACs are “a concept derived from artificial
intelligence. Here, a decentralized network of autonomous agents performs tasks, which
can be conceived in the model of a corporation running without any human involvement
under the control of a set of business rules. In a DAO/DAC, there are smart contracts as
agents running on blockchains that execute ranges of pre-specified or pre-approved tasks
based on events and changing conditions.” [149]

2.2 Compliance Management Systems Modeling and Ex-
ecution

This section provides an overview of languages used for business process modeling in the
context of software execution.

Business process modeling languages are divided into three categories according to their
monography [160]. The first category is discussed in Section 2.2.1 and involves formal lan-
guages based on formal mathematical foundations that exhibit high precision and require
high modeling skills. The second category is overviewed in Section 2.2.2 and involves
conceptual languages that are modeler friendly but lack ontological qualities. The third
category presented in Section 2.2.2 involves execution languages used to execute concep-
tual models in software solutions. An attempt to bridge formal and conceptual languages
appears to be the EE theories presented in Section 2.3. Section 2.3.4 defines the concept
of a language’s ontological quality.

2.2.1 Formal Languages

According to Aalst, formal languages are based on mathematical models [160]. An example
of this class is process calculus, which is defined algebraically [6]. For complex processes
in the context of business process modeling for software execution, Petri nets [128] can
be used. In addition to mathematical formalism, they provide a visual representation of
underlying formal constructs. Other languages based on Petri nets have been created, such
as YAWL [159], which allows for advanced properties, such as complex synchronization
between process instances.

Formal properties allow models to be simulated, optimized, checked for inconsistencies
or possible deadlocks, etc. For Petri nets, many tools allow such functions [154] and can
improve the quality of the software specifications.

However, based on a survey [121] with n=130, formal languages are not used in prac-
tice for IT requirements in business process-based systems. Languages are typically used
in high-assurance environments, in which process errors may result in large financial or
physical damage. An example of a field in which formal languages are applied is manufac-
turing [1].

21

2. Background and State of the Art

2.2.2 Conceptual and Execution Languages

According to Aalst, “users in practice often have problems using formal languages due to
the rigorous semantics (making it impossible to leave things intentionally vague) and low-
level nature” [160]. Therefore, higher-level conceptual languages are used. The most used
conceptual languages in practice [121] are BPMN [114], the UML activity diagram [115],
and event-driven process chain (EPC) [100].

These are relatively informal, meaning that their semantics are not mathematically
defined and do not allow for analysis [160]. Attempts have been made to formalize these
languages ex-post; UML activity diagrams can be converted into alloy reasoners [87]. An
approach to converting EPC to Petri nets for analysis was proposed in [158]. A BPMN
can also be converted into Petri nets [92]. However, because of complexity, only a subset of
a conceptual language is typically formalized and does not therefore allow the analysis of
complex models. Moreover, some operations, such as reduction, are impossible using these
methods because some semantic information is lost during conversion to formal languages.

Conceptual languages are used in practice because they are well standardized, easier to
use than formal languages and have a tremendous amount of support in software systems.
Support for the execution of conceptual languages is allowed by the execution languages.
Execution languages allow the specification of non-process requirements, such as data
structures, forms, and interoperability problems [160]. The BPMN can be converted into
Business Process Execution Language (BPEL) [114]. Most business process management
systems support the direct execution of BPMN/BPEL models, although the execution
behavior may differ slightly from vendor to vendor. Extensive training and best practices
on BPMN have been proposed, such as by Bruce Silver [135] and Bernd Ruecker [132].

Low-code platforms use a proprietary conceptual language, typically based on BPMN or
flowcharts. For example, the OutSystems platform uses a proprietary BPMN-based syntax
called Business Process Technology (BPT) [73]. The absence of a standardized model-
ing language prevents modelers from leveraging formal analysis when creating software
requirements.

To cover business processes that are not flow-oriented but contain ad-hoc activities re-
lated to a customer’s case, case management conceptual languages are used and supported
by case management systems. The conceptual language CMMN [116] was introduced to
capture case-related business needs. Case management systems are typical in healthcare,
legal, police detective, social work, etc. [105].

2.3 Enterprise Engineering

EE [31] aims to assist professionals in mastering the complexity of modern enterprises
by providing suitable theories and methodologies. The discipline introduces design and
engineering methodology for organizations (DEMO) [32] based on its formal theories. This
methodology introduces a manner for modeling that consists of the DEMO specification
language and four visual aspect models: the cooperation, action, process, and fact models.

22

2.3. Enterprise Engineering

Here, we refer to both the methodology and specification language as ”DEMO” and to the
four visual aspect models as the ”DEMO models”.

DEMO models belong to the category of conceptual models from Section 2.2.2. How-
ever, because they are based on PSI and DELTA theories [32], they exhibit the qualities
of formal languages from Section 2.2.2. Another formal grounding of DEMO models is
based on process algebra [148]. Moreover, the DEMO methodology provides a method for
creating DEMO models called organization essence revealing (OER) [32]. This method can
be applied when collecting process-based compliance system requirements based on human
interviews, textual descriptions, and conceptual language descriptions.

Although some studies have applied EE theories and DEMO in software development
practice, DEMO itself has been formulated as implementation independent. A notable work
in which EE theories are used to tackle rapid IT changes was conducted by Dvořák in [39].
However, despite these efforts, the application of DEMO in software is rare compared with
the conceptual languages presented in Section 2.2.2.

2.3.1 Ontology

We understand the notion of ontology as a “formal, explicit specification of a concep-
tualization shared between stakeholders” [59]. The most important criteria regarding the
quality of any ontology [61] are i) ontological truthfulness, an ontology providing a truthful
representation of the real world; ii) ontological completeness, completeness of expression
for any phenomenon that may exist in our domain of the real world; and iii) ontological
appropriateness, good support for shared reasoning between stakeholders. Other essen-
tial concepts regarding ontologies, conceptual languages, and models are formulated by
Guizzardi in [60].

In our work, we use ontology to create a high-quality model of compliance requirements
that helps in the transition to the supporting software systems.

2.3.2 Important Concepts from PSI Theory

2.3.2.1 Actor Roles and Actors

Actors are people who perform a particular role in a business process, such as aspirant
citizens and court decision completers. The DEMO actor role names may seem strange be-
cause, in domain-specific texts, no roles such as an arbitrator complaint meter or challenge
arbitrator meter exist. Plaintiffs and judges are likelier names for these roles. In DEMO,
actor roles are abstracted to enable flexible mappings of organizational roles.

2.3.2.2 Acts and Facts

Two main types of acts and facts are considered: coordination and production. Produc-
tion refers to a product being created. For example, a “court case decision for Marek.”
Coordination refers to the communication required to reach a shared understanding of the
product to be created. An act is an action being performed, and a fact is the result of

23

2. Background and State of the Art

Figure 2.3: Coordination and production worlds [32]

that action. fig. 2.3 shows how acts and facts are created; actors perform acts, and this
produces facts.

2.3.2.3 Transaction

The notion of a transaction is the central concept in the DEMO methodology. This is a
communication pattern based on Habermas’s theory of communicative acts [63]. DEMO
uses this pattern to discover communication between people, which guides the modeler
to consider all possible outcomes of a communication, not only cases in which everything
proceeds in a prototypical manner. The transaction steps are called coordination acts,
and their completion results are coordination facts, as described in Figure 2.3. Figure 2.4
shows the Complete Transaction Pattern, where two abstract actor roles progress towards
the acceptance (completion) of a transaction. Once a transaction is completed, a produc-
tion fact is produced. A simplified version of the Complete Transaction Pattern is called
the Standard Transaction Pattern, which does excludes the four revoke components. For
the sake of completeness, an even simpler transaction pattern exists that is called the
Basic Transaction Pattern; however, as it contains only the “happy path” request-promise-
execute-declare-accept steps, it is not particularly applicable in practice.

DEMO transactions are divided into three categories using the OER method: onto-
logical, infological, and datalogical. TOntological transactions describe original production
acts. Infological transactions describe production acts regarding information manipulation
to produce ontological products (e.g., computing, inferring, interpreting, reporting, etc.).
Datalogical transactions support the infological production acts by storing and retrieving
data used by them. The categorization is defined using the distinction axiom and allows
the modeler to focus only on the essence of the organization, which consists of ontologi-
cal transactions. A remarkable property of ontological transactions is that they tend to
undergo significantly fewer changes over time than the other two.

24

2.3. Enterprise Engineering

Figure 2.4: Complete Transaction Pattern [32]

2.3.2.4 Transaction Distinction Axiom

The organization layers allow us to distinguish between “important” and “unimportant”
transactions. In the context of DEMO, organizational layers allow for the discovery of the
essence of an organization.

In Figure 2.5, this distinction of the three categories is applied to a domain description.
Original transactions are at the top in red and called ontological. Supporting transactions,
such as remembering and sharing, are in green and called infological. Finally, saving and
providing information are shown in blue and called datalogical.

Next, we briefly describe how the DEMO methodology can be applied to improve the
quality of process-based software requirements. We demonstrate this in the domain of our
case studies, procedural law; however, it is applicable to any type of domain aligned with
S0.

2.3.3 Applying DEMO Methodology to Process Domain Descriptions

The most common manner of describing the processes in an enterprise in practice is to use
plain text in a natural language [121]. Based on this observation, the DEMO methodology
provides the OER method that guides a modeler in discovering ontological concepts in
plain text or a more structured description in the form of conceptual language diagrams,
such as a BPMN. The following steps are specified by OER to create a DEMO model.

25

2. Background and State of the Art

Figure 2.5: Organization layers [32]

1. Revealing the organizational essence using the OER method. This reveals the or-
ganization’s acts, facts, transaction types, and their distinction according to Sec-
tion 2.3.2.4.

2. Modeling organizational essence. This is the creation of the four DEMO aspect
models.

The following subsections provide a basic introduction to DEMO modeling techniques.
Extensive guidance on creating DEMO models can be found in [33], and [32] provides a
more complete theoretical grounding.

2.3.3.1 Organization Essence Revealing Method (OER)

The OER method guides the modeler in revealing essential actor roles, transactions, and
the structure in which the transactions are organized. The OER method consists of three
steps:

1. Identifying the acts and facts,

2. Identifying the transaction types in which these acts/facts occur, and

3. Identifying the decomposition tree-like structures in which these types occur

The OER method can be applied by conducting interviews with domain experts. How-
ever, this is also feasible using a textual representation of procedural law that is widely

26

2.3. Enterprise Engineering

Figure 2.6: Examples of process structures [32]

available. This study used the latter approach, which allows the quality of information
contained in an original source to be evaluated.

In the first OER step, a modeler goes through the text and identifies transaction acts
represented in the form of verbs and facts. These facts are typically easy to recognize,
as the same process would be used to create a data model of the domain. The acts are
categorized according to the transaction steps.

The second OER step goes through all identified acts and identifies the transaction
types to which the belong. This step can be complicated, as one transaction can begin on
page 20, for example, continue on page 2, and end on page 15.

The final OER step identifies the tree composition of the transactions. This deter-
mines whether they belong to the same process or if multiple processes are present. This
tree composition is a vital aspect of the DEMO methodology compared with the other
approaches mentioned in Section 2.2.2. Other approaches conceptualize the process as a
flow of activities. However, DEMO conceptualizes it as a tree corresponding to the prod-
uct structure, which results in better complexity management owing to its hierarchical
representation. Figure 2.6 shows an example of such a tree structure.

2.3.3.2 Modeling Organizational Essence

DEMO comprises four different aspect models: the construction model, process model,
fact model, and action model. Each represents a view of the same model with different
perspectives.

The construction model is the most concise. It shows transaction types, actor roles, the
border of the scope of interest, and the transaction-type tree composition. Figure 2.7 shows
an example of this model. It presents an excerpt from the arbitration court proceedings
discussed later in this thesis (Section 6.2.0.2). The process begins with a claimant initi-
ating the arbitral proceedings transaction. The other transactions in the figure are child
transactions according to the composition axiom in Figure 2.6. Compared with a tradi-
tional flowchart-based approach that models a process as a sequence of steps, the DEMO
model considers the process as a composition of transactions that occur independently

27

2. Background and State of the Art

according to the transaction axiom shown in Figure 2.4. For example, after the arbitral
proceedings begin, the payment of arbitration fees and acceptance of the settlement can
occur simultaneously. This allows for a more realistic representation of the model domain,
in which actions typically occur in parallel. In addition, the complete transaction pattern
allows for situations in which the process must return because of human errors or people
changing their minds. Capturing a sequential (causal) relationship between transactions
can be expressed using the PM.

Figure 2.7: Excerpt from an arbitration court process in DEMO the construction model

The process model further specifies the composition of a transaction-type tree. PM
involves two concepts. The first specifies the act by which children’s transactions are
initiated (interaction). The second specifies restrictions between transaction types; for
example, a transaction type is not executed before another type (interstriction). This
restriction can be applied to transaction types belonging to different processes.

This study expressed the information contained in this model as part of the CM. In
Figure 2.7, the conditional link (dashed line) between T2 and CA3 indicates that transac-
tion T3 can begin only after T2 completes. This means that a respondent can answer a
claim statement only after the fee for the proceedings is paid.

The fact model is the most intuitive, as it is similar to database models and was adapted
from a fact-based modeling used for modelling databases [67, 66]. DEMO simplifies and
extends it with reference to process outcomes (products of transactions). It describes the
structure of the facts involved in the process, such as an order or customer, their properties,
such as age, and the relationship between them. Compared with a typical structural model,
it provides a link to a transaction-type result, and therefore links the structure and process
behavior. In DEMO methodology, all objects, properties, and relations are referred to as

28

2.3. Enterprise Engineering

production facts. Detailing this model further is beyond the scope of this because the
study is concerned only with the process.

The action model can be ideologically related to the Object Constraint Language (OCL)
in UML [23], which specifies complex business rules such as: “The person needs to be older
than 18 years in order to request a beer.” The business rules mostly relate to performing
coordination acts, that is, decision rules for selecting an appropriate one. The second
purpose of this model is to link the FM to the transaction-type steps. Therefore, it generally
acts as a “glue” for the other aspect models. Examining the details of this model remains
outside the scope of this study.

2.3.3.3 Reduction of Complexity

According to the book [32], EE theories and DEMO methodology reduce complexity by
over 95% in terms of the size of model expressions. This is achieved by applying the three
concepts mentioned in this section:

1. The transaction pattern as described in Section 2.3.2.3 is used to represent 19 con-
cepts as one concept: transaction. Thus, an average reduction of 80% is achieved [32].

2. The transaction composition axiom demonstrated in Figure 2.6 replaces the flow-
based business process models with trees of transactions. This is estimated to reduce
the complexity by another 80% [32].

3. The transaction distinction axiom described in Section 2.3.2.4 allows an abstraction
from implementation (i.e., user interface, integration, database architecture) and
realization (i.e., sharing and storing the information in infological and datalogical
layers as described in Section 2.3.2.4). This is estimated to reduce the complexity by
another 80% [32]. Guidance towards connecting the implementation and realization
to the ontological process model is provided by [28]. Figure 2.8 provides an example
of such decomposition, where the top red part resembles the ontological part of the
process, and the bottom part models a possible realization of underlying infological
and datalogical transactions.

Therefore, we have three dimensions of decomposition that can be used to manage
complexity in a similar manner as that in structure analysis/ design [85]. By applying
these techniques, the underlying complexity of the domain does not disappear, but is
rigorously managed. Therefore, an improvement in the quality of the resulting software
specification is expected, which helps in the analysis stage.

2.3.4 Ontological Quality

For the evaluation of the process model quality in this study, the C4E quality criteria from
EE were used. The definitions are taken from [32].

29

2. Background and State of the Art

Figure 2.8: Example of DEMO process decomposition according to the transaction dis-
tinction axiom [28]

◦ Comprehensive – means that it is ontologically complete, provided that all knowledge
of the concrete system is available. Consequently, this allows for studying the statics
of the modeled system (its construction) and its dynamics (its operation).

◦ Coherent – means that the model elements are connected without ‘loose’ parts.

◦ Concise – their size is small compared with current meta models, which mostly do
not abstract from realization and implementation.

◦ Consistent – means that they do not contain logical contradictions.

◦ Essential – the model is called essential when it satisfies all C4 criteria: comprehen-
siveness, coherency, conciseness, and consistency. Only one essential model exists for
a given domain.

Another quality requirement is that the modeling language should be based on formal
definitions. The lack of a precise formal foundation is known as structural ambiguity.
In [47], Table 1 provides an overview of formal languages and evaluates their structural
ambiguity. DEMO methodology does not suffer from structural ambiguity, because its
foundations are defined in the PRISMA formal model [32]. The PRISMA model fulfills
the C4E criteria [32], and thus, all valid DEMO models also satisfy the C4E.

30

2.4. Chapter Summary

2.3.5 How to Read DEMO Models

Now that the basic DEMO concepts and models have been introduced, an example execu-
tion of the model shown in Figure 2.7 is presented. This provided a better understanding of
the models presented in the following section. The simulation aims to show the expressiv-
ity of the pattern language, in which each transaction consists of the complete transaction
pattern introduced in Figure 2.4. This is a significantly different approach compared with
the common flow-chart and BPMN-based diagrams mentioned in Section 2.2.2.

1. Marek is a claimant (CA1) who requests the arbitral proceedings transaction (T1)
with his dispute against Company X (product in the DEMO terminology) from Eu-
gene who is an employee of the arbitration Court (thus, given the role of arbitral
proceedings completer (A1)).

2. Eugene can act in this process in various manners; he can promise or decline T1 or
request T2 and T10. He can perform all actions in parallel. He cannot request T3
because it depends on the completion of T2 (see the dashed line from the process
model). According to the complete transaction pattern Figure 2.4, Marek can revoke
his dispute if he changes his mind or finds a mistake in his application. The revocation
must be accepted by Eugene to detain the process.

3. Eugene chooses to request the payment of arbitration fees (T2) from Marek as a
claimant (CA1) of this dispute against Company X. Moreover, he promises Marek
that his dispute against Company X will be handled (T1 - promise).

4. Marek promises to pay the fee (T2 - promise) and pays the fee (T2 - declare), and
Eugene confirms that the correct amount was received by the arbitration court bank
account (T2 - accept).

5. The statement of claim (T3) can now be answered because the arbitration fee was
paid (T2 was accepted). Therefore, Eugene requests an answer to the claim statement
from Company X (T3 - request) by a certified mail. Company X receives the mail (T3
- promise) and submits a response (T3 - declare). Eugene checks that the response
fulfills all formalities and accepts it (T3 - accept).

6. The process continues until the root transaction arbitral proceedings (T1) is accepted.
Figure 6.2 and Figure 6.3 present a model of the arbitration court procedure.

2.4 Chapter Summary

In this chapter, we introduced the theoretical foundations for our research objective from
(Section 1.4). The centralized and decentralized compliance management were elaborated
more extensively in the scope relevant to our research. An extensive overview of existing
approaches to model and execute the compliance management systems were provided.

31

2. Background and State of the Art

Finally, the relevant parts of the enterprise engineering discipline were introduced so they
can be related to our research objective and research questions in the following chapters.

32

Part III

Our Approach

33

Chapter 3

Research Design

In the Section 1.3 we outlined the problems that we would like to focus on in our research.
Later, in Section 1.4 we narrowed the research problems to a single research objective
and the research questions. The target domain of our research is highly empirical and
therefore we decided to use to use the design science methodology [74, 169]. Furthermore,
we adopted the design science methodology to the field of information systems according
to [162] and also to the dissertation thesis [161].

In this chapter, we briefly summarize the design science research methodology (Sec-
tion 3.1), and then introduce a research strategy for our research (Section 3.2). In Sec-
tion 3.3 the assumptions, scope, and limitations are presented. A role of cooperation with
industry in our research is described in Section 3.2.1. Finally, the chapter is summarized
in Section 3.4.

3.1 Research Methodology

Because of the empirical and multidisciplinary nature of our research objective formulated
in Section 1.4, we decided to use the design science research methodology adopted for
IS research [74, 169]. To use the methodology correctly, we followed the guidelines for
conducting design science research in IS [162] and guidelines for adoption of the design
science research to the PhD thesis [161]. This section provides a brief overview of the
design science research methodology, in the next section (Section 3.2) the research strategy
for our research is presented.

An overview of the design science research framework adopted for IS is shown on Fig-
ure 3.1. The most important parts of the framework are the relevance and rigor cycles.
The relevance cycle feeds the IS research with business needs and the rigor cycle provides
applicable knowledge. Within the IS research, an artefact is built based on the needs an
knowledge. After the artefact is build, it is justified and evaluated. In the end, the IS re-
search contributes back to the environment by fulfilling the business needs and back to the
knowledge base by additions to the knowledge-base. In our research, the most important

35

3. Research Design

part of the environment are the compliance management systems, and as for the knowledge
base, the EE theories.

Figure 3.1: Design science research framework adopted for IS research [74, 162]

The research according to the design science is being performed iteratively in DSR
cycles. A commonly accepted process to perform such cycle is shown in Figure 3.2. De-
scription of the process steps in the process model was cited from [157]:

1. Awareness of the problem: The awareness could be generated from practical
experience or from related disciplines. The output from this phase is a proposal.

2. Suggestion: The suggestion is closely related to the awareness of the problem (as
indicated by the dotted line). The suggestion is often included as a tentative design
in the complete proposal as output. However, an approach to develop a suggestion
might be included in the proposal if a possible solution is not immediately evident.

3. Development: The tentative design is implemented during this phase and the tech-
nique for implementation will differ depending on the artefact.

4. Evaluation: When the artefact has been developed, the evaluation of the artefact
is mandatory, usually according to requirements and criteria specified during the
suggestion phase (as part of the proposal). The result of the evaluation should
be carefully noted and explained. This phase may result in the refinement of an
awareness, a suggestion or a development, especially if the result of the evaluation is
not satisfactory.

36

3.2. Research Strategy

Figure 3.2: Design science research process model (DSR cycle) according to [157]

5. Conclusion: This is the final phase when the research results and contribution are
identified. This not only includes the artefact, but all additional knowledge with
regard to the process, construction and evaluation that were acquired. The output
of this phase is an acceptable research contribution.

In the next section, the research strategy for our research is introduced.

3.2 Research Strategy

This section presents our research strategy to answer the research objective and research
questions defined in Section 1.4. As stated in the previous section, we do applied the DSR
for IS research and created a research strategy that contains multiple DSR cycles. This
strategy is presented in Figure 3.3 and consists of two main DSR cycles. On the left, there
is a cycle for centralized compliance management. On the right, for decentralized compli-
ance management. The business needs for the cycles were presented in the introduction,
further narrowed in Section 1.1, Section 1.2, and Section 1.3. The relevance was further
strengthened by cooperation with an industry partner as described in Section 3.2.1. Both
DSR cycles build on applicable knowledge presented presented in Chapter 2. The research
strategy of each DSR cycle is presented in this section. The table Table 3.1 provides a
mapping of the research cycles to the research questions formulated in Section 1.4. In the
Part IV and Part V, the outputs of the DSR cycles are presented. Finally, in Chapter 9
the findings, evaluation, and contribution of the research is summarized to complete the
design science relevance and rigor cycles.

37

3. Research Design

Literature Review (Chapter 2)

Research Design (Chapter 3)

Design Science Research Strategy (Section 3.3)

Centralized Compliance Cycle

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a

methodology for
centralized
compliance

management

Sub-Cycle 1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Findings, Evaluation, and Contribution (Chapter 9)

Sub-Cycle 2: Conversion of DEMO to
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Centralized Compliance Main Cycle

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a DEMO

execution
language to

enable
development of
an IS based on

DEMO
methodology

Cycle 1.1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Cycle 1.2: Conversion of DEMO into
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a

methodology for
centralized
compliance

management

Sub-Cycle 1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Sub-Cycle 2: Conversion of DEMO to
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Decentralized Compliance Main Cycle

Awareness
Need for

decentralized
compliance

management
systems

Suggestion
Develop a method

to build a
methodology for

decentralized
compliance

management

Development
 Develop a

methodology for
decentralized
compliance

management

Cycle 2.1: Exploring a Role of Blockchain in
Enterprise Engineering (Chapter 7)

Awareness Suggestion

Development Evaluation

Cycle 2.2: DSL to Design and Generate
Blockchian Smart Contracts (Chapter 8)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Knowledge
Contribution

Knowledge
Contribution

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to enable a
centralized BPMS

based on the
DEMO

methodology

Awareness
Need for

centralized
compliance

management
systems based on

EE theories

Development
 Develop a proof

of concept
implementation

independent
 decentralized

BPMS

Suggestion
Develop a method

to enable an
implementation

independent
decentralized

BPMS

Figure 3.3: Our research strategy

3.2.1 Professional Experience

The centralized compliance DSR cycle was done in cooperation with a professional company
ForMetis Consultants BV [50]. The company contributed significantly to forming the
business needs in the relevance cycle of the research. The main author worked with the
company on applying the theories in the appropriate environment. The company’s goal was
to develop a proprietary BPMS based on DEMO called DEMO engine. The contribution
of the main author to the proprietary DEMO engine is outside the scope of this research as
they belong to the company. The formalization of execution of the DEMO models called
DEMO machine is the main artifact of this research.

3.2.2 Centralized Compliance Main Cycle

This research cycle serves to answer research question 1: ”How to design software systems
to support business process management requirements based on EE theories and DEMO

38

3.2. Research Strategy

Table 3.1: Mapping of our research questions and DSR strategy

Research
Question

Centralized
Cycle

Cycle 1.1
Chapter 4

Cycle 1.2
Chapter 5

Decentralized
Cycle

Cycle 2.1
Chapter 7

Cycle 2.2
Chapter 8

RQ 1 X
SRQ 1 X X
SRQ 2 X X
RQ 2 X
SRQ 3 X
SRQ 4 X X

methodology¿‘ and fulfill the research objective defined in Section 1.4. A DSR process
model shown in Figure 3.2 was adopted into a strategy for our research Figure 3.2. Our
research strategy for centralized compliance consists of one main DSR cycle and two DSR
sub-cycles. The sub-cycles serve to answer the sub-research questions 1 and 2.

The business needs for this cycle were continuously consulted with an industry partner
as described in Section 3.2.1. The main objective of this DSR cycle is to find and fill the
most important gaps that would enable the development of a BPM system based on DEMO
methodology. The most significant gap was identified as a missing execution language for
DEMO models. Although a formalization of the DEMO foundations was known in the
form of a CRISP model [29], at the time, it was not considered by the industry partners
as sufficient for the creation of a DEMO-based BPMS. Therefore, the main artifact cre-
ated in this cycle is a DEMO execution language we named DEMO machine (Chapter 4).
Therefore, this effort has a dedicated sub-research cycle 1.1. Sub-cycle 1.2 explores an
alternative path of creating information systems from the DEMO model based on convert-
ing the DEMO models into executable BPMN models that can be used in existing BPMS
(Chapter 5). Finally, an empirical experiment was proposed to model case studies from
the procedural law domain and execute them in software systems(Chapter 6).

3.2.3 Decentralized Compliance Main Cycle

This research cycle serves to answer research question 2: ”How to digitize business pro-
cesses using blockchain smart contracts in a methodical way and eliminate programming
errors while avoiding a dependency on a particular blockchain implementation¿‘ and fulfill
the research objective defined in Section 1.4. The business needs for this research were
presented in Section 1.2. The main objective was to explore how to enable decentralized
compliance management systems by applying EE theories. Because this topic was not pre-
viously explored, a first sub-research cycle 2.1 was created to explore the role of blockchain
technology in EE (chapter 7). Based on this sub-cycle, a business need was identified that
a DSL to design and generate blockchain smart contracts is needed and was designed as
part of the sub-cycle 2.2 (Chapter 8). To evaluate the artifacts created in the sub-cycle
2.2, case studies were made (Section 8.5 and Section 8.6).

39

3. Research Design

3.3 Assumptions, Scope, Limitations

This section outlines the assumptions, scope, and limitations of our research.
The main assumption is that the sources we used to outline the challenges of the central-

ized and decentralized domain in Section 1.1 and Section 1.2 are an accurate representation
of the domain. Such claims, although presented by reputable sources, are not possible to
verify because the detailed challenges in the domain are related to the proprietary pro-
cesses of enterprises. Another assumption is that the EE discipline provides theories and
methodologies that are superior to the state-of-the-art BPM approaches used in state-of-
the-art organizations. Further, we assume that the decentralization of some compliance
processes may provide some benefit over the state-of-the-art as suggested by [88].

As for the scope, the target domain of this thesis is very broad, and its challenges are
far beyond the scope of a single thesis. Therefore we narrow our focus on finding gaps
in the state-of-the approaches and moving them a small step towards their fulfillment.
Implementing the software systems suggested in this research is outside of the scope. In
some cases, a proof of concept can be made. The same applies to the experiments and
empirical case studies. Although our presented case studies contain a considerable im-
provement in their size compared to similar research, they are still a simplification of the
real multi-million $ projects typically made in the target domain.

As for the limitations, this research is focused on the procedural aspect of the com-
pliance processes in compliance management systems. In centralized compliance manage-
ment, the research is focused on capturing business processes when human cooperation and
co-production are taking place. A combination of other software development techniques
and deep domain expertise will be required to create production systems. In the case of
decentralized compliance, the most significant limitation is the novelty of the field itself.
Extensive research highlights the large benefits of using blockchain technology. However,
empirical evidence is still missing, and the existing technology platforms are still very
immature.

3.4 Chapter Summary

This chapter provided a brief overview of our research design. First, the DSR methodology
adopted for IS research was introduced. Then a research strategy for our research was
presented. Our research strategy consists of two main DSR cycles. The first one focuses
on centralized compliance management and enabling of creation of DEMO-based software
systems in cooperation with an industry partner. The main results from the cycle are
presented in Part IV. The second main cycle focuses on exploring the role of blockchain
technology in EE theories and developing a DSL to model blockchain smart contracts. The
main results from the second cycle are presented in Part V. Both cycles are evaluated in
Chapter 9.

40

Part IV

Centralized Compliance
Management

41

Chapter 4

Execution of DEMO Aspect Models –
FAR Ontology and DEMO Machine

This chapter contains a summary of the preliminary results that were published. The
work is focused on bridging the gap between the DEMO methodology and its software
implementation. We wanted to understand how the DEMO models are executed and
how an IT system can support them. This chapter presents artifacts created during the
centralized compliance main DSR cycle and the sub-cycle 1.1. The contents of this chapter
were published in [A.1, A.3]. First, the Fact, Agenda, Rule (FAR) Ontology is presented
in Section 4.1. Later, an execution language for DEMO models based on the ontology
is formalized in Section 4.1. Related research is summarized in Section 4.3. Finally, the
chapter is summarized in Section 4.4.

4.1 Fact, Agenda, Rule Ontology

FAR Ontology was introduced in [A.1] as an ontological foundation for the DEMOMachine.
The FAR Ontology introduces definitions of facts, acts, and rules suitable for software
system execution. A brief overview of the most notable contributions is provided in this
section.

Facts are defined as factual statements about a world of phenomena. Value of a fact
is a valuation function that assigns given fact and transaction instance one of three values
- True, False, and Unknown. Facts are devised into three types - internal, external, and
composed. The internal facts provide factual statements about the internal state of the
DEMO Machine or its history. A grammar is proposed for internal facts to provide a
domain-specific language to define such facts. External facts are factual statements about
a world outside of the DEMO Machine. External facts are crucial for including any possi-
ble domain-specific business logic. Composed facts are facts composed from internal and
external facts by using and, or, and not operators. Kleene and Priest’s three-valued logic
is used for the valuation of composed facts.

43

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

Rules do introduce the possibility to perform an automatic transaction state change
based on a given fact. This enables the automation of desired steps in a business process.

4.1.1 Addressing the DEMOSL-DEMO Machine Deficiencies

Let us elaborate on how the FAR Ontology (and the whole DEMO Machine) may address
the challenges stated above.

1. Integration and Facts duplication. Based on the Separation of Concerns Principle
from the Normalised Systems Theory [99], the DEMO Machine should not supply
the functionality of the already-existing enterprise systems, such as a database. Also,
the DEMO Machine should not specify scales, dimensions, sorts, units such as time,
money, and others.

2. Lack of expressiveness. For areas with already established solutions (like mathemat-
ical libraries), these should not be represented in a DEMO Machine to maintain the
separation of concerns and the C4-ness criteria.

3. Modularity and Version transparency are complex topics that cannot be easily com-
mented. They are a subject for future work that should be based on the studies of
Normalised Systems Theory mentioned above.

4. Execution semantics of DEMOSL. The DEMO Machine should specify the execution
semantics. The FAR Ontology focuses on the subset of execution, namely the facts,
agenda, and rules concepts.

Let us now dive into the specific part of the DEMO Machine, the FAR Ontology, which
will be specified as a set of axiomatic definitions.

4.1.2 Fact Axioms

The DEMO theory builds on the Φ theory. The letter Φ stands for “FI”, an acronym for
Fact and Information about a “world,” being a specific part of the universe we are interested
in and of which we require factual information or knowledge [29]. Our world of interest
is “the world of enterprises”. A world of interest is assumed to be composed of Acta,
Facta, and Stata. Stata are things or phenomena that existed before the beginning of our
observation. A Fact is a proposition about something that exists in the real world and
provides us with factual knowledge about the world. Facts can be about either concrete
or abstract things or phenomena. They are the results of Acta, being actions or acts
undertaken by an entity. Facts come to being by carrying out acts. Once they originate,
they cannot disappear; they can only be ignored.

During the design time, we deal with facts as propositions about the real world. They
exist just as a symbolic structure, and we cannot decide its truthfulness. Then, once the
the DEMO Machine executes (i.e. the fact “happens”), we may valuate it as true, false

44

4.1. Fact, Agenda, Rule Ontology

or undefined. Undefined means that the subjects of the proposition do not exist yet, or
we do not know the valuation due to, e.g., a technical failure. The valuation may (and
typically does) change during the execution. Any calculations based on facts should take
this into account. Stata also represents factual knowledge about our world of interest that
has existed since the beginning of time. Any facts about Stata are always either true or
false.

Let us present the definitions here using the standard mathematical constructs.

Definition 4.1.1. Fact A fact is an ordered tuple:

Fact := (Identifier, Type, Proposition) (4.1)

Identifier – A unique identifier of the fact.
Type ∈ {Internal, External, Composed}
Proposition – A specification1 of the statement about the real world.

Definition 4.1.2. Value of a fact is a valuation function:

FactV alue : (TransactionInstance, Fact)→ {True, False, Undefined} (4.2)

Definition 4.1.3. Transaction Instance Linking (TIL) is a ternary relation that re-
lates certain transaction instances to each other. This relation is defined outside of the
DEMO Machine, which requests this relation to evaluate the rules.

TransactionInstanceLinking(TIL) :=
TransactionInstance× TransactionInstance× LinkingIdentifier

(4.3)

TransactionInstance – A transaction instance unique identifier.
LinkingIdentifier – A name of the relation that holds between the transaction instances.

