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Introduction

Solving scientific and engineering problems often involves employing various procedures to
find solutions. One common approach is to formulate the problem as a system of equations,
allowing the use of established methods. In practice, systems of linear equations arise in fields
such as engineering, physics, economics, and computer science. On the other hand, systems
of partial differential equations are prevalent in fields such as electrodynamics, fluid dynamics,
thermodynamics, and diffusion. These systems can often be solved by representing them in matrix
form and applying algebraic operations to find the solution.

There are numerous methods available for solving systems of equations, with Gaussian Elimination
Method (GEM) and Lower-Upper decomposition with Pivoting (LUP) being among the most
well-known. Using LUP to solve systems of equations involves two distinct stages: decomposition
and substitution. In both stages, two main groups of numerical methods can be employed: direct or
iterative. Direct methods arrive at the result in a finite number of steps, while iterative methods
improve an initial estimate until a desired accuracy of the result is reached. However, direct methods
are often sequential and difficult to parallelize, which limits their scalability on larger problems.
In contrast, iterative methods can be effectively parallelized. Taking advantage of parallelized
procedures becomes particularly beneficial for larger problems when utilizing Graphics Processing
Units (GPUs), as they are designed to handle substantial concurrent workloads.

The primary objective of this thesis is to introduce and implement an iterative parallel LUP algorithm
on the GPU and evaluate its performance. Additionally, this thesis presents a project that aims to
facilitate the procedures used in both stages of solving systems of equations with LUP.

The first chapter introduces fundamental theoretical knowledge related to Nvidia GPUs and the
application of LUP for solving systems of equations. In the second chapter, the developed project
and other functionalities implemented to facilitate the use of the iterative algorithm are presented.
Finally, the last chapter provides a comprehensive analysis in the form of a benchmark, evaluating
the performance of the procedures available in the project.
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Chapter 1

Theory

This chapter will introduce the theory behind the core parts of this project. First, Nvidia’s Graphics
Processing Units (GPUs) and their use in General-Purpose Computing on GPUs (GPGPU) will be
briefly described. Then, CUDA, the API for communicating with Nvidia GPUs, will be presented.
The final part introduces the method implemented in this project: Iterative Crout’s Method with
Partial Pivoting (ICMPP).

1.1 GPUs

In essence, a Graphics Processing Unit (GPU) is a device designed to accelerate the graphical
output of a computer system. Simply put, a GPU comprises many smaller processing units. While
these units are not as fast as the cores of a CPU, they excel at processing many similar tasks in
parallel. An example of such a task is displaying an image on a monitor. In simple terms, to
display the image, each pixel must be computed and rendered. If the image is 1,200 by 1,200 pixels,
then, the processing entity must compute and render 1,440,000 individual points. Given the many
processing units that the GPU has, it is capable of performing this operation efficiently.

While the common understanding of a GPU is that it is an image-processing device, how it
processes images can be leveraged for non-graphical computation-heavy tasks. This is referred to
as General-Purpose Computing on Graphics Processing Units (GPGPU).

1.1.1 General-Purpose Computing on Graphics Processing Units (GPGPU)

General-Purpose Computing on Graphics Processing Units (GPGPU) has become an integral part
of High-Performance Computing (HPC) in the last two decades [1, 2]. One of the key parts of
GPGPU is to tailor tasks for efficient execution on GPUs. To use a GPU efficiently, it is necessary
to parallelize the workload. A common example of a parallelizable task is the multiplication of two
matrices. Without parallelism and assuming the naive matrix-multiplication algorithm, this task
requires the processing entity to perform the pseudocode shown in Listing 1.1.

1 multiplyMatrices ( A , B , C ) :
2 f o r i from 0 to m − 1 :
3 f o r j from 0 to p − 1 :
4 f o r k from 0 to n − 1 :
5 C [ i , j ] += A [ i , k ] * B [ k , j ]

13



Listing 1.1: Pseudocode for the multiplication of two matrices. Let A be a m × n matrix, B a n × p
matrix, and C a m × p matrix.

Since parallelism is not used, the computation is strictly sequential and would arguably benefit
from the faster core clock speeds of a CPU [2]. However, since the computation of every element in
C is independent of the other elements, it is possible to compute all elements of C simultaneously.
In other words, every thread of the GPU can be tasked to compute one element of C, i.e., each
thread would only compute the innermost loop.
Note that the parallelization of certain tasks is not as straightforward, for example, Crout Method
with partial pivoting (detailed in Section 1.3.2).

Similarly to the above-mentioned example of displaying the image on a monitor, the GPU - and
its many processing units - greatly benefits from the parallelized workload largely due to its
architecture. To illustrate this, Figure 1.1 shows a general architecture comparison of a CPU and a
GPU.

Figure 1.1: Architecture comparison of a CPU and a GPU. Taken from CUDA C++ Programming
Guide [3].

In Figure 1.1 it can be seen that the control units and caches of the CPU are proportionately sized
to illustrate that GPUs do not focus on fine-grained cache control and prediction logic as much as
CPUs. The reasoning behind this is that CPUs in general attempt to use the aforementioned focus
points to hide memory latency. On the other hand, GPUs do not attempt to hide memory latency
with controllers using costly caching. Instead, as mentioned in CUDA C++ Best Practices Guide
[4], it is considered best practice for the developer to hide memory latency using CUDA-specific
functionalities [5].

In Nvidia GPUs, the control units are referred to as Stream Multiprocessors (SMs) and they
are responsible for scheduling tasks to processing units. Therefore, it can be argued that the
computational power of an Nvidia GPU depends on - among other factors - the number of SMs it
has and their capabilities. The reasoning behind this is that the more SMs a GPU has, the more
concurrent computations it is capable of performing. To exemplify this, see Table 1.1 for a selection
of the latest Nvidia Datacenter cards and their relevant specifications.

The industry-standard values used to compare GPUs are TFLOPS and memory bandwidth as
both are crucial for any computation. From Table 1.1 it can be seen that the H100 is capable of

14



GPU Features V100 A100 H100
GPU GV100 (Volta) GA100 (Ampere) GH100 (Hopper)

GPU Board Form
Factor SXM2 SXM4 SXM5

SMs 80 108 132

FP32 Cores / SM 64 64 128

FP32 Cores / GPU 5,120 6,912 16,896

FP64 Cores / SM 32 32 64

FP64 Cores / GPU 2,560 3,456 8,448

GPU Boost Clock 1,530 MHz 1,410 MHz 1,830 MHz

Peak FP32 TFLOPS 15.7 19.5 66.9

Peak FP64 TFLOPS 7.8 9.7 33.5

Memory Interface 4,096-bit HBM2 5,120-bit HBM2 5,120-bit HBM3

Memory Size 32 GB 80 GB 80 GB

Memory Bandwidth 900 GB/s 2,039 GB/s 3,352 GB/s

L2 Cache Size 6 MB 40 MB 50 MB

Max. Shared Memory
Size / SM 96 KB 164 KB 228 KB

Register File Size / SM 256 KB 256 KB 256 KB

Register File Size /
GPU 20,480 KB 27,648 KB 33,792 KB

TDP 300 Watts 400 Watts 700 Watts

Transistors 21.1 billion 54.2 billion 80 billion

Table 1.1: Comparison of GPUs: V100 (Volta architecture; released in December 2017), A100
(Ampere architecture; released in May 2020), H100 (Hopper architecture; released in September
2022). FP stands for Floating Point; TFLOPS signifies the number of trillion floating-point
operations the processor can perform per second; TDP stands for Thermal Design Power which
can be used as an indicator of power consumption under the maximum theoretical load [6]. The
specifications of each GPU in this table are the best possible version of the card available as
of February 2023, i.e., SXM instead of PCIe and the version with the most VRAM available.
Interesting aspects are highlighted in green. The data was obtained from various sources for the
V100 [7], the A100 [8, 9], and the H100 [10].

performing up to 3.4 times as many FP operations as its predecessor, the A100. Similarly, the H100
outperforms the A100 by a factor of 1.6 when it comes to memory bandwidth. Unfortunately, even
though the H100 was unveiled in April 2022 and released in September 2022 there is a global
shortage as of March 20231.

To fully utilize the computational power of its GPUs, Nvidia provides developers with its API,
CUDA.

1.2 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) was introduced by Nvidia in 2006 as a programming
model; however, it is also often referred to as a parallel computing platform [11]. Its primary
objective is to provide developers with low-level access to GPU hardware, including, but not limited
to, the ability to fine-tune the allocation of processing units and memory. This enables developers to
fully utilize a GPU’s potential and customize its use for specific applications. CUDA supports the

1Update: ’Huge’ GPU supply shortage due to AI needs, analyst Dylan Patel says URL: https://www.fierceel
ectronics.com/electronics/ask-nvidia-ceo-gtc-gpu-shortage-looming
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following programming languages: C, C++, and Fortran. Additionally, wrappers by third parties
allow it to be used in other languages, such as Python, Perl, Java, Ruby, MATLAB, and Julia [12].

First, a selection of fundamental CUDA-related terms used in this project will be presented. Then,
CUDA’s thread management system will be briefly described. After that, the CUDA memory
management system will be introduced. The last but one part will describe the concurrent execution
of code on the GPU, and finally, a parallel computing concept used in this project will be presented.
Along with the explanation of the topic, each section can contain examples of C++ CUDA
extensions as C++ was used for the development of this project.

1.2.1 Fundamental Terminology

For a better understanding of CUDA-related concepts, it is necessary to introduce fundamental
terminology [13, 2]:

• Host - CPU and its memory. The host provides the GPU with instructions to execute, for
example, transferring data, executing code, synchronizing the GPU, etc.

• Device - GPU and its memory. The device executes instructions issued by the host.

• Kernel - C++ function that is called from the host and executed on the device based on a
configuration. In C++, the definition of a kernel is prefixed using the __global__ keyword.

1.2.2 Thread Management

This section aims to briefly introduce the thread management system present in CUDA - for a
detailed explanation see Formats for storage of sparse matrices on GPU [1] and Parallel LU
Decomposition for the GPU [2]. To fully leverage the performance Nvidia GPUs can provide,
it is paramount to manage their execution units well. For this purpose, CUDA provides many
functionalities and structures [3].

CUDA Thread According to CUDA C++ Programming Guide [3], a CUDA thread is "an
executed sequence of operations". It represents the most fundamental level of abstraction for
carrying out computations or memory operations. It is lightweight in design which allows the GPU
to switch between threads seamlessly. Note that in the context of this project, a CUDA thread may
also be referred to simply as a thread. In CUDA, threads are organized into hierarchical groups,
with the warp being the most fundamental group.

Warp CUDA uses the Single-Instruction Multiple-Thread (SIMT) architecture. As the name
suggests, in SIMT, threads execute the same instruction in parallel with the added possibility of
each thread using different data [14]. At the most elementary level of the thread-group hierarchy,
threads execute in lockstep as a group of 32 called a warp. Note that a warp can only comprise
consecutive threads. For a clearer understanding, the execution of instructions by an 8-thread warp
is shown in Figure 1.2.

While threads in a warp execute in lockstep, they can diverge and execute different instructions.
This behavior is referred to as thread divergence and it is discouraged as the execution will be
serialized and thus suboptimal - see Figure 1.3 for a visualization of thread divergence. Interestingly,
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Figure 1.2: Execution of code by an 8-thread warp. The unique ID of each thread is stored in the
variable threadID. In this example, threadID is used to read and write different data. Taken from
Getting Started with CUDA [13] and Parallel LU Decomposition for the GPU [2].

until Nvidia’s Volta generation was introduced in December 2017, thread divergence could lead to
a deadlock in specific cases where sharing data between threads of a warp was required [3, 15].

Figure 1.3: Pseudocode showcasing thread divergence in an 8-thread warp. The threadIdx.x
variable contains each thread’s ID in the 1st dimension. In this example, while threads 0 to 3
execute statements A and B, threads 4 to 7 are idle. Then, threads 4 to 7 execute statements X and Y
while threads 0 to 3 are idle. Finally, all threads resume lockstep execution with statement Z. Taken
from Nvidia’s developer blog post: Inside Volta: The World’s Most Advanced Data Center GPU
[16].

While CUDA provides special functions for intra-warp thread management [17], their use is not
common compared to the use of thread groups higher in the hierarchy, called blocks.

Block To execute a group of threads they must first be grouped into a block. A single block can
comprise up to 1024 threads (as of CUDA compute capability 3.5) that are organized in either 1D,
2D, or 3D [3]. Every thread of a particular block has a unique ID per dimension, i.e., x for 1D, x,
y for 2D, and x, y, z for 3D. Combined with the fact that the threads of a warp are consecutive,
choosing the dimension and size of a thread block can play a crucial role in achieving optimal
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performance. To illustrate this, an example showing threads of a block divided into warps can be
seen in Figure 1.4.

Figure 1.4: Division of threads into warps in a block of 40 by 2 threads. Each green rectangle in
the left image represents a row of threads. In the right image, each color represents a unique warp.
Taken from VOLTA Architecture and performance optimization [18].

As can be seen in Figure 1.4, since threads are consecutive in their 1st dimension, the 1st row of
the block comprises 32 threads that belong to warp 0 (blue rectangle) and 8 threads from warp 1
(upper-right red square). The 2nd row comprises 24 threads belonging to warp 1 (lower-right red
rectangle) and 16 threads from warp 2 (left-most green rectangle). While a warp can only consist
of 32 consecutive threads, in warp 2, only 16 will be utilized for execution, while the remaining 16
will remain inactive.

Grid The final group of threads in the hierarchy, the grid, comprises thread blocks. Similarly to
how threads are structured within a thread block, blocks can be structured within grids. Grids can
consist of up to 3 dimensions of blocks; each block has a unique ID per dimension. Additionally,
the limit of thread blocks per grid is bound to each dimension: the maximum number of blocks per
dimension is 65,536. For a visualization of a 2D grid comprising 2D thread blocks see Figure 1.5.

As shown in Figures 1.2 and 1.3, within a kernel, each thread has access to a collection of predefined
variables unique to it. The following is a selection of such commonly-used variables:

• threadIdx - A 3-component vector containing the IDs of a thread in each dimension of
a thread block. Specifically, threadIdx.x contains the thread’s ID in the 1st dimension
(x), threadIdx.y in the 2nd dimension (y), and threadIdx.z in the 3rd dimension (z).
For example, in the 3-by-4 thread block shown in Figure 1.5, the values of threadIdx
for the bottom-right-most thread are {3, 2, 1}, i.e., threadIdx.x = 3, threadIdx.x = 2,
threadIdx.z = 1.

• blockIdx - A 3-component vector containing the IDs of a block in each dimension of a
grid. Similarly to threadIdx, each vector component contains the block’s ID in a specific
dimension, i.e., blockIdx.x contains the ID of the block in the 1st dimension (x), etc. For
example, for the bottom-right-most thread block shown in Figure 1.5, blockIdx would be
{2, 1, 1}, i.e., blockIdx.x = 2, blockIdx.y = 1, blockIdx.z = 1.

• blockDim - A 3-component vector containing the sizes of a block’s dimensions. For example,
for the thread block shown in Figure 1.5, blockDim would be {3, 4, 1}, i.e., blockDim.x
= 3, blockDim.y = 4, blockDim.z = 1.

For a summarized overview of predefined variables and functions available, see CUDA syntax [19]
or see CUDA C++ Programming Guide [3] for an extensive overview.
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Figure 1.5: Visualization of a 2-by-3 grid comprising 3-by-4 thread blocks. The numbers in the
brackets are the IDs of each entity in each dimension. Taken from CUDA C++ Programming Guide
[3].

The variables listed earlier are often used to compute the global ID of a thread in a dimension of a
grid:

globalID = blockIdx.x * blockDim.x + threadIdx.x

In a standard setup, the grid is the upper-most thread grouping in CUDA’s thread management
hierarchy. As visualized in Figure 1.6, when a kernel is executed on the device, it is executed on all
threads of a grid.

To execute a kernel on the device, it is necessary to provide the kernel with an execution configura-
tion: <<< Dg, Db, Ns, S >>>, where:

• Dg - dimension and size of the grid;

• Db - dimension and size of each block;
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Figure 1.6: Visualization illustrating the execution of CUDA thread structures by different hardware
components in an Nvidia GPU. Taken from CUDA Refresher: The CUDA Programming Model
[20].

• Ns - optional (default value is 0), number of bytes in shared memory allocated per block in
addition to statically allocated shared memory (explained in Section 1.2.3);

• S - optional (default value is 0), stream associated with the kernel (explained in Section 1.2.4).

An example of a kernel call with a basic execution configuration is presented in Listing 1.2.

1 / / K er ne l d e f i n i t i o n
2 _ _ g l o b a l _ _ vo id AddOneToMatrix ( f l o a t mtx [ N ] [ N ] )
3 {
4 / / Get t h r e a d ID f o r each d imens ion t o use as m a t r i x i n d i c e s
5 i n t row = b l o c k I d x . x * blockDim.x + t h r e a d I d x . x ;
6 i n t col = b l o c k I d x . y * blockDim.y + t h r e a d I d x . y ;
7

8 / / Check i f t h e i n d i c e s a r e w i t h i n t h e d i m e n s i o n s o f t h e m a t r i x
9 i f ( row < N && col < N ) {

10 mtx [ row ] [ col ] += 1 ;
11 }
12 }
13

14 i n t main ( )
15 {
16 ...
17 / / Number o f t h r e a d s i n each 2D b l o c k i s 16 x16 = 256
18 dim3 threadsPerBlock ( 16 , 16 ) ;
19

20 / / Number o f b l o c k s i n t h e g r i d depends on t h e m a t r i x d imens ion (NxN)
21 dim3 numBlocks ( N / threadsPerBlock.x , N / threadsPerBlock.y ) ;
22

23 / / K er ne l t h a t computes : mtx = mtx + 1 ( e lement −wise )
24 AddOneToMatrix<<< numBlocks , threadsPerBlock >>>( mtx ) ;
25 ...
26 }
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Listing 1.2: Excerpt of C++ code portraying the creation of a grid configuration and the launching
of a kernel. The example implementation aims to increment every value of the N-by-Nmatrix mtx by
1 using the device. dim3 is an integer vector type based on uint3 that is used to specify dimensions
- unspecified components are implicitly set to 1 [3]. Taken from CUDA C++ Programming Guide
[3].

In Listing 1.2, the code in the main() function is executed on the host while the code in the
AddOneToMatrix(...) kernel is executed on the device. From the host’s point of view, kernel
calls are asynchronous. In other words, the host will call for the kernel to be executed on the device
and then it will move on to the next line of execution without delay. This holds even if the host
calls two kernels in succession. In such a case, from the device’s point of view, the two kernels will
be executed in the order they were called.

1.2.3 Memory Management

This section will briefly introduce the memory management system present in CUDA - for a
comprehensive overview see Formats for storage of sparse matrices on GPU [1] and Parallel LU
Decomposition for the GPU [2].

Similarly to the layout in Section 1.2.2, the memory management system of CUDA will be briefly
described starting with the most fundamental type of memory and advancing to the highest level.

Registers and Local Memory While executing a kernel, each thread has access to a memory
space that is unique to it, i.e., other threads cannot access it. The lifetime of this memory is bound
to the context of the kernel it is allocated with. This space encompasses two separate memories:
registers and local memory.

