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Abstract

Automated theorem proving is a subfield of Artificial Intelligence (AI)
that goes back to its origins with Simon and Newell’s Logic Theory Machine.
Symbolic AI has often been contrasted with statistical machine learning
(ML). This thesis addresses the task of integrating statistical ML into
symbolic AI in the form of automated theorem provers, specifically the
E prover. E performs a refutation-complete search for a proof of a given
conjecture. ENIGMA is a system that uses ML (linear regression, gradient-
boosted decision trees, and graph neural networks) to select which clause
to process next in a proof search via weight functions. The ML models
weigh, prioritize, and filter the clauses to be used by E, thus guiding the
proof search.

Three methods are developed and experimented with: ProofWatch,
ENIGMAWatch, and Parental Guidance. The six papers on these methods
are included. ProofWatch uses hints from many other proofs to guide the
current proof search by using proof vectors that count how much of each
proof on the watchlist is matched. ENIGMAWatch combines ENIGMA
with ProofWatch by using the evolving proof vectors as a description of the
proof state to be used by the ML systems. Parental Guidance filters which
clauses get generated by their parental features to simplify the decision
landscape for clause selection ENIGMA models. The Parental Guidance
method can be combined with other ENIGMA models to create the 3-
phase ENIGMA system, the strongest so far. The “Make E Smart Again”
short paper disables two features essential for an effective and complete
refutational proof search, term ordering and literal selection, to see how
self-sufficient the ML-based clause selection models are. The results in the
“The Isabelle ENIGMA” paper demonstrate that ENIGMA and Parental
Guidance are effective on the Isabelle Sledgehammer Problems.

All of the methods in this thesis improve upon the state-of-the-art per-
formance over the Mizar Mathematical Library at the time of publication.
The best single strategy with ProofWatch performed 26.5% better than
the baseline strategy, and the best ensemble of five strategies performed
7% better than the best ensemble of baseline strategies. ENIGMAWatch
proved 8.8% more than ENIGMA in the first training loop with a faster
training time. The experiments in “Make E Smart Again” indicated that
ENIGMA attains a 256% increase over a bare-bones version of E and
can surpass the performance of E with two strong strategies. Parental
Guidance improves the performance of standalone ENIGMA by 11.7%.
The 3-phase ENIGMA improves upon the best previous result by 17.4%
and upon E’s auto-schedule by 60%. The ENIGMA clause selection and
Parental Guidance methods transfer to one of the largest corpora of Is-
abelle Sledgehammer problems and perform on par with the state-of-the-art
prover CVC5. ENIGMA and CVC5 prove a significant number of distinct
problems, with ENIGMA outperforming E’s auto-schedule by 25.5%.

Keywords: Automated Theorem Proving, Automated Reasoning, Machine Learning,
Proof Search Guidance, Mizar Mathematical Library, Isabelle



Abstrakt

Automatické dokazování vět je oborem umělé inteligence (AI), který
sahá až k počátkům AI, například v “Logic Theory Machine” od Simona
a Newella. Symbolická umělá inteligence je často srovnávána se statis-
tickým strojovým učením (ML). Tato práce se zabývá úkolem integrace
statistického ML do symbolické AI v kontextu automatických dokazovačů
vět, konkrétně dokazovače E. E provádí úplné vyhledávání důkazu dané
domněnky. ENIGMA je systém, který používá ML (lineární regrese, roz-
hodovací stromy s gradientem a grafové neuronové sítě) k výběru, kterou
klauzuli zpracovat jako další během hledání důkazu. Modely ML zvažují,
upřednostňují a filtrují klauzule, které má E použít, a řídí tak průběh
vyhledání důkazu.

Byly vyvinuty a experimentálně vyhodnoceny tři metody: ProofWatch,
ENIGMAWatch a Parental Guidance. Práce zahrnuje šest článků o těchto
metodách. ProofWatch využívá informace z mnoha předchozích důkazů k
řízení aktuálního vyhledání pomocí vektorů, které vyjadřují, jak moc se
současné prohledávání shoduje s předchozími. ENIGMAWatch kombinuje
systémy ENIGMA a ProofWatch pomocí dynamických důkazových vek-
torů popisujících stav důkazu, které jsou využity systémy ML. Parental
Guidance filtruje, které klauzule jsou generovány pomocí vlastností rodi-
čovských klauzulí, aby se zjednodušilo rozhodovací prostředí ENIGMA
modelů pro výběr klauzulí. Metodu Parental Guidance lze kombinovat
s dalšími modely ENIGMA a vytvořit tak třífázový systém ENIGMA,
zatím nejsilnější v praxi. Krátký dokument “Make E Smart Again” vypíná
dvě funkce nezbytné pro efektivní a úplné vyhledávání důkazů, konkrétně
uspořádání termů a výběr literálů, aby bylo vidět, jak soběstačné jsou
modely výběru klauzulí založené na ML. Výsledky v dokumentu „The
Isabelle ENIGMA“ ukazují, že ENIGMA a Parental Guidance jsou účinné
na problémy ze systému Isabelle Sledgehammer.

Všechny metody v této práci vylepšují nejmodernější výkon na mate-
matické knihovně Mizar v době publikace. Nejlepší jednotlivá strategie s
ProofWatch má o 26,5% lepší výsledky než základní strategie a nejlepší
soubor pěti strategií má o 7% lepší výsledky než nejlepší soubor základ-
ních strategií. ENIGMAWatch dokázal o 8,8% více než ENIGMA v první
tréninkové smyčce a dosahuje rychlejších tréninkových časů. Experimenty
v “Make E Smart Again” ukázaly, že ENIGMA dosahuje 256% nárůstu
oproti holé verzi E a může překonat výkon E pomocí dvou silných strategií.
Parental Guidance zlepšuje výkon samostatné ENIGMY o 11,7%. Třífázová
ENIGMA zlepšuje nejlepší předchozí výsledek o 17,4% a automatický mód
E o 60%. Metody výběru klauzulí ENIGMA a Parental Guidance jsou pře-
nositelné na jeden z největších korpusů matematických problémů Isabelle
Sledgehammer a fungují na stejné úrovni jako nejmodernější dokazovač
CVC5. ENIGMA a CVC5 prokázaly značný počet odlišných problémů,
přičemž ENIGMA překonala automatický mód E o 25,5%.

Klíčová-slova: Automatizované dokazování teorémů, Automatizované uvažování,
Strojové učení, Návod na hledání důkazů, Mizar Mathematical Library, Isabelle
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1 Introduction
Combinations of machine learning and automated reasoning are studied with
increasing interest in the AI community today. This thesis documents one path
from the era when machine learning could not be effectively applied to guide
automated theorem provers to the current era when the application of machine
learning to theorem proving is becoming common.

I come from the philosophical background of the artificial general intelligence
(AGI) field, which aims to develop AI systems capable of effectively operating in
diverse environments. One approach in the field of general AI is to work with
universal search procedures that are guaranteed to find a program solving a
problem if one exists (in exponential time relative to the length of the solution
program). The historically famous one is called Levin search [159, 160]. The
automated theorem provers I work with use refutation-complete search procedures
such that if there is a proof by contradiction to a given conjecture, this proof
will be found (if one is sufficiently patient). Program synthesis and proof search
are both semi-decidable because there exist terminating search procedures in
the case that solutions exist, and the search procedures may not terminate when
solutions do not exist. There are some well-known theoretical schemata for
creating an “optimally” generally intelligent reinforcement learning system on
top of universal search. One of these is the Gödel Machine [218] by Schmidhuber,
which starts with a simple universal search procedure while simultaneously
searching for provably superior search procedures. Hutter’s AIXI [127] is a
reinforcement learning agent that takes the action that maximizes the reward
over all computable environments matching the observed history weighted by
the complexity of the program generating the environment. Neither of these
is practical. So this approach to general AI is to work on approximations of
these theoretical ideals. One proof of concept in this research direction is the
Monte-Carlo Tree Search AIXI approximation that learned to play Pac-Man [245].
In this light, I view work on guiding automated theorem provers as one approach
to learning how to guide a universal search procedure effectively.

Automated reasoning is one approach to general problem-solving because
mathematics is the language in which problems are specified. Thus the capacity
to solve mathematical problems covers problem-solving in any domain. Quaife
famously argued for this point in his Ph.D. dissertation [201]. I would like to
honor and affirm Quaife’s will to devote work in automated reasoning “to the
pursuit and realization of unlimited pleasure”.

The field of automated reasoning [212] is broadly split into Automated
Theorem Provers (ATPs) and Interactive Theorem Provers (ITPs). ATPs
are fully-automated in that they prove conjectures from premises entirely on
their own. ITP systems are also called proof assistants and aim to support
mathematicians in formalizing their mathematical theories. Until recently, the
ATPs have tended to use first-order logic (FOL) because it is easier to devise
search procedures for first-order logic, and the ITPs have used type theory,
higher-order logic (HOL), or set theory. The recent large datasets for developing
ATPs usually come from the ITP system libraries translated into a first-order
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logic format. Furthermore, the ATPs can be integrated into ITP systems
as hammers [37] to help discharge goals, which makes life easier for formal
mathematicians.

Two major mathematical successes for ITP systems are the Flyspeck project [111]
(proving Kepler’s conjecture) and the Four-Color theorem [101]. Mathematicians
had difficulty ascertaining the validity of the proofs of the Four-Color theorem
due to their length and use of computer programs, which could be buggy and
thus also need to be verified.

The Kepler conjecture states that the densest packings of equally sized spheres
in a three-dimensional Euclidean space are the cubic and hexagonal close packing
arrangements. In simple terms, the standard way of packing oranges in a box
is optimal. Hales announced a proof in 1998 that included 3 gigabytes of data
detailing solutions to linear programming problems for various configurations
of spheres. In 2005, the Annals of Mathematics published the proof with “99%
certainty” that it is correct [110]. The Flyspeck project developed a formal proof
in the HOL Light proof assistant [115] with support from the Isabelle proof
assistant [185] to engender higher confidence, which was completed in 2014 and
accepted in 2017 [109,112].

The Four-Color theorem states that any map can be colored with four colors
so that no two adjacent regions have the same color. There is a long history
of attempted proofs of the Four-Color theorem, most notably Kempe’s in 1879,
which have been found to be flawed [253]. In 1976 Appel and Haken solved the
problem by a reduction to 1,834 (and later 1,482) configurations that were checked
by computer programs [12, 13]. The ‘computer proof’ triggered philosophical
discussions as to whether proofs not checkable by hand are valid, and the proof
was regarded with suspicion. In 1994, Robertson et al. [211] published a proof
using a quadratic-time algorithm that only required checking 644 reducible
configurations. Finally, in 2005, Gonthier completed a formal proof [103] in the
Coq proof assistant [59].

The QED manifesto [1] proposes to formalize all mathematical knowledge in
the same manner as the Kepler conjecture and the four-color theorem. I believe
that the future of math involves full formalization. Wiedijk keeps track of the list
of the “top 100” mathematical theorems and which ITP systems they have been
formalized in,1 including Gödel’s Incompleteness Theorem [191], the Pythagorean
Theorem [155], the Odd Order theorem [102], and the forcing technique to show
the independence of the Continuum Hypothesis [114]. At present, 99 have been
formalized across all ITP systems, and the top two, HOL Light and Isabelle,
contain formalizations of 87 of the theorems. The remaining theorem is Fermat’s
Last Theorem,2 which will require a vast amount of background theory to be
formalized first.

There are many challenges to the goal of formalizing all mathematical knowl-
edge. The formal languages for proof assistants still need to be made easier for
humans to learn, and users still need to choose from among the many libraries

1https://www.cs.ru.nl/~freek/100/
2There do not exist positive integers a, b, and c such that an+ bn = cn for an integer n ≥ 2.
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available. The Dedukti team is developing the Dedukti proof assistant [15] to
help reduce the need to choose the right proof assistant. The goal is for Dedukti
to provide a universal logical language and framework in which one can express
the theories corresponding to the logical systems used by the proof assistants
and work with translations between them [38, 68]. The Naproche project [60]
(Natural language Proof Checking) aims to develop a controlled natural language
in which mathematical statements can be syntactically checked for correctness,
hopefully making formalization easier for humans. Effective proof automation is
needed to allow mathematicians to gloss over technical minutiae. The MPTP
(Mizar Problems for Theorem Proving) system [237] for the Mizar Mathematical
Library [139] and the Sledgehammer system [39] for Isabelle were among the
first to demonstrate that ATPs can help with the formalization of mathematics
in ITPs.

The contemporary automated theorem proving ecosystem consists of various
interacting components, each of which is open to improvement by algorithmic
innovation and the application of machine learning. The automated theorem
prover’s search process will eventually find a proof by contradiction for valid
conjectures, provided the necessary premises are selected from among the avail-
able background theory. In order to accelerate the proof search, it helps to
provide no more premises than necessary and to choose strategies with a higher
likelihood of selecting the right clauses sooner than later. My research focuses
on developing learning-based guidance of the search process for the E theorem
prover [222,223,248].

I wrote a series of nine blog posts covering the content of this thesis and
some additional research for an educated lay reader, which may introduce the
field more gently.3

3The blog posts can be found at https://gardenofminds.art/category/research/
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2 Thesis Structure
This thesis aims to develop and test novel methods for the learning-based
guidance of automated theorem provers, particularly for the E theorem prover.
The methods focus on integrating additional semantic information into the
learning systems and increasing the integration of learning-based guidance into
the search process. The hypothesis is that machine learning can be applied to
each choice point that is not algorithmically solved.

The thesis consists of an introductory text and six research publications. The
rest of the thesis is organized as follows. Section 3 provides an overview of the
field background materials. Section 4 discusses related research topics. Section 5
contains the six research publications of the thesis. The following lists the papers
and provides their brief overview.

• “ProofWatch”: guiding the E theorem prover’s search with previously
completed proofs (Paper 1 [89]).

• “ENIGMAWatch: First Experiments”: a proof of concept result combining
ProofWatch with the ENIGMA machine learning system’s guidance of E’s
proof search (Short paper 1 [93]).

• “ENIGMAWatch”: full results of the system combining statistical learning
(ENIGMA) and symbolic learning (ProofWatch) based guidance of E
(Paper 2 [91]).

• “Make E Smart Again”: ablation studies demonstrating that the ENIGMA
machine learning can function without term ordering, literal selection, or
strong strategies (Short paper 2 [96]).

• “Parental Guidance”: a new system to filter generated clauses based on
their parent clauses and the 2 and 3-phase ENIGMA systems combining
Parental Guidance with ENIGMA guidance (Paper 3 [97]).

• “The Isabelle ENIGMA”: the application of a 2-phase ENIGMA with
Parental Guidance to Isabelle Sledgehammer problems (Paper 4 [98]).

Section 5 begins with more detailed descriptions, followed by the unmodified
published papers. Section 6 contains the concluding remarks and a discussion of
the authors’ specific contributions to the research publications.
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3 Foundational Material
This section provides a brief overview of the automated theorem proving field
leading up to the research in this thesis. The individual papers contain additional
overviews of the field. The following section covers related research in the appli-
cation of machine learning to automated theorem proving. Statistical machine
learning and symbolic learning, including theorem proving, have classically been
viewed as opposing approaches to artificial intelligence. Their romantic reunion
is the main topic of this thesis.

For an additional high-level overview of approaches to learning from previous
proof experience in 1999, see [65]. The reader may also be interested in checking
out the article by Harrison, Urban, and Wiedijk covering the history of interactive
theorem proving up to 2014 [116]. The Handbook of Automated Reasoning [212]
contains in-depth coverage of many topics in the field.

3.1 Logic
An overview of automated theorem proving (ATP) must begin with the notion
of a formal proof: the notion that a theorem statement can be justified via
sequences of inferences from known statements. A proof is a directed acyclic
graph where the nodes are statements, and the edges are logical inferences
connecting them. The root node is the theorem to be proven, the leaves are
axioms assumed to be true, and the intermediary nodes are derived statements.
Some proof theorists like to view a proof as a finite sequence of statements, each
of which is an axiom or a statement derived from previous statements via a
logical inference rule. An automated theorem prover is given a target conjecture
along with some theory axioms and asked to search for a proof. The proof should
be easily verifiable by checking each inference rule’s correctness.

Logic is the field that studies which inference rules work in which formal
languages. More generally, logic is the study of rational thought and coherent
chains of reasoning: logic deals with determining when components fit together
coherently, whether conclusions follow from premises, and how to identify con-
tradictions and fallacies of reasoning. In essence, how do we know when a proof
or argument is correct?

The study of logic usually begins with propositional logic [10, Chapter 1], also
called zeroth-order logic. Classical propositional logic consists of propositional
formulas 4 that represent logically true or false statements. Logical operators
are used to inductively create compound propositions from atomic propositions.
Atomic propositions consist of propositional variables that represent assertions
of logical truth or falsity. The standard logical operators are ∧ (“and”), ∨ (“or”),
¬ (“not”), → (“implication”), and ↔ (“equivalence”). The first check for the

4Well-formed formulas of propositional logic can simply be called propositions. The term
statement can also be used synonymously. Sometimes philosophers wish to draw a distinction
between the syntactic statement and the abstract entity that is stated. For further discussion,
see Chalmers [50, Third Excursus] or the Stanford Encyclopedia of Philosophy [171].
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correctness of a proof is to ensure that all the statements are syntactically
well-formed formulas according to the formal language.

An interpretation assigns meaning to the symbols of a formal language. The
standard truth-value semantics stipulates that propositions are either true or false,
which can be represented with the symbols ⊤ (“truth”) and ⊥ (“falsity”). Thus
interpretations are boolean functions that bestow truth values upon propositional
variables. The logical connectives have standard interpretations such that the
truth of compound propositions can be recursively checked, e.g., (P ∧Q)→ R
evaluates to true if R is true or if P ∧Q is false, which is the case if at least one
of P and Q is false.

To apply propositional logic to natural language statements, one assigns
each statement to a proposition variable and specifies the logical relations via
logical operators. For example, consider the classic example of modus ponens, an
inference rule stating that: “if P is true and P implies Q, then Q is true”, which
is written, P, (P → Q) ⊢ Q. Let P represent “Socrates is a man” and Q represent
“Socrates is an animal”. Then, P → Q represents the implication, “If Socrates is
a man, then Socrates is an animal”. It is common knowledge that Socrates is
a man and that humans are technically animals; thus, we can consider P and
P → Q to be axioms, which results in the conclusion that Q is true: “Socrates is
an animal”.5

If there exists an interpretation assigning truth values to the variables such
that a formula is true, then one says that the formula is satisfiable. In this case,
the interpretation is said to be a model of the formula. For example, P → Q
is satisfiable (with P := ⊥ and Q := ⊤), but P ∧ ¬P is not satisfiable for any
interpretation of the variables. A logical validity or tautology is a formula that
is true no matter what the truth values of its variables are. The principle of
excluded middle, P ∨ ¬P , is a valid proposition under the classic truth-value
semantics.

Deciding the satisfiability of a propositional formula is, in general, an NP-
complete problem, and the field of study is called SAT [24]. The problem
can be solved by creating a truth table containing a row for each of the 2n

interpretations where n is the number of variables. A popular approach used
in many SAT solvers is the DPLL algorithm [63] [24, Chapter 3.5], which is a
complete backtracking-based algorithm for solving the propositional satisfiability
problem. Modern SAT solvers often use the conflict-driven clause learning
(CDCL) algorithm [24, 27, 167, 168], which extends the DPLL algorithm with
clause learning and non-chronological backtracking.

First-order logic [10, 70, 174] allows one to employ predicates and to quantify
over variables with respect to a universe of discourse, which is usually a set
denoted U . Predicates allow one to reason about properties of entities and
relations among entities. One view is that predicates are symbols that are
intended to be interpreted as functions from the universe to propositions, which
are true or false. Predicates are usually modeled as relations,6 and predicates with

5Please forgive the use of present tense for simplicity. Socrates was a man.
6I will underline predicate names to denote the relation interpreting the predicate.
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no arguments are the same as propositional variables. For example, let Man(·) be
a predicate of arity 1 that can be interpreted as the set of all men, so Man(x) will
be true if the variable x is a man. Quantifiers are operators that bind variables
to a context. Variables that a quantifier has not bound are called free variables.
A statement with no free variables is also called a sentence and is similar to a
proposition. Given a predicate P (·), the existential quantification, ∃xP (x), is
intended to be true if and only if there is an existential witness a in U such that
P (a) is true. For example, if Man(socrates) is true, then socrates is an existential
witness for ∃xMan(x). Given a predicate P (·), the universal quantification,
∀xP (x), is intended to be true if and only if P (a) is true for every element a in U .
For example, instead of writing “Socrates is a man” → “Socrates is an animal”
as in propositional logic, one can use the universal quantifier to say that if an
entity x in U is a man, then x is an animal: ∀x(Man(x)→ Animal(x)).

The addition of a universe of discourse allows the introduction of function
symbols that are intended to be interpreted as n-ary functions from the universes
of discourse to itself, which includes constants when n is zero. Terms are
inductively defined to be variables or functions whose arguments are terms.
The equality relation, =, applied to terms, is often included in the definition
of the language. The atomic formulas consist of the equality and predicate
symbols applied to the appropriate number of terms. Well-formed formulas are
inductively defined to be atomic formulas, quantifiers over well-formed formulas,
and compound formulas made up of propositional logical connectives applied to
well-formed formulas.7

Adding universes, function symbols, and predicate symbols to the logic re-
quires interpretations of first-order logic languages to exhibit additional structure.
A structure M consists of a universe, a signature, and an interpretation. The
contemporary standard is to use set-theoretic semantics in which the universes8

are sets. First, the signature of the language specifies the constant, function,
and predicate symbols. The number of arguments, the arity, of function and
predicate symbols is also specified. The rest of the language is similar to the
language of propositional logic: logical symbols, the equality relation, and a
potentially infinite set of variable symbols. An interpretation assigns to each
constant symbol an element of the universe U . The interpretation associates
every n-ary function symbol with a function from Un to U and every n-ary
predicate symbol with an n-ary relation on U , that is, with a subset of Un.
This interpretation completes the structure and determines the truth value of
arbitrary sentences.

To determine the truth value of formulas with free variables, one needs a
variable assignment µ associating each variable with an element of the universe.
A formula F is satisfiable inM if there is a variable assignment µ such that F
is true. A formula F is valid in M if F is true under all variable assignments
and one writesM ⊨ F . And a formula F is logically valid if it is true in every
interpretation. A theory T usually refers to a set of sentences of a particular

7It’s common to use the term formulas to refer to well-formed formulas for convenience.
8The universe of discourse is also called the domain of discourse.
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signature, such as the axioms of Peano arithmetic for the natural numbers. A
structure M is a model of a theory T if it satisfies all of the sentences in T .

First-order logic admits many proof systems, some of which are sound and
semantically complete [70, Chapter 5]. There are two logical consequence
relations. Let Γ be a set of formulas denoting the context. The syntactic
consequence relation denotes provability in a given formal proof system FS, and
one writes Γ ⊢FS F to denote that the formula F is provable from Γ. The
semantic consequence relation does not depend on the formal proof system,
and one writes Γ ⊨ F to denote that every interpretation that models Γ also
models F . When Γ is empty, ⊢FS F denotes that F is a tautology in FS,
and ⊨ F denotes that F is a logical validity. A formal proof system FS is
sound (or correct) if provability implies semantic consequence: for all Γ and
F , if Γ ⊢FS F , then Γ ⊨ F . A formal proof system is semantically complete
if semantic consequence implies provability: for all Γ and F , if Γ ⊨ F , then
Γ ⊢FS F . Gödel’s completeness theorem [85] demonstrated semantic consequence
for a particular first-order proof system, a Hilbert-Ackermann proof system [120].
The combination of soundness and semantic completeness means that a proof
system’s notions of provability and semantic truth are aligned.

First-order logic has many other pleasant properties. Semantic completeness is
a proof-theoretic notion that is intimately related to the compactness property [70,
Chapter 6], which states that a set of first-order sentences has a model if and only
if every finite subset has a model. First-order logic admits proof systems that
allow for the computable enumeration of all logical consequences of a computably
enumerable set of axioms. Thus logical validity is semi-decidable, similar to the
halting problem in computer science: if a sentence is valid (given a set of axioms),
then there is a semi-decision procedure that will determine this. However, if the
sentence is invalid, the procedure may never terminate. First-order satisfiability
is fully undecidable: there does not exist a computable procedure that will, in
general, determine whether, for a given formula in a first-order language, there
exists an interpretation under which it is True.

First-order logic can not, however, uniquely describe structures with infinite
domains (such as the natural numbers or the real continuum): the Löwenheim-
Skolem theorem [70] shows that if a first-order theory has a model of an infinite
cardinality, then it has models of every infinite cardinality greater than or equal
to the cardinality of its signature. Lindström’s theorem [70]states that first-order
logic is the strongest logical system satisfying certain properties, including the
compactness theorem and the Löwenheim-Skolem theorem.

Clausification: Clausal Normal Form

In the ATP and SAT fields, problems are often transformed into the clausal
normal form (CNF), also called the conjunctive normal form. Atomic formulas
and their negations are called literals, and a clause is a disjunction of literals,
e.g., Man(x) ∨ ¬Ape(x). The conjunctive normal form is when a formula
consists of a conjunction of clauses, e.g., (¬Man(x)∨Ape(x))∧(¬Ape(child(x))∨
Animal(child(x)). Automated theorem provers usually aim to do proofs by
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contradiction, which means that to succeed, the ATP must show that a set of
sentences is unsatisfiable. Thus, for theory T and conjecture C, one transforms
the problem T ⊢ C into T ∧ ¬C ⊢ ⊥. The clausification process is applied to
the theory and negated conjecture to produce a refutationally equivalent set
of clauses: a refutation to the clause set is derivable if and only if the original
negated conjecture can be disproved.

The clausification process typically first converts formulas into negation
normal form by removing implications and moving negations inward so that
the negation operator is only applied to atomic formulas, and the only logical
operators are conjunction and disjunction. For propositional logic and SAT
problems, one only needs to distribute the ∨s over the ∧s to create a clause.
The size of a formula in CNF can blow up exponentially, so there are many
techniques for more effective clausification. Clauses are often represented as
multi-sets of literals, which means a formula in CNF can be represented as a
multi-set of multi-sets.

For first-order problems, one needs to deal with quantified variables. From
negation normal form, the next step is to standardize variable names to avoid
conflicts and to move quantifiers to the outermost scope. Then the process of
Skolemization replaces existential quantifies with Skolem symbols (constants or
functions) that provide the existential witness. This step preserves unsatisfiability
because if there can be no interpretation of the Skolem symbol that provides the
right element, then there can be no existential witness for the original formula.
Now that existential quantifiers have been lifted to the level of the language and
all universal quantifiers have been moved to the outermost scope, one can assume
that all variables are implicitly universally quantified and drop the universal
quantifiers. Finally, the ∨s are distributed over the ∧s to create first-order
clauses.

3.1.1 The Logic Zoo

Some other logical specimens are worthy of a brief mention. This thesis primarily
works with classical first-order logic. In The Isabelle ENIGMA paper, many-
sorted first-order logic is successfully used. The author hopes that the machine
learning techniques developed in this thesis can also be effectively applied to
other logical systems.

1. In many-sorted first-order logic [70, 166], one can have several universes of
discourse over which variables can be quantified. For sorts {s1, . . . , sn}, a
many sorted language has distinct variable sets V1, . . . , Vn, and a many-
sorted structure has universes {U1, . . . , Un}. The sorts of the arguments of
predicate and function symbols can be specified by a rank function. The
scope of quantification also needs to be specified so that variables only
range over the appropriate sorts. For example, let si denote the sort of
animals in “not all animals have a father”: ¬∀x:si∃y:siFather(si,si)(x, y).

2. In Second-order logic [70,249], one can instantiate variables with predicates
instead of only elements of the universe. Quantifying over predicates is
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equivalent to quantifying over subsets of elements of the universe because
predicates are represented as relations. Second-order logic with the stan-
dard semantics can uniquely describe structures with infinite domains and
does not provide a deductive system that is sound, complete, and with a
computable proof-checking algorithm.

3. Simple type theory [10, 76] is a standard form of higher-order logic that
is built in terms of function abstraction and application. The base types
are the type of individuals, ι, and the type of truth values, ∗. The function
types, (α→ β) for types α and β, are defined inductively. Predicates and
sets can be defined as types (ι→ ∗), and the usual logical connectives and
quantifiers are defined in terms of function application, function abstraction,
and equality. Quantified variables are restricted by type, which includes
higher-order types that correspond to “sets of sets of sets” and so on.

The set-theoretic model theory works similarly to how it does in first-order
logic. Let Dα be the set of all values of type α. The set Dι would correspond
with the first-order universe U . Standard models require function domains,
Dα→β , to contain all total functions from Dα to Dβ . General models only
require function domains to contain some nonempty set of total functions
from Dα to Dβ . When using standard models, one can uniquely describe
structures with infinite domains, such as the natural numbers, and there
is no sound and complete proof system. When using general models,
simple type theory is semantically equivalent to first-order logic due to the
compactness and Löwenheim-Skolem theorems holding, and it admits a
sound and complete deductive system.

4. Intuitionistic or constructive logic [119,180] is like classical logic without
the principle of excluded middle or the double-negation rule (that one
can prove A from ¬¬A). The Coq proof assistant uses the calculus of
constructions, an intuitionistic logic.

A noteworthy family of results is the double negation translations: (1)
Glivenkos’s translation is such that a proposition P is provable in classic
propositional logic if and only if ¬¬P is provable in intuitionistic logic.
(2) Kuroda’s negative translation is such that a first-order formula F is
classically provable if and only if ¬¬F ′ is provable in intuitionistic logic
where F ′ is obtained from F by adding double negations beneath each
universal quantifier [43].

5. Paraconsistent logic systems [47,199] aim to develop non-consistency toler-
ant deductive systems in which the principle of explosion is invalid, that
is, in which one cannot prove any proposition P from a contradiction.
This way, knowledge bases and reasoning can survive contradictions. One
charming result due to Canielli and Fuenmayor [48] is that in some Logics
of Formal Inconsistency, Gödel’s Incompleteness Theorem can be seen as
Gödel’s Existence Theorem.
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6. Fuzzy logic systems [58, 215] allow truth values to take on values within
the real interval [0, 1] instead of only 0 and 1 (False and True). There are
many ways to interpret the fuzzy logical operators. Standard fuzzy logic
uses the following operators (denoted with the subscript s): ∨s := max,
∧s := min, and ¬s(x) := 1 − x. Standard fuzzy logic reduces to classical
logic in the case that all of the fuzzy truth values are 0 or 1.

7. Probabilistic logic systems [64] aim to extend crisp logical entailment to
uncertain or probabilistic inference. Markov logic networks [210] satisfy the
property that all logical validities will have probability one, which makes
them a generalization of classical logic.

8. Linear logic systems [67] assign a cost to doing inference so that one can
reason about resources.

9. Modal logic systems [79] allow one to reason about various modal operators
such as belief, knowledge, possibility, necessity, temporality, and obligation.
The semantics of modal logic systems are often understood in terms of
possible worlds and the influence of the modal operator on the accessibility
relation among worlds.

3.2 Resolution and Superposition: In Search of Saturation
The resolution and superposition calculi [252] were developed to facilitate algo-
rithmic proof search, and they form the core of most modern automated theorem
provers, including the E prover. They can act as the primary inference rules for
refutation complete search processes, provided the applications are fairly ordered.
When using a refutation complete search process, a proof will eventually be
found if a set of first-order clauses is unsatisfiable. This section closely follows
Weidenbach from the Handbook of Automated Reasoning [212, Chapter 27] and
the E 2.6 user manual.9 All term definitions can be found in both sources.

The resolution rule takes two clauses that contain complementary literals (L
and ¬L) and produces a resolvent clause that they logically imply. Below is the
propositional logic version:

C1 ∨ L ¬L ∨ C2

C1 ∨ C2

The clausal form of modus ponens is a special case of resolution:

⊥ ∨A ¬A ∨B
B

In the first-order logic case, one needs to introduce the concept of unification to
deal with the variables.

A substitution σ is a finite mapping from a set of variables to a set of terms.
The application of substitutions extends to terms, predicates, and clauses by

9http://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.6/eprover.pdf.
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structural induction: e.g., for a function symbol f of arity n, f(t1, . . . , tn)σ =
f(t1σ, . . . , tnσ). A unifier for two terms s and t is a substitution σ such that
sσ = tσ. A unifier σ is a most general unifier if it can be specialized via a
substitution into any other unifier, that is, if, for any unifier τ of s and t, there
exists a substitution λ such that σλ = τ . Substitutions are composed from left
to right. For example, Cσλ is the same as (Cσ)λ. We write σ = mgu(s, t) to
denote that σ is the most general unifier of s and t. The notation [t/x] denotes
the substitution of the term t for the variable x.