Example 4.1.4. Two transaction instances are sharing the same membership:
(”T01 1”, ”T02 2”, ”Membership”)

Definition 4.1.5. Internal Fact is a factual statement about a DEMO model instance.

InternalFact : = (Fact, InternalFactExpression) (4.4)

Definition 4.1.6.

InternalFactExpression :=
(singleTransactionComparison)|(multiTransactionComparison)

(4.5)

singleTransactionComparison = (transaction).state (operator)
((transaction).state | (state))
multiTransactionComparison = (transactionSelector).(selectorFunction)

1FAR does not specify the language, it may be a natural language or any other language.

45

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

(t => (singleTransactionComparison))
transaction = this | this.parent
state = perfect tense intention” as defined in DEMOSL
operator = == | ! =
variable = (transaction).(attribute)
selectorFunction = all | any
transactionSelector = transactionType < (linkingIdentifier) > |
this.children < transactionType >
transactionType = existing transaction type defined in the model
linkingIdentifier = identifier of the relation between transactions

This grammar uses the Extended Backus-Naur Form (EBNF). Round brackets denote
non-terminals. Note that the presented grammar is elementary, and it cannot capture all
facts about the DEMO model instance or its history. Complete grammar is a subject for
further research.

Example 4.1.7. Let us show an example by formalizing the fact F02 “Are invoices paid?”,
which is the situation when all instances of T03 that are linked to the current transaction
are in the same state as the current transaction.

F02 = ((”F02”, ”Are invoices paid?”), T03< ”Invoice” >.all(t => t.state == this.state))

Definition 4.1.8. External Fact is a Fact about the world outside the DEMO Machine

ExternalFact := (Fact, CalculationEngine) (4.6)

CalculationEngine – Identifier of the external system function evaluating the fact.

Data in external data banks are represented as external facts, for instance. External
facts represent knowledge of phenomena in the environment that may change over time
and have no (known) calculation specification. We operate just with a further unspecified
reference to external system function that can evaluate the fact, thus carrying out the
separation of concerns principle.

Example 4.1.9. A fact that evaluates that the person attached to the transaction instance
is older than 18 years

F01 = ((”F01”, ”Is person older than 18 years?”), CalculationEngine)
CalculationEngine may be implemented in any computer technology such as a web

service (SOAP or REST) or locally as a system library. In the following code, we implement
it as a class in a standard programming language. The calculation of an F01 would be
realized as its method:

public class CalculationEngine {

[DEMOEngineExternalFact(FactId="F01")]

public FactValue IsPersonEligible (TransactionInstance t) {

var person = DAL.GetPersonByTransactionInstanceId(t.Id);

46

4.1. Fact, Agenda, Rule Ontology

if(person == null) return FactValue.Undefined;

else return person.Age > 18 ? FactValue.True : FactValue.False;

}}

Definition 4.1.10. Composed Fact is a fact composed from internal and external facts.

ComposedFact := (Fact, ComposedFactExpression) (4.7)

Definition 4.1.11. Composed Fact Expression

1. InternalFactIdentifier and ExternalFactIdentifier are composed fact expressions.

2. If x and y are composed fact expressions, then following expressions are also composed
fact expressions:

a) (x and y)

b) (x or y)

c) not (x)

Kleene and Priest’s three-valued logic is used for the valuation of composed facts.

Example 4.1.12. A person is older than 18 years, and he is accepted as an applicant in
a membership approval process of the Volley tennis club:

F01 = (("F01", "Is person older than 18 years?"),

VolleyCalculationEngine)

F02 = (("F02", "Is person accepted in the approval process?"),

VoleyCalculationEngine)

F03 = (("F03", "Is person eligible for membership?"),

("F01 and F02"))

The resulting truth table is then:

F01 F02 F03 Result
True True True
True False False
True Undefined Undefined
False True False
False False False
False Undefined False
Undefined True Undefined
Undefined False False
Undefined Undefined Undefined

47

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

4.1.3 Agenda Axioms

An agenda is a set of possible coordination acts (agendum) that is presented to the actor.
These are well-defined concepts in the PSI theory. According to the transaction axiom,
an actor involved in a transaction is offered to choose one of the valid options to perform
coordination acts, which happens in asynchronous time. Example: After a Request from
the initiator, the executor may issue either a Promise or a Decline, but other coordination
acts such as a Reject are now forbidden to comply with the Transaction Axiom.

An agenda for an actor must be (re)calculated completely at run time by the DEMO
Machine of the model instance after each state change of the model instance. It will be
shown that causal and conditional dependencies and rules restrict the allowed options for
coordination acts. It means that rules are applied to guarantee compliance with the PSI
theory. Any extension, enlargement of the transaction transition space, or the state space
is impossible since this would violate the PSI theory axioms.

Definition 4.1.13. Coordination Act (cAct) is a proposed or intended action for an
actor.

cAct := (Transaction, TransactionInstance,

ActorInstance, Intention, SettlementType)
(4.8)

Transaction = Transaction kind as defined in DEMOSL.2

TransactionInstance = Associated transaction instance. May be empty.
ActorInstance = Associated actor instance.
Intention ∈ {Create(T, n), Promise, Decline, Request, Quit, Accept, Reject, State, Stop,
RevokeRequest, AllowRevokeRequest, RefuseRevokeRequest, RevokePromise, AllowRe-
vokePromise, RefuseRevokePromise, RevokeState, AllowRevoke State, RefuseRevokeState,
RevokeAccept, AllowRevokeAccept, RefuseRevokeAccept }
SettlementType ∈ { Allow, Enforce, Restrict }

There are two additions to the definition given by the DEMO theory. One is the
possibility to create a new transaction (generated by the composition axiom) which the
rules will use. Create(T, n) means “Create n transactions of type T”, where n is a positive
whole number. The second is the settlement type which says how the cAct should be dealt
with. Allow means that an actor is allowed to perform the intention. Enforce cAct says
that the given intention should be actually performed, unless there is a Restrict cAct
with the same intention for the same transaction instance. Practically, the Restrict cAct
also informs the actor why such an intention cannot be performed. In the DEMO theory,
an actor can perform an act even when it is restricted. However, in enterprise practice,
legal and other compliance are crucial aspects of execution. Thus, we enable this feature
in the DEMO Machine.

Please note that in definition 4.1.13 we do not take into account any additional infor-
mation from inside or outside of the organization. This is due to the separation of concerns

2Transaction is also defined by the TransactionInstance if present.

48

4.1. Fact, Agenda, Rule Ontology

principle addressing the Facts duplication (section 4.1.1). All external information (facts)
are handled outside of the DEMO Machine.

Definition 4.1.14. Agenda is a function that calculates a set of actor’s possible actions
based on the current state of the model, taking into account the composition axiom and
the respective rules.

Agenda : (ModelInstance, ActorInstance)→ {cAct} (4.9)

Definition 4.1.15. Perform cAct

PerformCAct : (ModelInstance, ActorInstance, CActToEnforce)→ Agenda (4.10)

To perform a cAct means that the actor selects an allowed cAct from its agenda and
enforces it.

4.1.4 Rules and Dependencies Axioms

Rules and dependencies are specifications of either a prescriptive execution of a coordina-
tion act or a conditional prohibition of a coordination act for an actor, depending on the
evaluation of a fact.

A rule and a dependency restrict the available freedom of an actor to issue coordination
acts at the execution time. If the rule or dependency applies, the evaluation takes place
at runtime, depending on the state of that model instance. The transaction instance
state space and the state transition space of a model instance is further restricted (made
smaller). It is impossible to add new options for coordination acts since that would violate
the axiomatic specifications derived from the PSI theory.

Definition 4.1.16. Causal Rule and Dependency are defined as the application of a
rule that results in a transaction state change.

CausalRule = (Transaction, TransactionState, Fact, cActTrue, cActFalse) (4.11)

Definition 4.1.17. Evaluation of Causal Rule and Dependency

if TransactionInstance.State == TransactionState

and FactValue(TransactionInstance, Fact) == True

then anAgenda.Add(cAct(cActTrue, Enforce))

else if False then anAgenda.Add(cAct(cActFalse, Enforce))

Definition 4.1.18. Conditional Rule and Dependency are defined as the application
of a rule that results in a restriction of an agendum, in such a way that one of the allowed
coordination acts is prohibited while the rule applies.

ConditionalRule = (Transaction, Fact, cActToRestrict) (4.12)

49

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

Since facts may change over time during execution, a condition that inhibits a specific
cAct can be met, and the specific cAct is permitted. If one of two cActs is prohibited in
the agenda, then the actor can perform the opposite cAct in asynchronous time. As long
as the fact in the conditional rule holds, the actor can’t perform the cAct.

Definition 4.1.19. Evaluation of Conditional Rule and Dependency

if anAgenda(TransactionInstance).Contains(cActToRestrict(Allow))

and FactValue(TransactionInstance, Fact) != True

then anAgenda.Add(cActToRestrict(Restrict))

4.1.4.1 Prohibition or Prescription of an Agenda

The above follows that rules and dependencies operate on an agenda by prohibition or
prescription. They reduce the model instance state space and the model instance transition
space, which causes a desired limitation of complexity. It is impossible to increase the
state and transition spaces by “adding” new options for coordination acts which would be
a violation of the PSI theory. Rules and dependencies are calculated immediately during
the calculation of the agenda.

4.1.5 Discussion and Evaluation of the FAR Ontology

The relation between the FAR Ontology and the DEMO models is as follows. The DEMO
models provide a formal specification of the rules and facts created and accepted by stake-
holders that represent the enterprise’s interaction with its environment. The DEMO Ma-
chine specifies the construction of an artifact (a software system) that must fulfill the
requirements of the created DEMO models. The FAR Ontology is a crucial part of the
DEMO Machine.

The following reasoning is provided to assure:

i A compliance with the PSI theory, the causal and conditional dependencies, and the
application of explicitly specified causal and conditional AM rules.

ii A reduction of complexity while maintaining guaranteed ontological conciseness and
comprehensiveness.

Assume a model composed of actors and transactions. The application of the Transac-
tion Axiom reduces the number of states of each transaction and the number of states in
the model state space, which results in a reduction of complexity.

The application of the Composition Axiom demands that before any production fact
can be performed, all child production facts must have been produced, i.e., Stated and
Accepted. This further reduces the number of states in the model state space. The
ontological conciseness and comprehensiveness of the PSI theory have been shown in [38].

50

4.2. DEMO Machine

Applying the causal dependencies reduces the state transition space of the model in-
stance since a specific option of an agenda must be chosen while the other agenda options
are forbidden.

Conditional dependencies disable specific agenda options until a specific condition has
been met. In this way, the state transition space is reduced further, and the state space is
also reduced without a loss of ontological conciseness and comprehensiveness.

The DEMO Action Model conditional and causal rules modify the agenda similarly
to causal and conditional dependencies, and they reduce the state space and the state
transition space further, without any loss of ontological conciseness and comprehensiveness.

For a DEMO Machine based solely but precisely on the PSI theory, it has been argued
and shown that there is minimized expression, or zero entropy in expression quality [164].
One and only one model can represent any enterprise that may exist in the real world.
In addition, anything that is not an enterprise cannot be represented. Based on this
reasoning, it is argued that such a DEMO Machine based on proper implementation of the
FAR Ontology will keep these qualities.

4.2 DEMO Machine

A DEMO Machine is a theoretical computation engine to simulate DEMO Models. The
concept was formally introduced in my master thesis at the Czech Technical University. A
proof of concept implementation was also created. In this section, we do summarize the
most notable contributions.

Transaction axiom was expressed as a state machine (see Figure 4.1) to precisely define
possible state space for a transaction. Composition axiom was defined to define a space
state for a composition of transaction kinds. Rule axiom was defined to introduce a deter-
ministic approach to handle state transitions and restrictions in compliance with the other
axioms. A high-level overview of agenda calculation based on the axioms is expressed in
Algorithm 4.1.

Definition 4.2.1. A DEMO Machine is an ordered tuple:

DEMOMachine := (DEMOEnterpriseApplication,

ExternalFactImplementations, TransactionInstanceLinking,

InputInstructions,OutputMessages)

(4.13)

DEMOEnterpriseApplication – A DEMO enterprise application.
TransactionInstanceLinking – Ternary relation that represents connections between trans-
action instances in the outside world.
ExternalFactImplementations – Outside world implementations of functions that calculate
external facts.
InputInstructions – A set of instructions that the machine needs to process.
OutputMessages – Results produced by the machine that represent facts about a behaviour
of an enterprise.

51

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

Initiator ExecutorInitiator Executor

Initiator ExecutorInitiator Executor Initiator Executor

Initiated

Request Requested

Decline

Promise

Declined

Promised

StateStated

AcceptedAccept

Reject Rejected

Request
Revoked

Refuse
Revoke
Request

Allow
Revoke
Request

Revoke
Request

Requested

Declined

Initiated

Promise
Revoked

Revoke
Promise

Requested

Promised

Revoke
Accept

Allow
Revoke
Promise

Refuse
Revoke
Promise

Refuse
Revoke
Accept

Allow
Revoke
Accept

Accept
Revoked

Accepted

Stated

State
Revoked

Revoke
State

Allow
Revoke
State

Refuse
Revoke
State

Promised

Stated

Rejected

Initiate

Figure 4.1: Transaction axiom state machine

The DEMO Machine receives instructions on the input and produces messages on the
output.

The list of allowed instructions is:

◦ GetActorAgenda(Actor) – Writes an Agenda for a specified Actor into Out-
putMessages.

◦ PerformCAct(cAct) – Performs a cAct and puts a new Agenda for the actor
instance (defined in cAct) into OutputMessages. Performing an empty cAct causes a
recalculation of the model instance.

The Algorithm 4.1 shows a pseudo-code of how the agenda is calculated for a transaction
instance.

4.2.1 Proof of Concept

In this section, a proof-of-concept DEMO Machine is demonstrated on a Volley club model
from the book “The Essence of the Organization” by Jan Dietz [29]. The model is well

52

4.2. DEMO Machine

Algorithm 4.1 Agenda calculation

1: function CalculateAgenda(transactionInstance, actorPerformCActs)
2: #Adds actors perform cActs
3: agenda←actorPerformCActs
4: #Adds allowed cActs based on Transaction axiom
5: agenda.add(TransactionAxiom(agenda))
6: #Adds allowed and restricted cActs based on Composition axiom
7: agenda.add(CompositionAxiom(agenda))
8: #Adds perform and restricted cActs based on Rule axiom
9: agenda.add(RuleAxiom(agenda))
10: #Find perform cActs that are allowed and not restricted.
11: if agenda has cAct c to perform then
12: #Performs cActs selected to be performed
13: PerformCAct(transactionInstance, c)
14: #Transaction states have been changed so recalculation of agenda is needed.
15: return CalculateAgenda(transactionInstance, nil)
16: else
17: #No cActs to be performed found, agenda reached a stable state.
18: return agenda

specified in the book, so we do not elaborate on it much, and we rather point out the
differences in our approach and the proposed way of simulation.

We created a proof-of-concept software implementation of the presented DEMO Ma-
chine to verify the formal definitions. This section uses a general object-oriented pseudo-
code inspired by C# to implement the simulation according to the definitions mentioned
above.

4.2.1.1 DEMO Model

The organization construction diagram (OCD) in Figure 4.2 contains two transactions
describing the situation where a customer comes into the club, requests a membership,
pays for it, and he becomes a member.

The Process Diagram (PSD) describes how are the two transactions related. The
membership payment is requested after a membership start is promised. There is also a
conditional link that specifies that the membership execution phase cannot be done until
the membership payment is accepted. Cardinality is not mentioned here, but we expect
only one payment per membership. Later payments are not part of the model.

The Action Model (AM) here consists of four rules, all of which are for the membership
starter (A1). The logic of working with facts defined in the OFD is also included in the
rules, but DEMO materials do not elaborate on how they should be dealt with. The precise
definition of executing these AM rules is also not provided, but this notation is sufficient
for communication between human stakeholders.

53

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

Figure 4.2: OCD model of the Volley Club [29]

1. Action Rule for A1(1) – When the membership start (T1) is requested, in case
the person who is requesting is eligible, then it is automatically promised, otherwise
declined. Eligibility means that the person is old enough, starting day of the mem-
bership is the first day of some month, and a maximum number of members was not
reached.

2. Action Rule for A1(2) – When the membership start (T1) is promised, then
automatically request the membership payment.

3. Action Rule for A1(3) – When the membership payment (T2) is stated, while
the paid amount for the membership has been paid, then accept the membership
payment (T2), otherwise reject (T2).

4. Action Rule for A1(4) – When the membership start (T1) is promised while the
membership payment (T2) is accepted, then execute the membership start (T1) and
state the membership start (T2).

4.2.1.2 DEMO Machine Model

Here is what the same Volley club model looks like when described by the concepts intro-
duced in this paper.

OCD and PSD remain the same. They are represented as:

AspirantMember = ("Aspirant member", Composite);

MembershipStarter = ("Membership starter", Elementary);

Payer = ("Payer", Composite);

T1 = ("T01", "Membership Start", MembershipStarter, {AspirantMember})

T2 = ("T02", "Membership Payment", Payer, {MembershipStarter})

VolleyClubModel = ("Volley Club", {T1, T2}, {AspirantMember, MembershipStarter,

Payer}, ...)

Information about memberships or persons is likely to be stored in an external database,
and there is no use in duplicating them inside the DEMO Machine, as explained in Sec-
tion 4.1.

54

4.2. DEMO Machine

The action model implementation differs from the DEMO, so let us go through the
Volley club business rules and see how they are expressed in the DEMO Machine.

Action Rule for A1(1) is represented by an external fact and a causal rule. The
external fact contains all the business conditions needed to evaluate whether a person
is eligible for membership. The LogicalProposition is there merely to suggest what logic
should be used to evaluate such fact. The actual logic then lies in the outside world
implementation, and it calls the database. A benefit of this approach is that we do not
need to change the model when this business rule is modified. A new implementation
version is simply plugged in, and the system goes on.

The causal rule T1RequestedCausalRule is there to implement the action part (state
transition) of the AM rule. It says: “When an instance of transaction1 is in state Requested
and fact IsMemberElegibleFact is evaluated as True, then add a cAct with Settlement-
Type=Perform and Intention=Promise to the transaction instance agenda. If the fact is
evaluated as False, then add a cAct with SettlementType=Perform and Intention=Decline
to the transaction instance agenda.” This explanation may seem more complicated than
the previous action rule, but it covers many more scenarios. Adding an enforcing cAct is
used instead of a direct state transition because some conditional rule may forbid the tran-
sition. The state transition also needs to be allowed by the transaction or the composition
axiom. If multiple rules enforce different state transitions, a priority should be assigned to
the rules.

IsMemberElegibleFact = ExternalFact("Is member eligible for application?",

LogicalProposition = "Person.Age >= Minimal_Required_Age",

VolleyClubCalculationEngineId)

T1RequestedCausalRule = CausalRule(T1, Requested, IsMemberElegibleFact,

cAct(T1, T1.Current, T1.Current.Executor, Promise, Perform),

cAct(T1, T1.Current, T1.Current.Executor, Decline, Perform))

Action Rule for A1(2) – is represented by a causal rule and an external fact. The
external fact will always be True in this case since there are no business conditions. The
causal rule is expressed below, and it says: “If the transaction instance of type T1 is
in state Promised and the TrueExternalFact is evaluated as True, then add a cAct that
(i) performs the creation of a new instance of T2 that will be a child of the current T1
transaction instance and (ii) will be in state Created to the current transaction instance
agenda”.

T1_Promised_CausalRule = (T1, Promised, TrueExternalFact, cAct(T1, T1.Current,

T1.Current.Executor, Create(T2, 1), Perform), null)

Interestingly, the transaction instance T1 can get into state Promised multiple times.
Does it mean that it should create a new instance of T2 each time it gets there? Moreover,
does it depend on some external system? In this model, the creation of unwanted transac-
tions is controlled by the 1..1 cardinality defined in the PSD. However, for generic purposes,
we introduced a possibility for external fact implementation to return several transactions
to be created together with the fact result. This is the way how we can control how many
transactions are created.

55

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

Another problem is determining the executor actor instance for a created transaction
instance of T2. It is evident in this particular model that the membership payer will be the
same person as an aspirant member. However, it is not formally defined. We do delegate
this problem to the outside world implementation. Once it is notified about the created
instance of T2, it has all the information it needs to assign the executor. More practical
experience shows whether this is sufficient or a more sophisticated solution needs to be
designed.

This proof of concept implementation does not contain the composition axiom, and
therefore the rules to create child transactions are not implemented as well.

Action Rule for A1(3) – is represented by a causal rule and an external fact. The
external fact is a business rule determining whether the paid amount was enough. The
causal rule then performs accept or reject.

IsPaidAmountEnoughFact = ExternalFact("Is paid amount for membership enough?",

LogicalProposition = "this.Membership.AmountToPay <= this.Membership.Payment.

AmountPaid", VolleyClubCalculationEngineId)

T2StatedCausalRule = CausalRule(T2, Requested, IsPaidAmountEnoughFact,

cAct(T1, T2.Current, T2.Current.Executor, Accept, Perform),

cAct(T2, T2.Current, T2.Current.Executor, Reject, Perform))

Action Rule for A1(4) – is represented by a conditional rule and a communication
fact. We only want the execution phase to be allowed when the child transaction of the
T1 instance is in state Allowed. We capture such fact using a communication fact that
says: “Are all current transaction instance children with type T2 accepted?”. If there is
no child transaction with type T2, the fact is evaluated as Undefined.

The conditional rule says: “If there is a cAct with Intention=State and Settlement-
Type=Allow within the current transaction instance agenda and the fact IsMembership-
PaidFact is not evaluated as true, then a cAct with Intention=State and Settlement-
Type=Restrict is added to the current transaction agenda.” Simply put, the transaction
instance state Stated can only be reached when the fact is True.

IsMembershipPaidFact = CommunicationFact("Is membership paid?",

CommunicationFactExpression = "this.children<T02>.all(t => t.state == accepted

)", VolleyClubCalculationEngineId)

T2StatedCausalRule = ConditionalRule(T1, IsMembershipPaidFact, State)

4.2.1.3 Volley Club Outside World Implementation

The outside world consists of the implementation of external facts, transaction relation
provider, and state change receiver. It can be implemented in any programming language
as long as it provides the values required in the definitions. In our proof of concept imple-
mentation, we created a simple implementation of such system that accessed a database
and returned relevant values. However, a detailed description of such implementation is
not relevant for the purposes of this thesis.

56

4.2. DEMO Machine

4.2.1.4 Step by Step Execution

In this section, we will provide a detailed description of what happens in the execution of
the Volley club model during the happy-flow scenario.

At first, a Volley club enterprise application is created, and implementation of the
outside world is attached. The Activity Log shows all the changes in the running enterprise
application, and we present all steps of the simulation below.

Step 1 – We create enterprise positions and attach them to actor roles. Then we assign
actors to enterprise positions. Marek is going to be a Customer, which is an enterprise
position with actor roles Aspirant member and Payer. Elisabeth will be an Employee –
the Membership starter since she works in the Volley club.

Step 2 – Marek would like to be a member of the Volley club, so he initiates a new
transaction 1 instance and selects its executor to be Elisabeth. He is prepared to request
membership, but he needs to fill out the starting day. He fills today and performs the
request. Because there is nothing to restrict Marek’s request, the transaction moves to the
state Requested. New Membership object is created, and it stores the data Marek entered.
In state T1 Requested, a causal rule is defined and therefore evaluated. Marek is 27 years
old, and that is enough to be a member of the Volley club. The causal rule adds enforcing
cAct to the agenda, and it moves the transaction to state Promised. In the Promised state,
a conditional rule restricts the State from being performed before the membership is paid.
The communication fact is evaluated as Undefined because there is no accepted child T2.
No interaction was required from Elisabeth.

New transaction T01 was created with name=T01.1.

T01.1:Request:Allow

Initiator of T01.1 performed Request.

T01.1:Request:Allow,T01.1:Request:Perform

Fact "Is member eligible for application?" was evaluated as True.

T01.1:Promise:Allow,T01.1:Decline:Allow,T01.1:RevokeRequest:Allow,T01.1:Promise:

Perform

Fact "Is membership paid?" was evaluated as Undefined.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T01.1:State:Restrict

Step 3 – Elisabeth received a request from Marek, and she would like to deliver him
the membership. However, she needs to ask for a payment first, and therefore she initiates
a new transaction 2. After transaction 2 was initiated, the conditional rule was evaluated
again. Now, the result of communication is not Undefined but False. This is because the
T2 exists.

New transaction T02 was created with name=T02.2.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Request:Allow,T01.1:State:

Restrict

Step 4 – Elisabeth calculated a membership fee for Marek, and she requested a mem-
bership payment. The communication fact is still False.

57

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

Initiator of T02.2 performed Request.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Request:Allow,T01.1:State:

Restrict,T02.2:Request:Perform

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Promise:Allow,T02.2:Decline:

Allow,T02.2:RevokeRequest:Allow,T01.1:State:Restrict

Step 5 – Marek promises to pay for the membership. Before he states the payment,
he needs to fill the amount to pay based on the requested amount created by Elisabeth.
He fills in 30 euros and states the payment. When transaction 2 is stated, a causal rule
that validates if the paid amount is valid is activated. The sum of money matches, and
transaction 2 is accepted. Communication fact “Is membership paid?” is finally evaluated
as True.

The executor of T02.2 performed Promise.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Promise:Allow,T02.2:Decline:

Allow,T02.2:RevokeRequest:Allow,T01.1:State:Restrict,T02.2:Promise:Perform

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:State:Allow,T02.2:

RevokePromise:Allow,T01.1:State:Restrict

The executor of T02.2 performed State.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:State:Allow,T02.2:

RevokePromise:Allow,T01.1:State:Restrict,T02.2:State:Perform

Fact "Is paid amount for membership enough?" was evaluated as True.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Accept:Allow,T02.2:Reject:

Allow,T02.2:RevokeState:Allow,T02.2:Accept:Perform,T01.1:State:Restrict

Fact "Is membership paid?" was evaluated as True.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:RevokeAccept:Allow

Step 6 – Elisabeth is allowed to state the membership, and she does so. The commu-
nication fact “Is membership paid?” was evaluated once more because transaction 2 could
have changed in the meantime.

Executor of T01.1 performed State.

Fact "Is membership paid?" was evaluated as True.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:RevokeAccept:Allow,T01.1:State

:Perform

T01.1:Accept:Allow,T01.1:Reject:Allow,T01.1:RevokeState:Allow,T02.2:RevokeAccept

:Allow

Step 7 – Marek accepts the membership creation.

Initiator of T01.1 performed Accept.

T01.1:Accept:Allow,T01.1:Reject:Allow,T01.1:RevokeState:Allow,T02.2:RevokeAccept

:Allow,T01.1:Accept:Perform

58

4.3. Related Research

T01.1:RevokeAccept:Allow,T02.2:RevokeAccept:Allow

Step 8 - Marek is a proud member of the Volley club. We can see that his record
was created in the database. The TransactionId is there to associate the DEMO engine
transaction instance identifier with the membership record. The relation could also be
stored inside the DEMO engine as the transaction instance’s external identifier.

4.3 Related Research

4.3.1 The DEMO Engine and the Enterprise Operating System

DEMO Engine of the ForMetis Consultants company is a software system for designing
DEMO models with the ability to simulate DEMO models for validation and to provide
model execution in full production [86]. Construction of DEMO models is done using the
graphical representation of the DEMO OCD in a graphical environment. In the current
implementation, the DEMO Process Model is primarily calculated from the OCD. Response
links and waiting links (causal and conditional dependencies) can be then specified using
the graphical representation of the PSD. There is a limited and not well-engineered support
for even simple Action Model rules, which is the aim of our FAR Ontology (Section 4.1).

The Enterprise Operating System [164] is software system composed of a set of DEMO
models and a DEMO model executing software engine, the DEMO Engine. The EOS
captures and controls all phenomena that occur in operation of the organizational business
transactions. This is very similar to an operating system of a computer that reads from
and writes to binary registers of a CPU and peripheral controllers and supports many
tasks. Using a computer without an operating system is extremely difficult and error-
prone. This seems to apply also to controlling and monitoring enterprises without an
appropriate enterprise operating system.

4.3.2 DEMOBAKER

There is an approach to formalize the simulation of DEMO models and support their
execution with a software tools called DEMOBAKER – A New Action Rule Syntax for
DEmo MOdels Based Automatic worKflow procEss geneRation [49]. Their approach is
based on extending the action model syntax so the DEMO models are suitable for easy
transformation to BPMN and BPMS. We do support this approach because existing state
of the art BPMS can benefit from DEMO methodology. However to unleash a full potential
of enterprise engineering a DEMO-based BPMS based on proper foundations needs to be
introduced.

4.3.3 XModel

The solution of devising a workflow software system based on model presented by Johan-
ndeiter et al. in [84] is based on the OrgML modelling language, a part of the MEMO

59

4. Execution of DEMO Aspect Models – FAR Ontology and DEMO
Machine

framework, and the XMF metaprogramming platform. The idea is also based on applying
the MDE approach, while avoiding the error-prone manual coding stage. The idea is based
on applying multiple levels of meta-modelling and utilising XMF’s unique features to sup-
port multiple dynamic levels of abstraction. The approach seems very interesting, however
it seems to lack a proper evaluation in enterprise. Our approach also differs in a careful
selection of ontologically well-founded methodologies that exhibit necessary qualities and
benefits.

4.4 Chapter Summary

In this chapter, we proposed a theoretical computation model called the DEMO Machine,
and we demonstrated its capability to simulate DEMO models on a Volley club example.
The evaluation of the research and its application in practice is discussed in Chapter 9.

60

Chapter 5

Converting DEMO PSI Transaction
Pattern into BPMN: A Complete

Method

The DEMO methodology is most often used during business processes’ strategic and ana-
lytical modeling. There are usually two options when it comes to implementing the process
using an IT system. The first one is that a business process model is a part of the require-
ments specifications for an IT system. In the second one, the business process model serves
as a source code for the supporting IT system. This approach is well-established in existing
BPM systems. However, most existing systems use the BPMN (Business Process Model
and Notation) [114] graphical notation standardized by OMG. Therefore, we present an
original method for converting enterprise ontology Design & Engineering Method for Or-
ganisations (DEMO) process models into a BPMN 2.0 notation. By this approach, we can
mitigate certain methodological deficiencies of BPMN. The method exhibits the following
qualities: Implementation of the complete transaction pattern formulated by the PSI the-
ory, correct management of multiple child transaction instances, and executability of the
resulting BPMN model.

The content of this chapter was published at EEWC conference [A.2]. The results are
related to the DSR cycle 1.2 and sub-research question 2. The understanding of executing
DEMO models is based on the DEMO Machine introduced in Chapter 4. The method was
later automated in the work of Štěpán Tužil [155].

5.1 Introduction

BPMN (Business Process Model and Notation) [114] is a graphical notation that is used
for modeling business processes. Critical characteristics of BPMN are simplicity of the
underlying theory (flowchart), standardized notation, and a large number of tools. This
makes BPMN one of the most widespread process modeling notations in practice, despite

61

5. Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method

its limitations and flaws. BPMN offers three different types of diagrams: Choreography,
Conversation, and Collaboration diagrams. For this work, only the Collaboration Diagram
will be considered. This diagram expresses the process flow in achieving participants’ goals.

One of the BPMN weaknesses is the absence of a methodology for constructing dia-
grams, which is addressed, for example, by Silver [135]. Nevertheless, the design freedom
is still too broad, which results in different modeling styles of individual analysts and dif-
ferent models depicting the same situation, which complicates enterprise engineering tasks
like mergers and reorganizations.

DEMO (Design & Engineering Method for Organisations) [29] is a leading modeling
method used in the discipline of Enterprise Engineering [31] based on a deep and sound
theoretical basis (the PSI-theory) and high ontological relevance. Its benefits for the prac-
tical use has been proven, as documented for example in [118] or [40]. It does not limit
itself to process modeling, but it also deals with capturing structural (factual) knowledge
and business rules, thus delivering a complete enterprise ontology exhibiting certain crite-
ria (C4E). However, DEMO is still a niche approach and relatively demanding to master
compared to BPMN. Also, a limited number of tools are available today.

For a brief description of DEMO, we take a help of Op’t Land and Dietz [118]:

A complete, so-called essential model of an organization consists of four aspect mod-
els: Construction Model (CM), Process Model (PM), Action Model (AM), and Fact Model
(FM). The CM specifies the composition, the environment, and the structure of the orga-
nization. It contains the identified transaction types, the associated actor roles as well as
the information links between actor roles and transaction banks (the conceptual containers
of the process history). The PM details each transaction type according to the universal
transaction pattern. In addition, it shows the structure of the identified business processes,
which are trees of transactions. The AM specifies the imperatively formulated business
rules that serve as guidelines for the actors in dealing with their agenda. The FM specifies
the object classes, the fact types and the declarative formulations of the business rules.

The DEMO Process Model reveals details of the transactions with the respect to uni-
versal transaction pattern. The basis is the “happy flow” consisting of request, promise,
state and accept, which is also called the basic transaction pattern. In the so-called
standard transaction pattern (not depicted), decline may happen instead of promise and
reject may happen instead of accept. Then, a new attempt may be made, or quit, resp.
stop may end the transaction unsuccessfully. Real situations may become even more com-
plicated, which is addressed by the complete transaction pattern in fig. 5.1. It incorporates
the notion of revocation – an actor may want to “take back” their act done before1. If that
is allowed by the other party, the transaction “rolls back” to the desired state.

The logic of the complete transaction pattern is automatically included in all DEMO
transactions, which is one of the reasons why the models are compact.

The main goal of this paper is to combine the simplicity of the BPMN and the onto-
logical qualities of the DEMO. The result is the method that converts enterprise ontology

1In the DEMO theory, nothing can disappear, so the original fact remains in the fact bank. However,
the transaction flow is changed.

62

5.2. Related Work - Improving BPM and BPMN

Figure 5.1: DEMO complete transaction pattern [33]

Design & Engineering Method for Organisations (DEMO) process models into a BPMN
2.0 notation. This approach mitigates the mentioned absence of a sound methodological
approach for BPMN. The BPMN models resulting from the described method converge,
similarly to DEMO, to one essential model, thus eliminating different modeling styles of
individual analysts leading to comparable models. Our other requirements are: implemen-
tation of the complete transaction pattern formulated by the PSI theory, correct managing
of multiple child transaction instances, and executability of the resulting BPMN model.

We start the paper by the discussion of the related work of efforts of improving BPM
and BPMN, specifically, the approaches based on applying the enterprise-engineering rigor
(section 5.2). We then briefly present the results of a comparative analysis of DEMO and
BPMN (section 5.3), which led to formulating our method of conversion (section 5.4). We
demonstrate the method on an example (section 5.5). Finally, we discuss the result and
formulate conclusions (section 5.6).