Registers are fast 32-bit on-chip memories (low latency and high bandwidth) that are often used for
storing variables unique to each thread. The number of registers available to a thread in the context
of a kernel is limited to 255 (since CUDA compute capability 3.2) [3]. If a variable or structure
allocated in the context of a kernel exceeds the registers available to a thread, then the compiler
stores them in local memory - this behavior is referred to as register spilling.

Local memory resides in off-chip device memory (referred to as global memory; high latency and
low bandwidth) which is slower to access than registers. Local memory for each thread is limited
to 512 KB [3].

While using registers to store frequently-accessed indexing variables can help improve performance,
it should be done with care to avoid the performance loss associated with register spilling.

Shared Memory In the context of a kernel, all threads of a block have access to a block-unique
memory space referred to as shared memory. Similarly to registers, shared memory is located on-
chip and is therefore high-speed. The maximum size of shared memory per block varies depending
on the CUDA compute capability version as shown in Table 1.2.

Shared memory can be allocated statically, dynamically, or both. The amount of statically allocated
memory is known at compile time while the amount of dynamically allocated memory is known at
run time [21]. Note that the total amount of shared memory allocated for a thread block is equal to
the sum of statically and dynamically allocated shared memory.
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Compute capability 7.0 - 7.2 7.5 8.0 8.6 8.7 8.9 9.0
Max. shared memory per block [KB] 96 64 163 99 163 99 227

Table 1.2: Maximum shared memory per thread block depending on the CUDA compute capability
version. Note that to use more than 48 KB, dynamic shared memory must be used. Taken from
CUDA C++ Programming Guide [3].

Since statically allocated shared memory is known at compile time, it must be declared with a size
known at compile time. It is often declared inside a kernel using the __shared__ modifier.

On the other hand, the size of dynamically allocated memory must be supplied as one of the kernel
launch parameters as mentioned in Section 1.2.2.

Listing 1.3 shows an excerpt of C++ code where the syntax for static and dynamic memory
allocation is presented - for the full code see Using Shared Memory in CUDA C/C++ by Harris, M.
[21].

1 _ _ g l o b a l _ _ vo id kernel ( ... )
2 {
3 ...
4 / / D e c l a r e s t a t i c a l l y a l l o c a t e d s h a r e d memory
5 _ _ s h a r e d _ _ i n t s_s [ 3 2 ] ;
6

7 / / Access d y n a m i c a l l y a l l o c a t e d s h a r e d memory
8 e x t e r n _ _ s h a r e d _ _ i n t s_d [ ] ;
9 ...

10 }
11

12 i n t main ( )
13 {
14 ...
15 c o n s t i n t n = 6 4 ;
16

17 / / Launch k e r n e l w i th :
18 / / − 32* s i z e o f ( i n t ) b y t e s o f s t a t i c a l l y a l l o c a t e d s h a r e d memory
19 / / − n* s i z e o f ( i n t ) b y t e s o f d y n a m i c a l l y a l l o c a t e d s h a r e d memory
20 kernel<<< 1 , n , n* s i z e o f ( i n t ) >>>( ... ) ;
21 ...
22 }

Listing 1.3: Excerpt of C++ code showcasing the syntax of static and dynamic shared memory
allocation. Note when an array in shared memory is declared using extern, then the size of the
array is determined at run time [3]. Taken from Using Shared Memory in CUDA C/C++ by Harris,
M. [21].

For more information regarding shared memory see Section 1.2.3 in Parallel LU Decomposition
for the GPU [2] or CUDA C++ Programming Guide [3].

Global Memory The largest memory space present in CUDA is global memory. It is occasionally
referred to as device memory as it resides in an Nvidia GPU’s DRAM (Dynamic Random Access
Memory). While global memory resides in a device’s memory, it can be accessed by both the host
and the device, thus creating a communication medium between the two. The amount of global
memory available depends on the GPU used, for example, the Nvidia A100 GPU is available with
either 40 GB or 80 GB (shown in Table 1.1). Although it is the largest memory space found on the
device, it is high-latency and low-bandwidth compared to, e.g., shared memory.
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To clarify, since global memory is accessible by the device, it can be accessed by any thread of
any grid. See Figure 1.7 for a visualization of CUDA thread structures and the memory spaces
accessible to them.

Figure 1.7: CUDA memory structuring with accesses available to each thread structure. Taken from
GPU by Hsiao, Y. [22].

Furthermore, unlike the aforementioned memory spaces, the lifetime of global memory is bound to
the CUDA application, i.e., data can be present in global memory when the application starts and
removed when the application terminates. Moreover, global memory requires explicit allocation,
copying, and deallocation of data - see Parallel LU Decomposition for the GPU [2] and CUDA
C++ Programming Guide [3] for the specific functions.

For completeness, Figure 1.8 shows the architecture of an Nvidia GPU along with an overview of
the CUDA programming model.

While there is only one kernel present in Figure 1.8, it is noteworthy that if another kernel was
launched concurrently (explained later in Section 1.2.4) the threads allocated to it would also have
access to global memory. In other words, global memory is the same for all kernels in a CUDA
application.

1.2.4 Concurrent Kernel Execution

Concurrent kernel execution describes a scenario where two or more kernels from the same CUDA
application are running simultaneously. Note that kernels can be executed concurrently only on
certain devices with compute capability 2.x or higher. To check whether a device is capable of
concurrent kernel execution, the deviceQuery executable provided with the CUDA Toolkit can be
used [3].
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Figure 1.8: Simplified overview of an Nvidia GPU’s architecture and the CUDA programming
model. Taken from Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic
Resonance Imaging Using GPUs [23].

Streams As mentioned in Section 1.2.2, tasks on the device are executed serially, i.e., in the order
the host launched them. This series of tasks is referred to as the default stream since it is present
implicitly. To execute kernels concurrently, it is necessary to use multiple streams. Nvidia defines a
stream as "a sequence of commands that execute in order" [3].

Additionally, in Section 1.2.2, it was mentioned that a kernel is launched on a grid made up of
thread blocks. This holds even when multiple kernels are launched simultaneously, i.e., each kernel
is launched on a separate grid. When a grid is executing a kernel it is referred to as a resident grid.
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Note that the use of concurrent kernel execution is associated with certain limitations [2, 3]:

1. Maximum number of resident grids per device.

2. Kernels from different CUDA contexts cannot be run concurrently.

3. Kernels are only run concurrently if the device has enough resources for them.

4. Undefined behavior during stream interaction.

The first limitation is dependent on the compute capability version as presented in Table 1.3.

Compute capability 7.0 7.2 7.5 - 9.0
Max. resident grids per device 128 16 128

Table 1.3: Maximum number of resident grids on one device for CUDA compute capability 7.0 and
higher. Taken from CUDA C++ Programming Guide [3].

The second limitation prevents the concurrent execution of kernels from two distinct CUDA
applications on the same device. In particular, if kernels are issued from distinct processes, they
cannot run concurrently unless CUDA MPS2 is used [24, 25].

The third limitation states that a device can only run kernels concurrently if its resource limits are
not overstepped. However, this does not mean that the kernels will not be run. On the contrary, if
two or more kernels are launched using unique streams and the device’s resources cannot satisfy
the sum of resources required by the kernels, then one of the kernels will be executed first while
the other kernels are put aside until resources are available for them. In this context, resources are
either local memory or the number of threads the device is capable of running at a point in time.

The fourth limitation is often issued as a disclaimer from Nvidia that warns against the interactivity
of streams. Specifically, since all streams are independent of each other and have access to the same
global memory, one stream can alter the data used by another stream resulting in inconsistent and
possibly erroneous behavior.

To prevent the unpredictable execution order of stream-unique kernels, explicit synchronization can
be used. Functions providing explicit synchronization are, for example:

• cudaDeviceSynchronize() - This function creates a checkpoint where the host waits until
all preceding commands in all streams of all host threads have been completed [3].

• cudaStreamSynchronize( stream ) - This function serves a similar purpose to cud
aDeviceSynchronize() with the exception that the host only waits until the preceding
commands of a specific stream have completed.

To use a stream, other than the default stream, it is first necessary to construct it by instantiating and
creating a stream object using cudaStream_t and cudaStreamCreate(). Then, the stream must
be supplied to a kernel’s execution configuration to launch the kernel using it. Once the stream is
no longer needed it must be destroyed using cudaStreamDestroy(). C++ pseudocode detailing
the creation, usage, and destruction of streams is shown in Listing 1.4.

1 / / D e c l a r e a r r a y o f 2 s t r e a m o b j e c t s
2 cudaStream_t streams [ 2 ] ;
3

2CUDA MPS documentation website URL: https://docs.nvidia.com/deploy/mps/index.html
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4 / / C r e a t e each s t r e a m
5 f o r ( i n t i = 0 ; i < 2 ; ++i ) {
6 cudaStreamCreate ( &streams [ i ] ) ;
7 }
8

9 / / Launch MyKernelA u s i n g t h e 0 t h s t r e a m on a g r i d o f one one− t h r e a d b l o c k ←↩
wi th 0 b y t e s o f d y n a m i c a l l y a l l o c a t e d s h a r e d memory

10 MyKernelA<<< 1 , 1 , 0 , stream [ 0 ] >>>( inputVariableA )
11

12 / / Launch MyKernelB u s i n g t h e 1 s t s t r e a m
13 MyKernelB<<< 1 , 1 , 0 , stream [ 1 ] >>>( inputVariableB )
14

15 / / D e s t r o y each s t r e a m
16 f o r ( i n t i = 0 ; i < 2 ; ++i ) {
17 cudaStreamDestroy ( stream [ i ] ) ;
18 }

Listing 1.4: C++ pseudocode showcasing the creation, usage, and destruction of two streams.
Taken from CUDA C++ Programming Guide [3].

Assuming that the total local memory required by both kernels called in Listing 1.4 can be provided
by a device at a point in time, they will be executed in parallel. For a visualization of concurrent
kernel execution see Figure 1.9.

Figure 1.9: Visualization of concurrent kernel execution. Taken from POM.gpu-v1.0 [26].
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1.2.5 Parallel Reduction

This section aims to present a parallel computation concept relevant to the project. As stated earlier
in Section 1.1.1, the parallelization of certain tasks is not straightforward. An example of such a
task is finding the maximum value in an array.

The naive procedure for finding the maximum value is to iterate through the array, compare each
encountered element to a temporary variable, and save the larger of the two compared values into
the variable. However, this procedure is strictly sequential and thus inefficient when performed on
the device in its current form. In this case, parallel reduction can be used to parallelize the problem.

Parallel reduction is a means of reducing the values of an array into a single value using an
associative binary operator [27]. The operators often used in parallel reduction are, for example,
min, max, arg min, arg max, sum, etc. To clearly explain parallel reduction, the max operator will
be assumed.

In the context of CUDA, finding the maximum value of an array stored in global memory is a
two-step procedure:

1. A kernel is launched in which each thread block copies a subarray into shared memory and
finds its maximum value. The block then saves the maximum value into another array stored
in global memory. This process is repeated for the array comprising of per-block maximum
values until the number of elements required for comparison is smaller than the maximum
number of threads a block can have.

2. The kernel is launched again on a grid comprising a single thread block. This allows loading
the entire array into the block’s shared memory, which means that the maximum value
produced will be the largest in the initial array.

To clearly explain parallel reduction, an example detailing the kernel will be described, i.e., finding
the maximum value of an array stored in shared memory.

In short, parallel reduction performs iterations of simultaneous pair-comparisons as shown in
Figure 1.10.

As can be seen in Figure 1.10, in every iteration, each thread compares two values and then saves
the larger of the two into the array. Starting with the 2nd iteration, to reduce the workload, the
number of values used is halved in every iteration. Specifically, only the values saved by threads in
the previous iteration are evaluated. Thus, starting with the 2nd iteration, the number of threads
used in each iteration is halved as they are no longer needed.

Note that the memory-accessing procedure of parallel reduction presented in Figure 1.10 is referred
to as interleaved addressing. The reason for this is that the values are stored in shared memory
which makes this usage of threads cause shared memory bank conflicts. Simply put, a shared
memory bank conflict signifies that threads were not used optimally when accessing shared memory
- for a detailed description of shared memory bank conflicts see Parallel LU Decomposition for the
GPU [2]. Parallel reduction with an alternative memory-accessing procedure known as sequential
addressing is shown in Figure 1.11.

For parallel reduction in CUDA, sequential addressing has been shown to be 2x faster on average
than interleaved addressing [28]. For more details, see the performance comparison presented in
Optimizing Parallel Reduction in CUDA [28].
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Figure 1.10: Visualization of finding the maximum value in a 16-element array stored in shared
memory using parallel reduction. The gray squares contain values of the array. Each row of gray
squares shows the array contents in a given iteration. The light green circles represent threads;
the number inside each circle is the thread ID. The maximum value found is in the red-bordered
square. This figure was created based on the example in Optimizing Parallel Reduction in CUDA
by Harris, M. [28].

1.3 Iterative Crout’s Method with Partial Pivoting (ICMPP)

The core aspect of HPC is solving advanced computation problems across various fields. The
specific types of problems HPC is used to solve include, for example, developing new drugs,
deciphering the functioning of the human brain, developing driverless cars, etc. [29]. Solving
complex tasks can involve using a wide range of programs that often rely on dependencies to
efficiently perform fundamental tasks, such as solving a system of linear equations.

The roots of linear equation solving can be traced back to ancient Chinese mathematics books
from around 100 BC [30]. Since then, it has become a fundamental component of numerical linear
algebra. Owing to its early discovery and wide range of uses, many different methods have been
developed - Gaussian elimination being arguably the most well-known. However, this project
focuses on the use of Lower-Upper decomposition with partial Pivoting (LUP) and substitution to
solve linear equations. Specifically, the LUP method selected was the iterative variant of Prescott
Durand Crout’s matrix decomposition method, referred to - in the context of this project - as the
Iterative Crout’s Method (ICM). Note that in the context of this project, ICM does not include
pivoting; a modification of ICM that includes pivoting will be referred to as Iterative Crout’s
Method with Partial Pivoting (ICMPP).

First, LUP and its use when solving a system of linear equations will be briefly described. Then,
Crout’s Method with Partial Pivoting (CMPP) will be introduced, and finally, ICMPP will be
described.
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Figure 1.11: Visualization of finding the maximum value in a 16-element array stored in shared
memory using parallel reduction with sequential addressing. The gray squares contain values of
the array. Each row of gray squares shows the array contents in a given iteration. The light green
circles represent threads; the number inside each circle is the thread ID. The maximum value found
is in the red-bordered square. This figure was created based on the example in Optimizing Parallel
Reduction in CUDA by Harris, M. [28].
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1.3.1 LU Decomposition with Partial Pivoting (LUP)

It can be argued that LUP is simply Lower-Upper decomposition (LU) with the added feature of
partial pivoting. To clearly explain LUP, LU will first be introduced.
LU is a procedure that factors an input matrix into the product of a lower-triangular matrix and an
upper-triangular matrix

A = LU , (1.1)

where A,L,U ∈ Rn×n (n ∈ N). Specifically, the lower-triangular matrix L has the form

L =



l1,1 0 . . . . . . 0

l2,1 l2,2
. . .

...

l3,1 l3,2
. . .

. . .
...

...
...
. . .

. . . 0
ln,1 ln,2 . . . ln,n−1 ln,n



, (1.2)

and the upper-triangular matrix U has the form

U =



u1,1 u1,2 u1,3 . . . u1,n
0 u2,2 u2,3 . . . u2,n
...

. . .
. . .

. . .
...

...
. . .

. . . un−1,n
0 . . . . . . 0 un,n



. (1.3)

However, the above-introduced version of LU is susceptible to failure if A is not strongly regular.
This limitation can be overcome by properly ordering the rows and columns of A, which is referred
to as LU decomposition with full pivoting. Furthermore, the factorization is numerically stable in
practice even if only rows are permuted [31], which is referred to as LU decomposition with partial
Pivoting (LUP).

The decomposition performed by LUP is identical to that of LU with the exception of a permutation
matrix being added to keep track of row permutations. In matrix form, LUP is written as

PA = LU , (1.4)

where P ∈ {0, 1}n×n (n ∈ N) is a permutation matrix, i.e., each row and column of P has only one
entry equal to 1 and all other entries are equal to 0. Alternatively, LUP can also be written as

A = LUP , (1.5)

according to Necessary And Sufficient Conditions For Existence of the LU Factorization of an
Arbitrary Matrix [32].

Next, the usage of LUP when solving a system of linear equations will be described. A system of
n ∈ N linear equations and n unknowns can be written in matrix form as

Ax = b , (1.6)
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where A ∈ Rn×n is a coefficient matrix, x ∈ Rn is a vector of unknowns, and b ∈ Rn is a vector
containing right-hand side values.

Note that a system of n ∈ N linear equations and n unknowns with m ∈ N right-hand sides can be
written in matrix form as

AX = B , (1.7)

where X ∈ Rn×m is a matrix of unknowns and B ∈ Rn×m a matrix of right-hand sides.

Solving a system of linear equations using LUP is a two-step process [2]:

1. Decomposition - assuming a system of n ∈ N linear equations and n unknowns defined
in Equation 1.6, matrix A ∈ Rn×n permuted by a permutation matrix P ∈ {0, 1}n×n is
decomposed into the product of a lower-triangular matrix L ∈ Rn×n and an upper-triangular
matrix U ∈ Rn×n as shown in Equation 1.4.
To use LU, both sides of Equation 1.6 must first be left-multiplied by P

PAx = Pb . (1.8)

Then, substituting LU for PA in Equation 1.8 yields

LUx = Pb . (1.9)

2. Substitution - the system presented in Equation 1.9 is then solved in two steps:

(a) Forward substitution - solve Ly = Pb where only vector y ∈ Rn is not known. Note
that, in practice, vector b is permuted using P before this system is solved.

(b) Backward substitution - solve Ux = y where only vector x ∈ Rn is not known.

Once x contains the solution, it can be directly applied to the system presented in Equation 1.6, i.e.,
there is no need for additional permuting.

Note that b is only required in Step 2, i.e., it is not used to decompose A. As mentioned in Parallel
LU Decomposition for the GPU [2] and in Linear Equations and Eigensystems [33], this presents
an advantage for LUP over Gaussian elimination in cases where right-hand sides are not provided
at once. For example, when solving linear time-dependent partial differential equations, each time
step presents a system whose right-hand side is determined by the solution of the system belonging
to the previous time step. In such cases, Gaussian elimination would need to be performed in its
entirety for every new right-hand side, whereas LUP would be used to decompose A once, and then
the output of the decomposition would be reused for every new right-hand side.

While there are many different approaches to LUP, this project focuses on Crout’s Method with
Partial Pivoting (CMPP) and Iterative Crout’s Method with Partial Pivoting (ICMPP).

1.3.2 Crout’s Method with Partial Pivoting (CMPP)

This section aims to introduce an LUP algorithm known as Crout’s Method with Partial Pivoting
(CMPP). CMPP’s base form, Crout’s Method (CM), is also referred to as Crout’s matrix decompo-
sition or Crout’s factorization and was developed by Prescott Durand Crout [34] in the 20th century.
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In the context of this project, CM refers to the method without partial pivoting, whereas CMPP
refers to the method with partial pivoting.

When it comes to LUP algorithms, a distinctive feature of CM is that it generates a unit upper-
triangular matrix U ∈ Rn×n (n ∈ N), i.e., one where all the elements on its main diagonal are equal
to 1:

U =



1 u1,2 u1,3 . . . u1,n
0 1 u2,3 . . . u2,n
...
. . .

. . .
. . .