We say that a term s matches a term t if there is a substitution σ such that
sσ = t. A clause C1 is said to subsume a clause C2 if there exists a substitution
σ such that C1σ matches a subset of C2, that is, C1σ ⊆ C2. We write C1 ⊑ C2

to denote that C1 subsumes C2. One important fact is that subsumption implies
logical implication: if C1 ⊑ C2, then C1 logically implies C2.

For first-order resolution, let σ = mgu(L1, L2):

C1 ∨ L1 ¬L2 ∨ C2

(C1 ∨ C2)σ

Let us revisit the inference that Socrates is an animal because all men are animals
as a resolution step:

Man(socrates) ¬Man(x) ∨Animal(x)
[socrates/x]

Animal(socrates)

The clause Man(socrates) is called a unit clause because it has only one literal.
A common strategy called unit propagation is to process all unit clauses first.

The factoring rule unifies literals within a clause. Let σ = mgu(L1, L2):

C1 ∨ L1 ∨ L2

(C1 ∨ L2)σ

Superposition and paramodulation are inference rules that combine resolution
with equality reasoning. Equality reasoning refers to performing term rewrites,
e.g., if “masked_man = socrates” and “Animal(masked_man)”, then one can
apply the equality to rewrite the literal into “Animal(socrates)”. Following the E
manual, let s[u← t] denote the term s in which every occurrence of the subterm
u has been replaced by t. In general, for terms s, t, and u, a rewrite with s = t
into a subterm p of u can take place when there is a (most general) unifier σ of
p and s, that is, pσ = sσ:

s = t u
(u[p← t])σ

In the case of non-unit clauses, such as s = t ∨ S, one standard interpretation is
that s = t is a conditional equality, that is, ¬S → s = t. The paramodulation
rule rewrites p as t, where p is a subterm of u and σ = mgu(p, s):

s = t ∨ C1 u ∨ C2

(u[p← t] ∨ C1 ∨ C2)σ
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The application of the paramodulation rule must be restricted to guarantee the
completeness of the proof search. The most important component is a term
ordering to ensure that rewriting is done in one direction, usually toward smaller
terms. Term orderings are also called reduction orderings. The selection of
literals also needs to be done in an ordered manner. Superposition is a term
for paramodulation when its use is restricted to adhere to a complete reduction
ordering.

The goal of the search is either to saturate the search space or to derive
the empty clause, a refutation. A clause set is saturated when all inferences
among the clauses from the set have been performed up to redundancy, and the
resulting clauses have been included in the set. To effectively achieve this, we
need reduction rules that reduce or simplify the number of clauses. One reduction
rule is tautology deletion, which deletes tautologies. The rule of subsumption
deletion removes clauses that are subsumed by others in the clause set. Recall
that if C1 subsumes C2, then C1 logically implies C2; thus, keeping C2 in the
clause set is redundant. If a clause set saturates without the empty clause, then
the clause set is satisfiable.

The E theorem prover used in this thesis uses the superposition calculus
with some additional rules to enhance performance. E uses a purely equational
paradigm, which means that all literals are equations. Non-equational literals
are encoded as equations or disequations, so P (t1, . . . , tn) will be represented as
P (t1, . . . , tn) = True and ¬P (t1, . . . , tn)) will be represented as P (t1, . . . , tn) ̸=
True. The rules for resolution, factoring, and superposition are appropriately
adapted.

3.3 Term Ordering and Literal Selection
The superposition calculus is one way to implement term rewriting based on
equalities, which, if unrestricted, could loop indefinitely. The Knuth-Bendix
Ordering (KBO) [148] is one of the most popular ways to restrict term rewriting
and literal selection. The default in E is the KBO ordering. The KBO ordering is
defined in terms of a weight function over the symbols in terms. E also supports
lexicographic path ordering (LPO) [143]. Literal selection for resolution in the
right order is also needed for completeness [17, 18] (see [121, Section 3] for an
example).

Some work has been done on applying machine learning to improve the term
ordering. Jakubův and Kaliszyk [134] implemented the relaxed weighted path
ordering (WPO) [256] in E, which can be parametrized to behave similarly to
KBO or LPO. Bártek and Suda [25] tried to use machine learning to predict
symbol precedences, which did not perform better than “invfreq”, which orders
symbols based on how frequently they are seen in the input problem. Reger
et al. [121] achieve good results with an incomplete lookahead literal selection
procedure in Vampire [153].

In the “Making E Smart Again” paper [96], I use a structural identity relation
as the ordering, which limits E’s ability to do rewriting and makes E much less
efficient. I show that machine learning can still learn to guide E effectively: I
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attained a 260% performance increase (in terms of theorems proved on Mizar)
over a simple strategy with the limited E.

3.4 Saturation-Based ATPs: The Given Clause Loop
State-of-the-art automated theorem provers (ATPs) for first-order logic (FOL),
such as E [221] and Vampire [153], are based on saturation and employ the given
clause algorithm with the superposition calculus. The description in this section
primarily pertains to E, and while Vampire’s given clause loop is similar, there
may be some differences. The input FOL problem consists of the theory and the
conjecture. The first step is to negate the conjecture to search for a proof by
contradiction. The theory and the negated conjecture are then transformed into
a refutationally equivalent set of clauses in CNF (clausal normal form), which
forms the initial clause set, T ∪ {¬C}. The goal of the proof search is to take
this initial clause set and either to infer the empty clause, which represents the
contradiction, or to produce a clause set that is saturated with respect to the
inference rules.

The search for a contradiction is performed by maintaining sets of processed
(P ) and unprocessed (U) clauses (the proof state Π = (P,U)). The unprocessed
clause set is initialized with the initial clause set, while P = ∅. The algorithm
repeats the following process until a contradiction is found, U becomes empty,
or a resource limit is reached:

1. Select a given clause g from U to process and add to P .

2. Generate clauses by performing all inferences between g and clauses in P .

3. Simplify the clauses, remove redundancies, and check for the empty clause.

4. Evaluate the simplified generated clauses and add them to U .

The given-clause algorithm is refutation complete for the superposition calculus,
which means that if the initial clause set is unsatisfiable, a contradiction is
derivable from the axioms and the negated conjecture, which constitutes a proof
by contradiction. The processed clause set P is saturated if the unprocessed
clause set U empties, which means that the initial clause set (T ∪ {¬C}) is
satisfiable (and the conjecture is not a theorem). The search process may never
terminate if the initial clause set is satisfiable with an infinite model.

3.5 ATP Search Strategies in E
The search space of this loop can grow exponentially, and the term ordering
only restricts the number of eligible clauses for selection. It is well-known that
selecting the right given clause is crucial for success. This observation is one of the
results of Stephan Schulz’s Ph.D. dissertation [219]; he is the primary developer
of E. Machine learning from a large number of proofs and proof searches can
help guide the selection of the given clauses, and this is the approach taken in
this thesis.
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Given clause selection in E is managed via clause evaluation functions (CEFs).
Clause evaluation functions consist of priority functions and parametrized weight
functions that assign numeric evaluations to the clauses: (priority,weight),
where the priority is an integer and the weight is a real number. The clauses
are inserted into an ascending priority queue based on these (priority, weight)
tuples. The conceptual idea is that the clauses are primarily selected based
on weight functions, while priority functions partition the clauses into distinct
subsets based on special properties.

For example, a CEF with the priority function PreferGoals will choose
all goals (negative clauses) before selecting positive clauses. The parametrized
weight function Clauseweight counts the symbols in a clause, and the weight
function FIFOWeight assigns monotonically increasing weights to realize a
first-in, first-out strategy.

A strategy in E is a combination of CEFs that follow a weighted round-robin
scheme. For example, in the following classic strategy, five clauses from the
Clauseweight priority queue will be selected for every one clause from the
FIFOWeight priority queue:

(5*Clauseweight(PreferGoals,1,1,1),
1*FIFOWeight(ConstPrio))

The classic strategy combining a FIFO weight function with a symbol counting
weight function is so essential that one often discusses the age-weight ratio to
refer to the fine-tuning of their balance. The clause weight function guides the
ATP to process small clauses first, approaching the empty clause, and the FIFO
weight function helps ensure the completeness of the proof search. There are
many additional parameters to tune, such as whether to process all initial clauses
before processing new ones. Moreover, strategy scheduling is an important
optimization target because, for example, an ensemble of five strategies (of CEFs)
run for one second each can outperform one strategy run for five seconds.

Most ATP guidance methods, including ProofWatch and ENIGMAWatch,
target the given clause selection. The ATP guidance is done via specialized
priority functions (e.g., PreferWatchlist) or weight functions (e.g., Enigma)
that allow the machine learning methods to cooperate with other strategies in
selecting clauses natively.

The generation of clauses in E uses term indexes and is very fast once
compatible clauses are determined, so there is little room to insert machine-
learned models into other parts of the given clause loop. Nonetheless, the Parental
Guidance feature successfully filters generated clauses before the simplification
step.

3.6 Strategy Invention and Selection
Much human thought can go into fine-tuning strategy schedules, which are
sequences of strategies to be executed sequentially, each one for a selected time.
A strategy is a fixed setting of the various options that affect the proof search,
which, in the case of E, includes the clause evaluation functions. Automated

15



strategy invention can improve upon manually designed ATP strategies. Jakubův
and Urban [129,239] used iterated local search to hierarchically invent ensembles
of strategies that cover the most problems. These strategies are heavily used
in our research. Schulz and Schäfer [217] used genetic algorithms to evolve
effective strategies, one of which is used in ProofWatch experiments. Holden and
Korovin [123], working with iProver [151], interleave Bayesian hyper-parameter
optimization to discover heuristics with clustering of problems according to which
heuristics work on them (in addition to other features) and then use machine
learning to map problems into schedules of heuristics. Mangla et al. [165] use
Bayesian statistics to propose permutations of strategies and to optimize time-
allocations for iLeanCoP [188]. Rawson and Reger [206] experiment with varying
the age-weight ratio throughout a proof in Vampire. Rawson and Reger [205] also
implement a run-time strategy scheduler for Vampire to improve proof search
time by using a neural network to predict whether a strategy is likely to succeed.

3.7 Watchlists
The hint list method developed by Veroff [247] directs the proof search by
prioritizing clauses that match clauses (hints) on a hint list. These hints are
usually clauses that were useful in related proofs. In E’s implementation, the
hint list is called the watchlist. A clause is said to match a hint if the clause
subsumes the hint. Logical subsumption implies logical entailment (but not vice
versa); thus, the watchlist provides logically suggestive guidance.

Hint lists have proved essential in the AIM project [145] to prove an open
conjecture in loop theory10 with the help of Prover9 [170]. The AIM project
involved many proofs with over one hundred thousand steps and hint lists created
from these long proofs. Some of the automated results allowed Michael Kinyon
to prove the weak AIM conjecture.11

ProofWatch is the first successful application of the watchlist technique to a
large ITP library (Mizar). ENIGMAWatch combines the watchlist with machine
learning guidance of clause selection and presents a novel multi-subsumption index
to speed up checking the watchlist. Ruhdorfer and Schulz [216] implemented a
special index for unit clause subsumption to help handle large watchlists. When
dealing with a large library of diverse problems, automatic curation or creation
of watchlists is important. I believe that there is room for future research in this
area.

3.8 Datasets
The research in this thesis is conducted with problems from two ITP systems:
Mizar [105] and Isabelle [185]. The languages of both systems are translated
into the TPTP (Thousands of Problems for Theorem Provers) language [232],

10An algebraic loop is a quasigroup with an identity element.
11See the talk, “Prover9 Assisted Proof of the Weak AIM Conjecture"

from AITP 2021 at http://aitp-conference.org/2021/ or Veroff’s page:
https://www.cs.unm.edu/~veroff/AIM_REDONE/
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which is the de-facto standard for automated theorem provers. Urban developed
the MPTP (Mizar Problems for Theorem Proving) system [237] to translate
from Mizar to TPTP. Mirabelle, a tool in Isabelle, can export to many TPTP
formats.

The Mizar Mathematical Library (MML) [139] is one of the largest repositories
of formal mathematics. The Mizar language uses classical first-order logic and
aims to resemble normal human mathematical texts. The MML is built on the
foundations of Tarski-Grothendieck set theory [45,235] and allows weak types.
Some famous theorems in the MML are: the Bolzano-Weierstrass theorem [152],
Brouwer fixed point theorem [197], Gödel’s completeness theorem [42], and the
Jordan curve theorem [150].

Isabelle is a generic proof assistant that uses a weak type theory-based
formal proof language in which first-order logic (FOL), higher-order logic (HOL),
and Zermelo-Fraenkel set theory (ZFC) have been encoded. The most widely
used logic in Isabelle is Isabelle/HOL. Isabelle has been used to formalize
mathematical results such as Gödel’s incompleteness theorem [191], Gödel’s
ontological argument [28], and the prime number theorem [71,236]. Isabelle is
also used to verify software and hardware systems [190,246], the correctness of
security protocols [147,186], and programming language semantics [126].

The ProofWatch, ENIGMAWatch, Make E Smart Again, and Parental Guid-
ance papers are conducted on (subsets of) a large benchmark of 57 880 problems12

from the MML exported to first-order logic by the MPTP system.13 The MML
contains over 1000 articles on diverse mathematical topics. One important subset
is the 33 articles leading up to the proof of the Bolzano-Weierstrass theorem,
which formed the MPTP Challenge dataset [237,242] in 2007.14 There are two
common ways of creating problems for the MML datasets:

1. Bushy: the theory included for a conjecture are the lemmas used to prove
the conjecture in the MML and the necessary background theory.

2. Chainy: the theory included for a conjecture consist of all lemmas available
in the MML at the time of its proving, which resembles a chronological
order and can include many unnecessary lemmas (that need to be filtered
through).

The chainy problems are intended to be a more realistic setting that requires
premise selection. This thesis’s research topic is proof search guidance, so we
generally use the bushy problems in the FOF (First-Order Formula) TPTP
format.

The Isabelle ENIGMA uses a large export of Sledgehammer problems from
Isabelle libraries. The Sledgehammer is an interface for proof automation in
Isabelle that exports goals to a format for ATPs and reconstructs proofs in

12http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
13We are maintaining a compilation of interesting proofs at https://github.com/ai4reas

on/ATP_Proofs.
14http://tptp.cs.miami.edu/~tptp/MPTPChallenge/

17

http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
https://github.com/ai4reason/ATP_Proofs
https://github.com/ai4reason/ATP_Proofs
http://tptp.cs.miami.edu/~tptp/MPTPChallenge/


Isabelle’s language. The dataset consists of 276 363 problems in the TFF (Many-
sorted First-Order Form) TPTP format. These problems are exported from 1902
Isabelle theory files and 179 sessions using the Isabelle/Mirabelle tool. Out of
the 179 sessions, 75 were distributed with the Isabelle 2021-1 release, 80 were
selected from the Archive of Formal Proofs [36], and 24 sessions were distributed
as part of the IsaFoR (Isabelle Formalization of Rewriting) library [234]. Unlike
for the MML, for each problem, 512 premises are selected using the MePo filter, a
heuristic premise selector developed by Meng and Paulson [175]. These problems
include proof-intermediate goals that appear to users rather than just top-level
lemmas.

There are many more formal math libraries to which our systems can, in
principle, be applied and to which they will probably generalize with some work.
The adaptation of our work to additional domains is left as future research for
the author, colleagues, or anyone interested and capable.

3.9 ENIGMA: Machine Learning for Given Clause Selec-
tion

This section summarizes the development of the ENIGMA family of systems to
guide the given clause selection inside E [56,91,97, 128,130,131,133]. ENIGMA
stands for Efficient learNing-based Inference Guiding MAchine. The ENIGMA
systems have been developed in parallel with this thesis’s research and as a part
of my work.

Schulz et al. [220, 224] demonstrated that the choice of the given clause is
crucial for the success of the E prover and found that combining strategies in
the proof search led to a synergistic gain. Schulz reported that there is huge
potential for improvement, and in the following decades, machine learning has
delivered. Schulz has developed many heuristics to automatically determine
which of E’s parameters and option values to apply based on problem features,
including how to schedule strategies. These heuristics are run by calling the
“auto schedule” parameter. The latest ENIGMA results with machine learning
guidance in Section 5.5 improve upon E’s auto-schedule mode by 60%.

The training of ENIGMA models is usually done in training/evaluation loops:

1. The training data T are curated from (previous) successful proof searches.

2. A model M is trained on T to distinguish positive from negative clauses.

3. M is run with the ATP (E), usually in cooperation with another strategy.

4. Go to step (1) with the new data obtained in step (3).

There are many choices to be made. For example: how do we choose which
successful proof searches to mine for training data? Eventually, one can gather
hundreds of gigabytes of data, including dozens of proofs for some conjectures.
What machine learning models do we use? How does one featurize logical clauses
into vectors? Are the same strategies effective independently and in cooperation

18



with an ENIGMA model? We consider proof clauses as “positive”, but how do
we know that the other clauses are truly “negative” and could not contribute to
a different proof?

To start with the easy questions, for each proof, we consider all clauses in the
proof to be positive and all the selected clauses not in the proof to be negative.
We have no guarantee that a “negative” clause not used in a proof is a “true
negative”. We hope the learning algorithms will manage the ambiguity when
the same clause is positive in one proof of a conjecture and negative in another
proof of the same conjecture.

In the initial ENIGMA experiments, we collected all the training examples
from all successful proof searches. Once the data grew too big, multiple ap-
proaches were employed. One simple approach is to start over using only the best
model’s data. Another approach is to use a greedy cover over all runs to ensure
that no solved problems’ proofs are lost and to use all the data from the runs
in the greedy cover. The most sophisticated approach is to fix some k, such as
k := 3, and only keep k proofs per problem in the training data. Jakubův found
that the combination of a “shortest proof”, a “middle-length proof”, and a “longest
proof”, was more effective than just taking one proof or three random proofs.
I call this “infinite-order looping" as the data scales linearly with the number
of proofs and can be continued indefinitely. In all of the methods, sometimes it
has been helpful to prune negative samples (in addition to the data balancing
provided by the ML toolkits). I recommend infinite-order looping for future
research.

Strong strategies discovered with BliStrTune [129] have also performed well
in cooperation with ENIGMA models. The strategies also perform well with
watchlist methods (replacing priority functions with a PreferWatchlist priority
function). E incorporates the ENIGMA models’ predictions into a weight function.
One way to do this is to assign a weight of 10 to negative clauses and a weight of
1 to positive clauses. Usually, we combine the ENIGMA clause evaluation with
the strong E strategies in a balanced manner where ENIGMA chooses 50% of
the clauses.

Machine learning methods and data featurization techniques have undergone
many developments over the generations. The models based on recursive neural
networks [56] and graph neural networks [128,187] aim to preserve the syntactic
structure of the mathematical formulae, bypassing the need for hand-crafted
featurization.

The ENIGMA features are based on term walks over the syntax trees of
the literals in clauses. Term walks of length 3 are usually used and different
values have not provided significantly different results. Variable and Skolem
symbols are abstracted into the symbols ⃝⋆ and ⊙, respectively. Each unique
combination of three symbols is assigned an index in the feature vector. For a
literal (a formula), all (top-down) directed paths of length three are counted, and
the counts are stored in the assigned indices of the feature vector. To process
a clause, one sums the feature vectors of each literal. These are called vertical
features and were the sole features in the first ENIGMA version [130]. In later
versions, additional features have been added. I list some of the features below:
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1. Vertical features: top-down term walks of length 3 of clause’s literals
syntax trees. The literal features are summed up to produce the clause
features. For example, some vertical features of f(x, y) = g(sko1, sko2(x))
would be {(=, f,⃝⋆ ), (g,⊙,⃝⋆ ), (=, g,⊙), . . . }.

2. Horizontal features: include, for every term, the term’s head symbol and
the top-level symbols of its arguments. For example, the horizontal features
of the unit clause, P (f(g(a), g(a))), are {P (f) : 1, f(g, g) : 1, g(a) : 2}

3. Length features: clause length, the counts of positive and negative
literals, and similar statistics.

4. Symbol features: for each symbol in a clause, its number of occurrences
and maximum depth in positive and negative literals.

5. Variable statistics: various statistics on the variable frequencies in the
clause.

6. Conjecture features: merge the features of all the conjecture clauses in
the target conjecture and append this to the clause features.

7. Theory features: merge the features of all axiom clauses one aims to use
to prove the target conjecture and append this to the clause features.

8. Problem features: add the problem features that E already internally
computes, such as the number of goals, axioms, and unit goals.

9. Proof vector features: use the watchlist feature to load multiple proofs
and keep track of how many clauses in each proof have been matched. Add
this watchlist progress vector to the feature vectors.

10. Parent features: append the parent clause feature vectors.

11. Feature hashing: use the sdbm hash function on feature strings to map
features into a manageable number of buckets (e.g., from 210 to 215).

12. Anonymous features: abstract function and symbol names into fn and
pn based on the arity n.

13. Type features: when using a typed format (such as THF), the type
(sort) information becomes part of the symbol names. For example,
“mult” is of type “nat → nat → nat”, so the typed symbol name will
be “mult:nat>nat>nat” and with anonymization the symbol name is
“f2:_>_>_”.

The subset of features to be used is an additional parameter that can be tuned.
One can imagine different features, such as using the whole derivation history
of a clause instead of parent features, which Suda does in Deepire [230, 231].
The feature hashing was seminal to achieving performance on large libraries
such as Mizar and Isabelle, as performance deteriorated when vectors exceeded
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106 features. Curiously, in some experiments, hashing features into only 32
buckets led to some new proofs. ENIGMA models trained with anonymous
features perform on par with those with access to symbol names. This feature is
especially important on datasets where symbol names are not used consistently
(such as Isabelle Sledgehammer datasets). The most up-to-date information on
the features can be found in [56, Section 3] and [128, Section 3]. The selection
of features and their parameters can be fine-tuned on a domain-specific basis.

The first ENIGMA version [130] used Support Vector Machine Classifica-
tion [41] from LIBLINEAR [73] as the underlying machine learning for clause
classification and selection. The second version [131] uses a fast logistic regression
algorithm from LIBLINEAR. The version used in ENIGMAWatch [91,93,133]
introduced feature hashing and gradient-boosted decision trees (GBDTs) with
XGBoost [54] instead of LIBLINEAR. ENIGMA-NG [56] uses XGBoost and
recursive neural networks, aiming for a syntactically faithful way to process
formulae. ENIGMA Anonymous [128] introduced anonymous features and
switched to LightGBM [144] because it handles large datasets better and has
more parameters to toggle. The most distinct difference is that LightGBM grows
decision trees leaf-first and allows the user to choose the number of leaves in
the trees, whereas XGBoost grows trees breadth-first. ENIGMA Anonymous
also successfully uses a symbol-independent graph neural network (GNN) [187]
for given clause selection guidance, which should capture additional structural
information about the clauses. The GNN allows for the contextual evaluation of
clauses by adding processed clauses to the graph in addition to the clauses to
be evaluated. The latest version is the “fast and slow” 2-phase ENIGMA [97],
combining the GNN and GBDT guidance, using the GBDT as a fast rejection
filter before clauses are sent to a GNN server for evaluation.

3.10 ENIGMA: Parental Guidance
The latest version of ENIGMA [97] also includes Parental Guidance, which
filters generated clauses prior to clause selection based on the features of their
parents alone. Combined with the 2-phase ENIGMA, this results in the 3-phase
ENIGMA, a system that combines 3 ML models to guide E and attained our
strongest single strategy on Mizar.
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4 Related Research

4.1 ENIGMA: Leapfrogging and Reasoning Components
Chvalovský et al. [57] introduce two ATP-external learning techniques that rely
on the GNN’s contextual evaluation of clauses. The leapfrogging approach is to
run the theorem prover on a problem for a fixed time limit. If the problem is not
solved, a graph-based predictor selects a subset of the processed clauses with
which to run E again. Two rounds of leapfrogging led to new, complementary
problems being proven in the Mizar dataset. The idea is that in addition
to focusing the proof search, the GNN can also give different evaluations in
different contexts. The next technique is to augment leapfrogging by using graph
clustering algorithms to split the set of processed clauses into components that
can be given to the theorem prover separately. Learning reasoning components
is a bottom-up approach to identifying subgoals: mathematical problems often
have well-separated reasoning components, for example, when there is a need to
compute a derivative to use in another equation.

4.2 Premise Selection
In an ideal world, a conjecture may be given to a general-purpose automated
theorem prover in an expressive, QED-like logical framework that allows theorems
to be translated between formal mathematical libraries such as Dedukti15 or
MMT16 [149,202]. The theorem prover will then choose appropriate theorems
and lemmata from the available formal mathematics libraries in order to prove
the conjecture. If an additional lemma appears to be needed during the proof
search, the general ATP will see if any usable theorems already exist. If not, the
ATP will begin conjecturing and trying to discharge the sub-goals.

At present, ATPs can be confused and bogged down if given a large number
of theory formulas. Thus there is the need to select, for each conjecture, a subset
of axioms from which the conjecture is provable (with minimal false positives).
The premises used by human formalizers can be helpful as learning data; however,
sometimes, ATPs find alternative proofs using different premises. A process of
pseudo-minimization [137] is often done where only the premises used in a proof
are kept, and the ATP is re-run until a fixed point is reached.

Non-learning methods for premise selection usually iteratively add premises
based on some heuristic. The SInE [122] method for axiom selection is a
lightweight state-of-the-art default used in Vampire and E that iteratively selects
axioms based on the overlapping symbols with the conjecture and already selected
axioms. SInE stands for “SUMO Inference Engine”, which is a premise selector
for large theories such as SUMO [184, 192]. The MePo relevance filter [175]
by Meng and Paulson keeps track of relevant symbols and features, iteratively
selecting premises with perfect or high ratios of relevant to irrelevant symbols.
SRASS [233], the Semantic Relevance Axiom Selection System, employs finite

15https://deducteam.github.io/
16https://uniformal.github.io//doc/
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model finders to find countermodels to the conjecture and gradually adds premises
to exclude them.

Urban [238, 243] developed MaLARea, a Machine Learner for Automated
Reasoning, a metasystem that iterates between proving theorems and learning
how to select premises for the problems, using the premises of the proven theo-
rems as training data. MaLARea SG-1 (with Semantic Guidance) incorporates
information about which premises break which countermodels as additional
training features. MaSh [35], the Machine learner for Sledgehammer, imple-
ments naive Bayes and k-nearest neighbors algorithms for premise selection
for the Isabelle/HOL Sledgehammer. Färber et al. [74] performed preliminary
experiments with random forests for premise selection. Piotrowski et al. [194]
developed ATPBoost, which uses XGBoost [54] for iterative premise selection
learning and theorem proving loops. Many alternative proofs with different sets
of premises can be found. One challenge with learning premise selection is that
“the absence of evidence is only weak evidence of absence”; the lack of a proof
from a given set of axioms does not mean that one does not exist. However,
proving counter-satisfiability does mean that there is no proof of contradiction.

A number of learning-based premise selection methods have been developed
for large ITP corpora and hammers in the last two decades. See [6, 37, 156,240]
for their overviews.

Szegedy et al. [7] applied neural sequence models and convolutional neural
networks (CNNs) to premise selection over Mizar and found that the CNNs
worked better than the combination. Piotrowski et al. [195] apply recurrent
neural machine translation (NMT) models to select sequences of premises so that
premises are statefully chosen based on the previous premises. The recurrent
NMT models perform well, proving theorems orthogonally to XGBoost’s premise
selection, and are not dependent on the featurization of formulas. The property-
invariant graph neural network developed by Olšák et al. [187], which is used
to internally guide the proof search, is also applied to premise selection. The
conjecture and theory formulas can be added to the graph neural network that
outputs ranks for the premises. This network performs well on the Mizar/MPTP
and Isabelle/Sledgehammer datasets.

4.3 Hammers
If the only tool you have is a hammer, it is tempting to treat every-
thing as if it were a nail. (Abraham Maslow)

Hammers are automated tools for discharging (sub)goals in interactive theorem
proving (ITP) environments. A hammer usually relies on an automated theorem
prover or satisfiability modulo theories (SMT) solver. Because ATPs and SMTs
often work with different logics than the ITP systems, a full-fledged hammer must
translate a goal and premises into the appropriate logic and then reconstruct the
proof in the ITP system’s logic. The TPTP language is the de-facto standard for
the ATP and SMT solvers used by hammers. Moreover, a hammer must select
premises from the ITP library to give to the solvers.
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Hammering Towards QED [37] provides a good overview of hammers. Urban’s
MPTP system [237] and the Sledgehammer system [39] were among the first
to demonstrate that ATPs can be effectively applied as hammers. The MPTP
system translates between the Mizar Mathematical Library and the TPTP
format. In 2006, the MPTP translation allowed ATPs to prove 39% of the non-
arithmetical problems in the MML [237]. The 2010 paper Judgment Day [40]
demonstrated that hammers could prove 34% of the non-trivial goals and 45%
of the goals in their dataset that reflects typical Isabelle/HOL developments.

Two recent benchmarks, GRUNGE: A Grand Unified ATP Challenge [44]
and Seventeen Provers under the Hammer [66], achieve higher performance and
cover many more theorem provers.

GRUNGE evaluates 19 state-of-the-art ATPs and SMTs on a HOL4 [228]
dataset that contains higher-order and first-order TPTP formats with syntactic
and semantic (set theoretic) translations. The 60s portfolio of the provers solves
61% of the problems. Except for Leo-III, the strongest prover on the GRUNGE
benchmark, the provers performed better on first-order formats. Most provers
perform better on the syntactic translations; however, Vampire and SPASS
performed better on the semantic translations.

Seventeen Provers under the Hammer evaluates 17 ATPs and SMTs on an
Isabelle/HOL dataset to determine which TPTP formats and encodings work
best with each prover. The 30s portfolio of the provers solves 70% of the problems.
One notable result is that the new higher-order E [248] performed best on the
THF (many-sorted higher-order logic) format. Furthermore, the TFF (many-
sorted first-order logic) format almost always outperformed the FOF encodings,
suggesting the direction of future developments. Since human mathematics is
often more easily expressed in higher-order logics,

There are also some hammers for Coq, for example: CoQHammer [61, 62]
and SMTCoq [14].

4.4 Tactical Theorem Provers
Interactive theorem proving is usually done via high-level parametrizable tactics
that perform sound proof transformations of the proof state. The tactic language
for the HOL4 system [228] is Standard SML, which means that tactics can be
arbitrarily complex programs. Thus AI for ITP systems can enjoy a larger search
space over high-level tactics instead of just lower-level logical inferences on the
formulas in the proof state.

The first such work is TacticToe [82, 83] by Gauthier for HOL4. Loos et
al. aim to do similar work in HOL Light [115] with DeepHOL [22] and provide
the environment HOList for prototyping AI for the task. Huang and Dhariwal
introduce GamePad [125], a Python API for interacting with Coq to develop AI
for position evaluation and tactic prediction. Blaauwbroek et al. developed the
Tactician17 [33, 34, 257], which has been integrated into Coq’s package manager.
Tactician learns from previously written tactic scripts to give suggestions or

17https://coq-tactician.github.io/
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attempt to complete the proof automatically.
One limitation of these systems is that they rely on pre-defined tactics,

learning from human proofs. The task of synthesizing tactics is one of program
synthesis. To this end, Gauthier [80, 81] worked on tree neural networks to syn-
thesize term functions in HOL4, such as combinators and diophantine equations.
More recently, Gauthier et al. [84] developed tree neural networks that synthesize
programs to fit integer sequences in the OEIS (On-Line Encyclopedia of Integer
Sequences) [229].

4.5 Machine Learning for the leanCoP Family
There is an older, parallel line of research to the ML guidance of saturation-
based ATPs: machine learning for guiding variants of leanCoP18 [189], a theorem
prover famously based on the connection (tableau) calculus [30–32]. The leanCoP
Prolog code infamously fits in the paper’s abstract. A tableau is a tree with
nodes labeled by formulas, and a connection calculus-based prover, such as
leanCoP, starts with a goal clause and seeks to close the tableau, meaning that
every branch has a connection. A connection is a pair of contradictory literals
(e.g., {A(t1, . . . , tn),¬A(t1, . . . , tn)}). The proof search consists of extension and
reduction steps. Extension steps add new goals along a unifying connection, and
reduction steps close off a branch by identifying a unifying connection along the
active path. A closed tableau is a proof.