5.2 Related Work - Improving BPM and BPMN

Poor ontological quality of BPMN is generally known and documented [62]. The most
practiced remedy is exercising a methodological approach like the one proposed by Sil-
ver [135], who distinguishes three levels of BPMN: (i) Descriptive, (ii) Analytical, and (iii)
Executable and proposes several analysis patterns and anti-patterns.

63

5. Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method

The discipline of enterprise engineering (EE) [31] brought about a rigorous approach of
building an enterprise ontology (EO) [29], DEMO being its modeling method. There are
several foundational EE theories, the most notable being the PSI theory. As one of the
central concerns of EE is the business process management, the effort to apply EE theories
(EET) to the existing (less formal approaches) is promising. The efforts in this area are
twofold:

1. Applying EET for analysis of existing BPMN models of business processes: for ex-
ample [16], [165] and [113].

2. Enhancing the formal foundations of BPMN by EET: for example [16], [165], [49], [72]

5.2.1 Applying EET for Analysis of Existing BPMN Models of Busi-
ness Processes

Caetano et al. showed that applying the DEMO PSI-theory to improve business process
modeling deserves attention [16]. The authors analyzed existing BPMN models and iden-
tified missing DEMO transaction pattern steps in these models. It had been determined,
or each BPMN activity from the analyzed models, whether this activity is an ontological,
infological, or datalogical part of a transaction. It was also determined which part of the
transaction pattern each activity represents. Next, the authors created an ATD and a PSD
diagram of DEMO, and using a PSD diagram, they enriched existing BPMN models by
adding missing parts of the transaction pattern into the BPMN models.

In the second part, the authors present results of applying this method to analysis of
existing BPMN models of key processes of a big organization (more than 500 activities
and 60 actors). The authors identified numerous missing act types in the original BPMN
models. The results from this analysis were: (i) 25% of production C-acts missing in the
original BPMN model, (ii) 25% of request C-acts missing in the original BPMN model,
(iii) 50% of promise C-acts missing in the original BPMN model, (iv) 25% of state C-acts
missing in the original BPMN model, (v) 40% of accept C-acts missing in the original
BPMN model.

Results reported by Pergl and Náplava for an academic institution [113] state reduction
of DEMO essential models complexity to 21% of the original BPMN size and several model
quality improvements similar to [16].

5.2.2 Enhancing the Formal Foundations of BPMN by EET

These efforts aim to express the EE ontological constructs precisely using the standard
BPMN notation. Two approaches have been followed. The first is to enhance the BPMN
models by adding the missing C-(F)acts and other constructs from the PSI-theory. Cae-
tano [16] is an example of this method.

The second way is generating BPMN models from the DEMO models. This method was
discussed in the diploma theses [72], from which the approach in this paper was designed.

64

5.3. Analysis of DEMO and BPMN

5.3 Analysis of DEMO and BPMN

Here follow observations of comparing various aspects of DEMO with respect to BPMN,
from which follows the conversion principles and decisions made. These were formulated
based on the DEMO theory axioms and models definitions related to the BPMN elements
definitions, as introduced in section 5.1.

◦ Similar parts of methods that can be simply transformed from the DEMO to BPMN:

– The Process Structure Diagram (PSD) of DEMO contains process information,
which can be related to a BPMN process diagram.

– The Action Model (AM) of DEMO expresses complex decision rules for Coor-
dination acts (C-acts)2. The contained information can be used for branching
in BPMN.

– BPMN does not distinguish the three key human abilities (forma, informa, per-
forma), however applying this distinction can be introduced straightforwardly,
as shown for example in [113]. As this concern is orthogonal to our effort, we
do not discuss the distinction axiom here.

– Related to the point above, the (atomic) actor roles in DEMO are executors of
exactly one transaction, while swimlanes may contain many different actions.

◦ Different parts of methods that require deep analysis before transformation from
DEMO to BPMN:

– The DEMO Transaction Axiom concept does not exist in BPMN. Only happy
flows and the most apparent unhappy flows are expressed in models.

– The Object Fact Diagram (OFD) being a factual model does not have an analogy
in BPMN.

– DEMO and BPMN employ different execution models. While BPMN is flow-
based, DEMO operates based on a so-called CRISP model [29], which may be
characterized as an event-driven, or more precisely, an agenda-driven execution
model.

– The Construction Model (CM) of DEMO is an abstraction that does not specify
process, it provides just structural information.

5.4 Converting DEMO into BPMN

The goal is to convert the complete transaction axiom into BPMN, including all revoke
types. Sections 5.4.1 to 5.4.4 describe all the necessary pieces and section 5.4.7 presents
the result. We used BPMN 2.0 and leveraged the newly available Data Store construct.

2Apart from containing all the information from the other models.

65

5. Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method

5.4.1 C-acts

C-acts are essentially activities that take place in order specified by the transaction pattern.
BPMN has the concept of activities and the order is specified by sequence flows. As C-acts
are atomic, the appropriate activity type is task.

5.4.2 C-facts

As mentioned in section 5.1, a C-fact becomes existent in the world as a consequence of
performing a C-act. Heller in his thesis [72] lists three possibilities of expressing C-facts
using BPMN:

1. Not explicitly expressed – the existence of the fact-C is not explicitly expressed. It
is indirectly realised by a sequence flow. This option is sufficient if revokes are not
considered (see further).

2. Using a BPMN message – the actor, who performs the given C-act sends a BPMN
message with the C-fact to the other actor (transaction participant).

3. Using a BPMN signal – the actor, who performs the given C-act emits a BPMN signal
on creating a C-fact. This has the benefit that apart from the other actor, any other
actor may subscribe to the signal reception, which is aligned with the PSI-theory,
where facts are present in the world, not only in the transaction, thus available also
outside the transaction (modeled by interstriction links).

However, under closer consideration, none of the above solutions are entirely sufficient
for the correct handling of revokes. For each revoke act, the PSI-theory specifies a certain
state in which the transaction must be. The state is formulated like “X or further”:
request(ed) or further, promise(d) or further, and so on. This is why we decided on
another representation: the BPMN 2.0 data store, into which the state of the transaction
is stored. This datastore is connected to every C-act activity by an association.

5.4.3 P-(F)acts

It is not necessary to store information about them creating a P-(f)act into the data store
because they can be derived from C-(f)acts: According to the PSI-theory, the P-fact starts
to exist based on acceptance of the product, so P-(f)acts can be expressed by an activity
only. If need be (optimization of an implementation), they can be stored similarly to the
C-(f)acts described above.

5.4.4 Actors

Swimlanes in BPMN are isomorphic to actors in DEMO [165]. BPMN lacks a higher
abstraction level of actor roles, being the logical sum of responsibility, authority, and
competence necessary to carry out the product [29]. There are generally two approaches:

66

5.4. Converting DEMO into BPMN

(i) abstracting the swimlanes to actor roles (like Decider or Concluder), (ii) remaining on
the BPMN’s low level of abstraction, and using swimlanes to represent actors – company
functional roles – like CEO or specific people like Jane.

Another possibility for representing actor roles is using BPMN pools, where each pool
represents one actor. The resulting BPMN models will be very similar to models using
swimlanes. However, we have not chosen this representation because: (i) The correspon-
dence of actor roles and transactions is not explicit, (ii) sequence flow cannot be used
between pools, which would result in using messages, further complicating the diagrams.

5.4.5 The Composition Axiom

A composition of transactions may be dealt with in two ways: (i) to model all the trans-
actions in one diagram (ii), to the separate diagram for every transaction. Generally,
both approaches are valid, but (ii) may lead to huge diagrams, as can be seen in fig. 5.8
and fig. 5.9. As (ii) guarantees the limit of the diagram size, we preferred it. On the other
hand, it may make understanding the big picture harder.

We propose the following 2-part expression of the composite axiom:

1. Launching a child transaction in a specific place in the parent transaction. The
child transaction must be started just after creating a specific C-fact. A message-
throwing event may be used in case of initiating a single child transaction. In the
case of firing multiple child transactions, signals are appropriate, similar to the C-acts
above. Moreover, it is needed to ensure multiplicity. In case it is more significant than
one, we need to initiate several child transaction instances. This is achieved either
by using a cycle for creating child transactions or a loop activity. Modeling by cycle
(fig. 5.2) means that the model contains an activity counting how many times the
activity was run. After this activity, there is a gateway. If the counter has not reached
the number of child transaction instances to spawn, the process goes into a message
throwing event to start a child transaction instance, and then the process returns
to the counting activity. This happens 0..N times, as required. When multiplicity
is modeled by a loop activity (fig. 5.3), the activity is in the form of a subprocess
(with parallel loop), which sends a signal3 that starts a child transaction. In the
examples described below, the first (counter) variant is used because the model is
more explicit. At the same time, for models with a multitude of child transactions,
the more concise loop variant is recommended. Also, from the execution point, the
implementation variant may be driven by the vendor, as a correlation of instances
must be ensured (more discussed in section 5.4.8).

2. Blocking execution of the parent process until the child process has not reached
the given state (creating a C-fact being waited on). This blocking can be realized
by a BPMN catching event condition in the parent process, waiting for a specific
condition before the given C-act. Here, a conditional event must be used instead of a

3We cannot use a message send in this situation, because the encapsulation would be violated.

67

5. Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method

Figure 5.2: Launching child transactions by using counter

Figure 5.3: Launching child transactions by using loop

signal event, as we do not wait just for a signal but for a specific instance in the case
of multiple child transaction instances. This situation is modeled in fig. 5.4. Again,
specific vendor correlation techniques may apply (section 5.4.8).

Figure 5.4: Waiting for a child transaction

5.4.6 Revokes

Revokes are the most challenging part of the conversion. Let us present the challenges and
how we dealt with them:

◦ A revoke must be applied on a specific instance of the transaction; in a certain time,
there can be several parallel transaction instances running. This must be ensured by
the BPMN system (section 5.4.8).

◦ A revoke can be fired independently on the running main process. It can be modeled
straightforward, as BPMN allows several independent start events.

◦ A revoke can be fired only if the transaction is in an allowed state. This we ensure
by an activity checking the state of the transaction, which was previously stored into
a data store.

68

5.4. Converting DEMO into BPMN

◦ When revoking a C-fact, after which a child transaction has been started, the child
transaction must be completely revoked. This is done by calling a compensation
throwing event by the revoke, followed by performing the compensation activity by
the corresponding parent transaction.

◦ In the process flow, there can happen a situation that a P-fact was already created
(the P-act has been finished), while a revoke moves the process to a state preceding
performing the P-act. In this case, it is necessary to “throw away” the P-fact. We
solve this using a BPMN compensation element and the respective compensation
activity, similarly to the previous point.

◦ A revoke must be initiated by the actor who performed the respective C-act to be
revoked. This is ensured by using the same identifier for the swimlane of the actor
role initiating the revoke as for the actor role of the respective transaction.

A revoke works in the following steps according to the transaction pattern. First, the
revoking actor asks the other actor to grant the revoke. The other actor allows or refuses.
If the revoke is allowed, the main process returns to the appropriate state. We model this
by using simple BPMN subprocess with a set of appropriate activities (fig. 5.6).

5.4.7 The Resulting BPMN Model

The complete transaction pattern described by the BPMN notation illustrates fig. 5.54.
Although it describes only one transaction, it is very complex and complicated. As it is
presented in section 5.5 and discussed in section 5.6, models containing more than one
transaction are not easily readable by usual readers, and it is recommended to use them
for the process execution in BPM systems.

5.4.8 The Execution

Apart from documentation purposes, BPMN models can be simulated and/or executed.
While designing the conversion, we tried to make the resulting BPMN model precisely
following the required behavior. Unfortunately, the BPMN standard does not specify
the execution implementation details. Each company developing a BPM system (system
for modeling, simulation, and execution of processes), as Intalio, BizAgi, or IBM, has
their specific implementation, which requires various additional modeling and programming
steps necessary to make the model executable. At the same time, some of the BPMN
constructs may not be supported, or they are implemented differently. All these aspects
must be taken into consideration for turning the resulting BPMN models into an executable
form. Generally, here are the things that must be implemented:

4This and the following models may not be legible in the printed version. We recommend obtaining the
electronic (zoomable) version. The source models may be downloaded from https://ccmi.fit.cvut.cz/
methodologies/bpmn/

69

https://ccmi.fit.cvut.cz/methodologies/bpmn/
https://ccmi.fit.cvut.cz/methodologies/bpmn/

5. Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method

Figure 5.5: Transaction in BPMN, happy flow is marked by green colour

◦ Agenda handling. The possibility to start a process and provide a “task inbox” of
the required reactions on the originating C-facts. This requires developing some sort
of user interface (UI).

◦ Allowing the participants to make their choices. Again, some sort of UI solves this.
Also, some choices may be determined by complex facts evaluation specified in the
Action Model. There are two possible approaches:

1. Leaving the evaluation to users, which means the users have the rules in their
head or consult the Action Model or any other codification of the rules.

2. Programming the BPM system to (help) evaluate the rules. The extent to which
the automation may happen depends on the BPM system’s possibilities and on
the context (the availability of the necessary data in the company’s technological
systems and their accessibility).

70

5.5. Example – Case Voley

Figure 5.6: Revokes in BPMN

◦ Signals handling.

◦ Implementation of reading and writing data to data stores.

◦ Instance matching. Specific instances of transactions must be matched in some sit-
uations as child transactions (section 5.4.5) and revokes (section 5.4.6). Intalio and
Oracle call this concept a “correlation”.

5.5 Example – Case Voley

As an example for the demonstration of our method, the traditional Case Voley exam-
ple [33] was selected because of its simplicity, yet including the substantial constructs. In
fig. 5.7 there is the OCD diagram of this example.

Figure 5.7: OCD of Case Voley [33]

71

5. Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method

The process has two transactions and three actors. The transformed BPMN model
converted by the described method is in fig. 5.8 and fig. 5.9 . Subprocesses depicted in
fig. 5.6 are not shown here, as they are generally the same.

Figure 5.8: Case Voley converted into BPMN – part 1

5.6 Discussion and Conclusions

The limitation of typical BPMN models from the view of the PSI theory lies in their limited
expression of reactions to unexpected situations. Many situations like decline, reject, and
especially revokes are not covered in the models, which causes operation troubles. The
presented conversion method offers a remedy to this by bringing the complete transaction
pattern into BPMN, which means including all revokes. Moreover, compared to the pre-
vious efforts, our method deals with the spawning of multiple child transaction instances

72

5.6. Discussion and Conclusions

Figure 5.9: Case Voley converted into BPMN – part 2

(initiation links with multiplicity ̸= 1) and waiting for them in the parent transaction
(waiting links with multiplicity ̸= 1). Also, the resulting models are executable.

As for the DEMO models covered, the described conversion method covers the Con-
struction Model plus the Process Model. Based on a concrete BPM system implementa-
tion, decision rules contained in the Action Model can be incorporated in the respective
activities, as described in section 5.4.8, which is also true for rules from the Fact Model.

The concept of interstriction has not been discussed. However, a keen reader has
probably realized that whenever an actor in its activity needs specific information from
another transaction, it is simply modeled by accessing the respective transaction data store.

The example shows that in spite of the simplicity of the DEMO model involved, the
resulting BPMN model is complex. The reason is mostly the complete transaction pattern,
which covers all the possible situations according to the PSI theory. The question arises
about human readability. There are several points to this topic:

73

5. Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method

1. In practice, the model may be made smaller by leaving out the parts which are not
applicable (which means they (almost) never happen). These are typically the revoke
patterns.

2. Yet, for complex models, the resulting size may remain still unmanageable. In this
case, it would be advisable to cut the model into smaller pieces using some sort of
decomposition and/or link BPMN elements. The concrete way to do this may be
explored in future research.

3. It is questionable whether human readability is required. If one wants human-
readable diagrams according to the PSI theory, the DEMO diagrams are the solution,
as they have been tailored to it. It may be the case that learning and applying them
comes at a lower cost than forcing the diagrams into a BPMN notation, just because
“BPMN is the standard”.

Our stance is that the most significant possibilities of our method lie in machine read-
ability, which means generating BPMN models that can be fed into a BPMN execution
system to implement an automated workflow that is able to react to every possible situa-
tion specified by the complete transaction pattern, not just a typical BPMN “happy path
with a bit of branching”.

Apart from converting the DEMO models, the conversion may also be applied for
analysis of existing BPMN models of business processes as described in section 5.2.1. The
way of working would be to transform the BPMN models into DEMO and then generate
the “supercharged” BPMN version by converting them back using our method.

As for future work, verification of bigger models from practice is necessary. As such
conversion will not be feasible by hand, an implementation of the conversion automation
will be required.

Acknowledgements This research has been funded by CTU SGS grant
No. SGS16/120/OHK3/1T/18. The authors wish to sincerely thank ForMetis BV and
especially Dr. Steven van Kervel for the kind support of this research.

5.7 Chapter Summary

In this chapter, we proposed a method to transform DEMO models into executable BPMN
models. The method was demonstrated in a Volley club example. The evaluation of the
related research question and DSR cycle is discussed in Chapter 9.

74

Chapter 6

An Experiment in the Procedural Law
Domain – 32 Case Studies

This chapter focuses on empirical case studies for the main centralized compliance DSR
cycles based on the research objective. Section 6.1 describes the experiment design. Sec-
tion 6.2 presents a representative case study for demonstration purposes, and Section 6.3
overviews all case studies. Then, Section 6.4 discusses the results. Finally, Section 6.5
summarizes the results.

6.1 Experiment Design

An experiment was designed to answer the research objective from Section 1.4 by applying
the method described in Section 6.1.1 to real-world process descriptions in the domain
of Czech procedural law. The research question for the experiment was formulated as:
“Can EE theories be used to increase the quality of business process requirements for
process-based information systems?” The legal domain was selected because legal texts are
inherently written in a detailed and minimally ambiguous manner. In addition, gathering
sufficient software specification requirement texts for research is challenging, as they are
subject to company privacy. The case studies may be considered a showcase of the semantic
challenges of the full digitalization of procedural law.

The experiment comprised the following goals:

1. To demonstrate the feasibility of applying DEMO methodology to produce formal
models with C4E qualities in the domain of procedural law based on the legal de-
scriptions.

2. To study the potential of this approach in increasing the quality of the software
requirements; to observe and evaluate how the method guides a modeler towards
reducing the semantic ambiguity of the domain description to answer the research
question.

75

6. An Experiment in the Procedural Law Domain – 32 Case Studies

The case studies were modeled based on publicly available legal texts, without consult-
ing legal domain experts to assess the clarity and ambiguity of the source documents. The
study was conducted as a part of a master-level business process modeling course at the
Czech Technical University in Prague over three years, where students modeled parts of
the legal procedures.

After completing the DEMO models, the students designed executable BPMN models
as described in Section 6.1.1 and executed them in a BPM engine to create a prototype of
the information system supporting procedural law.

In the first year, the first proof-of-concept example was created based on a dispute
settlement procedure from the Czech Arbitration Court [96]. This was accomplished in
close cooperation with the lecturers, and a reference example of the application of the
method was completed. In the second year, a template was created for the students based
on it, and they worked in teams of two, according to the steps described below [144]. In
the third year, the students worked individually and had access to the previous year’s
cases [143]. The experiment was conducted according to the following steps:

1. Domain descriptions from the Czech procedural law that contain complex process
description were identified and prepared. The length of the domain description was
approximately 2 000 words on average.

2. Students were trained in DEMO modeling for approximately 40 h.

3. Students worked on the case studies according to a description of the method and
reference Arbitration Court case study. They were given a template based on the
proposed method.

4. Students presented progress of their work to their peers and lecturers and received
feedback to improve the models.

5. After a final submission, the case studies were evaluated by lecturers and only the
correct case studies were included in the final dataset; 23 of 32 works (68.75%) were
included in the published dataset.

In total, the case studies contained 115 276 words of legal text. The case studies selected
for the final dataset contained 85 421 words. Measuring the exact duration for individual
case studies was beyond the scope of this experiment. Student cases were limited by the
scope of the class, which was set to 70 h. The Arbitration Court reference case study
required approximately 200 h. Therefore, all case studies required approximately 2 440 h
to model, and the case studies selected for the final dataset required 1 740 h.

The key limitations of the case study are as follows.

◦ Owing to the exclusion of some case studies caused by a low quality of work accom-
plished by some students, the remaining case studies cover only some parts of the
legal text. This does not affect the experiment, as the text contains many different

76

6.1. Experiment Design

processes, and the exclusion of some processes does not affect the evaluation related
to the research question.

◦ The case studies were not elaborated upon using multiple approaches for comparison.
First, the study’s human resources were limited, and second, no other suitable, sim-
ilarly rigorous approach for identifying missing information in process descriptions
has been identified (see Section 6.4.5).

◦ The proof-of-concept implementations in Camunda BPM system were created only
for a subset of the DEMO model process specification. However, as this study is
unconcerned with the technical implementation, this also does not affect the results.

◦ Except the reference case study, all studies were performed on a domain description
in the Czech language; thus, the reproducibility of the experiment is limited by the
language.

◦ Only three of four DEMO aspect models were elaborated. The AM was excluded
because it is too detailed and time consuming for the limited human resources of this
study.

6.1.1 Method Overview

Figure 6.1 presents a graphical overview of the proposed method.

S0 - Is the domain
process-intensive?

Use other modeling
techniques

Yes

S1 - Requirements Specification

S2 - Technical implementation

S3 - System execution and
monitoring

Feedback and
Improvement

Cycle

No

Start

Figure 6.1: Conceptual overview of the proposed method

S0 – Is the domain process-intensive? – This step involves evaluating the domain
to determine whether it contains complex processes to be implemented. The proposed
method applies only to business processes involving human cooperation and co-production

77

6. An Experiment in the Procedural Law Domain – 32 Case Studies

because it is based on Habermas’s sociological theory of communicative acts [63]. If the
target information system is not expected to be controlled by human actors, using modeling
languages described in Section 2.2.1 and Section 2.2.2 is preferable. The method works
with any complexity and size of processes; however, the greatest benefits are expected for
large process descriptions typically found in large companies. This method is suitable for
the case management process mentioned in Section 2.2.2.

S1 – Requirements Specification – This step involves applying the DEMO OER method
to a process from a target domain and creating DEMO aspect models. This is expected
to guide modelers to produce better-quality process models in software requirements for a
target software system. This section provides a detailed description of this, starting from
Section 2.3.3. Section 6.1.1 then discusses the applications instructions for 23 case studies
to evaluate the benefits of this approach.

S2 – Technical Implementation – This step involves transforming the process models
into a conceptual language used by the selected BPM system or a low-code platform. Pro-
viding detailed guidance is outside the scope of this study; the research question is limited
to the quality of process descriptions in software requirements. However, the 23 case studies
presented include proof-of-concept implementations in the BPM system Camunda [17].

Because technical requirements for target IT systems significantly vary, universal steps
for implementing DEMO-based software requirements are difficult to formulate in general.
However, a formal execution language called DEMOMachine [A.3] has been established and
can be used as a starting point to guide the implementation of any system. Furthermore,
[A.2] presents a blueprint for transforming DEMO into BPMN. It presents a method for
a complete transaction pattern transformation; however, in practice, BPMN models must
typically be simplified to avoid size explosion, which is difficult to automate. For low-code
platforms, [91] provides a description of how to translate DEMO models into a Mendix
platform.

Steps S3 – Monitoring and Execution and Feedback and Improvement Cycle are outside
the scope of this study and are addressed according to the best practices for BPM, such
as [166].

Next, we introduce the basic concepts of PSI theory (thinking approach) to enable us
to describe how they are used in the DEMO method (working approach).

6.2 Reference Example – Arbitration Court

In this section, we present a reference example that is the basis for conducting the case
studies. To understand the DEMO models presented in this section, having a solid un-
derstanding of the method (Section 6.1.1) is advisable, particularly Section 2.3.5, which
provides guidance on reading DEMO CMs.

Arbitral proceedings are alternatives to classical court proceedings. They are decided
by one or more arbitrators, who are experts on the topic of the dispute. The proceedings
lead to the rendering of the arbitral award, a legally binding final decision on the dispute.

78

6.2. Reference Example – Arbitration Court

The Arbitration Rules of the International Arbitration Court of the Czech Commodity
Exchange [127] have two official language versions, Czech and English. The rules define
the procedure of conducting the arbitral proceedings and all actors involved. This process
is governed by Act No. 216/1994 Coll., on arbitral proceedings and enforcement of arbitral
awards. A complete case study is available from GitHub [96].

6.2.0.1 Organization Essence Revealing

The first step of the OER method (as explained in Section 2.3.3) involves going through
the text, identifying the products, highlighting the communication acts, and determining
whether the acts are ontological, infological, or datalogical. In this case, only ontological
transactions were modeled. The legal documents used had 41 pages of text; therefore, only
a brief example of this process is provided.

The following paragraph is Article 7, paragraph 3 of the rules; it is part of the process of
challenging an arbitrator, as discussed in Article 7. Ontological transactions are underlined
with a solid line, and infological transactions are indicated by a dashed line. The subjects
participating in the transactions are marked with dotted lines.

If thechallengedarbitrator, having been informed of the challenge[request,ontological],
considers the challenge groundless and does not resign from his or her of-
fice[decline,ontological],thePresidium.. .of.theArbitrationCourt is authorized to de-
cide on the challenge[state,ontological].The.Presidium.. .of.the.ArbitrationCourt
assesses the admissibility of the challenge in terms of paragraphs (1) and
(2), and if the Presidium concludes that the challenge was made properly
and in time[decline,ontological], thePresidium decides on the merits of the chal-
lenge[state,ontological]. ThePresidium.. .of. . . .the.Arbitration.Court provides the challenged
arbitrator, the remaining members of the arbitral tribunal and the other party
or parties with an opportunity to comment on the challenge[infological] before
any decision is made thereon. Any and all of the above-mentioned statements
will be communicated[infological] to . . .allparties.and..arbitrators.The.Presidium .. .of

. . . .theArbitration.Court may decide that the parties shall not have access to a
statement and/or a part thereof[infological] provided by any arbitrator if it con-
tains inside information regarding the actions of thearbitraltribunal relating
to the proceedings and the factual and legal assessment of the case.

The second step of the OER method identifies transactions, products, actor roles, and
organizational roles. For each ontological communication act (underlined text) from the
previous step, the modeler identifies its product and places it in the extended transac-
tion result table (Table 6.1). The transaction name was derived from the product name.
Therefore, if two communication acts share the same product, they belong to the same
transaction.

Organizational roles (dotted text) are typically mentioned together with communication
acts. However, they are not directly associated with transactions because different acts

79

6. An Experiment in the Procedural Law Domain – 32 Case Studies

Table 6.1: One transaction from the extended transaction result table [96]

Transaction Challenging an Arbitrator (T13.1)
Product Challenge of an Arbitrator is Resolved (P13.1)
Initiator Arbitrator Complaint Completer (A13) (Identified in

Step 3)
Executor Challenge Arbitrator Completer (A13.1)
Request Filing Challenge of Arbitrator (§7/2)
Promise Not Specified
Decline Not Admitting the Challenge (§7/2)
Declare Challenge Resolved
Reject Not Specified
Accept Not Specified
Revoke Request Not Specified
Revoke Promise Not Specified
Revoke Declare Not Specified
Revoke Accept Not Specified

of a transaction can be performed by different organizational roles. The executor of a
transaction is derived from the transaction product. The initiator is either derived from
the product or is an executor of the parent transaction identified in step 3. The mapping
between the organization and DEMO actor roles is performed in a subject actor table that
is excluded in this section for simplicity.

The second step of the OER method must often be performed multiple times because
some transactions are discovered to share the same product and can be merged. In this
case study, the authors began with 120 transactions and ended with 37.

The final step of the OER method identifies that almost all transactions belong to
the same dispute-settlement process. The parent transaction is arbitral proceedings (T1),
and Figure 6.2 shows the transaction tree it forms. Further nesting is indicated by the
transaction identifier with the pattern [parent.child]. The second process tree consists
of only one transaction, T14, which reviews the arbitral award. It was modeled as a
separate process because it occurs after the arbitral proceedings are performed.

6.2.0.2 Modeling Organizational Essence

The construction model was created for all 37 identified transactions and divided into
four parts for better comprehensibility. Figure 6.2 provides the main overview of the
process, which begins with T1 (arbitral proceedings) and comprises T2-T13. CA5, CA6,
and CA13 were modeled as composite actors and exhibited the encapsulation of further
process nesting. Figure 6.3 illustrates this, which is an expanded composite actor CA5
from a high-level construction model. The complete construction model is available from
GitHub [96].

80

6.3. Case Studies Overview

For convenience, simplified PM information was included in the CM in the form of
cardinalities and conditional links (dashed lines). The cardinalities indicate the number of
child transactions that can be created by a transaction type. When the cardinality begins
at zero, the transaction is optional. Conditional links mean that the destination executor’s
transaction cannot be executed before the source transaction is executed and accepted.
For example, T3 cannot begin before T2 is accepted. Note that all transaction instances
can run in parallel and are synchronized by conditional links. This means that T10 can
progress while T3 waits for the completion of T02.

6.3 Case Studies Overview

All the case studies are summarized in Table 6.2 and published on GitHub [96, 144, 143].

6.4 Evaluation and Discussion

In this section, the results of the experiment presented in the previous section are evalu-
ated with respect to the research question and experimental goals presented in Section 6.4.1
and Section 6.4.2. The implications of this research are suggested in Section 6.4.3. Sec-
tion 6.4.4 discusses the limitations of the proposed approach. Section 6.4.5 compares similar
approaches with ours. Finally, Section 6.4.6 proposes possible future research topics.

6.4.1 Goal 1 – Feasibility

Goal 1 was formulated in Section 6.1 as “To demonstrate the feasibility of applying DEMO
methodology to produce formal models with C4E qualities in the domain of procedural law
based on the legal descriptions.” Of the 32 case studies in the experiment, 23 were modelled
successfully, yielding a 68.75% success rate. After a closer examination of the remaining
cases, the failure was concluded to result from the students’ lack of competence, and they
could have been modelled successfully by a competent modeler. The reason for the failure to
deliver a quality model may be the short training period (40 h) or the students’ insufficient
commitment to the task.

Therefore, we can conclude that all case studies in the experiment can be modelled
using the proposed method and that applying the DEMO methodology to produce formal
models with C4E qualities in the domain of procedural law based on legal descriptions
is possible. The C4E qualities are guaranteed by the applied DEMO methodology, as
explained in Section 2.3.4.

After capturing the process-based domain requirements, a proof-of-concept implemen-
tation was conducted in the BPM system Camunda. This demonstrated the feasibility of
using our approach together with state-of-the-art BPM systems and low-code platforms,
which are typically based on BPMN or its subset. As the details of this are beyond the
scope of this study, we do not elaborate on it further.

81

6. An Experiment in the Procedural Law Domain – 32 Case Studies

CA6
Hearings

Completer

CA5
Hearings

Preparation
Completer

CA1
Claimant CA1

Claimant
Arbitral Proceedings

T1

A10
Settlement
Completer

CA4
Arbitrator
Appointer

A1
Arbitral

Proceedings
Completer

Reviewing the
Arbitral Award

T14

A11
Procedural
Challenge
Completer

A12
Measures
Adopter

CA13
Arbitrator
Complaint
Completer

CA14
Review
Seeker

A14
Arbitral
Award

Reviewer

A7
Decision

Scrutiniser

A8
Supplemen-

tation
Completer

CA3
Respondent

1..n

Hearings
Preparation

T5

Conducting a
Hearing

T6

Scrutiny of Final
Decision

T7

Supplementation of
Arbitral Award

T8

Accepting
Settlement

T10

0..n

Challenging
Procedural Decision

T11

0..n

Adopting Measures

T12

0..n

Arbitrator
Complaint

T13

Appointing an
Arbitrator

T4

Payment of
Arbitration Fee

T2

Answering the
Statement of Claim

T3

Arbitration Court

Figure 6.2: High-level construction model

82

6.4. Evaluation and Discussion

Hearings Preparation

Hearings
Preparation

T5

A5
Hearings

Preparation
Completer

A1
Arbitral

Proceedings
Completer

0..n

CA5.1
Counter-
claimant

0..n

Filling
Counterclaim

T5.1

Reimbursement of
Costs

T5.2
0..n

Consolidation of
Proceedings

T5.3

0..n

Objecting to
Jurisdiction

T5.4

0..n

Resolving Language
Compatibility Issues

T5.5

A5.3
Consolidation

Compelter

A5.4
Jurisdiction

Decider

A5.5
Language

Compatibility
Resolver

Figure 6.3: Construction model of the hearings preparation

6.4.2 Goal 2 – Increasing the Quality of Software Requirements

Goal 2 was formulated in Section 6.1 as “To study the potential of this approach in in-
creasing the quality of the software requirements; to observe and evaluate how the method
guides a modeler towards reducing the semantic ambiguity of the domain description to
answer the research question”.

Based on the results, we can formulate several observations in which the presented
method can lead to a quality increase in:

1. identifying missing coordination acts;

2. identifying missing actor roles; and

3. managing complexity.

83

6. An Experiment in the Procedural Law Domain – 32 Case Studies

Table 6.2: Case studies overview and discovered acts (N=23)
(AC=Arbitration Court, CCP = Code of Civil Procedure, CP = Criminal Procedure, TR
= Tax Regulations)

Case Study T
ra
n
sa
ct
io
n
s

R
eq
u
es
t

P
ro
m
is
e

D
ec
li
n
e

D
ec
la
re

R
ej
ec
t

A
cc
ep
t

R
ev
ok
e
R
eq
u
es
t

R
ev
ok
e
P
ro
m
is
e

R
ev
ok
e
D
ec
la
re

R
ev
ok
e
A
cc
ep
t

AC 37 32 3 10 37 1 0 3 1 0 1
CCP 3.4 17 14 0 14 15 0 0 3 0 0 0
CCP 6.1 10 9 1 2 0 1 0 4 0 0 0
CCP 4.2+4.3 14 4 2 5 8 5 3 1 0 1 1
CCP 4.1 16 2 0 1 15 1 0 1 0 0 0
CCP 6.5.2 29 16 16 4 3 0 0 1 0 2 0
CCP 3.2+3.3 28 21 10 1 10 3 1 0 6 0 0
CCP 3.1.3 23 22 2 2 3 1 5 1 0 0 0
CCP 3.1.1 9 7 6 6 2 0 0 0 1 0 2
CP 3.18+3.19 7 3 2 2 2 0 0 2 0 0 0
CCP 5+6.6 10 1 1 3 8 0 2 1 0 0 0
CCP 6.5.2 20 18 14 10 13 4 11 2 5 2 0
CCP 2.8+9+10 14 13 3 6 11 1 2 1 3 0 0
TR 2.6a 16 8 4 5 12 4 5 2 0 1 1
TR 2.6b 11 7 1 3 7 3 3 1 0 1 0
TR 3.1+2+3+4 12 8 5 1 8 1 0 3 1 5 2
TR 3.5a 11 11 10 5 7 5 1 1 1 0 0
TR 3.5b 21 9 3 1 3 3 2 4 2 3 0
CP 2.9 27 17 8 3 11 2 6 5 2 0 0
CP 2.10a 11 4 3 4 9 5 2 2 2 3 0
CP 2.10b 14 14 5 2 2 1 1 1 0 0 0
CP 3.13 11 9 1 4 7 2 1 1 1 0 0
CP 3.13+14 23 20 11 3 19 8 4 0 2 5 1
Total 354 237 108 87 175 50 49 37 26 23 7

6.4.2.1 Identification of Missing Coordination Acts

DEMO specifically defines each possible step of a transaction using the complete trans-
action pattern (Figure 2.4) based on Habermas’s theory of communicative acts [63]. Its
completeness has been proven empirically; 20 years of applying DEMO in practice have not
discovered fundamental missing pieces. Although suggestions for their extension exist [58],
they have not been determined to be crucial by the EE community.