...
...

. . .
. . . un−1,n

0 . . . . . . 0 1



. (1.10)

Algorithm The core part of the algorithm for decomposing matrix A ∈ Rn×n (n ∈ N) into LUP,
where L,U ∈ Rn×n (n ∈ N) and P ∈ {0, 1}n×n, consists of formulas for computing the elements of L
and U [34]:

li, j = ai, j −
j−1∑

k=1

li,kuk, j i ≥ j , (1.11)

ui, j =
1
li,i

ai, j −
i−1∑

k=1

li,kuk, j

 i < j , (1.12)

ui, j = 1 i = j ,

i, j ∈ n̂ .

The algorithm itself consists of the following steps (assuming input matrix A ∈ Rn×n where n ∈ N)
[34, 35]:

1. Set j equal to 1.

2. If j is greater than n, then stop the execution as matrices L and U have been successfully
computed.

3. Compute values from l j, j to ln, j in column j of L.

4. Pivot row j:

(a) In the values computed in Step 3, find the index (p) of the element largest in absolute
value:

p = arg max
j≤k≤n

∣∣∣lk, j
∣∣∣ . (1.13)

(b) If j is not equal to p, swap rows j and p in matrices L, U, and P.

(c) If l j, j is equal to 0, then the decomposition algorithm has failed as the matrix is singular.

5. Compute values from u j, j+1 to u j,n in row j of U.

6. Increment j by 1 and go to Step 2.

See Figure 1.12 for a visualization of the algorithm’s advance and Listing 1.5 for a pseudocode
implementing the algorithm.
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Figure 1.12: Visualization of the advance of CMPP’s algorithm. First, elements l j, j to ln, j in column
j of L are computed. Then, row j is pivoted. Its row is swapped with the row containing the largest
absolute value of an element in column j, starting from l j, j and ending at ln, j, both inclusive. Finally,
elements u j, j+1 to u j,n in row j of U are computed. Adapted from Crout’s LU Factorization by
Vismor [36].

1 vo id swapRows ( M , row1 , row2 , n )
2 {
3 f o r ( Index j = 0 ; j < n ; ++j ) {
4 do ub l e temp = M [ row1 ] [ j ] ;
5 M [ row1 ] [ j ] = M [ row2 ] [ j ] ;
6 M [ row2 ] [ j ] = temp ;
7 }
8 }
9

10 i n t pivotRowOfMatrix ( j , M , piv , n )
11 {
12 / / Find row below t h e j − t h row wi th max. v a l u e i n t h e j − t h column
13 do ub l e maxAbs = abs ( M [ j ] [ j ] ) ;
14 i n t pivRow = j ;
15

16 f o r ( Index i = j + 1 ; i < n ; ++i ) {
17 do ub l e absElem = abs ( M [ i ] [ j ] ) ;
18 i f ( absElem > maxAbs ) {
19 maxAbs = absElem ;
20 pivRow = i ;
21 }
22 }
23

24 i f ( pivRow != j ) { / / swap rows j and pivRow
25 swapRows ( M , j , pivRow , n ) ;
26 piv ( j ) = pivRow + 1 ;
27 }
28

29 r e t u r n pivRow ;
30 }
31

32 vo id cmpp ( A , L , U , piv , n )
33 {
34 i n t i , j , k ;
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35 do ub l e sum = 0 ;
36

37 / / F i l l main d i a g o n a l o f U wi th ones
38 f o r ( i = 0 ; i < n ; ++i )
39 U [ i ] [ i ] = 1 ;
40

41 / / Loop t h r o u g h t h e main d i a g o n a l
42 f o r ( j = 0 ; j < n ; ++j ) {
43

44 / / Compute column j i n L
45 f o r ( i = j ; i < n ; ++i ) {
46 sum = 0 ;
47 f o r ( k = 0 ; k < j ; ++k )
48 sum += L [ i ] [ k ] * U [ k ] [ j ] ;
49

50 L [ i ] [ j ] = A [ i ] [ j ] − sum ;
51 }
52

53 / / P i v o t row j
54 i n t pivRow = pivotRowOfMatrix ( j , L , piv , n ) ;
55 / / Swap rows of r e m a i n i n g m a t r i c e s t o m a i n t a i n t h e same o r d e r i n g
56 i f ( pivRow != j ) {
57 swapRows ( A , j , pivRow , n ) ;
58 swapRows ( U , j , pivRow , n ) ;
59 }
60

61 / / Decompos i t i on f a i l e d as d i v i s i o n by z e r o would o c c u r on l i n e 73
62 i f ( L [ j ] [ j ] == 0 ) {
63 printf ( "−!> Cannot decompose s i n g u l a r Ma t r i x A! " ) ;
64 exit ( EXIT_FAILURE ) ;
65 }
66

67 / / Compute row j i n U
68 f o r ( i = j ; i < n ; ++i ) {
69 sum = 0 ;
70 f o r ( k = 0 ; k < j ; ++k )
71 sum = sum + L [ j ] [ k ] * U [ k ] [ i ] ;
72

73 U [ j ] [ i ] = ( A [ j ] [ i ] − sum ) / L [ j ] [ j ] ;
74 }
75 }
76 }

Listing 1.5: C++ pseudocode for CMPP’s algorithm that decomposes an n-by-n matrix A. The
two-dimensional arrays A[ n ][ n ], L[ n ][ n ], and U[ n ][ n ] represent matrices A, L, and
U, respectively. Instead of using a two-dimensional array to represent matrix P a one-dimensional
array piv is used. It stores the index of the row that each row was pivoted with, e.g., piv[ 0 ]
= 8 signifies that row 0 was swapped with row 8. Note that, on input, L and U are assumed to be
populated with zeros. Derived from Algorithm 16 [35] and Numerical recipes [34].

From Formulas 1.11 and 1.12, and the pseudocode presented in Listing 1.5, it can be seen that the
main part of computing an element in either L or U, where L,U ∈ Rn×n (n ∈ N), is the sum. For
each element, the sum is computed using certain elements above and to the left of it. Specifically,
elements starting from 1 to min(i, j) (excluding the latter) in row i and column j are multiplied and
summed. This dependency of elements is visualized in Figure 1.13.

In summary, an element in row i and column j is dependent on elements with indices
[
1,min(i, j))

from its row and elements with indices
[
1,min(i, j)) from its column. This means that CMPP’s

algorithm is inherently sequential, which seemingly limits its potential for parallelization.
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Figure 1.13: Two examples of elements used (light gray squares) to compute the sum in the
formula of elements li, j and ui, j (dark gray squares). The lower triangle of the matrix consists of
the corresponding elements of the lower triangle from L while the upper triangle consists of the
corresponding elements of the upper triangle from U. To compute the sum, only elements with
indices in the interval

[
1,min(i, j)), i.e., excluding the right boundary, are used in the element’s row

and column. Taken from Parallel LU Decomposition for the GPU [2] and Fine-Grained Parallel
Incomplete LU Factorization [37].

Thus far, the variation of CMPP discussed will either produce an exact solution in a finite amount
of steps or, if the matrix is singular, it will fail. In terms of numerical methods such a method is
referred to as direct.

An alternative group of methods to direct methods is known as iterative methods. Unlike direct
methods, iterative methods improve an initial estimate of a solution until the desired accuracy
is reached. An example of an iterative variant of CMPP: Iterative Crout’s Method with Partial
Pivoting (ICMPP) will be described in the next part.

1.3.3 Iterative Crout’s Method with Partial Pivoting (ICMPP)

Seeing as the potential for parallelization is seemingly limited for CMPP’s algorithm, an alternative
approach can be used. One such alternative, put forward by Anzt, H.; Ribizel, T.; Flegar, G.;
Chow, E.; Dongarra, J. in ParILUT - A Parallel Threshold ILU for GPUs [38], involves using the
formulas of CM in an iterative method. Although the method proposed by the authors generates
incomplete factorization, i.e., some nonzero elements are omitted during factorization, its principle
can be extracted to create an iterative decomposition method that produces a complete factorization.
As detailed in Parallel LU Decomposition for the GPU [2], the complete-factorization approach
iteratively refines the initial estimates of L and U until the desired accuracy of A = LU is reached.
This approach, labeled as Iterative Crout’s Method (ICM), has been modified to include partial
pivoting, thus creating Iterative Crout’s Method with Partial Pivoting (ICMPP).

The decomposition of matrix A ∈ Rn×n (n ∈ N) into the product of matrices L,U ∈ Rn×n, and a
permutation matrix P ∈ {0, 1}n×n using ICMPP consists of the following steps [2]:
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1. Create an initial estimate of matrices L0 and U0 using A:

l0i, j = ai, j u0
i, j = 0 i > j ,

u0
i, j = ai, j l0i, j = 0 i < j ,

l0i, j = ai, j u0
i, j = 1 i = j ,

and initialize P as the identity matrix.

2. Denote the current iteration as t ∈ N and initialize it to 1.

3. Compute Lt using Formula 1.11:

lti, j = ai, j −
j−1∑

k=1

lt−1
i,k ut−1

k, j i ≥ j .

4. Take the first j ∈ n̂ that satisfies the conditions
∣∣∣∣lt−1

j, j − ltj, j
∣∣∣∣ ≤ ϵ1 (where ϵ1 denotes a tolerance,

e.g., 0.001) and
∣∣∣∣ltj, j
∣∣∣∣ ≤ ϵ2, where ϵ2 denotes a pivoting tolerance, e.g., 1e-5. In other words,

find the first element on the main diagonal of L whose value is finalized and check if it
requires pivoting according to the pivoting tolerance. In the context of this project, pivoting
an element only when it is smaller than (or equal to) the pivoting tolerance is referred to as
conditional partial pivoting. If no such j satisfies the conditions, proceed to Step 6. Then,
iteratively process all elements in Lt below row j from column 1 to column j (including both
boundaries), i.e., ltb,c where j < b ≤ n and 1 ≤ c ≤ j. In this context, iteratively process
signifies to continue computing the mentioned elements using Formula 1.11 until they all
satisfy the condition

∣∣∣∣lt−1
b,c − ltb,c

∣∣∣∣ ≤ ϵ1.

5. Pivot row j (same as Step 4 in the CMPP algorithm described on Page 32):

(a) Find the index (p) of the element largest in absolute value in column j from row j to n:

p = arg max
j≤k≤n

∣∣∣∣ltk, j
∣∣∣∣ .

(b) If j is not equal to p, swap rows j and p in matrices A, Lt, Ut, and P.

(c) If ltj, j is equal to 0, then the decomposition procedure has failed as the matrix is singular.

6. Compute Ut using the values of Lt computed in earlier steps according to the formula
provided in Equation 1.12:

ut
i, j =

1
lti,i

ai, j −
i−1∑

k=1

lti,kut−1
k, j

 i < j .

7. If the maximum absolute difference between Lt−1 and Lt, or between Ut−1 and Ut, exceeds
tolerance ϵ1, then increment t by 1 and return to Step 3.

8. The algorithm has iteratively refined the initial estimates of L and U in A = LUP, where A
represents its original state before any potential changes occurred during this algorithm.

While the instructions in Steps 3 to 7 must be performed consecutively, the operations in each step
can be executed in parallel:
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• Step 3 - The element lti, j
(
i, j ∈ n̂; n ∈ N) is dependent only on elements from matrices A,

Lt−1, and Ut−1. Since the values in the first matrix are constant - excluding the swapping of
rows - and the last two matrices were set in the previous iteration, no elements from Lt are
dependent on each other. Thus, all elements lti, j can be computed simultaneously.

• Step 4 - The absolute-value conditions can be evaluated in parallel, and for the iterative
processing, the formula from Step 3 is used.

• Step 5 - The max operation mentioned in Section 1.2.5 can be adapted to suit the needs of
arg max used in Step 5a. While the swapping of elements in two rows can be performed in
parallel, Steps 5b and 5c must be executed consecutively.

• Step 6 - The element ut
i, j
(
i, j ∈ n̂; n ∈ N) is dependent only on elements from matrices A, Lt,

and Ut−1. Matrices A and Ut−1 were covered in the description of parallelization of Step 3
and matrix Lt was finalized in Steps 3 to 5. Thus, since no elements from Ut are dependent
on each other, they can be computed simultaneously.

• Step 7 - Since the evaluation of the processing rule has no dependencies, it is entirely
parallelizable.

Note that due to the nature of iterative methods, it is not possible to accurately predict the number
of iterations needed to iteratively refine the initial estimate until the desired accuracy is reached.
Thus, the performance of ICMPP may heavily depend on the nonzero element structure of matrix
A.

To summarize, in Sections 1.1 and 1.2 a high-performance parallel computing system was introduced
in the form of Nvidia GPUs manageable by CUDA. Then, in Section 1.3.3, a parallelizable algorithm
was presented. The combination of the aforementioned parts will be the main focus of the following
chapters.
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Chapter 2

Implementation

This chapter presents the implementation of the Decomposition project, which serves as a TNL-
compatible framework for housing the CMPP and ICMPP algorithms described in Sections 1.3.2 and
1.3.3, respectively. In addition to these algorithms, a set of triangular solvers has been implemented
to offer a comprehensive solution for solving systems of equations.

First, the 3rd party libraries used in the project will be presented. Then, the project itself will be
detailed. Finally, the last section presents the integration of the Decomposition project into a library
that aims to provide a parallel solver of linear equations for systems originating from finite element
computations.

2.1 Libraries Used

This section aims to introduce the two main libraries used in the Decomposition project. The
first, Template Numerical Library (TNL)1, provides this project with data structures and parallel
functionalities. The second, CUDA Libraries (cuSOLVER2, cuBLAS3), provides state-of-the-art
decompositions and linear system solvers.

2.1.1 Template Numerical Library (TNL)

The Template Numerical Library (TNL) [39, 40] is an open-source and collaborative project
licensed under the MIT license. According to the core team behind the project, TNL aims to be the
C++ Standard Template Library (STL) for HPC [41]. In practice, this means facilitating a base for
the development of, for example, efficient numerical solvers and other HPC algorithms. Similarly
to STL, TNL is implemented in C++ and uses up-to-date programming paradigms to provide a
user-friendly interface. Additionally, TNL utilizes the advantages provided by C++ templates such
as minimal overhead runtime and broad compatibility of functionalities. In terms of HPC, TNL
provides a unified interface for managing multicore CPUs, GPUs, and distributed systems.

While TNL provides a wide range of data structures and functionalities, this section will only
briefly present those utilized in the Decomposition project. First, a selection of data structures will

1TNL website URL: https://tnl-project.org
2cuSOLVER website URL: https://developer.nvidia.com/cusolver
3cuBLAS website URL: https://developer.nvidia.com/cublas
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be introduced followed by parallel functionalities. See Template Numerical Library User Guide
[42] for examples and tutorials concerning the presented content.

Data Structures

Array One of the most basic data structures is the TNL::Containers::Array class or Array
for short [42]. An array type is declared using the following template parameters:

• Value - The array data type, e.g., double.

• Device - The device where an array operation is to be performed - either on the CPU or on
the GPU, denoted using TNL::Devices::Host or TNL::Devices::Cuda, respectively.

• Index - The indexing data type, e.g., int.

• Allocator - The allocator type used for the allocation and deallocation of data. This
parameter dictates the memory space the data is allocated in, e.g., on the host (CPU memory
space), or the device (CUDA memory space). By default, the allocator corresponding to
Device is set.

At its core, Array contains a pointer to the data and the size of the array. Additionally, methods
providing various functionalities are present, for example, resize() or forAllElements(),
where the latter executes a given lambda expression4 for each element of the array; the lambda is
executed by the same device whose memory space contains the data. Note that while all methods can
be executed on the host (CPU), only those prefixed with __cuda_callable__ can be executed on
the device (Nvidia GPU). The __cuda_callable__ macro is defined as __device__ __host__,
where __device__ indicates that the function can only be called from and executed on the device,
and __host__ indicates that the function can only be called from and executed by the host.

Vector Extending Array is the TNL::Containers::Vector class [42]. Its template parameters
are identical to those of Array except for changes in nomenclature. While its parent class possesses
functionalities largely centered around memory management, Vector adds basic vector operations
such as addition, subtraction, scalar multiplication, etc.

Dense Matrix The data structure implementing a dense matrix, i.e., a matrix storing all its values
(zeros and nonzeros inclusive), is the TNL::Matrices::DenseMatrix class [42]. The class type
is declared using the following template parameters:

• Real - The type of the matrix’s elements, e.g., double.

• Device - The device where the matrix is allocated. It can be either on the CPU or on the
GPU denoted using TNL::Devices::Host or TNL::Devices::Cuda, respectively.

• Index - The indexing type of the matrix’s elements, e.g., int.

• Organization - The ordering of matrix elements in the matrix’s data vector. It can be either
row-major or column-major order, denoted by RowMajorOrder or ColumnMajorOrder,
respectively, found in the TNL::Algorithms::Segments::ElementsOrganization
namespace.

4C++ lambda expressions on cppreference: https://en.cppreference.com/w/cpp/language/lambda
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• RealAllocator - The allocator for the matrix’s elements.

Analogous to Vector, DenseMatrix contains a variety of functionalities ranging from different
constructors and data accessors to matrix operations and per-element methods.

In this project, an often-used method is the data-accessing operator: operator( row, col ). This
operator returns a reference to an element at a given row and column. While this access is fast, it
can only be used to access data from the same device whose memory space contains the data, as it is
prefixed with __cuda_callable__. For cross-device data access, either setElement( row, col,
value ) or getElement( row, col ) can be used. Notwithstanding, the use of setElement and
getElement is discouraged as copying a single element between devices is synonymous with low
performance. Note that getElement() returns the value of the element.

The DenseMatrix data structure was chosen to represent the matrices in the implementation
presented earlier as the focus of this project is the development of a dense decomposition algorithm.

View To comfortably use the aforementioned data structures in CUDA kernels, TNL provides an
encapsulation mechanism without ownership in the form of views. For example, the Array class
contains a view referred to as ArrayView. It can be assimilated to a pointer to an Array instance
that retains only methods of Array that do not manage memory. Specifically, the ArrayView of
an Array instance is bound to the Array instance’s data via its data pointer, i.e., the data can be
read and overwritten using the view but the array cannot be resized. Note that the destruction of
an ArrayView instance does not affect the Array instance. Another important characteristic of
ArrayView is that, unlike Array, its copy-constructor creates a shallow copy, i.e., only the pointer
and size are changed. This allows for array views to be both passed by value to CUDA kernels and
captured by value in lambda functions (including lambda functions executed on the device). In
contrast, the overloaded operator operator= of both Array and ArraView performs a deep copy
of the data.

Parallel Functionalities

Parallel For Loop Parallelization of a for loop performing independent tasks in CUDA is
a simple task. However, for user comfort, TNL provides a parallel for-loop implementation:
TNL::Algorithms::parellelFor( begin, end, f ), where begin and end specify the bound-
ary indices, and f represents the lambda function performed in each iteration. Note that the
implementation supports multi-index values, i.e., parallelization of nested for loops is implicitly
supported. However, it is noteworthy that TNL’s parallelized for-loop cannot be run within kernels
as it does not support dynamic parallelism.