A partial tableau provides a compact notion of the proof search state, which in
addition to the simplicity, renders the leanCoP family of provers a fertile ground
for prototyping ML guidance. The ML models can be used to offer guidance for
both extension and reduction steps. Sometimes multiple clauses unify with the
current goal, and ML advice can prove helpful. Allowing a guidance system to
learn when to apply reduction steps can also help.

The below list covers the systems incorporating ML guidance into versions
of leanCoP in chronological order.

• MaLeCoP: the Machine Learning Connection Prover uses SNoW’s Naive
Bayes classifier to guide leanCoP [244].

• FEMaLeCoP: the Fairly Efficient Machine Learning Connection Prover
also uses a Naive Bayes Classifier, now implemented in OCaml, and is
probably the first efficient ATP-internal guidance system [138].

• monteCoP: implements a Monte Carlo Tree Search (MCTS) to guide
leanCoP, testing various evaluation heuristics [75].

• rlCoP: uses reinforcement learning with a GBDT framework to learn policy
and value functions to guide leanCoP with MCTS [140].

• plCoP: is an open-source toolkit extending rlCoP in a Prolog implementa-
tion with a Python interface [259].

18The leanCoP prover’s name is always written in lowercase.
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• graphCoP: is similar to rlCoP and uses Olšák et al.’s Graph Neural Network
instead of the GBDT framework XGBoost [187].

• pl-graphCoP: incorporates the GNN into plCoP and finds that adding en-
tropy to the police during training greatly improves performance (following
probability matching theory to reduce the certainty of predictions) [260].

• lazyCoP: introduces the lazy paramodulation proof calculus to allow equality-
rewriting in the connection tableau setting. lazyCoP also introduces asyn-
chronous policy evaluation of nodes by a directed graph neural network
on a GPU, allowing the proof search speed to be less dependent on the
evaluation speed [207].

The pl-graphCoP system proves 66.8% more ATP-minimized problems than
leanCoP on the Mizar 40 dataset [139], which is a 17.4% improvement over rlCoP.
However, in part due to leanCoP’s handling of equality reasoning, the leanCoP
family is generally weaker than the superposition-calculus-based saturation
provers.

4.6 Automated Formalization and Neural Theorem Provers
Automated formalization (autoformalization) [141, 142, 250] aims to translate
between informal mathematics, written by human mathematicians, and for-
mal mathematics in specific formal languages. Writing formal mathematics is
known to be difficult and significantly slower, even for trained mathematicians.
Therefore the corpora of formal mathematics will be limited in size until autofor-
malization improves. There is the chicken-and-egg problem of acquiring quality
data for training autoformalization models that are good enough to assist in
generating more data to train better models. Kevin Buzzard is spearheading an
effort to formalize all undergraduate mathematics in Lean [181]. The reverse,
’informalization’, can also be valuable for people not well-versed in the formal
library; however, this task is probably easier and more similar to “pretty printing”.

Building on work by Bancerek et al. [19–21], Wang et al. [250] developed
three datasets on which to test neural machine translation: a synthetic dataset of
LaTeX generated from Mizar, a partially aligned dataset of ProofWiki’s LaTeX
and Mizar, and a dataset of aligned Mizar and TPTP formulas (FOF and THF,
typed higher-order form). The perplexity and BLEU scores on the synthetic
(formal-to-formal) tasks are encouraging. The authors concluded that more data
is needed and next worked on joint embeddings of formal proof libraries to help
match concepts across libraries [251].

There are newer datasets of problems drawn from competition problems, such
as the MATH dataset [117], which aligns LaTeX and English problem statements
and solutions, and the MiniF2F dataset [258], which aligns multiple formal
systems, including Lean, Metamath, Isabelle, and some HOL Light.

There has been some preliminary research on using large language mod-
els directly to generate mathematical formulas and proof steps. Urban and
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Jakubův [241] used GPT-2 [203] to generate Mizar texts, conjectures, and in-
termediate lemmas in several settings. Many of them are syntactically correct,
and some of the conjectures are provable by the MizAR ATP hammer. This
was followed by IsarStep [164], a dataset of Isabelle/HOL problems designed for
the testing and development of AI for the task of filling in intermediate lemmas.
Instead of GPT, the authors trained a hierarchical transformer. LeanStep [113]
is a similar dataset for next proof term and next lemma prediction developed
for Lean, using GPT again. The following pre-prints seem interesting: Wu et
al. [254] apply the large language models PaLM [55] and Codex [53] to the
intersection of MATH problems and MiniF2F’s Isabelle problems. Wu et al.
then use the autoformalization of MATH problems as additional training data
for a language model to be used as a neural theorem prover. Gur-Ari et al. [163]
find that the additional training of PaLM on arXiv and mathematical web pages
seems to help. Jiang et al. [135] have developed Thor, a system that integrates
language models with ATP hammers by allowing the language model to call
hammers with a keyword, “<hammer>”, which enables Thor to find proofs
for some problems that neither Sledgehammer nor the language model could
alone. This is an interesting area of ongoing research. It seems likely that neural
networks that preserve the mathematical structure, such as Olšák et al.’s graph
neural networks [187], will be a part of the development and publications.

The current neurally guided theorem proving systems, such as the GNN
in ENIGMA and neural syntheses via large language models, are steps on
the path to fully neural theorem provers. Gur-Ari et al. [163] find that using
ensemble methods helps PaLM, and they run into the limitation that in LaTeX,
one cannot automatically verify the correctness of solutions as in ITP system
languages. Once the language model is integrated with automatic verification
and additional algorithmic heuristics, the distinction becomes less clear. The
graph neural network in ENIGMA Anonymous [128] only scores the generated
mathematical clauses; however, the generation procedure with E’s superposition
logic is computationally cheap. Neural generation of inference steps and the
verification of their correctness remains an open topic.

There is work by Hahn et al. [108] using a transformer to predict satisfying
assignments to propositional LTL (Linear Temporal Logic) formulas. In “LIME:
Learning Inductive Bias for Primitives of Mathematical Reasoning" [255], Wu
et al. create syntactic datasets illustrating deduction, abduction, and induction
on which to pre-train a vanilla transformer, improving performance on IsarStep,
LeanStep, and Metamath. Krishna et al. [154] develop ProoFVer, a system
for fact-checking natural language claims with respect to a set of evidence.
ProoFVer uses a pretrained BART [161] model with lexical constraints on the
decoder to ensure that the proofs are well-formed. Riedel and Rocktäschel [213]
developed a neural theorem prover (NTP) inspired by Prolog’s backward chaining
to do gradient descent over all possible proof paths via unification, or, and
and modules. Minervini et al. scale up the NTP with the Greedy [176] and
Conditional NTPs [177], which limit the search space. The Conditional NTPs
include a select module that, for a given goal, produces the rules needed to prove
it. Piotrowski et al. [196] train neural machine translation (NMT) models that
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can learn to do rewriting steps from a dataset of Prover9 instances, and that
can do polynomial normalization. Piepenbrock et al. [193] develop a GNN2RNN
architecture that produces instances of first-order clauses to give to a SAT-based
solver.
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5 Contributed Research Papers
This section contains the six research publications of the thesis, which are
included without modification.

Overview
1. ProofWatch (published at ITP 2018) [89] is based on the watchlist (also

hint list) technique. The watchlist technique focuses the proof search
toward lemmas (hints) that were useful in related proofs. We test E’s
watchlist feature on a dataset from the Mizar Mathematical Library [139],
one of the largest libraries of formalized mathematics, written in the set
theory-based proof assistant Mizar [105]. We add a dynamic watchlist
feature that loads in multiple watchlists and guides the proof search based
on the proof state’s similarity to the related proofs on the watchlists. We
use the k-nearest neighbors algorithm to select related proofs (or clauses)
to put on the watchlists. The best strategy, which uses 16 relevant proofs
as watchlists, improves upon the E baseline strategy that it is based on by
26.5%. The best ensemble of five strategies proves 7% more on Mizar than
the best five non-watchlist strategies.

2. ENIGMAWatch (published at IWIL 2018 and TABLEAUX 2019) [90,91]
combines ProofWatch with the ENIGMA system developed by Jakubuv
and Urban [130, 131, 133]. ENIGMA stands for Efficient learNing-based
Inference Guiding MAchine and is a system that uses fast statistical
machine learning to train models from related proof searches to identify
positive and negative (good and bad) clauses for the current conjecture.
ENIGMA chooses the given clauses for E based on clause features extended
with the problem’s conjecture features, which are static throughout the
whole proof search.

ProofWatch provides semantic embeddings to provide a dynamic proof
search state vector to ENIGMA’s model. The ENIGMAWatch system
trains faster than ENIGMA and, in the first training loop, proved 8.8%
more problems. The asymptotic performance beyond the fifth loop is the
same with high complementarity, which means that the union of ENIGMA
and ENIGMAWatch’s solved problems is larger than either method alone.

3. Make E Smart Again (published at IJCAR 2020) [96] tests the capacity
of ENIGMA to learn to guide E without the help of well-crafted term
orderings, strong literal selection functions, and strong strategies [129,239].
Effective term orderings and literal selection can guarantee the completeness
of the proof search [121, Section 3], and they greatly reduce the number of
redundancies in generated clauses. For this project, I developed E0, which
uses a structural identity relation as the minimal ordering, resulting in a
simplified version of E without some of E’s features and the theoretical
guarantees ENIGMA must filter out far more unnecessary clauses in this
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setting than in the standard scenario. ENIGMA with E0 can prove 121-
256% more problems than E0 alone and surpasses the performance of E
with two strong strategies by 10%.

4. Parental Guidance (published at FroCoS 2021) [97] filters the generated
clauses based on features of their parent clauses, thus easing the clause
selection task of ENIGMA models and E strategies. This work also
includes a graph neural work (GNN) server for given clause selection and
the combination of this slow GNN clause selection with a fast gradient-
boosted decision tree (GBDT) pre-filter, which is called a 2-phase ENIGMA.
The combination of all three methods: Parental Guidance, the GNN, and
the GBDT, make up the 3-phase ENIGMA, which improves upon E’s
auto-schedule by 60% and upon the best previous result by 17.4%.

5. The Isabelle ENIGMA (published at ITP 2022) [98] applies ENIGMA,
Parental Guidance, and GNN-based premise selection to one of the largest
corpora of Isabelle Sledgehammer problems, that is, problems translated
into a format intended for ATPs. On the holdout set, the premise selection
improves the performance of E’s auto-schedule by 19.7%. The 2-phase
ENIGMA, consisting of Parental Guidance and clause selection models,
outperforms E’s auto-schedule by 25.3% and outperforms the other provers,
albeit only beating the CVC5 prover [23] by 0.3%.
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Abstract. Watchlist (also hint list) is a mechanism that allows related
proofs to guide a proof search for a new conjecture. This mechanism
has been used with the Otter and Prover9 theorem provers, both for
interactive formalizations and for human-assisted proving of open con-
jectures in small theories. In this work we explore the use of watchlists in
large theories coming from first-order translations of large ITP libraries,
aiming at improving hammer-style automation by smarter internal guid-
ance of the ATP systems. In particular, we (i) design watchlist-based
clause evaluation heuristics inside the E ATP system, and (ii) develop
new proof guiding algorithms that load many previous proofs inside the
ATP and focus the proof search using a dynamically updated notion
of proof matching. The methods are evaluated on a large set of prob-
lems coming from the Mizar library, showing significant improvement of
E’s standard portfolio of strategies, and also of the previous best set of
strategies invented for Mizar by evolutionary methods.

1 Introduction: Hammers, Learning and Watchlists

Hammer -style automation tools connecting interactive theorem provers (ITPs)
with automated theorem provers (ATPs) have recently led to a significant
speedup for formalization tasks [5]. An important component of such tools is
premise selection [1]: choosing a small number of the most relevant facts that
are given to the ATPs. Premise selection methods based on machine learning
from many proofs available in the ITP libraries typically outperform manually
specified heuristics [1,2,4,7,17,19]. Given the performance of such ATP-external
guidance methods, learning-based internal proof search guidance methods have
started to be explored, both for ATPs [8,15,18,23,36] and also in the context of
tactical ITPs [10,12].

In this work we develop learning-based internal proof guidance methods for
the E [30] ATP system and evaluate them on the large Mizar Mathematical
Library [11]. The methods are based on the watchlist (also hint list) technique

Z. Goertzel, J. Jakub̊uv and J. Urban—Supported by the AI4REASON ERC
Consolidator grant number 649043, and by the Czech project AI&Reasoning
CZ.02.1.01/0.0/0.0/15 003/0000466 and the European Regional Development Fund.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 270–288, 2018.
https://doi.org/10.1007/978-3-319-94821-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_16&domain=pdf


ProofWatch: Watchlist Guidance for Large Theories in E 271

developed by Veroff [37], focusing proof search towards lemmas (hints) that were
useful in related proofs. Watchlists have proved essential in the AIM project [21]
done with Prover9 [25] for obtaining very long and advanced proofs of open
conjectures. Problems in large ITP libraries however differ from one another
much more than the AIM problems, making it more likely for unrelated watchlist
lemmas to mislead the proof search. Also, Prover9 lacks a number of large-theory
mechanisms and strategies developed recently for E [13,15,16].

Therefore, we first design watchlist-based clause evaluation heuristics for E
that can be combined with other E strategies. Second, we complement the inter-
nal watchlist guidance by using external statistical machine learning to pre-
select smaller numbers of watchlist clauses relevant for the current problem.
Finally, we use the watchlist mechanism to develop new proof guiding algorithms
that load many previous proofs inside the ATP and focus the search using a
dynamically updated heuristic representation of proof search state based on
matching the previous proofs.

The rest of the paper is structured as follows. Section 2 briefly summarizes
the work of saturation-style ATPs such as E. Section 3 discusses heuristic repre-
sentation of search state and its importance for learning-based proof guidance.
We propose an abstract vectorial representation expressing similarity to other
proofs as a suitable evolving characterization of saturation proof searches. We
also propose a concrete implementation based on proof completion ratios tracked
by the watchlist mechanism. Section 4 describes the standard (static) watchlist
mechanism implemented in E and Sect. 5 introduces the new dynamic watchlist
mechanisms and its use for guiding the proof search. Section 6 evaluates the static
and dynamic watchlist guidance combined with learning-based pre-selection on
the Mizar library. Section 7 shows several examples of nontrivial proofs obtained
by the new methods, and Sect. 8 discusses related work and possible extensions.

2 Proof Search in Saturating First-Order Provers

The state of the art in first-order theorem proving is a saturating prover based
on a combination of resolution/paramodulation and rewriting, usually imple-
menting a variant of the superposition calculus [3]. In this model, the proof state
is represented as a set of first-order clauses (created from the axioms and the
negated conjecture), and the system systematically adds logical consequences to
the state, trying to derive the empty clause and hence an explicit contradiction.

All current saturating first-order provers are based on variants of the given-
clause algorithm. In this algorithm, the proof state is split into two subsets of
clauses, the processed clauses P (initially empty) and the unprocessed clauses
U . On each iteration of the algorithm, the prover picks one unprocessed clause
g (the so-called given clause), performs all inferences which are possible with g
and all clauses in P as premises, and then moves g into P . The newly generated
consequences are added to U . This maintains the core invariant that all inferences
between clauses in P have been performed. Provers differ in how they integrate
simplification and redundancy into the system, but all enforce the variant that
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P is maximally simplified (by first simplifying g with clauses in P , then back-
simplifying P with g) and that P contains neither tautologies nor subsumed
clauses.

The core choice point of the given-clause algorithm is the selection of the next
clause to process. If theoretical completeness is desired, this has to be fair, in
the sense that no clause is delayed forever. In practice, clauses are ranked using
one or more heuristic evaluation functions, and are picked in order of increasing
evaluation (i.e. small values are good). The most frequent heuristics are based on
symbol counting, i.e., the evaluation is the number of symbol occurrences in the
clause, possibly weighted for different symbols or symbols types. Most provers
also support interleaving a symbol-counting heuristic with a first-in-first-out
(FIFO) heuristic. E supports the dynamic specification of an arbitrary number
of differently parameterized priority queues that are processed in weighted round-
robbin fashion via a small domain-specific language for heuristics.

Previous work [28,31] has both shown that the choice of given clauses is
critical for the success rate of a prover, but also that existing heuristics are still
quite bad - i.e. they select a large majority of clauses not useful for a given proof.
Positively formulated, there still is a huge potential for improvement.

3 Proof Search State in Learning Based Guidance

A good representation of the current state is crucial for learning-based guid-
ance. This is quite clear in theorem proving and famously so in Go and Chess
[32,33]. For example, in the TacticToe system [10] proofs are composed from
pre-programmed HOL4 [34] tactics that are chosen by statistical learning based
on similarity of the evolving goal state to the goal states from related proofs.
Similarly, in the learning versions of leanCoP [26] – (FE)MaLeCoP [18,36] –
the tableau extension steps are guided by a trained learner using similarity of
the evolving tableau (the ATP proof search state) to many other tableaux from
related proofs.

Such intuitive and compact notion of proof search state is however hard to
get when working with today’s high-performance saturation-style ATPs such
as E [30] and Vampire [22]. The above definition of saturation-style proof state
(Sect. 2) as either one or two (processed/unprocessed) large sets of clauses is very
unfocused. Existing learning-based guiding methods for E [15,23] practically
ignore this. Instead, they use only the original conjecture and its features for
selecting the relevant given clauses throughout the whole proof search.

This is obviously unsatisfactory, both when compared to the evolving search
state in the case of tableau and tactical proving, and also when compared to the
way humans select the next steps when they search for proofs. The proof search
state in our mind is certainly an evolving concept based on the search done so
far, not a fixed set of features extracted just from the conjecture.
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3.1 Proof Search State Representation for Guiding Saturation

One of the motivations for the work presented here is to produce an intuitive,
compact and evolving heuristic representation of proof search state in the context
of learning-guided saturation proving. As usual, it should be a vector of (real-
valued) features that are either manually designed or learned. In a high-level way,
our proposed representation is a vector expressing an abstract similarity of the
search state to (possibly many) previous related proofs. This can be implemented
in different ways, using both statistical and symbolic methods and their combi-
nations. An example and motivation comes again from the work of Veroff, where
a search is considered promising when the given clauses frequently match hints.
The gaps between the hint matchings may correspond to the more brute-force
bridges between the different proof ideas expressed by the hints.

Our first practical implementation introduced in Sect. 5 is to load upon the
search initialization N related proofs Pi, and for each Pi keep track of the ratio
of the clauses from Pi that have already been subsumed during the search. The
subsumption checking is using E’s watchlist mechanism (Sect. 4). The N -long
vector p of such proof completion ratios is our heuristic representation of the
proof search state, which is both compact and typically evolving, making it
suitable for both hard-coded and learned clause selection heuristics.

In this work we start with fast hard-coded watchlist-style heuristics for focus-
ing inferences on clauses that progress the more finished proofs (Sect. 5). However
training e.g. a statistical ENIGMA-style [15] clause evaluation model by adding
p to the currently used ENIGMA features is a straightforward extension.

4 Static Watchlist Guidance and Its Implementation in E

E originally implemented a watchlist mechanism as a means to force direct,
constructive proofs in first order logic. For this application, the watchlist contains
a number of goal clauses (corresponding to the hypotheses to be proven), and all
newly generated and processed clauses are checked against the watchlist. If one of
the watchlist clauses is subsumed by a new clause, the former is removed from the
watchlist. The proof search is complete, once all clauses from the watchlist have
been removed. In contrast to the normal proof by contradiction, this mechanism
is not complete. However, it is surprisingly effective in practice, and it produces
a proof by forward reasoning.

It was quickly noted that the basic mechanism of the watchlist can also be
used to implement a mechanism similar to the hints successfully used to guide
Otter [24] (and its successor Prover9 [25]) in a semi-interactive manner [37].
Hints in this sense are intermediate results or lemmas expected to be useful in a
proof. However, they are not provided as part of the logical premises, but have to
be derived during the proof search. While the hints are specified when the prover
is started, they are only used to guide the proof search - if a clause matches a
hint, it is prioritized for processing. If all clauses needed for a proof are provided
as hints, in theory the prover can be guided to prove a theorem without any
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search, i.e. it can replay a previous proof. A more general idea, explored in this
paper, is to fill the watchlist with a large number of clauses useful in proofs of
similar problems.

In E, the watchlist is loaded on start-up, and is stored in a feature vector
index [29] that allows for efficient retrieval of subsumed (and subsuming) clauses.
By default, watchlist clauses are simplified in the same way as processed clauses,
i.e. they are kept in normal form with respect to clauses in P . This increases the
chance that a new clause (which is always simplified) can match a similar watch-
list clause. If used to control the proof search, subsumed clauses can optionally
remain on the watchlist.

We have extended E’s domain-specific language for search heuristics with two
priority functions to access information about the relationship of clauses to the
watchlist - the function PreferWatchlist gives higher rank to clauses that sub-
sume at least one watchlist clause, and the dual function DeferWatchlist ranks
them lower. Using the first, we have also defined four built-in heuristics that
preferably process watchlist clauses. These include a pure watchlist heuristic,
a simple interleaved watch list function (picking 10 out of every eleven clauses
from the watchlist, the last using FIFO), and a modification of a strong heuristic
obtained from a genetic algorithm [27] that interleaves several different evalu-
ation schemes and was modified to prefer watchlist clauses in two of its four
sub-evaluation functions.

5 Dynamic Watchlist Guidance

In addition to the above mentioned static watchlist guidance, we propose and
experiment with an alternative: dynamic watchlist guidance. With dynamic
watchlist guidance, several watchlists, as opposed to a single watchlist, are loaded
on start-up. Separate watchlists are supposed to group clauses which are more
likely to appear together in a single proof. The easiest way to produce watchlists
with this property is to collect previously proved problems and use their proofs
as watchlists. This is our current implementation, i.e., each watchlist corresponds
to a previous proof. During a proof search, we maintain for each watchlist its
completion status, i.e. the number of clauses that were already encountered. The
main idea behind our dynamic watchlist guidance is to prefer clauses which
appear on watchlists that are closer to completion. Since watchlists now exactly
correspond to previous refutational proofs, completion of any watchlist implies
that the current proof search is finished.

5.1 Watchlist Proof Progress

Let watchlists W1, . . . ,Wn be given for a proof search. For each watchlist Wi we
keep a watchlist progress counter, denoted progress(Wi), which is initially set to
0. Whenever a clause C is generated during the proof search, we have to check
whether C subsumes some clause from some watchlist Wi. When C subsumes
a clause from Wi we increase progress(Wi) by 1. The subsumed clause from
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Wi is then marked as encountered, and it is not considered in future watchlist
subsumption checks.1 Note that a single generated clause C can subsume several
clauses from one or more watchlists, hence several progress counters might be
increased multiple times as a result of generating C.

5.2 Standard Dynamic Watchlist Relevance

The easiest way to use progress counters to guide given clause selection is
to assign the (standard) dynamic watchlist relevance to each generated clause
C, denoted relevance0(C), as follows. Whenever C is generated, we check it
against all the watchlists for subsumption and we update watchlist progress
counters. Any clause C which does not subsume any watchlist clause is given
relevance0(C) = 0. When C subsumes some watchlist clause, its relevance is the
maximum watchlist completion ratio over all the matched watchlists. Formally,
let us write C � Wi when clause C subsumes some clause from watchlist Wi. For
a clause C matching at least one watchlist, its relevance is computed as follows.

relevance0(C) = max
W∈{Wi:C�Wi}

(progress(W )

|W |
)

The assumption is that a watchlist W that is matched more is more relevant
to the current proof search. In our current implementation, the relevance is
computed at the time of generation of C and it is not updated afterwards. As
future work, we propose to also update the relevance of all generated but not yet
processed clauses from time to time in order to reflect updates of the watchlist
progress counters. Note that this is expensive, as the number of generated clauses
is typically high. Suitable indexing could be used to lower this cost or even to
do the update immediately just for the affected clauses.

To use the watchlist relevance in E, we extend E’s domain-specific language
for search heuristics with two priority functions PreferWatchlistRelevant and
DeferWatchlistRelevant. The first priority function ranks higher the clauses
with higher watchlist relevance2, and the other function does the opposite. These
priority functions can be used to build E’s heuristics just like in the case of the
static watchlist guidance. As a results, we can instruct E to process watchlist-
relevant clauses in advance.

5.3 Inherited Dynamic Watchlist Relevance

The previous standard watchlist relevance prioritizes only clauses subsuming
watchlist clauses but it behaves indifferently with respect to other clauses. In

1 Alternatively, the subsumed watchlist clause D ∈ Wi can be considered for future
subsumption checks but the watchlist progress counter progress(Wi) should not be
increased when D is subsumed again. This is because we want the progress counter
to represent the number of different clauses from Wi encountered so far.

2 Technically, E’s priority function returns an integer priority, and clauses with smaller
values are preferred. Hence we compute the priority as 1000 ∗ (1 − relevance0(C)).
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order to provide some guidance even for clauses which do not subsume any
watchlist clause, we can examine the watchlist relevance of the parents of each
generated clause, and prioritize clauses with watchlist-relevant parents. Let
parents(C) denote the set of previously processed clauses from which C have
been derived. Inherited dynamic watchlist relevance, denoted relevance1, is a
combination of the standard dynamic relevance with the average of parents rel-
evances multiplied by a decay factor δ < 1.

relevance1(C) = relevance0(C) + δ ∗ avg
D∈parents(C)

(
relevance1(D)

)

Clearly, the inherited relevance equals to the standard relevance for the initial
clauses with no parents. The decay factor (δ) determines the importance of par-
ents watchlist relevances.3 Note that the inherited relevances of parents(C) are
already precomputed at the time of generating C, hence no recursive computa-
tion is necessary.

With the above relevance1 we compute the average of parents inherited rel-
evances, hence the inherited watchlist relevance accumulates relevance of all the
ancestors. As a result, relevance1(C) is greater than 0 if and only if C has some
ancestor which subsumed a watchlist clause at some point. This might have an
undesirable effect that clauses unrelated to the watchlist are completely ignored
during the proof search. In practice, however, it seems important to consider also
watchlist-unrelated clauses with some degree in order to prove new conjectures
which do not appear on the input watchlist. Hence we introduce two threshold
parameters α and β which resets the relevance to 0 as follows. Let length(C)
denote the length of clause C, counting occurrences of symbols in C.

relevance2(C) =

{
0 iff relevance1(C) < α and relevance1(C)

length(C) < β

relevance1(C) otherwise

Parameter α is a threshold on the watchlist inherited relevance while β combines
the relevance with the clause length.4 As a result, shorter watchlist-unrelated
clauses are preferred to longer (distantly) watchlist-related clauses.

6 Experiments with Watchlist Guidance

For our experiments we construct watchlists from the proofs found by E on a
benchmark of 57897 Mizar40 [19] problems in the MPTP dataset [35]5,6. These

3 In our experiments, we use δ = 0.1.
4 In our experiments, we use α = 0.03 and β = 0.009. These values have been found

useful by a small grid search over a random sample of 500 problems.
5 Precisely, we have used the small (bushy, re-proving) versions, but without ATP

minimization. They can be found at http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.
181.1147/MPTP2/problems small consist.tar.gz.

6 Experimental results and code can be found at https://github.com/ai4reason/
eprover-data/tree/master/ITP-18.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/problems_small_consist.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/problems_small_consist.tar.gz
https://github.com/ai4reason/eprover-data/tree/master/ITP-18
https://github.com/ai4reason/eprover-data/tree/master/ITP-18
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initial proofs were found by an evolutionarily optimized [14] ensemble of 32
E strategies each run for 5 s. These are our baseline strategies. Due to limited
computational resources, we do most of the experiments with the top 5 strategies
that (greedily) cover most solutions (top 5 greedy cover). These are strategies
number 2, 8, 9, 26 and 28, henceforth called A, B, C, D, E. In 5 s (in parallel)
they together solve 21122 problems. We also evaluate these five strategies in 10 s,
jointly solving 21670 problems. The 21122 proofs yield over 100000 unique proof
clauses that can be used for watchlist-based guidance in our experiments. We
also use smaller datasets randomly sampled from the full set of 57897 problems
to be able to explore more methods. All problems are run on the same hardware7

and with the same memory limits.
Each E strategy is specified as a frequency-weighted combination of parame-

terized clause evaluation functions (CEF) combined with a selection of inference
rules. Below we show a simplified example strategy specifying the term order-
ing KBO, and combining (with weights 2 and 4) two CEFs made up of weight
functions Clauseweight and FIFOWeight and priority functions DeferSOS and
PreferWatchlist.

-tKBO -H(2*Clauseweight(DeferSoS,20,9999,4),4*FIFOWeight(PreferWatchlist))

6.1 Watchlist Selection Methods

We have experimented with several methods for creation of static and dynamic
watchlists. Typically we use only the proofs found by a particular baseline strat-
egy to construct the watchlists used for testing the guided version of that strat-
egy. Using all 100000+ proof clauses as a watchlist slows E down to 6 given
clauses per second. This is comparable to the speed of Prover9 with similarly
large watchlists, but there are indexing methods that could speed this up. We
have run several smaller tests, but do not include this method in the evalua-
tion due to limited computational resources. Instead, we select a smaller set of
clauses. The methods are as follows:

(art) Use all proof clauses from theorems in the problem’s Mizar article8.
Such watchlist sizes range from 0 to 4000, which does not cause
any significant slowdown of E.

(freq) Use high-frequency proof clauses for static watchlists, i.e., clauses
that appear in many proofs.

(kNN-st) Use k-nearest neighbor (k-NN) learning to suggest useful static
watchlists for each problem, based on symbol and term-based fea-
tures [20] of the conjecture. This is very similar to the standard use
of k-NN and other learners for premise selection. In more detail,
we use symbols, walks of length 2 on formula trees and common
subterms (with variables and skolem symbols unified). Each proof
is turned into a multi-label training example, where the labels are

7 Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30 GHz with 256G RAM.
8 Excluding the current theorem.
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the (serially numbered) clauses used in the proof, and the features
are extracted from the conjecture.

(kNN-dyn) Use k-NN in a similar way to suggest the most related proofs for
dynamic watchlists. This is done in two iterations.

(i) In the first iteration, only the conjecture-based similarity is used
to select related problems and their proofs.

(ii) The second iteration then uses data mined from the proofs
obtained with dynamic guidance in the first iteration. From
each such proof P we create a training example associating P ’s
conjecture features with the names of the proofs that matched
(i.e., guided the inference of) the clauses needed in P . On this
dataset we again train a k-NN learner, which recommends the
most useful related proofs for guiding a particular conjecture.

6.2 Using Watchlists in E Strategies

As described in Sect. 4, watchlist subsumption defines the PreferWatchlist

priority function that prioritizes clauses that subsume at least one watchlist
clause. Below we describe several ways to use this priority function and the newly
defined dynamic PreferWatchlistRelevant priority function and its relevance-
inheriting modifications. Each of them can additionally take the “no-remove”
option, to keep subsumed watchlist clauses in the watchlist, allowing repeated
matching by different clauses. Preliminary testing has shown that just adding a
single watchlist-based clause evaluation function (CEF ) to the baseline CEFs9

is not as good as the methods defined below. In the rest of the paper we provide
short names for the methods, such as prefA (baseline strategy A modified by the
pref method described below).

1. evo: the default heuristic strategy (Sect. 4) evolved (genetically [27]) for static
watchlist use.

2. pref : replace all priority functions in a baseline strategy with the Prefer-

Watchlist priority function. The resulting strategies look as follows:
-H(2*Clauseweight(PreferWatchlist,20,9999,4),

4*FIFOWeight(PreferWatchlist))

3. const : replace all priority functions in a baseline strategy with ConstPrio,
which assigns the same priority to all clauses, so all ranking is done by weight
functions alone.

4. uwl : always prefer clauses that match the watchlist, but use the baseline
strategy’s priority function otherwise10.

5. ska: modify watchlist subsumption in E to treat all skolem symbols of the
same arity as equal, thus widening the watchlist guidance. This can be used
with any strategy. In this paper it is used with pref.

9 Specifically we tried adding Defaultweight(PreferWatchlist) and ConjectureRela-
tiveSymbolWeight(PreferWatchlist) with frequencies 1, 2, 5, 10, 20 times that of the
rest of the CEFs in the strategy.

10 uwl is implemented in E’s source code as an option.
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6. dyn: replace all priority functions in a baseline strategy with PreferWatch-

listRelevant, which dynamically weights watchlist clauses (Sect. 5.2).
7. dyndec: add the relevance inheritance mechanisms to dyn (Sect. 5.3).