In the presented case studies, all transactions had missing definitions of several coordi-

84

6.4. Evaluation and Discussion

nation acts. The transactions were typically specified in one sentence describing the actors
and transaction results. Table 6.3 presents the missing process steps aggregated from all
23 case studies, and Figure 6.4 shows a plot based on this table. In the experiment, 80.10%
of the information related to the coordination acts was missing.

Table 6.3: Missing coordination acts in all case studies (N=23)

Specified Not Specified Missing Information
Standard Transaction Pattern

Request 237 117 30,05%
Promise 108 246 69,49%
Decline 87 267 75,42%
Declare 175 179 50,56%
Reject 50 304 85,88%
Accept 49 305 86,16%
Total 706 1418 66,76%

Revokes
Revoke Request 37 317 89,55%
Revoke Promise 26 328 92,66%
Revoke Declare 23 331 93,50%
Revoke Accept 7 347 98,02%
Total 93 1323 93,43%

Complete Transaction Pattern
Total 799 2741 80,10%

The least numbers of missing steps were for request and declare. This is expected, as
they represent the beginning of the process and delivery of the resulting product; they
are not typically forgotten, although surprisingly high amount of vagueness remains even
in these steps (30.05% and 50.56%). The second-least numbers of missing steps were for
promise and decline, that is, confirming or refusing the actor’s request; the accept and
reject coordination steps enacted upon the delivered transaction product were missing in
86% cases.

The largest number of missing steps were for revoke acts, which represent withdrawing
previous commitments of the actors; these were not present in 93.43%. This is understand-
able, as “going back” is a relatively drastic measure that may be forbidden, particularly in
legal processes. However, we argue that the specification should explicitly mention these;
otherwise, whether revokes are completely forbidden is unclear, or even whether situations
in which they can be handled exist (although rare).

However, even when disregarding revokes, that is, following only the simplified Stan-
dard Transaction Pattern, 66.76% of information regarding coordination acts was missing,
as shown in Table 6.4. Tacit coordination acts (not explicitly mentioned in the text) are
undesirable and represent the missing information. In such cases, these steps are generally
assumed to be performed without being expressed directly. Such a situation is exceed-

85

6. An Experiment in the Procedural Law Domain – 32 Case Studies

R
eq
u
es
t

P
ro
m
is
e

D
ec
li
n
e

D
ec
la
re

R
ej
ec
t

A
cc
ep
t

R
ev
ok
e
R
eq
u
es
t

R
ev
ok
e
P
ro
m
is
e

R
ev
ok
e
D
ec
la
re

R
ev
ok
e
A
cc
ep
t

0%

20%

40%

60%

80%

100%

30%

69%

75%

51%

86% 86%
90%

93% 94%
98%

M
is
si
n
g
In
fo
rm

at
io
n

Figure 6.4: Missing coordination acts in all case studies (N=23)

ingly common in everyday processes; however, it poses the risk of misunderstanding and,
therefore, should be avoided in software requirements. After further investigating some
of these situations in the case studies, the missing transaction steps were determined to
have a clear definition in the domain, but it was missing in the source material. Therefore,
we can conclude that the applied method has a high potential for discovering
missing coordination acts in the specification, which contributes to increasing
its quality.

6.4.2.2 Identification of Missing Actor Roles

Another benefit of applying the method to the domain specification is the discovery of
missing actor responsibilities. Domain descriptions are traditionally written in the passive
voice. Such formulations omit the subject of the statement. Determining the subject from
the context is sometimes possible by performing a specific action. In other cases, such

86

6.4. Evaluation and Discussion

Table 6.4: Missing coordination acts related to the transaction pattern style

Missing
definitions

Required
Definitions

Percentage of
missing infor-
mation

Standard Transaction Pat-
tern C-Acts

706 1418 66.76%

Revoke Steps 93 1323 93.43%
Complete Transaction Pat-
tern C-Acts

799 2741 80.10%

information cannot be determined from the text, and it must be discovered by talking to
domain experts or people conducting the processes in the organization. In the Arbitration
Court case, of the 38 actor roles participating in the process, six actor roles were subject to
this problem. This means that six transactions missed clear requirements with respect to
who should perform them. This problem is also been encountered in other procedural law
cases. However, as we did not design an experiment to measure these a priori, we are to
provide quantified information here and present it as a general observation contributing to
our conclusion. Applying the OER method as described in Section 6.1.1 leads the modeler
to uncover cases of missing actor responsibilities and allows the specification of user roles
for a target software system, thereby increasing the quality of the software requirements.

The second observation was that some roles are too generic, and which role within the
organization should fulfill it is unclear. As explained in Section 2.3.2.1, in the DEMO
models, the actor roles are formulated in a generic manner, as a “unit of authority” par-
ticipating in the transaction. Therefore, discovering specific actors in transactions was not
part of the experiment; however, based on the discussions with the modelers involved in the
experiment, the textual process descriptions were determined to be, in many cases, miss-
ing specifications of these actors or provided only generic specifications (“court”). Unclear
actor roles can cause problems for a party that wants to request a transaction and must
know to whom they should make the request. However, this is not considered a significant
problem, as this type of detailed information is typically provided by other documents
within an organization (procedure protocols).

6.4.2.3 Complexity Management

Essential high-level DEMO models may reduce the complexity and improve the readability
of the process while maintaining the desirable properties of formal languages, as explained
in Section 2.3.3.3. The reduction in complexity can be observed in the arbitration court
case study presented in the previous section. Figure 6.2 shows a high-level overview of a
40-page process. In other approaches, each transaction symbol is represented by up to 19
activities, because it encapsulates a complete transaction pattern (Figure 2.4). Moreover,
this encapsulation improves the possibility of modularizing the resulting models. Fig-
ure 6.3 demonstrates this, where Transaction 5 (Hearings Preparation) was modeled as

87

6. An Experiment in the Procedural Law Domain – 32 Case Studies

a subprocess of the parent Arbitral Proceedings from Figure 6.2. Moreover, without this
complexity management, in the case of the full scope of the Complete Transaction Pattern,
we would be dealing 703 elements, which would be difficult to modularize without clear
methodological guidance. For example, this is a typical problem in BPMN, because no
such self-sustained building blocks exist comparable to the notion of DEMO transactions,
only limited decomposition techniques of activities.

6.4.3 Experiment Conclusion

Based on the observations and their implications discussed, we can draw a conclusion re-
garding the research question formulated in Section 6.1: Can EE theories be used to
increase the quality of business process requirements for process-based informa-
tion systems? The answer suggested by our non-trivial experiment is: Yes, EE theories
and DEMO methodology can increase the quality of process-based software requirements
in the points presented, while considering the limitations discussed in Section 6.1 and the
following section.

6.4.4 Approach Limitations

While the experiment encourages the application of the proposed method in improving
the quality of business process requirements for process-based information systems, some
inherent limitations must be considered.

The DEMO methodology is inherently limited in its conceptualization possibilities. It
is only applicable for ontological clarification (the procedural aspects of the law), assigning
responsibilities, and modeling objects with their properties (the FM). It does not help with
any implementation-specific or technology-specific concerns, as they are beyond its scope.
However, complementing it with other methodologies and notations is possible, such as in
[24];, Cordeiro et al. proposed using UML in conjunction with DEMO. This may further
help in revealing the additional ambiguity and lack of clarity hidden in other parts of the
domain descriptions.

Next, applying the DEMO methodology requires nontrivial knowledge and practice,
which was demonstrated in our experiment. Performing this manually requires considerable
elaboration. This can be addressed by applying natural language processing (NLP), as
discussed in Section 6.4.6.

Although we abstract this work from most technical topics related to software imple-
mentation, we argue that higher-quality software requirements will positively impact the
quality of the resulting software system.

6.4.5 Comparison with Other Modeling Techniques

The main strength of DEMO is the method-driven discovery of missing information. To
the best of our knowledge, no other technique provides a method similar to that of OER;
however, methods with similar goals exist, such as the process ontology-based approach

88

6.4. Evaluation and Discussion

(POBA) introduced in [47]. It begins with the textual description of a process, generates a
semantic model of the text, performs an ontology-based validation, and proceeds towards
constructing a BPMN process model. The POBA approach was shown to be superior to
modeling a process using the BPMN with best practices only.

We can assume that applying POBA on our case studies would be infeasible, resulting
in overly complex and intellectually unmanageable models. This assumption is made by
considering the size of the ontological model presented in Fig. 5 of [47], which contains
28 elements for a one-paragraph-long process description. Extrapolating from one of the
presented cases, 40 pages of the arbitration court case would result in approximately 5 000
elements. Therefore, the resulting BPMN model would be difficult to comprehend, and
POBA does not offer any complexity-management method. Conversely, in our approach
based on DEMO, by applying the distinction axiom, composition axiom, and a transac-
tion pattern language that addresses the complexity, a significant complexity reduction is
achieved, as explained in Section 2.3.3.3, and can be observed in the arbitration court case
that can be presented in a one-page high-level model, as presented in Figure 6.2. In addi-
tion, the POBA method acts only on information available in a specification text without
predefined structural blocks with which to match; thus, it does not offer a clear method for
finding missing process steps, unlike DEMO. Thus, POBA presents an interesting ontolog-
ically based approach that may be interesting to explore further and attempt to determine
solutions to the presented deficiencies for real-life case studies to determine whether the
two approaches can be combined.

6.4.6 Further Research

The following areas are interesting for further research.

1. Further experiments – Particularly in other domains, conducting more experiments
may reveal sufficient textual descriptions available at a necessary level of detail. In
addition, quantifying the missing actor roles specification in the current experiment
would be desirable, as mentioned in Section 6.4.2.2.

2. Process version management – Software specification are typically followed by change
requests. Attempting to extend the approach with methods for managing evolvabil-
ity may be interesting, such as the Normalized Systems theory. An approach to
document management based on this theory is presented in [117].

3. Automation – Conducting the proposed method manually is elaborate. Although
ontological analysis cannot be fully automated inherently, the promising research
results in the area of NLP could help, such as [26, 47, 173]. Applying such an
approach to the first phase of the proposed OER method may reduce the need for
manual processing.

4. DEMO models execution – As mentioned, our experiment included the implementa-
tion of the process in Camunda using BPMN, and we explained that transformation

89

6. An Experiment in the Procedural Law Domain – 32 Case Studies

from DEMO into BPMN is challenging. It seems that an alternative way of imple-
mentation may exist: a direct DEMO model execution. This should be theoretically
possible, as DEMO model semantics are well-defined, and could therefore be used to
directly generate a workflow system [A.3]. The ontological foundations for software
runtime requirements have already been explored in [37]; however, a considerable
amount of work remains to be conducted to fill all implementation gaps.

6.5 Chapter Summary

Section 6.1 discussed the experiment designed in which the described method was applied
to 32 case studies from the procedural law domain. The experiment was conducted over
three years, required approximately 2 440 h, and analyzed 115 276 words of legal text.
To ensure the high quality of the published dataset, only 23 of the 32 studies (68.75%)
were included. One case study, an arbitration court dispute settlement procedure, was
summarized in Section 6.2 as a reference example. All 23 included case studies were
published on GitHub [96, 144, 143].

The case studies are evaluated in Section 6.4. We determined that applying the method
described in Section 6.1.1 is feasible for the creation of formal models with C4E quality
criteria (Section 2.3.4) in the procedural law domain. Furthermore, three observations
were made that could lead to an increased quality of process-based software requirements.
First, the case studies exhibited an average of 80.10 % missing coordination acts. Second,
missing actor roles were identified. This was quantified only in the arbitration court case,
where six of the 38 actor roles were missing. Third, the properties of high-level DEMO
models explained in Section 2.3.3.3 may reduce the complexity and improve the readability
of the process models.

Based on the evaluation of the case studies, applying EE theories and DEMO method-
ology was concluded to increase the quality of process-based software requirements. Sec-
tion 6.4.4 presented the limitations of the conclusion. The proposed method does not
help with any implementation- or technology-specific concerns, as they are out of scope.
Another limitation is that applying the method requires nontrivial knowledge of DEMO
methodology and practice. Based on these observations, Section 6.4.6 suggested future
research goals.

Compared with similar approaches (Section 6.4.5), our experiment provides a large
dataset published on this topic with 115 276 words. Other known methods showed only
smaller examples with up to 300 words. The proposed method provides a clear method
for determining missing process steps and actor roles, while offering strong guidelines for
complexity management. This was not observed in similar approaches.

90

Part V

Decentralized Compliance
Management

91

Chapter 7

Exploring a Role of Blockchain Smart
Contracts in Enterprise Engineering

Blockchain (BC) is a technology that introduces decentralized, replicated, autonomous
and secure databases. A smart contract (SC) is a transaction embedded into a blockchain
containing executable code and internal storage, offering immutable execution and record
keeping. Enterprise Engineering (EE) examines all aspects of organizations, from business
processes, informational and technical resources to organizational structure.

The blockchain is mainly known as the underlying technology of Bitcoin, but since its
introduction, there has been a wide variety of applications. Due to the solutions, it brings
to problems such as the double-spending and Byzantine Generals’ Problem, blockchain
has been called a breakthrough in the computer science [149]. Blockchain 2.0 enhances
the application of blockchain beyond cryptocurrencies and introduces concepts for flexible
and programmable transactions referred to as smart contracts. Smart contracts enable
the creation of more complex decentralized applications (Dapps) and even decentralized
autonomous organizations (DAOs) on the blockchain.

The automation of SC creation could be a great benefit, as it would bring a level
of security. As explained in the paper by Alex Norta [136] referencing a crowdfunding
project that was hacked because it contained security flaws, resulting in a $50 million
loss. “The incident shows it is not enough to merely equip the protocol layer on top of
a blockchain with a Turing-complete language such as Solidity to realize secure smart-
contract management. Instead, we propose in this keynote paper that it is crucial to
address a gap for secure smart-contract management pertaining to the currently ignored
application-layer development.” [136]

Therefore, the blockchain and smart contracts have been subject of interest concerning
the discipline of Enterprise Engineering (EE) and the usage of smart contracts in the
DEMO methodology, enhancing the creation of Dapps.

This chapter is organized as follows: In Section 7.1, compatibility of BC and EE is
evaluated. In Section 7.2, principles to devise smart contracts from DEMO models is
proposed. A proof-of-concept case is provided in Section 7.3. The related research is in

93

7. Exploring a Role of Blockchain Smart Contracts in Enterprise
Engineering

Section 7.4. In Section 7.5, the current results are summarized.

This chapter was published and presented at the EEWC 2018 conference in Luxem-
burg [A.4] and is part of the DSR cycle 2.1.

7.1 Evaluation of BC and EE Compatibility

The first important thing to realize is that Enterprise Engineering [31] is a scientific dis-
cipline with an underlying enterprise modeling methodology for transaction modeling and
analyzing and representing business processes (DEMO) [29]. On the other hand, blockchain
and smart contracts are a technology. However, from the nature of the problems they are
both addressing and even from the underlying terminology they use, it seems like they could
be used together. This is a more challenging question, and a thorough understanding of
both of them is required to bring about a correct way of using them together.

7.1.1 Smart Contract Misconceptions

7.1.1.1 Autonomous Smart Contracts

The idea that smart contracts can operate fully autonomously is partly true, but more in
the sense of immutably following a stated logic rather than performing actions indepen-
dently. Smart contracts are not programs that are active all the time, they are pieces of
code that are run only when invoked. In Ethereum, this is possible either by sending a
transaction or a message to the contract’s address. So, the idea often presented, that a
smart contract actively waits for some event (a certain date) and then executes itself is a
misconception [130].

7.1.1.2 External services

One of the prevalent attributes we find when researching smart contracts is that they
are designed to use external data. However, this is not that easy to achieve and it is
given by the very principle of determinism, which is an essential feature of a blockchain.
When running a smart contract, all nodes must come to the same result, therefore they
must operate on the same data. Using external data sources to gather data for a smart
contract’s execution is impossible, as we cannot be sure that the same data will be served
to all nodes. Secondly, smart contracts cannot be self-initiated.

All data used must be determined at the invocation of a smart contract. Data must
be sent to the contract as a parameter of the invoked function, or produced by so-called
oracles [12]. Oracles are an Ethereum design pattern, and they serve as “the interface
between contracts and the outside. Technically, they are just contracts, and as such their
state can be updated by sending them transactions. In practice, instead of querying an
external service, a contract queries an oracle; and when the external service needs to update
its data, it sends a suitable transaction to the oracle.” [11] This is a standard solution to

94

7.1. Evaluation of BC and EE Compatibility

the need for external data, but the fallback is that we again rely on a centralized external
service that we need to trust.

Furthermore, smart contracts should not initiate any action outside the blockchain.
For example, it might be an idea for a smart contract to call an external API when some
condition has been met. At this moment, there are at least 23880 [44] active nodes in the
Ethereum network. All of these independent nodes are executing the same smart contract
code, so it would result in 23880 API calls with the same request. Another problem is that
the source code of a smart contract is public, and it is running on an untrusted machine, so
anyone can fake the API call. That is what smart contracts or any blockchain transaction
should not be used for. One must understand it is not an executional system, it is more of
a notarization system or controlling system, a trustless database.

7.1.1.3 Privacy issues

As a public blockchain is a distributed database, there is no access control to the data and
actions it holds. Every node can see everything: transparency by nature. Therefore, it
should be considered thoroughly what to store in a public blockchain and to ensure the
security of confidential information.

7.1.2 BC as a Transaction Execution System

BC smart contracts can be used to execute the DEMO models because they are represented
by a Turing-complete programming language. There are two options for how to do that.

The first option may be to implement the whole DEMO transaction execution on the
blockchain through smart contracts. With all the limitations and misconceptions intro-
duced earlier, it might not be possible to implement complete business logic, and there is
no need to run the exact same transaction execution multiplied on thousands of computers.
Furthermore, transaction execution on a blockchain is not always without expenses, this
may vary based on the platform used. But in general, choosing this approach is ques-
tionable because we have applications in “regular” programming languages, which once
developed, are free of cost.

The second option may be to choose only some transactions, of which full or partial
execution on a blockchain would bring benefits. We can make use of blockchain’s notariza-
tion of SC code and secure a trustless transaction execution when operating with untrusted
third parties or multiple organizations. The remaining transactions are executed by a stan-
dard EIS. For example, we have a contract that states once a certain amount of money is
paid, an asset will be transferred by an external company. This alternative makes use of
the primary benefits that BC technology brings.

7.1.3 BC as a Notarization System

Based on the definition of the Blockchain: “It introduces decentralized, autonomous, repli-
cated and secure database, that based on cryptography offers trustless network without a

95

7. Exploring a Role of Blockchain Smart Contracts in Enterprise
Engineering

need of intermediary”, another application of BC in EE could be to serve as a notarization
system. Smart contracts can offer notarization of documents, agreements, and all informa-
tion related to transactions, progress, and results of transactions. BC could then provide a
consistent and reliable source of data, facts, and transaction states for all parties involved
in the process.

7.2 Principles to Devise SC from DEMO Models

In this section, we discuss the principles of creating BC smart contracts based on the DEMO
methodology. Next, we introduce a software architecture of an enterprise information
system based on DEMO that communicates with a smart contract.

7.2.1 SC based on DEMO

In the previous section, we introduced what could be a possible usage of smart contracts
in EE. We explained that there are two possible approaches that can also be combined:

◦ Notarization of documents, agreements, and all information related to transactions,
progress and results of transactions.

◦ Trustless execution of transactions or a part of transactions.

As mentioned before, the decision of whether to use SC for the process implementation is
individual for every case. In general, a good use case could be to use it when operating with
untrusted third parties or multiple organizations. There is no such need for notarization or
trustless execution within the internal business processes, but the need arises when dealing
with transactions on the border of the scope of interest when communicating with external
actors. A BC smart contract can also represent the coordination point between an internal
IT system and external actors.

7.2.2 DEMO Transaction As Contract

A DEMO transaction is represented as a contract in a blockchain. The contract has its own
address, internal storage, attributes, methods, and it is callable by either an external actor
or another contract. This is the functionality needed to represent a DEMO transaction. In
this paper, we implemented the execution of DEMO transactions according to the DEMO
Machine [A.3] and associated theories. For mapping contracts to the corresponding DEMO
transaction, we use the names defined in the Transaction Product Table. The contract then
encapsulates the transaction notarization or execution.

7.2.3 Notarization

Notarization of a DEMO transaction facts can be divided into two parts:

96

7.2. Principles to Devise SC from DEMO Models

◦ Notarization of the transaction P-facts and documents.

◦ Notarization of the transaction execution C-acts and C-facts.

In the first case, we are looking at using a smart contract as storage of facts. To
construct a smart contract carrying transaction facts, we can combine information from
three models: Organization Construction Diagram, Bank Contents Table, Object Fact
Diagram, and Action Model. From them, we can retrieve which object facts are needed for
the transaction, and wherein the transaction execution arise, we can evaluate the changes
of the objects associated with the transaction execution. An object class can be represented
as an internal state variable in the contract with the corresponding name from the DEMO
model. A smart contract then serves as a storage of facts (database) for the transaction.

In the second case, we want to notarize the transaction execution. We use the complete
transaction pattern from where we take all possible C-Facts and add their representation
into the contract. The contract then holds its current state as a C-fact. For every C-Act,
we create a contract method that changes the contract state to the corresponding C-Fact.
Every change of a C-Fact issues an Ethereum system-wide notification (Event), allowing
external systems to keep track of their contracts. Once the transaction is completed and
the P-fact is created, another event is emitted stating the P-fact.

7.2.4 Transaction Execution in SC

To implement a transaction execution in the contract, we need to understand the whole
DEMO model and the relationships between transactions.

In the PSD model, the response links and wait links are specified, and we can see
enclosed transactions. Action rules are guidelines for dealing with the events that actors
have to respond to. In practice, they are referred to as business rules [33], so they can be
used to construct the execution logic. If we execute a certain C-act in the contract, we look
at the action rules that contain this C-act, and we construct the corresponding method
accordingly. Depending on the actor roles we define the executor of the method, we define
general conditions based on the transaction pattern, such as that to perform a promise,
the contract must be requested. Finally, we translate the action rule pseudo-code to a
contract code. In this case, we also need to add the notarization of the fact on which the
transaction operates. Method to execute a C-act is named after the C-act concatenated
with the transaction name, e.g. promiseMortgageCompletion.

If a transaction encloses other transactions, we have to decide how to handle them.
There are three possible solutions. Firstly, the sub-transaction can be implemented as
another contract. The enclosing contract then stores the address of the sub-contract. This
way, when the action rule contains a response link for the child transaction C-act, we call
the corresponding C-act method of the child contract. The sub-transaction can also store
a reference to the enclosing transaction to implement the wait links. Secondly, there must
not always be a need to create a separate contract for sub-transactions, we can implement
the sub-transaction inside the main contract. This can be convenient if we are interested

97

7. Exploring a Role of Blockchain Smart Contracts in Enterprise
Engineering

only in a partial execution on BC for the sub-transactions. Finally, the last option is that
we do not handle the sub-transactions at all and leave this outside of BC.

7.2.5 Extending the DEMO model

Using SC with DEMO is part of the implementation of the organization. From this point of
view, the essential DEMO models should not change when using SC. SCs only implement
transactions, and in some cases, an actor role can be assigned to it. In both cases, the
underlying essential DEMO models are not affected.

As the implementation of a contract can be derived from the DEMO models, the
creation of the contract code could be produced from the DEMO models. In this case,
we would define a way to identify the transactions and types of their integration on the
BC. A solution could be to introduce Transaction Blockchain Table (Table 7.1) that maps
transactions to their BC implementation. As for the actor roles assigned to SC, this would
be defined in the Actor Function Matrix.

Table 7.1: The transaction blockchain table template

Transaction Fact
notarization

Transaction
notarization

Execution

Transaction kind List of facts to no-
tarize

Yes/No List of C-Acts to
execute

7.2.6 Software Architecture

An implementation of an IT system consists of two parts:

◦ Enterprise information system (EIS): An IT system that supports the business pro-
cessed modeled in DEMO. It executes the transactions that do not need to be avail-
able in BC.

◦ Blockchain: A blockchain that executes desired DEMO transactions. It also serves
as an audit log to keep the history of desired C-Facts.

The architecture of an IT system integrating the enterprise information system and
blockchain is illustrated in Figure 7.1. The EIS contains mainly a business process man-
agement (BPM) engine and a blockchain API. The BMP engine is a transaction execution
system. The blockchain API is an interface for communication between the BPM en-
gine and the blockchain. The communication with blockchain is carried out through a
blockchain node. It contains a transaction processor and a blockchain database, which
holds the smart contracts or blockchain logs. The DEMO models and methodology also
serve as an orchestrator for the cooperation of the components (BPM engine, blockchain

98

7.3. Proof of Concept

Figure 7.1: Architecture of an IT system based on EE and BC

API and smart contract). They all use the transaction patterns, transaction names, facts,
etc., as defined by DEMO.

7.2.7 EIS and BC communication

The communication between the EIS and SC is a one-way interaction based on the princi-
ples described in Section 7.1. As BC cannot return values or call external services directly,
all the interaction is handled from the EIS side.

The EIS contains an API for communicating with blockchain, such as web3.js. This
API facilitates the contract deployment, sending of transactions to the contract, getting
data from the contract. Using the events mechanism, the API monitors the blockchain log,
and “listens” for certain events. This way, the API can watch the change of transaction
state or results of contract execution and act on it, mostly if it is a transaction involving
external actors.

7.3 Proof of Concept

In this part, we describe a proof of concept using a financial transaction, the process
of a mortgage, implemented in the Ethereum Solidity programming language for smart
contracts. Due to space limitations, we only present the conclusions. The whole proof-of-
concept description, as well as a smart contract source code, can be found in a GitHub

99

7. Exploring a Role of Blockchain Smart Contracts in Enterprise
Engineering

Figure 7.2: Mortgage process changed using smart contract [146]

repository1. The example is based on a presumption that a property ownership record is
held in a public blockchain. This is a relevant case for the developing countries where it
can bring many benefits as described in [119].

The mortgage contract is a complex process involving several parties, dependent pro-
cesses, level of trust between parties and a lot of documents proving results of auxiliary
processes; Notarization is involved for all parts. These aspects all contribute to the overall
complexity and costs of the process. Thus it appears as a good use case, where model-
ing by DEMO would capture the essence of the process and a smart contract could offer
an automated notarization, data sharing between parties, and payment processing, thus
reducing the need for manual processes, as illustrated in Figure 7.2.

The description of the mortgage process is based on a review of several online mortgage
guides [69, 101] and consultation with a real estate agent. The description of the process
was then modeled with DEMO to fully understand and illustrate the process. Here we
omit the typical pre-approval phase.

We have used the DEMO methodology to understand and reveal the essence of a
mortgage process. Using the proposed principles of creating a contract introduced in
Section 7.2, we were able to create working smart contracts based on the DEMO models.

We created a trustless notarization of the process. The contract ensures the immutabil-
ity of the agreed mortgage conditions, such as the amount of payment and interest rate.
Further, it controls the execution of some parts, such as automatic mortgage payment
control and automatic lien release request. This way, the Client can be sure that once the
mortgage has been paid off, the lien will be released. It also defines a single point of access
to the data and coordination for all parties, as well as simplifies some steps, as automatic
control can be performed, thus allowing us to carry out some acts tacitly. Using smart
contracts does not change the essential DEMO model, as they belong to the implemen-
tation, which becomes simplified. For example, the Client would not have to bring the
confirmation about insurance to the Loaner, because this is done by the smart contract

1https://github.com/MIDNP/DemoBlockchain

100

7.4. Related Research

– this reduces the overall process steps behind the mortgage and eliminates bureaucracy,
lags, and errors.

The smart contract implementation uses only a standard transaction pattern. An
extension to the complete pattern would be analogous. The pattern is implemented as
a state machine, and the model constraints are implemented by function constraints and
require() function.

7.4 Related Research

7.4.0.1 SC based on BPMN

BPMN is one of the most widely used standard modeling notations and there have been
efforts to use BPMN for smart contract implementation. One of them is described in a
paper by Weber et al. [168]. The paper elaborates a similar approach to ours of imple-
menting a business process using BPMN on blockchain. It recognizes two alternatives of
using blockchain as “a choreography monitor, it stores the process execution” [168] or “as
an active mediator among the participants, it coordinates the collaborative process execu-
tion.” [168]. The approach then introduces a method of translating a BPMN model into
a smart contract. This method is mainly addressing collaborative process execution for
participants with lack of trust.

To compare, the approach described in this paper may help to prevent possible errors
or unwanted states due to the C4-ness quality criteria [29] of demo models. This is very
important since the history of a smart contract can’t be changed and the code is hard
to update once deployed. But in general, both solutions introduce similar findings and
principles about the usage of BC and process modeling and a method of translating the
models to smart contracts. In the end, it comes down to the comparison of DEMO and
BPMN [A.2] itself and evaluating the appropriateness of their use and ability to cover all
possible situations when modeling processes.

7.4.0.2 SC based on Petri nets

Another interesting solution can be found in the work of Garćıa-Bañuelos [19]. This paper
focuses on an optimized execution on the blockchain. It defines a method of transformation
of BPMN processes (modeled in a subset of the BPMN standard) into smart contracts
through the use of optimized Petri nets. “The method takes as input a BPMN process
model. The model is first translated into a Petri net. An analysis algorithm is applied to
determine, where applicable, the guards that constrain the execution of each task. Next,
reduction rules are applied to the Petri net to eliminate invisible transitions and spurious
places. The transitions in the reduced net are annotated with the guards gathered by
the previous analysis. Finally, the reduced net is compiled into Solidity.” [19]. The work
focuses on encoding the control-flow and evaluation of data conditions, however it does not
discuss how participants would be bound to the contract instance, and access control.

101

7. Exploring a Role of Blockchain Smart Contracts in Enterprise
Engineering

7.5 Chapter Summary

This chapter discusses the possibilities of applying the EE theories and DEMO methodol-
ogy together with blockchain technology. A proof of concept blockchain smart contract was
developed based on a mortgage process. We have defined and analyzed the process, applied
the DEMO methodology, and consequently developed an Ethereum Solidity contract using
our principles, showing the possible approach to the topic.

102

Chapter 8

Systems Supporting Decentralized
Compliance Management

For thousands of years, contracts between people were conducted on paper or other material
media and enforced by authorities. If necessary, this approach requires all participants to
believe in a central authority that enforces the contract obligation. However, today, an
enforcement process can take years to settle and cost a significant amount of money in
administration and attorney fees.

Recent developments in blockchain (BC) technology have allowed the creation of con-
tracts between people specified in a software code called Smart contract (SC). An SC is
enforced by a network of computers that is guaranteed to execute the code adequately
based on proven cryptographic algorithms. This technology was a breakthrough in com-
puter science; however, it seems that it has not delivered its full potential. Nevertheless,
the most famous SC platform Ethereum [43], is still in the experimental phase and is not
ready for mass-scale adoption.

There are numerous challenges to the mass adoption of SC technology. This chapter
addresses one of them – a software code does not seem to be the best way to specify the
contract between people for two reasons. First, non-technical people do not comprehend
software code, and therefore they need to trust someone that will write the contracts for
them. This is similar to ancient times when people could not read and write and thus had
to trust the experts of this special knowledge. Second, the semantic level of software code
is too low, and it is challenging to make a high-level comprehension and reasoning – there
was already a case of a programming mistake in the SC, which resulted in a loss of $50
million [111]. We argue that these issues can be addressed by applying modeling methods
coming from the discipline of Enterprise Engineering (EE) [30].

A visual language for modeling smart contracts, DasContract, is proposed in this chap-
ter to address these challenges. It argues that by using a visual domain-specific lan-
guage (DSL), the readability of smart contracts would be more comfortable, and using
the model-driven engineering (MDE) approach generates the smart contracts’ source code.
The proposed approach is demonstrated in two complex case studies where the contract

103

8. Systems Supporting Decentralized Compliance Management

is designed, generated, and simulated in a blockchain environment. First, a decentralized
mortgage process is introduced where banks are made obsolete. A second case study is a
decentralized version of EU elections.

The chapter is organized as follows: In Section 8.1, an approach for blochchain-based
contracts between people is introduced. A visual domain-specific language DasContract is
presented in Section 8.2. The proposed approach is demonstrated on a Mortgage case study
in Section 8.5 and EU elections case study in Section 8.6. Limitations of our approach are
discussed in Section 8.7. The related research is discussed in Section 8.8. Finally, the
current results are summarized in Section 8.9.

All the work described in this chapter is available as an open-source project DasCon-
tract [139]. Parts of the work were published in [A.5, A.7, A.6] and contributions were
made in supervised theses [A.13, A.15, A.29, A.17, A.30, A.16, A.28, A.27]. The presented
work is part of the main decentralized DSR cycle and the DSR sub-cycle 2.2.

8.1 Overview of Our Approach

The contracts are defined as ”An agreement between two or more parties creating obligations
that are enforceable or otherwise recognizable at law.” [53]. The main goal of this section
is to argue that the contracts can be made better than using only plain text. Especially
the contracts in the modern digital world wherein most countries the same law still applies
for the online and offline world. By saying ”can be done better,” we mean that a large
amount of the repetitive administrative work can be eliminated, the comprehension can be
increased, and third-party involvement reduced (courts, distrainors, ...).

To limit our scope of interest, we will attempt to bridge the legal and technological
worlds by providing a formal language to define smart contracts.

8.1.1 Contract Maturity Model

To measure the contracts’ quality, we propose a contract maturity model. This model is
focused on capturing the accuracy of a mutual understanding in contract representation. A
framework for a language evaluation proposed by Giancarlo Guizzardi [60] is used as a basis
of this model. The Figure 8.1 shows the relation between conceptualization, abstraction,
modeling language and model [60]. In law, the most used modeling language is plain text.
Plain text has great expressivity, but it can lead to ambiguity and undermine clarity.

A Verbal Contract is the oldest form of contract between people. The terms of
contracts are agreed upon in a natural language that both parties understand and store
in their brains. This form is excellent for a small number of people with shared domain
conceptualizations who trust each other.