Parallel Reduction Parallel reduction with sequential addressing, described in Section 1.2.5,
is available in TNL in different forms. The basic form, where an array is reduced to a single
value, is provided by TNL::Algorithms::reduce( array, reduction ) where array can
be an array, view, or another compatible object, and reduction specifies the reduction oper-
ation to perform. The reduction operations available in TNL are, for example, TNL::Max{},
TNL::LogicalAnd{}, etc. Additionally, TNL provides parallel reduction with an argument:
TNL::Algorithms::reduceWithArgument( array, reduction ), which returns both the
reduced element and its index. For this function, the reduction operation can be, e.g.,
TNL::MaxWithArg{}, and the returned std::pair contains the maximum value of the array
and the index at which it is located. Moreover, both reduction functions provide customization
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through additional parameters. For example, the reduceWithArgument( begin, end, fetch,
reduction, identity ) function takes the following parameters:

• begin - the index where the reduction begins;

• end - the index before which the reduction ends;

• fetch - the lambda function to fetch the input data;

• reduction - the lambda function to perform the reduction operation; and

• identity - the identity element.

2.1.2 CUDA Libraries

The two CUDA libraries used in the Decomposition project are cuSOLVER [43] and cuBLAS
[44]. Both libraries were developed by Nvidia to provide users with an extensive collection of
state-of-the-art functionalities that leverage the potential of Nvidia GPUs.

Similarly to the introduction of TNL in Section 2.1.1, only the functionalities utilized in the project
will be briefly presented.

cuSOLVER

The cuSOLVER library provides functionalities for decomposing matrices and finding solutions to
linear systems. While it can be argued that sparse matrices are more common in HPC, the library
includes methods for both dense and sparse matrices.

As mentioned in Sections 1.3.3 and 2.1.1, the Decomposition project aims to present a novel
approach to dense-matrix decomposition. Thus, to provide a comparison with an industry standard,
the cusolverDnXgetrf() function was included in a TNL-compatible wrapper. The chosen
function performs LU decomposition with partial pivoting:

PA = LU , (2.1)

where P is a permutation matrix, A is a coefficient matrix, L is a unit lower-triangular matrix, and
U is an upper-triangular matrix. In other words, unlike CM, the main diagonal consisting of ones is
found in L and not in U.

The function is data-agnostic, i.e., both single and double precision can be used. For
completeness, note that the function’s name follows cuSOLVER’s naming conventions cu
solverDn<t><operation> [43], where:

• t represents the data type, for example, S, D, C, Z, or X, i.e., float, double, cuComplex,
cuDoubleComplex, or the generic type, respectively; and

• operation represents the factorization operation, for example, potrf (Cholesky factor-
ization), getrf (LU with partial pivoting), geqrf (QR factorization), or sytrf (Bunch-
Kaufman factorization).

While the cusolverDnXgetrf() function takes many parameters, only a select few will be shown
in Listing 2.1.
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1 cusolverStatus_t cusolverDnXgetrf (
2 int64_t m , / / Number o f rows i n m a t r i x A
3 int64_t n , / / Number o f columns i n m a t r i x A
4 cudaDataType dataTypeA , / / The e l e m e n t t y p e o f m a t r i x A, e . g . , d ou b l e
5 vo id *A , / / P o i n t e r t o GPU memory where m a t r i x A i s s t o r e d ←↩

as an a r r a y i n column−major o r d e r
6 int64_t *ipiv ) / / P o i n t e r t o GPU memory where t h e p i v o t i n g v e c t o r ←↩

i s s t o r e d ; i f s e t t o n u l l p t r , t h e n p a r t i a l p i v o t i n g i s n o t pe r fo rmed

Listing 2.1: The function declaration of cusolverDnXgetrf() with a selection of parameters.

On output, the elements in the lower triangle of matrix A are those of matrix L, and the elements in
the upper triangle of A - including the main diagonal - are those of U:

A =



u1,1 u1,2 u1,3 . . . u1,n
l2,1 u2,2 u2,3 . . . u2,n

l3,1 l3,2
. . .

. . .
...

...
...

. . .
. . . un−1,n

ln,1 ln,2 . . . ln,n−1 un,n



. (2.2)

As the method exhibits a characteristic where the values of the main diagonal of matrix L are equal
to 1, irrespective of the input matrix, the main diagonal of L is not stored.

For the full list of parameters, see the function’s documentation5 [43]. Additionally, an exam-
ple where the cusolverDnXgetrf() function is used can be found in cuSOLVER/Xgetrf/cu
solver_Xgetrf_example.cu in the CUDALibrarySamples GitHub repository [45].

To provide a complete linear solver, along with cusolverDnXgetrf(), the cuSOLVER library
also provides the cusolverDnXgetrs() function. Note that the function is only responsible
for solving a linear system with multiple right-hand sides [43]. Similarly to the aforementioned
cuSOLVER function, cusolverDnXgetrs() is data-agnostic. For a selection of input parameters
for cusolverDnXgetrs() see Listing 2.2.

1 cusolverStatus_t cusolverDnXgetrs (
2 int64_t n , / / Number o f rows / columns i n m a t r i x A
3 int64_t nrhs , / / Number o f r i g h t −hand s i d e s o f t h e l i n e a r system ,←↩

i . e . , t h e number o f columns i n m a t r i x B
4 cudaDataType dataTypeA , / / The e l e m e n t t y p e o f m a t r i x A, e . g . , d ou b l e
5 c o n s t vo id *A , / / P o i n t e r t o GPU memory where m a t r i x A i s s t o r e d ←↩

as an a r r a y i n column−major o r d e r
6 c o n s t int64_t *ipiv , / / P o i n t e r t o GPU memory where t h e p i v o t i n g v e c t o r ←↩

i s s t o r e d ; i f s e t t o n u l l p t r , t h e n p a r t i a l p i v o t i n g i s i g n o r e d
7 cudaDataType dataTypeB , / / The e l e m e n t t y p e o f m a t r i x B , e . g . , d ou b l e
8 vo id *B ) / / P o i n t e r t o GPU memory where m a t r i x B i s s t o r e d ←↩

as an a r r a y i n column−major o r d e r

Listing 2.2: The function declaration of cusolverDnXgetrs() with a selection of parameters.
Note that matrix A should adhere to the format of the matrix produced by cusolverDnXgetrf()
[43].

5Documentation of cusolverDnXgetrf(): https://docs.nvidia.com/cuda/archive/12.0.0/cusolver
/index.html#cusolverdnxgetrf
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Similarly to cusolverDnXgetrf(), the full list of parameters can be found in the documenta-
tion of cusolverDnXgetrs()6 [43] and an example where the function is used can be found
in cuSOLVER/Xgetrf/cusolver_Xgetrf_example.cu in the CUDALibrarySamples GitHub
repository [45].

cuBLAS

The cuBLAS library serves as a CUDA-specific Linear Algebra Subroutine Library [44]. Given
that the Decomposition project aims to provide a complete, TNL-compatible solution for LU de-
composition and for solving systems of equations, the cusolverDnXgetrs() function alone is not
sufficient. While cusolverDnXgetrs() is a performant solver, according to the cuSOLVER docu-
mentation [43], it is only compatible with the matrix format produced by cusolverDnXgetrf().
In other words, cusolverDnXgetrs() is only capable of solving systems:

LUX = PB , (2.3)

where L is a unit lower-triangular matrix and U is an upper-triangular matrix. Note that, in practice,
matrices L and U are stored together in a single matrix, following the format shown in Equation 2.2.
Since CM can only produce a lower-triangular matrix coupled with a unit upper-triangular matrix,
an alternative approach was needed for solving linear systems using CM.

One such alternative, offered by the cuBLAS library, is the cublas<t>trsm() function. Similarly
to the cuSOLVER functions introduced earlier, t can be either S, D, C, or Z, i.e., float, double,
cuComplex, or cuDoubleComplex, respectively.

However, unlike cusolverDnXgetrs(), cublas<t>trsm() is only capable of solving triangular
linear systems with multiple right-hand sides. To use it for solving linear systems with LU
decomposition, it must be called twice (as detailed in Step 2 of the two-step process for solving a
system of linear equations mentioned in Section 1.3.1):

1. To solve LY = B, where Y and B are appropriately-sized matrices. Note that B is expected
to be permuted using P before B is supplied to cublas<t>trsm().

2. To solve UX = Y, where X is an appropriately-sized matrix.

For this purpose, the cuBLAS datatype cublasFillMode_t can be used in combination with
cublasDiagType_t to indicate which part of the matrix should be used by the cublas<t>trsm()
function. The cublasFillMode_t datatype can be either CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER, or CUBLAS_FILL_MODE_FULL. The first two options represent
the cases when either the lower triangle or the upper triangle of the matrix is to be used, respectively,
while the last option represents the case when the entire matrix is to be used. The cublasDiag
Type_t datatype can be either CUBLAS_DIAG_NON_UNIT or CUBLAS_DIAG_UNIT. The former
represents the case when the main diagonal of the matrix does not consist of ones, whereas the
latter represents the case when it does.
For clarity, to solve LY = B using cublas<t>trsm(), the function must be called with the
following parameters:

6Documentation of cusolverDnXgetrs(): https://docs.nvidia.com/cuda/archive/12.0.0/cusolver
/index.html#cusolverdnxgetrs

44

https://docs.nvidia.com/cuda/archive/12.0.0/cusolver/index.html#cusolverdnxgetrs
https://docs.nvidia.com/cuda/archive/12.0.0/cusolver/index.html#cusolverdnxgetrs


• CUBLAS_FILL_MODE_LOWER and CUBLAS_DIAG_UNIT when L is a unit lower-triangular
matrix; and

• CUBLAS_FILL_MODE_LOWER and CUBLAS_DIAG_NON_UNIT when L is a lower-triangular
matrix.

The parameters are set similarly for U when solving UX = Y, with the exception of using
CUBLAS_FILL_MODE_UPPER instead of CUBLAS_FILL_MODE_LOWER.

For a selection of input parameters for cublasDtrsm() see Listing 2.3.

1 cublasStatus_t cublasDtrsm (
2 cublasFillMode_t uplo , / / I n d i c a t o r o f which p a r t o f t h e m a t r i x i s t o be ←↩

used
3 cublasDiagType_t diag , / / I n d i c a t o r s i g n i f y i n g whe the r t h e m a t r i x has a ←↩

u n i t main d i a g o n a l
4 i n t m , / / Number o f rows of m a t r i x B and rows / columns of ←↩

m a t r i x A
5 i n t n , / / Number o f columns o f m a t r i x B
6 c o n s t d ou b l e *A , / / P o i n t e r t o GPU memory where m a t r i x A i s s t o r e d as←↩

an a r r a y i n column−major o r d e r
7 do ub l e *B ) / / P o i n t e r t o GPU memory where m a t r i x B i s s t o r e d as←↩

an a r r a y i n column−major o r d e r

Listing 2.3: The function declaration of cublasDtrsm() with a selection of parameters.

The full list of parameters can be found in the documentation of cublas<t>trsm()7 [44].

In summary, cublas<t>trsm() can be used to solve linear systems regardless of the LU matrix
format.

2.2 Decomposition Project

This section aims to present the Decomposition project, which houses a selection of LU decomposi-
tion and linear-system-solving algorithms. It is important to mention that the initial version of the
Decomposition project was conceptualized and implemented as part of Parallel LU Decomposition
for the GPU [2]. In the context of this thesis, the project was refactored and extended to include
several features. Therefore, for completeness, the project will be presented in its entirety with
occasional references instead of detailed explanations.

The development of the project was tracked in the Decomposition repository on GitLab8. Note
that access to the repository is restricted to members of the TNL group9. However, the project is
available on request or as an attachment to this thesis.

The project is made up of the following parts:

• Unit tests - The tests are written using GoogleTest, which is Google’s C++ testing frame-
work10.

7Documentation of cublas<t>trsm(): https://docs.nvidia.com/cuda/archive/12.0.0/cublas/index
.html#cublas-t-trsm

8Decomposition GitLab repository URL: https://gitlab.com/tnl-project/decomposition
9TNL GitLab group URL: https://gitlab.com/tnl-project

10GoogleTest GitHub repository URL: https://github.com/google/googletest
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• Implementations of algorithms - The project is primarily written in C++, except for CUDA-
extended C++ which is used in the implementations of algorithms.

• Benchmarks - The benchmarks are written in C++, with additional components such as
benchmark-running scripts written in Bash11, and benchmark-result-visualizing scripts writ-
ten in Python12.

As mentioned in Parallel LU Decomposition for the GPU [2], the Decomposition project was not
developed as part of TNL. However, TNL’s project structure and building processes were adopted
and tailored to fit the requirements of this project. The main reason behind this decision was
that several concepts in TNL could be easily reused. Furthermore, it allows for the project to be
incorporated into TNL in the future. For more information regarding the building process, refer to
the project’s README file13.

First, the unit tests will be briefly presented. Then, the LU decomposition and linear-system-solving
solutions implemented in the project will be detailed. The final part will introduce the benchmarks
of the implementations.

2.2.1 Unit Tests

The development of the Decomposition project was a continuous loop of theorizing, implementing,
and testing. Therefore, unit tests played a crucial role in facilitating smooth development. While
the structure of unit tests was adopted from TNL, certain modifications were made to meet the
requirements of the implementations [2]. Specifically, the unit tests needed to fulfill the following
requirements:

1. Lightweight - The unit tests are executed with every compilation of the project and, therefore,
should be executed quickly.

2. Reusable - The same test should be applicable to different algorithms.

3. Versatile - The same test should be capable of running with different data types.

4. Thorough - Certain implementations had multiple potential points of failure that must be
reliable.

To satisfy the requirements posed above, the following concepts were used and implemented:

• Sample problems - A set of problems that can be used in any test. For example, matrix A
along with its correct decomposition, or a system of linear equations in matrix form along
with its solution. To satisfy the "lightweight" requirement, the dimensions of matrices in the
problems were limited to a range from 2-by-2 to 38-by-38.

• Parametrized tests - The test methods were parametrized with template parameters provided
by GoogleTest. These template parameters are used to pass, for example, the type of matrix
with different data types or the algorithm used in the test.

• Configurable result verification - Due to the nature of some algorithms, the results produced
by their implementations are not as accurate as others. Thus, certain tests have to expect
results within a range.

11Bash website URL: https://www.gnu.org/software/bash
12Python website URL: https://www.python.org
13Decomposition project’s README file: https://gitlab.com/tnl-project/decomposition/-/blob/mas

ter/README.md
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• Point-of-failure testing - Using GoogleTest, it is possible to thoroughly verify the points of
failure in each implementation. This includes validating the type of exception thrown and
examining the contents of the exception’s message.

Furthermore, inspired by TNL and to ensure that the unit tests covered the desired functionalities,
code coverage was incorporated into the project using a tool called LTP GCOV extension (LCOV)
[46]. As of 9th June 2023, the line coverage was 90.6% and the function coverage was 76.6%. Note
that the coverage percentages may be affected by the fact that CUDA kernels were not recognized
as "hit" during execution, even if their calls were.
The full coverage report is available on request or as an attachment to this thesis.

2.2.2 Implemented Algorithms

The core implementations in the project are divided into two groups: Decomposers and Solvers.
The Decomposers group consists of implementations that perform LU decomposition with and
without partial pivoting. The Solvers group consists of implementations that use the output of an
LU decomposition algorithm to solve linear systems with and without partial pivoting.

In the context of this project, an implementation from the Decomposers group is referred to as a
decomposer, and an implementation from the Solvers group is referred to as a solver.

Decomposers

In particular, the Decomposers group consists of implementations that perform LUP, i.e., A = LUP,
or LU decomposition without partial pivoting, i.e., A = LU. The full list of decomposers and their
characteristics is presented in Table 2.1.

Decomposer With /Without PP Unit diag. in Device supported
CM(PP) Yes / Yes U CPU
CuSolverDnXgetrf(PP) Yes / Yes L GPU
GEM Yes / No L CPU
ICM_x(PP) Yes / Yes U CPU*, GPU
PCM_x(PP) Yes U GPU

Table 2.1: The decomposers made available by the Decomposition project. The decomposers
highlighted in gray are discussed in this thesis, and those in bold font were implemented by the
author of the project. The "PP" suffix indicates whether partial pivoting is used. The "x" in the
name of certain decomposers signifies their CUDA thread configuration. The "Unit diag. in"
column indicates which of the two matrices, L or U, contains the unit diagonal on output. Note that
ICM_xPP is only implemented on the GPU as the CPU implementation would be highly inefficient.

As can be seen from Table 2.1, the Decomposition project includes the implementation of the
Gaussian Elimination Method (GEM) decomposer. However, it will not be a subject of discussion
in this thesis as it was primarily used for verifying the accuracy of other decomposers. Its use is
discouraged for any purpose other than the verification of accuracy.

Next, the implementations of the selected decomposers will be presented.

Crout’s Method with Partial Pivoting (CMPP) The sequential algorithm of CMPP, detailed
in Section 1.3.2, was implemented only for the CPU since it would not be efficient on the GPU

47



without any modifications. The declaration of the decompose()method for the CMPP decomposer
is shown in Listing 2.4, and the definition can be found in Appendix A. The definition of decom
pose() differs from the algorithm described in Section 1.3.2 in the tolerance of partial pivoting.
In this context, tolerance refers to the conditions under which a row is pivoted. While most LUP
algorithms have no tolerance, i.e., they pivot every row, the CMPP decomposer employs conditional
partial pivoting. Initially, conditional partial pivoting, described in Step 4 of ICMPP’s algorithm on
Page 36, was included in the CMPP decomposer to test the stability of the concept. However, it
remained as further testing showed promising results.

1 t e m p l a t e < typename Matrix , typename Vector >
2 s t a t i c vo id
3 decompose ( Matrix& LU , Vector& piv ) ;

Listing 2.4: The declaration of the decompose() method for the CMPP decomposer. On input,
matrix LU is assumed to contain the values of A, and piv is expected to be appropriately sized. On
output, matrix LU contains the values of matrices L and U in the format presented in Equation 2.4,
and piv contains the row permutations in the format set by cuSOLVER and cuBLAS, i.e., row i
was swapped with row piv[ i ] [43]. The template parameters, Matrix and Vector, are expected
to be either TNL::Matrices::DenseMatrix and TNL::Containers::Vector, respectively, or
types that inherit from them.

LU =



l1,1 u1,2 u1,3 . . . u1,n
l2,1 l2,2 u2,3 . . . u2,n

l3,1 l3,2
. . .

. . .
...

...
...

. . .
. . . un−1,n

ln,1 ln,2 . . . ln,n−1 ln,n



. (2.4)

Similarly to cuSOLVER, piv can contain any values on input as they are all replaced during
computation. However, in the case of the CMPP decomposer, the values of piv are initialized to
their default values within the decompose() method prior to the main computation. Specifically,
the default values follow the format set by cuSOLVER and cuBLAS, i.e., piv[ 0 ] = 1, piv[ 1 ] =
2, etc. Note that the values of piv must be set to their default pivoting values by every decomposer
that uses conditional partial pivoting. The reasoning behind this requirement stems from the fact
that conditional partial pivoting does not attempt to pivot all rows.

Parallel Crout’s Method with Partial Pivoting (PCM_xPP) Originally, the PCM_xPP decom-
poser was conceived as a GPU-compatible alternative to CMPP that preserves its accuracy as
a direct method. However, it remained in the project as its performance was often comparable
to that of ICM_xPP. The algorithm of PCM_xPP is identical to that of CMPP except for minor
parallelizations. Specifically, the algorithm consists of the following steps (changes compared to
the algorithm of CMPP are highlighted in green):

1. Set j equal to 1.

2. If j is greater than n, then stop the execution as matrices L and U have been successfully
computed.

3. Compute values from l j, j to ln, j in column j of L in parallel .

4. Pivot row j:
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(a) In the values computed in Step 3, find the index (p) of the element largest in absolute
value using parallel reduction :

p = arg max
j≤k≤n

∣∣∣lk, j
∣∣∣ . (2.5)

(b) If j is not equal to p, swap rows j and p in matrices L, U, and P.