6.3 Evaluation

First we measure the slowdown caused by larger static watchlists on the best
baseline strategy and a random sample of 10000 problems. The results are shown
in Table 1. We see that the speed significantly degrades with watchlists of size
10000, while 500-big watchlists incur only a small performance penalty.

Table 1. Tests of the watchlist size influence (ordered by frequency) on a random
sample of 10000 problems using the “no-remove” option and one static watchlist with
strategy prefA. PPS is average processed clauses per second, a measure of E’s speed.

Size 10 100 256 512 1000 10000

Proved 3275 3275 3287 3283 3248 2912

PPS 8935 9528 8661 7288 4807 575

Table 2 shows the 10 s evaluation of several static and dynamic methods on
a random sample of 5000 problems using article-based watchlists (method art
in Sect. 6.1). For comparison, E’s auto strategy proves 1350 of the problems in
10 s and its auto-schedule proves 1629. Given 50 s the auto-schedule proves 1744
problems compared to our top 5 cover’s 1964.

The first surprising result is that const significantly outperforms the baseline.
This indicates that the old-style simple E priority functions may do more harm
than good if they are allowed to override the more recent and sophisticated
weight functions. The ska strategy performs best here and a variety of strategies
provide better coverage. It’s interesting to note that ska and pref overlap only
on 1893 problems. The original evo strategy performs well, but lacks diversity.

Table 2. Article-based watchlist benchmark. A top 5 greedy cover proves 1964
problems (in bold).

Strategy baseline const pref ska dyn evo uwl

A 1238 1493 1503 1510 1500 1303 1247

B 1255 1296 1315 1330 1316 1300 1277

C 1075 1166 1205 1183 1201 1068 1097

D 1102 1133 1176 1190 1175 1330 1132

E 1138 1141 1141 1153 1139 1070 1139

Total 1853 1910 1931 1933 1922 1659 1868
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Table 3 briefly evaluates k-NN selection of watchlist clauses (method
kNN-st in Sect. 6.1) on a single strategy prefA. Next we use k-NN to suggest
watchlist proofs11 (method kNN-dyn.i) for pref and dyn. Table 4 evaluates
the influence of the number of related proofs loaded for the dynamic strategies.
Interestingly, pref outperforms dyn almost everywhere but dyn’s ensemble of
strategies A-E generally performs best and the top 5 cover is better. We con-
clude that dyn’s dynamic relevance weighting allows the strategies to diversify
more.

Table 3. Evaluation of kNN-st on prefA

Watchlist size 16 64 256 1024 2048

Proved 1518 1531 1528 1532 1520

Table 5 evaluates the top 5 greedy cover from Table 4 on the full Mizar
dataset, already showing significant improvement over the 21670 proofs pro-
duced by the 5 baseline strategies. Based on proof data from a full-run of the
top-5 greedy cover in Table 5, new k-NN proof suggestions were made (method
kNN-dyn.ii) and dyn’s grid search re-run, see Table 6 and Table 7 for k-NN
round 2 results.

We also test the relevance inheriting dynamic watchlist feature (dyndec),
primarily to determine if different proofs can be found. The results are shown
in Table 8. This version adds 8 problems to the top 5 greedy cover of all the
strategies run on the 5000 problem dataset, making it useful in a schedule despite
lower performance alone. Table 9 shows this greedy cover, and then its evaluation
on the full dataset. The 23192 problems proved by our new greedy cover is a 7%
improvement over the top 5 baseline strategies.

7 Examples

The Mizar theorem YELLOW 5:3612 states De Morgan’s laws for Boolean lattices:

theorem Th36: :: YELLOW_5 :36
for L being non empty Boolean RelStr for a, b being Element of L
holds ( ’not ’ (a "∨" b) = (’not ’ a) "∧" (’not ’ b)

& ’not ’ (a "∧" b) = (’not ’ a) "∨" (’not ’ b) )

Using 32 related proofs results in 2220 clauses placed on the watchlists. The
dynamically guided proof search takes 5218 (nontrivial) given clause loops done
in 2 s and the resulting ATP proof is 436 inferences long. There are 194 given
clauses that match the watchlist during the proof search and 120 (61.8%) of
them end up being part of the proof. I.e., 27.5% of the proof consists of steps
guided by the watchlist mechanism. The proof search using the same settings,

11 All clauses in suggested proofs are used.
12 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/yellow 5#T36.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/yellow_5#T36
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Table 4. k-NN proof recommendation watchlists (kNN-dyn.i) for dyn pref. Size is
number of proofs, averaging 40 clauses per proof. A top 5 greedy cover of dyn proves
1972 and pref proves 1959 (in bold).

Size dynA dynB dynC dynD dynE Total

4 1531 1352 1235 1194 1165 1957

8 1543 1366 1253 1188 1170 1956

16 1529 1357 1224 1218 1185 1951

32 1546 1373 1240 1218 1188 1962

64 1535 1376 1216 1215 1166 1935

128 1506 1351 1195 1214 1147 1907

1024 1108 963 710 943 765 1404

Size prefA prefB prefC prefD prefE Total

4 1539 1369 1210 1220 1159 1944

8 1554 1385 1219 1240 1168 1941

16 1572 1405 1225 1254 1180 1952

32 1568 1412 1231 1271 1190 1958

64 1567 1402 1228 1262 1172 1952

128 1552 1388 1210 1248 1160 1934

1024 1195 1061 791 991 806 1501

Table 5. K-NN round 1 greedy cover on full dataset and proofs added by each suc-
cessive strategy for a total of 22579. dynA 32 means strategy dynA using 32 proof
watchlists.

dynA 32 dynC 8 dynD 16 dynE 4 dynB 64

Added 17964 2531 1024 760 282

Total 17964 14014 14294 13449 16175

Table 6. Problems proved by round 2 k-NN proof suggestions (kNN-dyn.ii). The
top 5 greedy cover proves 1981 problems (in bold). dyn2A means dynA run on the 2nd
iteration of k-NN suggestions.

Size dyn2A dyn2B dyn2C dyn2D dyn2E Total Round 1 total

4 1539 1368 1235 1209 1179 1961 1957

8 1554 1376 1253 1217 1183 1971 1956

16 1565 1382 1256 1221 1181 1972 1951

32 1557 1383 1252 1227 1182 1968 1962

64 1545 1385 1244 1222 1171 1963 1935

128 1531 1374 1221 1227 1171 1941 1907
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Table 7. K-NN round 2 greedy cover on full dataset and proofs added by each succes-
sive strategy for a total of 22996

dyn2A 16 dyn2C 16 dyn2D 32 dyn2E 4 dyn2B 4

Total 18583 14486 14720 13532 16244

Added 18583 2553 1007 599 254

Table 8. Problems proved by round 2 k-NN proof suggestions with dyndec. The top 5
greedy cover proves 1898 problems (in bold).

Size dyndec2A dyndec2B dyndec2C dyndec2D dyndec2E Total

4 1432 1354 1184 1203 1152 1885

16 1384 1316 1176 1221 1140 1846

32 1381 1309 1157 1209 1133 1820

128 1326 1295 1127 1172 1082 1769

Table 9. Top: Cumulative sum of the 5000 test set greedy cover. The k-NN based
dynamic watchlist methods dominate, improving by 2.1% over the baseline and article-
based watchlist strategy greedy cover of 1964 (Table 2). Bottom: Greedy cover run on
the full dataset, cumulative and total proved.

Total dyn2A 16 dyn2C 16 dyndec2D 16 dyn2E 4 dyndec2A 128

2007 1565 230 97 68 47

23192 18583 2553 1050 584 422

23192 18583 14486 14514 13532 15916

but without the watchlist takes 6550 nontrivial given clause loops (25.5% more).
The proof of the theorem WAYBEL 1:8513 is considerably used for this guidance:

theorem :: WAYBEL_1 :85
for H being non empty lower -bounded RelStr st H is Heyting holds
for a, b being Element of H holds ’not ’ (a "∧" b) >= (’not ’ a) "∨" (’not ’ b)

Note that this proof is done under the weaker assumptions of H being lower
bounded and Heyting, rather than being Boolean. Yet, 62 (80.5%) of the 77
clauses from the proof of WAYBEL 1:85 are eventually matched during the proof
search. 38 (49.4%) of these 77 clauses are used in the proof of YELLOW 5:36. In
Table 10 we show the final state of proof progress for the 32 loaded proofs after
the last non empty clause matched the watchlist. For each we show both the
computed ratio and the number of matched and all clauses.

An example of a theorem that can be proved in 1.2 s with guidance but
cannot be proved in 10 s with any unguided method is the following theorem
BOOLEALG:6214 about the symmetric difference in Boolean lattices:

13 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/waybel 1#T85.
14 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/boolealg#T62.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/waybel_1#T85
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/boolealg#T62
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Table 10. Final state of the proof progress for the (serially numbered) 32 proofs loaded
to guide the proof of YELLOW 5:36. We show the computed ratio and the number of
matched and all clauses.

0 0.438 42/96 1 0.727 56/77 2 0.865 45/52 3 0.360 9/25

4 0.750 51/68 5 0.259 7/27 6 0.805 62/77 7 0.302 73/242

8 0.652 15/23 9 0.286 8/28 10 0.259 7/27 11 0.338 24/71

12 0.680 17/25 13 0.509 27/53 14 0.357 10/28 15 0.568 25/44

16 0.703 52/74 17 0.029 8/272 18 0.379 33/87 19 0.424 14/33

20 0.471 16/34 21 0.323 20/62 22 0.333 7/21 23 0.520 26/50

24 0.524 22/42 25 0.523 45/86 26 0.462 6/13 27 0.370 20/54

28 0.411 30/73 29 0.364 20/55 30 0.571 16/28 31 0.357 10/28

for L being B_Lattice
for X, Y being Element of L holds (X \+\ Y) \+\ (X "∧" Y) = X "∨" Y

Using 32 related proofs results in 2768 clauses placed on the watchlists. The
proof search then takes 4748 (nontrivial) given clause loops and the watchlist-
guided ATP proof is 633 inferences long. There are 613 given clauses that match
the watchlist during the proof search and 266 (43.4%) of them end up being
part of the proof. I.e., 42% of the proof consists of steps guided by the watchlist
mechanism. Among the theorems whose proofs are most useful for the guidance
are the following theorems LATTICES:2315, BOOLEALG:3316 and BOOLEALG:5417

on Boolean lattices:

theorem Th23: :: LATTICES :23

for L being B_Lattice

for a, b being Element of L holds (a "∧" b)‘ = a‘ "∨" b‘

theorem Th33: :: BOOLEALG :33

for L being B_Lattice for X, Y being Element of L holds X \ (X "∧" Y) = X \ Y

theorem :: BOOLEALG :54

for L being B_Lattice for X, Y being Element of L

st X‘ "∨" Y‘ = X "∨" Y & X misses X‘ & Y misses Y‘

holds X = Y‘ & Y = X‘

Finally, we show several theorems18,19,20,21 with nontrivial Mizar proofs and
relatively long ATP proofs obtained with significant guidance. These theorems
cannot be proved by any other method used in this work.

15 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/lattices#T23.
16 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/boolealg#T33.
17 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/boolealg#T54.
18 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/boolealg#T68.
19 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/closure1#T21.
20 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/bcialg 4#T44.
21 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/xxreal 3#T67.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/lattices#T23
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/boolealg#T33
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/boolealg#T54
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/boolealg#T68
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/closure1#T21
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/bcialg_4#T44
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/xxreal_3#T67
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theorem :: BOOLEALG :68

for L being B_Lattice for X, Y being Element of L

holds (X \+\ Y)‘ = (X "∧" Y) "∨" ((X‘) "∧" (Y‘))

theorem :: CLOSURE1 :21

for I being set for M being ManySortedSet of I

for P, R being MSSetOp of M st P is monotonic & R is monotonic

holds P ** R is monotonic

theorem :: BCIALG_4 :44

for X being commutative BCK -Algebra_with_Condition(S)

for a, b, c being Element of X st Condition_S (a,b) c= Initial_section c holds

for x being Element of Condition_S (a,b) holds x <= c \ ((c \ a) \ b)

theorem :: XXREAL_3 :67

for f, g being ext -real number holds (f * g)"=(f") * (g")

8 Related Work and Possible Extensions

The closest related work is the hintguidance in Otter and Prover9. Our focus is
however on large ITP-style theories with large signatures and heterogeneous facts
and proofs spanning various areas of mathematics. This motivates using machine
learning for reducing the size of the static watchlists and the implementation of
the dynamic watchlist mechanisms. Several implementations of internal proof
search guidance using statistical learning have been mentioned in Sects. 1 and 3.
In both the tableau-based systems and the tactical ITP systems the statistical
learning guidance benefits from a compact and directly usable notion of proof
state, which is not immediately available in saturation-style ATP.

By delegating the notion of similarity to subsumption we are relying on fast,
crisp and well-known symbolic ATP mechanisms. This has advantages as well as
disadvantages. Compared to the ENIGMA [15] and neural [23] statistical guiding
methods, the subsumption-based notion of clause similarity is not feature-based
or learned. This similarity relation is crisp and sparser compared to the similar-
ity relations induced by the statistical methods. The proof guidance is limited
when no derived clauses subsume any of the loaded proof clauses. This can be
countered by loading a high number of proofs and widening (or softening) the
similarity relation in various approximate ways. On the other hand, subsump-
tion is fast compared to the deep neural methods (see [23]) and enjoys clear
guarantees of the underlying symbolic calculus. For example, when all the (non
empty) clauses from a loaded related proof have been subsumed in the current
proof search, it is clear that the current proof search is successfully finished.

A clear novelty is the focusing of the proof search towards the (possibly
implausible) inferences needed for completing the loaded proofs. Existing sta-
tistical guiding methods will fail to notice such opportunities, and the static
watchlist guidance has no way of distinguishing the watchlist matchers that lead
faster to proof completion. In a way this mechanism resembles the feedback
obtained by Monte Carlo exploration, where a seemingly statistically unlikely
decision can be made, based on many rollouts and averaging of their results.
Instead, we rely here on a database of previous proofs, similar to previously
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played and finished games. The newly introduced heuristic proof search (proof
progress) representation may however enable further experiments with Monte
Carlo guidance.

8.1 Possible Extensions

Several extensions have been already discussed above. We list the most obvious.

More Sophisticated Progress Metrics: The current proof-progress criterion
may be too crude. Subsuming all the initial clauses of a related proof is unlikely
until the empty clause is derived. In general, a large part of a related proof may
not be needed once the right clauses in the “middle of the proof” are subsumed
by the current proof search. A better proof-progress metric would compute the
smallest number of proof clauses that are still needed to entail the contradiction.
This is achievable, however more technically involved, also due to issues such as
rewriting of the watchlist clauses during the current proof search.

Clause Re-evaluation Based on the Evolving Proof Relevance: As more
and more watchlist clauses are matched, the proof relevance of the clauses gen-
erated earlier should be updated to mirror the current state. This is in general
expensive, so it could be done after each N given clause loops or after a sig-
nificant number of watchlist matchings. An alternative is to add corresponding
indexing mechanisms to the set of generated clauses, which will immediately
reorder them in the evaluation queues based on the proof relevance updates.

More Abstract/Approximate Matching: Instead of the strict notion of sub-
sumption, more abstract or heuristic matching methods could be used. An inter-
esting symbolic method to consider is matching modulo symbol alignments [9].
A number of approximate methods are already used by the above mentioned
statistical guiding methods.

Adding Statistical Methods for Clause Guidance: Instead of using
only hard-coded watchlist-style heuristics for focusing inferences, a statistical
(e.g. ENIGMA-style) clause evaluation model could be trained by adding the
vector of proof completion ratios to the currently used ENIGMA features.

9 Conclusion

The portfolio of new proof guiding methods developed here significantly improves
E’s standard portfolio of strategies, and also the previous best set of strate-
gies invented for Mizar by evolutionary methods. The best combination of five
new strategies run in parallel for 10 s (a reasonable hammering time) will prove
over 7% more Mizar problems than the previous best combination of five non-
watchlist strategies. Improvement over E’s standard portfolio is much higher.
Even though we focus on developing the strongest portfolio rather than a single
best method, it is clear that the best guided versions also significantly improve
over their non-guided counterparts. This improvement for the best new strategy
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(dyn2A used with 16 most relevant proofs) is 26.5% (=18583/14693). These are
relatively high improvements in automated theorem proving.

We have shown that the new dynamic methods based on the idea of proof
completion ratios improve over the static watchlist guidance. We have also
shown that as usual with learning-based guidance, iterating the methods to
produce more proofs leads to stronger methods in the next iteration. The first
experiments with widening the watchlist-based guidance by relatively simple
inheritance mechanisms seem quite promising, contributing many new proofs.
A number of extensions and experiments with guiding saturation-style proving
have been opened for future research. We believe that various extensions of the
compact and evolving heuristic representation of saturation-style proof search as
introduced here will turn out to be of great importance for further development
of learning-based saturation provers.

Acknowledgments. We thank Bob Veroff for many enlightening explanations and
discussions of the watchlist mechanisms in Otter and Prover9. His “industry-grade”
projects that prove open and interesting mathematical conjectures with hints and proof
sketches have been a great sort of inspiration for this work.
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Abstract

Watchlist (also hint list) is a technique that allows lemmas from related proofs to guide
a saturation-style proof search for a new conjecture. ProofWatch is a recent watchlist-style
method that loads many previous proofs inside the ATP, maintains their completion ratios
during the proof search and focuses the search by following the most completed proofs. In
this work, we start to use the dynamically changing vector of proof completion ratios as ad-
ditional information about the saturation-style proof state for statistical machine learning
methods that evaluate the generated clauses. In particular, we add the proof completion
vectors to ENIGMA (efficient learning-based inference guiding machine) and evaluate the
new method on the MPTP Challenge benchmark, showing moderate improvement in E’s
performance over ProofWatch and ENIGMA.

1 Introduction

This work proposes and develops a new learning-based proof guidance – ENIGMAWatch – for
saturation-style first-order theorem provers. It is based on two previous guiding methods im-
plemented for the E [13] ATP system: ProofWatch [4] and ENIGMA [7, 8]. Both ProofWatch
and ENIGMA enable E to use related proofs for guiding the proof search for a new conjec-
ture. ProofWatch is based on the hints (watchlist) mechanism. It uses standard symbolic
subsumption to compute the completion ratios of related proofs, and focuses the current proof
search towards the most completed ones. ENIGMA uses statistical machine learning from
many related proofs to estimate the relevance of the generated clauses for the current conjec-
ture. ENIGMAWatch combines the two approaches by using the completion ratios of the related
proofs as an additional characterization of the current proof state, which is used together with
the conjecture for ENIGMA-style machine learning of clause relevance.

ENIGMAWatch is implemented for E and evaluated here on the MPTP Challenge1 [14, 15]
benchmark. This is a set of 252 first-order problems extracted from the Mizar Mathematical
Library (MML) [5]. This set of lemmas is used in Mizar to prove the Bolzano-Weierstrass
theorem.2
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The rest of the paper is organized as follows. Sections 2 and 3 provide the background on
ENIGMA and ProofWatch. Section 4 explains how ENIGMA and ProofWatch are combined,
and Section 5 evaluates ENIGMAWatch on the MPTP Challenge benchmark.

2 Saturation-based ATP and ENIGMA

Saturation-style first-order theorem provers are based on the given-clause algorithm. This
algorithm splits the proof state into two subsets of clauses, the initially empty processed clauses
P and the unprocessed clauses U . In each step the algorithm picks one unprocessed clause g
(the given clause), puts g into P , and performs all possible inferences between g and the clauses
in P . The newly generated clauses are, if not trivially discarded, put into U . This process is
repeated until U is empty or a proof (contradiction) has been found. The core choice point is
the selection of the next given clause.

ENIGMA [7, 8] stands for Efficient learN ing-based I nference Guiding MAchine. It steers
the selection of the given clauses in saturation-based ATPs like E. ENIGMA is based on the
simple but fast logistic regression algorithm [2] effectively implemented by the LIBLINEAR
open source library [3]. In order to employ logistic regression, first-order clauses need to be
translated to fixed-length numeric feature vectors. The first version of ENIGMA [7] uses (top-
down-)oriented term-tree walks of length 3 as features. For example, a unit clause “P (f(a, b))”
contains only features “(P, f, a)” and “(P, f, b)” (see [7, Sec. 3.2] for details). Features are
enumerated and a clause C is translated to the feature vector ϕC whose i-th member counts
the number of occurrences of the i-th feature in clause C.

In order to train an ENIGMA predictor E , all the given clauses C from a set of previous
successful proof searches are collected. The given clauses used in the proofs are classified as
positive (C+ ⊆ C) and the remaining given clauses as negative (C− ⊆ C). The clause sets
(C+, C−) are turned into feature vector sets (Φ+,Φ−) using a fixed feature enumeration π.
Then a LIBLINEAR classifier w (a weight vector) is trained on the classification (Φ+,Φ−),
classifying each clause as useful or un-useful. The classifier w and enumeration π produce a
predictor E = (w, π) which is used to guide next proof searches in combination with other E
heuristics.

The above ENIGMA predictors recommend clauses independently of the conjecture being
currently proved. The second version of ENIGMA [8] overcomes this weakness by adding the
conjecture context. Instead of representing just the clause C using the vector ϕC of length n
(where n is the number of different features appearing in the training data), we use a vector
(ϕC , ϕG) of length 2n where ϕG contains the features of the conjecture G. For a training clause
C, G corresponds to the conjecture of the proof search where C was selected as a given clause.
When classifying a clause C during a proof search, G corresponds to the conjecture currently
being proved. In this way, ENIGMA provides conjecture-specific predictions. The enhanced
ENIGMA additionally supports more features, like horizontal features and static features (see
[8, Sec. 2] for more details).

Even with the above conjecture context, ENIGMA predictors still recommend clauses inde-
pendently on the current state of the proof search. In this work we add the proof state context,
that is, instead of representing the choice of a clause C by the vector (ϕC , ϕG) we represent
the choice of the clause in the current proof state by the vector (ϕC , ϕG, ϕΠ) where ϕΠ is a
proof-state vector which describes the specific proof search state where C was selected. The
next sections describe how we construct the proof vectors.
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3 ProofWatch

3.1 Standard Watchlist Guidance

The watchlist (hint list) mechanism steers given clause selection via symbolic matching between
generated clauses and clauses on a watchlist W . This technique has been developed and used
extensively by Veroff [16] for the AIM project [9] with Prover9 [12] for obtaining long and
advanced proofs of open conjectures. The standard watchlist mechanism as originally imple-
mented in E, Otter [11], and Prover9 [12] uses only one watchlist W . In E, the watchlist
mechanism uses a priority function PreferWatchlist that gives higher priority to clauses that
match the watchlist W .3 Clauses with higher priority are selected as given before clauses with
lower priority4. When clauses from previous proofs are put on W , E thus prefers to follow steps
from the previous proofs whenever it can.

3.2 ProofWatch

ProofWatch [4, Sec. 5] extends standard watchlist guidance by allowing for multiple watchlists
W1,. . .,Wn, e.g., one corresponding to each related proof used. We say that a generated clause
C matches a watchlist W if C subsumes a clause CW ∈W (this implies that C logically entails
CW ). During a proof search, clauses from some watchlist might get matched more often than
clauses from others. The more clauses are matched from a watchlist Wi, the more the current
proof search resembles Wi, and hence Wi might be more relevant for this proof search. The
idea of ProofWatch is to prioritize clauses that match more relevant watchlists (proofs).

Watchlist relevance is dynamically computed. We define progress(W ) to be the count of
clauses CW ∈ W that have been matched in the proof search thus far. The completion ratio,
progress(W )
|W | , measures how much of the watchlist W has been matched. The dynamic relevance

of each generated clause C is defined as the maximum completion ratio over all the watchlists
Wi that C matches:5

relevance(C) = max
W∈{Wi:CvWi}

(progress(W )

|W |
)

The higher the dynamic relevance, the higher priority a clause matching that watchlist is
given.

4 ENIGMAWatch: ProofWatch meets ENIGMA

The watchlist completion ratios at each step in E’s proof search can be taken as a vectorial rep-
resentation of the proof state, and used as input to ENIGMA. This is how the proof-state vector
ϕΠ is constructed. The general motivation for this approach is to come up with an evolving
characterization of the saturation-style proof state, preferably in a vectorial form suitable for
machine learning tools. In general, this could be, e.g., a vector of more abstract similarities of
the current proof state to other proofs measured in various (possibly approximate) ways. The
ProofWatch based proof-state vector is thus the first reasonable implementation of this general
idea.

3See [4, Sec. 4 and 6] for details.
4Numerically the lower the priority, the better. 0 is the best priority.
5C vWi stands for C subsuming a clause from Wi
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In particular, the positive C+ and negative C− given clauses are output along with ϕΠ, the
proof-state vector at the time of their selection, and used in ENIGMA training.

Table 1 shows a sample proof-state vector based on 32 related proofs6 for the Mizar theorem
YELLOW 5:367 at the end of the proof search. Note that some related proofs, such as #2,
were almost fully matched, while others, such as #7 were mostly not matched in the proof
search.

0 0.438 42/96 1 0.727 56/77 2 0.865 45/52 3 0.360 9/25
4 0.750 51/68 5 0.259 7/27 6 0.805 62/77 7 0.302 73/242
8 0.652 15/23 9 0.286 8/28 10 0.259 7/27 11 0.338 24/71
12 0.680 17/25 13 0.509 27/53 14 0.357 10/28 15 0.568 25/44
16 0.703 52/74 17 0.029 8/272 18 0.379 33/87 19 0.424 14/33
20 0.471 16/34 21 0.323 20/62 22 0.333 7/21 23 0.520 26/50
24 0.524 22/42 25 0.523 45/86 26 0.462 6/13 27 0.370 20/54
28 0.411 30/73 29 0.364 20/55 30 0.571 16/28 31 0.357 10/28

Table 1: Example of the proof-state vector for the (serially numbered) 32 proofs loaded to guide
the proof of YELLOW 5:36. The three columns are the watchlist i, the completion ratio of i, and
progress(Wi)/|Wi|.

5 Evaluation on the MPTP Challenge Benchmark

5.1 MPTP Challenge

The Mizar Mathematical Library (MML) contains over 1000 articles on diverse topics. The
MPTP Challenge was chosen as an initial benchmark because it covers 33 articles, is of man-
ageable size, and focuses on a single problem. Thus the proof-state vector is hypothesized to be
meaningful without need for curation. The problems range from easy to hard, and the challenge
is still unsolved.8

In the bushy division used here, each problem’s axioms are precisely the ones needed in the
human proofs in the MML, thus the premise selection [1] task does not need to be done by the
ATP. In 2007, 82% of the 252 bushy problems were solved by 14 ATP systems. Presently we
ran Vampire [10] version 4.0, the state of the art theorem prover that performed best on the
challenge, for 300 seconds per problem and solved 87% (220/252).

5.2 Results

The experiments are conducted using as the baseline 10 strategies that were previously evolved
to perform well as an ensemble on the Mizar problems [6].9 These strategies outperform E’s
auto-schedule strategy [6]. All benchmarks are run on the same hardware10, with the same
memory limits, and using E prover version 2.111.

6The proofs were chosen via k-NN. See [4, Sec. 6.1] for details.
7http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/yellow_5#T36
8The TPTP version of the Bolzano-Weierstrass theorem and its MML proof was however cross-verified [15].
9We care about the problems proven by the union of 10 strategies than the performance of any individual

strategy.
10Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz with 256G RAM.
11Our version of E can be found at https://github.com/ai4reason/eprover/tree/devel.
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We conduct three benchmarks to see how many more MPTP Challenge problems each
method enables E to solve. We first run the baseline strategies, then ProofWatch12 and
ENIGMA using those results. For ENIGMAWatch, a second run of the baseline strategies
while recording the proof-state vector ϕΠ is needed before training the ENIGMA models.

The first two benchmarks run E for 1s and 30s per problem and strategy. As ProofWatch
and ENIGMA can slow E down, we run one benchmark using abstract time instead of CPU
time. Abstract time is measured by given-clause loops. T15+C40000 means that each problem
is run until 40000 given clauses are processed or 15s passes.13

Figure 1: The absolute number of problems solved by each method. In 1s the baseline strategies
prove 184 and ENIGMAWatch proves 186. With T15 + C40000 the baselines prove 195 and
ENIGMAWatch proves 205. In 30s the baselines prove 202 and ENIGMAWatch proves 209.

ENIGMAWatch performs best in all of the benchmarks in Figure 1; however the difference
in problems proved is small. As anticipated, the difference is most distinct when using abstract
time rather than CPU time.

A performance metric in addition to the number of problems proven is how many given-
clause loops E takes to find the proof.14 This allows given-clause selection strategies to be
compared on problems solved.

Figure 2 shows the average number of processed clauses used to find the proof on the
T15 + C40000 benchmark. ProofWatch cuts the abstract proof-search time by about 75%,
while ENIGMA and ENIGMAWatch do significantly better. The ENIGMA-based methods
likely have superior efficiency because they provide guidance for each generated clause, whereas
ProofWatch only provides guidance when a clause subsumes a watchlist clause. This shows
that with proper guidance, E can find proofs much faster. In scenarios where many similar
proofs have to be done, this seems useful. The MPTP Challenge is too small to use a standard
train/test split15, so we so far only measure the number of problems additionally proved and

12ProofWatch is run with a static watchlist.
13The baseline strategies often process this many clauses in 5− 10s.
14Which is best measured by looking at non-trivial processed clauses, as E has heuristics for labeling clauses

trivial, and checks to see if they are subsumed by another processed clause.
15One could do leave-one-out testing to test this on this 252 problem dataset.
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the proof shortening in terms of the abstract time.
Figure 3 examines how much more efficient ENIGMAWatch is on each problem by taking

the average of the ratios:

clauses by ENIGMAWatch on problem p

clauses by Baseline on problem p

The same trend is present as with average clauses, but the outliers seem to stand out less. It’s
interesting that with one strategy, mzr06, ENIGMA uses more processed clauses per problem
than the baseline. However mzr06 only proved 17 problems, so ENIGMA did not have much
training data at its disposal.

Figure 2: The average processed clauses used to find proofs on the T15 + C40000 benchmark.

6 MPTP2078: The Next Frontier

The MPTP2078 benchmark is similar to the MPTP Challenge however all theorems from the 33
Mizar articles are included, growing the number of problems to 2078. In previous work [4], we
discovered that ProofWatch becomes slow when there are 10, 000 clauses on the watchlist. The
inference speed is good enough with up to 128 proofs on the watchlist.16 The baseline ensemble
proves 1461 problems. Thus to use ENIGMAWatch, a small subset of the proofs available must
be chosen as the proof-state vector.

We have tried to use k-medoids based on ENIGMA-style features of the problems and their
initial clause sets for k ∈ {4, 8, 16, 32, 64} to select the proof-state vectors; however this is not yet
effective. The most effective watchlist curation method in ProofWatch is to use k-NN based on

16Thus the small MPTP Challenge dataset already uses watchlists near the limits of ProofWatch’s capabilities.
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Figure 3: The average ratio of each method over the Baseline, which is a constant bar at 1.

ENIGMA-style features to suggest proofs for each problem [4]. ENIGMAWatch needs to have a
consistent proof-state vector, so one idea is to take the union of k-NN suggested proofs and set
the unused proofs’ watchlists to zero (the empty clause) on a problem-specific basis. Another
option is to have faster algorithms for matching (based on better indexing), for approximate
matching or in general for estimating how much a clause belongs to a related proof. The latter
ones could again be based on learning such approximate concepts from a large body of proofs.

7 Conclusion

The first experiment with ENIGMAWatch on the MPTP Challenge is encouraging. The perfor-
mance is better than both ProofWatch and ENIGMA, especially with regard to the number of
processed clauses needed to find a proof. This indicates that combining symbolic and statistical
machine learning in this way can be fruitful.

However additional work is needed to find out how to best leverage the potential of the
ENIGMAWatch method. ProofWatch works best when the watchlists are targeted on the
specific problem. ENIGMA, using logistic regression, works best when given lots of data to learn
from. Reconciling the two and applying ENIGMAWatch to larger datasets presents interesting
research challenges.
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Abstract. In this work we describe a new learning-based proof guid-
ance – ENIGMAWatch – for saturation-style first-order theorem provers.
ENIGMAWatch combines two guiding approaches for the given-clause
selection implemented for the E ATP system: ProofWatch and ENIGMA.
ProofWatch is motivated by the watchlist (hints) method and based on
symbolic matching of multiple related proofs, while ENIGMA is based
on statistical machine learning. The two methods are combined by using
the evolving information about symbolic proof matching as additional
characterization of the saturation-style proof search for the statistical
learning methods. The new system is evaluated on a large set of problems
from the Mizar library. We show that the added proof-matching infor-
mation is considered important by the statistical machine learners, and
that it leads to improved performance over ProofWatch and ENIGMA.