A Written Informal Contract is a version of a verbal contract that is written on a
persistent medium in the form of a natural language. This simple act ensured that there
was only one possible contract model. Sadly, each participant can interpret the natural text

104

8.1. Overview of Our Approach

Figure 8.1: Relation between conceptualization, abstraction, modeling language and
model [60]

differently because they may have different domain abstractions. In this type of contract,
it is still possible to create illegal contracts because no legal framework is followed.

A Legally Binding Contract is a written contract that follows a legal framework. In
this case, the legal framework and a natural language act together as a modeling language
to create a model. However, the law framework is usually defined in a natural language,
and it may be hard to create a model due to multiple domain conceptualizations. This
ambiguity makes it harder to compose a model and validate its compliance with a modeling
language.

An Ontological Contract is a form of contract that controls the domain conceptu-
alization and abstraction. The modeling language is represented by a domain conceptual-
ization which allows only one possible interpretation. A composed model based on such
modeling language has a clearly defined domain abstraction, and therefore the ambigu-
ity can be controlled. This means that all involved parties work with a shared domain
conceptualization and abstraction because it is stated explicitly.

8.1.2 The Concept Architecture

This chapter builds on top of the work presented in Chapter 7 where possible use of
DEMO methodology to model blockchain smart contracts was explored and demonstrated
on a mortgage case study. This chapter narrows the use-case to modeling legally binding

105

8. Systems Supporting Decentralized Compliance Management

Maturity Name Contract Form Accuracy

1 Verbal con-
tract

A mutual under-
standing

No written record of a
contract

2 Written infor-
mal contract

Informal text Typically ambiguous
interpretation, possi-
ble errors, no legal
framework

3 Legally bind-
ing contract

Legal text Risks of ambiguous
interpretation, possi-
ble errors, legal frame-
work contains ambigu-
ities itself

4 Ontological
contract

Ontological model Ambiguity effectively
controlled

Figure 8.2: A contract maturity model

contracts between two or more parties.

Legal Text
+

Formal
Models

People

Companies

Legal
Authorities

A Smart
Contract

CodeCode
Generation

A Blockchain
A Contract

Human Understanding Technical Implementation Digital Interaction

Figure 8.3: A proposed concept architecture

Our proposed approach is described in Figure 8.3. It consists of three parts, in Human
Understanding the contract is formally and legally specified. The Technical Implementation
part shows an execution of the contract in the Blockchain. In the Digital Interaction part,
two or more parties are interacting with the smart contract through their digital devices.

Human Understanding part defines a contract between multiple parties that they
need to agree on. Such a contract is a combination of legal text and formal ontological
models. The legal text, in some form, specifies the legal validity of the formal model.

106

8.1. Overview of Our Approach

The formal models need to be unambiguous, so only one possible interpretation is allowed.
These formal models are specified in Section 8.2.

Technical Implementation part specifies how formal models from the contract are
transformed into a software executable code and uploaded into a blockchain as a smart
contract. Guidelines and algorithms on how to generate such code from the formal models
are provided in Section 8.3.

Digital Interaction is a part where people, companies, and legal authorities can
interact with the agreed-upon contracts. Thanks to cryptography, since the contract is
in a blockchain, the interaction is fully digital and legally binding. Blockchain by design
also provides an audit trail of all actions performed by the parties and ensures that the
agreed-upon contract is executed correctly. This part is demonstrated on case studies in
Section 8.5 and Section 8.6.

8.1.3 The Proposed Method

Our approach was designed to answer the research question 2 from the decentralized
DSR cycle. It adopts the BPM methodology to provide a methodical way of designing
a blockchain smart contract. A Model-driven engineering approach generates a smart con-
tract source code for a particular blockchain. This thesis uses an Ethereum smart contract
platform, but the approach can be generalized. An application of our approach is shown
in Section 8.6 on a process of EU parliament elections and a mortgage process case study
in Section 8.5.

The BPM life-cycle in the context of digitizing a process to be used in blockchain
technology is following:

1. Design - A process is designed in a DasContract language with blockchain limitations
in mind. Compared to a traditional software system, the major limitation is its
immutability and the requirement that all performed actions are deterministic.

2. Modeling - A simulation of the DasContract may be performed to ensure the correct
behavior of the process. This may be critical because the contract cannot be changed
after being deployed, and it may be handling significant monetary or legal value.

3. Execution - A smart contract source code is generated and uploaded to the Blockchain.
Because the metamodel is implementation-independent, any supported blockchain
platform can be chosen.

4. Monitoring - Due to the inherent blockchain capability to record all transaction
history, auditing and analyzing process execution history can be made.

5. Optimization - The optimization is not relevant in Blockchain because once the smart
contract is uploaded, it is impossible to change it.

6. Re-engineering - Similar to optimization, re-engineering is not available. A new
process can be designed and uploaded to the Blockchain, but the old one will still be
running.

107

8. Systems Supporting Decentralized Compliance Management

8.2 DasContract – a Visual Smart Contract

In this section, we introduce a system that aims to materialize the proposed concept ar-
chitecture introduced in Section 8.1.2. The DasContract system consists of three parts.
The human understanding part introduces a visual domain-specific language called Das-
Contract that allows people to specify formal models of their desired contracts. Guidelines
on how to model the procedural law were introduced in Chapter 6. The second part is
about blockchain smart contract generation from the DasContract language based on the
MDE principles. Furthermore, the last part is about the digital interaction of people,
companies, and legal authorities with the generated blockchain smart contracts. A proof-
of-concept implementation of the proposed system is available as an open-source project
on GitHub [139]. This section is focused on introducing a specification of Formal Models
as it was introduced insection 8.1.2.

8.2.1 DasContract Model Specifications

The DasContract consists of three interconnected models: process model, data model, and
forms model. The metamodel of the data and forms models is shown on Figure 8.6. The
highlighted parts in blue are the recent additions to support the representation of fungible
and non-fungible tokens and enums. The tokens inherit from the entity, and therefore they
can have data properties to represent token metadata.

Process Model shown in Figure 8.5 specifies the contract’s process activities, their ex-
ecution order, property mappings, and user roles. The model is based on an extended
BPMN 2.0 level 3 notation subset. The major addition is support for blockchain tokens
that allow issuing and receiving both fungible and non-fungible tokens. During the transfor-
mation, the process sequence is transformed into a smart contract programming language
statements such as if-else, functions, etc. This process may vary for different blockchain
implementations. The process model also excludes the concepts from the BPMN that
cannot be implemented in Blockchain due to its technological capabilities.

Data Model shown in Figure 8.6 is a domain model of the process is based on the UML
class diagram. It allows specifying entities, properties, and relationships between them.
The properties may contain primitive types such as int, bool, and string, but arrays and
enumerations are also supported. Address and AddressPayable types are added to sup-
port the storage of a blockchain actor’s addresses and consequent token or cryptocurrency
transfers. A blockchain token is represented as a special type of entity and supports defin-
ing both fungible and non-fungible tokens with custom properties. A transformation of
the models to the smart contract source code is straightforward because the blockchain
programming languages support such concepts in the form of classes, structures, enums,
and properties. The support of tokens is native on some platforms. On other platforms
such as Ethereum is added as a third-party library.

108

8.2. DasContract – a Visual Smart Contract

Forms Model shown in Figure 8.6 specifies an interface for the user activity input. The
forms model is generated into two parts during the generation – off-chain model and on-
chain code similar to a web application client-side and server-side code. A blockchain wallet
interprets the off-chain model that allows the user to interact with the smart contract.
Most blockchain implementations currently have no support for off-chain code inside a
smart contract. The on-chain code handles validations, user rights, and property bindings.

1 0..* 1 0..*
Property

+ Id: string

+ Name: string

+ IsMandatory: boolean

+ IsCollection: boolean

+ Type: PropertyType

<<Enumeration>>
PropertyType

Int
Uint
Bool
String
DateTime
Address
AddressPayable
Data
Entity

Contract

+ Id: string

+ ProcessDiagram: string

10..*

Process

+ Id: string

0..*

1 Source

1

0..*

1

1

1 0..*

ProcessRole

+ Id: string

+ Name: string

+ Description: string

SequenceFlow

+ Id: string

+ Name: string

+ Condition: string

0..*

0..*

ProcessUser

+ Id: string

+ Name: string

+ Description: string

0..*

0..*

C
an

di
da

te
R

ol
es

Entity

+ Id: string

+ Name: string

Task

ExclusiveGatewayParallelGateway

Gateway

1

0..*

0..*

0..*

UserTask

+ Id: string

+ Name: string

C
an

di
da

te
U

se
rs

As
ig

ne
e

ServiceTask

+ ImplementationType: string

+ Configuration: string

1

0..*

D
ef

au
ltS

eq
ue

nc
eF

lo
w

BusinessRuleTask

+ BusinessRuleDefinitionXml: string

ScriptTask

+ Script: string

ProcessElement

+ Id: string

+ Name: string

0..*

1 Target

StartEvent EndEvent

Event

1

1

UserForm

+ Id: string

FormField

+ Id: string

+ Order: int

+ Type: FormFieldType

+ DisplayName: string

+ IsReadOnly: boolean

+ PropertyExpression: string

+ CustomConfiguration: string

1 0..*

<<Enumeration>>
FormFieldType

Property
Custom

0..*

1

StartForm

Figure 8.4: A DasContract high-level metamodel

109

8. Systems Supporting Decentralized Compliance Management

PayableTask

+TokenOperationType: OperationType

Process

+ Id: string

0..*

1 Source

1

0..*

1 0..*

0..*

0..*

0..*

0..*

C
an

di
da

te
R

ol
es

1

0..*

Task

+ LoopCardinality: int

+ InstanceType: InstanceType

Contract

Token

C
an

di
da

te
U

se
rs

As
ig

ne
e

1

0..*

D
ef

au
ltS

eq
ue

nc
eF

lo
w

0..*

1 Target

ProcessElement

+ Id: string

+ Name: string

0..*

1

StartForm

SequenceFlow

+ Id: string

+ Condition: string

+ Name: string

ExclusiveGateway

Gateway

<<Enumeration>>
InstanceType

Single
Parallel
Sequential

1

0..*

ParallelGatewayStartEvent EndEvent BoundaryEvent

Event

<<Enumeration>>
TimerDefinitionType

Date
Duration

TimerBoundaryEvent

+ TimerDefinition: string

+ TimerType: TimerDefinitionType
UserForm

CallActivity

1

1

CalledProcess

BusinessRuleTask

+ BusinessRuleDefinitionXml: string

ProcessUserProcessRole

UserForm

1 1..*

<<Enumeration>>
TokenOperationType

Create
Send
Receive

0..* 1

ScriptTask

+ Script: string

UserTask

+ Id: string

+ Name: string

+ ValidationScript: string

ServiceTask

+ ImplementationType: string

+ Configuration: string

Figure 8.5: A DasContract process metamodel

110

8.2. DasContract – a Visual Smart Contract

1 0..*

1

0..*

<<Enumeration>>
PropertyDataType

Int
Uint
Bool
String
DateTime
Address
AddressPayable
Data
Byte
Reference

10..*

0..*

0..*

0..*

0..*

C
an

di
da

te
R

ol
es

1

0..*

0..*

0..*

C
an

di
da

te
U

se
rs

As
ig

ne
e

1

1

1 0..*

<<Enumeration>>
FormFieldType

Property
ComboBox
Custom0..*

1

St
ar

tF
or

m

<<Enumeration>>
PropertyType

Single
Collection
Dictionary

1

0..*

Contract

+ Id: string

+ ProcessDiagram: string

Process

ProcessUser

+ Id: string

+ Name: string

+ Description: string

UserTask

ProcessRole

+ Id: string

+ Name: string

+ Description: string

UserForm

+ Id: string

FormField

+ Id: string

+ Order: int

+ Type: FormFieldType

+ DisplayName: string

+ IsReadOnly: boolean

+ PropertyExpression: string

+ CustomConfiguration: string
StartEvent

1

0..*

ReferencedDataType

Token

+ Symbol: string

+ IsFungible: bool

+ IsIssued: bool

DataType

+ Id: string

+ Name: string

Enum

+ Values: string[]

Property

+ Id: string

+ Name: string

+ IsMandatory: boolean

+ PropertyDataType: PropertyDataType

+ Type: PropertyType

+ KeyType: PropertyDataType

Entity

Figure 8.6: A DasContract data and forms metamodel

8.2.2 DasContract Model Editor

To design the DasContract models, a visual editor was created as a part of the open-source
project [139]. The editor allows stakeholders together with a DasContract expert to design
their desired contract and generate blockchain smart contract. Currently, a generation
into Ethereum Solidity language is available. However, there is an ongoing development of
support for the Plutus language on the Cardano blockchain.

111

8. Systems Supporting Decentralized Compliance Management

Figure 8.7: A DasContract process model editor

8.3 Code Generation and Execution of DasContract Mod-
els

This section introduces a way to generate blockchain smart contracts using a Model-Driven
Engineering approach (MDE) [10]. To achieve this, a way of automatically generating
blockchain smart contracts is described. Ethereum Solidity language is used as a demon-
stration; however, the principles described should be transferable to other blockchain im-
plementations.

An extended subset of BPMN 2.0 level 3 is used as a basis for the execution behav-
ior. However, compared to the BPM systems that interpret the model, an approach that
generates code with the model behavior is used. This approach is used due to blockchain
performance and storage limitations. Each line of code executed in the Blockchain costs
money, and the storage costs are also at a premium.

The algorithm described in this thesis is implemented in C# programming language
and published on Github under an MIT license [139].

The DasContract DSL consists of the following models: Data Model Specifies data
structures used inside of the smart contract. These structures can be referenced inside of
the process model. Process Model Specifies a contract’s business process as an extended
subset of the BPMN 2.0 language. Forms Model Specifies a user form required to fill by
the user in a process user task. The forms provide a way to interact with smart contracts.

8.3.1 Data Model

Implementing the data model is straightforward because the blockchain smart contract
languages provide generous native support to specify data structures. The supported con-
cepts are entities, properties, entity properties, and arrays. Each property can also be

112

8.3. Code Generation and Execution of DasContract Models

marked as mandatory. The data types of properties are Int, UInt, Bool, String, Date-
Time, Address, AddressPayable, Data, Entity. The types Address and AddressPayable are
Blockchain specific and support cryptocurrency or token payments.

Example Let us have an entity Payment with four properties – two addresses identifying
the sender and receiver, a numeric defining the amount sent, and a boolean indicating
whether the payment was on schedule. The generated code is shown in Listing 8.1.

struct Payment {

uint256 amount;

bool onSchedule;

address sender;

address receiver;

}

Listing 8.1: An example of a generated data structure.

8.3.2 Process Model

The process model uses an extended subset of the BPMN 2.0 level 3 notation. The formal
specification of a BPMN execution is already well researched, and there are many different
formalizations such as [34, 92]. In this thesis, the algorithms are based on Petri-net-based
formalization described in [35].

Blockchain smart contracts are more similar to a programmable database rather than
a desktop, web, or console application. Due to this fact, not all of the BPMN concepts can
be implemented or make sense. Therefore only a limited subset is implemented: user task,
script task, XOR gateway, parallel gateway, start event, and end event. The blockchain-
specific activities were added: payment task. The payment task is a task attribute that
can be added to both user and script tasks to add support to work with cryptocurrency or
tokens.

Process Flow Exclusive gateways are converted into a sequence of if-else statements, ad-
vancing the execution based on the statement’s result. Parallel gateways are more complex,
as they can not only create multiple execution branches but are also used for synchronizing
multiple flows (branches) into a single flow. If a gateway has multiple incoming flows, then
a counter is defined, keeping track of the number of flows that have reached the gate-
way. The outgoing flows are triggered once the counter matches the number of incoming
flows. An example can be seen in Listing 8.2, which contains the logic of parallel gateways
generated based on Figure 8.8.

113

8. Systems Supporting Decentralized Compliance Management

int Gateway_2Incoming = 0;

function Gateway_1Logic() internal {

ActiveStates["EscrowPropertyRights"] = true;

ActiveStates["AcceptInsurance"] = true;

ActiveStates["EscrowMoneyPayable"] = true;

}

function Gateway_2Logic() internal {

if(Gateway_2Incoming==3){

ActiveStates["ValidateContractPayable"] = true;

ValidateContractPayable();

Gateway_2Incoming = 0;

}

}

Listing 8.2: Gateway logic generated based on the model snippet in Figure 8.8.

Figure 8.8: A contract snippet used to demonstrate a gateway conversion in Listing 8.2
and user task conversion in Listing 8.3

Activities Functions are also used to encapsulate the logic of activities. Unlike the inter-
nal gateway functions, these functions are publicly visible. User activities allow accepting
parameters and storing them inside the contract using property binding logic. The gener-

114

8.3. Code Generation and Execution of DasContract Models

modifier isEscrowPropertyRightsAuthorized{

if(addressMapping["Property Owner"] == address(0x0)){

addressMapping["Property Owner"] = msg.sender;

}

require(msg.sender==addressMapping["Property Owner"]);

_;

}

modifier isEscrowPropertyRightsState{

require(isStateActive("EscrowPropertyRights")==true);

_;

}

function EscrowPropertyRights(bool Agree) isEscrowPropertyRightsState

isEscrowPropertyRightsAuthorized public {

ActiveStates["EscrowPropertyRights"] = false;

escrowagreement.agreeToEscrow = Agree;

ActiveStates["EscrowProperty"] = true;

EscrowProperty();

}

Listing 8.3: User task logic generated based on the model snippet in Figure 8.8.

ator also allows restricting access to function execution based on the executor’s address.
This is done using roles defined using square brackets inside the name of the activity (see
Figure 8.8). The addresses to each role are assigned at runtime, meaning that anyone can
execute an activity with an unassigned role. The first execution assigns the role, reserving
the remaining activities of the given role to that address.

An example of a converted user activity can be seen in Listing 8.3, generated based on
the Escrow Property Rights activity in Figure 8.8. The generated function contains two
modifiers, checking whether the contract is in the valid state and whether the executor
(Property Owner role) is authorized. The function has one input parameter that has been
defined using the editor. According to the defined property binding logic, this parameter is
stored inside the contract. An address of the property owner is read from the msg.sender
property that provides a sender’s public address verified by his private key while sending
the transaction to the Blockchain.

Token Activities Tokens play a significant role in the smart contract ecosystem by al-
lowing express ownership of an asset. These tokens can also interact with other smart
contracts by complying with the token standards. An activity that would allow us to
create/send/receive tokens would significantly improve the generated smart contracts ca-
pabilities. For example, it would allow sending voting ballots (in the form of a token) to
the voters.

115

8. Systems Supporting Decentralized Compliance Management

8.3.3 Forms Model

The forms model defines a form shown to a user and allows interaction with a contract.
Such logic is implemented in two places called on-chain and off-chain.

On-chain code is run inside the Blockchain. Our algorithm is represented as parameters
passed into a function generated from a user task. An example is shown on Listing 8.3
- the method EscrowPropertyRights contains a parameter Agree that will be provided by
the user while calling the method.

Off-chain code is run inside a cryptocurrency wallet to provide the user with a comfort-
able user experience while interacting with a smart contract. An extended forms model
that is used to generate the off-chain behavior is further explained in Section 8.4.

8.3.4 Design, Compilation and Execution

A new visual modeling environment was created to model the new DasContract models.
The visual modeling reduces the modeler’s errors and reduces the time required to produce
a model. The modeling environment is available on Github under an MIT license [139].

Compilation to the Solidity code assumes a valid DasContract model created in the
modeling environment and does not check for other errors. The last check is done during
the Solidity code compilation (usually in the Remix environment) and allows the modeler
to fix issues in custom script tasks and user task validation logic.

8.4 Extended Forms Model for Digital Interaction

So far, we only explored the on-chain part of the DasContract system that would be
equivalent to a backend in traditional web applications. The frontend of the blockchain
systems is called off-chain and can be implemented in various forms. Because the blockchain
smart contracts will be relatively simple, we explored how to include a model of the off-
chain user interface and its behavior in [A.29]. Many approaches were considered, such as
techniques used in low-code platforms and various state-of-the-art approaches to SPA web
applications such as MVVM.

Based on the analysis, the DasContract forms model was extended with standard UI
elements such as combobox, textfield, datefield, and it is shown in Figure 8.9. The fields
are connected to the DasContract data model using the ParamBind property. A form is
connected to the DasContract process model through a user task. During the execution of
a generated smart contract code, the information from the extended forms model is parsed
on the UI and displayed to the user. The user fills out the form and submits the data to
the Blockchain. The generated smart contract logic also validates the user rights to submit
the form. An example is provided in the Mortgage case study discussed in the next session
in Figure 8.12.

116

8.4. Extended Forms Model for Digital Interaction

The DasContract editor was extended to support modeling the off-chain forms. An
example of the working application is shown in Figure 8.10.

This section contains only a very brief introduction to the off-chain interaction that is
possible with the DasContrct extended forms model, and it is fully elaborated in [A.29].

Figure 8.9: Extended forms metamodel [A.29]

117

8. Systems Supporting Decentralized Compliance Management

Figure 8.10: A screenshot of the extended forms editor [A.29]

8.5 Case Study: Mortgage

This section provides a case study to demonstrate the capabilities of the approach proposed
in the previous section. A case of a decentralized mortgage that supports non-fungible
tokens (ERC-721) to represent property ownership was created. This case study designs
the process in a decentralized way, meaning that the property token is held in the smart
contract as collateral. A scenario where the lenders can request a loan default is modeled.
The complete DasContract model and the generated source code are published on Github
under an MIT license [139].

8.5.1 Process Design

The following steps were taken while conducting this case study: 1) A DasContract model
was created in a visual editor. 2) An Ethereum Solidity smart contract code was created
by an algorithm described in Section 8.2. 3) A simulation of the generated smart contract
was performed in the Remix [129] test environment.

118

8.5. Case Study: Mortgage

[Borrower]
Apply For a
Mortgage

[Insurer] Accept
Insurance

[Property
Owner] Escrow
Property Rights

[Lender]
Escrow Money

Validate
Contract

Release
Escrows

[Borrower]
Cancel

Application

Pay Owner
Payment

[Lender]
Request Default

Validate Terms
Violation

Loan Defaulted

Transfer the
Property to the

Lender

[Borrower] Pay
Mortgage Fee

Check Payment
Schedule

Transfer the
Property to the

Borrower

Loan Completed

[Insurer] Check
Indemnity Terms

[Insurer] Pay for
the Borrower

Payment to the
Insurer and

Lender

[Lender]
Transfer

Proportion
Money to the

Borrower

Valid

Invalid

Terms Not
Violated

Terms Violated

Payments
Finished

Behind Payment

Payment On
Schedule

Valid

Invalid

Contract
Cancelled

Figure 8.11: Mortgage process model

The process model of the proposed process can be seen in Figure 8.11. The process
begins with a borrower applying for a mortgage. Three other parties – insurer, property
owner, lender – must then confirm their involvement by carrying out their specific action.
If any of them declines, or the borrower changes their mind, then the contract is deemed
invalid, and any escrows that have been already transferred will be released back to their
previous holders.

119

8. Systems Supporting Decentralized Compliance Management

When all parties agree and the contract is successfully validated, the full payment to
the owner is automatically released, ending their involvement in the contract. In the next
phase of the contract, the borrower is tasked to pay the mortgage fees periodically. Those
fees are then automatically distributed to the insurer and lender. The payment schedule is
checked afterward, resulting in three possible scenarios. First, the payment is on schedule;
the contracts state will return to “waiting” for another payment. Second, The payments
are behind schedule; in this case, the insurer checks the indemnity terms, paying for the
borrower if they are met. Third, the payments are finished, in which case the property is
automatically transferred to the borrower, ending the contract.

Before the payments are fully finished, the lender is also at any time allowed to request
for the borrower’s default to check whether the borrower has not violated terms. If the
terms have indeed been violated, then the lender will pay the proportion of money defined
in the terms to the borrower. The property will then be transferred to the lender, ending
the contract.

8.5.2 Execution

The described process was simulated using the Remix IDE. The test environment allows
performing transactions from various addresses, enabling to simulate people interacting
with the smart contract. In Figure 8.12 an image is shown from the model-driven off-chain
environment based on the extended DasContract forms model described in Section 8.4.
The forms model from which the form is rendered is shown in Figure 8.10.

Figure 8.12: Off-chain interaction with the generated mortgage smart contract [A.29]

8.5.3 Summary

The limitations of the case study are the following. First, the mortgage is paid in a
cryptocurrency, which is a very volatile asset. This can be addressed using stablecoins [103].
The second issue is that the case requires a cadastre of properties to be represented by
a non-fungible token recognized in a country’s legal context. This can be addressed by a
legal binding of the token to property and mapping to an actual cadastre record using a
blockchain oracle solution such as [42]. Third, the insurer is represented by a human oracle

120

8.6. Case Study: EU Election

and is not enforced by a code to pay. Therefore, the insurance terms would be needed to
sign in a separate legal contract. This is already a part of the DasContract architecture
described in Figure 8.3.

8.6 Case Study: EU Election

Since 1979, nine Elections of the European Parliament have occurred to date, once every
five years according to the universal adult suffrage. From 2020, 704 Members of the
European Parliament will be elected by more than 400 million eligible voters from 27
member states. For this reason, it is considered the second-largest democratic election in
the world [70]. Each member state has its voting system, either by Preferential voting,
Closed lists, or Single Transferable Vote. All can be combined with Multiple Constituents.

Further, each member state has its voting methods for citizens resident abroad and
whether or not voting is compulsory. Each member state has different rules determining
who can vote for and run as a Member of the European Parliament. Although this is
not a very standardized process, the European Parliament is the only institution in the
European Union, directly elected by the citizens. So, this must be a transparent, meddle-
proof, usable, authenticated, accurate, and verifiable process [122].

The development and implementation of constitutional and legal provisions have been
one of the engineering concerns. For instance, the Elections of the European Parliament
have an estimated cost of 700 million euros. Blockchain has been the most promising tech-
nology when it comes to the electoral domain, seeing that per each vote, a new transaction,
if valid, is added to the end of the Blockchain and remains there forever [25]. For this so-
lution, no centralized authority is needed to approve the votes, and everyone agrees on the
final tally as they can count the votes themselves, as anyone can verify that no votes were
tampered with and no illegitimate votes were inserted.

This case study shows how to digitize the EU election process by following a method
proposed in Section 8.1. A simplified version of the process was designed and tested on
the Ethereum blockchain.

8.6.1 Process Design

The EU election process is very complex. The EU issues general guidelines on how country
elections should look, and each country then implements its legislation to describe how the
elections are done in a particular country. This means that each of the 27 EU countries
does this process differently. To avoid this complexity, it was assumed that there is a
unified voting process and each country votes according to one of the three voting systems
– preferential voting, closed lists, and single transferable vote.

The modeled process is shown on Figure 8.13. It starts with an initiation of the elec-
tions where all the countries and their voting systems are initiated in the contract. After
the initiation, political parties can register until a set deadline is expired. Later, candi-
dates can register, and in the next step, the political parties approve the candidates. In

121

8. Systems Supporting Decentralized Compliance Management
E

ur
o

pe
an

 P
a

rli
am

en
t E

le
ct

io
ns

Start Country
Elections

[Political Party]
Register New

Party

[Candidate]
Register

candidate

[Political
Party] Approve

and Order
Candidates

Country
Ellections

Initiate
Ellections

C
ou

nt
ry

 E
le

ct
io

ns

Assign
Privilegues to
the Elected
Candidates

Distribute SeatsCount Votes
Send ballots to
the elegible EU

Citizens

[EU Citizen]
Vote

Figure 8.13: A DasContract process model of the EU elections

some countries, candidates without countries are allowed. After a deadline for approval
is reached, the country elections for each initiated country are started in parallel as a
subprocess.

The country elections subprocess starts by creating sending non-fungible tokens to
eligible EU voters. The non-fungible tokens represent voting ballots to prevent a double
vote. In the next step, the EU citizens can vote by sending their tokens to the election
smart contract during the election days. After the voting is over, votes are counted, and
seats are distributed according to the country’s voting system. In the end, privileges are
assigned to the selected candidates.

The process model also contains a validation and script task that is currently entered
in the form of a solidity programming language. A domain-specific language is expected
to be designed and used in the future.

The data model is shown on Figure 8.14. It only contains the essential information
about the elections because the storage costs are high on public Blockchain because of a
need for replication on all nodes and keeping all the history. A new concept added in this
thesis is the possibility to specify tokens and enumerations in the data model. The voting
token representing a ballot is specified as a non-fungible token, and to assure its uniqueness,
it is associated with an individual voter identifier. The voter identifier represents a citizen’s
identity public key. However, the citizen’s identification is outside of the scope of this thesis
and is a subject of further research.

The forms model rendering for the process step Vote is shown on Figure 8.15. The
DasContract currently generates only an on-chain validation code because the off-chain
code is not supported on the Ethereum platform.

122

8.6. Case Study: EU Election

PoliticalParty

id: Address
name: string
code: string
website: string
voteCount: int
allocatedSeats: int

Candidate

id: Address
name: string
website: string
voteCount: int
hasSeat: bool

1..*

Elections

startDate: Date
partyRegistrationEnd: Date
candidateRegistrationEnd: Date
candidateApprovalEnd: Date

0..*

1

1..*

1

CountryElections

countryName: string
votingSystem: VotingSystem
electionDates: Date[1..2]
availableSeats: int
electoralTreshold: byte
minimumAge: byte

1

<<Enumeration>>
VotingSystem

OpenList
ClosedList
SingleTransferable

<<Token>>
VotingToken

isFungible: false
symbol: 'VOTE'
isIssuedByContract: true

voterId: address

1
1

Figure 8.14: A DasContract data model of the EU elections

Vote

 Czech Pirate Party [CPP] pirati.cz

Party:

Country:
Czech Republic

Confirm

Figure 8.15: A user interface of the closed list vote in a blockchain wallet

8.6.2 Execution

The designed model was used during the execution step to generate a Solidity smart con-
tract according to the MDE principles. The generation algorithm is available on GitHub
under an open-source license [139].

An interesting example of the generated code shows an implementation of the vote
function that accepts a non-fungible voting token and a voting choices cast by the citizen:

function vote(address[] memory votingChoices)

public {

require(votingTokensContract

.isEligibleToVote(msg.sender),

123

8. Systems Supporting Decentralized Compliance Management

"Voter not eligible to vote");

require(isVotingOpen(),

"Voting is currently not allowed");

require(votingChoices.length > 0,

"At least one cadidate must be chosen");

if(votingSystem == VotingSystem.ClosedList){

require(

politicalPartiesMap[votingChoices[0]]

.exists,

"Party address is invalid");

politicalPartiesMap[votingChoices[0]]

.voteCount++;

}

else if(votingSystem ==

VotingSystem.OpenList){

...

}

else if(votingSystem ==

VotingSystem.SingleTransferable){

...

}

votingTokensContract

.transferVoteToken(msg.sender);

}

//The generated code was adjusted to improve

//it’s readability.

The function’s name is taken from the task name in a process model. The parameters
of the vote functions are from the forms model associated with a user task. The address
of a voting citizen and his voting ballot are not the parameters to prevent people from
acting as someone else. The citizen’s id is taken from the msg object that contains a
verified public key by the original sender. Inside the function, the first step is to validate
the person’s eligibility to vote in the current election (E.g., he can be a minor and have
no voting rights.). The second validation assures that the correct process step is selected.
Finally, the votes are validated, so the citizen does not lose his ballot without voting for a
valid candidate.

After the validations, a vote is counted according to the country voting system, and
the citizen’s vote is transferred back to the smart contract to prevent a double vote. The
casting vote is counted but not forgotten due to blockchains’ inherent history keeping. The
Blockchain also guarantees that the function is processed one at a time, so the voteCount++
is safe to be used even when it is called from multiple sources in parallel.

In the end, the generated source code was simulated in the Ethereum Remix simulation
environment. A screenshot from the simulation showing the vote function is shown in

124

8.6. Case Study: EU Election

Figure 8.16.

Figure 8.16: A screenshot from Remix simulation

8.6.3 Summary

Currently, the election process can be designed, simulated, and executed in blockchain
technology. However, the public blockchain implementation Ethereum capacity only allows
processing up to fifteen transactions per seconds [9] for all of its users, and an average trans-
action price as of September 16th, 2020 is 4.301 USD [170]. The two reasons alone would
make it impossible to run the real EU parliament elections on the Ethereum blockchain.
It is expected that the transaction prices will go lower in the future, and the transactions
per second will increase due to the implementation of the proof of stake consensus algo-
rithm and second-layer scaling solutions. These scaling limitations do not apply to private
blockchain solutions such as Hyperledger Fabric [153], so it would be possible to execute
the EU election process there. However, the private blockchains may not guarantee the
same security properties as the public blockchains because a handful of selected operators
runs the network.

Following the proposed method allowed us to model the EU elections case in a visual
editor using the DasContract language. The DasContract only allowed for concepts that
are valid in Blockchain. Furthermore, the data model was expressed, and a custom non-
fungible token was designed. It was possible to test the process model’s behavior during
the design using standardized BPMN simulation tools.

A Solidity smart contract was generated using an open-source algorithm during the
execution phase. The generated code contains 365 lines, and it was executed in the Remix
environment. Due to Ethereum transaction fees, it would not make economic sense to run
it on millions of users.

Overall, the proposed approach makes the digitalization of processes in the blockchain
environment easier as it is based on a standardized process modeling notation. The gener-
ation of smart contract code reduces programming errors. However, only Ethereum smart

125

8. Systems Supporting Decentralized Compliance Management

contracts can be generated, but the DasContract model seems to be transferable to other
blockchain implementations.

8.7 Limitations

There are the following limitations to this approach, and they should be addressed in fu-
ture research. First, the script tasks and a validation logic of user tasks still need to be
expressed in Solidity language. An implementation-independent DSL for such expressions
should be added to the design of the language. Second, the language only contains support
for receiving tokens. Support to issue both fungible and non-fungible tokens would be
required. Third, it is not clear how would people authenticate themselves and prove their
roles outside of the standard smart contract wallet. A way to support decentralized iden-
tity standards such as W3C DID should be explored. Finally, according to Gartner [54],
the public blockchains are still immature for mass adoption mostly because of low trans-
action processing capability and high cost and, therefore, only minimal applications such
as initial coin offerings, escrows, and decentralized finance are currently possible. The
major limitation of this approach remains the immaturity of available blockchain imple-
mentations. According to the Gartner [54], the blockchain technology is very immature to
support most of the potential use cases, and there is still a tremendous amount of research,
implementation, and adoption to be done.

8.8 Related Research

As for the modelling law for the purposes of executing it in a blockchain smart contract,
we are not aware of any visual language to describe all aspects of the smart contracts -
process, data structures, and actions. However, there are already existing approaches that
use BPMN [114] or Blockly [57]. An interesting project is Marlowe [93] which builds a
domain specific language for the financial domain.

A very similar research is done by the Caterpillar project [125, 97] that is creating
a BPM engine in the Solidity language. The main difference between the approaches is
that the DasContract generates the logic of the model into the smart contract where the
Caterpillar interprets it. The goal of the DasContract is to provide a decentralized way to
conduct contracts between people, companies, and governments in a blockchain implemen-
tation independent way. The Caterpillar is currently bound to the Solidity programming
language.