(c) If l j, j is equal to 0, then the decomposition algorithm has failed as the matrix is singular.

5. Compute values from u j, j+1 to u j,n in row j of U in parallel .

6. Increment j by 1 and go to Step 2.

The simultaneous computations mentioned in Steps 3 and 5 are possible due to the dependency
of elements mentioned in Section 1.3.2 and shown in Figure 1.13. For example, to compute
the element l j, j, elements from l j,1 to l j, j−1 and from u1, j to u j−1, j are required. To compute the
element l j+1, j, elements from l j+1,1 to l j+1, j−1 and from u1, j to u j−1, j are required. In other words,
to compute an element in L, only the elements to the left in its row and above the main diagonal in
its column are required. Therefore, the computation of each element in Step 3 does not depend
on the computation of other elements in the same step. Thus, values in Step 3 can be computed in
parallel. The parallelization of the computation in Step 5 follows the same logic.

In Step 4a, TNL::Algorithms::reduceWithArgument (introduced in Section 2.1.1) was used
to perform the parallel reduction.

However, the approach taken to parallelize the computation in Steps 3 and 5 is not highly parallel,
i.e., the number of elements that can be computed simultaneously is low. In particular, the maximum
number of elements that can be computed in parallel is equal to the number of rows/columns of the
input matrix. Thus, the maximum number of active threads at a point in time is equal to the number
of rows/columns. This lack of parallelism reflects itself on the implementation of the algorithm as
it comprises the CPU sequentially tasking the GPU to perform simultaneous computations.

The declaration of the decompose() method for the PCM_xPP decomposer is identical to that of
the CMPP decomposer (shown in Listing 2.4), and the definition can be found in Appendix B. Note
that, unlike LU, piv is assumed to be allocated on the host as it is not used in kernels and its values
are set by the CPU.

In the caption of Table 2.1, it was mentioned that the x in PCM_xPP signifies the CUDA thread
configuration of the decomposer. Specifically, the number of threads in each one-dimensional
CUDA thread block is defined as x2.

Iterative Crout’s Method with Partial Pivoting (ICM_xPP) One of the main tasks for this
thesis was to implement an LU decomposition algorithm with partial Pivoting (LUP) for the
GPU. As part of Parallel LU Decomposition for the GPU [2], LU decomposition (without partial
pivoting) was implemented both for the CPU and for the GPU in the form of ICMx. However, the
performance of the CPU implementation was low, and it served solely as an initial proof-of-concept
that was neither developed nor optimized further. Therefore, in the context of this thesis, the ICMPP
algorithm, introduced in Section 1.3.3, was implemented only for the GPU, as specified in Table 2.1.
While the implementation of ICM_xPP was optimized throughout the development of the project,
only the final version will be detailed in this thesis.

The GPU implementation of ICM_xPP follows the algorithm introduced in Section 1.3.3 with
minor modifications. Therefore, its description is split into three parts:
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1. Initial estimate of the decomposition

2. Processing by sections

3. Computing one iteration of a section

Initial Estimate of the Decomposition The first step of the ICMPP algorithm, introduced in
Section 1.3.3, is to estimate the decomposition of matrix A, i.e., to estimate matrices L and U. This
estimate is then improved in every iteration of the algorithm until the change between iterations is
smaller than some tolerance. In the context of this project, once the change in values of a matrix
between iterations is smaller than a set tolerance, the matrix is declared as processed. Thus, the
choice of the initial estimate can have a significant impact on the performance and accuracy of the
decomposer.

The default choice, as shown in the aforementioned algorithm, is to estimate matrices L and U
using A in the following manner:

l0i, j = ai, j u0
i, j = 0 i > j ,

u0
i, j = ai, j l0i, j = 0 i < j ,

l0i, j = ai, j u0
i, j = 1 i = j ,

The method declaration providing this functionality is identical to the one shown in Listing 2.4.

However, to allow for experimentation, the ICM_xPP decomposer also provides a method that
allows the user to supply an initial estimate. This feature is facilitated via an overloaded method
whose declaration is shown in Listing 2.5.

1 t e m p l a t e < typename Matrix , typename Vector >
2 s t a t i c vo id
3 decompose ( Matrix& A , Matrix& LU , Vector& piv ) ;

Listing 2.5: The declaration of the overloaded decompose()method for the ICM_xPP decomposer
that allows the user to supply an initial estimate of the decomposition. On input, matrix A is
assumed to contain the values of A, matrix LU is assumed to contain the initial estimate of the
decomposition, and piv is expected to be appropriately sized and allocated on the host. On output,
matrix LU contains the values of matrices L and U in the format presented in Equation 2.4, and piv
contains the row permutations.

This method will be used in the descriptions that follow.

Processing by Sections The ICMPP algorithm, introduced in Section 1.3.3, suggests that in every
iteration, all values in matrix LU are to be computed. However, the decomposition of a matrix can
require thousands of iterations. Moreover, to decompose an n-by-n matrix, such an approach would
require n2 elements to be computed in every iteration. Assuming that each CUDA thread was to
compute one element in an iteration, this would translate to n2 threads being allocated in every
iteration. This approach does not scale well.

Furthermore, due to the dependency of elements described in Section 1.3.2, it is futile to compute
values of LU if the elements they depend on have not been processed. The elements that an element
of LU depends on are described as its chains of dependencies. The chains of dependencies for a
specific element are visualized in Figure 2.1.
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Figure 2.1: Visualization of the chains of dependencies for element LU[ 2 ][ 2 ] (green box) in
a 3-by-3 matrix LU. Each arrow points to the element that the element it originates from requires
for its computation. For example, to compute LU[ 2 ][ 2 ], the elements it points to are required,
i.e., LU[ 2 ][ 0 ], LU[ 2 ][ 1 ], LU[ 1 ][ 2 ], and LU[ 0 ][ 2 ] are required. Those elements then
depend on other elements, etc. The red arrow represents the longest chain.

From Figure 2.1, it can be seen that LU[ 2 ][ 2 ] depends on numerous elements. If the elements
on which LU[ 2 ][ 2 ] depends are of low quality and are used in its computation, then its value
will also be low quality. In this context, the term quality of an element refers to how close the
element is to its final value. In other words, how close it is to being processed. For example, low
quality indicates that the element is far from its final value, i.e., it is not yet processed.
Therefore, if LU[ 2 ][ 2 ] is computed early in the iteration process, its value is of no use, and
resources will have been wasted to compute it.

In the context of the entire matrix, the values in the top-left corner of LU are processed first
since their chains of dependencies are negligible. As a result, the elements that depend on them
are processed in a few iterations, and so on. In other words, originating in the matrix’s top-left
corner, there is an "avalanche" effect that eventually results in the processing of elements in the
bottom-right corner of the matrix. However, this suggests that computing elements far from the
quality-increasing avalanche is futile. Therefore, it is more efficient to compute them only when the
elements they depend on are of high quality.

To address these issues, a modified approach is used where, in each iteration, only a specific part of
the matrix is computed instead of the entire matrix. This is achieved by dividing the matrix into
square sections of equal size. The sections are then processed in a specific order. Adhering to:

• the dependency of elements depicted in Figure 1.13 of Section 1.3.2, and

• the order of computation described in the ICMPP algorithm introduced in Section 1.3.3,

the sections of matrix LU are processed in the order shown in Figure 2.2.

Before outlining the concept of processing by sections, it is necessary to define a term used
thoroughly in this thesis: the bad element. In this context, the term bad element refers to an element
located on the main diagonal of a matrix that breaks the tolerance of conditional partial pivoting.
Note that the variant of conditional partial pivoting used in ICM_xPP differs from the variant
used in CMPP and PCM_xPP. For the ICM_xPP decomposer, the tolerance of conditional partial
pivoting is defined as:

ϵ2 <
∣∣∣l j, j
∣∣∣ ≤ ϵ3 , (2.6)
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Figure 2.2: Visualization of matrix LU divided into sections of size s-by-s. The number inside each
section indicates the order in which it is processed. First, the top-left section, labeled as section "0",
is processed. Then, the sections below it, i.e., sections labeled with a "1", are processed in parallel.
Subsequently, the sections to the right of section "0" are processed in parallel, etc.

where ϵ2 denotes the lower bound of the tolerance interval and ϵ3 denotes the inclusive upper bound.
By default, ϵ2 is set to 1e-5 and ϵ3 is set to 1e+5. If the absolute value of l j, j falls outside this
interval, it is considered a bad element that requires pivoting. The upper bound was introduced for
ICM_xPP as a result of extensive testing performed on a set of matrices with varying characteristics.
In some cases, without the upper bound, the ICM_xPP decomposer produced matrices with NaN
values. This issue is discussed further in Section 3.1.3 on Page 87.

For clarity, the outline of processing the matrix by sections using the ICMPP algorithm is presented
below:

1. Start with the top-left diagonal section.

2. Set the index from which a bad element will be searched for to the first element in the main
diagonal of the diagonal section; the index is stored in the badEl_searchStart variable.

3. In the diagonal section, starting at the index badEl_searchStart, find the first bad element.
If no bad element is found, the index is set to an illegal value to indicate the absence of a bad
element.

4. Process the diagonal section:

(a) Perform one iteration on the values in the diagonal section. However, if a bad ele-
ment exists, only compute values that are not located to the bottom-right of the bad
element. In other words, do not compute values whose indices fulfill the condition:
row >= badEl_rowcol && col > badEl_rowcol, where badEl_rowcol is the row
and column index of the bad element.

(b) Check if a new bad element is present between badEl_searchStart and the bottom-
right-most element of the diagonal section. If a new bad element is found, update the
index of the current bad element with its index.
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(c) If the diagonal section is processed, proceed to Step 5. Otherwise, return to Step 4a.

5. If there are no sections below the diagonal section, then the decomposition is complete.

6. Process the sections below the diagonal section. However, if a bad element exists, then only
compute values up to and including the column containing the bad element.

7. If a bad element exists, pivot the row containing the bad element. If the new value is zero
or NaN, then the decomposition has failed. If the new value is a nonzero number but breaks
the pivoting tolerance defined in Equation 2.6, update the value of badEl_searchStart to
the next element on the diagonal so the computation can continue. This ensures that the bad
element is avoided in the subsequent searches.

8. If the index of the bad element is smaller than the index of the bottom-right-most element of
the diagonal section, then return to Step 3.

9. Process the sections to the right of the diagonal section.

10. Move to the next diagonal section and proceed to Step 2.

Next, a selection of excerpts from the implementation of ICM_xPP will be described. For the
complete definition of the decompose() method for the ICM_xPP decomposer, see Appendix C.

Figure 2.2 shows matrix LU divided into square equally-sized parts referred to as sections. The size
of a section is determined by the dimensions of matrix LU, as shown in Listing 2.6.

1 t e m p l a t e < c o n s t i n t BLOCK_SIZE >
2 t e m p l a t e < typename Matrix , typename Vector >
3 vo id
4 IterativeCroutMethod< BLOCK_SIZE > : : decompose ( Matrix& A , Matrix& LU , Vector&←↩

piv )
5 {
6 u s i n g Index = typename Matrix : : IndexType ;
7

8 c o n s t Index num_rows = LU.getRows ( ) ;
9 c o n s t Index num_cols = LU.getColumns ( ) ;

10

11 Index sec_size = min ( max ( num_cols / 10 , ( Index ) 256 ) , ( Index ) 1024 ) ;
12 sec_size = ( sec_size + BLOCK_SIZE − 1 ) / BLOCK_SIZE * BLOCK_SIZE ;
13

14 / / . . .
15 }

Listing 2.6: An excerpt from the definition of the overloaded decompose() method for the
ICM_xPP decomposer. This definition matches the declaration shown in Listing 2.5. The In
dex type and dimension-representing variables are included for clarity. The template parameter
BLOCK_SIZE, equivalent to x in ICM_xPP, represents the number of threads in the 1st and 2nd
dimensions of a CUDA thread block.

Initially, the size of a section is set to 1/10 of the dimensions of LU. However, the value is limited
to the interval [256, 1024], i.e., if the size of a section exceeds either boundary of the interval,
it is adjusted to the value of the nearest boundary. Then, the value is rounded to the nearest
multiple of BLOCK_SIZE (8, 16, or 32) that is greater than or equal to it. For example, if LU is a
3,000-by-3,000 matrix, then the size of a section will be 300-by-300 for BLOCK_SIZE equal to 8 or
16, and 320-by-320 for BLOCK_SIZE equal to 32. However, if LU is a 12,000-by-12,000 matrix,
then the size of each section is adjusted to 1024-by-1024 for all BLOCK_SIZE values.

53



The interval was determined as a result of extensive testing performed as part of Parallel LU
Decomposition for the GPU [2]. For clarity, the value is rounded to assure correct loop unrolling
with shared memory in the computing kernels. For a thorough explanation, see the last paragraph
of Section 2.1 in Parallel LU Decomposition for the GPU [2].

The next excerpt, shown in Listing 2.7, highlights the processing of a diagonal section.
1 / / . . .
2 u s i n g Real = typename Matrix : : RealType ;
3 / / Ma t r ix r e p r e s e n t i n g LU i n t h e n e x t i t e r a t i o n
4 Matrix LUnext ;
5 LUnext.setLike ( LU ) ;
6

7 / / P r o c e s s i n g t o l e r a n c e
8 c o n s t Real process_tol = 0.0 ;
9 / / P i v o t i n g t o l e r a n c e − l ower bound

10 c o n s t Real piv_tol_lower = 1.0e−5;
11 / / P i v o t i n g t o l e r a n c e − uppder bound
12 c o n s t Real piv_tol_upper = 1.0e+5;
13

14 / / CUDA g r i d c o n f i g u r a t i o n
15 Index blocks = sec_size / BLOCK_SIZE ;
16 dim3 threads_perBlock ( BLOCK_SIZE , BLOCK_SIZE ) ;
17 dim3 blocks_perGrid ( blocks , blocks ) ;
18

19 / / Flag t o i n d i c a t e t h a t t h e d i a g o n a l s e c t i o n has been p r o c e s s e d
20 TNL : : Containers : : Array< bool , TNL : : Devices : : Cuda > processed{ 1 , f a l s e } ;
21

22 / / . . .
23

24 / / Views a r e used t o a c c e s s t h e d a t a
25 a u t o A_view = A.getView ( ) ;
26 a u t o LU_view = LU.getView ( ) ;
27 a u t o LUnext_view = LUnext.getView ( ) ;
28 a u t o processed_view = processed.getView ( ) ;
29

30 / / Lambda f o r f e t c h i n g t h e i n d i c e s o f bad e l e m e n t s
31 a u t o get_badEl_colIdxs = [ = ] __cuda_callable__ ( Index col ) −> Index
32 {
33 r e t u r n ( abs ( LU_view ( col , col ) ) <= piv_tol_lower | | piv_tol_upper < abs←↩

( LU_view ( col , col ) ) ) ? col : num_cols ;
34 } ;
35

36 / / D i a g o n a l s e c t i o n s t a r t and end
37 Index dSec_start , dSec_end ;
38 / / Row / Column i n d e x of t h e bad e l e m e n t
39 Index badEl_idx ;
40

41 / / Loop t h r o u g h t h e d i a g o n a l s e c t i o n s
42 f o r ( dSec_start = 0 , dSec_end = min ( num_cols , sec_size ) ; dSec_start < ←↩

dSec_end ; dSec_start += sec_size , dSec_end = min ( num_cols , dSec_end + ←↩
sec_size ) )

43 {
44 / / S e t t h e s t a r t i n g p o i n t o f t h e s e a r c h f o r t h e f i r s t bad e l e m e n t
45 Index badEl_searchStart = dSec_start ;
46

47 do { / / P r o c e s s t h e d i a g o n a l s e c t i o n and t h e s e c t i o n s below i t
48 / / Get n e x t b a d E l _ i d x
49 badEl_idx = TNL : : Algorithms : : reduce< TNL : : Devices : : Cuda >( ←↩

badEl_searchStart , dSec_end , get_badEl_colIdxs , TNL : : Min {} , num_cols ←↩
) ;
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51 do { / / P r o c e s s t h e d i a g o n a l s e c t i o n
52 / / R e s e t t h e p r o c e s s e d f l a g
53 processed_view.setElement ( 0 , t r u e ) ;
54

55 / / Compute t h e v a l u e s up t o and i n c l u d i n g t h e bad e l e m e n t
56 DSecCompute_kernel< BLOCK_SIZE ><<< blocks_perGrid , threads_perBlock ←↩

>>>( A_view , LU_view , LUnext_view , dSec_start , dSec_end , dSec_start←↩
, dSec_end , process_tol , processed_view , badEl_idx ) ;

57

58 / / Ass ign t h e v a l u e s computed f o r t h e n e x t i t e r a t i o n
59 DSecAssign_kernel<<< blocks_perGrid , threads_perBlock >>>( LU_view , ←↩

LUnext_view , dSec_start , dSec_end , dSec_start , dSec_end , badEl_idx ←↩
) ;

60

61 / / Check i f a bad e l e m e n t i s p r e s e n t i n a d i f f e r e n t column
62 badEl_idx = TNL : : Algorithms : : reduce< TNL : : Devices : : Cuda >( ←↩

badEl_searchStart , dSec_end , get_badEl_colIdxs , TNL : : Min {} , ←↩
num_cols ) ;

63 } w h i l e ( ! processed_view.getElement ( 0 ) ) ;
64

65 / / . . . P r o c e s s i n g o f t h e s e c t i o n s below t h e d i a g o n a l s e c t i o n
66 / / . . . P i v o t i n g o f t h e bad e l e m e n t
67 } w h i l e ( badEl_idx < dSec_end − 1 ) ;
68 / / . . . P r o c e s s i n g o f t h e s e c t i o n s t o t h e r i g h t o f t h e d i a g o n a l s e c t i o n
69 }

Listing 2.7: An excerpt from the definition of the overloaded decompose() method for the
ICM_xPP decomposer. The excerpt highlights how the processing of a diagonal section is
implemented. For clarity, variables used in the code are declared and documented. The DSecCom
pute_kernel() and DSecAssign_kernel() kernels compute and assign values of the diagonal
section, respectively. The kernels are presented separately in Listings 2.9 and 2.10.

The code in Listing 2.7 corresponds to the instructions from Step 1 to Step 5 in the outline presented
earlier.
To find a bad element in the diagonal section, TNL::Algorithms::reduce() is used on Lines 49
and 62. The parameters of the variant of reduce() used correspond to the parameters of the
reduceWithArgument() function presented in Section 2.1.1. For clarity, the lambda function
defined on Line 31 fetches elements on the main diagonal from the begin index to the end index
based on a condition. If the element at column col of the main diagonal is bad, then its column
index is returned. In the opposite case, the size of the matrix is returned as the illegal value. Finally,
the reduction operation, TNL::Min, returns the smallest index, i.e., the index of the first bad element
on the main diagonal of the diagonal section.