1 Introduction

This work describes a new learning-based proof guidance – ENIGMAWatch – for
saturation-style first-order theorem provers. ENIGMAWatch1 is the combination
of two previous guidance methods implemented for the E theorem prover [35]:
ProofWatch [11] and ENIGMA [16,17]. Both ProofWatch and ENIGMA learn
to guide E’s proof search for a new conjecture based on related proofs.

ProofWatch uses the hints (watchlist) mechanism, which is a form of precise
symbolic memory that can allow inference chains done in a former proof to be
replayed in the current proof search. It uses standard symbolic subsumption to
check which clauses subsume clauses in related proofs. In addition to boosting
the priority of these clauses, the completion ratios of the related proofs are
computed, and the proof search is biased towards the most completed ones.

ENIGMA uses fast statistical machine learning to learn from related proof-
searches to identify good and bad (positive and negative) clauses for the current

1 The E version used in this paper can be found at https://github.com/ai4reason/
eprover/tree/devel, and the library for running ENIGMA with E can be found at
https://github.com/ai4reason/enigma.
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conjecture. ENIGMA chooses the given clauses based only on features of the
problem’s conjecture, which is static throughout the whole proof search. This
seems suboptimal: as the proof search evolves, information about the work done
so far should influence the selection of the next given clauses.

ENIGMAWatch combines the two approaches by giving the ENIGMA’s
learner the ProofWatch completion ratios of the related proofs as an evolv-
ing vectorial characterization of the current proof search state. This allows E’s
machine learning guidance to have more information about how the proof search
is unfolding.

An early version of ENIGMAWatch was tested on the MPTP Challenge2

[36,39] benchmark. It contains 252 first-order problems extracted from the
Mizar Mathematical Library (MML) [14], used in Mizar to prove the Bolzano-
Weierstrass theorem. Initially, ENIGMAWatch could not be run on a larger
dataset, such as the 57897 Mizar40 [21] benchmark, in a reasonable time. Since
then, ENIGMA implemented dimensionality reduction using feature hashing [6],
extending its applicability to large corpora. We have additionally improved
watchlist mechanism in E through enhanced indexing, first time presented in
this work in Sect. 4. This allows also ENIGMAWatch to be applied to larger
corpora.

The rest of the paper is organized as follows. Section 2 provides an introduc-
tion to saturation-based theorem proving and briefly describes ENIGMA and
ProofWatch. Section 3 explains how ENIGMA and ProofWatch are combined
into ENIGMAWatch, and how watchlists can be selected. Section 4 describes
our improved watchlist indexing in E. Both ENIGMAWatch and the improved
watchlist indexing are evaluated in Sect. 5.

2 Guiding the Given Clause Selection in ATPs

2.1 Automated Theorem Proving and Machine Learning

State-of-the-art saturation-based automated theorem provers (ATPs) for first-
order logic (FOL), such as E [33] and Vampire [25] employ the given clause
algorithm, translating the input FOL problem T ∪ {¬C} into a refutationally
equivalent set of clauses. The search for a contradiction is performed maintain-
ing sets of processed (P ) and unprocessed (U) clauses (the proof state Π). The
algorithm repeatedly selects a given clause g from U , moves g to P , and extends
U with all clauses inferred with g and P . This process continues until a contra-
diction is found, U becomes empty, or a resource limit is reached.

The search space of this loop grows quickly and it is a well-known fact that
the selection of the right given clause is crucial for success. Machine learning
from a large number of proofs and proof searches [1–4,7–10,15,16,19,20,22,26,
29,31,32,38,40,41] may help guide the selection of the given clauses.

2 http://tptp.cs.miami.edu/∼tptp/MPTPChallenge/.
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2.2 ENIGMA: Learning from Successful Proof Searches

ENIGMA [6,16–18] (Efficient learNing-based Internal Guidance MAchine) is our
method for guiding given clause selection in saturation-based ATPs. The method
needs to be efficient because it is internally applied to every generated clause.
ENIGMA uses E’s capability to analyze successful proof searches, and to output
lists of given clauses annotated as either positive or negative training examples.
Each processed clause which is present in the final proof is classified as positive.
On the other hand, processing of clauses not present in the final proof was
redundant, hence they are classified as negative. ENIGMA’s goal is to learn
such classification (possibly conditioned on the problem and its features) in a
way that generalizes and allows solving new related problems.

ENIGMA Learning and Models. Given a set of problems P, we can run E
with a strategy S and obtain positive and negative training data T from each
of the successful proof searches. Various machine learning methods can be used
to learn the clause classification given by T , each method yielding a classifier
or a (classification) model M. In order to use the model M in E, M is used as
a function that computes clause weights. This weight function is then used to
guide future E runs.

First-order clauses need to be represented in a format recognized by the
selected learning method. While neural networks have been very recently practi-
cally used for internal guidance with ENIGMA [6], the strongest setting currently
uses manually engineered clause features and fast non-neural state-of-the-art gra-
dient boosted trees libraries such as XGBoost [5]. The model M produced by
XGBoost consists of a set (ensemble [30]) of decision trees. Given a clause C,
the model M yields the probability that C represents a positive clause. When
using M as a weight function in E, the probabilities are turned into binary clas-
sification, assigning weight 1.0 for probabilities ≥ 0.5 and weight 10.0 otherwise.

Clause Features. Clause features represent a finite set of various syntactic
properties of clauses, and are used to encode clauses by a fixed-length numeric
vector. Various machine learning methods can handle numeric vectors and their
success heavily depends on the selection of correct clause features. Various pos-
sible choices of efficient clause features for theorem prover guidance have been
experimented with [16,17,22,23]. The original ENIGMA [16] uses term-tree
walks of length 3 as features, while the second version [17] reaches better results
by employing various additional features.

Since there are only finitely many features in any training data, the features
can be serially numbered. This numbering is fixed for each experiment. Let n
be the number of different features appearing in the training data. A clause
C is translated to a feature vector ϕC whose i-th member counts the number
of occurrences of the i-th feature in C. Hence every clause is represented by a
sparse numeric vector of length n. Additionally, we embed information about
the conjecture currently being proved in the feature vector, yielding vectors of
length 2n. See [6,17] for more details.
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Feature Hashing. Experiments revealed that XGBoost is capable of dealing
with vectors up to the length of 105 with a reasonable performance. In experi-
ments with the whole translated Mizar Mathematical Library, the feature vector
length can easily grow over 106. This significantly increases both the training
and the clause evaluation times. To handle such larger data sets, a simple hash-
ing method has previously been implemented to decrease the dimension of the
vectors.

Instead of serially numbering all features, we represent each feature f by a
unique string and apply a general-purpose string hashing function to obtain a
number nf within a required range (between 0 and an adjustable hash base).
The value of f is then stored in the feature vector at the position nf . If different
features get mapped to the same vector index, the corresponding values are
summed up. See [6] for more details.

2.3 ProofWatch: Proof Guidance by Clause Subsumption

In this section we explain the ProofWatch guiding mechanisms. Unlike the statis-
tical approach in ENIGMA, ProofWatch implements a form of symbolic memory
and guidance. It produces a notion of proof-state vector that is dynamically cre-
ated and updated.

Standard Watchlist Guidance. The watchlist (hint list) mechanism itself
does not perform any statistical machine learning. It steers given clause selection
via symbolic matching between generated clauses and a set of clauses called
a watchlist. This technique has been originally developed by Veroff [42] and
implemented in Otter [27] and Prover9 [28]. Since then, it has been extensively
used in the AIM project [24] for obtaining long and advanced proofs of open
algebraic conjectures. The watchlist mechanism is nowadays implemented also
in E. All the above implementations use only a single watchlist, as opposed to
ProofWatch discussed below.

Recall that a clause C subsumes a clause D, written C � D, when there
exists a substitution σ such that Cσ ⊆ D (where clauses are considered to be
sets of literals). The watchlist guidance then works as follows. Every generated
clause C is checked for subsumption with every watchlist clause D ∈ W . When
C subsumes at least one of the watchlist clauses, then C is considered important
for the proof search and is processed with high priority. The idea behind this is
that the watchlist W contains clauses which were processed during a previous
successful proof search of a related conjecture. Hence processing of similar clauses
may lead to success again.

In E, the watchlist mechanism is implemented using a priority function3

which takes precedence over the weight function used to select the next
given clause. Priority functions assign the priority to each clause, and clauses
with higher priority are selected as given before clauses with lower priority4.

3 See the priority function PreferWatchlist in the E manual.
4 Numerically the lower the priority, the better. Hence 0 is the best priority.
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When clauses from previous proofs are put on a watchlist, E thus prefers to
follow steps from the previous proofs whenever it can.

ProofWatch. Our approach [11, Sect. 5] extends standard watchlist guidance
by allowing for multiple watchlists W1,. . .,Wn, for example, one corresponding
to each related proof found before. We say that a generated clause C matches
the watchlist Wi, written C � Wi, iff C subsumes some clause D ∈ Wi (C � D).
Similarly, the above watchlist clause D is said to be matched by C.

The reason to include multiple watchlists is that during a proof search, clauses
from some watchlists might get matched more often than clauses from others.
The more clauses are matched from some watchlist Wi, the more the current
proof search resembles Wi, and hence Wi might be more relevant for this proof
search. Thus the idea of ProofWatch is to prioritize clauses that match more
relevant watchlists (proofs).

Watchlist relevance is dynamically computed as follows. We define
progress(Wi) to be the count of clauses from Wi that have been matched in

the proof search thus far. The completion ratio, ci = progress(Wi)
|Wi| , measures how

much of the watchlist Wi has been matched. The dynamic relevance of each
generated clause C is defined as the maximum completion ratio over all the
watchlists Wi that C matches:

relevance(C) = max
W∈{Wi:C�Wi}

(progress(W )

|W |
)

The higher the dynamic relevance relevance(C), the higher the priority of C. The
dynamic watchlist mechanism is implemented using the E priority function.5

The results of experiments in [11, Sect. 6.3] on the same dataset as this work
(Mizar40 [21]) indicate that dynamic relevance improves performance over an
ensemble of strategies, whereas the single watchlist approach is stronger on each
individual strategy.

When using a large problem library such as Mizar40, it is practically useful
to choose only some proofs for watchlists. First, E’s speed decreases with each
additional proof on the watchlist, so if working on a large dataset, loading all
available proofs as watchlists will lead to a large slowdown (cf. Sect. 4). Second,
it’s not guaranteed that all proofs will help E with proving the problem at hand.

3 ENIGMAWatch: ProofWatch Meets ENIGMA

3.1 Completion Ratios as Semantic Embeddings of the Proof Search

The watchlist completion ratios (c0, ..., cN ) (N ranges over the watchlist proofs)
at each step in E’s proof search can be taken as a vectorial representation of the
current proof state Π. The general motivation for this approach is to come up
with an evolving characterization of the saturation-style proof state Π, prefer-
ably in a vectorial form ϕΠ suitable for machine learning tools, such as ENIGMA.

5 See PreferWatchlistRelevant in [11].
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Recall that the proof state Π is a set of processed clauses P and unprocessed
clauses U . The vector of watchlist completion ratios thus maintains a running
tally of where clauses in P ∪U match the different related proofs. In general, this
could be replaced, e.g., by a vector of more abstract similarities of the current
proof state to other proofs measured in various (possibly approximate) ways.
In ENIGMAWatch we use the ProofWatch based proof-state vector for a proof
state Π defined by the completion ratios, i.e., ϕΠ = (c0, . . . , cN ). This is the first
practical implementation of the general idea: using semantic embeddings (i.e.,
representations in Rn) of the proof state Π for guiding statistical learning meth-
ods. ENIGMAWatch uses the proof-state vectors ϕΠ as follows. The positive C+

and negative C− given clauses are output along with ϕΠ , the proof-state vector
at the time of their selection, and used as added features of the proof state when
training ENIGMA-style classifiers.

Table 1. Example of the proof-state vector for 8 (of 32) (serially numbered) proofs
loaded to guide the proof of YELLOW 5:36. The three columns are the watchlist i, the
completion ratio of i, and progress(Wi)/|Wi|.

0 0.438 42/96 1 0.727 56/77 2 0.865 45/52 3 0.360 9/25

4 0.750 51/68 5 0.259 7/27 6 0.805 62/77 7 0.302 73/242

Table 1 shows a sample proof-state vector based on 32 related proofs6 for the
Mizar theorem YELLOW 5:367 (De Morgan’s law8) at the end of the proof
search. Note that some related proofs, such as #2, were almost fully matched,
while others, such as #7 were mostly not matched in the proof search.

3.2 Proof Vector Construction

Data Construction. In the ProofWatch [11] experiments, the best method
for selecting related proofs (watchlists) was to use k-nearest neighbor (k-NN)
to recommend 32 proofs per problem. The watchlists there are thus problem
specific. In ENIGMAWatch, we want the watchlists to be globally fixed across
the whole library, so that the proof completion ratios have the same meaning
in all proofs. To construct the proof vectors, we first use a strong E strategy
to produce a set of initial proofs (14882 over the 57897 Mizar40 problems).
Then we run E with ProofWatch and the same strategy over the full 57897
problems with the 14882 proofs loaded into the watchlist. The time limit for
both runs was T60-G10000, which means that E stops after 60 s or 10000
generated clauses. This data provides information on how often each watch-
list was encountered in each successful proof search. The training data then

6 The proofs were chosen via k-NN. See [11, Sec. 6.1] for details.
7 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/yellow 5#T36.
8 ¬(P ∨ Q) ⇐⇒ (¬P ) ∧ (¬Q).

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/yellow_5#T36
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consists of a proof vector for each given clause (for each conjecture/problem):
(conjecture, given-clause, proof -state vector).

Dimensionality Reduction. Next, we experiment with various pre-processing
methods to reduce the proof -state vector dimension and thus decrease the num-
ber of watchlists loaded in E. For each problem we compute the mean of proof-
state vectors over all given clauses g: 1

#g

∑
g ϕΠg

. This vector consists of the
averaged completion ratios for each watchlist, which will be higher if the watch-
list was matched earlier in the proof. This results in the mean proof-state matrix
M consisting of row vectors (mean-proof -vector) (one for each conjecture/
problem).

The following are methods experimented with in this paper for constructing
the globally fixed vector of 512 watchlists from matrix M :

– Mean: compute the mean of M across the rows to obtain a mean proof-state
vector that contains for each watchlist its average use across all problems.
Then we take the top 512 watchlists.

– Corr : compute the Pearson correlation matrix9 based on (the transpose of)
M , and find a relatively uncorrelated set of 512 watchlists.

– Var : compute the variance (across the rows) of each column in M , and take
the 512 watchlists with the highest variance. The intuition is that watchlists
whose completion ratio vary more over the problem corpus may be more
useful for learning.

– Rand : randomly select 512 watchlists.

4 Multi-indices Subsumption Indexing

In order to determine whether a generated clause matches a watchlist, the gen-
erated clause must be checked for subsumption with every watchlist clause. A
major limitation of previous work [11,12] was the slowdown of E as the watchlist
size increased beyond 4000 clauses. Including more than 128 proofs was imprac-
tical. This section describes a method we have developed to speed up watchlist
matching.

E already implements feature vector indexing [34] used also for the purpose
of watchlist matching. The watchlist clauses are inserted into an indexing data
structure and various properties of clauses are used to prune possible subsump-
tion candidates. In this way, the number of possibly expensive subsumption calls
is reduced. We build upon this, and further limit the number of required sub-
sumption checks by using multiple indices instead of a single index.10

We take advantage of the fact that a clause C cannot subsume a clause D
if the top-level predicate symbols do not match. In particular, C � D can only
hold if all the predicate symbols from C also appear in D, because substitution
can neither introduce nor remove predicate symbols from a clause.

9 https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html.
10 Even with multiple watchlists, all the watchlist clauses are inserted into a single

index, and only the name of the original watchlist is additionally stored.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html
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We define the code of a clause C, denoted code(C), as the set of predicate
symbols with their logical signs (either + for positive predicates, or − for negated
ones). For example, the code of the clause “P (a) ∨ ¬P (b) ∨ P (f(x))” is the set
{+P,−P}. The following holds because codes are preserved under substitution.

Lemma 1. Given clauses C and D, C � D implies code(C) ⊆ code(D).

We create a separate index for every different clause code. Each watchlist
clause D is inserted only to the index corresponding to code(D). In order to
check whether some clause C matches a watchlist, we only need to search in
the indices whose codes are supersets of (or equal to) code(C). Each index is
implemented using E’s native feature vector indexing structure. Evaluation of
this simple indexing method is provided in Sect. 5.1.

Table 2. Evaluation of multi-indices subsumption indexing.

runtime (left graph ←)
single multi speedup

avg 9.23s 3.16s 2.9×
best 105.3s 5.7s 18.5×
worst 2.26s 2.09s 1.08×

subsumptions (right →)
single multi reduction

avg 2328k 52k 44.1×
best 3059 1 3059×
worst 709k 367k 1.9×

5 Experiments

This section describes the experimental evaluation11 of

1. the improved watchlist mechanism from Sect. 4
2. the watchlist selection for ENIGMAWatch from Sect. 3

5.1 Multi-indices Subsumption Indexing Evaluation

We propose a simple experiment to evaluate our implementation of multi-indices
subsumption indexing from Sect. 4. We take a random sample of 1000 problems
from the Mizar40 [21] data set and create a watchlist with around 60 k clauses
coming from proofs of problems similar to the sample problems. We then run E

11 Experiments code and data are available at https://github.com/ai4reason/eprover-
data/tree/master/TABLEAUX-19
All experiments are run on the same hardware: Intel(R) Xeon(R) Gold 6140 CPU
@ 2.30 GHz with 188 GB RAM.

https://github.com/ai4reason/eprover-data/tree/master/TABLEAUX-19
https://github.com/ai4reason/eprover-data/tree/master/TABLEAUX-19
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on the sample problems with a fixed limit of 1000 generated clauses. This gives us
a measure of how fast the single-index and multi-indices versions are, that is, how
fast they can generate the first 1000 clauses. As the watchlist indexing does not
influence the proof search, both versions process the same clauses and output the
same result. Each generated clause has to be checked for watchlist subsumption
and hence the limit on generated clauses is also the limit on different watchlist
checks. We expect the number of clause-to-clause subsumption checks to decrease
with multi-indices, as the method prunes possible subsumption candidates.

The results of the experiments are presented in Table 2. For each problem, we
measure the runtime (left graph) and the number of different clause subsumption
calls (right graph). The suffix “s” stands for seconds, “k” stands for thousands,
and “M” stands for millions. Although subsumption is also used for purposes
other than watchlist matching, we should be able to observe a decrease in the
number of calls. Each point in the graphs corresponds to one sample problem,
and is drawn at the position (x, y) corresponding to the results of single-index
(x) and multi-indices (y) versions. Hence points below the diagonal signify an
improvement. Also note logarithmic axes. The table shows the average improve-
ment, and also the best and the worst cases. From the results, we can see that
an average speed-up is almost 3 times. Furthermore, the average reduction of
subsumption calls is more than 44 times and the number is reduced even in the
worst case.

Table 3. ProofWatch evaluation: Problems solved by different versions.

Baseline Mean Var Corr Rand Baseline ∪ Mean Total

1140 1357 1345 1337 1352 1416 1483

Table 4. ENIGMAWatch evaluation: Problems solved and the effect of looping.

loop ENIGMA Mean Var Corr Rand ENIGMA ∪ Mean Total

0 1557 1694 1674 1665 1690 1830 1974

1 1776 1815 1812 1812 1847 1983 2131

2 1871 1902 1912 1882 1915 2058 2200

3 1931 1954 1946 1920 1926 2110 2227

The number of watchlist clauses in the experiments was 61501, and the multi-
indices version used 11442 different indices. This means that there were less than
6 clauses per index in average, although the count of clauses in different indices
varied from 1 to 3837. The most crowded index was for the code {+ =}, that is,
for positive equality clauses. Finally, 6955 indices contained only a single clause.
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5.2 Experimental Evaluation of ENIGMAWatch

The experiments are done on a random subset of 5000 Mizar40 [21] problems.
The time limit of 60 s and 30000 generated clauses is used to allow a comparison
to be done without regard for the differences in clause processing speed. The
30000 is approximately the average number of clauses that the baseline strategy
generates in 10 s. Table 3 provides the evaluation of different watchlist selec-
tion mechanims using ProofWatch (without ENIGMA) and making use of the
improved watchlist indexing. The last two columns show the number of problems
solved by (1) the Baseline together with Mean, and by (2) all the five methods.
This shows the relative complementarity of the methods. We can see that the
Mean method yields the best results, reaching more than 15% improvement over
the baseline strategy. The Rand method is however quite competitive.

Table 4 provides the evaluation of ENIGMAWatch and its comparison to
ENIGMA. The experiments are done in multiple loops, where in each loop all
the proof-runs in prior loops can be used as training data. This way ENIGMA
can learn increasingly effective models.

We can see that ENIGMAWatch can attain superior performance to
ENIGMA. The relation of looping and results is interesting. The largest absolute
improvement over ENIGMA is in loop 0 – 8.8% by the Mean method. This how-
ever drops to 1.2% in loop 4. In loops 1 and 2, Rand is the strongest, but Mean
ends up being the best in loop 3. In total, all the ENIGMA and ENIGMAWatch
methods solve together nearly twice as many problems as the baseline strategy.
Figure 1 shows the results of running ENIGMA and Mean for 13 loops. The rate
of improvement slows down, both methods eventually converge to a similar level
of performance, and the union of the two is ca. 150 problems better.

Table 5. ENIGMA and ENIGMAWatch: Model and training statistics.

Model Pos. acc Neg. acc Features Watchlist F Train size Train time

ENIGMA0 99.12% 92.16% 5061 0 0.4 GB 14 min

ENIGMA1 97.39% 86.82% 7071 0 0.8 GB 31 min

ENIGMA2 96.13% 83.92% 8089 0 1.4 GB 55 min

ENIGMA3 95.39% 82.5% 8662 0 2.0 GB 85 min

Mean0 99.05% 92.59% 5424 308 2.9 GB 19 min

Mean1 96.92% 88.16% 6950 316 6.2 GB 29 min

Mean2 95.75% 86.46% 7809 331 9.6 GB 38 min

Mean3 95.04% 85.24% 8313 330 13.0 GB 39 min
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Fig. 1. Convergence: The improvement of ENIGMA and Mean decreases over 13 loops,
and their performance converges. The Union is consistently ca. 150 problems better.

5.3 Training, Model Statistics and Analysis

The XGBoost models used in our experiments are trained with a maximum tree
depth of 9 and 200 rounds (which means 200 trees are learned). There are 300000
features in the 5000 problem dataset hashed into 215 buckets. Combining clause
and conjecture features with the watchlist completion ratios, XGBoost makes its
predictions based on 66048 features (2 · 215 plus the count of completion ratios).

Table 5 provides various training and model statistics of the ENIGMA and
ENIGMAWatch models and their loops. The columns “Pos. Acc.” and “Neg.
Acc.” describe the training accuracy of the models on positive and negative
training examples. The column “Features” presents the number of features ref-
erenced in the decision trees. We see that the models use a small fraction of all
the 66048 available features. The column “Watchlist F.” provides the number of
watchlist features out of all the used features. Finally, “Train Size” and “Train
Time” specify the size of the input training file (in GB) and training times (in
minutes). The XGBoost models after the training are smaller than 4 MB.

We can see that the accuracy decreases with the increase of the training data
size, but the number of theorems proved increases. About 62% of the watchlists
are judged as useful by XGBoost and used in the decision trees. Figure 2 shows
the root of the first decision tree of the Mean model in loop 3. Green means “yes”
(the condition holds), red means “no”, and blue means that the feature is not
present. The multi line box is a (shortened) bucket of features, and single line
boxes correspond to watchlists (#194, etc.). We can see that ENIGMAWatch
uses a watchlist feature for the very first decision when judging newly generated
clauses. This shows that the features that characterize the evolving proof state
are indeed considered very significant by the methods that automatically learn
given clause guidance.
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Fig. 2. Example of an XGBoost decision tree.

6 Conclusion and Future Work

We have produced and evaluated the first practically usable version of the ENIG-
MAWatch system which can now be efficiently used over large mathematical
datasets. The previous experiments with the first prototype on the small MPTP
Challenge [12] demonstrated that ENIGMAWatch can find proofs faster (in
terms of how many processed clauses are needed). The work presented here
shows that with improved subsumption indexing, feature hashing, and suitable
global watchlist selection, ENIGMAWatch outperforms ENIGMA on the large
Mizar40 dataset. In particular, ENIGMAWatch significantly outperforms both
ProofWatch and ENIGMA when used without looping. With several MaLARea-
style [37,40] iterations of proving and learning, the difference to ENIGMA gets
smaller, however the two methods are still quite complementary, providing solu-
tions to a large number of different problems. In total, all the ENIGMA and
ENIGMAWatch methods (Table 4) together solve almost twice as many prob-
lems as the baseline strategy after four iterations of learning and proving.

The system is ready to be used on hard problems and to expand the set of
Mizar problems for which an ATP proof has been found. Future work includes
refining the watchlist selection, defining more sophisticated methods of comput-
ing the proof completion ratios, analyzing the learned decision tree models to see
which watchlists are the most useful, and also defining further and more abstract
meaningful representations and embeddings of saturation-style proof search.
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Abstract. In this work in progress, we demonstrate a new use-case for
the ENIGMA system. The ENIGMA system using the XGBoost imple-
mentation of gradient boosted decision trees has demonstrated high capa-
bility to learn to guide the E theorem prover’s inferences in real-time.
Here, we strip E to the bare bones: we replace the KBO term ordering
with an identity relation as the minimal possible ordering, disable literal
selection, and replace evolved strategies with a simple combination of the
clause weight and FIFO (first in first out) clause evaluation functions.
We experimentally demonstrate that ENIGMA can learn to guide E as
well as the smart, evolved strategies even without these standard auto-
mated theorem prover functionalities. To this end, we experiment with
XGBoost’s meta-parameters over a dozen loops.

1 Introduction: Making E Stupid and Then Smart Again

State-of-the-art saturation-based automated theorem provers (ATPs) for first-
order logic (FOL), such as E and Vampire [12], employ the given clause algo-
rithm [13], translating the input FOL problem T ∪{¬C} (background theory and
negated conjecture) into a refutationally equivalent set of clauses. The search for
a contradiction is performed maintaining sets of processed (P ) and unprocessed
(U) clauses (the proof state Π). The algorithm repeatedly selects a given clause
g from U , moves g to P , and extends U with all clauses inferred with g and P .
This process continues until a contradiction is found, U becomes empty, or a
resource limit is reached.

Historically, term ordering, together with literal selection, is used to guarantee
the completeness of the proof search [1] and to “tame the growth of the search
space and help steer proof search” [5]. Term ordering ensures that rewriting
happens in only one direction, toward smaller terms. Literal selection limits the
inferences done with each given clause g to the selected literals, which slows
down the growth of the search space and reduces redundant inferences.

E includes a strategy language of clause evaluation functions, made up of
weight and priority functions, to heuristically guide the proof search. In this
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work, I use two algorithmically invented [6,7] strategies, E1 and E21, that
use many sophisticated clause evaluation functions, the Knuth-Bendix ordering
(KBO6), literal selection, and other E heuristics.

The ENIGMA [4,8–10] system with the XGBoost [2] implementation of gra-
dient boosted decision trees has recently demonstrated high capability to learn
to guide the E [14] theorem prover’s inferences in real-time. ENIGMA uses the
XGBoost model as a clause evaluation function to recommend clauses for selec-
tion based on clause and conjecture features. In particular, after several prov-
ing and learning iterations, its performance on the 57880 problems from the
Mizar40 [11] benchmark improved by 70% (= 25397/14933) [10] over the strat-
egy E1 used for the initial proving phase.

In this work, E is stripped to the bare bones by disabling term ordering and
literal selection. KBO6 is replaced with an identity relation as the minimal possi-
ble ordering (called IDEN – an addition to E2). While this frees E to do inferences
in any order, E can no longer perform rewriting inferences. The strategy E1 is
replaced with the simple combination of the clause weight and FIFO (first in first
out) evaluation functions. E is thus practically reduced to a basic superposition
prover, without advanced heuristics, rewriting, or completeness guarantees. We
call this strategy E0:

--definitional-cnf=24 --prefer-initial-clauses -tIDEN

--restrict-literal-comparisons -WNoSelection

-H’(5*Clauseweight(ConstPrio,1,1,1),1*FIFOWeight(ConstPrio))’

E0 solves only 3872 of the Mizar40 problems in 5 s compared to 14526 for E1.
The first research question is the extent to which ENIGMA with this basic prover
can learn ATP guidance completely on its own. The second is to what extent
ENIGMA’s learning can be boosted with data from strong strategies and models.
That is, I explore how smart machine learning can become in this zero-strategy
setting. The more general related question is to what extent can machine learning
replace the sophisticated human-invented theorem-proving body of wisdom used
in today’s ATPs for restricting advanced proof calculi.

2 Experiments

We evaluate ENIGMA with the basic strategy, E0, in several scenarios and
over two datasets of different sizes. All experiments are run with 5 s per
problem3 4.

1 Strategies E1 and E2 are displayed in the appendix.
2 The E version used in this paper can be found at https://github.com/zariuq/

eprover/tree/identity-order, and the library for running ENIGMA with E can be
found at https://github.com/zariuq/enigmatic.

3 As a rule of thumb, E solves most problems within a few seconds or not for a very
long time.

4 All the experiments are run on the same hardware unless otherwise specified: Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30GHz with 188GB RAM.

https://github.com/zariuq/eprover/tree/identity-order
https://github.com/zariuq/eprover/tree/identity-order
https://github.com/zariuq/enigmatic
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ENIGMA has so far been used in two ways: coop combines the learned model
with some standard E strategy equally (50:50) while solo only uses the learned
model for choosing the given clauses. The best results have been achieved by
MaLARea-style [16] looping: that is, an ENIGMA model is trained and run
with E (loop 0), then the resulting data are added to the initial training data
and a new ENIGMA model is trained (loop 1).

In this work, ENIGMA trains with both solo and coop data. I present results
from solo runs because they represent the most minimal setting.

2.1 Small Data (2000 Problems)

The E evaluations and XGBoost training can take a long time on the full Mizar40
dataset, so 2000 randomly sampled problems are used to test meta-parameters
on. Each XGBoost model consists of T decision trees of depth D, the most
important training meta-parameters in addition to the learning rate (η = 0.2).
In previous work with ENIGMA, T and D were fixed for all loops of learning.
Here we try to vary the values of T and D during 16 loops. Let SD,T denote the
experiment with specific T and D. Of the many protocols tested, the following
are included in the plot of solved problems (above): Fives (S5,100), Nines (S9,100),
Thirteens (S13,200), Sixteens (S16,100).

We also experiment with adaptively setting the meta-parameters as the num-
ber of training examples increases according to the following protocols:

– Inc (S[3,33],100) increases D by 2 from 3 to 33 and keeps T = 100 fixed.
– 32 inc (S32,[50,250]) fixes D = 32 and gradually increases T from 50 to 250.
– Inc2 (S[3,33],∗) gradually decreases T from 150 to 50, varying the value

intuitively5.

5 Precise details of intuitively set parameters can be seen in the appendix.
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– Inc3 (S[3,33],[50,250]) aims to be more systematic and steps T from 50 to 250.
– Dec3 (S[3,33],[250,50]) decreases T from 250 to 50.

At the 16th loop Inc’s performance is best, solving 299 problems, doubling
the performance of E0 (152). However Inc2 and Inc3 solve 298 problems and
32 inc solves 291 problems. The conclusion is that simple protocols work well so
long as T or D is incremented adaptively rather than fixed.

2.2 Big Data (57880 Problems)

These experiments are done on the large benchmark of 57880 Mizar40 [11] prob-
lems from the MPTP dataset [15]. E1 and E2 are two strong E strategies that
solve 14526 and 12788 problems.

– Experiment 1 is done with D = 9 and T = 200 and uses our previously
trained model that allowed us to solve 25562 problems when cooperating
with E1 in our previous experiments [10]. This strong model, which hashes
the features into 32768 (215) buckets [3, Sect. 3.4], is used with E0 now.