Other approaches provide a graphic environment to visually compose smart contract
code based on Blockly [57] such as [56]. There is also another approach that proposes a
domain specific language for definition of financial smart contracts called Marlowe [93].
The approach presented in this paper does not represent the script part in the visual
format; it instead focuses on modeling data, processes, and forms that is not supported by
Blockly-based approaches.

126

8.9. Chapter Summary

In [168] was proposed a tool to support inter-organizational processes through Blockchain
technology. To ensure that the joint process is correctly executed, the control flow and
business logic of inter-organizational business processes are compiled from the processes
models into Smart Contracts. Weber et al. developed a technique to integrate Blockchain
into the choreography of processes to maintain trust, employing triggers and web services.
By storing the status of process execution across all involved participants, as well as to
coordinate the collaborative business process execution in the Blockchain. The valida-
tion was made against the ability to distinguish between conforming and non-conforming
traces. [52] presented an optimization in regards to the already presented paper [168]. To
compile BPMN models into a Smart Contract in Solidity Language, the BPMN model is
first translated into a reduced Petri Net. Only after this first step, the reduced Petri is
compiled into a Solidity Smart Contract. Compared to [168], [52] managed to decrease the
amount of paid resources and achieve higher throughput.

8.9 Chapter Summary

In this chapter, we introduced a vision of contracts between people, companies, and legal
authorities that can be partially automated and executed in blockchain smart contracts.
It was argued that the proposed concept could significantly impact how contracts are
conducted. To pursue the goal, a visual domain-specific language for modeling blockchain
smart contracts was introduced and demonstrated in two case studies.

127

Part VI

Evaluation and Conclusion

129

Chapter 9

Evaluation and Contribution

In this chapter, the contributions of this thesis in the form of the DSR artifacts, publica-
tions, and related supervised theses are presented in Section 9.1. The research objective
and the research questions are evaluated and answered in Section 9.2. Finally, the chapter
is summarized in Section 9.4.

9.1 Contributions of the Dissertation Thesis

This section presents all relevant contributions of this dissertation thesis. First, the research
artifacts are presented. Second, an overview of publications is provided. Finally, the
contributing supervised theses are outlined.

9.1.1 Research Artifacts

This section provides an overview of all research artifacts that were output from the DSR
research cycles. The artifacts are divided into four types: formalization (F), method (M),
experiment (E), and case study (C). An overview of all research artifacts is shown in Fig-
ure 9.1. The overview shows the contributions in the context of the compliance manage-
ment domain. In light blue, there are contributions to centralized compliance management.
Purple shows contributions to decentralized compliance management.

The following list presents a summary of the artifacts together with the DSR cycle in
which they were created. The main author’s contribution is also discussed in cases where
multiple parties collaborated.

◦ F1 – FAR Ontology (Cycle 1.1) – The FAR ontology (Section 4.1) introduces
definitions of facts, acts, and rules suitable for software system execution. It is the
foundation upon which the DEMO machine is built.

◦ F2 – DEMO Machine (Cycle 1.1) – Is an execution language to simulate the
DEMO models and enables the creation of a BPMS based on DEMO methodology.
The DEMO machine is presented in Section 4.2.

131

9. Evaluation and Contribution

Theoretical Foundations

Compliance System Modeling

Compliance System Implementation and Execution

Compliance System Auditing and Optimization

Case Studies

F1 - FAR
Ontology

E2 - DEMO for
Blockchain

M2 - DasContract
to Solidity Smart

Contracts

M1 - DEMO to
Executable

BPMN

E1 - DEMO for
Increasing

Quality of SW
Specifications

F2 - DEMO
Machine

C1 - Czech
Arbitration Court

C3 - A
Decentralized

Mortgage

C2 - Czech Law
Digitalization
(32 complex
case studies)

C4 - Tokenized
EU Elections

M3 - Process
Digitalization

Using Blockchain

F3 - DasContract
DSL

Figure 9.1: Research artifacts

◦ F3 – DasContract DSL (Cycle 2.2) – Is a domain-specific language that allows
modeling of the blockchain smart contracts in an implementation-independent way.
The language is presented in section 8.2. The artifact M2 shows a way to generate
the Ethereum Solidity smart contracts from the DasContract models. A proof of
concept implementation of the DasContract editor and an environment to generate an
executable blockchain smart contract was developed and published on GitHub [139].
The proof of concept implementation was done to validate the DasContract DSL
and M2, and many supervised theses contributed to the implementation. The main
author supervised the development of the proof of concept.

◦ M1 – DEMO to Executable BPMN (Cycle 1.2) – This method provides a
way to generate executable BPMN models from the DEMO models (Chapter 5).
The execution semantics are based on the DEMO machine. O. Mráz described the
method and the main author of this thesis contributed a detailed explanation of the
execution of the DEMO models according to the DEMO machine.

◦ M2 – DasContract to Solidity Smart Contracts (Cycle 2.2) – Describes a
way to generate Ethereum Solidity smart contracts from DasContract models (Sec-
tion 8.3). The main author contributed supervision and guidance towards execution
of the DasContract models in a blockchain-independent way, and the co-author [A.32]
contributed with a specific implementation in the Ethereum Solidity.

132

9.1. Contributions of the Dissertation Thesis

◦ M3 – Process Digitalization Using Blockchain (Cycle 2.2) – is a part of
our proposed approach to decentralized compliance presented in Section 8.1. This
approach and the method were a contribution of the main author. The co-authors
contributed with specific domain knowledge required for the case studies and took
part in the modeling and implementation of the case studies.

◦ E1 – DEMO for Increasing Quality of SW Specifications (Main Cycle 1)
– this experiment was designed to empirically explore capturing complex process re-
quirements to digitize them using a software system. In the literature, we found only
elementary examples. However, large and complex process descriptions are used in
compliance management practice. The domain of procedural law was selected be-
cause the process descriptions are publicly available and very complex. The results
(Section 6.4) showed that applying DEMO to modeling process-based software re-
quirements helps to identify missing process acts and actors. All case studies were
published on GitHub [96, 144, 143]. The main author conducted the experiment,
provided extensive tutoring to the participants, and created a coursebook focused
on applying DEMO [A.12]. The participants of the experiment were students at the
Czech Technical University. The experiment consisted of 32 case studies where 115
276 words of the legal text were analyzed in approximately 2 440 hours. The outputs
of this experiment are artifacts C1 and C2.

◦ E2 – DEMO for Blockchain (Cycle 2.1) – this experiment was conducted to
explore the role of blockchain technology in EE theories (Section 7.1). The investiga-
tion started as a supervised thesis [A.21] and resulted in a publication [A.4]. Because
the publication was well received, the outcomes of the publications served as business
requirements for the DSR cycle 2.2, where the F3, M2, and M3 were created.

◦ C1 – Czech Arbitration Court (Main Cycle 1) – this was the first case study
conducted as part of E1 (Section 6.2). The first iteration of the case study was done
in a supervised thesis ([A.24]) and later improved together with the main author for
publication [96]. The study was used as a reference example for C2.

◦ C2 – Czech Law Digitalization (31 Case Studies) (Main Cycle 1) – were the
case studies conducted by students under the supervision and lecturing of the main
author as part of the Enterprise modeling class at the Czech Technical University
(Section 6.3). To achieve a great quality of the studies, only 22 of the 31 case studies
were manually selected for the final dataset published on GitHub [144, 143].

◦ C3 – A Decentralized Mortgage (Main Cycle 2) – is a first case study to demon-
strate the DasContract DSL(Section 8.5). The complete DasContract model and the
generated source code are published on Github [139]. The main author created the
decentralized mortgage case in DasContract DSL. The collaborators contributed to
implementing and testing the generated contract and analyzing the mortgage domain
in the Czech Republic.

133

9. Evaluation and Contribution

◦ C4 – Tokenized EU Elections (Main Cycle 2) – this case study (Section 8.6)
was made as a collaboration with a Portuguese master’s degree student who was
interested in the DasContract research. The parties collaborated on creating this
case study and published the results in [A.7].

9.1.2 Publications

This section presents all peer-reviewed publications related to the research in Table 9.1.
The related DSR artifacts and DSR cycles are included as well. A complete list of citations
is provided in Part VII. The individual contributions of the main author were discussed in
Section 9.1.1.

Table 9.1: Overview of our publications

Publication Artefacts DSR Cycles
Skotnica M.; van Kervel S.J.H.; Pergl R. To-
wards the Ontological Foundations for the Soft-
ware Executable DEMO Action and Fact Mod-
els [A.1]

F1 – FAR Ontology Cycle 1.1

Mráz O.; Náplava P.; Pergl R.; Skotnica M. Con-
verting DEMO PSI Transaction Pattern into
BPMN: A Complete Method [A.2]

M1 – DEMO to
BPMN

Cycle 1.2

Skotnica M.; van Kervel S.J.H.; Pergl R. A
DEMO Machine - A Formal Foundation for Ex-
ecution of DEMO Models [A.3]

F2 – DEMO Machine Cycle 1.1

Hornáčková B.; Skotnica M.; Pergl R. Exploring
a Role of Blockchain Smart Contracts in Enter-
prise Engineering [A.4]

E2 – DEMO for
Blockchain

Cycle 2.1

Skotnica M.; Pergl R. Das Contract - A Vi-
sual Domain Specific Language for Modeling
Blockchain Smart Contracts [A.5]

F3 – DasContract DSL Cycle 2.2

Skotnica M.; Klicpera J.; Pergl R. Towards
model-driven smart contract systems - code gen-
eration and improving expressivity of smart con-
tract modeling [A.6]

M2 – DasContract to
Solidity
C3 – A Decentralized
Mortgage

Cycle 2
Cycle 2.2

Skotnica M.; Apaŕıcio M.; Pergl R.; Guerreiro
S. Process digitalization using blockchain: EU
parliament elections case study [A.7]

M3 – Blockchain Pro-
cess Digitalization
C4 – EU Elections

Cycle 2

9.1.3 Supervised Theses

This section presents an overview of the supervised student theses related to the research
presented in this thesis. The main author supervised 22 student theses relevant to this

134

9.1. Contributions of the Dissertation Thesis

thesis, and 3 of them received the dean’s award. Table Table 9.2 presents all theses and
their relation to the DSR research cycles and research artifacts. In cases where the theses
were related to the research but had results not presented in this thesis, we marked the
related artifact as N/A. Some of the student theses followed with peer-reviewed publica-
tions presented in the previous section. The individual contributions of the main author
were discussed in Section 9.1.1. The student works usually explored new and interesting
possibilities in the research domain or helped with the implementation and tooling for the
concepts proposed in this thesis.

Table 9.2: Overview of supervised publications related to the research

Supervised Thesis Related
DSR Cycle

Related
Artefact

Buša R. Designing WYSIWYG Web Forms [A.13] Cycle 2 M2 – DasCon-
tract

Nymsa P. Mobile Enterprise Architecture Process
Analytic Tool Based on the DEMO Methodol-
ogy [A.14]

Cycle 1 N/A

Ančinec P. Open-source DEMO Construction and
Process Model Designer [A.15]

Cycle 1 N/A

Bydžovský T. A State Management in Multi-
client Single Page Web Applications [A.16]

Cycle 1 N/A

Drozd́ık M. Open-Source Legal Process Designer
in .NET Blazor [A.17]

Cycle 2 F3 – DasContract
DSL

Krbilová K. Process Mining in Finance Do-
main [A.18]

Cycle 1 N/A

Šelder O. Generating Plutus Smart Contracts
from DEMO Process Models [A.19]

Cycle 2
Cycle 2.2

M2 - DasContract
to Solidity

Lassaková M. Law Modelling Using BPMN and
DEMO [A.24]

Cycle 1 C1 - Czech Arbi-
tration Court

Hornáčková B. Using Blockchain Smart Contracts
in the DEMO Methodology [A.21]

Cycle 2.1 E2 - DEMO for
Blockchain

Jančovičová B. Next Generation Methods for
Development of Enterprise Information Sys-
tems [A.22]

Cycle 1 N/A

Lang M. WebAssembly Approach to Client-side
Web Development using Blazor Framework [94]

Cycle 1 N/A

Mikeš S. Evolvability of Business Process Mod-
els [A.25]

Cycle 1 N/A

Mužák M. Model-Driven Approach to Gover-
nance, Risk, and Compliance Systems Develop-
ment [A.26]

Cycle 1 N/A

135

9. Evaluation and Contribution

Table 9.2: Overview of supervised publications related to the research

Supervised Thesis Related
DSR Cycle

Related
Artefact

Frait J. Generating Ethereum Smart Contracts
from DasContract Language [A.27]

Cycle 2.2 M2 - DasContract
to Solidity

Bydžovský T. Decentralized Identity in DasCon-
tract Decentralized Applications [A.28]

Cycle 2 F3 - DasContract
DSL

Ančinec P. Domain-Specific Languages for Off-
chain UI in Decentralized Applications [A.29]

Cycle 2.2 F3 - DasContract
DSL

Urbánek Š. Exploring the use of Blockchain Smart
Contract in the E-Commerce [A.30]

Cycle 2.2 F3 - DasContract
DSL

Škrabal M. Use Cases for Decentralized Iden-
tity [A.20]

Cycle 2 N/A

Drozd́ık M. Generation of Plutus Smart Contracts
from DasContract models [A.31]

Cycle 2.2 M2 - DasContract
to Solidity

Klicpera J. Client-Side Application Development
Using Blazor Framework - a Blockchain Smart
Contract Designer Case Study [A.32]

Cycle 2.2 F3 - DasContract
DSL

Krbilová K. Blockchain Smart Contracts in Public
Sector [A.33]

Cycle 2 F3 - DasContract
DSL

Šelder O. Business Rules in Blockchain Smart
Contracts [A.34]

Cycle 2.2 F3 - DasContract
DSL

9.2 Evaluation of the Research Objective and Research
Questions

This section evaluates the research objective that was set to: “Investigate the gaps between
the DEMO methodology and its application in the design of centralized and decentralized
compliance management systems. For some of the identified gaps, propose artefacts that
could contribute to filling them. Finally, provide case studies of the proposed approaches
that resemble real-world use cases.”

To answer this research objective, two main research questions and four sub-research
questions were proposed. To answer the research questions, the research design (Figure 9.2)
and research strategy were presented in Chapter 3 according to the design science research
methodology. The resulting research artifacts were presented in Section 9.1.1 and are
mapped to the DSR cycles and research questions in Table 9.3. An extensive literature
review of the state-of-the-art was made in Part II. The centralized DSR cycle results were
presented in Part IV. The decentralized DSR cycle results were presented in Part V. Finally,
the research questions are answered in this section.

136

9.2. Evaluation of the Research Objective and Research Questions

Literature Review (Chapter 2)

Research Design (Chapter 3)

Design Science Research Strategy (Section 3.3)

Centralized Compliance Cycle

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a

methodology for
centralized
compliance

management

Sub-Cycle 1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Findings, Evaluation, and Contribution (Chapter 9)

Sub-Cycle 2: Conversion of DEMO to
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Centralized Compliance Main Cycle

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a DEMO

execution
language to

enable
development of
an IS based on

DEMO
methodology

Cycle 1.1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Cycle 1.2: Conversion of DEMO into
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Development
 Develop a

methodology for
centralized
compliance

management

Sub-Cycle 1: Formalize Execution of DEMO
Models (Chapter 4)

Awareness Suggestion

Development Evaluation

Sub-Cycle 2: Conversion of DEMO to
Executable BPMN Models (Chapter 5)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Decentralized Compliance Main Cycle

Awareness
Need for

decentralized
compliance

management
systems

Suggestion
Develop a method

to build a
methodology for

decentralized
compliance

management

Development
 Develop a

methodology for
decentralized
compliance

management

Cycle 2.1: Exploring a Role of Blockchain in
Enterprise Engineering (Chapter 7)

Awareness Suggestion

Development Evaluation

Cycle 2.2: DSL to Design and Generate
Blockchian Smart Contracts (Chapter 8)

Knowledge
Contribution

Awareness Suggestion

Development Evaluation

Knowledge
Contribution

Knowledge
Contribution

Knowledge
Contribution

Suggestion
Develop a method

to build a
methodology for

centralized
compliance

management

Awareness
Need for

compliance
management

systems
methodology
based on EE

principles

Suggestion
Develop a method

to enable a
centralized BPMS

based on the
DEMO

methodology

Awareness
Need for

centralized
compliance

management
systems based on

EE theories

Development
 Develop a proof

of concept
implementation

independent
 decentralized

BPMS

Suggestion
Develop a method

to enable an
implementation

independent
decentralized

BPMS

Figure 9.2: Our research strategy

9.2.1 Research Question 1

Research question 1 was formulated as: “How to design software systems to support busi-
ness process management requirements based on EE theories and DEMO methodology?”

This research question was answered in the main DSR cycle 1 for centralized compliance
management and presented in Part IV. The research question contains two sub-research
questions that are answered in Section 9.2.1.1 and Section 9.2.1.2. As described in Sec-
tion 3.2.1, the business requirements for this DSR cycle came from cooperation with a
professional company. The resulting artifacts are summarized in Section 9.1.1 and mapped
to the research questions in Table 9.3.

To summarize the answer to the research question: The software systems to support
BPM requirements based on EE theories and the DEMO methodology can be designed
by using the DEMO machine execution language. To demonstrate the feasibility of this
approach, a practical implementation was created in cooperation with a professional com-
pany and went to professional production (Section 9.3). Furthermore, experiment E1 was

137

9. Evaluation and Contribution

Table 9.3: Mapping of our research questions, DSR cycles, and artefacts

Research
Question

Centralized
Cycle

Cycle 1.1
Chapter 4

Cycle 1.2
Chapter 5

Decentralized
Cycle

Cycle 2.1
Chapter 7

Cycle 2.2
Chapter 8

RQ 1 C1,C2,E1
SRQ 1 F1,F2 F1,F2
SRQ 2 M1 M1
RQ 2 C3,C4
SRQ 3 E2
SRQ 4 M2,M3,F3 M2,M3,F3

conducted to show that the EE theories and DEMO methodology can increase the quality
of process-based software requirements in the domain of procedural law (Section 6.1).

The main limitation of using the EE theories and DEMO methodology to design soft-
ware systems to support BPM requirements is that the DEMO methodology is inherently
limited in its conceptualization possibilities. It is only applicable for ontological clarifi-
cation, assigning responsibilities, and modeling objects with their properties (the FM). It
does not help with any implementation-specific or technology-specific concerns, as they
are beyond its scope. However, complementing it with other methodologies and notations
is expected to be possible. Next, applying the DEMO methodology requires nontrivial
knowledge and practice, demonstrated in our experiment E1 (Section 6.1). Performing
this manually requires considerable elaboration.

9.2.1.1 Sub-Research Question 1

The sub-research question 1 was formulated as: “How to design software systems to support
business process management requirements based on EE theories and DEMO methodol-
ogy?”

This research question was answered in DSR cycle 1.1 by proposing FAR Ontology
(F1) and DEMO machine (F2) in Chapter 4. The formalizations were published in peer-
reviewed publications [A.1, A.3]. The practical implementation of the formalizations was
done in a professional software solution and went to professional production as described
in Section 9.3.

The main limitation of the execution language is that it is designed to support only
the full transaction axiom according to the DEMO theory. In software systems, the full
transaction axiom is rarely needed, and a subset of the transaction axiom would be enough.
This would be solved by adding more flexibility in the transaction axiom state machine
(Figure 4.1). However, the issue can be resolved in the presented formalization by setting
action rules for the unused transaction acts.

138

9.2. Evaluation of the Research Objective and Research Questions

9.2.1.2 Sub-Research Question 2

The sub-research question 2 was formulated as: “How should DEMO models be trans-
formed into BPMN models?” The research question was answered in DSR cycle 1.2 by
proposing a method to convert DEMO models into executable BPMN models (M1) in
Chapter 5. The method was published in a peer-review publication [A.2].

The main limitation of this approach is that the resulting BPMN diagrams are too
large. This is because the full DEMO transaction axiom is generated for each transaction.
Therefore, this approach should only serve as a blueprint for the transformation between
DEMO and BPMN, and the resulting BPMN should be manually adjusted according to
the best practices such as [135, 132]. Follow-up work was done in [155]; however, the main
limitation still remains.

9.2.2 Research Question 2

The research question 2 was formulated as: “How to digitize business processes using
blockchain smart contracts in a methodical way and eliminate programming errors while
avoiding a dependency on a particular blockchain implementation?”

This research question was answered in the main DSR cycle 2 for decentralized compli-
ance management and presented in Part V. The research question contains two sub-research
questions that are answered in Section 9.2.2.1 and Section 9.2.2.2. The resulting artefacts
are summarized in Section 9.1.1 and mapped to the research questions in Table 9.3.

To summarize the answer to the research question: The business processes can be digi-
tized using blockchain smart contracts in a methodical way by modeling the smart contract
in the proposed DasContract DSL F3 (Section 8.2) following the proposed approach and
method M3 (Section 8.1). A proof of concept implementation was created based on the
proposed formalism F3 and method M3 as part of supervised student theses (Section 9.1.3).
Further validation of this approach was done on two case-studies – a decentralized mort-
gage C3 (Section 8.5) and tokenized EU elections C4 (Section 8.6). Further case studies
were created as part of supervised student theses in [A.30, A.34, A.33].

The main limitation of our approach is that we could not empirically verify the elim-
ination of the programming errors. Moreover, avoiding a dependency on a particular
blockchain implementation is only partial, as mentioned in Section 9.2.2.2.

9.2.2.1 Sub-Research Question 3

The sub-research question 3 was formulated as: “How can blockchain smart contracts be
used in the implementation of a software system based on DEMO methodology?” The
research question was answered in DSR cycle 2.1 and presented in Chapter 7. The results
were also published in a peer-review publication [A.4].

We have answered sub-research question 3 by proposing two ways of using smart con-
tracts in the DEMO methodology in the context of EIS. Such integration would bring
blockchain benefits to process execution, namely secured and trustless storage of data and

139

9. Evaluation and Contribution

immutable transaction execution. This might bring a new way of looking at transactions
with external actors, where the blockchain can serve as trustless coordination of the op-
eration and a notarized data source. The application of the DEMO methodology to the
business processes behind smart contracts may bring insight and overview to the whole
operation. This may help to reduce unwanted states, prevent errors and improve security
which is crucial for smart contracts because they represent valuable assets. Further, it may
serve as a basis for creating well-designed Dapps and DAOs.

The major limitation of this approach was that the DEMO methodology applies only to
business processes involving human cooperation and co-production because it is based on
Habermas’s sociological theory of communicative acts [63]. If the target information system
is not expected to be controlled by human actors, using modeling languages described in
Section 2.2.1 and Section 2.2.2 is preferable. However, the existing formal languages do
not contain the ontological capability to express blockchain-specific constructs. Therefore,
this major limitation led to the formulation of the sub-research question 4.

9.2.2.2 Sub-Research Question 4

The sub-research question 4 was formulated as: “Is it feasible to generate blockchain smart
contracts from a high-level modelling language in a automated methodological way?” The
research question was answered in DSR cycle 2.2 and presented in Chapter 8. The results
were also published in peer-review publications [A.5, A.6].

Yes, it is feasible to generate blockchain by modeling the smart contract in the pro-
posed DasContract DSL (Section 8.2) following the proposed approach and method M3
(Section 8.1). And then use the proposed method M2 to convert the DasContract model
into the Ethereum Solidity smart contract (Section 8.3).

The major limitation of this approach remains the immaturity of available blockchain
implementations. According to Gartner [54], blockchain technology is very immature to
support most potential use cases, and there is still a tremendous amount of research,
implementation, and adoption was done. The second limitation of our approach is that
the DasContract model only allows us to express the procedural part of the contract and
the user input. The generated needs to be extended with a blockchain-specific source code
to work on a particular blockchain implementation.

9.3 Application of the Contributions

This section provides an overview of the theoretical and practical application of our con-
tributions presented in Section 9.1.

The most important application of our research came from our cooperation with a
professional company ForMetis Consultants BV [50], during the main centralized DSR cy-
cle. The design and development of the FAR ontology and DEMO machine were consulted
with the company and contributed to the creation of a proprietary ForMetis DEMO engine.
According to van Kervel’s (director of ForMetis) letter of support that is included in our

140

9.4. Chapter Summary

PhD thesis submission: “This software engine has been put in a professional production at
several companies where the unique precise implementation of complex business processes
has been proven.” Due to the proprietary nature of the ForMetis DEMO engine and the
privacy of the companies where it was implemented, we are not allowed to publish more
information about the projects.

The FAR ontology was used to allow modeling of REA compliant accounting systems
in [78]: “The FAR ontology enables the CC-CP model to utilize all communication facts
and any logic aggregated facts. The DEMO CC-CP model captures all the facts relevant
to the REA exchange process, and even other facts that are produced by REA information
and business events.” The paper then concludes with: “All relevant real-world phenomena
must be well captured by the DEMO CC-CP model; otherwise it is impossible to devise a
working REA compliant accounting system.” [78].

Our experiment in the domain of procedural law (Section 6.1) showed that applying the
EE theories and DEMO methodology could lead to an increased quality of process-based
software requirements. Compared with similar approaches (Section 6.4.5), our experiment
provides a large dataset published on this topic with 115 276 words. Other known methods
showed only smaller examples with up to 300 words. The proposed method provides a
clear method for determining missing process steps and actor roles while offering strong
guidelines for complexity management. This was not observed in similar approaches. All
23 case studies were published on GitHub [96, 144, 143].

A proof of concept implementation of the DasContract editor and an environment
to generate an executable blockchain smart contract was developed and published on
GitHub [139]. Two complex case studies were created – a decentralized mortgage (Sec-
tion 8.5) and tokenized EU elections (Section 8.6) as a validation of the proposed concept.
Further case studies were created as part of supervised student theses in [A.30, A.34, A.33].
The published results should serve as guidance for further research in the decentralized
compliance management systems domain. The interest in research in this area can be ob-
served in a number of citations of our peer-reviewed papers [A.4, A.5, A.6, A.7] presented
in Part VII.

9.4 Chapter Summary

In this chapter, all contributions to our research were presented as research artifacts, peer-
reviewed publications, and supervised theses. The original contribution of the main author
was clarified. The evaluation of the research objective and research questions was presented
with a summary of the main limitations. Finally, an application of the contributions was
mentioned.

141

Chapter 10

Conclusions

In this chapter, the whole thesis is summarized and the future work proposed.

10.1 Summary

In the introduction (Chapter 1) the domain of compliance management was introduced,
and the main challenges were pointed out. Digitalization of compliance management efforts
is desirable, and the discipline of EE can improve state of the art. Furthermore, a novel
field of decentralized compliance management based on blockchain technology is emerging
and needs deeper exploration. We narrowed our scope to the business process aspect of
the compliance management domain in formulating a research problem. Then proceeded
to formulate the research objective and research questions. An overview of the research
methodology and research strategy was presented.

Chapter 2 provided an overview of the most important theories and methods relevant
to the research. An overview of the compliance management approaches was presented
together with an overview how to model the domain and support with software. An intro-
duction to the most relevant EE theories, DEMO methodology, and the OER method was
made with a discussion about the ontological qualities of DEMO models. Comprehensive
guidance on how to read the DEMO models was made for readers unfamiliar with the
methodology.

In Chapter 3, the research strategy and research design to answer the research objective
and research questions were presented. Our research uses the DSR methodology adopted
for IS research according to best practices for PhD theses published by other researchers.
According to the DSR methodology, a rearch strategy for our research is presented. The
research strategy consists of two main DSR cycles, one for the centralized compliance
systems and the second for the decentralized compliance systems. The assumptions, scope,
and limitations of our research were also presented.

Part IV presents the most important results from our centralized compliance DSR re-
search cycle. The main focus was finding and bridging the gaps between the EE theories
and their software implementation. A professional company provided the business require-

143

10. Conclusions

ment for this DSR cycle and identified the largest gap as a need for an execution language
for DEMO models. To bridge this gap, the FAR ontology and DEMO machine formal-
izations were developed and presented in Chapter 4. The professional company further
used the proposed formalizations to develop a software system successfully deployed to its
customers.

An alternative approach to bridge the gap between the EE theories and their software
implementation was proposing a method to convert DEMO models to BPMN models. This
method was presented in Chapter 5. The method serves as a blueprint for how to proceed
with the execution of DEMO models in state-of-the-art software systems.

In Chapter 6, an experiment to apply the EE theories to improve the quality of process-
based software requirements. The experiment consisted of 32 case studies where 115 276
words of the legal text were analyzed in approximately 2 440 hours. The evaluation of the
case studies revealed missing process steps (80.10%) and actor roles. Only 23 of the 32
case studies were manually selected, published on GitHub [96, 144, 143], and used in the
evaluation.

Part V presents the most important results from our decentralized compliance DSR
cycle. The main focus was on formalizing a language DasContract to model decentralized
compliance processes and then provide support to generate blockchain smart contracts from
the developed formalization. A proof of concept implementation of the DasContract editor
and an environment to generate an executable blockchain smart contract was developed
and published on GitHub [139]. Two complex case studies were created – a decentralized
mortgage (Section 8.5) and tokenized EU elections (Section 8.6) as a validation of the
proposed concept.

In the Chapter 9, all contributions of our research were summarized, evaluated, and
the research questions answered. The main limitations of our result were also discussed.
The application of the research results was discussed.

Finally, the Part VII presents our peer-reviewed publications with their citations and
22 student theses we supervised on topics related to our research. Other related materials,
such as our coursebook DEMO for IT [A.12], are also mentioned.

10.2 Future Work

The author of the dissertation thesis suggests to further explore the following topics:

◦ Further experiments in process digitalization using DEMO – Conducting more ex-
periments may reveal sufficient textual descriptions available at a necessary level of
detail. In addition, quantifying the missing actor roles specification in the current
experiment would be desirable, as mentioned in Section 6.4.2.2.

◦ Automation of the OER method – Conducting the OER method manually is elabo-
rate. Although ontological analysis cannot be fully automated inherently, the promis-
ing research results in the area of NLP could help, such as [26, 47, 173]. Applying

144

10.2. Future Work

such an approach to the first phase of the proposed OER method may reduce the
need for manual processing.

◦ Extend the DasContract DSL language with a Decentralized Identity (DiD) [167]
and Blockchain oracles such as ChainLink [147].

◦ Compare possibilities of executing the processes in public vs. private blockchains.

◦ Compare different blockchain implementations such as the Cardano [80], European
Blockchain Services Infrastructure [41], and Hyperledger Fabric [153] and their ability
to execute DasContract models.

◦ Evolvability of the proposed DasContract DSL with Normalized Systems Theory [98].

145

Part VII

Publications

147

Bibliography

[1] Flexible manufacturing systems: an overview. In Modeling, Simulation, and
Control of Flexible Manufacturing Systems, volume Volume 6 of Series in
Intelligent Control and Intelligent Automation, pages 15–37. WORLD SCI-
ENTIFIC, January 1999. URL: https://www.worldscientific.com/doi/abs/
10.1142/9789812839763 0002, doi:10.1142/9789812839763 0002.

[2] Crypto Hackers Set for Record Year After Looting Over $3 Billion. Bloomberg.com,
October 2022. URL: https://www.bloomberg.com/news/articles/2022-10-13/
crypto-hackers-set-for-record-year-after-looting-over-3-billion.

[3] Sarbanes-Oxley Act. Sarbanes-oxley act. Washington DC, 2002. Publisher: Citeseer.

[4] Petr Ančinec. Open-source DEMO Construction and Process Model Designer, June
2019. URL: http://hdl.handle.net/10467/83222.

[5] Petr Ančinec. Domain-Specific Languages for Off-chain UI in Decentralized Appli-
cations, June 2021. URL: http://hdl.handle.net/10467/94542.

[6] Jos CM Baeten, Twan Basten, Twan Basten, and MA Reniers. Process algebra:
equational theories of communicating processes, volume 50. Cambridge university
press, 2010.

[7] Kakoli Bandyopadhyay, Peter P Mykytyn, and Kathleen Mykytyn. A framework for
integrated risk management in information technology. Management Decision, 1999.
Publisher: MCB UP Ltd.

[8] BIS. The Basel Framework, 2019. URL: https://www.bis.org/basel framework/.

[9] Blockchair. Ethereum transactions per second, 2020. URL: https:

//blockchair.com/ethereum/charts/transactions-per-second?compare=
bitcoin&interval=full.

149

https://www.worldscientific.com/doi/abs/10.1142/9789812839763_0002
https://www.worldscientific.com/doi/abs/10.1142/9789812839763_0002
https://doi.org/10.1142/9789812839763_0002
https://www.bloomberg.com/news/articles/2022-10-13/crypto-hackers-set-for-record-year-after-looting-over-3-billion
https://www.bloomberg.com/news/articles/2022-10-13/crypto-hackers-set-for-record-year-after-looting-over-3-billion
http://hdl.handle.net/10467/83222
http://hdl.handle.net/10467/94542
https://www.bis.org/basel_framework/
https://blockchair.com/ethereum/charts/transactions-per-second?compare=bitcoin&interval=full
https://blockchair.com/ethereum/charts/transactions-per-second?compare=bitcoin&interval=full
https://blockchair.com/ethereum/charts/transactions-per-second?compare=bitcoin&interval=full

Bibliography

[10] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engi-
neering in Practice: Second Edition. Morgan & Claypool Publishers, 2nd edition,
2017.

[11] Michael Brenner. Financial cryptography and data security : FC 2017 international
workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, sliema, malta, april 7,
2017, revised selected papers. Springer, Cham, Switzerland, 2017.

[12] Vitalik Buterin. Ethereum and oracles, 2014. Type: blog tex.referencetype: blog.
URL: https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/.

[13] Radek Buša. Designing WYSIWYG Web Forms, June 2018. URL: http://

hdl.handle.net/10467/77488.

[14] Tomáš Bydžovský. A State Management in Multi-client Single Page Web Applica-
tions, June 2019. URL: http://hdl.handle.net/10467/83141.

[15] Tomáš Bydžovský. Decentralized Identity in DasContract Decentralized Applica-
tions, June 2021. URL: http://hdl.handle.net/10467/94500.

[16] Artur Caetano, Aurélio Assis, José Borbinha, and José Tribolet. An Application
of the Psi-Theory to the Analysis of Business Process Models. SpringerLink, pages
258–267, 2013. doi:10.1007/978-3-642-36611-6 24.

[17] Camunda. Camunda BPM System, 2022. URL: https://camunda.com/.

[18] Capgemini. The new future of Compliance and BPM, 2017.
URL: https://www.capgemini.com/wp-content/uploads/2017/07/
The New Future of Compliance and BPM.pdf.

[19] Josep Carmona. Business process management : 15th international conference, BPM
2017, barcelona, spain, september 10-15, 2017, proceedings. Springer, Cham, Switzer-
land, 2017.