Then, the diagonal section is processed as described in Step 4. Note that the processing flag pro
cessed is a one-element array containing a boolean that is used to indicate whether the diagonal
section is processed. Line 53 shows that with the start of every loop, its value is set to true.
Then, its view (ArrayView - explained in Section 2.1.1) is passed to the kernel where each thread
evaluates whether the element it computed is processed or not. If it is not, then the thread sets
the value of processed to false. While, generally, it is not good practice for multiple threads
to write in an undefined order to the same memory address, in this case, it does not matter. The
reasoning behind this statement is that the value written by all threads is the same. Furthermore,
when the value of processed is read in the condition of the while loop on Line 63, it is done so
only after the kernels have been executed. This is due to the fact that, as mentioned in Sections 1.2.2
and 1.2.4, tasks issued via the default stream are executed serially. In other words, the kernels are
asynchronously called from the host, executed on the device in the order they were called, and then
the value of processed is copied from the device to the host.
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Another important aspect of the implementation is the processing tolerance, process_tol. As
can be seen on Line 8 in Listing 2.7, it is set to zero. The value was chosen to provide accurate
results as even small nonzero values, e.g., 1e-5, could greatly reduce the accuracy while increasing
the performance by a negligible amount. The reason behind the great reduction in accuracy stems
from the "avalanche" effect described earlier in Processing by Sections. However, in this case,
the avalanche exhibits a quality-decreasing characteristic since the elements in the top-left corner
would not be of the highest quality due to the relaxed tolerance. In other words, the imperfectness
of elements in the top-left corner causes a butterfly effect resulting in highly inaccurate results. For
more details, see Sections 2.2.1 and 2.3, and Chapter 3 in Parallel LU Decomposition for the GPU
[2].

Once the values of the diagonal section have been processed either up to and including the bad
element, or all, then the processing of the sections below the diagonal section begins. Once they are
processed, the bad element can be pivoted. This order of operations assures that the elements below
the bad element are processed when it needs to be replaced. Listing 2.8 shows the processing of the
lower sections and the pivoting of the bad element. Note that the implementation of the pivoting
function is shown in Listing C.2.

1 / / . . .
2 / / A l l o c a t e and i n i t i a l i z e an a r r a y o f s t r e a m h a n d l e s t o p r o c e s s t h e s e c t i o n s←↩

i n p a r a l l e l
3 c o n s t Index nonDiagSecs_perRow = TNL : : ceil ( ( do ub l e ) num_cols / ( do ub l e ) ←↩

sec_size ) − 1 ;
4 a u t o * streams = ( cudaStream_t *) malloc ( nonDiagSecs_perRow * s i z e o f ( ←↩

cudaStream_t ) ) ;
5 f o r ( Index i = 0 ; i < nonDiagSecs_perRow ; ++i )
6 cudaStreamCreate ( &( streams [ i ] ) ) ;
7

8 / / F l a g s i n d i c a t i n g t h e p r o c e s s i n g s t a t u s o f non−d i a g o n a l s e c t i o n s f o r t h e ←↩
d e v i c e and t h e h o s t

9 TNL : : Containers : : Array< bool , TNL : : Devices : : Cuda , Index > ←↩
nonDiagSec_processed{ nonDiagSecs_perRow , f a l s e } ;

10 / / The h o s t a r r a y i s used t o a v o i d copy ing i n d i v i d u a l p r o c e s s i n g v a r i a b l e s ←↩
between t h e h o s t and t h e d e v i c e

11 TNL : : Containers : : Array< bool , TNL : : Devices : : Host , Index > ←↩
nonDiagSec_processed_host{ nonDiagSecs_perRow , f a l s e } ;

12 / / . . .
13 a u t o nonDiagSec_processed_view = nonDiagSec_processed.getView ( ) ;
14

15 / / F i l l t h e p i v o t i n g v e c t o r wi th i n c r e m e n t s o f 1 s t a r t i n g from 1 t o num_rows.
16 BaseDecomposer : : setDefaultPivotingValues ( piv ) ;
17 a u t o piv_view = piv.getView ( ) ;
18 / / . . .
19

20 / / Non−d i a g o n a l s e c t i o n s t a r t , end , and ID ( used t o a c c e s s t h e s t r e a m s )
21 Index sec_start , sec_end , sec_id ;
22

23 / / Loop t h r o u g h t h e d i a g o n a l s e c t i o n s
24 f o r ( dSec_start = 0 , dSec_end = min ( num_cols , sec_size ) ; dSec_start < ←↩

dSec_end ; dSec_start += sec_size , dSec_end = min ( num_cols , dSec_end + ←↩
sec_size ) )

25 {
26 do { / / P r o c e s s t h e d i a g o n a l s e c t i o n and t h e s e c t i o n s below i t
27 / / . . . P r o c e s s i n g o f t h e d i a g o n a l s e c t i o n
28

29 / / The D i a g o n a l s e c t i o n c o n t a i n s p r o c e s s e d v a l u e s − e x c l u d i n g t h e v a l u e s ←↩
t o t h e bottom− r i g h t o f t h e bad e l e m e n t

30 / / Compute t h e lower s e c t i o n s up t o and i n c l u d i n g t h e column c o n t a i n i n g ←↩
t h e bad e l e m e n t
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31

32 / / L i m i t t h e number o f t h r e a d s used based on t h e number o f columns t h a t ←↩
w i l l be computed

33 Index badEl_idx_cutoff = min ( badEl_idx + 1 , dSec_end ) ;
34 Index lSec_width_rounded = ( badEl_idx_cutoff − dSec_start + BLOCK_SIZE −←↩

1 ) & −BLOCK_SIZE ;
35 dim3 lSec_blockPerGrid ( TNL : : max ( lSec_width_rounded / BLOCK_SIZE , ( Index←↩

) 1 ) , blocks ) ;
36

37 / / D e f a u l t t o f a l s e so t h a t a l l k e r n e l s a r e run i n t h e f i r s t i t e r a t i o n
38 nonDiagSec_processed_view.setValue ( f a l s e ) ;
39

40 do { / / P r o c e s s t h e lower s e c t i o n s i n p a r a l l e l
41 nonDiagSec_processed_host = nonDiagSec_processed ;
42 nonDiagSec_processed_view.setValue ( t r u e ) ;
43

44 / / Launch k e r n e l s f o r a l l s e c t i o n s below t h e d i a g o n a l s e c t i o n − each ←↩
s e c t i o n has i t s own s t r e a m

45 f o r ( sec_start = dSec_end , sec_end = min ( num_cols , dSec_end + sec_size←↩
) , sec_id = 0 ; sec_start < sec_end ; sec_start += sec_size , sec_end←↩
= min ( num_cols , sec_end + sec_size ) , ++sec_id )

46 {
47 / / Only compute s e c t i o n s t h a t a r e n o t y e t p r o c e s s e d
48 i f ( ! nonDiagSec_processed_host ( sec_id ) ) {
49 LSecCompute_kernel< BLOCK_SIZE ><<< lSec_blockPerGrid , ←↩

threads_perBlock , 0 , streams [ sec_id ] >>>( A_view , LU_view , ←↩
LUnext_view , dSec_start , badEl_idx_cutoff , sec_start , sec_end , ←↩
process_tol , nonDiagSec_processed_view , sec_id ) ;

50

51 NonDiagSecAssign_kernel<<< lSec_blockPerGrid , threads_perBlock , 0 , ←↩
streams [ sec_id ] >>>( LU_view , LUnext_view , dSec_start , ←↩
badEl_idx_cutoff , sec_start , sec_end ) ;

52 }
53 }
54 / / Wait u n t i l a l l s e c t i o n s have been computed i n t h i s i t e r a t i o n
55 synchronizeStreams ( streams , nonDiagSecs_perRow ) ;
56 } w h i l e ( ! TNL : : Algorithms : : reduce ( nonDiagSec_processed_view , TNL : :←↩

LogicalAnd {} ) ) ;
57

58 / / P i v o t t h e bad e l e m e n t
59 pivotBadElement< BLOCK_SIZE >( A_view , LU_view , piv_view , badEl_idx , ←↩

num_rows , num_cols , badEl_searchStart , piv_tol_lower , piv_tol_upper )←↩
;

60 } w h i l e ( badEl_idx < dSec_end − 1 ) ;
61 / / . . . P r o c e s s i n g o f t h e s e c t i o n s t o t h e r i g h t o f t h e d i a g o n a l s e c t i o n
62 }

Listing 2.8: An excerpt from the definition of the overloaded decompose() method for the
ICM_xPP decomposer. The excerpt highlights how the processing of lower sections, i.e., sections
below a diagonal section, is implemented. The LSecCompute_kernel() and NonDiagSecAs
sign_kernel() kernels compute and assign values of the lower sections, respectively. The kernels
are presented separately in Listings C.3 and C.5.

The code in Listing 2.8 corresponds to the instructions from Step 6 to Step 8 in the outline presented
earlier.
If there is a bad element in the diagonal section, then only elements up to and including the column
containing the bad element are processed in the lower sections. Thus, as shown on Lines 33 to 35,
it is necessary to redefine the number of blocks in the 1st dimension of the CUDA grid accordingly.

As depicted in Figure 2.2, the sections below a diagonal section can be processed simultaneously. To
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achieve this, a CUDA stream (described in Section 1.2.4) is created for each section. Furthermore,
each section has its own processed flag in the nonDiagSec_processed array. This provides
control over which section is computed in each iteration. Specifically, in every iteration of the inner
while-loop, all sections that are not yet processed are computed by launching a kernel using their
stream. Then at the end of every iteration, cudaStreamSynchronize() is used in the synchro
nizeStreams() function (shown at the end of Listing C.1) to halt the CPU thread at that line until
the kernels launched on the array of streams have been executed. Then, using parallel reduction,
the processed states of all lower sections are evaluated. If all of the lower sections are processed,
then the inner while-loop terminates and the bad element is subsequently pivoted.

The outer while loop, with the condition badEl_idx < dSec_end - 1, terminates if either of the
following conditions is fulfilled:

1. The bad element pivoted in the current iteration is the bottom-right-most element of the
diagonal section.

2. There are no bad elements in the diagonal section as badEl_idx is set to the illegal value,
num_cols.

The first condition arises from the following observation: If the bad element is the bottom-right-most
element of the diagonal section, then the diagonal section and the sections below it are processed
once the bad element is pivoted. In other words, once the bad element is pivoted, there is no need
to compute the next iteration as the values produced would be identical to the values of the current
iteration.

When the diagonal and lower sections are fully processed, i.e., the diagonal section contains no bad
elements, then the sections to the right of the diagonal section are processed as shown in Listing C.1.
Subsequently, the implementation moves on to the next diagonal section and the process repeats
itself.

Computing One Iteration of a Section While the previous part described how a matrix is
processed by sections in the implementation of the ICM_xPP decomposer, this part describes how
one iteration of a single section is computed. Specifically, this part aims to present the kernels
referenced in the previous part.

As mentioned earlier, in the implementation of the ICM_xPP decomposer, there are three types of
sections: diagonal, lower, and right. Each section has its own compute kernel that computes the
values of the next iteration. Initially, there was one kernel that was used by all section types (see
Listing 2.3 on Page 65 in Parallel LU Decomposition for the GPU [2]), however, this approach was
found to be suboptimal during the optimization process of this thesis. The implementation of the
kernel contained conditions that were dependent on the type of the section. Seeing as the kernel
can be executed up to thousands of times during the decomposition of a matrix, conditions in code
can hinder performance. Thus, the compute kernel was split into three section-specific kernels.

One iteration of the diagonal section is computed by the DSecCompute_kernel, shown in List-
ing 2.9, using the formulas from Equations 1.11 and 1.12.

1 t e m p l a t e < c o n s t i n t BLOCK_SIZE , typename ConstMatrixView , typename MatrixView←↩
, typename BoolArrayView , typename Index , typename Real >

2 _ _ g l o b a l _ _
3 vo id
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4 DSecCompute_kernel ( c o n s t ConstMatrixView A , MatrixView LU , MatrixView LUnext←↩
, c o n s t Index sec_start_col , c o n s t Index sec_end_col , c o n s t Index ←↩
sec_start_row , c o n s t Index sec_end_row , c o n s t Real process_tol , ←↩
BoolArrayView processed , c o n s t Index badEl_rowcol )

5 {
6 Index ty = t h r e a d I d x . y ;
7 Index tx = t h r e a d I d x . x ;
8

9 / / The IDs of each t h r e a d a r e s e t t o t h e top − l e f t p a r t o f i t s b l o c k
10 Index row = b l o c k I d x . y * blockDim.y + sec_start_row ;
11 Index col = b l o c k I d x . x * blockDim.x + sec_start_col ;
12

13 / / T e r m i n a t e t h r e a d s t h a t a r e p a r t o f a b l o c k whose f i r s t e l e m e n t i s t o t h e←↩
bottom− r i g h t o f t h e bad e l e m e n t

14 / / These t h r e a d s would compute v a l u e s t h a t would n o t be saved
15 i f ( row > badEl_rowcol && col > badEl_rowcol )
16 r e t u r n ;
17

18 / / Each t h r e a d computes one e l e m e n t ( row , c o l )
19 row += ty ;
20 col += tx ;
21

22 / / A d j u s t t h e IDs o f t h r e a d s t h a t o v e r r e a c h t h e bounds t o t h e c l o s e s t ←↩
boundary

23 Index max_col = sec_end_col − 1 ;
24 Index max_row = sec_end_row − 1 ;
25 Index row_adj = min ( row , max_row ) ;
26 Index col_adj = min ( col , max_col ) ;
27

28 / / O f f s e t t h e s m a l l e s t i n d e x of t h e t h r e a d ' s e l e m e n t by BLOCK_SIZE t o a l l o w←↩
f o r l oop u n r o l l i n g

29 Index min_row_col = min ( row_adj , col_adj ) − BLOCK_SIZE ;
30

31 / / D e c l a r e s h a r e d memory f o r b l o c k s o f L and U
32 _ _ s h a r e d _ _ Real L_block [ BLOCK_SIZE ] [ BLOCK_SIZE ] ;
33 _ _ s h a r e d _ _ Real U_block [ BLOCK_SIZE ] [ BLOCK_SIZE ] ;
34

35 Index i , k ; Real sum = 0 ;
36

37 / / Compute t h e sum needed f o r t h e e l e m e n t ( row , c o l ) by l o a d i n g b l o c k s o f ←↩
e l e m e n t s from g l o b a l t o s h a r e d memory and m u l t i p l y i n g them

38 f o r ( i = 0 ; i <= min_row_col ; i += BLOCK_SIZE ) {
39 L_block [ ty ] [ tx ] = LU ( row_adj , i + tx ) ;
40 U_block [ ty ] [ tx ] = LU ( i + ty , col_adj ) ;
41

42 __syncthreads ( ) ;
43

44 #pragma unroll ( BLOCK_SIZE )
45 f o r ( k = 0 ; k < BLOCK_SIZE ; ++k )
46 sum += L_block [ ty ] [ k ] * U_block [ k ] [ tx ] ;
47 __syncthreads ( ) ;
48 }
49

50 / / Loops a r e u n r o l l e d by m u l t i p l e s o f BLOCK_SIZE and t h e r e m a i n i n g e l e m e n t s←↩
a r e computed s e p a r a t e l y

51 L_block [ ty ] [ tx ] = LU ( row_adj , min ( i + tx , max_col ) ) ;
52 U_block [ ty ] [ tx ] = LU ( min ( i + ty , max_row ) , col_adj ) ;
53

54 __syncthreads ( ) ;
55

56 / / T e r m i n a t e t h r e a d s t h a t o v e r r e a c h t h e bounds as t h e y have s e r v e d t h e i r ←↩
p u r p o s e o f r e a d i n g d a t a
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57 i f ( row >= sec_end_row | | col >= sec_end_col )
58 r e t u r n ;
59

60 / / T e r m i n a t e t h r e a d s t h a t r e a c h p a s t t h e bad e l e m e n t a s t h e y have s e r v e d ←↩
t h e i r p u r p o s e o f r e a d i n g d a t a

61 i f ( row >= badEl_rowcol && col > badEl_rowcol )
62 r e t u r n ;
63

64 / / Read LU( row , c o l ) from s h a r e d memory i n s t e a d o f g l o b a l memory
65 Real LU_rowCol ;
66 / / Index d e n o t i n g where t o s t o p t h e c o m p u t a t i o n o f e l e m e n t ( row , c o l )
67 Index t_to_use ;
68

69 i f ( row >= col ) { / / The e l e m e n t computed i s i n L
70 t_to_use = tx ;
71 LU_rowCol = L_block [ ty ] [ tx ] ;
72 } e l s e { / / The e l e m e n t computed i s i n U
73 t_to_use = ty ;
74 LU_rowCol = U_block [ ty ] [ tx ] ;
75 }
76

77 f o r ( k = 0 ; k < t_to_use ; ++k )
78 sum += L_block [ ty ] [ k ] * U_block [ k ] [ tx ] ;
79

80 / / The f o r m u l a f o r L i s a l s o a p a r t o f t h e f o r m u l a f o r U
81 sum = A ( row , col ) − sum ;
82

83 / / Remaining p a r t o f t h e f o r m u l a f o r U
84 i f ( row < col ) {
85 Real divisor = LU ( row , row ) ;
86 i f ( abs ( divisor ) != 0 )
87 sum /= divisor ;
88 e l s e
89 printf ( "−!> DIVISION BY ZERO \ n " ) ;
90 }
91

92 / / Check i f t h e e l e m e n t ( row , c o l ) has been p r o c e s s e d
93 i f ( abs ( LU_rowCol − sum ) > process_tol )
94 processed ( 0 ) = f a l s e ;
95

96 / / Ass ign t h e e l e m e n t f o r t h e n e x t i t e r a t i o n
97 LUnext ( row , col ) = sum ;
98 }

Listing 2.9: The implementation of the DSecCompute_kernel() kernel which computes one
iteration of a diagonal section. Note that the matrices, vectors, and arrays are passed using their
views, and the scalar values are copied to the local memory of each thread.

In the decompose() method for the ICM_xPP decomposer, the BLOCK_SIZE template parameter
determines the size of the 1st and 2nd dimensions of the CUDA thread block. However, it is also
used in the kernels to determine the size of the two-dimensional arrays used to temporarily store
values. Furthermore, it is used to speed up execution in the form of loop unrolling as shown on
Line 44 in Listing 2.9.

The core part of the kernel is the use of shared memory. As detailed at the end of Section 2.2.1 in
Parallel LU Decomposition for the GPU [2], the computing of the sum used in the formula of each
element is identical to that of matrix multiplication with the exception that not all elements in the
row and column are used. In particular, each block of threads is responsible for computing a block
of elements in LUnext. Thus, to use shared memory and avoid unnecessary accesses to global
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memory, the block of threads performs matrix multiplication by iterating over blocks of elements.
In other words, it loads a block of elements from global memory to shared memory, multiplies
them, and then moves on to the next block. The value a thread computes for each block of elements
is added to a local variable, sum. Matrix multiplication by blocks of elements using shared memory
is depicted in Figure 2.3.

Figure 2.3: Visualization of matrix multiplication by blocks of elements using shared memory.
Note that this figure, taken from CUDA C++ Programming Guide [3], depicts regular matrix
multiplication, i.e., not the limited rendition present in Crout’s method. The implementation in
Listing 2.9 performs matrix multiplication until the element that is being computed in terms of LU
decomposition, as shown in Figure 1.13 on Page 35.