– Experiment 2’s parameters were intuitively toggled during the looping as in
Inc3, and a feature size of 216 is used. Exp. 2 uses training data from E1 and
E2 for additional guidance up to the 4th loop (and then stops including them
in the training data based on the assumption they may confuse learning).

– Experiment 3 sets T and D according to protocol Inc3. Exp. 3 only learns
from E run with E0 and trains on the GPU, which requires the feature size
to be reduced to 256.

– Experiment 4 mimics Exp. 3 but uses E1 and E2 data for training (up to
the 4th loop).

– Experiment 5 further tests boosting with data from an E0 ENIGMA
model that proved 9759 problems and an E1 that proved 21542 problems.
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Tree depth is intuitively varied among 32, 512, and 1000, the number of trees
is varied among 2, 100, 200, and 32. The feature vector size starts at 214 and
is decreased to allow the data to fit on the RAM, down to 32 (= 25).

As seen in the figure, the strong model does not help much in guiding E
without ordering or selection in Exp. 1. Exp. 2 learns gradually and catches up
with Exp. 1, but seems to plateau around 10,000. Surprisingly the pure Exp. 3
learns fast with the small feature size, but plateaus and drops in performance
(perhaps due to overfitting). Exp. 4 indicates that guidance is useful and sur-
passes E2 with 13805 in round 13. Exp. 5 solves 15990 problems, showing that
ENIGMA can take E0 beyond the smart strategies with appropriate parameters
and boosting. This is a great improvement over the 3872 problems solved by E0.

3 Conclusion

ENIGMA can learn to guide the E prover effectively even without smart strate-
gies and term orderings. The models confer a 256% increase over the naive E0
after 13 rounds of the proving/learning loop, and even trained without guidance
data, a 121% increase.

The experiments indicate that machine learning can be used to fully control
an ATP’s guidance, learning to replace orderings, heuristic strategies, and deal
with the increase in generated clauses without literal selection. However the
combination of ENIGMA and standard ATP heuristics still significantly out-
performs ENIGMA alone.

Given the large symmetry-breaking impact of these methods in classical ATP,
future work includes, e.g., training the guidance in such a way that redundant
(symmetric) inferences are not done by the trained model once it has commit-
ted to a certain path. This probably means equipping the learning with more
history and knowledge of the proof state in the saturation-style setting. ENIG-
MAWatch [4] may aid with symmetry breaking by focusing the proof search
on particular proof paths. Additional work is needed to isolate the factors in
Exp. 5’s performance, and determine the most effective boosting methods in
addition to increasing D and T with training loops. Ablation studies should be
done to discover the impact of term ordering and literal selection individually
on E and ENIGMA’s performance. Perhaps term ordering alone is sufficient to
train good ENIGMA models.

Running ENIGMA without term ordering and other restrictions is important
because it may allow us to combine training data from different strategies, and
it may allow ENIGMA to find novel proofs.

Acknowledgments. The research topic was proposed by Jan Jakubuv and Josef
Urban, and further discussed with them, Martin Suda, and Thomas Tan. I also thank
the AITP’20 anonymous referees for their comments on the first extended abstract of
this work.
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A Strategies

Strategy E1 is:

--definitional-cnf=24 --split-aggressive --simul-paramod

--forward-context-sr --destructive-er-aggressive --destructive-er

--prefer-initial-clauses -tKBO -winvfreqrank -c1 -Ginvfreq -F1

--delete-bad-limit=150000000 -WSelectMaxLComplexAvoidPosPred

-H’(1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.1,5,0,0.1,1,4),

1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.5,100,0,0.2,0.2,4),

1*Refinedweight(PreferWatchlist,4,300,4,4,0.7),

1*RelevanceLevelWeight2(PreferProcessed,0,1,2,1,1,1,200,200,2.5,9999.9,9999.9),

1*StaggeredWeight(DeferSOS,1),

1*SymbolTypeweight(DeferSOS,18,7,-2,5,9999.9,2,1.5),

2*Clauseweight(PreferWatchlist,20,9999,4),

2*ConjectureSymbolWeight(DeferSOS,9999,20,50,-1,50,3,3,0.5),

2*StaggeredWeight(DeferSOS,2))’

Strategy E2 is:

--definitional-cnf=24 --split-aggressive --split-reuse-defs

--simul-paramod --forward-context-sr --destructive-er-aggressive

--destructive-er --prefer-initial-clauses -tKBO -winvfreqrank

-c1 -Ginvfreq -F1 --delete-bad-limit=150000000

-WSelectMaxLComplexAvoidPosPred -H’(

3*ConjectureRelativeSymbolWeight(PreferUnitGroundGoals,0.1,100,100,50,100,0.3,1.5,1.5),

4*FIFOWeight(PreferNonGoals),

5*RelevanceLevelWeight2(ConstPrio,1,0,2,1,50,-2,-2,100,0.2,3,4))’

B Additional Protocol Details

In this section I include the details for intuitively toggled protocols.
Protocol Inc2 is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depth 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Trees 150 150 150 100 100 100 75 50 75 100 150 75 100 150 75 100

The protocol for Exp. 2 is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D 4 5 6 7 8 9 10 11 12 13 14 15 16 16 32 9 16 32 64 24 25 32

T 50 150 160 170 180 190 200 200 200 200 210 220 225 225 225 300 300 225 150 250 250 250

The protocol for Exp. 5 requires some explanation. The motivation is to see how
far E0 can be taken, even if the methods are too CPU-intensive for a thorough
grid search.
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Exp. 2 and Exp. 4 demonstrate the utility of boosting. Thus to create better
boosting data I trained ENIGMA for 10 loops with strategies E1 through E12
and used this as boosting data for the first 4 of 10 loops of training. In addition
to training E0, and in the spirit of ablation studies, I also trained ENIGMA
models for E0 with KBO ordering (and no literal selection) and for E0 with
KBO ordering and restricted literal comparisons. The motivation is that these
versions may serve as a bridge between standard E and the basic E0.

Then I used these results to boost an ENIGMA model in loop 0, and trained
based on this for 10 loops, proving 9759 problems.

Finally this data and the data from a loop 3 ENIGMA model trained with
E1 is used to boost E0 with the following meta-parameters:

0 1 2 3 4 5 6 7 8 9 10 11

Depth 512 512 32 1000 32 1000 32 1000 32 1000 1000 100

Trees 2 2 100 100 200 100 200 32 300 32 32 32

Feature size 16384 8192 4096 28 4096 28 4096 32 2048 64 32 128
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Abstract. We describe several additions to the ENIGMA system that
guides clause selection in the E automated theorem prover. First, we
significantly speed up its neural guidance by adding server-based GPU
evaluation. The second addition is motivated by fast weight-based rejec-
tion filters that are currently used in systems like E and Prover9. Such
systems can be made more intelligent by instead training fast versions
of ENIGMA that implement more intelligent pre-filtering. This results
in combinations of trainable fast and slow thinking that improves over
both the fast-only and slow-only methods. The third addition is based on
“judging the children by their parents”, i.e., possibly rejecting an infer-
ence before it produces a clause. This is motivated by standard evolution-
ary mechanisms, where there is always a cost to producing all possible
offsprings in the current population. This saves time by not evaluating
all clauses by more expensive methods and provides a complementary
view of the generated clauses. The methods are evaluated on a large
benchmark coming from the Mizar Mathematical Library, showing good
improvements over the state of the art.

1 Introduction: The Fast and The Smart

Throughout the history of automated theorem proving, there have been two very
different approaches to strengthening automated theorem provers (ATPs). The
first one (the fast) relies on better engineering, such as improving the indexing
for inference and reduction rules and on optimized low-level implementations.
The gains achieved in this way can be quite high [9,15,22,28,31,38].

The second approach (the smart) relies on advanced strategies and heuris-
tics for guiding the proof search. This includes methods using extensive previous
knowledge, e.g., various kinds of symbolic machine learning, such as the hints
method in Otter [37] and Prover9 [19], and its watchlist [26] and proofwatch [6]
variants implemented in E [29,30]. With the recent advent of statistical machine
learning (ML), a number of knowledge-based ATP-guiding methods have been
created [3,10,11,17]. This is done by compiling (extracting, compressing, gener-
alizing) the previous knowledge into statistical ML predictors (models) that are
then used to predict the usefulness of inference steps in the proof search.

c© Springer Nature Switzerland AG 2021
B. Konev and G. Reger (Eds.): FroCoS 2021, LNAI 12941, pp. 173–191, 2021.
https://doi.org/10.1007/978-3-030-86205-3_10
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The smart approaches, while potentially sophisticated and AI-motivated,
may incur prohibitively high costs in their prediction modules, in particular
when naively implemented [21,36]. This can make them inferior in practice to
faster alternative approaches, such as various kinds of randomization [25] and
building of portfolios of complementary fast strategies [13,27,35]. This issue is
getting increasingly important as deep learning (DL) is used for ATP guidance,
sometimes with large cloud-based DL-predictors running on specialized hardware
that hides the amount of resources used. It also complicates rigorous comparisons
in established ATP competitions such as CASC/LTB [32,33].

Another issue related to the use of expensive predictors can be summarized
as the explore-exploit tradeoff introduced in reinforcement learning research [5].
In short, running an ATP guided by a 100-times slower predictor that is only
slightly better (possibly due to insufficient previous data for learning) will not
only typically solve fewer problems due to much more expensive backtracking
but also generate much less data for training the predictor in the next iteration.
Hence, given a global time limit allowing many proving/learning iterations over
a large set of related problems in a realistic problem-solving setup such as CASC
LTB, a faster predictor will in the same time generate much more data to learn
from. This in turn often leads to better performance: a slightly weaker ML system
trained on much more data will often ultimately outperform a slightly stronger
ML system trained on much less data.

1.1 Contributions

In this work we develop combinations of the fast(er) and smart(er) approaches in
the context of the learning-guided ENIGMA framework. After giving a summary
of ENIGMA in Sect. 2, Sect. 3 introduces our new methods.1

First, Sect. 3.1 describes a large increase in the speed of neural guidance in
ENIGMA. We add an efficient server-based evaluation that uses dedicated GPUs
instead of a CPU. When using four commodity GPU cards, this speeds up the
neural evaluation of the clauses about four times in real time.

Section 3.2 describes the second addition, motivated by fast weight-based
rejection filters used in systems such as E and Prover9. Such methods can be
replaced by training fast predictors that implement more intelligent pre-filtering.
In the context of ENIGMA, fast(er) is easy to implement by variously parame-
terized predictors based on gradient-boosted decision trees (GBDTs). Slow(er)
models are in those based on graph neural networks (GNNs).

Section 3.3 describes the third addition based on “judging the children by
their parents”, i.e., possibly rejecting an inference before it even produces a
clause. This grants the machine learning methods greater control of the proof
search and saves time by not evaluating all clauses by more expensive methods,
also providing a complementary view of the generated clauses.

1 The E and ENIGMA versions used in this paper can be found at https://github.
com/ai4reason/enigma-gpu-server.

https://github.com/ai4reason/enigma-gpu-server
https://github.com/ai4reason/enigma-gpu-server
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In Sect. 4 we describe the experimental setting and a large evaluation cor-
pus based on the Mizar Mathematical Library and its MPTP translation. We
also present our baseline methods there. Section 5 evaluates the new methods
and shows that even in relatively low time limits the methods provide good
performance improvements over the previous versions of ENIGMA.

2 Saturation Proving and Its Guidance by ENIGMA

State-of-the-art automated theorem provers (ATP), such as E, Prover9, and
Vampire [20], are based on the saturation loop paradigm and the given clause
algorithm [24]. The input problem, in first-order logic (FOF), is translated into a
refutationally equivalent set of clauses, and a search for contradiction is initiated.
The ATP maintains two sets of clauses: processed (initially empty) and unpro-
cessed (initially the input clauses). At each iteration, one unprocessed clause is
selected (given), and all of the possible inferences with all the processed clauses
are generated (typically using resolution, paramodulation, etc.), extending the
unprocessed clause set. The selected clause is then moved to the processed clause
set. Hence the invariant holds that all the mutual inferences among the processed
clauses have been computed.

The selection of the “right” given clause is known to be vital for the success of
the proof search. The ENIGMA system [3,7,10–12,14] applies various machine
learning methods for given clause selection, learning from a large number of
previous successful proof searches. The training data consists of clauses processed
during a proof search, labeling the clauses that appear in the discovered proof
as positive, and the other (thus unnecessary) processed clauses as negative.

The first ENIGMA [11] used fast linear classification [4] with hand-crafted
clause features based on symbol names, representing clauses by fixed-length
numeric vectors. Follow-up versions [3,7,12,14] introduced context-based clause
evaluation and fast dimensionality reduction by feature hashing, and employed
Gradient Boosting Decision Trees (GBDTs), implemented by the XGBoost and
LightGBM systems [2,18]), and Recursive Neural Networks (implemented in
PyTorch) as the underlying machine learning methods.

The latest version, ENIGMA Anonymous [10], abstracts from name-based
clause representations and provides the best results so far both with GBDTs
and Graph Neural Networks (GNNs) [1]. For GBDTs, clauses are again rep-
resented by fixed-length vectors based on syntax trees and anonymization is
achieved by replacing symbol names by their arities. Our GNN [23] represents
clauses by variable-length numeric tensors encapsulating syntax trees as graph
structures with symbol names omitted. ENIGMA-GNN evaluates new clauses
jointly in larger batches (queries) and with respect to a large number of already
selected clauses (context). The GNN predicts the collectively most useful sub-
set of the clauses in several rounds (layers) of message passing. This means that
approximative inference rounds done by the GNN are efficiently interleaved with
precise symbolic inference rounds done inside E. The GBDT and GNN versions
have so far been used separately and only with CPU-based evaluation. In this
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work, we add efficiently implemented GPU-based evaluation for the GNN and
start to use the two methods cooperatively.

3 Cooperative Filtering: Faster and Smarter

The set of generated clauses in saturation-style ATPs typically grows quadrati-
cally with the number of processed clauses. Each new given clause is combined
with all compatible previously processed clauses, followed by (possibly expen-
sive) evaluation of all newly generated clauses. In particular, the GNN predictors
typically incur a significant evaluation cost per clause. The quadratic growth
means that longer ENIGMA-GNN runs may get very slow.

To avoid large memory consumption and similar expensive evaluations in long
hint-based Prover9 runs (often taking several days) on the AIM problems [19],
Veroff has used weight-based filtering, discarding immediately clauses that reach
a certain weight limit. This often helps, but counterexamples are common, and
in practice, such schemes often need to be made more complicated.2 The three
methods that we introduce below are instead targeting this issue by using faster
learning-based filtering.

3.1 Fast GNN Evaluation Using a GPU Server

The main weakness of the GNN version of ENIGMA is its slow clause evaluation.
In our previous ENIGMA Anonymous experiments [10], we used GPUs for model
training, but during the proof search we evaluated the clauses on a single CPU
(per each E prover’s instance). This was partly to provide a fair comparison
with GBDTs which we also evaluate on a single CPU, but also to avoid large
start-up overheads when loading the neural models to a GPU and running with
low time limits. Here we instead develop a persistent multi-threaded GPU server
that evaluates clauses from multiple E prover runs using multiple GPUs.

The modification is as follows. During the proof search, after computing the
tensor representation of the newly generated clauses, an E Prover client sends
the tensors (in a JSON text format) over a network socket to a remote server.
The client then waits for the server response which provides the scores (GNN
evaluations) of the new clauses. This means that the clients are inactive for some
time and more of them are needed to saturate the CPUs on the machines (see
the detailed experimental discussion in Sect. 5.1). This is typically not a problem
due to many instances of E running with different premises and parameters
in hammering and CASC LTB scenarios, as well as in many iterations of the
learning/proving loop that attempt to solve harder and harder problems over a
large problem set.

The remote server, written in Python, is launched before the E clients, loading
the GNN model to the (multiple) GPUs in advance. Once the model is loaded

2 We thank Bob Veroff for explaining that this is done by gradually lowering the weight
limit inside a single longer Prover9 run, and by raising the initial weight limit and
slowing down the weight reduction scheme across multiple Prover9 runs.
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to the GPUs, the server accepts tensor queries on a designated port, evaluates
them on the GPUs, and sends the clause evaluations back to the clients. In
more detail, the server is parameterized by the number N (our default is 28) of
independent worker threads, the batch size b (our default is 8) and the waiting
time T (our default is 0.01 s). The client queries are accumulated in a shared
queue that the N worker threads process. Each worker operates in two steps.
First, it checks the queue, and if it contains less than b queries, it waits for T
seconds. Then it evaluates the first b queries on the queue, or less if there are not
enough of them available. Note that when the worker waits or evaluates queries,
other workers can process the queue.

The advantage is that the single GNN server amortizes the startup costs and
handles queries of many E prover clients and distributes them across multiple
GPUs. This means that much larger batches (containing clauses coming from
multiple clients) are typically loaded onto the GPUs, amortizing also the rela-
tively high cost of communication with the GPUs. This results in large real time
speed-ups over the CPU version, see Sect. 5.1. In our experiments, we run the
GPU server and the E clients on the same machine. Hence the network overhead
is low because the communication is done over a local loopback interface. In the
case of a remote connection, the architecture would benefit from data compres-
sion and/or binary data formats to decrease the network overhead. See Sect. 5.1
for the current average sizes of the data exchanged.

3.2 Best of Both Worlds: GNN with GBDT Filtering

While the GPU server evaluation provides a considerable speed up, the evalua-
tion of clauses on a GPU is still relatively costly compared to the GBDT clause
evaluation. Hence we develop the following combination of the two methods,
where the GBDT is used to pre-filter the clauses for the GNN.

In more detail, the set of clauses to be evaluated by the GNN is first evaluated
by a fast GBDT model.3 The GBDT model assigns a score between 0 and 1 to
each clause, and only the clauses with scores higher than a selected threshold are
sent to the GPU server for evaluation by the GNN. The clauses which are filtered
out by the GBDT model are assigned a very high weight inside E Prover, which
makes them unlikely to ever be selected for processing. This way we prevent E
from incorrectly reporting satisfiability when the good clauses run out.

Several requirements must be met for this filtering to be effective. First, the
GBDT filtering model must be small enough so that the evaluation is fast, yet
precise enough so that the more important clauses are not mistakenly filtered
out too often. Second, the score threshold must be properly fine-tuned, which
typically requires experimental grid search on smaller samples. Experiments with
a GBDT pre-filtering for a GNN are presented in Sect. 5.2.

3 This feature is implemented for the LightGBM models, which seem more easily
tunable for such tasks.
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3.3 Parental Guidance: Pruning the Given Clause Loop

We define (clausal) parental guidance as clause evaluation based on the features
of the parents of a clause rather than on the clause itself. Such fast rejection filters
often help: in nature, mating is typically highly restricted by various features of
parents (e.g., their age, appearance, finances, etc.). Similarly, it does not often
happen that clauses from very different parts of mathematics (e.g., differential
geometry and graph theory) need to be resolved.

Parental guidance can be seen as “just another filter” of the generated clauses,
but its motivation is more radical: The “good old”4 given clause loop [24] insists,
for completeness reasons, on performing all possible inferences between the pro-
cessed clauses and the given clause, typically leading to a quadratic growth of
the set of generated clauses. However, if we had perfect information about the
proof, this would be wasteful and could be replaced by just performing the infer-
ences needed for the proof in each given clause loop. With parental guidance, we
instead propose to prune the given clause loop in a soft way: a trained predic-
tor judges the likelihood of the particular inference being needed for the proof.
When an inference is deemed useless, the clause is still generated but immedi-
ately frozen so that it does not have to be evaluated by additional heuristics.

The parental guidance is implemented using GBDTs (our parental model),
and the filter is directly put inside E’s given clause loop as follows. When E selects
a given clause g, E uses term indexes to efficiently determine which clauses can
be combined with g to generate new clauses. After generating the clauses, E
performs simplifications, removes trivial clauses, evaluates the remaining clauses
with the clause evaluation functions, and inserts them into the unprocessed set.
The call to the parental model is executed after the clause generation and prior to
the simplifications. Clauses generated by paramodulation, which also implements
resolution in E, have two parents, and these are judged by the parental model.
Clauses whose parents are jointly scored below a chosen threshold are put into
the freezer set to avoid impairing the completeness of the proof search. Clauses
with good parents continue on to the unprocessed set. In case the unprocessed
set becomes empty, the frozen clauses are revived and treated as usual.

Note that a naive alternative way to implement parental guidance would be to
evaluate each given clause’s compatibility with all previously processed clauses.
This would, however, result in many unnecessary GBDT queries and evaluations.
Instead, our approach allows E’s indexing to find the typically much smaller set
of potential inferences and to limit the parental evaluation to them.5

There are various ways to represent the pair of parent clauses for the learning
of the parental model. In this work, we evaluate two methods:

4 The given clause loop is almost 50 years old as of 2021.
5 The efficiency boost obtained by using intelligent indexing is analogous to the boost

obtained by using our structure-aware GNN for context-based neural clause selection
(Sect. 2) rather than off-the-shelf Transformer models. The latter would quadratically
consider interactions of all symbols in the context and query clauses, decreasing the
evaluation speed by orders of magnitude, resulting in a very inefficient prover.



Fast and Slow Enigmas and Parental Guidance 179

1. Pfuse merges the feature vectors of the parent clauses into one vector, typically
by simply adding the feature counts6

2. Pcat concatenates the feature vectors of the parent clauses to preserve their
information in full.

An interesting future alternative is to include the difference of the parents’ fea-
ture vectors in addition to their union and concatenation, which allows the
GBDT to choose the most informative features.

4 Experimental Setting and Baselines

4.1 Evaluation Problems and Training Data

All our experiments are performed7 on a large benchmark of 57 880 problems8

originating from the Mizar Mathematical Library (MML) [16] exported to first-
order logic by MPTP [34]. We make use of our ongoing extensive evaluation of
many AI/TP methods over this corpus9 that measures the overall improvement
on this large dataset over the last similar evaluation done in [16]. In these exper-
iments we have significantly extended our previously published results [10].10

Proofs of 73.5% (more than 40k) Mizar problems have been so far found by
learning-guided ATPs, and numerous GBDT and GNN models for ATP guid-
ance have been trained.

In that experiment, all Mizar problems11 are split (in a 90-5-5% ratio) into
3 subsets: (1) 52k problems for training, (2) 2896 problems for development,
and (3) 2896 problems for final evaluation (holdout). We use this split here, and
additionally we use a random subset of 5792 of the training problems to speed
up the training of various experimental methods.

4.2 Baseline ENIGMA Models

Out of the 52k training problems, we were previously able to prove more than
36k problems, obtaining varied numbers of proofs for each problem (ranging
from 1 to hundreds). On these 36k problems we train our baseline GBDT and
GNN predictors. To balance the contribution of different problems during the
training of the predictors, we randomly choose at most 3 proofs for every proved
training problem. This yields a set of about 100k proofs, denoted further as the
large (training) set. When limited to the 5792 random subset of the training
problems, this yields 11 748 proofs, denoted further as the small training set.

6 In some special cases of features, we instead take their maximum/minimum.
7 On a server with 36 hyperthreading Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz

cores, 755 GB of memory, and 4 NVIDIA GeForce GTX 1080 Ti GPUs.
8 http://grid01.ciirc.cvut.cz/∼mptp/1147/MPTP2/problems small consist.tar.gz.
9 https://github.com/ai4reason/ATP Proofs.

10 The publication of this large evaluation is in preparation.
11 http://grid01.ciirc.cvut.cz/∼mptp/Mizar eval final split.

http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
https://github.com/ai4reason/ATP_Proofs
http://grid01.ciirc.cvut.cz/~mptp/Mizar_eval_final_split
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On the large set we train the first baseline predictor denoted by Dlarge. This
is a GBDT model (implemented by the LightGBM framework) trained using
the ENIGMA Anonymous clause representation (Sect. 2). The model consists of
150 decision trees of depth 40 with 2048 leaves. This model was selected as it
performed best in our previous experiments with standard GBDTs, being able to
prove 1377 of the holdout problems using a 5 s limit per problem. Additionally,
we train another model Dsmall only on the small set of training problems. The
model Dsmall is a LightGBM model with 150 trees of depth 30 and with 9728
leaves. The training of Dlarge took around 27 min and the training of Dsmall around
10 min, both on 30 CPUs. These are relatively low and practical times compared
to the training of neural networks.

We also train baseline GNN models on the same data, denoted Glarge and
Gsmall respectively. The training of Glarge for 45 epochs takes about 15 h on the
full set of 100k proofs on a high-end NVIDIA V100 GPU card.12 It would likely
take days when training with CPUs only. We choose for the ATP evaluation the
(39th) snapshot that achieves both the best loss (0.2063) and the best weighted
accuracy (0.9147) on 5% of the data that we do not use for training. The training
of Gsmall for 100 epochs takes about 4 h on the small set using the same GPU
card. We choose for the ATP evaluation the (56th) snapshot that achieves the
best loss (0.2988) on 5% of the data that we do not use for training. The weighted
accuracy on this set is 0.8685, which is also among the highest values.

In the evaluation we run all our baseline ENIGMA predictors in an equal
combination with a strong non-learning E strategy S. This means that the pro-
cessed clauses are selected in (equal) turns by ENIGMA and by S. This coop
mode has typically worked better than the solo mode, where only the ENIGMA
predictor is doing the clause selection.

4.3 Training of the Parental GBDT Models

The training data for the parental guidance models are generated by running E
using either Dlarge or Glarge on the 52k training problems with a 30 s time limit
and by printing the derivation of all clauses generated during the proof search.13

We considered the following two schemes to classify the good pairs of parents
and to generate the training data:

1. Pproof classifies parents of only the proof clauses as positive and all other
generated clauses as negative.

2. Pgiven classifies parents of all processed (selected) clauses as positive and the
unprocessed generated clauses as negative.

The rationale behind Pproof is that every non-proof clause should be pruned
if possible. The rationale behind Pgiven is that if an effective clause selection
strategy, such as Dlarge, predicted a clause to be useful, then it is probably worth

12 We use the same GNN hyper-parameters as in [10,23] with the exception of the
number of layers that we increase here to 10.

13 Using E’s option “--full-deriv”.
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generating. However, such data may be confusing as it includes clauses that did
not contribute to the proof.

If a pair of parents produces both positive and negative clauses, we consider
the pair positive in our implementation. However, this does not happen very
often. Based on a survey on the small set labeled according to Pproof

fuse , 73% of the
problems have no conflict. There are 1519 parents of both positive and negative
clauses, 53 359 are positive, and 6086 414 are negative. Under Pgiven

fuse , 9798 of
the parents are mixed, 854 778 are positive, and 5178 592 are negative. In either
case, the primary learning task is to identify and prune as many negative clauses
as possible without filtering a necessary proof clause by mistake.

One parameter to experimentally tune is the pos-neg ratio used in the GBDT
training: the ratio of positive and negative examples. The pos-neg ratio is 1:192
over the large Pproof

fuse data, which is more than ten times more than the ratio of the
training data for Dlarge and Glarge. Hence, reducing the pos-neg ratio by randomly
sampling negative examples could further boost the training performance.

The parental guidance models are trained using GBDTs. Trained models are
evaluated in combination with the GBDT or GNN clause evaluation heuristic
using either the Dlarge or Glarge model, see Sect. 5.3.

5 Evaluation of the New Methods

5.1 Speedup by Using a GPU Server

First we measure the speedup obtained by evaluating the ENIGMA GNN calls
on a separate GPU server. To avoid network latency and for a cleaner compar-
ison, we run both the clients (E/ENIGMA) and the GPU server on the same
machine equipped with four NVIDIA GeForce GTX 1080 GPU cards and 36
hyperthreading CPU cores. We configure the server to use all four GPU cards.
Its other important parameters are the number of worker threads and the batch
size. We experimentally set them to 28 and 8, and we use Glarge for all proof runs.

Comparison of the CPU-only and GPU-server versions is complicated by the
fact that the server-based GNN evaluations do not count towards the CPU time
taken by E, as reported by the operating system. Still, a comparison using the
CPU time is interesting and we include it, using 30 and 60 s CPU limits for the
CPU-only version, and a 30 s CPU limit for the client-server version.

Another way to compare the two is by using parallelization, i.e., running
many instances of E in parallel. In the client-server version the instances talk to
the GPU server simultaneously. We saturate the machine’s CPUs fully for both
versions, and run for approximately equal overall real time over the development
and holdout sets. This is roughly achieved by using 60 s time limit with 70-fold
parallelization for the CPU version, and 30 s time limit with 160-fold paralleliza-
tion for the client/server version. The CPU version then takes about 27.5 min
to finish on the 2896 problems, while the client-server takes about 34 min to
finish. Table 1 compares the number of solved problems on the development and
holdout sets. The GPU server improves the performance on the development
resp. holdout sets by 9.5% resp. 11.5%.
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We also compare the average number of generated clauses on the problems
that timed out in both versions. In the 60 s CPU version it is 16 835, while in
the 30 s client-server it is 63 305. This is a considerable speedup, achieved by
employing the additional custom hardware—our four GPU cards. The average
number of GNN queries in the 1358 problems that timed out in the 30 s GPU
server runs is 243.8, and on average the communication with the GPU server took
155 MB in a timed-out problem. A single GNN query took on average 637 kB.

Table 1. Comparison of the CPU-only GNN ENIGMA with the client-server version
using GPUs. All runs are evaluating Glarge on the whole development (D) and holdout
(H) datasets. The percentage improvement is computed over the 60 s CPU version that
corresponds more closely in real time to the client-server version. All runs use queries
of size 256 and contexts of size 768.

Set Model Method Time Solved

D Glarge CPU 30 1311

D Glarge CPU 60 1380

D Glarge GPU 30 1511 (+9.5%)

Set Model Method Time Solved

H Glarge CPU 30 1301

H Glarge CPU 60 1371

H Glarge GPU 30 1529 (+11.5%)

5.2 Evaluation of 2-Phase ENIGMA

Small GBDT and Small GNN: In the first experiment we use the GBDT
and GNN predictors Dsmall and Gsmall trained on the small subset of the training
dataset. We first do a grid search over the parameters on a smaller dataset of
300 development problems. Then we evaluate the best parameters on the devel-
opment and holdout sets and compare them with the standalone performance of
Gsmall, which is the stronger of the two baselines (Table 2). The best combined
methods are then evaluated also in 60 s. This gives a relatively fair real-time
comparison to the standalone GNN, because the reported CPU times do not
include the time taken by the GPU server.14

Our best combined method solves (in real time) 10.4%, resp. 9.0%, more
problems on the development, resp. holdout, set than the standalone GNN. This
is a significant improvement, which will likely get even more visible with higher
time limits, because of the quadratic growth of the set of generated clauses. The
performance improvement over the standalone GBDT model is even larger.

14 We have made this estimate based on a comparison of real and CPU times done on
a set of problems that time out in both methods.
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Table 2. Final evaluation of the best combination of Dsmall with Gsmall on the whole
development (D) and holdout (H) datasets.

Set Model Thresh. Time Query Context Solved

D Gsmall – 30 256 768 1251

D Dsmall – 30 – – 1011

D Dsmall+Gsmall 0.01 60 512 1024 1381 (+10.4%)

D Dsmall+Gsmall 0.03 60 512 1024 1371 (+9.6%)

D Dsmall+Gsmall 0.03 30 512 1024 1341 (+7.2%)

D Dsmall+Gsmall 0.01 30 512 1024 1339 (+7.0%)

H Gsmall – 30 256 768 1277

H Dsmall – 30 – – 1002

H Dsmall+Gsmall 0.01 60 512 1024 1392 (+9.0%)

H Dsmall+Gsmall 0.03 60 512 1024 1387 (+8.6%)

H Dsmall+Gsmall 0.01 30 512 1024 1361 (+6.6%)

H Dsmall+Gsmall 0.03 30 512 1024 1353 (+6.0%)

Large GBDT and Small GNN: In the next experiment, we want to see how
much the training of the less expensive model (GBDT) on more data helps. I.e.,
we replace Dsmall with Dlarge and keep Gsmall. This has practical applications in
real time, because cheaper ML predictors such as GBDTs are faster to train than
more expensive ones such as the GNN. We again first do a grid search over the
parameters on a small dataset of 300 development problems. Then we evaluate
the best models on the development and holdout sets and compare them with
the standalone performance of Dlarge and Gsmall (Table 3). The best combined
methods are then again evaluated also in 60 s, which makes it comparable in
real time to the standalone GNN model.

Table 3. Final evaluation of the best combination of Dlarge and Gsmall on the whole
development (D) and holdout (H) datasets.