[20] Cary Coglianese and Jennifer Nash. Compliance Management Systems: Do They
Make a Difference?, August 2020. URL: https://papers.ssrn.com/abstract=
3598264.

[21] CoinGeco. CoinGecko yield farming survey 2020, 2020. URL: https://

www.coingecko.com/buzz/yield-farming-survey-2020?locale=en.

[22] OGC Office of Government Commerce. The official introduction to the ITIL ser-
vice lifecycle. IT infrastructure library. Stationery Office, 2007. URL: https:

//books.google.cz/books?id=9uLkMMqRKrYC.

150

https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/
http://hdl.handle.net/10467/77488
http://hdl.handle.net/10467/77488
http://hdl.handle.net/10467/83141
http://hdl.handle.net/10467/94500
https://doi.org/10.1007/978-3-642-36611-6_24
https://camunda.com/
https://www.capgemini.com/wp-content/uploads/2017/07/The_New_Future_of_Compliance_and_BPM.pdf
https://www.capgemini.com/wp-content/uploads/2017/07/The_New_Future_of_Compliance_and_BPM.pdf
https://papers.ssrn.com/abstract=3598264
https://papers.ssrn.com/abstract=3598264
https://www.coingecko.com/buzz/yield-farming-survey-2020?locale=en
https://www.coingecko.com/buzz/yield-farming-survey-2020?locale=en
https://books.google.cz/books?id=9uLkMMqRKrYC
https://books.google.cz/books?id=9uLkMMqRKrYC

Bibliography

[23] Steve Cook, Conrad Bock, Pete Rivett, Tom Rutt, Ed Seidewitz, Bran Selic, and
Doug Tolbert. Unified Modeling Language (UML) Version 2.5.1. Standard, Object
Management Group (OMG), December 2017. URL: https://www.omg.org/spec/
UML/2.5.1.

[24] José Cordeiro, Joaquim Filipe, and Kecheng Liu. A UML profile for enterprise
ontology. Enterprise Systems and Technology, page 7, 2008.

[25] Kevin Curran. E-voting on the blockchain. The Journal of the British Blockchain
Association, 1(2):4451, 2018. Publisher: The British Blockchain Association.

[26] Paulius Danenas, Tomas Skersys, and Rimantas Butleris. Natural lan-
guage processing-enhanced extraction of SBVR business vocabularies and busi-
ness rules from UML use case diagrams. Data & Knowledge Engineering,
128:101822, July 2020. URL: https://www.sciencedirect.com/science/article/
pii/S0169023X1930299X, doi:10.1016/j.datak.2020.101822.

[27] Chris Dannen. Introducing ethereum and solidity. O‘Reilly Media, Inc, Brooklyn,
New York, USA, 2017.

[28] Joop de Jong. Designing the Information Organization from Ontological Perspec-
tive. In Wil van der Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw,
Clemens Szyperski, Antonia Albani, Jan L. G. Dietz, and Jan Verelst, editors, Ad-
vances in Enterprise Engineering V, volume 79, pages 1–15. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011.

[29] Jan Dietz. Enterprise ontology theory and methodology. Springer, Berlin New York,
2006.

[30] Jan Dietz. The discipline of enterprise engineering, 2014. Published: [ONLINE]
[accessed: 25. 4. 2014]. URL: https://www.alexandria.unisg.ch/export/DL/
224477.pdf.

[31] Jan Dietz, Jan Hoogervorst, Antonia Albani, David Aveiro, Eduard Babkin, Joseph
Barjis, Artur Caetano, Philip Huysmans, J. Iijima, Steven Kervel, Hans Mulder,
Martin Op ’t Land, Henderik Proper, Jorge Sanz, Linda Terlouw, José Tribolet, Jan
Verelst, and Robert Winter. The discipline of Enterprise Engineering. International
Journal of Organisational Design and Engineering, 3:86–114, 2013. doi:10.1504/
IJODE.2013.053669.

[32] Jan L. G. Dietz and Hans B. F. Mulder. Enterprise Ontology: A Human-Centric
Approach to Understanding the Essence of Organisation. The Enterprise Engineering
Series. Springer International Publishing, 2020. URL: https://www.springer.com/
gp/book/9783030388539, doi:10.1007/978-3-030-38854-6.

[33] Jan L.G. Dietz. The Essence of Organization - an Introduction to Enterprise Engi-
neering. Sapio bv, 2012.

151

https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://www.sciencedirect.com/science/article/pii/S0169023X1930299X
https://www.sciencedirect.com/science/article/pii/S0169023X1930299X
https://doi.org/10.1016/j.datak.2020.101822
https://www.alexandria.unisg.ch/export/DL/224477.pdf
https://www.alexandria.unisg.ch/export/DL/224477.pdf
https://doi.org/10.1504/IJODE.2013.053669
https://doi.org/10.1504/IJODE.2013.053669
https://www.springer.com/gp/book/9783030388539
https://www.springer.com/gp/book/9783030388539
https://doi.org/10.1007/978-3-030-38854-6

Bibliography

[34] Remco Dijkman and Pieter Van Gorp. BPMN 2.0 execution semantics formalized
as graph rewrite rules. In Jan Mendling, Matthias Weidlich, and Mathias Weske,
editors, Business process modeling notation, pages 16–30, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[35] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Formal semantics and anal-
ysis of BPMN process models using Petri nets. Queensland University of Technology,
Tech. Rep, pages 1–30, 2007.

[36] Martin Drozd́ık. Open-Source Legal Process Designer in .NET Blazor, June 2020.
URL: http://hdl.handle.net/10467/88271.

[37] Bruno Borlini Duarte, Andre Luiz de Castro Leal, Ricardo de Almeida Falbo, Gi-
ancarlo Guizzardi, Renata S. S. Guizzardi, and Vı́tor E. Silva Souza. Ontological
foundations for software requirements with a focus on requirements at runtime. Ap-
plied Ontology, 13(2):73–105, May 2018. URL: http://doi.org/10.3233/AO-180197,
doi:10.3233/AO-180197.

[38] Emmy Dudok, Sérgio Guerreiro, Eduard Babkin, Robert Pergl, and Steven J. H. van
Kervel. Enterprise Operational Analysis Using DEMO and the Enterprise Operat-
ing System. In David Aveiro, Robert Pergl, and Michal Valenta, editors, Advances
in Enterprise Engineering IX, number 211 in Lecture Notes in Business Informa-
tion Processing, pages 3–18. Springer International Publishing, June 2015. 00000.
URL: http://link.springer.com/chapter/10.1007/978-3-319-19297-0 1, doi:

10.1007/978-3-319-19297-0 1.

[39] Ondrej Dvorak and Robert Pergl. Tackling rapid technology changes by applying
enterprise engineering theories. Science of Computer Programming, 215:23, March
2022. doi:https://doi.org/10.1016/j.scico.2021.102747.

[40] Céline Décosse, Wolfgang A. Molnar, and Henderik A. Proper. What Does DEMO
Do? A Qualitative Analysis about DEMO in Practice: Founders, Modellers and Ben-
eficiaries. In Wil van der Aalst, John Mylopoulos, Michael Rosemann, Michael J.
Shaw, Clemens Szyperski, David Aveiro, José Tribolet, and Duarte Gouveia, edi-
tors, Advances in Enterprise Engineering VIII, volume 174, pages 16–30. Springer
International Publishing, Cham, 2014.

[41] EBSI. Meet EUBlockchain: The European Blockchain Services Infrastructure
(EBSI), 2019. URL: https://www.youtube.com/watch?v=mpbWQbkl8 g.

[42] S. Ellis, A. Juels, and S. Nazarov. ChainLink: A decentralized oracle network. 2017.
URL: https://link.smartcontract.com/whitepaper.

[43] Ethereum. Ethereum project. URL: https://ethereum.org/.

[44] ethernodes.org. The ethereum nodes explorer. tex.howpublished: [online]. URL:
https://www.ethernodes.org.

152

http://hdl.handle.net/10467/88271
http://doi.org/10.3233/AO-180197
https://doi.org/10.3233/AO-180197
http://link.springer.com/chapter/10.1007/978-3-319-19297-0_1
https://doi.org/10.1007/978-3-319-19297-0_1
https://doi.org/10.1007/978-3-319-19297-0_1
https://doi.org/https://doi.org/10.1016/j.scico.2021.102747
https://www.youtube.com/watch?v=mpbWQbkl8_g
https://link.smartcontract.com/whitepaper
https://ethereum.org/
https://www.ethernodes.org

Bibliography

[45] European Commission. Shaping Europe’s digital future: Blockchain Strategy,
2022. URL: https://digital-strategy.ec.europa.eu/en/policies/blockchain-
strategy.

[46] European Parliament. General Data Protection Regulation (GDPR), 2016. URL:
https://eur-lex.europa.eu/eli/reg/2016/679/oj.

[47] Shaokun Fan, Zhimin Hua, Veda C. Storey, and J. Leon Zhao. A process on-
tology based approach to easing semantic ambiguity in business process mod-
eling. Data & Knowledge Engineering, 102:57–77, 2016. URL: https://

www.sciencedirect.com/science/article/pii/S0169023X16000112, doi:https:

//doi.org/10.1016/j.datak.2016.01.001.

[48] Filip Fatz, Philip Hake, and Peter Fettke. Towards tax compliance by design: A
decentralized validation of tax processes using blockchain technology. In 2019 IEEE
21st conference on business informatics (CBI), volume 01, pages 559–568, 2019.
doi:10.1109/CBI.2019.00071.

[49] Carlos Figueira and David Aveiro. A New Action Rule Syntax for DEmo MOdels
Based Automatic worKflow procEss geneRation (DEMOBAKER). In David Aveiro,
José Tribolet, and Duarte Gouveia, editors, Advances in Enterprise Engineering
VIII, number 174 in Lecture Notes in Business Information Processing, pages 46–60.
Springer International Publishing, May 2014.

[50] ForMetis. Online DEMO modeling tool, 2011. Published: [ONLINE] [accessed: 25.
4. 2014]. URL: https://www.demoworld.nl/Portal/Home.

[51] Jan Frait. Generating Ethereum Smart Contracts from DasContract Language, Au-
gust 2020. URL: http://hdl.handle.net/10467/90034.

[52] Luciano Garćıa-Bañuelos, Alexander Ponomarev, Marlon Dumas, and Ingo Weber.
Optimized execution of business processes on blockchain. September 2017. doi:

10.1007/978-3-319-65000-5 8.

[53] Bryan A. Garner. Black’s Law Dictionary: Deluxe Ninth Edition. West, 2009.

[54] Gartner. The Reality of Blockchain, 2019. URL: https://www.gartner.com/
smarterwithgartner/the-reality-of-blockchain/.

[55] Gartner. Gartner Information Technology Glossary, 2022. URL: https://

www.gartner.com/en/information-technology/glossary.

[56] Github. Solidity for blockly. URL: https://github.com/promethe42/blockly-
solidity.

[57] Google. Blockly. URL: https://developers.google.com/blockly/.

153

https://digital-strategy.ec.europa.eu/en/policies/blockchain-strategy
https://digital-strategy.ec.europa.eu/en/policies/blockchain-strategy
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.sciencedirect.com/science/article/pii/S0169023X16000112
https://www.sciencedirect.com/science/article/pii/S0169023X16000112
https://doi.org/https://doi.org/10.1016/j.datak.2016.01.001
https://doi.org/https://doi.org/10.1016/j.datak.2016.01.001
https://doi.org/10.1109/CBI.2019.00071
https://www.demoworld.nl/Portal/Home
http://hdl.handle.net/10467/90034
https://doi.org/10.1007/978-3-319-65000-5_8
https://doi.org/10.1007/978-3-319-65000-5_8
https://www.gartner.com/smarterwithgartner/the-reality-of-blockchain/
https://www.gartner.com/smarterwithgartner/the-reality-of-blockchain/
https://www.gartner.com/en/information-technology/glossary
https://www.gartner.com/en/information-technology/glossary
https://github.com/promethe42/blockly-solidity
https://github.com/promethe42/blockly-solidity
https://developers.google.com/blockly/

Bibliography

[58] Duarte Gouveia and David Aveiro. Modeling the system described by the EU Gen-
eral Data Protection Regulation with DEMO. In Enterprise Engineering Working
Conference, pages 144–158. Springer, 2018.

[59] Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993.

[60] Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual Models, vol-
ume 015. University of Twente, Enschede, 2005.

[61] Giancarlo Guizzardi, Lúıs Ferreira Pires, and Marten Sinderen. An Ontology-Based
Approach for Evaluating the Domain Appropriateness and Comprehensibility Ap-
propriateness of Modeling Languages. In David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Os-
car Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Ter-
zopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, Lionel Briand, and
Clay Williams, editors, Model Driven Engineering Languages and Systems, volume
3713, pages 691–705. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. URL:
http://80.link.springer.com.dialog.cvut.cz/chapter/10.1007/11557432 51.

[62] Giancarlo Guizzardi and Gerd Wagner. Can BPMN be used for making simulation
models? Lecture Notes in Business Information Processing, 88 LNBIP:100–115,
2011.

[63] J. Habermas and T. McCarthy. The Theory of Communicative Action: Reason and
the rationalization of society. The Theory of Communicative Action. Beacon Press,
1984. URL: https://books.google.cz/books?id=kuFhjNZuHTAC.

[64] Haes. Enterprise governance of information technology : achieving alignment and
value, featuring COBIT 5. Springer, Cham, 2015.

[65] Sharon Halliday, Karin Badenhorst, and Rossouw Von Solms. A business approach
to effective information technology risk analysis and management. Information Man-
agement & Computer Security, 1996. Publisher: MCB UP Ltd.

[66] Terry Halpin. Fact-Oriented Modeling: Past, Present and Future. In Conceptual
Modelling in Information Systems Engineering, pages 19–38. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2007.

[67] Terry Halpin. Object-Role Modeling Fundamentals: A Practical Guide to Data Mod-
eling with ORM. Technics Publications, Basking Ridge, NJ, first edition edition,
April 2015.

[68] Michael Hammer. What is business process management? In Jan vom Brocke and
Michael Rosemann, editors, Handbook on business process management 1: Intro-
duction, methods, and information systems, pages 3–16. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015. doi:10.1007/978-3-642-45100-3.

154

http://80.link.springer.com.dialog.cvut.cz/chapter/10.1007/11557432_51
https://books.google.cz/books?id=kuFhjNZuHTAC
https://doi.org/10.1007/978-3-642-45100-3

Bibliography

[69] Hands on Banking. Steps in the lending process. 2017. tex.howpublished:
[online]. URL: https://handsonbanking.org/adults/buying-home/getting-
mortgage/steps-in-the-lending-process/.

[70] Paul Webster Hare. Making diplomacy work: intelligent innovation for the modern
world. CQ Press, 2015.

[71] Mustafa Hashmi, Guido Governatori, Ho-Pun Lam, and Moe Thandar Wynn. Are
we done with business process compliance: state of the art and challenges ahead.
Knowledge and Information Systems, 57(1):79–133, October 2018. doi:10.1007/
s10115-017-1142-1.

[72] S. Heller. Usage of DEMO Methods for BPMN Models Creation. Master’s thesis,
Czech Technical University in Prague. Computing and Information Centre., 2016.
URL: http://hdl.handle.net/10467/62776.

[73] Henrique Henriques, Hugo Lourenço, Vasco Amaral, and Miguel Goulão. Improving
the Developer Experience with a Low-Code Process Modelling Language. In Proceed-
ings of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MODELS ’18, pages 200–210, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3239372.3239387.

[74] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Q., 28(1):75–105, March 2004.

[75] HHS. Summary of the HIPAA Security Rule, 2013. URL: https://www.hhs.gov/
hipaa/for-professionals/security/laws-regulations/index.html.

[76] Barbora Hornáčková. Using Blockchain Smart Contracts in the DEMOMethodology,
January 2018. URL: http://hdl.handle.net/10467/74045.

[77] Barbora Hornáčková, Marek Skotnica, and Robert Pergl. Exploring a Role of
Blockchain Smart Contracts in Enterprise Engineering. In David Aveiro, Giancarlo
Guizzardi, Sérgio Guerreiro, and Wided Guédria, editors, Advances in Enterprise
Engineering XII, pages 113–127, Cham, 2019. Springer International Publishing.

[78] F Hunka and S van Kervel. A generic DEMOmodel for co-creation and co-production
as a basis for a truthful and appropriate REA model representation. International
Conference on Business Process . . . , 2019. Publisher: Springer. URL: https://
link.springer.com/chapter/10.1007/978-3-030-30429-4 14, doi:10.1007/978-
3-030-30429-4 14.

[79] Gregory Hutchins. ISO 31000: 2018 enterprise risk management. Greg Hutchins,
2018.

[80] IOHK. Cardano Blockchain, 2017. URL: https://why.cardano.org/en/
introduction/motivation/.

155

https://handsonbanking.org/adults/buying-home/getting-mortgage/steps-in-the-lending-process/
https://handsonbanking.org/adults/buying-home/getting-mortgage/steps-in-the-lending-process/
https://doi.org/10.1007/s10115-017-1142-1
https://doi.org/10.1007/s10115-017-1142-1
http://hdl.handle.net/10467/62776
https://doi.org/10.1145/3239372.3239387
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
http://hdl.handle.net/10467/74045
https://link.springer.com/chapter/10.1007/978-3-030-30429-4_14
https://link.springer.com/chapter/10.1007/978-3-030-30429-4_14
https://doi.org/10.1007/978-3-030-30429-4_14
https://doi.org/10.1007/978-3-030-30429-4_14
https://why.cardano.org/en/introduction/motivation/
https://why.cardano.org/en/introduction/motivation/

Bibliography

[81] ISO. ISO/IEC 27000 family - Information security management systems, 2019. URL:
https://www.iso.org/isoiec-27001-information-security.html.

[82] ISO. International Organization for Standardization (ISO), 2022. URL: https:
//www.iso.org.

[83] Barbora Jančovičová. Next Generation Methods for Development of Enterprise In-
formation Systems, February 2019. URL: http://hdl.handle.net/10467/80244.

[84] Thomas Johanndeiter, Anat Goldstein, and Ulrich Frank. Towards Business Process
Models at Runtime. MoDELS@ Run. time, 1079:13–25, 2013.

[85] Seema Kedar. Programming Paradigms And Methodology. Technical Publications,
January 2008.

[86] Steven JH Van Kervel, John Hintzen, Tycho van Meeuwen, Joost Vermolen, and
Bob Zijlstra. A professional case management system in production, modeled and
implemented using DEMO. In Molnar, Wolfgang A., Henderik A. Proper, Jelena
Zdravkovic, Peri Loucopoulos, Oscar Pastor, and Sybren de Kinderen, editors, Com-
plementary proceedings of the 8th Workshop on Transformation & Engineering of
Enterprises (TEE 2014), and the 1st International Workshop on Capability-oriented
Business Informatics (CoBI 2014), volume 1182, Geneva, Switzerland, July 2014.
Technical University of Aachen.

[87] Meriem Kherbouche and Bálint Molnár. Formal Model Checking and Transforma-
tions of Models Represented in UML with Alloy. In Ajantha Dahanayake, Oscar
Pastor, and Bernhard Thalheim, editors, Modelling to Program, Communications in
Computer and Information Science, pages 127–136, Cham, 2021. Springer Interna-
tional Publishing. doi:10.1007/978-3-030-72696-6 6.

[88] KPMG. The future of Compliance, 2016. URL: https://assets.kpmg/content/
dam/kpmg/ch/pdf/ch-ac-news-55-article-04-en.pdf.

[89] KPMG. Innovating compliance through automation, 2019.
URL: https://assets.kpmg/content/dam/kpmg/bm/pdf/2019/02/
ComplianceAutomationSurvey-bda-f-web.pdf.

[90] Katarina Krbilová. Process Mining in Finance Domain, January 2020. URL: http:
//hdl.handle.net/10467/86182.

[91] Marien R. Krouwel, Martin Opt Land, and Henderik A. Proper. Generating Low-
Code Applications from Enterprise Ontology. In Balbir S. Barn and Kurt Sand-
kuhl, editors, The Practice of Enterprise Modeling, Lecture Notes in Business In-
formation Processing, pages 18–32, Cham, 2022. Springer International Publishing.
doi:10.1007/978-3-031-21488-2 2.

156

https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org
https://www.iso.org
http://hdl.handle.net/10467/80244
https://doi.org/10.1007/978-3-030-72696-6_6
https://assets.kpmg/content/dam/kpmg/ch/pdf/ch-ac-news-55-article-04-en.pdf
https://assets.kpmg/content/dam/kpmg/ch/pdf/ch-ac-news-55-article-04-en.pdf
https://assets.kpmg/content/dam/kpmg/bm/pdf/2019/02/ComplianceAutomationSurvey-bda-f-web.pdf
https://assets.kpmg/content/dam/kpmg/bm/pdf/2019/02/ComplianceAutomationSurvey-bda-f-web.pdf
http://hdl.handle.net/10467/86182
http://hdl.handle.net/10467/86182
https://doi.org/10.1007/978-3-031-21488-2_2

Bibliography

[92] Vitus SW Lam. A precise execution semantics for BPMN. IAENG International
Journal of Computer Science, 39(1):20–33, 2012.

[93] Pablo Lamela Seijas and Simon Thompson. Marlowe: Financial contracts on
blockchain: 8th international symposium, ISoLA 2018, limassol, cyprus, november
5-9, 2018, proceedings, part IV. pages 356–375. November 2018. doi:10.1007/978-
3-030-03427-6 27.

[94] Matěj Lang. WebAssembly Approach to Client-side Web Development using Blazor
Framework, June 2019. URL: http://hdl.handle.net/10467/82332.

[95] Martina Lassaková. Law Modelling Using BPMN and DEMO, June 2019. URL:
http://hdl.handle.net/10467/82328.

[96] Martina Lassaková, Marek Skotnica, and Robert Pergl. Czech Arbitration
Court - Case Study Dataset, 2021. URL: https://github.com/CCMiResearch/
DEMOCaseStudies/tree/master/ArbitrationCourt.

[97] Orlenys López-Pintado, Luciano Garćıa-Bañuelos, Marlon Dumas, Ingo Weber, and
Alexander Ponomarev. CATERPILLAR: A Business Process Execution Engine on
the Ethereum Blockchain. CoRR, abs/1808.03517, 2018. eprint: 1808.03517. URL:
http://arxiv.org/abs/1808.03517.

[98] H. Mannaert, P. De Bruyn, and J. Verelst. Exploring entropy in software systems:
towards a precise definition and design rules. In Proceedings of the Seventh Interna-
tional Conference on Systems (ICONS), pages 93–99, Saint Gilles, Reunion Island,
2012.

[99] Herwig Mannaert and Jan Verelst. Normalized Systems—Re-creating Information
Technology Based on Laws for Software Evolvability. Koppa, Kermt, Belgium, 2009.
00049.

[100] Jan Mendling. Event-Driven Process Chains (EPC). In Jan Mendling, editor, Metrics
for Process Models: Empirical Foundations of Verification, Error Prediction, and
Guidelines for Correctness, Lecture Notes in Business Information Processing, pages
17–57. Springer, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-89224-3 2.

[101] MGIC for Homebuyers. The mortgage process. 2017. tex.howpublished: [on-
line]. URL: https://homebuyers.mgic.com/getting-your-mortgage/mortgage-
process.html.

[102] Stanislav Mikeš. Evolvability of Business Process Models, February 2019. URL:
http://hdl.handle.net/10467/80236.

[103] Makiko Mita, Kensuke Ito, Shohei Ohsawa, and Hideyuki Tanaka. What is stable-
coin?: A survey on price stabilization mechanisms for decentralized payment systems.

157

https://doi.org/10.1007/978-3-030-03427-6_27
https://doi.org/10.1007/978-3-030-03427-6_27
http://hdl.handle.net/10467/82332
http://hdl.handle.net/10467/82328
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/ArbitrationCourt
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/ArbitrationCourt
http://arxiv.org/abs/1808.03517
https://doi.org/10.1007/978-3-540-89224-3_2
https://homebuyers.mgic.com/getting-your-mortgage/mortgage-process.html
https://homebuyers.mgic.com/getting-your-mortgage/mortgage-process.html
http://hdl.handle.net/10467/80236

Bibliography

In 2019 8th international congress on advanced applied informatics (IIAI-AAI), pages
60–66, 2019. tex.organization: IEEE.

[104] Scott Mitchell. GRC capability model version 2.1. OCEG, Scottsdale, Ariz, 2012.

[105] Hamid R. Motahari-Nezhad and Keith D. Swenson. Adaptive Case Management:
Overview and Research Challenges. In 2013 IEEE 15th Conference on Business
Informatics, pages 264–269, July 2013. ISSN: 2378-1971. doi:10.1109/CBI.2013.44.

[106] Ondřej Mráz, Pavel Náplava, Robert Pergl, and Marek Skotnica. Converting DEMO
PSI Transaction Pattern into BPMN: A Complete Method. In David Aveiro, Robert
Pergl, Giancarlo Guizzardi, João Paulo Almeida, Rodrigo Magalhães, and Hans
Lekkerkerk, editors, Advances in Enterprise Engineering XI: 7th Enterprise Engi-
neering Working Conference, EEWC 2017, Antwerp, Belgium, May 8-12, 2017, Pro-
ceedings, pages 85–98. Springer International Publishing, Cham, 2017. URL: http://
dx.doi.org/10.1007/978-3-319-57955-9 7, doi:10.1007/978-3-319-57955-9 7.

[107] Martin Mužák. Model-Driven Approach to Governance, Risk, and Compliance Sys-
tems Development, June 2019. URL: http://hdl.handle.net/10467/82311.

[108] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem, 2009. tex.added-at: 2014-04-17T08:33:06.000+0200 tex.biburl:
https://www.bibsonomy.org/bibtex/23db66df0fc9fa2b5033f096a901f1c36/ngnn
tex.interhash: 423c2cdff70ba0cd0bca55ebb164d770 tex.intrahash:
3db66df0fc9fa2b5033f096a901f1c36 tex.timestamp: 2014-04-17T08:33:06.000+0200.
URL: http://www.bitcoin.org/bitcoin.pdf.

[109] NEO. NEO smart contract introduction. Type: web page. URL: http://

docs.neo.org/en-us/sc/introduction.html.

[110] Blockchain News. DeFi’s smart contract risks: Cream finance’s input error led to
CREAM token plunging 25%, 2020. URL: https://blockchain.news/news/defi-
smart-contract-risks-cream-finance-input-error-token-plunge.

[111] Alex Norta. Designing a smart-contract application layer for transacting decentral-
ized autonomous organizations. In Advances in computing and data sciences: First
international conference, ICACDS 2016, ghaziabad, india, november 11-12, 2016,
revised selected papers, pages 595–604, Singapore, 2017. Springer Singapore.

[112] Petr Nymsa. Mobile Enterprise Architecture Process Analytic Tool Based on the
DEMO Methodology, June 2018. URL: http://hdl.handle.net/10467/77482.

[113] Pavel Náplava and Robert Pergl. Empirical Study of Applying the DEMO Method
for Improving BPMN Process Models in Academic Environment. In 2015 IEEE
17th Conference on Business Informatics, volume 2, pages 18–26, July 2015. doi:

10.1109/CBI.2015.12.

158

https://doi.org/10.1109/CBI.2013.44
http://dx.doi.org/10.1007/978-3-319-57955-9_7
http://dx.doi.org/10.1007/978-3-319-57955-9_7
https://doi.org/10.1007/978-3-319-57955-9_7
http://hdl.handle.net/10467/82311
http://www.bitcoin.org/bitcoin.pdf
http://docs.neo.org/en-us/sc/introduction.html
http://docs.neo.org/en-us/sc/introduction.html
https://blockchain.news/news/defi-smart-contract-risks-cream-finance-input-error-token-plunge
https://blockchain.news/news/defi-smart-contract-risks-cream-finance-input-error-token-plunge
http://hdl.handle.net/10467/77482
https://doi.org/10.1109/CBI.2015.12
https://doi.org/10.1109/CBI.2015.12

Bibliography

[114] OMG. Business Process Model and Notation (BPMN), Version 2.0, January 2011.
URL: http://www.omg.org/spec/BPMN/2.0.

[115] OMG. Unified Modeling Language, version 2.5, March 2015. URL: http://

www.omg.org/spec/UML/2.5.

[116] OMG. Case Management Model and Notation (CMMN), Version 1.1, December
2016. URL: https://www.omg.org/spec/CMMN/1.1/.

[117] Gilles Oorts, Herwig Mannaert, Peter De Bruyn, and Ilke Franquet. On the Evolv-
able and Traceable Design of (Under)graduate Education Programs. In Advances in
Enterprise Engineering X, Lecture Notes in Business Information Processing, pages
86–100. Springer, Cham, May 2016.

[118] Martin Op ’t Land and Jan L. G. Dietz. Benefits of Enterprise Ontology in Governing
Complex Enterprise Transformations. In Advances in Enterprise Engineering VI,
volume 110, pages 77–92. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[119] John O’Connor. How Cardano can help development in Africa, 2018. Type:
blog tex.referencetype: blog. URL: https://cardanofoundation.org/press/how-
cardano-can-help-development-in-africa/.

[120] Berwin Leighton Paisner. The speed of business - Innovation, business growth
and the impact of regulation, 2013. URL: http://vm1.blplaw.com/expert-legal-
insights/speed-of-business.

[121] Susanne Patig, Vanessa Casanova-Brito, and Barbara Vögeli. IT Requirements of
Business Process Management in Practice – An Empirical Study. In Richard Hull,
Jan Mendling, and Stefan Tai, editors, Business Process Management, Lecture Notes
in Computer Science, pages 13–28, Berlin, Heidelberg, 2010. Springer. doi:10.1007/
978-3-642-15618-2 4.

[122] Mayur Patil, Vijay Pimplodkar, Anuja R Zade, Vinit Vibhute, and Ratnakar Ghadge.
A survey on voting system techniques. International Journal of Advanced Research
in Computer Science and Software Engineering, 3(1):114–117, 2013.

[123] PCI. PCI Security, 2004. URL: https://www.pcisecuritystandards.org/
pci security/.

[124] Marc Pilkington. Blockchain technology: Principles and applications. In F. Xavier
Olleros and Majlinda Zhegu, editors, Research handbook on digital transformations,
2015. URL: https://ssrn.com/abstract=2662660.

[125] Orlenys Pintado. Caterpillar: A Blockchain-Based Business Process Management
System. 2017.

159

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
https://www.omg.org/spec/CMMN/1.1/
https://cardanofoundation.org/press/how-cardano-can-help-development-in-africa/
https://cardanofoundation.org/press/how-cardano-can-help-development-in-africa/
http://vm1.blplaw.com/expert-legal-insights/speed-of-business
http://vm1.blplaw.com/expert-legal-insights/speed-of-business
https://doi.org/10.1007/978-3-642-15618-2_4
https://doi.org/10.1007/978-3-642-15618-2_4
https://www.pcisecuritystandards.org/pci_security/
https://www.pcisecuritystandards.org/pci_security/
https://ssrn.com/abstract=2662660

Bibliography

[126] Kasireddy Preethi. ELI5: What do we mean by “blockchains are trustless”? Medium,
March 2017. URL: https://medium.com/@preethikasireddy/eli5-what-do-we-
mean-by-blockchains-are-trustless-aa420635d5f6.

[127] PRIAC. International Arbitration Court of the Czech Commodity Exchange, 2019.
URL: http://www.priac.cz/en/.

[128] Wolfgang Reisig. Petri nets and algebraic specifications. Theoretical Computer Sci-
ence, 80(1):1–34, March 1991. URL: https://www.sciencedirect.com/science/
article/pii/030439759190203E, doi:10.1016/0304-3975(91)90203-E.

[129] Remix. Remix - solidity IDE. tex.howpublished: [online]. URL: https://

remix.readthedocs.io/en/latest/.

[130] Olivier Rikken. 3 smart contract misconceptions. 2017. tex.howpublished: [online].
URL: https://www.coindesk.com/3-common-smart-contract-misconceptions-
explored/.

[131] Risconnect. The 5 Biggest Challenges to Effective Compliance Management,
2021. URL: https://riskonnect.com/compliance/the-5-biggest-challenges-
to-effective-compliance-management/.

[132] Bernd Rucker and Jakob Freund. Real-Life BPMN (4th edition). Independently
Published, September 2019.

[133] Fabian Schär. Decentralized Finance: On Blockchain- and Smart Contract-Based Fi-
nancial Markets, April 2021. URL: https://papers.ssrn.com/abstract=3843844,
doi:10.20955/r.103.153-74.

[134] Bela Shrimali and Hiren B. Patel. Blockchain state-of-the-art: architec-
ture, use cases, consensus, challenges and opportunities. Journal of King
Saud University - Computer and Information Sciences, 34(9):6793–6807, Oc-
tober 2022. URL: https://www.sciencedirect.com/science/article/pii/
S131915782100207X, doi:10.1016/j.jksuci.2021.08.005.

[135] Bruce Silver. BPMN Method and Style, 2nd Edition, with BPMN Implementer’s
Guide: A structured approach for business process modeling and implementation us-
ing BPMN 2.0. Cody-Cassidy Press, October 2011.

[136] Mayank Singh. Advances in computing and data sciences : first International Con-
ference, ICACDS 2016, Ghaziabad, India, November 11-12, 2016, Revised selected
papers. Springer, Singapore, 2017.

[137] Marek Skotnica, Marta Apaŕıcio, Robert Pergl, and Sérgio Guerreiro. Process
digitalization using blockchain: EU parliament elections case study. In Proceed-
ings of the 9th international conference on model-driven engineering and software

160

https://medium.com/@preethikasireddy/eli5-what-do-we-mean-by-blockchains-are-trustless-aa420635d5f6
https://medium.com/@preethikasireddy/eli5-what-do-we-mean-by-blockchains-are-trustless-aa420635d5f6
http://www.priac.cz/en/
https://www.sciencedirect.com/science/article/pii/030439759190203E
https://www.sciencedirect.com/science/article/pii/030439759190203E
https://doi.org/10.1016/0304-3975(91)90203-E
https://remix.readthedocs.io/en/latest/
https://remix.readthedocs.io/en/latest/
https://www.coindesk.com/3-common-smart-contract-misconceptions-explored/
https://www.coindesk.com/3-common-smart-contract-misconceptions-explored/
https://riskonnect.com/compliance/the-5-biggest-challenges-to-effective-compliance-management/
https://riskonnect.com/compliance/the-5-biggest-challenges-to-effective-compliance-management/
https://papers.ssrn.com/abstract=3843844
https://doi.org/10.20955/r.103.153-74
https://www.sciencedirect.com/science/article/pii/S131915782100207X
https://www.sciencedirect.com/science/article/pii/S131915782100207X
https://doi.org/10.1016/j.jksuci.2021.08.005

Bibliography

development. SCITEPRESS - Science and Technology Publications, 2021. doi:

10.5220/0010229000650075.