At the end of the kernel shown in Listing 2.9, it can be seen that the computed value, stored in
the sum local variable, is saved into LUnext rather than LU. This is done on purpose to avoid
inconsistent results as threads would otherwise be able to overwrite values before other threads
would be able to use them to compute their elements. While it can be argued that this behavior
may lead to higher performance due to fewer iterations being required, it is not stable and therefore
a correct result cannot be guaranteed. Thus, the assignment of values to LU for the next iteration
takes place in the DSecAssign_kernel() which is executed after the DSecCompute_kernel().
The DSecAssign_kernel() kernel is shown in Listing 2.10.

1 t e m p l a t e < typename MatrixView , typename Index >
2 _ _ g l o b a l _ _
3 vo id
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4 DSecAssign_kernel ( MatrixView LU , MatrixView LUnext , c o n s t Index ←↩
sec_start_col , c o n s t Index sec_end_col , c o n s t Index sec_start_row , c o n s t ←↩
Index sec_end_row , c o n s t Index badEl_rowcol )

5 {
6 / / Each t h r e a d computes one e l e m e n t ( row , c o l )
7 Index row = b l o c k I d x . y * blockDim.y + t h r e a d I d x . y + sec_start_row ;
8 Index col = b l o c k I d x . x * blockDim.x + t h r e a d I d x . x + sec_start_col ;
9

10 / / T e r m i n a t e t h r e a d s t h a t o v e r r e a c h t h e bounds
11 i f ( row >= sec_end_row | | col >= sec_end_col )
12 r e t u r n ;
13

14 / / T e r m i n a t e t h r e a d s t h a t would w r i t e e l e m e n t s t o t h e bottom− r i g h t o f t h e ←↩
bad e l e m e n t

15 i f ( row >= badEl_rowcol && col > badEl_rowcol )
16 r e t u r n ;
17

18 / / Ass ign t h e v a l u e s o f t h e n e x t i t e r a t i o n t o t h e m a t r i x r e p r e s e n t i n g t h e ←↩
c u r r e n t i t e r a t i o n

19 LU ( row , col ) = LUnext ( row , col ) ;
20 }

Listing 2.10: The implementation of the DSecAssign_kernel() kernel that assigns values of the
next iteration to the matrix representing the current iteration. Note that the matrices are passed
using their views and the indices are copied to the local memory of each thread.

It is noteworthy that the values located to the bottom-right of the bad element are excluded from the
assignment. The reasoning behind this is that those values are not computed by the preceding kernel
as they would not be high-quality. Therefore, their assignment is omitted to mitigate unnecessary
accesses to global memory.

The kernels for computing the lower and right sections are similar to the kernel computing the
diagonal section, therefore, they are included in Listings C.3 and C.4, respectively. Similarly, the
assignment kernel for non-diagonal sections is shown only in Listing C.5.

Solvers

The Solvers group consists of implementations that, given the output of an LU decomposition
algorithm, solve a linear system. To solve a linear system, solvers perform the operations described
in Step 2 of the two-step process mentioned in Section 1.3.1. For convenience, the operations are
summarized below.

Specifically, assuming a system of n ∈ N linear equations with n unknowns and m ∈ N right-hand
sides, solvers solve a linear system defined as LUX = PB, where L and U are the output of an LU
decomposition algorithm, X is an n-by-m matrix of unknowns, P is an n-by-n permutation matrix,
and B is an n-by-m matrix of right-hand sides. In the context of the Decomposition project, solvers
perform the following steps:

1. If partial pivoting is enabled, permute the rows of matrix B according to matrix P.

2. Perform forward substitution by solving LY = B.

3. Perform backward substitution by solving UX = Y.

At the end of Step 3 matrix X contains the values of the unknowns in the correct order. In other
words, X can be directly applied to AX = B without the need for permutation.
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The full list of solvers and their characteristics is presented in Table 2.2. As can be seen from
Table 2.2, two solvers were implemented as part of this project: SSPP and IS_xPP.

Solver With /Without PP Unit diag. in Device supported
SS(PP) Yes / Yes U CPU
CuBLAStrsm(PP) Yes / Yes L, U GPU
CuSolverDnXgetrs(PP) Yes / Yes L GPU
IS_x(PP) Yes / Yes U CPU, GPU

Table 2.2: The solvers made available by the Decomposition project. The solvers in bold font were
implemented by the author of the project. The "PP" suffix indicates whether partial pivoting is used.
The "x" in the name of certain solvers signifies their CUDA thread configuration. The "Unit diag.
in" column indicates the format of the input matrix the solver supports, i.e., if the unit diagonal is
expected in L, U, or either.

Sequential Solver with Partial Pivoting (SSPP) Similarly to the CMPP decomposer, the Se-
quential Solver with Partial Pivoting (SSPP) is a basic algorithm implemented only for the CPU as
its sequential algorithm would be inefficient on the GPU.

The purpose of the SSPP solver is to provide an accurate and simple solver. Therefore, it was
not optimized or improved upon except for adding support for multiple right-hand sides. The
definition of the solve() method for the SSPP solver is shown in Listing D.1 of Appendix D. The
implementation showcases how multiple right-hand sides can be handled in forward substitution
using TNL::Algorithms::parallelFor() (described in Section 2.1.1).

Iterative Solver with Partial Pivoting (IS_xPP) The IS_xPP solver was implemented as an
experimental method that aimed to combine the approach of ICM_xPP and the algorithm of SSPP.
However, it was not a part of the diploma thesis assignment and was therefore not prioritized in
terms of optimization. Thus, the implementation of IS_xPP is naive in the sense that it performs
iterations of both substitutions until their respective matrices are processed. In other words, it
repeatedly computes all values in LY = B simultaneously until the values of Y stop changing
between iterations according to a set tolerance. Then, it performs the same for UX = Y and X.
While the solver is implemented both for the CPU and the GPU, the former implementation serves
solely as a means to verify the approach, therefore, it is not presented in this thesis. The definition
of the solve() method for the IS_xPP solver is shown in Listing E.1.

Compatibility of Decomposers and Solvers Combining the information from Tables 2.1 and
2.2 yields the overview of compatible decomposers and solvers presented in Table 2.3.

Decomposer \ Solver SS(PP) IS_x(PP) CuBLAStrsm(PP) CuSolverDnXgetrs(PP)
CM(PP) Yes Yes Yes No
CuSolverDnXgetrf(PP) No No Yes Yes
ICM_x(PP) Yes Yes Yes No
PCM_x(PP) Yes Yes Yes No

Table 2.3: Compatibility of decomposer and solvers made available by the Decomposition project.
To clarify, a decomposer-solver combination is compatible if the two can be used to complete a
linear solver.
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2.2.3 Benchmarks

One of the tasks for this thesis was to compare the performance of the decomposers and solvers
implemented by the author of this thesis with those of established libraries. For this purpose, a
benchmark system was implemented for both decomposers and solvers. It is important to note that
while the benchmark system was implemented as part of Parallel LU Decomposition for the GPU
[2], it was adapted from the SpMV TNL Benchmark structure14. However, with the introduction of
partial pivoting into the project, the implementation underwent major refactoring.

This section briefly introduces the benchmark procedure for both decomposers and solvers. First,
steps that are common for both benchmarks are described. Then, aspects specific to each benchmark
are mentioned separately.

Both benchmarks are initiated via a Bash script that sets up the logging directory, compiles the
benchmarks, and finally, launches the benchmark for each matrix found in a set directory. Note that
the benchmark is launched twice: first using double precision, then using single precision. Each
execution of the benchmark for a given matrix consists of the following steps:

1. Load the matrix from its .mtx file. The mtx file format is referred to as the Matrix Market
File Format15 and it is primarily used to represent sparse matrices as only nonzero entries are
stored along with their coordinates.

2. Perform the benchmarked operation using a baseline implementation, for example, CMPP.

3. Perform the benchmarked operation using a selected implementation.

Each benchmarked operation can be performed in loops with the results of all loops averaged
to amount for statistically significant results. The results can include, for example, the exe-
cution time of the operation and its standard deviation, the maximum absolute difference be-
tween the actual results and the expected results, etc. The averaged results are logged using
TNL::Benchmarks::JsonLogging as JSON objects into log files which can be later transformed
into HTML tables and MATLAB plots using a Python script provided in the src/Benchmarks/u
tils directory found in the Decomposition repository16.

Note that the maximum absolute difference is computed on the CPU to assure the highest possible
accuracy. The maximum absolute difference is defined for decomposers as:

max |A − LUP| , (2.7)

where A is the input matrix, matrices L and U are the results of the LU decomposition operation,
and P is the permutation matrix (represented in code by a pivoting vector). To clarify, the maximum
absolute difference for decomposers is defined as the largest absolute difference between the
expected value of each element in the original matrix (A) and its corresponding computed value,
represented in matrix form as LUP, after the LU decomposition process.

For solvers the maximum absolute difference is defined as:

max |LUPX − B| , (2.8)
14TNL SpMV Benchmark GitLab repository URL: https://gitlab.com/tnl-project/tnl/-/tree/main/

src/Benchmarks/SpMV
15Matrix Market Exchange Formats URL: https://math.nist.gov/MatrixMarket/formats.html#MMformat
16Decomposition GitLab repository URL: https://gitlab.com/tnl-project/decomposition
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where matrices L, U, and P are the same as in Equation 2.7, X is the computed matrix of unknowns,
and B is the matrix of right-hand sides. To clarify, the maximum absolute difference for solvers is
calculated by comparing the computed unknowns (X) used in the system of equations, represented
in matrix form as LUPX, with the right-hand side matrix (B). The metric measures the largest
absolute difference between the elements of LUPX and the corresponding elements of B.

As mentioned in Parallel LU Decomposition for the GPU [2], many aspects of the implementations
can only be verified on larger matrices. Thus, aside from unit tests, benchmarks were a crucial part
of assuring the quality of the implementations.

2.3 BDDCML Integration

Another key task for this thesis was to apply the decomposers and solvers made available by
the Decomposition project in the Multilevel BDDC Solver Library (BDDCML) [47, 48, 49, 50].
According to the project’s website17, the goal of BDDCML is to provide a scalable parallel solver of
linear equations for systems originating from finite element computations. The implementation of
the library was inspired by the Adaptive-Multilevel variant of the Balancing Domain Decomposition
by Constraints (BDDC) method. More information regarding BDDCML can be found on its
website17 or in its GitHub repository18.

Integration with the Decomposition Project BDDCML is written in Fortran 95 and the Decom-
position project is written in C++. Therefore, to use decomposers and solvers from the Decomposi-
tion project in BDDCML, the TNL-BDDCML Interface19 was used. The interface was implemented
by Ing. Jakub Šístek, Ph.D. as a means to use data structures and functionalities provided by TNL
in BDDCML, for example, the allocation and deallocation of a TNL::Matrices::DenseMatrix
instance on the GPU, GEMV, etc.
For the Decomposition project, Fortran wrappers calling the decompose() method of a specific
decomposer or the solve() method of a specific solver were added to the interface.

Note that both the interface and BDDCML needed to be extended. Therefore, the repositories
were forked and the changes related to the Decomposition project were added separately. The final
versions of both repositories that contain changes related to the Decomposition project are available
on request or as an attachment to this thesis.

Benchmarks The performance of decomposers and solvers provided by the Decomposition
project is compared with the corresponding routines of the MAGMA library [51], which was
already used in BDDCML. In particular, the performance was compared when solving the "Poisson
equation on a cube" problem present in BDDCML. Furthermore, for the results of the performance
comparison to be statistically significant, a benchmarking system was implemented. The system
comprises:

• prepare_poisson_on_cube_benchmark - The Bash script that compiles BDDCML with
different combinations of decomposers and solvers.

17BDDCML website URL: https://users.math.cas.cz/~sistek/software/bddcml.html
18Multilevel BDDC Solver Library GitHub repository URL: https://github.com/sistek/bddcml
19tnl_bddcml_interface Bitbucket repository URL: https://bitbucket.org/tnl-decomposition/tnl_bddcm

l_interface/src/master
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• run_poisson_on_cube_benchmark - The Bash script that runs the poisson_on_cube
executable in loops and sorts logs into directories.

• poisson_on_cube_logs_to_csv.py - The Python script that parses the logs for results,
for example, total time taken by a procedure, total time of execution, the accuracy of the
solution, etc. These results, obtained across several loops, are then averaged and saved into a
CSV file and plotted using MATLAB.
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Chapter 3

Comparing Decomposers and Solvers

This chapter presents and analyzes the results of benchmarks that were run to compare decomposers
and solvers made available by the Decomposition project. The procedures were compared in
two scenarios: raw performance and usability in an existing project. To achieve the former, the
benchmark implemented in the Decomposition project, mentioned in Section 2.2.3, was used. To
achieve the latter, the procedures were compared as part of BDDCML, mentioned in Section 2.3.

The source code used to run the benchmarks, i.e., the source code of the Decomposition project,
TNL, tnl_bddcml_interface, and BDDCML, is available on request or as an attachment to this
thesis. Additionally, the full logs are also available on request or as an attachment to this thesis.

First, the results of the Decomposition project benchmarks are presented. Then, the analysis of
results obtained from the BDDCML benchmark, along with other performance-comparing efforts,
is provided. Finally, a summary of the comparisons across all benchmarks is presented.

3.1 Decomposition Project Benchmarks

This section presents the results of the benchmarks implemented in the Decomposition project.
The benchmarks, presented in Section 2.2.3, consist of running a procedure (decompose() of
a decomposer or solve() of a solver) on an input matrix and recording various statistics, for
example, the time of execution, the accuracy of the results, etc.

In terms of both the decomposers and solvers, only the variants with partial pivoting were compared.
Benchmark results without partial pivoting are presented and analyzed in Chapter 3 of Parallel LU
Decomposition for the GPU [2].

First, the specifications of the platform on which the benchmarks were run are presented. Next,
the matrices used in the benchmarks are shown. Following that, the benchmark results of the
decomposers are analyzed, and the benchmark results of the solvers are presented. Finally, a
summary of the benchmark results is provided, along with recommendations.

3.1.1 Benchmark Platform Specifications

The benchmarks were run on the HPC (High-Performance Computing) platform of CTU referred
to as the RCI (Research Center for Informations in CTU Prague) Cluster1. The cluster uses

1RCI website URL: https://rci.cvut.cz/
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the SLURM2 cluster management tool to schedule jobs on CPU and GPU compute nodes. The
Decomposition benchmarks were run on a node with an AMD CPU and an Nvidia GPU. Specifically,
the hardware and software configuration used for the benchmarks is presented in Table 3.1.

Type Component Specifications
Hardware CPU AMD EPYC 7543 @ 2.8GHz (32 cores, 64 threads)

Memory 32GB RAM
GPU Nvidia Tesla A100 40GB HBM2

Software OS Red Hat 8.5.0-16
CMake 3.24.3
GCC 12.2.0
CUDA 12.0.0

Table 3.1: Hardware and software configuration of the RCI cluster node that the benchmarks were
run on. Taken from RCI Cluster Wiki [52] and the configuration of the computation job. The
configuration is specified in a batch script which comprises SLURM-specific job settings along
with Bash code for the compute node to execute. The scripts used for the benchmarks are available
on request or as an attachment to this thesis.

3.1.2 Matrices Used for Benchmarks

The benchmarks for the procedures were run on a set of 50 matrices with varying characteristics.
The reason behind the limited number of matrices is the running time of the benchmark comparing
decomposers. Specifically, given the 50 matrices, the job responsible for benchmarking decom-
posers took between 68 and 72 hours to complete with the latter being the limit for jobs scheduled
by RCI collaborators.

The set of matrices is made up of 28 sparse matrices and 22 dense matrices. The sparse matrices
were obtained from The university of Florida sparse matrix collection [53] and the dense matrices
either came from the "Poisson equation on a cube" problem in BDDCML, or they were randomly
generated by a Python script presented in Appendix F. Note that the sparse matrices were stored
as dense matrices using TNL::Matrices::DenseMatrix due to the lack of support for sparse
matrix structures in the Decomposition project. The matrix sizes in the set ranged from 4-by-4 to
11,532-by-11,532.

From the set of 50 matrices, 15 were selected for the direct comparison of decomposers. The
selected matrices were chosen to cover a diverse range of characteristics, for example, the size,
density and sparsity, nonzero element structure, etc. The list of the 15 selected matrices can be
found in Table 3.2.

3.1.3 Decomposers Benchmark

This section presents benchmark results obtained by decomposing the set of matrices using the
selection of decomposers listed in Table 3.3.

As previously mentioned in Section 2.2.3, each matrix was decomposed 10 times by each decom-
poser. The metrics collected across the 10 runs were then averaged and logged. The benchmark
was run for both double and single precision.

2Slurm website URL: https://slurm.schedmd.com/overview.html
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Matrix Rows/Columns Nonzeros Avg. nonzeros per row
poc-8_4_2-1 230 28,960 125.9
Cejka558 558 311,090 557.5
poc-24_2_2 1,814 2,749,120 1515.5
Cejka2599 2,599 6,753,502 2598.5
poc-32_2_2 3,182 8,868,688 2787.1
c-22 3,792 28,870 7.6
Cejka4156 4,156 17,270,197 4155.5
freeFlyingRobot_9 4,778 39,964 8.4
Cejka6574 6,574 43,214,237 6573.5
fp 7,548 834,222 110.5
Cejka8385 8,385 70,304,004 8384.5
nd3k 9,000 3,279,690 364.4
Cejka10135 10,135 102,713,214 10134.5
msc10848 10,848 1,229,776 113.4
sinc15 11,532 551,184 47.8

Table 3.2: Subset of 15 selected matrices used for the direct comparison of decomposers. The
dense matrices randomly generated by the aforementioned Python script follow the naming pattern
Cejka<num_rows> and the dense matrices arising from BDDCML are prefixed with poc. The
remaining matrices are sparse and were obtained from The university of Florida sparse matrix
collection [53].

Decomposer
Name Abbreviation Variants Performer

Crout’s Method with Partial Piv. CMPP - CPU
CuSolverDnXgetrf with Partial Piv. CuSolverDnXgetrfPP - GPU
Iterative Crout’s Method with Partial Piv. ICM_xPP 8, 16, 32 GPU
Parallel Crout’s Method with Partial Piv. PCM_xPP 8, 16, 32 GPU

Table 3.3: Decomposers compared in the benchmark: CMPP (described in Crout’s Method with
Partial Pivoting (CMPP) in Section 2.2.2), CuSolverDnXgetrfPP (mentioned in Section 2.1.2),
ICM_xPP (described in Iterative Crout’s Method with Partial Pivoting (ICM_xPP) in Section 2.2.2),
and PCM_xPP (described in Parallel Crout’s Method with Partial Pivoting (PCM_xPP) in Sec-
tion 2.2.2). The Variants column indicates the different configurations of the decomposer. For
example, ICM_xPP was benchmarked as three separate decomposers depending on the CUDA
thread block configuration, e.g., 8-by-8 threads per block, 16-by-16 threads per block, etc. Further-
more, for ICM_xPP, the processing tolerance was set to zero, and the lower bound and upper bound
of conditional partial pivoting tolerance were set to 1e−5 and 1e+5, respectively. For CMPP and
PCM_xPP, the conditional partial pivoting tolerance was set to 1e−5. In the case of PCM_xPP,
the thread blocks are one-dimensional and the number of threads per block is x2, i.e., 64, 256, and
1024. The Performer column specifies the primary device used by each decomposer.