Set Model Thresh. Time Query Context Solved

D Gsmall – 30 256 768 1251

D Dlarge – 30 – – 1397

D Dlarge+Gsmall 0.3 60 2048 768 1527 (+9.3%)

D Dlarge+Gsmall 0.3 30 2048 768 1496 (+7.1%)

H Gsmall – 30 256 768 1277

H Dlarge – 30 – – 1390

H Dlarge+Gsmall 0.3 60 2048 768 1494 (+7.5%)

H Dlarge+Gsmall 0.3 30 2048 768 1467 (+5.5%)
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Our best combined method solves (in CPU time) 7.1%, resp. 5.5%, more
problems on the development, resp. holdout, set than the standalone GBDT.
For the GNN, this is (in real time) 9.3% resp. 7.5%. These are smaller gains
than in the previous Dsmall + Gsmall scenario, most likely because the stronger
predictor dominates here. Also note that the large query (2048) used in our
strongest model is typically diminished a lot by the GBDT pre-filter, resulting
in average query sizes after the GBDT pre-filtering of 256–512.

Large GBDT and Large GNN: Finally, we evaluate the large setting, using
the GBDT and GNN predictors Dlarge and Glarge trained on the full training
dataset. Again, we first do a grid search over the parameters on the small set
of 300 development problems. Then we evaluate the best parameters on the
development and holdout sets, and we compare them with the standalone per-
formance of Dlarge and Glarge (Table 4). The improvements on the development,
resp. holdout, set is 9.1%, resp. 7.3%, in real time, and 6.9%, resp. 4.8%, when
using CPU time. The E auto-schedule solves in 30 s (CPU time) 1020 of the
holdout problems. Our strongest 2-phase method solves 1602 of these problems
in the same CPU time, i.e., 57.1% more problems.

Table 4. Final evaluation of the best combination of Dlarge and Glarge on the whole
development (D) and holdout (H) datasets.

Set Model Thresh. Time Query Context Solved

D Glarge – 30 256 768 1511

D Dlarge – 30 – – 1397

D Dlarge+Glarge 0.1 60 1024 768 1648 (+9.1%)

D Dlarge+Glarge 0.1 30 1024 768 1615 (+6.9%)

H Glarge – 30 256 768 1529

H Dlarge – 30 – – 1390

H Dlarge+Glarge 0.1 60 1024 768 1640 (+7.3%)

H Dlarge+Glarge 0.1 30 1024 768 1602 (+4.8%)

5.3 Evaluation of the Parental Guidance Combined with Dlarge

The parameters for parental guidance models are explored via a series of grid
searches to reduce the number of combinations. Initially, we only use Dlarge in con-
junction with the parental models. First, the training data classification schemes,
Pproof

fuse and Pgiven
fuse , are compared with a grid search over the pos-neg reduction

ratio. The best combination of reduction ratio and classification scheme is used
to perform a grid search over LightGBM parameters for Pfuse. Next, reduction
ratio and LightGBM parameter grid searches are done with the Pcat featuriza-
tion method data, starting with the best Pfuse parameters from the previous
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experiments. Every model is evaluated with the same set of nine parental filter-
ing thresholds {0.005, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The grid searches are
done over the 300 problem development set and run for 30 s. On this dataset,
Dlarge solves 159 problems.

Pos-Neg Reduction Ratio Tuning (Merge): The first grid search examines
the pos-neg reduction ratio denoted as ρ. Before the reduction, the average pos-
neg ratio for Pgiven

fuse is 1:9.2 and the average for Pproof
fuse is 1:191.8. We reduce

the pos-neg ratio to a given ρ by randomly sampling the negative examples on
a problem-specific basis. This means that the average pos-neg ratio over the
whole dataset is typically a bit smaller than ρ. For example, using ρ = 4 on the
Pproof

fuse results in an average of 3.95 times more negative than positive examples.

Both Pgiven
fuse and Pproof

fuse are tested using ρ ∈ {−, 1, 2, 4, 8, 16} where “−” denotes
using the full training dataset. We use the best LightGBM model parameters
discovered during prototyping of the parental guidance features: the parameters
are 50 trees of depth 13 with 1024 leaves.

Table 5 shows that the reduction ratio makes significant difference for the
Pproof

fuse data and almost none for Pgiven
fuse data, which is probably because the Pgiven

fuse

data are already reasonably balanced. Moreover, parental guidance seems to
perform better with Pproof

fuse data than Pgiven
fuse data, probably because mistakes of

Dlarge are included in the training data. In the following experiments, only the
Pproof classification scheme is used (so the prefix is dropped).

Table 5. The best threshold for each tested reduction ratio. The threshold of 0.03
was identical to 0.05 for all tested ratios with Pgiven

fuse , whereas there are no ties among

thresholds for Pproof
fuse .

ρgiven
fuse − 1 2 4 8 16

Threshold 0.05 0.05 0.05 0.05 0.05 0.05

Solved 161 161 161 161 161 160

ρproof
fuse − 1 2 4 8 16

Threshold 0.005 0.2 0.2 0.2 0.2 0.2

Solved 111 164 163 165 162 164

Table 6. The best threshold for each tested reduction ratio of Pcat.

ρcat − 1 2 4 8 16

Threshold 0.5 0.1 0.05 0.3 0.1 0.05

Solved 117 168 170 168 173 169

LightGBM Parameter Tuning (Merge): Next we perform the second grid
search over the LightGBM training hyper-parameters for Pfuse, fixing ρ = 4 as it
performed best. We try the following values for the three main hyper-parameters,
namely, for the number of trees in a model, the maximum number of tree leaves,
and the maximum tree depth:
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trees ∈ {50, 100, 150}
leaves ∈ {1024, 2048, 4096, 8192, 16384}
depth ∈ {13, 40, 60, 256}

The best model for Pfuse solves 171 problems and consists of 100 trees, with the
depth 40, and 8192 leaves, and a threshold of 0.05. Another eight models solve
169 problems. We also tested these parameters to find a better model for Pgiven

fuse ,
which solves 163 problems with ρ = 8 and a threshold of 0.1.

Pos-Neg Reduction Ratio Tuning (Concat): This grid search uses the
best LightGBM hyper-parameters for Pfuse to test the same reduction ratios and
thresholds for Pcat. Table 6 shows that Pcat outperforms Pfuse and ρ = 8 is the
best. Reducing the negatives is even more important here.

LightGBM Parameter Tuning (Concat): The grid search for the Pcat data
is done over the following hyper-parameters:

trees ∈ {50, 100, 150, 200}
leaves ∈ {1024, 2048, 4096, 8192, 16384, 32768}
depth ∈ {13, 40, 60, 256, 512}

The upper limits have increased compared to the Pfuse grid-search because one
of the best models had 150 trees of depth 256, placing it at the edge of the
grid. The best models solve 174–175 problems. These are evaluated on the full
development set (Table 7). The larger models seem to work best with a threshold
of 0.05 and the smaller models with a threshold of 0.2, which is likely because
they can be less precise. The full distribution of the results can be seen in Fig. 1.
The number of parameter configurations that outperform the baseline suggests
that parental guidance is an effective method.

Table 7. The best Pcat models with ρ = 8.

Trees Depth Leaves Threshold Solved (300) Solved (D)

200 60 4096 0.05 175 1557

200 512 4096 0.05 175 1561

200 256 4096 0.05 174 1558

150 512 1024 0.2 174 1568

150 256 1024 0.2 174 1556

100 60 8192 0.05 174 1571

100 40 2048 0.2 174 1544

100 40 2048 0.1 174 1544
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Table 8. Final 30 s evaluation on small trains (T), development (D), and holdout (H)
compared with Dlarge.

Model Threshold Solved (T) Solved (D) Solved (H)

Dlarge – 3269 1397 1390

Pgiven
fuse +Dlarge 0.05 3302 (+1.0%) 1411 (+1.0%) 1417 (+1.9%)

Pproof
fuse +Dlarge 0.1 3389 (+3.7%) 1489 (+6.6%) 1486 (+6.9%)

Pcat+Dlarge 0.05 3452 (+5.6%) 1571 (+12.4%) 1553 (+11.7%)

Finally we evaluate the best models on the small training, development, and
holdout sets, and we compare them with the standalone performance of Dlarge

(Table 8). Parental guidance achieves a significant improvement in performance
on all datasets, solving 11.7% more on the holdout set. It is interesting to note
that the improvement is greater on the development and holdout sets than on
the training set. For parental guidance it seems superior to classify only proof
clauses as positive examples. This is most likely due to LightGBM being con-
fused by processed clauses that did not contribute to any proof. The method
of concatenating the parent clause feature vectors (Pcat) seems far superior to
merging them (Pfuse). This is likely because merging the features is lossy and
the order of the parents matters when performing inferences.

The results indicate that pruning clauses prior to clause evaluation is helpful.
ENIGMA models tend to run best in equal combination with a strong E strat-
egy, but this means they have no control over 50% of the clauses selected for
processing. The ability to filter which clauses the strong E strategy can evaluate
and select may be part of the strength behind parental guidance.

5.4 Parental Guidance with Glarge and 3-Phase ENIGMAs

We also explore a limited number of the most useful hyper-parameters from
Sects. 5.3 and 5.2 to combine the parental filtering with ENIGMA-GNN using
Glarge and to create a 3-phase ENIGMA. We train a new LightGBM parental
filtering model on the Pcat data generated by running Glarge, using ρ = 8,
trees = 100, leaves = 8192, and depth = 60. The grid search on the 300 develop-
ment problems leads to the best threshold values of 0.005 and 0.01 when using
context = 768 and query = 256 for ENIGMA-GNN with Glarge.

The version with the 0.01 threshold then reaches so far the highest value of
1621 development problems in 30 s CPU time. This is 50 more than the best
parental result using Dlarge and 6 more than the best 2-phase result. On the
holdout set this setting yields 1623 problems, i.e., 70 more than the best Dlarge

parental result and 21 more than the best 2-phase result.
Finally, we explore 3-phase ENIGMAs, i.e., combinations of all the methods

developed in this work. This means that we first use the parental guidance
filtering, followed by the 2-phase evaluation which in turn uses the GPU server.
This implies a higher evaluation cost, since both the parental and the first-stage
LightGBM models are loaded on startup and are used to filter the clauses.



188 Z. A. Goertzel et al.

Fig. 1. The number of settings (and runs) corresponding to each number of solutions
for the Pcat grid search. The black bar is 159, the number of problems solved by Dlarge.
Only 154 (20%) of the runs interfere with Dlarge’s performance and solve fewer problems.
These runs largely consist of the thresholds, {0.3, 0.4, 0.5}, but the only parameter
whose majority of runs score below Dlarge is a threshold of 0.5. The outliers tend to be
larger models.

We only tune the parental threshold and context and query values, keeping
the 2-phase threshold fixed at 0.1. The best result is again obtained by setting
the parental threshold to 0.01, context = 768 and query = 256. This solves 1631
resp. 1632 of the development resp. holdout problems in 30 s CPU time. This is
our ultimate result, which is exactly 60% higher than the 1020 problems solved
by E’s auto-schedule in 30 s CPU time. It is also 17.4% higher than the best
ENIGMA result prior to this work (1390 by standalone Dlarge).

6 Conclusion and Examples

We have described several additions to the ENIGMA system. The new methods
combine fast(er) and smart(er) clause evaluation using ENIGMA’s parameter-
izable learning-based setting. The GPU server allows much faster runs of the
neurally-guided ENIGMA, improving its real-time performance by about 10%.
The parental guidance allows one to train clause evaluation differently from stan-
dard ENIGMA, providing an improvement of 11.7% on the holdout set. Both
when training on small and on large datasets, the 2-phase methods provide good
improvements on the holdout sets (9% and 7.3%) over the strongest standalone
methods. The methods are adjustable and they will likely lead to even higher
improvements in longer runtimes, due to the typically quadratic growth of the
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set of generated clauses in saturation-style ATPs. Our strongest 3-phase method
improves E’s auto-schedule on the holdout set by 60% in 30 s and our best prior
ENIGMA result by 17.4%.

Several examples of the new proofs produced only by the methods developed
here are available on our project’s web page. Theorem INTEGR13:2715 about
the differentiation of −cot(ln(x)) needed 3904 nontrivial given clause loops and
38826 nontrivial generated clauses, taking only 18 s with the 2-phase ENIGMA.
This can be compared to the previous related theorem FDIFF 7:3616 (differenti-
ation of exp(cos(x))) done in the old setting, taking 28.4 s to do only 1284 non-
trivial given clause loops and 13287 nontrivial generated clauses. Other examples
include a 486-long proof17 of a theorem about integrals done only in 41 s with the
2-phase ENIGMA evaluating 100k clauses, or a 259-long computational proof18

about Fermat primes found in 11 s while evaluating 52k clauses. Such proofs
are found despite hundreds of redundant axioms, by using new combinations of
faster and smarter trained ENIGMAs that efficiently guide the search.
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27. Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms.
In: Gottlob et al. [8], pp. 263–274

28. Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 477–
483. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 37

29. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 49
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1 Introduction

Formal verification in interactive theorem provers (ITPs) increasingly benefits from general
proof automation in the form of hammers [7] and guided tactical provers [4, 13, 36]. In
particular, the Sledgehammer system [8] for Isabelle is today perhaps the most widely
used strong general proof automation system in ITP. In the recent years, machine learning
and related AI methods for proof automation have also been significantly developed [48].
Such methods are relevant for hammers in at least three ways: (i) learning-based premise
selection [2, 3, 12,37,39,40] usually improves the heuristic filters used by the hammers, (ii)
learning-based internal guidance of the automated theorem provers (ATPs) used for the
heavy lifting in the hammers usually improves on heuristic guidance of ATPs [16,22,24,26,
27, 29, 41, 49], and (iii) targeted theorem proving strategies developed by automated strategy
invention systems often improve on manually designed ATP strategies [20,23,42,47].
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Most recent versions of such AI/TP methods have been developed mainly on a fixed
Mizar/MPTP corpus [28], to allow easy comparisons with previously developed methods.
In particular, there the strongest 3-phase single-strategy version of the ENIGMA system
(based on E [43, 44]) proves 56.35% of the holdout (test) toplevel theorems in 30s when
using human-selected premises [16]. In higher time limits and by combining human and
learning-based premise selection, ENIGMA and Vampire [32] today prove 75% of the toplevel
Mizar theorems.1 These are good reasons for transferring the methods to other ITP hammers.

A direct motivation for developing such AI/TP methods for Isabelle was a recent request
from the Sledgehammer developers for an optimized version of ENIGMA for their GRUNGE-
style [9] evaluation of multiple ATP systems and formats [11]. While it was not possible to
do the work described in this paper on a two-week’s notice, it prompted us to start exporting
and analyzing the Isabelle datasets and developing suitable methods and systems for them.

1.1 Contributions
We significantly improve the performance of the E automated theorem prover on the Isabelle
Sledgehammer problems by combining learning and theorem proving in several ways. First,
in Section 2 we extract two large datasets of untyped first-order (FOF) and many-sorted
first-order (TFF, TF0) Isabelle Sledgehammer problems, using the Isabelle tool Mirabelle.
This results in almost 300000 aligned problems in each of the exports, spanning in total
1902 Isabelle theory files and covering a large number of topics in mathematics and formal
verification. To our knowledge, these are so far the largest corpora of Isabelle Sledgehammer
problems available today for training and evaluation of AI/TP systems. Section 2.1 analyzes
the corpora, showing that they significantly differ from other large AI/TP datasets such as
the Mizar/MPTP toplevel theorems [28] and the HOL4/GRUNGE toplevel theorems [9].

In Section 3, we find optimized E strategies and parameters for the corpora, which
already improve on standard E on the problems. They are suitable also for combinations
with the ENIGMA guidance, which is introduced in Section 4. We also describe there
several extensions to ENIGMA that were developed to handle the Isabelle untyped and typed
problems. Section 5 discusses the neural premise selection that we use and its extensions
for the typed Isabelle setting. Section 6 evaluates the methods in several loops interleaving
proving and learning from the proofs. Our ultimate performance results are: (i) improving in
15s the original E auto-schedule with the MePo filter by 25.3%, when using a single ENIGMA
strategy with the best neural predictor, (ii) considerably improving over all other ATPs and
SMTs by a single ENIGMA strategy combined with the best neural predictor, (iii) improving
the performance of all other systems by using the neural predictor, and (iv) outperforming
with ENIGMA all other ATPs and SMTs even when they are combined with our predictor.

2 Isabelle Problems

To train and evaluate the Isabelle ENIGMA, we need a dataset of Sledgehammer problems,
which correspond to the proof obligations that users encounter when using Isabelle as an
interactive prover. We decided to focus on all proof-intermediate goals visible to the users.
This task has been tried as early as in the first versions of the MPTP system [46]. In Isabelle,
it has been known as the “Judgement Day” evaluation, based on the paper with that title [8].
We have used the Isabelle/Mirabelle infrastructure to export all the problems encountered

1 https://github.com/ai4reason/ATP_Proofs/blob/master/75percent_announce.md
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when building 179 Isabelle sessions. These sessions originate from 75 sessions distributed
with Isabelle 2021-1, 80 selected sessions from the AFP [6], as well as 24 sessions distributed
as part of IsaFoR [45]. All the sessions include in total 1902 Isabelle theory files. The sessions
with most problems can be categorized as Analysis, Algebra, Java Semantics, Category
Theory, Protocols, Term Rewriting, and Probability Theory with the largest 26 sessions
listed in Table 1.

Table 1 The largest included sessions and their respective problem numbers.

HOL-Nonstandard-Analysis 1699 Groebner-Macaulay 4227
Category2 1776 HOL-ODE-Numerics 4422
Poincare-Bendixson 1983 HOL-MicroJava 5183
HOL-Number-Theory 2071 HOL-Auth 5304
MonoidalCategory 2238 HOL-Complex-Analysis 5489
HOL-Cardinals 2268 Groebner-Bases 5710
Core-DOM 2280 HOL-Computational-Algebra 6280
HOL-IMP 2324 Jordan-Normal-Form 6786
HOL-Data-Structures 2353 Category3 6818
Dirichlet-Series 2435 HOL-Probability 6954
Slicing 2517 HOL-Decision-Procs 7103
HOLCF 2524 CR 7341
Formal-SSA 2899 HOL-Bali 7804
HOL-UNITY 2938 HOL 7818
HOL-Homology 3022 Goedel-HFSet-Semanticless 8697
HOL-ex 3047 HOL-Algebra 9674
CTRS 3328 HRB-Slicing 10052
HOL-Hoare-Parallel 3733 Jinja 11520
Signature-Groebner 3762 HOL-Library 15627
Valuation 3786 Bicategory 16965
Ordinary-Differential-Equations 3885 HOL-Nominal-Examples 17145
Smith-Normal-Form 4045 Group-Ring-Module 19718
Differential-Dynamic-Logic 4158 HOL-Analysis 44172

The Sledgehammer export allows multiple encodings of types, lambdas, and other op-
tions [5]. Since we are interested in the performance of learning-based first-order ATPs, we
exported the problems in two first-order formats: TFF (also called TF0), i.e., many-sorted
first-order logic, and FOF, i.e. untyped first-order logic. For all problems we pre-selected 512
relevant premises using the heuristic MePo filter [35] before the translation. This slightly
overshoots the best performance (256 premises) obtained by most of the top systems2 on the
FOF and TFF problems in the recent Sledgehammer evaluation [11]. We use 512 premises
because the heuristic MePo filter is known to be weaker than state-of-the-art selection systems
(possibly pruning out some good premises too early), and also because the 512-premise results
of the best systems in [11] are nearly identical3 to the 256-premise results.4

2 Vampire is an exception: in [11] it is best with 512 premises, likely due to its optimized SInE filter [19].
3 In particular, CVC5 - the winner in [11] - is only 3.7% (2626/2533) stronger with 256 premises.
4 We could have used also 1024 premises, however already with 512 premises the datasets are becoming

very large, making also the training of the ML systems technically challenging.
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For the other parameters, for E and Vampire we used the ones corresponding to the slice
selected when no-slicing is used for a particular prover. Additionally, when extracting the
FOF problems, we used the parameters used for such a slice in first-order E in the previous
Isabelle version. These parameters have been optimized by the Isabelle/Sledgehammer
developers based on experiments described in previous papers, e.g., [5]. To ease comparison
with [11], we use the polymorphic g?? [11] encoding together with lambda-lifting [21] for
FOF and the native monomorphic encoding with lambda-lifting for TFF0.

Since the Mirabelle export has occasional problems with some theories and encodings
(theory compilation fails or does not terminate with a particular export), we initially get
different numbers of problems for the FOF (293587) and TFF (386619) exports. To align
the two exports, we remove the non-overlapping problems, thus obtaining 276363 problems
both in FOF and TFF that correspond to each other. As usual in machine learning, we
then divide this dataset into the training, development (validation) and holdout (ultimate
testing) parts. This is done by randomly shuffling the list of the problems and dividing the
shuffled list 90:5:5. This means that we have 248727 problems to train our systems on, 13818
development problems for controlling the hyperparameters of the learning and building the
best portfolios, and 13818 holdout problems on which the trained systems are ultimately
evaluated. We also sometimes use a 13818-big subset of the training set (small trains). The
total size of the FOF dataset is about 50G compressed by gzip to 5.4G, while for the TFF
dataset it is about 90G, compressed by gzip to 7.7G. The complete datasets are publicly
released at our accompanying repository.5

The translation of the Isabelle/HOL problems to TPTP does not preserve the names
across the problems. The naming inconsistency can be as simple as the naturals being
given the constant name nat or nat2 in an encoded TPTP problem (this one happens
because the projection int-to-nat is also called nat in Isabelle), depending on the order of
defined constants in a given problem. Additionally, Isabelle mangles names as part of the
encoding. For example in the basic theorem List.distinct, which states that an empty
list is not equal to an applied list constructor, an instance of the empty list can look like
nil_Pr1308055047at_nat for an empty list of products of pairs of naturals. This motivates
our use of anonymous methods for ENIGMA and premise selection in this work (Section 4,5).

2.1 Differences to Related ITP/ATP Datasets
The FOF and TFF Isabelle exports we use are intended to be sound but generally sacrifice
completeness to optimize ATP performance. The possible sources of incompleteness include:

The heuristic premise filter [35] pre-selecting only a fixed number of premises that are
generally not guaranteed to justify the conjecture in Isabelle.
In the encodings, polymorphic types (such as ’a list) are heuristically pre-instantiated
(monomorphized) by ground types. This is an established optimization going back at least
to Harrison’s implementation of the MESON tactic [18] in HOL Light [17], which can be
seen as a particular kind of an abstraction step when reasoning in large theories. Without
a full abstraction-refinement loop [34], this is an obvious source of incompleteness, in a
similar way as premise selection with a fixed premise limit.
Limited treatment of higher-order constructs such as lambda abstraction, typically not
fully encoded in the FOF and TFF problems. The encodings employ lambda-lifting,
which is usually improving the ATP performance in practice, but is generally incomplete.

5 https://github.com/ai4reason/isa_enigma_paper
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When developing new strategies, ATPs and premise selection methods, such optimizations
may be premature, having different beneficial or adverse effects on the methods. In particular,
in the experiments conducted by us, we detect small amount of incompleteness already with
the baseline systems. For example, CVC5 reports 256 problems in the whole TFF dataset to
be countersatisfiable. On the other hand, once a proof is found, it is typically comparatively
easy to replay from the minimized set of premises by any ATP.

In this sense, the monomorphized Isabelle datasets considerably differ from other datasets
used for large AI/TP experiments such as the toplevel theorems in the Mizar and HOL 4
libraries [9]. There, replaying the minimized proofs may still be quite hard for ATPs, and the
exports are typically striving for completeness, fully delegating various abstraction-refinement
methods such as monomorphization and premise selection to the AI/TP systems that may
implement more complicated procedures for them.

We measure this in more detail by comparing the clausified premise-minimized ATP
problems solved by Vampire and E on the Isabelle FOF dataset (88888 problems) and the
Mizar dataset (113332 problems) using several metrics computed in Table 2. The table

Table 2 Statistics of the Isabelle and Mizar clausified premise-minimized FOF problems solvable
by E and Vampire. AC is the average number of clauses per problem, VC is the average number of
clauses with variables per problem, EC is that for clauses with equality, iProver-10s is the number
of problems solved by iProver limited to inst-gen calculus in 10s, and iProver-10s ratio is the ratio of
that to the total number of problems.

Dataset Problems AC VC EC iProver-10s iProver-10s ratio

Isabelle FOF 88888 10.15 4.51 2.63 83015 0.93
Mizar 113332 35.55 23.16 10.31 65679 0.58

Ratio Miz/Isa 3.50 5.14 3.92 0.62

shows that the number of clauses per minimized problem is 3.5 times higher in Mizar. This
may indicate the difference between the (generally harder) toplevel ITP problems and the
intermediate goals. The most interesting difference is that about two thirds of the clauses
in the Mizar problems contain variables, while in Isabelle this is only 44.4% of the clauses.
Combined with the much higher number of clauses in the Mizar problems, this leads to 5.14
times more clauses with variables in the Mizar problems. For clauses with equality, this ratio
is 3.92, i.e., also slightly higher than the ratio of the clauses. This means that the Isabelle
problems are (after minimization) much more ground and non-equational, and thus likely
much more amenable to instantiation-based methods than the Mizar problems. We confirm
this by running iProver [31] on both sets of minimized problems using only its Inst-Gen
calculus. In Mizar it solves 58% of the problems while in Isabelle 93%, i.e., 60% more.

3 Strategy Optimization for E and ENIGMA

ATP strategies play a critical role when proving theorems. Their targeted invention, op-
timization, and construction of their portfolios (schedules) may significantly improve the
performance of the ATPs in different domains. We have also found that some ATP strategies
behave better in combination with learning-based guidance of the ATPs than others, and that
it often seems preferable to use a single strategy to produce the training data for ENIGMA.6

6 The use of single vs multiple strategies in combination with ENIGMA is not yet strongly experimentally
explored. See, e.g., [15] for a recent related analysis.
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Our initial goals are thus to (i) find a strong set of E strategies for the datasets, and
in particular, to (ii) find a single strong E strategy that behaves well in combination with
the ENIGMA guidance. We start exploring this on the FOF dataset, evaluating our 550
BliStr/Tune [23, 47] strategies previously invented on the Mizar, Sledgehammer, HOL, AIM
and TPTP problems. This is done in two rounds. In the first round, we run all the 553
strategies on a smaller sample of 500 randomly selected FOF problems solvable by Vampire’s
CASC mode in 30 seconds.7 After that, the 76 most performing and orthogonal strategies
from the first run are evaluated on a bigger sample of 2000 Vampire-solvable problems. This
yields the following top 2 strategies in the greedy cover:

protokoll_X----_auto_sine13 :995
protocol_eprover_f171197f65f27d1ba69648a20c844832c84a5dd7 :198

The first strategy uses E’s auto-mode with a strong SInE filter, selecting up to 100
premises. Unlike in the Mizar problems, the hypos parameter of SInE is used here, giving the
same importance to the local assumptions (TPTP role hypothesis) as to the conjecture. We
have confirmed that this performs better than SInE without the parameter on the problems.
This leads us to construct the ENIGMA features differently for Isabelle problems in Section 4.

The second strategy in the greedy cover (f1711) is the one working best in the
Mizar/MPTP setting, where it also performs well when combined with the ENIGMA
guidance. It is however significantly weaker (921 vs 995 solved problems) than the first
auto-mode strategy. We conjecture that this is because it does not use SInE. Adding a strong
SInE filter (with the “hypos” parameter) indeed improves its performance to 1022 problems,
making it the strongest E strategy on the problems. Since it is also well behaved with the
ENIGMA guidance, we use it in all further experiments. The base strategy (f1711) without
any SInE filter will be denoted as Bbase, while the version with the SInE as Bsine. With the
clausification changes explained next we obtain two more strategies Bbase3 and Bsine3.

3.1 Clausification
Clausification can have a large influence on the operation and performance of ATPs. In a
setting with many complicated formulas, naive clausification can lead to exponential blow-ups.
State-of-the-art ATPs counter that by introducing definitions for subformulas. E’s clausifier
uses heuristic counting of the occurrences of each subformula to decide when to introduce
a new definition. The default factor (called definitional-cnf, dc for short) for this used
by E has been experimentally optimized to be 24 many years ago on the TPTP benchmark.
This may be however suboptimal for newer large-theory corpora, especially in encodings with
type guards. Also, a possible explanation for the relatively large improvement of E by the
aggressive SInE filter is that the clausification explodes quite frequently on the unfiltered
problems. We investigate this in several ways.

First, we simply try to clausify all FOF problems with the default E options and a timeout
of 60s. This results in a gzipped total size of 21G, i.e. four times the size of the gzipped FOF
problems. This is however without 28212 (10% of all) problems that fail to get clausified
within 60s. This is a lot, because ITP hammers typically give the ATPs a timeout of 15-30s
to solve the whole problem.

7 We use here Vampire as a quick pre-filter for targeting the solvable problems by E strategies because in
our preliminary experiments Vampire performed significantly better than E.
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Table 3 Influence of the dc values on the clausification timeouts and size of the clausal problems.

definitional-cnf (dc) 1 2 3 4 24

clausifications timed out in 60s (out of 1000) 0 0 0 51 125
gzipped size of all clausified problems (MB) 36 47 163 120 77

Table 4 15s Bbase runs with/out SInE with different dc values on 1000 sample problems.

definitional-cnf (dc) 1 2 3 4 24

problems solved with SInE 242 268 271 266 263
problems solved without SInE 219 251 243 241 218

This leads us to an experiment with smaller values for the definitional-cnf (dc) parameter
on a sample of 1000 training problems. We use a 60s timeout for the clausification, measure
the total size of gzipped cnfs, and the number of files where the clausification timed out. The
results are shown in Table 3. The dc value of 3 is the last one where there are no timeouts,
but it already gives a 4-time blowup over dc = 2.

Both more aggressive premise selection and more aggressive introduction of new definitions
can be used to counter the clausification blowup on the Isabelle problems. Since the SInE
filter is only heuristic and usually inferior to trained premise selection, we prefer more
aggressive use of new definitions. To measure how much the two methods interact, we
evaluate our chosen strategy Bbase with and without SInE and with various dc values in 15s
on our sample of 1000 problems. The results are summarized in Table 4. They confirm that
the two methods interact a lot. Setting dc = 2 replaces a lot of the improvement obtained
by SInE with the default dc = 24. Since the SInE and non-SInE versions peak at dc = 3
and dc = 2 respectively, we experiment with these values of dc in our further experiments.
We denote Bbase3 and Bsine3 the strategies obtained from Bbase and Bsine by setting dc = 3.

4 ENIGMA for Isabelle

State-of-the-art automated theorem provers (ATP), such as E, Prover9, and Vampire [32],
are based on the saturation loop paradigm and the given clause algorithm [38]. The input
problem, in first-order logic (FOF), is translated into a refutationally equivalent set of
clauses, and a search for contradiction is initiated. The ATP maintains two sets of clauses:
processed (initially empty) and unprocessed (initially the input clauses). At each iteration,
one unprocessed clause is selected (given), and all of the possible inferences with all the
processed clauses are generated (typically using resolution, paramodulation, etc.), extending
the unprocessed clause set. The selected clause is then moved to the processed clause set.
Hence the invariant holds that all inferences among processed clauses have been computed.

The selection of the “right” given clause is known to be vital for the success of the proof
search. The first ENIGMA systems [14, 24–26] successfully implemented various ways of
machine learning guidance for the clause selection based on gradient boosting decision trees
(GBDT). Next generation ENIGMA [10,22] abstracts from symbol names with anonymization
methods and additionally employs graph neural network models (GNN) for clause selection.
The latest ENIGMA [16] additionally implements clause filtering of generated clauses (parental
guidance), and overcomes a slower speed of GNN models with amortizing evaluation server.
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4.1 Model Training and Given Clause Guidance
The training of ENIGMA models is usually done in a training/evaluation loop. This general
approach applies both to clause guidance and when filtering the generated clauses.

1. The training data T are gathered from a number of previous successful proof searches.
From each proof search, the training data consists of clauses processed during the proof
search, labeled by flags positive or negative depending on whether they appear in the
final proof. These labeled clauses are translated to a suitable format for the underlying
selection model (vectors for GBDT models, and tensors for GNNs).

2. Based on data T , a GBDT (or a GNN model) M is trained. This model is capable of
recognizing positive clauses from negatives by assigning a score to an arbitrary clause.