[138] Marek Skotnica and et. al. DasContract 1.0 github repository, 2020. URL: https:
//github.com/CCMiResearch/DasContract/tree/v1.0.

[139] Marek Skotnica and et. al. DasContract github repository, 2021. URL: https:
//github.com/CCMiResearch/DasContract.

[140] Marek Skotnica, Steven J. H. van Kervel, and Robert Pergl. Towards the On-
tological Foundations for the Software Executable DEMO Action and Fact Mod-
els. In Advances in Enterprise Engineering X, pages 151–165, Funchal, Madeira,
May 2016. Springer International Publishing. URL: http://link.springer.com/
chapter/10.1007/978-3-319-39567-8 10, doi:10.1007/978-3-319-39567-8 10.

[141] Marek Skotnica, Jan Klicpera, and Robert Pergl. Towards model-driven smart con-
tract systems - code generation and improving expressivity of smart contract mod-
eling. CEUR-WS.org, 2021. URL: http://ceur-ws.org/Vol-2825/paper1.pdf.

[142] Marek Skotnica and Robert Pergl. Das Contract - A Visual Domain Specific Lan-
guage for Modeling Blockchain Smart Contracts. In David Aveiro, Giancarlo Guiz-
zardi, and José Borbinha, editors, Advances in Enterprise Engineering XIII, pages
149–166, Cham, 2020. Springer International Publishing.

[143] Marek Skotnica, Robert Pergl, Lucie Havrdová, Viktor Holý, Michaela Kučerová,
Jana Mart́ınková, Daniel Matoušek, Jan Novotný, David Primus, Filip Sikora, Ro-
man Soběslav, Jan Star̊ustka, Jan Stejskal, Ladislav Strnad, Albert Švehla, and
Ondřej Cihlář. Czech Procedural Law Modeling - Case Study Dataset, 2022. URL:
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/MEP/2021.

[144] Marek Skotnica, Robert Pergl, Anna Vitmanová, Jǐŕı Růžička, Denis Drda, Katarina
Krbilová, Lenka Obermajerová, Radka Bodnárová, Jan Bittner, Martin Drozd́ık, Jan
Klicpera, Matyáš Herman, Ema Hoĺınská, Jǐŕı Zikán, Jan Horyna, Ondřej Šelder, Jǐŕı
Kasl, and Petr Kučera. Code of Civil Procedure - Case Study Dataset, 2021. URL:
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/MEP/2020.

[145] Marek Skotnica, Steven J. H. van Kervel, and Robert Pergl. A DEMO Machine - A
Formal Foundation for Execution of DEMO Models. In David Aveiro, Robert Pergl,
Giancarlo Guizzardi, Joao Paulo Almeida, Rodrigo Magalhaes, and Hans Lekkerkerk,
editors, Advances in Enterprise Engineering XI: 7th Enterprise Engineering Working
Conference, EEWC 2017, Antwerp, Belgium, May 8-12, 2017, Proceedings, pages
18–32. Springer International Publishing, Cham, 2017. URL: http://dx.doi.org/
10.1007/978-3-319-57955-9 2, doi:10.1007/978-3-319-57955-9 2.

[146] Smart Contracts Alliance. Smart contracts: 12 use cases for business & beyond.
2016. tex.howpublished: [online]. URL: http://digitalchamber.org/assets/
smart-contracts-12-use-cases-for-business-and-beyond.pdf.

161

https://doi.org/10.5220/0010229000650075
https://doi.org/10.5220/0010229000650075
https://github.com/CCMiResearch/DasContract/tree/v1.0
https://github.com/CCMiResearch/DasContract/tree/v1.0
https://github.com/CCMiResearch/DasContract
https://github.com/CCMiResearch/DasContract
http://link.springer.com/chapter/10.1007/978-3-319-39567-8_10
http://link.springer.com/chapter/10.1007/978-3-319-39567-8_10
https://doi.org/10.1007/978-3-319-39567-8_10
http://ceur-ws.org/Vol-2825/paper1.pdf
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/MEP/2021
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/MEP/2020
http://dx.doi.org/10.1007/978-3-319-57955-9_2
http://dx.doi.org/10.1007/978-3-319-57955-9_2
https://doi.org/10.1007/978-3-319-57955-9_2
http://digitalchamber.org/assets/smart-contracts-12-use-cases-for-business-and-beyond.pdf
http://digitalchamber.org/assets/smart-contracts-12-use-cases-for-business-and-beyond.pdf

Bibliography

[147] Steve Ellis, et a. ChainLink - A Decentralized Oracle Network, September 2017.
URL: https://link.smartcontract.com/whitepaper.

[148] Tetsuya Suga and Junichi Iijima. Algebra for Enterprise Ontology: to-
wards analysis and synthesis of enterprise models. Enterprise Informa-
tion Systems, 12(3):341–370, March 2018. Publisher: Taylor & Fran-
cis eprint: https://doi.org/10.1080/17517575.2017.1367962. doi:10.1080/
17517575.2017.1367962.

[149] Melanie Swan. Blockchain : blueprint for a new economy. O’Reilly, Sebastopol, Calif,
2015.

[150] Tim Swanson. Consensus-as-a-service: a brief report on the emergence of
permissioned, distributed ledger systems. 2016. tex.howpublished: [online].
URL: http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-
distributed-ledgers.pdf.

[151] Norris Syed Abdullah, Shazia Sadiq, and Marta Indulska. Emerging Challenges in
Information Systems Research for Regulatory Compliance Management. In Bar-
bara Pernici, editor, Advanced Information Systems Engineering, Lecture Notes
in Computer Science, pages 251–265, Berlin, Heidelberg, 2010. Springer. doi:

10.1007/978-3-642-13094-6 21.

[152] Nick Szabo. Smart contracts: Building blocks for digital markets.
www.fon.hum.uva.nl, 1996. URL: http://www.fon.hum.uva.nl/rob/
Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/

szabo.best.vwh.net/smart contracts 2.html.

[153] The Hyperledger White Paper Working Group. An Introduction to Hyper-
ledger, 2018. URL: https://www.hyperledger.org/wp-content/uploads/2018/
08/HL Whitepaper IntroductiontoHyperledger.pdf.

[154] Weng Jie Thong and M. A. Ameedeen. A Survey of Petri Net Tools. In
Hamzah Asyrani Sulaiman, Mohd Azlishah Othman, Mohd Fairuz Iskandar Oth-
man, Yahaya Abd Rahim, and Naim Che Pee, editors, Advanced Computer and
Communication Engineering Technology, Lecture Notes in Electrical Engineering,
pages 537–551, Cham, 2015. Springer International Publishing. doi:10.1007/978-
3-319-07674-4 51.

[155] Stepan Tužil. Automated Transformation of DEMO Models into BPMN, June 2019.
URL: http://hdl.handle.net/10467/83117.

[156] Simon Urbánek. Exploring the use of blockchain smart contract in the e-commerce,
June 2021. URL: http://hdl.handle.net/10467/94561.

[157] Vijay Vaishnavi and B Kuechler. Design Science Research in Information Systems.
Association for Information Systems, January 2004.

162

https://link.smartcontract.com/whitepaper
https://doi.org/10.1080/17517575.2017.1367962
https://doi.org/10.1080/17517575.2017.1367962
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
https://doi.org/10.1007/978-3-642-13094-6_21
https://doi.org/10.1007/978-3-642-13094-6_21
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://doi.org/10.1007/978-3-319-07674-4_51
https://doi.org/10.1007/978-3-319-07674-4_51
http://hdl.handle.net/10467/83117
http://hdl.handle.net/10467/94561

Bibliography

[158] W. M. P. van der Aalst. Formalization and verification of event-
driven process chains. Information and Software Technology, 41(10):639–
650, July 1999. URL: https://www.sciencedirect.com/science/article/pii/
S0950584999000166, doi:10.1016/S0950-5849(99)00016-6.

[159] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another
workflow language. Information Systems, 30(4):245–275, June 2005. URL:
https://www.sciencedirect.com/science/article/pii/S0306437904000304,
doi:10.1016/j.is.2004.02.002.

[160] Wil MP Van der Aalst. Business process management: a comprehensive survey.
International Scholarly Research Notices, 2013, 2013. Publisher: Hindawi.

[161] Alta van der Merwe, Aurona Gerber, and Hanlie Smuts. Mapping a design science
research cycle to the postgraduate research report. In Janet Liebenberg and Stefan
Gruner, editors, ICT education, pages 293–308, Cham, 2017. Springer International
Publishing.

[162] Alta van der Merwe, Aurona Gerber, and Hanlie Smuts. Guidelines for conducting
design science research in information systems. In Bobby Tait, Jan Kroeze, and Stefan
Gruner, editors, ICT education, pages 163–178, Cham, 2020. Springer International
Publishing.

[163] W. Van Grembergen. Introduction to the minitrack ”IT governance and its mecha-
nisms” HICSS 2002. In Proceedings of the 35th annual hawaii international conference
on system sciences, pages 3097–3097, 2002. doi:10.1109/HICSS.2002.994349.

[164] Steven J. H. Van Kervel, Jan L. G. Dietz, John Hintzen, Tycho van Meeuwen,
and Bob Zijlstra. Enterprise Ontology Driven Software Engineering. In Slimane
Hammoudi, Marten van Sinderen, and José Cordeiro, editors, ICSOFT, pages
205–210. SciTePress, 2012. URL: http://dblp.uni-trier.de/db/conf/icsoft/
icsoft2012.html.

[165] Dieter Van Nuffel, Hans Mulder, and Steven Van Kervel. Enhancing the Formal
Foundations of BPMN by Enterprise Ontology. In Will van der Aalst, John My-
lopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szyperski, Antonia Albani,
Joseph Barjis, and Jan L. G. Dietz, editors, Advances in Enterprise Engineering III,
volume 34, pages 115–129. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[166] Mark Von Rosing, Henrik Von Scheel, and August-Wilhelm Scheer. The complete
business process handbook: Body of knowledge from process modeling to BPM, volume
1, volume 1. Morgan Kaufmann, 2014.

[167] W3C. Decentralized Identifiers (DIDs) v1.0, September 2020. URL: https:

//www.w3.org/TR/did-core/.

163

https://www.sciencedirect.com/science/article/pii/S0950584999000166
https://www.sciencedirect.com/science/article/pii/S0950584999000166
https://doi.org/10.1016/S0950-5849(99)00016-6
https://www.sciencedirect.com/science/article/pii/S0306437904000304
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1109/HICSS.2002.994349
http://dblp.uni-trier.de/db/conf/icsoft/icsoft2012.html
http://dblp.uni-trier.de/db/conf/icsoft/icsoft2012.html
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/

Bibliography

[168] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Ponomarev,
and Jan Mendling. Untrusted business process monitoring and execution using
blockchain. In Marcello La Rosa, Peter Loos, and Oscar Pastor, editors, Business
process management, pages 329–347, Cham, 2016. Springer International Publishing.

[169] Roel Wieringa. Design science methodology: principles and practice. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering-Volume
2, pages 493–494. ACM, 2010.

[170] YChart. Ethereum average transaction fee, 2020. URL: https://ycharts.com/
indicators/ethereum average transaction fee.

[171] Peng Zhang, Douglas C. Schmidt, Jules White, and Gunther Lenz. Chap-
ter One - Blockchain Technology Use Cases in Healthcare. In Pethuru Raj
and Ganesh Chandra Deka, editors, Advances in Computers, volume 111 of
Blockchain Technology: Platforms, Tools and Use Cases, pages 1–41. Elsevier,
January 2018. URL: https://www.sciencedirect.com/science/article/pii/
S0065245818300196, doi:10.1016/bs.adcom.2018.03.006.

[172] Ondřej Šelder. Generating Plutus Smart Contracts from DEMO Process Models,
January 2020. URL: http://hdl.handle.net/10467/86189.

[173] David Šenkýř, Marek Suchánek, Petr Kroha, Herwig Mannaert, and Robert Pergl.
Expanding Normalized Systems from textual domain descriptions using TEMOS.
Journal of Intelligent Information Systems, pages 1–24, 2022. Publisher: Springer.

164

https://ycharts.com/indicators/ethereum_average_transaction_fee
https://ycharts.com/indicators/ethereum_average_transaction_fee
https://www.sciencedirect.com/science/article/pii/S0065245818300196
https://www.sciencedirect.com/science/article/pii/S0065245818300196
https://doi.org/10.1016/bs.adcom.2018.03.006
http://hdl.handle.net/10467/86189

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] Skotnica M. (70%); van Kervel S.J.H.(10%); Pergl R.(20%) Towards the Ontolog-
ical Foundations for the Software Executable DEMO Action and Fact Models In:
Advances in Enterprise Engineering X. EEWC 2016. Lecture Notes in Business In-
formation Processing. Springer, Cham, 2016.

The paper has been cited in:

◦ Huňka F.; van Kervel S.J.H. The REA Model Expressed in a Generic DEMO
Model for Co-creation and Co-production. In: Advances in Enterprise Engi-
neering XI. EEWC 2017. Lecture Notes in Business Information Processing.
Springer, Cham, 2017.

◦ Mouhib N.; Bah S.; Berrado A. The viable system model driven the organiza-
tion and the information system design. In: 2018 International Conference on
Intelligent Systems and Computer Vision (ISCV). IEEE, 2018.

◦ Huňka F.; van Kervel S.J.H.; Matula J. The DEMO Co-creation and Co-
production Model and Its Utilization. In: Enterprise and Organizational Mod-
eling and Simulation. EOMAS 2018. Lecture Notes in Business Information
Processing. Springer, Cham, 2018.

◦ Huňka F.; van Kervel S.J.H.; Contract Modeling Utilizing DEMO Co-creation
Coproduction Model. In: 12th International Workshop on Value Modeling and
Business Ontologies, VMBO 2018. Amsterdam, 2018

◦ Huňka F.; van Kervel S.J.H.; A Generic DEMO Model for Co-creation and Co-
production as a Basis for a Truthful and Appropriate REA Model Representa-
tion. In: Business Process Management: Blockchain and Central and Eastern
Europe Forum. BPM 2019. Lecture Notes in Business Information Processing.
Springer, Cham, 2019.

165

Reviewed Publications of the Author Relevant to the Thesis

◦ Mouhib N.; Bah S.; Berrado A. The Viable System Ontology Theory. In: 4th
World Conference on Complex Systems (WCCS). IEEE, 2019.

◦ Mouhib N.; Bah S.; Berrado A. Viability Theory and PSI Theory Interrelation
Inspired by Bunge Systemic Classification: the Viable System Ontology Theory.
In: Systemic Practice and Action Research volume 33. Springer, Cham, 2020.

[A.2] Mráz O. (40%); Náplava P. (20%); Pergl R. (20%); Skotnica M. (20%) Converting
DEMO PSI Transaction Pattern into BPMN: A Complete Method. In: Advances
in Enterprise Engineering XI. EEWC 2017. Lecture Notes in Business Information
Processing. Springer, Cham, 2017.

The paper has been cited in:

◦ Babkin E.; Malyzhenkov P.; Yavorskiy C. Towards Model-Driven Role Engi-
neering in BPM Software Systems. In: Information Systems: Research; De-
velopment; Applications; Education. SIGSAND/PLAIS 2019. Lecture Notes in
Business Information Processing. Springer; Cham; 2019.

◦ Gray T.; Bork D.; De Vries M. A New DEMO Modelling Tool that Facilitates
Model Transformations. In: Enterprise, Business-Process and Information Sys-
tems Modeling. BPMDS 2020, EMMSAD 2020. Lecture Notes in Business In-
formation Processing. Springer, Cham, 2020.

◦ Mulder M.A.T.; Proper H.A. Towards Enterprise-Grade Tool Support for
DEMO. In: The Practice of Enterprise Modeling. PoEM 2020. Lecture Notes
in Business Information Processing. Springer, Cham, 2020.

◦ Gray T.; De Vries M. Empirical Evaluation of a New DEMO Modelling Tool
that Facilitates Model Transformations. In: Advances in Conceptual Modeling.
ER 2020. Lecture Notes in Computer Science. Springer, Cham, 2020.

◦ De Vries M.; Bork D. Identifying Scenarios to Guide Transformations from
DEMO to BPMN. In: Advances in Enterprise Engineering XIV. EEWC 2020.
Lecture Notes in Business Information Processing., Springer, Cham, 2021.

◦ Mulder M.A.T.; Proper H.A. On the Development of Enterprise-Grade Tool
Support for the DEMO Method. In: Advanced Information Systems Engineer-
ing. CAiSE 2021. Lecture Notes in Computer Science. Springer, Cham, 2021.

◦ Mulder M.A.T.; Proper H.A. On Enterprise-Grade Tool Support for DEMO.
Software and Systems Modeling (2021). Springer, Cham, 2021.

◦ Krouwel M.R.; Land M.O.’.; Proper H.A. Generating Low-Code Applications
from Enterprise Ontology. In: The Practice of Enterprise Modeling. PoEM 2022.
Lecture Notes in Business Information Processing, vol 456. Springer, Cham.
2022.

◦ Mulder M.A.T.; Proper H.A. On Enterprise-Grade Tool Support for DEMO. In:
On Enterprise-Grade Tool Support for DEMO. Softw Syst Model 21, 1341–1361.
Springer, Cham. 2022.

166

Reviewed Publications of the Author Relevant to the Thesis

[A.3] Skotnica M. (80%); van Kervel S.J.H. (5%); Pergl R. (15%) A DEMO Machine -
A Formal Foundation for Execution of DEMO Models. In: Advances in Enterprise
Engineering XI. EEWC 2017. Lecture Notes in Business Information Processing.
Springer, Cham, 2017.

The paper has been cited in:

◦ Gouveia D.; Aveiro D. Colored Petri-Net for Implementing DEMO/PSI Trans-
actions for N Actor Roles (N >= 2). In: Advances in Enterprise Engineering
XII. EEWC 2018. Lecture Notes in Business Information Processing. Springer,
Cham, 2019.

◦ Apaŕıcio M.; Guerreiro S.; Sousa P. Automated DEMO Action Model Imple-
mentation using Blockchain Smart Contracts. In: Proceedings of the 12th In-
ternational Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management (IC3K 2020). SciTePress, 2020.

[A.4] Hornáčková B. (20%); Skotnica M. (60%); Pergl R. (20%) Exploring a Role of
Blockchain Smart Contracts in Enterprise Engineering. In: Advances in Enterprise
Engineering XII. EEWC 2018. Lecture Notes in Business Information Processing.
Springer, Cham, 2019.

The paper has been cited in:

◦ Nanayakkara S.; Rodrigo M.N.N.; Perera S.; Weerasuriya G.T. ; Hijazi A. A.
A methodology for selection of a Blockchain platform to develop an enterprise
system. In: Journal of Industrial Information Integration Volume 23. Elsevier,
2021.

◦ Lauster C.; Klinger P.; Schwab N.; Bodendorf F. Literature Review Linking
Blockchain and Business Process Management. In: 15th International Confer-
ence on Wirtschaftsinformatik. Germany, 2020

◦ Apaŕıcio, M.; Guerreiro S.; Sousa P. Towards an Automated DEMO Action
Model Implementation using Blockchain Smart Contracts In: Proceedings of
the 22nd International Conference on Enterprise Information Systems (ICEIS
2020) SciTePress, 2020.

◦ Apaŕıcio M.; Guerreiro S.; Sousa P. Automated DEMO Action Model Imple-
mentation using Blockchain Smart Contracts. In: Proceedings of the 12th In-
ternational Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management (IC3K 2020) SciTePress, 2020.

◦ Babkin E.; Komleva N. Model-Driven Liaison of Organization Modeling Ap-
proaches and Blockchain Platforms. In: Advances in Enterprise Engineering
XIII. EEWC 2019. Lecture Notes in Business Information Processing. Springer,
Cham, 2020.

167

Reviewed Publications of the Author Relevant to the Thesis

◦ Levasseur O.; Iqbal M.; Matulevičius R. Survey of Model-Driven Engineering
Techniques for Blockchain-Based Applications. In: PoEM’21 Forum: 14th IFIP
WG 8.1 Working Conference on the Practice of Enterprise Modelling. CEUR
Workshop Proceedings (CEUR-WS.org), 2021.

◦ Nanayakkara S.; Rodrigo M.N.N.; Perera S.; Weerasuriya G.T.; Hijazi A.A.
A methodology for selection of a Blockchain platform to develop an enterprise
system. In: Journal of Industrial Information Integration Volume 23. Elsevier,
2021.

[A.5] Skotnica M. (80%); Pergl R. (20%) Das Contract - A Visual Domain Specific
Language for Modeling Blockchain Smart Contracts. In: Advances in Enterprise
Engineering XIII. EEWC 2019. Lecture Notes in Business Information Processing.
Springer, Cham, 2020.

The paper has been cited in:

◦ Gómez O.; Rosero R.; Cortés-Verd́ın,K. CRUDyLeaf: A DSL for Generating
Spring Boot REST APIs from Entity CRUD Operations. In: Cybernetics and
Information Technologies. Sciendo, Bulgaria, 2020.

◦ Hsain Y. A.; Laaz N.; Mbarki S. Ethereum’s Smart Contracts Construction
and Development using Model Driven Engineering Technologies: a Review. In:
Procedia Computer Science. Elsevier, 2021.

◦ Vieira M. L. L.; Vilain P. Representation of Smart Contracts as State Diagrams.
In: IEEE/ACS 18th International Conference on Computer Systems and Ap-
plications (AICCSA). IEEE, 2021.

◦ Alam M. T.; Chowdhury S.; Halder R.; Maiti A. Blockchain Domain-Specific
Languages: Survey, Classification, and Comparison. In: IEEE International
Conference on Blockchain (Blockchain). IEEE, 2021.

◦ Merlec M.M.; Lee Y.K.; In H.P. SmartBuilder: A Block-based Visual Pro-
gramming Framework for Smart Contract Development. In: IEEE International
Conference on Blockchain (Blockchain). IEEE, 2021.

◦ Hsain Y.A.; Laaz N.; Mbarki S. Ethereum’s Smart Contracts Construction and
Development using Model Driven Engineering Technologies: a Review. In: Pro-
cedia Computer Science. Elsevier, 2021.

◦ Meyer E.; Welpe I. M.; Sandner P.G.; Decentralized Finance—A Systematic
Literature Review and Research Directions. In: ECIS 2022 Research Papers.
SSRN, 2022.

◦ Curty S.; Härer F.; Fill HG. Blockchain Application Development Using Model-
Driven Engineering and Low-Code Platforms: A Survey. In: BPMDS EMMSAD
2022 2022. Lecture Notes in Business Information Processing, vol 450. Springer,
Cham, 2022.

168

Reviewed Publications of the Author Relevant to the Thesis

◦ Hunn P.; Allen J. Smart Legal Contracts: Computable Law in Theory and
Practice. In: Book Oxford University Press, 2022.

◦ Dixit A.; Deval V.; Dwivedi V.; Norta A.; Draheim D. Towards user-centered
and legally relevant smart-contract development: A systematic literature re-
view. In: Journal of Industrial Information Integration 26. Elsevier, 2022.

◦ M.; Bernardi S.; Marrone S.; Merseguer J. An approach for the automatic
verification of blockchain protocols: the Tweetchain case study. In: Journal of
Computer Virology and Hacking Techniques. Elsevier, 2022.

◦ Hamdaqa M.; Met L.A.P.; Qasse I. iContractML 2.0: A domain-specific lan-
guage for modeling and deploying smart contracts onto multiple blockchain
platforms. In: Information and Software Technology 144. Elsevier, 2022.

[A.6] Skotnica M. (50%); Klicpera J. (40%); Pergl R. (10%) Towards model-driven smart
contract systems - code generation and improving expressivity of smart contract
modeling In: EEWC Forum 2020. CEUR-WS.org, 2021.

The paper has been cited in:

◦ van den Heuvel WJ.; Tamburri D.A.; D’Amici D.; Izzo F.; Potten S. ChainOps
for Smart Contract-Based Distributed Applications. In: Business Modeling and
Software Design. BMSD 2021. Lecture Notes in Business Information Process-
ing. Springer, Cham, 2021.

◦ Samreen N.F.; Secure MDE for Ethereum-based Decentralized Applications
(DApps) Development. In: ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C). IEEE,
2021.

◦ Bistarelli S.; Faloci F.; Mori P. .chain: automatic coding of smart contracts
and user interfaces for supply chains. In: Third International Conference on
Blockchain Computing and Applications (BCCA). IEEE, 2021.

◦ Sousa V.A.; Burnay C. MDE4BBIS: A Framework to Incorporate Model-Driven
Engineering in the Development of Blockchain-Based Information Systems.
In: Third International Conference on Blockchain Computing and Applications
(BCCA). IEEE, 2021.

◦ Meyer E.; Welpe I. M.; Sandner P.G.; Decentralized Finance—A Systematic
Literature Review and Research Directions. In: ECIS 2022 Research Papers.
SSRN, 2022.

◦ Baresi L.; Quattrocchi G.; Tamburri D.A.; Terracciano L. A declarative mod-
elling framework for the deployment and management of blockchain applica-
tions. In: MODELS ’22: Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems. ACM, 2022.

169

Reviewed Publications of the Author Relevant to the Thesis

◦ Jurgelaitis M.; Čeponienė L.; Butkus K.; Butkienė R.; Drungilas V. MDA-
Based Approach for Blockchain Smart Contract Development. In: Advances in
Information System Analysis and Modeling (AISAM). MDPI, 2022.

◦ Bistarelli S.; Faloci F.; Mori P. Towards a Graphical DSL for Tracing Sup-
ply Chains on Blockchain. In: Euro-Par 2021: Parallel Processing Workshops.
Springer, Cham, 2022.

◦ Aidin Rasti A.; Amyot D.; Parvizimosaed A.; Roveri M.; Logrippo L.; Anda
A.A.; Mylopoulos J. Symboleo2SC: from legal contract specifications to smart
contracts. In: MODELS ’22: Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems. ACM, 2022.

◦ Jurgelaitis M.; Čeponienė L.; Butkienė R. Solidity Code Generation From UML
State Machines in Model-Driven Smart Contract Development. In: IEEE Access
(Volume: 10). IEEE, 2022.

[A.7] Skotnica M. (50%); Apaŕıcio M. (30%); Pergl R. (10%); Guerreiro S. (10%) Process
digitalization using blockchain: EU parliament elections case study. In: Proceedings
of the 9th International Conference on Model-Driven Engineering and Software De-
velopment (MODELSWARD 2021). SciTePress, 2021.

The paper has been cited in:

◦ Alam M. T.; Chowdhury S.; Halder R.; Maiti A. Blockchain Domain-Specific
Languages: Survey, Classification, and Comparison. In: IEEE International
Conference on Blockchain (Blockchain). IEEE, 2021.

◦ Benabdallah A.; Audras A.; Coudert L.; Madhoun N.E.; Badra M. Analysis of
Blockchain Solutions for E-Voting: A Systematic Literature Review. In: IEEE
Access (Volume: 10). IEEE, 2022.

170

Remaining Publications of the Author
Relevant to the Thesis

[A.8] Skotnica M. Implementation of a module supporting the AM model in the Formetis
DEMO Processor. Bachelor thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2014.

[A.9] Skotnica M. Towards the Foundations of Fact and Rules Ontology for Discrete
Systems Master thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2016.

[A.10] Skotnica M. Business Process Management Systems Based on Enterprise Engineer-
ing Discipline. In: Doctoral Consortium Workshop, Enterprise Engineering Working
Conference (EEWC 2017). Antwerp, Belgium, 2017.

[A.11] Skotnica M. Design of Systems Supporting Human Cooperation and Co-production.
Ph.D. Minimum Thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2018.

[A.12] Skotnica M. DEMO for IT A Textbook for MI-MEP - Modeling of Enterprise
Processes. Czech Technical University in Prague, Faculty of Information Technology,
2018.

171

Selected Relevant Supervised Theses

[A.13] Buša R. Designing WYSIWYG Web Forms. Bachelor thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2018.

[A.14] Nymsa P. Mobile Enterprise Architecture Process Analytic Tool Based on the
DEMO Methodology. Bachelor thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2018.

[A.15] Ančinec P. Open-source DEMOConstruction and Process Model Designer. Bachelor
thesis. Czech Technical University in Prague, Faculty of Information Technology,
2019.

[A.16] Bydžovský T. A State Management in Multi-client Single Page Web Applications.
Bachelor thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, 2019.

The bachelor thesis has been awarded:

◦ Dean’s award for the best bachelor thesis of summer semester in the school year
2018/2019 on Czech Technical University in Prague, Faculty of Information
Technology

[A.17] Drozd́ık M. Open-Source Legal Process Designer in .NET Blazor. Bachelor thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2020.

[A.18] Krbilová K. Process Mining in Finance Domain. Bachelor thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2020.

[A.19] Šelder O. Generating Plutus Smart Contracts from DEMO Process Models. Bache-
lor thesis. Czech Technical University in Prague, Faculty of Information Technology,
2020.

[A.20] Škrabal M. Use Cases for Decentralized Identity. Bachelor thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2022.

173

Selected Relevant Supervised Theses

[A.21] Hornáčková B. Using Blockchain Smart Contracts in the DEMO Methodology.
Master thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, 2018.

The master thesis has been awarded:

◦ Dean’s award for the best master thesis of summer semester in the school year
2017/2018 on Czech Technical University in Prague, Faculty of Information
Technology

[A.22] Jančovičová B. Next Generation Methods for Development of Enterprise Infor-
mation Systems. Master thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2019.

[A.23] Lang M. WebAssembly Approach to Client-side Web Development using Blazor
Framework. Master thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology, 2019.

[A.24] Lassaková M. Law Modelling Using BPMN and DEMO. Master thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2019.

[A.25] Mikeš S. Evolvability of Business Process Models. Master thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2019.

[A.26] Mužák M. Model-Driven Approach to Governance, Risk, and Compliance Systems
Development. Master thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology, 2019.

[A.27] Frait J. Generating Ethereum Smart Contracts from DasContract Language. Master
thesis. Czech Technical University in Prague, Faculty of Information Technology,
2020.

[A.28] Bydžovský T. Decentralized Identity in DasContract Decentralized Applications.
Master thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, 2021.

[A.29] Ančinec P. Domain-Specific Languages for Off-chain UI in Decentralized Applica-
tions. Master thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

[A.30] Urbánek Š. Exploring the use of Blockchain Smart Contract in the E-Commerce.
Master thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, 2021.

[A.31] Drozd́ık M. Generation of Plutus Smart Contracts from DasContract models. Mas-
ter thesis. Czech Technical University in Prague, Faculty of Information Technology,
2022.

174

Selected Relevant Supervised Theses

[A.32] Klicpera J. Client-Side Application Development Using Blazor Framework - a
Blockchain Smart Contract Designer Case Study. Master thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2022.

The master thesis has been awarded:

◦ Dean’s award for the best master thesis of summer semester in the school year
2021/2022 on Czech Technical University in Prague, Faculty of Information
Technology

[A.33] Krbilová K. Blockchain Smart Contracts in Public Sector. Master thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

[A.34] Šelder O. Business Rules in Blockchain Smart Contracts. Master thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

175

	Abbreviations
	Introduction
	Research Overview
	Challenges of Centralized Compliance
	Challenges of Decentralized Compliance
	Research Problem
	Research Objective and Research Questions
	Research Design
	Contributions
	Structure of the Dissertation Thesis
	Chapter Summary

	Literature Review
	Background and State of the Art
	Compliance Management
	Compliance Management Strategies
	Business Process Management
	Decentralized Compliance and Blockchain

	Compliance Management Systems Modeling and Execution
	Formal Languages
	Conceptual and Execution Languages

	Enterprise Engineering
	Ontology
	Important Concepts from PSI Theory
	Applying DEMO Methodology to Process Domain Descriptions
	Ontological Quality
	How to Read DEMO Models

	Chapter Summary

	 Our Approach
	Research Design
	Research Methodology
	Research Strategy
	Professional Experience
	Centralized Compliance Main Cycle
	Decentralized Compliance Main Cycle

	Assumptions, Scope, Limitations
	Chapter Summary

	 Centralized Compliance Management
	Execution of DEMO Aspect Models – FAR Ontology and DEMO Machine
	Fact, Agenda, Rule Ontology
	Addressing the DEMOSL-DEMO Machine Deficiencies
	Fact Axioms
	Agenda Axioms
	Rules and Dependencies Axioms
	Discussion and Evaluation of the FAR Ontology

	DEMO Machine
	Proof of Concept

	Related Research
	The DEMO Engine and the Enterprise Operating System
	DEMOBAKER
	XModel

	Chapter Summary

	Converting DEMO PSI Transaction Pattern into BPMN: A Complete Method
	Introduction
	Related Work - Improving BPM and BPMN
	Applying EET for Analysis of Existing BPMN Models of Business Processes
	Enhancing the Formal Foundations of BPMN by EET

	Analysis of DEMO and BPMN
	Converting DEMO into BPMN
	C-acts
	C-facts
	P-(F)acts
	Actors
	The Composition Axiom
	Revokes
	The Resulting BPMN Model
	The Execution

	Example – Case Voley
	Discussion and Conclusions
	Chapter Summary

	An Experiment in the Procedural Law Domain – 32 Case Studies
	Experiment Design
	Method Overview

	Reference Example – Arbitration Court
	Case Studies Overview
	Evaluation and Discussion
	Goal 1 – Feasibility
	Goal 2 – Increasing the Quality of Software Requirements
	Experiment Conclusion
	Approach Limitations
	Comparison with Other Modeling Techniques
	Further Research

	Chapter Summary

	 Decentralized Compliance Management
	Exploring a Role of Blockchain Smart Contracts in Enterprise Engineering
	Evaluation of BC and EE Compatibility
	Smart Contract Misconceptions
	BC as a Transaction Execution System
	BC as a Notarization System

	Principles to Devise SC from DEMO Models
	SC based on DEMO
	DEMO Transaction As Contract
	Notarization
	Transaction Execution in SC
	Extending the DEMO model
	Software Architecture
	EIS and BC communication

	Proof of Concept
	Related Research
	Chapter Summary

	Systems Supporting Decentralized Compliance Management
	Overview of Our Approach
	Contract Maturity Model
	The Concept Architecture
	The Proposed Method

	DasContract – a Visual Smart Contract
	DasContract Model Specifications
	DasContract Model Editor

	Code Generation and Execution of DasContract Models
	Data Model
	Process Model
	Forms Model
	Design, Compilation and Execution

	Extended Forms Model for Digital Interaction
	Case Study: Mortgage
	Process Design
	Execution
	Summary

	Case Study: EU Election
	Process Design
	Execution
	Summary

	Limitations
	Related Research
	Chapter Summary

	 Evaluation and Conclusion
	Evaluation and Contribution
	Contributions of the Dissertation Thesis
	Research Artifacts
	Publications
	Supervised Theses

	Evaluation of the Research Objective and Research Questions
	Research Question 1
	Research Question 2

	Application of the Contributions
	Chapter Summary

	Conclusions
	Summary
	Future Work

	 Publications
	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Selected Relevant Supervised Theses