3. The model M can be combined with an ordinary E’s strategy S in a cooperative way,
yielding the ENIGMA strategy S ⊕ M. The ENIGMA strategy S ⊕ M uses the model
M to guide the given clause selection inside E, and it inherits other behaviour from S .
In the cooperative setting, about 50% of the given clauses are selected as suggested by
M, while the remaining clauses are selected by the standard clause selection mechanism
inherited from S . Thus, ENIGMA compensates for a possible mistaken predictions of M.

4. With new training data from new strategies, this process can be iterated.

4.2 Parental Guidance and Generated Clause Filtering
ENIGMA models are applied within E in two capacities: (1) given clause selection and (2)
parental guidance for filtering of the generated clauses. Clausal parental guidance evaluates
a new clause C based only on the features of the parents of C. Parental guidance thus serves
as a fast rejection filter: generated clauses with scores below a chosen threshold are put
into the freezer set and are only revived if E runs out of unprocessed clauses. Furthermore,
such frozen clauses are never evaluated by other (possibly more expensive) heuristics. This
mechanism thus effectively (and in a complete way) curbs the typically quadratic growth
of the set of generated clauses. Full details can be found in previous work [16] where it
was found that the the parental guidance is most effective when the concatenated feature
vectors of the parents are used as an input to the machine learning model. The data for
training parental guidance is generated by classifying parents of proof clauses as positive and
all other generated clauses during a proof search as negative. To balance the data, the ratio
of negative to positive examples is a valuable hyperparameter.

4.3 Experiments with ENIGMA
ENIGMA was so far used only with first-order logic (FOF) data in the TPTP format. In
this work, we extend the usability of ENIGMA models also to simply typed first-order
formulas (TFF) of the TPTP format. In the case of GBDTs models, we simply forget the
type annotations. Because GBDT ENIGMA models perform symbol name anonymization by
replacing symbol names by their arities, all the simple type names would get translated to
the same name anyway. In the case of GNN models, we embed the type information in the
clause graphs by giving nodes representing variables of the same type by the same trained
numerical representation (see Section 5).

ENIGMA models embed information about the conjecture being proved inside clause vec-
tors/tensors. In this way, ENIGMA provides conjecture-specific suggestions. The conjectures
are marked in the input format with the TPTP role conjecture. In these experiments, we
additionally treat clauses with the TPTP role hypothesis just like conjectures. This helps
to further differentiate among various Isabelle problems.
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In this work, we use ENIGMA GBDT models for clause guidance inside E (for given
clause selection and filtering of generated clauses), and we use the GNN models only for the
task of premise selection. Section 5 describes how the GNN models are used for premise
selection. The experimental evaluation described in Section 6 presents the results of training
ENIGMA models for clause selection and parental guidance.

5 Premise Selection for Isabelle via Graph Neural Networks

A number of learning-based premise selection methods have been developed for large ITP
corpora and hammers in the last two decades. See [2, 7, 33, 48] for their overviews. In a
large evaluation done over the Mizar corpus,8 the strongest method turned out to be a
property-invariant graph neural network (GNN) based on the architecture previously used in
several settings [22, 37, 50]. We use this algorithm also for the Sledgehammer problems here.

GNNs, and in particular this architecture preserve several invariants of theorem proving
data, such as insensitivity to clause ordering and literal ordering. The inference (decisions)
about which premises are relevant for a conjecture are based on several rounds of neural
message passing in a special graph constructed from the clauses corresponding to the formulas.
The property invariant architecture also strives to be fully anonymous, in the sense that
it is invariant to all symbol names: the representations of symbols are only based on their
connectivity with other elements in the formula. It also has a specific encoding for argument
order that allows the network to partially preserve this information and it has a special
handling of negation: terms of opposite polarity are related by the corresponding operation
∗ − 1 in the float based representation of the network.

This set of properties allows the architecture to perform well in various theorem-proving
settings. On our Isabelle datasets, the symbol and name anonymity of the GNN is particularly
important. As mentioned in Section 2, the symbol names and the formula names are not used
consistently here, which would make the use of non-anonymous premise selection methods
difficult. In this work, a 10-layer GNN was used. The sizes of the first layer embeddings were
4, 1, 4 for the term, symbol and clause nodes respectively. For the rest of the layers, the
term, symbol and clause nodes were represented by vectors of size 32, 64 and 32 respectively.
The last, non-message passing layer that has the task of predicting a probability for each
premise had 128 neurons.

The GNN was newly modified to parse and make use of the typed TFF input. To
take advantage of the type information, we train separate embeddings for all types (2539
in Section 6.4) that occur more than 10.000 times in the data. The GNN uses this type
embedding when reading in a variable, and the type embedding can contain information
about the type of the variable. Here, for simplicity, we chose to directly learn the embeddings
(initial GNN values before the start of the message passing) for the typed variable nodes.
This however does not fully preserve the anonymity of the symbols in the GNN, which is
one the core design principles of this neural architecture. Adding instead an extra node in
the GNN for each type would allow us to preserve the anonymity also for types. In this
setting the GNN would learn to understand the types based only on their use in the current
problem, possibly thus generalizing better. This approach is however more complicated than
our current solution and is left as future work here.

The Isabelle problems are big and their clausification by our GNN parser may result in
graphs with many clauses, even when we heuristically pre-reduce the initial set of formulas
proposed by the MePo filter. This poses problems with the GPU memory (32 GB on our
machines) both during training the GNN and when using it for predicting the relevant clauses.

8 https://github.com/ai4reason/ATP_Proofs
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To counter that, we have introduced several limits related to the number of nodes in the
clause graphs that allow us to skip very large clausified problems. The limit that we currently
use skips any problem that contains more than 50000 term nodes after clausification (this
corresponds roughly to the 95th percentile for the amount of term nodes in the problems).

6 Evaluation

We experiment with four variants of Isabelle problems. The first two are (1) FOF and (2)
TFF without premise selection. Then there are two versions result from the GNN premise
selector applied to the TFF data: (3) PRE1 and (4) PRE2.

First, Section 6.1 describes experiments with given clause guidance, and Section 6.2
describes experiments with adding parental guidance. These two experiments were partially
used to obtain the training data for premise selection described in Section 6.3 and Section 6.4.

6.1 Evaluation of ENIGMA Given Clause Guidance
We perform three separate evaluations of the GBDT (LightGBM [30]) ENIGMA clause
selection models on three different presentations of Isabelle problems. (1) On the FOF
translation (without premise selection) in Section 6.1.1, (2) on the TFF translation (without
premise selection) in Section 6.1.2, and (3) on the TFF translation with GNN premise
selection in Section 6.1.3. The second premise selection dataset PRE2 is not used here.

We experiment with combining training samples from different strategies. Different
E strategies might use different term orderings affecting the clause normalization. Since
the ENIGMA models are syntax based, we only combine training samples from compatible
strategies, which perform equivalent clause normalization. At this point, we consider strategies
to be compatible when they use the same term ordering and literal selection function.

6.1.1 Experiment FOF: First-Order Translation
Setup. First, we experiment with the FOF translations of Isabelle problems without any
premise selection method applied. E supports sine filters to reduce the number of axioms of
large problems. Since the problems have no premise selection applied, we use two versions of
the E strategy to obtain training problems: Bsine uses a manually selected sine filter9 and
Bbase does not use a sine filter. We perform three training/evaluation loops as follows.
1. Initial training data T0: Evaluation of Bbase and Bsine on the training problems.
2. Train the model L on the current data T .
3. Evaluate Bbase ⊕ L and Bsine ⊕ L on the training problems.
4. Extend data T and continue with step 2.
We combine the two base strategies with model L in a cooperative way. With model L we
obtain two strategies with ENIGMA guidance, that is, Bbase ⊕ L and Bsine ⊕ L.

Learning Statistics. Table 5 presents training data statistics and models evaluation for the
three training/evaluation loops performed in this FOF experiments. There is:

training: The column probs is the number of training problems in the training data,
while the column proofs is the number of different successful proof runs, where we can
have multiple proofs for a single problem. The column rows signifies the number of
vectors in the training data, each vector corresponding to one clause in the proofs. The
column filesize is the file size of the compressed training samples.

9 –sine=’GSinE(CountFormulas,hypos,1.1„03,20000,1.0)’
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Table 5 Experiment FOF: Learning statistics (Section 6.1.1).

notation training accuracy[%] model

l trains model probs proofs rows filesize acc pos neg time filesize

0 T FOF
0 LFOF

0 70K 114K 8M 1.1G 92.8 89.8 93.4 0:12 54.8M

1 T FOF
1 LFOF

1 81K 255K 16M 2.3G 87.8 82.1 89.0 0:20 54.9M

2 T FOF
2 LFOF

2 84K 400K 23M 3.2G 85.6 81.9 86.5 0:31 55.1M

Table 6 Experiment FOF: ATP performance (Section 6.1.1).

strategy trains solved by devels solved by
l base sine base sine both total base sine both total

- Sbase Ssize 56 921 65 124 75 080 75 080 3114 3567 4084 4084
0 S⋆ ⊕ LFOF

0 77 084 72 869 85 903 86 661 3888 3886 4552 4784
1 S⋆ ⊕ LFOF

1 80 613 74 191 87 734 89 886 3933 3851 4516 4947
2 S⋆ ⊕ LFOF

2 81 640 74 878 88 566 91 261 3963 3894 4558 5036

accuracy: Columns acc, pos, neg show testing accuracies of each model on the testing
set in percents. Column acc show the overall model accuracy, while columns pos and neg
show testing accuracy on positive and negative testing samples separately.
model: The column time shows the time needed for model training (in hours and
minutes), and the column size shows the LightGBM model file size. Model file size is an
important suggestion of the model ATP performance, since the model size influences the
model loading time and prediction times in E.

When training a model, we set aside 5% of the training data in order to compute the
testing accuracy. The model is trained on the remaining 95%. 10 This split is done on the
level of solved problem names rather than on proofs or vectors so that all the proofs of a
single problem will appear either in the 95% training subset, or all in the 5% testing subset.
This is important to keep the testing set unbiased. Otherwise, the testing data can partially
overlap with the training data, since two proofs of the same problem tend to be quite similar.
This split on solved problem names is computed independently in every loop iteration. This
split is done only on the training problems of the global training/development/holdout split
used for further experiment in this paper.

From the numbers in Table 5, we can see that the number of solved problems (column
probs) in the data increases with every loop iteration but much more slowly than the value
in the column proofs. This means that we are obtaining duplicate proofs for already solved
problems, since we include all the proofs for all solved problems in the training data in this
experiment. Note that the testing accuracies decrease with increasing training data size. All
the models have been built in less than 30 minutes and result in a similarly sized model file.
Also note that number of proofs grows much faster than the problems solved (probs). It
shows that we often prove the same problems.

10 The numbers in the training columns are only on the training 95% subset.
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Table 7 Experiment TFF: Learning statistics (Section 6.1.2).

notation training accuracy[%] model

l trains model probs proofs rows size acc pos neg time size

0 T TFF
0 LTFF

0 108K 186K 10,3M 1.2G 89.6 86.2 90.2 12:36 54.8M

1 T TFF
1 LTFF

1 114K 383K 19,6M 2.2G 85.0 78.8 86.2 20:29 55.0M

2 T TFF
2 LTFF

2 117K 587K 27,9M 3.1G 82.6 77.4 83.8 20:52 55.1M

3 T TFF
3 LTFF

3 122K 822K 39,3M 4.3G 81.4 77.8 82.2 23:17 55.2M

4 T TFF
4 LTFF

4 123K 1.03M 48,6M 5.3G 80.9 77.6 81.7 29:46 55.3M

ATP Evaluation. Table 6 shows the ENIGMA models performance separately on training
(trains) and on development problems (devel). Since the development problems were not
used during the training in any way, this evaluation tells how much are the ENIGMA model
over-fitting on the training files.

Every row describes the performance of two strategies specified in the column strategy.
Problems solved by the two strategies individually are in the first two bold columns. Italics
values display a total cover of set of strategies. The column both shows the number of problems
solved both by the two strategies together. This is helpful to estimate the complementarity
of base and sine strategies. Two strategies are complementary, when they solve different
problems. The column total shows the cumulative number of problems solved by all the
current strategies (above in the table).

In Table 6, we see that the sine strategy performed better than base initially. However,
from the first learning the base strategy dominates. This suggests that ENIGMA learns
to do premise selection on its own to some extent (when trained on the samples from the
sine strategy). All base and sine strategies are, however, quite complementary. In total, we
start with 75 080 solved problems and we end up with 91 261 after the learning, almost 22%
improvement on trains (23% on devels). The best single strategy is improved by 25% on
trains (and by 11% on devels).

It is interesting to observe, how the base strategies in one iteration improves on both base
and sine from the previous iteration, as if merging the two strategies into one. It suggests
that additional proof samples from compatible but complementary strategies could lead to an
additional improvement. We further investigate this in the next experiment (Section 6.1.2).

6.1.2 Experiment TFF: Typed First-Order Formulae

Setup. We perform a similar experiment as for the FOF, but this time targeted to the TFF
Isabelle translation.
1. Again, we start with the training data obtained by the evaluation of Bbase and Bsine.
2. We run three iterations of the training/evaluation loop.
3. After the three iterations, we additionally evaluate two more pure E strategies Bbase3 and

Bsine3 which improve on Bbase and Bsine by adjusting E’s clausification algorithm (switch
E’s option “definitional-cnf” from 24 to 3).

4. We perform two more training/evaluation loops with the expanded training data.
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Table 8 Experiment TFF: ATP performance (Section 6.1.2).

strategy trains solved by devels solved by
l base sine base sine both total base sine both total

- Sbase Ssize 100 259 98 317 114 838 114 838 5532 5403 6347 6347
0 S⋆ ⊕ LTFF

0 108 377 101 271 118 262 121 353 5468 5347 6222 6692
1 S⋆ ⊕ LTFF

1 113 729 103 382 121 995 124 795 5788 5471 6466 6894
2 S⋆ ⊕ LTFF

2 115 790 104 270 123 400 126 344 5934 5505 6547 6894

* Sbase3 Ssine3 106 132 100 904 118 925 132 552 5881 5522 6515 7160

3 S⋆3 ⊕ LTFF
3 122 492 107 035 127 955 133 222 6293 5673 6785 7280

4 S⋆3 ⊕ LTFF
4 122 931 107 316 128 339 133 762 6277 5704 6812 7326

Learning Statistics. Table 7 presents the machine learning evaluation (in the same format
as Table 5 described in Section 6.1.1). Before the fourth loop (l = 3), we additionally evaluate
all the strategies S ⊕ L, for S ranging over Bbase3 and Bsine3, and for L ranging over the
models of the first three loops. This gives us additional training data for the fourth iteration,
reflected in the table by a sudden increase in both solved problems (probs) and proof count
(in the row l = 3). We see similar training times and model sizes as in the FOF experiment.

ATP Evaluation. Table 8 presents the ATP evaluation (in the same format as Table 6
described in Section 6.1.1). As opposed to the FOF experiment, the base strategies dominate
from the beginning. Both strategies are still highly complementary. The evaluation of Bbase3
and Bsine3 strategies boosts the number of solved trains from 126 344 to 132 552. This highly
improves the performance of the best strategy (base) in the fourth iteration (l = 3) from
115 790 to 122 492, that is, by 5.8%. It shows that additional external training data can be
quite useful during the training. We further investigate this issue in the next experiment
(Section 6.1.3).

6.1.3 Experiment PRE1: First GNN Premise Selection
Setup. Here we experiment with GNN premise selection data PRE1 obtained by applying
GNN premise selection to the TFF problems. The GNN premise selection produces several
collections of the training problems (called slices) with a slightly different clause selection
criterion. We experiment with two slices PRE−1

1 and PRE64
1 , which were experimentally

found well performing and complementary. Our first experiment is aimed at generating a
large collection of training samples.
1. We perform three loops of training/evaluation, just as in the TFF experiment, separately

on PRE−1
1 and PRE64

1 . We loop with the base strategies Bbase3 and Bsine3.
2. We merge the training data from the previous two separate experiments and perform

three more loops on the merged data. However, we drop the sine strategies and evaluate
only the strategy Bbase3 ⊕ L on the two PRE1 slices.

3. From the above we collect a large database of 108K proved training problems. Since the
collection can contain duplicate proofs of a single problem, we select just three proofs per
problem. We use the proof pos/neg ratios as a measure of proof similarity, and select
proofs thusly different.

4. The training data from the last step, denoted T PRE1
three , gives us one final model LPRE1

three .
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Table 9 Experiment PRE1: Learning statistics (Section 6.1.3).

notation training accuracy[%] model

trains model probs proofs rows size acc pos neg time size

T PRE1
three LPRE1

three 108K 186K 10,3M 1.2G 89.6 86.2 90.2 12:36 54.8M

T PRE1
six LPRE1

six 133K 763K 28,6M 3.26G 77.6 76.8 78.0 25:44 77.9M

Table 10 Experiment PRE1: ATP performance (Section 6.1.3).

trains solved by devels solved by

strategy PRE−1
1 PRE64

1 both total PRE−1
1 PRE64

1 both total

S = Sbase3 122 196 117 341 126 323 126 323 6706 6462 6955 6955

S ⊕ LPRE1
three 127 606 120 248 129 971 132 431 6800 6495 6994 7251

S ⊕ LPRE1
six 132 063 123 229 134 544 135 823 6994 6591 7153 7380

Next experiment tries to gather even more training samples.
1. We additionally consider training data from the previous TFF experiments.
2. We gather even more valuable training samples from ENIGMA parental guidance experi-

ments on slices PRE−1
1 and PRE64

1 .
3. We select three proofs per problem from TFF samples.
4. We select three proofs per problem from PRE1 samples.
5. The training data T PRE1

sixes contain six proofs per problem and yield model LPRE1
sixes .

Learning Statistics. Table 9 presents the machine learning evaluation (in the same format
as Table 5 described in Section 6.1.1). Note the huge difference in the number of proofs,
resulting in much larger training data size. The second training data include proofs of more
than 25K additional problems (probs). Training times and model sizes clearly reflect the
training file size.

ATP Evaluation. Table 10 presents the ATP evaluation (in the same format as Table 6
described in Section 6.1.1). Here, however, we evaluate the single strategy Bbase3 ⊕ L on
slices PRE−1

1 and PRE64
1 , instead of using two base and sine strategies.

Firstly, we note the effect of the premise selection itself. The performance on Bsine3
improved by more than 15% from the previous experiment (from 106 132 to 122 196). The
model LPRE1

three performs quite well, being trained on proofs 108K problems, it solves almost
128K problems. The model LPRE1

six further boosts the performance, showing that combining
of training data from various compatible sources might be beneficial. Comparing the
performance on trains with the performance on devels, we can conclude that ENIGMA
LightGBM clause selection models slightly overfit but they are still capable of generalization.

6.2 Evaluation of the Parental Guidance
Setup. Parental guidance models are co-trained with clause selection models in a series of
loops over the training data. In each loop iteration, the LightGBM parameters for parental
guidance models are tuned using a series of grid searches with Optuna [1]. These are the
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Table 11 Parental guidance iterations on small trains, devel, and holdout (13 818 problems in
15s). Loops L1 and L2 are run on TFF data, L3 to L8 on PRE−1

1 , and L9 and L10 on PRE−1
2 .

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

small trains 6475 6718 7081 7140 7312 7351 7407 7417 7647 7705

devel 6241 6462 6928 6892 6566 6850 7070 7115 7277 7379

holdout 6251 6459 6886 6843 6581 6816 7015 7062 7352 7395

number of leaves, the bagging fraction and frequency, the minimum number of samples to
create a new leaf, and L1 and L2 regularization. The learning rate is fixed at 0.15, the
maximum tree depth is capped at 256 and the number of trees is 250. The number of
leaves is varied between 256 and 3333. The best result of each grid search is used for the
next parameter’s grid search. Accuracy on positive training examples is considered twice as
important as the accuracy on negatives when choosing which parameters perform best. There
are multiple reasons for this. A primary reason is that the confidence in positive examples is
higher than confidence for the classification of negatives because a negative clause in one
successful proof search could be positive in another proof search. The resulting model is
evaluated with the nine parental filtering thresholds, {0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7},
over a set of 300 problems from the development set for 30 seconds. This is done for the
vanilla TFF problems as well as the problems with premise selection slices. The best run (as
evaluated by a greedy cover) on each version of the problems is then run on the full training
set. Then the problems from runs in the total greedy cover are used as data for the next
iteration of looping. This means that some problems can have over 10 proofs in the training
data.

Iterations. The training of parental guidance was done with the aim to develop as strong a
performance as possible, using diverse data. The models for loops L1 and L2 are run and
trained on the TFF data that do not use premise selection. Models L3 and L4 are only
run on the small trains set. The models L3 to L8 are run on PRE1. Finally, models L9
and L10 are run on PRE−1

2 . The largest performance jumps correspond to the addition of
premise selection (Table 11). The strongest parental guidance models are always on the
PRE−1 premise selection data and the PRE64

1 slices provide fewer complementary problems
than the baseline TFF problems.

The best model L10, with the second premise selection slices, PRE−1
2 , proves 168 problems

(56%) in 30s on the parameter tuning development set, and 137 893 problems (55.4%) on
the training set in 15s. In 30s, L10 proves 7472 problems (54.1%) on the development set
and 7466 problems (54%) on the holdout. Without premise selection, L10 proves 133 390
training problems (53.6%), which indicates that training on the premise selection data
transfers back to the original problems. The remaining results are presented in Table 11.
This parental+ENIGMA model is our final product. It solves 7395 holdout problems in 15s,
thus significantly improving over unguided E and also over all other ATPs and SMTs. It also
outperforms all other ATPs and SMTs even when they use our best premises (Table 12).
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6.3 First Training of Premise Selection on TFF Problems (PRE1)
We have done several large experiments with the GNN-based premise selection (Section 5),
first in the untyped and then in the typed setting. For lack of space we include below only
the two final experiments on the TFF data, where most of the ENIGMA runs were done.

For the first round of training the GNN on the TFF data we are using the proof data
produced only by the base sine/nosine TFF runs of unguided E and the first three ENIGMA
iterations on the TFF training set. Altogether these runs produce 1701284 proof dependencies.
These dependencies are first deduplicated to 353875, and then we also for every problem P

remove all premise sets subsumed by a smaller premise set. This further decreases the size
of the dataset to 242432 proof dependencies, for 131309 unique solved problems. Most of
the solved problems (80993) have after this redundancy elimination only one solution, while
for the remaining ones we get from 2 to 16 different solutions. Since problems with 1 to
3 solutions dominate the dataset (163650 out of the total 242432 solutions), we do not do
further pruning of over-represented proofs for the training (as in the next training run).

For this first training and prediction we do not yet use the new typed extensions of the
GNN. Instead, all TFF formulas are stripped of their type information and given to the
network as untyped FOF. Each problem uses its original conjecture, the positives are the
premises used in a given proof and the negatives are all other premises for that problem (i.e.,
all the MePo premises). This sometimes leads to large training inputs, so we normalize them
to have size at most 500KB by randomly removing negatives. The whole training dataset
has size 46GB. We then train the GNN on it with batch size 10, learning rate 0.005, and
with balancing the loss on the positive and negative premises.

The training for two full epochs on an NVIDIA Volta 100 takes about 12 hours, saving
the weights 16 times. The balanced accuracy increases from 0.8533 to the final 0.9067 (0.9061
vs 0.9073 on positives vs negatives) in our final snapshot, which we then use for prediction
over all 276363 problems. This is parallelized over four GPUs, taking several hours. For each
problem we use the predictions to produce 5 premise selections based on the GNN score
threshold (1,0,-1,-2,-3,-4), and 5 premise selections based on old-style top slices of the ranked
premises (16,32,64,128,256). We do a small search with 200 development problems and the
base strategy over this grid, which is won by the -1-based predictions, best complemented by
the 64-based predictions. These premise selections are denoted PRE−1

1 and PRE64
1 in the

other parts of this paper. E/ENIGMA are then evaluated on both of them, while we also
evaluate other systems only on the -1-based predictions (Table 12).

6.4 Second Training of Premise Selection on TFF Problems (PRE2)
The second premise selection training is done by the typed version of the GNN (Section 5),
using explicitly 2539 types that occur with frequency higher than 10000 in the training
data. The remaining types (over 300000 in the training set) are mapped to the same generic
embedding, which means that the GNN treats them all as the same type. The overhead for
the 2539 distinguished most frequent types increases the size of the GNN only by 100kb.
The training uses again a batch size of 20 and a learning rate of 0.0005. The training
dataset is created from all TFF training problems solved in the previous loops, both by
E/ENIGMA and CVC5 and Vampire. This gives 823141 unique premise selections for 146576
solved problems. The 823141 unique premise selections are again minimized with respect to
subsumption, reducing them to 488186 minimal premise selections. To address the imbalance
caused by having various numbers of proofs for a single problem in the training set, we keep
at most three proofs for each problem. This further reduces the set to 292080 examples. The
examples are again all reduced to a size of at most 500KB.
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Table 12 Final comparison with non-ENIGMA systems: E2.6 with its auto-schedule, CVC5, and
Vampire-CASC (master 4909). Each run standalone (MePo predictions) and with the first/second -1
GNN TFF predictions. The last entry is the final/best Loop10 (parental) ENIGMA (Section 6.2).

method E auto-sched. CVC5 Vampire L10 ENIGMA

15s devel, no premsel 5891 7053 6452 7133
15s holdout, no premsel 5903 7051 6454 7139
30s holdout, no premsel 6089 7140 6945 7170
15s devel, preds -1 (1st round) 6968 7211 7023 7191
15s holdout, preds -1 (1st round) 6956 7158 6978 7155
15s devel, preds -1 (2nd round) 7074 7394 7132 7379
15s holdout, preds -1 (2nd round) 7066 7372 7118 7395
30s holdout, preds -1 (2nd round) 7139 7398 7397 7466

This results in our final training set with an overall size of about 60GB. Since the reduction
of the TFF inputs does not generally guarantee to prevent a blow-up during the clausification,
we also further use here a size limit of 50000 nodes inside the GNN parser (Section 5) and
filter out such large graphs which may otherwise deplete the GPU memory. The GNN is
trained for full two epochs on the data, taking about one day on a single NVIDIA V100
GPU and storing the weight files 15 times per epoch. For producing the final predictions,
we take the 28th weights with the highest balanced accuracy of 0.9221 (0.9391 / 0.9051 for
positives/negatives). We produce the same grid of predictions as in the first round for all
problems. The -1-based predictions are again the winner, best complemented by the 0-based
predictions. These premise selections are denoted PRE−1

2 and PRE0
2 in the other parts of this

paper. Table 12 shows that also all non-ENIGMA systems benefit from the GNN predictions,
and that the second round improves over the first round of predictions for all of them.

7 Conclusion

We have developed versions of the ENIGMA systems and neural premise selectors for
the Isabelle Sledgehammer problems. Our best single-strategy system using the parental
ENIGMA guidance and the typed GNN premise selection solves 7395 holdout problems in
15s, improving on original E’s auto-schedule performance (5903) by 25.3%. It also improves
on all other ATPs and SMTs, both when used standalone and when used in conjunction
with our best neural premise selection. To achieve this, we have produced large corpora of
Isabelle problems for training and evaluation of the AI/TP methods, and developed new
extensions of our systems, especially for the typed setting.
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6 Conclusion and Contributions

6.1 Contributions
The contributions of each paper are listed here. I also discuss my share of
co-authorship. Josef Urban and Jan Jakubův read the thesis and offered many
helpful suggestions.

• “ProofWatch” (Section 5.1) is done in collaboration with Jan Jakubův,
Josef Urban, and Stephan Schulz. Schulz implemented the core watchlist
functionality in E. Jakubův did most of the work to implement the dy-
namic watchlist features. Urban ran the k-nearest neighbor algorithm to
suggest clauses and proofs for the watchlists. I implemented an option
to modify watchlist subsumption checks in E to treat Skolem symbols of
equal arity as equal and a feature that overrides all priority functions with
PreferWatchlist when a watchlist clause is subsumed. I did almost all
experimental evaluations. (Estimated personal contribution: 35%)

• “ProofWatch Meets ENIGMA: First Experiments” (Section 5.2) is done in
collaboration with Jan Jakubův and Josef Urban. Jakubův implemented
80-95% of the code to pass the proof progress vectors to the ENIGMA
machine learning model. I helped to fine-tune the implementation and
scripts. I ran almost all of the experimental evaluations. (Contributions:
45%)

• “ENIGMAWatch: ProofWatch Meets ENIGMA” (Section 5.2) is done
in collaboration with Jan Jakubův and Josef Urban. Jakubův imple-
mented multi-index subsumption indexing and feature hashing to allow
ENIGMAWatch to scale to large ITP libraries, such as the full Mizar
Mathematical Library. I evaluated four methods of selecting reduced-
dimensionality proof-state vectors to use for guidance. I ran almost all of
the experiments. (Contributions: 50%)

• “Make E Smart Again” (Section 5.4) is done almost entirely by me. Jan
Jakubův and Josef Urban proposed the topic. Jakubův and Stephan Schulz
discussed options for implementing a minimal term ordering within E.
(Contributions: 95%)

• “Fast and Slow Enigmas and Parental Guidance” (Section 5.5) is done in
collaboration with Karel Chvalovský, Jan Jakubův, Miroslav Olšák, and
Josef Urban. Olšák developed the graph-neural network (GNN). Jakubův
integrated the GNN into E and ENIGMA. Chvalovský implemented the
GPU server-based evaluation to speed up neural guidance. Jakubův im-
plemented the 2-phase ENIGMA. I implemented the Parental Guidance
feature in E. Jakubův and Urban ran the experiments on the GPU server
evaluation and on the 2-phase ENIGMA. I ran the experiments on Parental
Guidance, and Urban ran the 3-phase ENIGMA evaluation. (Contributions:
40%)
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• “The Isabelle ENIGMA” (Section 5.6) is done in collaboration with Jan
Jakubův, Cezary Kaliszyk, Miroslav Olšák, Jelle Piepenbrock, and Josef
Urban. Kaliszyk extracted the training problems from Isabelle sessions and
translated them to appropriate TPTP formats. Jakubův and Urban opti-
mized the E strategies for the Isabelle Sledgehammer problems. Jakubův
and I modified the ENIGMA feature scripts to ignore types so that the
TFF format could be used. Olšák and Piepenbrock adapted the GNN to
work with the typed data for premise selection, and Urban did the premise
selection. Jakubův ran the ENIGMA evaluations, and I ran the Parental
Guidance evaluations. (Contributions: 30%)

6.2 Concluding Remarks
This thesis covers the development of three learning-based ATP proof search
guidance methods. ProofWatch, ENIGMAWatch, and Parental Guidance all
improve the state-of-the-art on datasets from the Mizar Mathematical Library:
ProofWatch improves the single-strategy performance by 26.5% and five-strategy
ensemble performance by 7%, ENIGMAWatch accelerates training and in the
first iteration improved upon ENIGMA by 8.8%, Parental Guidance as part
of the 3-phase ENIGMA culminates in a 60% improvement over E’s auto-
schedule and 17.4% over the best previous result by ENIGMA. The fundamental
investigations with E0 in the “Make E Smart Again” paper indicate that learning
can replace even more of E’s search algorithms; however, this potential will
require future research to be realized. In “The Isabelle ENIGMA”, we demonstrate
the transferability of our results from the Mizar Mathematical Library to the
Isabelle Sledgehammer problems, attaining competitive performance that slightly
surpasses two of the strongest state-of-the-art ATPs: Vampire and CVC5.

The methods all focus on using additional semantic information and in-
tegrating learning models. The proof vectors in ProofWatch contain logical
semantic information about which proofs the current proof state resembles.
ENIGMAWatch demonstrates performance benefits in integrating semantic learn-
ing with statistical machine learning models. Parental Guidance includes the
parent clause features as new information, and with the 2 and 3-phase ENIGMAs,
demonstrates further the value of integrating multiple machine learning models
and methods. The graph neural network adds more semantic representations
of mathematical formulas (than the hashed ENIGMA features) and can even
include (part of) a proof state as context clauses. In “The Isabelle ENIGMA”
paper, iterating learning for proof search guidance and premise selection is
also seen to help. The anecdotally observed faster learning of ENIGMA coop
methods where the machine-learned guidance shares the role with automatically
developed strategies [132, 239] is one more point in favor of combining many
learning methods in one automated theorem proving system. The Make E Smart
Again experiments with E0 suggest that machine learning methods can cope
without simplification orderings; however, a more effective approach might be
to learn the precedences for the Knuth-Bendix ordering on a problem-specific
basis [25,26].
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The road forward is clear: find methods to incorporate additional information
into the theorem proving loop and integrate these models with the rest. The
field is still full of promising research avenues that have never before been made
to work.
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