One of the tasks for this thesis was to compare the implemented decomposers to a CPU library and a
GPU library. However, the former was intentionally omitted as the performance of the implemented
decomposers was severely lacking. Furthermore, neither PCM_xPP nor ICM_xPP were imple-
mented for the CPU, and the implementation of the CMPP decomposer was not comparison-worthy.
Thus, combined with the fact that the AMD-CPU-specialized library, AOCL-ScaLAPACK3, which

3AOCL-ScaLAPACK website URL: https://www.amd.com/en/developer/aocl/scalapack.html
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provides the LU factorization function, was not available in the RCI cluster, it was decided to
forego implementing another wrapper into the Decomposition project to facilitate the comparison.

First, for both double and single precision, the execution times of the decomposers on the subset
of 15 matrices are compared. Then, the comparison of the execution times on the entire set of 50
matrices is presented. Finally, the accuracy of the results is discussed.

Comparison of Execution Times on the Subset of Matrices

To compare the performance of the decomposers listed in Table 3.3 on the matrices mentioned in
Table 3.2, the execution times of the decomposers are presented in this section. The comparison
using both double and single precision can be found in Figure 3.1.

CuSolverDnXgetrfPP As can be seen from Figure 3.1, CuSolverDnXgetrfPP was the best-
performing decomposer on the subset of matrices with both double and single precision. Fur-
thermore, Figure 3.1 shows that, compared to the other decomposers, the execution times of
CuSolverDnXgetrfPP increased at a smaller rate.

For context, when double precision was used, CuSolverDnXgetrfPP was able to decompose the
sinc15 matrix in 0.123 seconds, whereas the second fastest decomposer for this matrix, PCM_8PP
took 24.349 seconds. However, CuSolverDnXgetrfPP was not able to maintain this lead when using
single precision as its execution time decreased to only 0.108 seconds, while PCM_8PP decreased
its time to 12.667. On the other hand, the third fastest decomposer, ICM_32PP, took 290 seconds
to decompose the sinc15 matrix using double precision and failed to decompose it using single
precision.

ICM_xPP From Figure 3.1, it can be seen that the performance of ICM_xPP is not as consistent
as that of PCM_xPP. Specifically, ICM_xPP consistently performed poorly when decomposing the
Cejka dense matrices as all its variants were slower than every decomposer except for CMPP.
For a better understanding of why ICM_xPP does not perform well on randomly generated dense
matrices, the nonzero element pattern of the Cejka558 matrix along with the iterative and pivoting
metrics of ICM_32PP are shown in Figure 3.2. Note that the iterative and pivoting metrics were
near-identical across all variants of ICM_xPP.

As Figure 3.2a shows, there are no zeros in the entire matrix except for some elements on the main
diagonal which are not visible. Furthermore, since the matrix values were randomly generated,
there were no patterns that would enable ICM_32PP to decompose the matrix rapidly. This is also
apparent from Figure 3.2b, where it can be seen that the top-left and center sections were each
computed in roughly 527 iterations.

In general, the number of iterations required to process a section of a Cejka dense matrix depends on
the type of the section. In the case of a diagonal section, the number of iterations can be estimated
as 2s + p, where s represents the size of one dimension of a section and p denotes the number
of elements pivoted in the section. This estimate comes from the observation that the number of
iterations depends on the number of diagonal elements in a section. Specifically, the number of
iterations performed per diagonal element varies based on two cases.

The first case assumes that the diagonal element is the bottom-right-most element of the section,
and in this case, two iterations are performed. In the first iteration, the value of the diagonal element
is computed. In the second iteration, the value is recomputed to assure that it has not changed. Note
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(b) Single precision

Figure 3.1: Execution times of decomposers listed in Table 3.3 on the subset of matrices shown
in Table 3.2 using double and single precision. The vertical axis, representing execution time in
seconds, is log-scaled for improved visibility of differences between implementations. Note that
in the graph showing results for single precision, the data for the sinc15 matrix is missing for the
ICM_xPP decomposer as it failed to decompose the matrix.

that the two iterations are performed regardless of whether the element requires pivoting or not. If
it does require pivoting, then the next steps involve processing the lower sections and pivoting the
element.

The second case assumes the opposite, i.e., that the diagonal element is not the bottom-right-most
element of the diagonal section. In this case, either two or three iterations are performed:
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(a) Nonzero element pattern of the Cejka558
matrix. The plot was generated using a Mat-
lab script that utilizes the CSPY function from
SuiteSparse: A Suite of Sparse matrix packages
at http://suitesparse.com [54, 55]. In the plot, the
color of nonzero elements depends on their abso-
lute value. Small entries are light orange, large
entries are black, and the color of mid-range en-
tries ranges from light green to deep blue depend-
ing on the median of log10 of the nonzero values
(with slight alterations) [55]. The color of zero
entries is white.
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(b) Iterative and pivoting metrics of ICM_32PP col-
lected during the decomposition of the Cejka558 ma-
trix. Each square represents a 256-by-256 section of the
matrix. The color in each square represents the number
of iterations performed on that section. The left and top
axes show the section ID in each dimension, while the
bottom axis shows the number of pivots performed in a
diagonal section. For example, the number of elements
pivoted in section (0,0) was 14, while in section (1,1) it
was 15. The plot was generated using a Python script.

Figure 3.2: Nonzero element pattern of the Cejka558 matrix along with the iterative and pivoting
metrics of ICM_32PP. The scripts used to generate the plots are available on request or as an
attachment to this thesis.

• Two iterations are performed if the diagonal element does not require pivoting. In the first
iteration, the diagonal element and the elements below it are computed. In the second
iteration, the elements to the right of the diagonal element are computed.

• Three iterations are performed if the diagonal element requires pivoting. In such a case, the
following occurs:

1. In the first iteration, the diagonal element and the values below it are computed.
2. Then, the iteration is performed again to assure that the element still requires pivoting

and that the values below it are processed, i.e., they can be used for pivoting.
3. The lower sections are then processed and the diagonal element is pivoted.
4. In the third iteration, the elements to the right of the diagonal element are computed.

Additionally, if the diagonal section is the top-left section of the matrix, then the estimate is adjusted
to 2s+ p− 1 since the first column of LU is the same as A. Therefore, in the first iteration, the values
in the first column are already processed, which leads to the values to the right of the first diagonal
element being finalized in the first iteration. Thus, an iteration is saved, hence the adjustment.

Note that in the context of this explanation, the computing of elements only refers to the computation
of elements within the diagonal section.
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According to the adjusted formula proposed above, the number of iterations required to process the
top-left diagonal section of the Cejka558 matrix is estimated to equal 2 · 256 + 14 − 1 = 525, which
corresponds to the number of iterations performed. Similarly, according to the formula presented
earlier (2s + p), the number of iterations required to process the center section was 527, which
corresponds to the number of iterations performed.
In the case of the bottom-right diagonal section, the formula must be offset to account for the
matrix bounds. For example, when considering the 558-by-558 matrix Cejka558, since each section
represents a 256-by-256 block of elements, the bottom-right diagonal section would extend beyond
the bounds of the matrix. Therefore, its boundaries are adjusted to match the boundaries of the
matrix, resulting in a 46-by-46 block of elements. The processing of this section is expected to
require 2 · 46 + 5 = 97 iterations. As shown in Figure 3.2b, this estimate is correct.

Continuing the context of the Cejka dense matrices, the number of iterations required to process
a lower section is estimated to equal s + p, where s represents the size of one dimension of a
section and p denotes the number of elements pivoted in the diagonal section above the lower
section. Specifically, the number of iterations corresponds to the number of columns the section
encompasses and the number of elements pivoted in the diagonal section above as described below:

• Number of columns - This is due to the chain of dependencies of each element. In other
words, for a value in the lower section to be computed, it depends on the values to its left and
the values in its column above the main diagonal. Since the latter are processed before the
computation of the lower section begins, only the values to the left of the element remain
to be processed. In the first iteration on a lower section, the values in the first column are
processed. To clarify, in the first iteration, multiple columns of values in the section are
computed, however, only the values in the first column are processed, i.e., their values are
finalized in the first iteration. In the second iteration, the values in the second column are
processed as they depend on the values processed in the first iteration. In summary, with
each iteration, one column is processed.

• Number of elements pivoted - The addition of this value stems from the fact that before an
element of a diagonal section is pivoted, the sections below the diagonal section are processed
until, and including, the column containing the bad element. Thus, for every pivoted element,
an extra iteration is performed to verify that the values up to and including the column are
not changing, i.e., they are processed.

Note that even if the lower section is adjusted to fit the boundaries of the matrix, the number
of iterations remains the same as the number of columns is not changed. For example, when
considering the Cejka558 matrix, the sections below the top-left diagonal section were processed in
270 iterations, which aligns with the prediction mentioned earlier: 256 + 14. Similarly, the section
below the center diagonal section was processed in 272 iterations, while the prediction was 271.

The prediction of the number of iterations required to process a right section is similar to that of
a lower section, except for the pivoting aspect. In other words, the number of iterations required
to process a right section is estimated to equal s + 1, where s represents the number of rows the
section encompasses. The additional iteration is performed to assure that the values of the right
section are not changing, i.e., that they are processed. Similarly to the lower sections, the number
of iterations required to process a right section is not affected if the section is adjusted to fit the
boundaries of the matrix. For example, in the context of the Cejka558 matrix, all right sections
were processed in 257 iterations, which aligns with the prediction.

To show that the prediction is valid for other Cejka matrices, the iterative and pivoting metrics for
ICM_32PP are presented in Figure 3.3 for matrices Cejka3839 and Cejka10135.
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(a) Iterative and pivoting metrics of ICM_32PP col-
lected during the decomposition of the Cejka3839
matrix. Each square represents a 384-by-384 section
of the matrix.
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(b) Iterative and pivoting metrics of ICM_32PP col-
lected during the decomposition of the Cejka10135
matrix. Each square represents a 1024-by-1024 sec-
tion of the matrix.

Figure 3.3: Iterative and pivoting metrics of ICM_32PP collected during the decomposition of the
Cejka3839 and Cejka10135 matrices.

For example, in the case of Cejka3839, each right section took between 384 and 385 iterations
to process, whereas the right sections of the Cejka10135 matrix were processed in 1024 to 1025
iterations. The prediction for the former yields 384+ 1 = 385 and the prediction for the latter yields
1024 + 1 = 1025. Note that the difference in one iteration is most likely caused by the values of
two columns being finalized in one iteration due to a favorable pattern. In Figures 3.3a and 3.3b, it
can be observed that the colors of the diagonal and lower sections become lighter as the number of
elements pivoted in each diagonal section increases. The only exception to this color lightening is
the bottom-right-most diagonal section of the Cejka10135 matrix. Similarly to the case with the
last diagonal section of the Cejka558 matrix, the section was adjusted to match the boundaries of
the matrix. Therefore, instead of being a 1024-by-1024 section, it became a 919-by-919 section,
requiring 2 · 919 + 237 = 2075 iterations to process.

Dense matrices with randomly generated values offer practically negligible opportunities for
ICM_xPP to skip the computation of elements. Therefore, such matrices represent the worst-case
scenario for the ICM_xPP decomposer, and the formulas derived from their decompositions can be
considered as an inclusive upper bound estimate of the number of iterations required to process a
section. In summary, for dense matrices with randomly-generated values, ICM_xPP effectively
becomes an inefficient adaption of PCM_xPP.

Steering away from instances of poor performance by ICM_xPP, there were three notable matrices
out of the subset of 15 where ICM_xPP outperformed PCM_xPP using both double and single
precision: poc-24_2_2, poc-32_2_2, and c-22. In general, it can be argued that ICM_xPP out-
performed PCM_xPP on the aforementioned matrices, as they required minimal, if any, pivoting.
Seeing as the matrices prefixed with poc were obtained from the "Poisson equation on a cube"
problem implemented in BDDCML, they are discussed as part of Section 3.2.

When using double precision, the best-performing variant of ICM_xPP, ICM_32PP, decomposed
the c-22 matrix in 1.313 seconds, while the best-performing variant of PCM_xPP, PCM_8PP,
decomposed it in 2.192 seconds. When single precision was used, ICM_32PP decomposed the
matrix in 0.830 seconds, while PCM_8PP decomposed it in 0.917 seconds. The main reason why
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ICM_xPP performed well specifically on the c-22 matrix is that the initial estimate, A, allowed for
the majority of the sections to be processed in one iteration, as shown in Figure 3.4. To provide
context for the iterative metrics, the nonzero element pattern of LU is presented in Figure 3.5.

(a) Nonzero element pattern of the c-22 matrix.
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(b) Iterative and pivoting metrics of ICM_32PP col-
lected during the decomposition of the c-22 matrix.
Each square represents a 384-by-384 section of the ma-
trix.

Figure 3.4: Nonzero element pattern of the c-22 matrix along with the iterative and pivoting metrics
of ICM_32PP. In the metrics plot, the color in each square represents the number of iterations
performed on that section. The left and top axes show the section ID in each dimension, while
the bottom axis shows the number of pivots performed in a diagonal section. However, since no
elements were pivoted, the values are all zero.

Figure 3.5: Nonzero element pattern of the LU matrix produced by ICM_32PP through the decom-
position of the c-22 matrix.

As Figure 3.4a shows, the main diagonal comprises nonzero elements. Therefore, the conditional
partial pivoting of ICM_xPP was not required. Furthermore, according to the iterative metrics in
Figure 3.4b and the resulting LU matrix shown in Figure 3.5, it can be seen that all sections until
section (5, 5) took only one iteration to process. Thus, as mentioned before, the initial estimate
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of LU in the form of A, described in Section 2.2.2, was instrumental in the efficient decomposition
of the c-22 matrix. In this case, the initial estimate was suitable since the input matrix mainly
had elements on the main diagonal. Therefore, ICM_xPP used the elements of the main diagonal
of A in the main diagonal of L. Then, the multiplication of L and U, which has a unit diagonal,
essentially meant that L was multiplied by a matrix resembling the identity matrix. As the figures
further show, the elements in the bottom-left and top-right of LU disrupted the simple computation
of the main diagonal. Subsequently, the bottom-right part of LU required many iterations to account
for the disturbance. The claim that ICM_xPP performs well on matrices with most of their nonzero
elements on the main diagonal corresponds to the findings presented in Chapter 3 of Parallel LU
Decomposition for the GPU [2].

Next, the variants of ICM_xPP will be compared to each other. While Figure 3.1 presents the
execution times of all variants of ICM_xPP, it may be difficult to discern the differences in
performance. Thus, to compare the performance of the variants of ICM_xPP, Figure 3.6 shows
their execution times on the subset of matrices when double precision was used. Note that unlike
in Figure 3.1, the vertical axis in Figure 3.6 is not log-scaled to better portray the differences in
performance among the variants.
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Figure 3.6: Execution times of the variants of ICM_xPP on the subset of matrices shown in Table 3.2
using double precision.

Out of the three variants of ICM_xPP that were benchmarked on the subset of 15 matrices,
ICM_32PP performed the best and ICM_8PP the worst, as can be seen in Figure 3.6.

To determine the reason behind the differences in performance between the variants, it is necessary
to consider different aspects of the implementations. Since the section size is near-identical for all
variants, and the difference in the number of threads performing a row swap in each variant does
not affect the performance, the only remaining major factor is the kernels computing the iterations.
Disregarding the changes in the implementations of the kernels since they were benchmarked in
Parallel LU Decomposition for the GPU [2], it can be argued that the difference in the performance
of the variants of ICM_xPP is due to uncoalesced and inefficient global memory access.

First, the issue of uncoalesced global memory access will be described. In the context of the
Decomposition benchmark for decomposers, the matrices were stored in row-major order on the
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GPU for the ICM_xPP decomposer. As a result, uncoalesced access to global memory occurs for
ICM_8PP and ICM_16PP.

For example, in the case of ICM_8PP, this is due to it using 8-by-8 thread blocks. Since threads
consecutive in their 1st dimension are grouped into warps of 32 threads, each block of threads in
ICM_8PP is made up of two warps. The first warp consists of threads in the first four rows of the
thread block, while the remaining threads belong to the second warp. When these threads read
matrix elements from global memory, the first row of eight threads reads neighboring elements,
and the next row of threads also reads neighboring elements. However, the second group of eight
elements is not adjacent to the first group of eight elements. In general, while each group of eight
threads within a warp accesses neighboring global memory addresses, the accessed elements of
each group are not adjacent to those accessed by the other groups of eight threads. Therefore,
instead of the threads within a warp all reading neighboring elements in parallel, i.e., in one read
transaction, they perform 32/8 = 4 sequential read transactions [2].

Similarly, since ICM_16PP uses 16-by-16 thread blocks, each warp performs 32/16 = 2 sequential
transactions when reading from global memory during kernel execution. Conversely, this issue is
not present for ICM_32PP since each row of a thread block comprises one warp of threads. Thus,
the threads of each warp read 32 neighboring elements in one transaction.

The next issue, inefficient global memory access, describes a scenario where the smaller the thread
blocks are, the more accesses to global memory they perform. In Section 2.2.2 the following was
mentioned in terms of the computation kernels of ICM_xPP:

... each block of threads is responsible for computing a block of elements in LUnext.
Thus, to use shared memory and avoid unnecessary accesses to global memory, the
block of threads performs matrix multiplication by iterating over blocks of elements.
In other words, it loads a block of elements from global memory to shared memory,
multiplies them, and then moves on to the next block. The value a thread computes
for each block of elements is added to a local variable, sum. Matrix multiplication by
blocks of elements using shared memory is depicted in Figure 2.3.

When a block of threads performs matrix multiplication by iterating over blocks of elements, each
iteration involves a 32-by-32 block of threads reading from global memory only once. On the other
hand, to cover the same block of elements, 16 8-by-8 blocks of threads are required. Specifically,
four 8-by-8 blocks of threads stacked on top of each other are required to compute eight columns,
and there are four parts consisting of eight columns each in 32 columns. Therefore, in each iteration,
the four blocks stacked on top of each other will read the same 8-by-8 block of elements four times
in total, since they cannot access the shared memory of the other thread blocks. This means that
when a 32-by-32 block of threads computes the values of a 32-by-32 block of elements in LU, it
performs fewer read operations from global memory compared to using multiple 8-by-8 blocks of
threads to compute the same block of elements.

The consequences of these inefficiencies are visible in Figure 3.6, where, especially for matrices
that take a long time to decompose, ICM_32PP consistently outperforms ICM_16PP, which in turn
consistently outperforms ICM_8PP.

CMPP As can be seen from Figure 3.1, the CMPP decomposer performed worse than the other
benchmarked decomposers on all matrices of the subset, except for the poc-8_4_2-1 and Cejka558
matrices. The lack of performance can be attributed to two main reasons: the algorithm of CMPP
is strictly sequential, and its implementation is not optimized. The performance of CMPP greatly
depends on the dimensions of the input matrix, therefore, only the execution times it achieved on the
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smallest and largest matrices of the subset will be mentioned. When using double precision, CMPP
decomposed the poc-8_4_2-1 matrix in 0.003 seconds and the sinc15 matrix in 536.824 seconds.
When using single precision, CMPP decomposed the matrices in 0.003 and 517.045 seconds,
respectively. For context, the slowest variant of ICM_xPP, ICM_8PP, decomposed the sinc15
matrix in 494.174 seconds using double precision. Ultimately, in the context of the Decomposition
benchmark for decomposers, CMPP served as a baseline against which other decomposers were
expected to perform better. Additionally, it served as a means to verify the accuracy of results
produced by the other decomposers.

PCM_xPP Overall, on the subset of 15 matrices, PCM_xPP was the second fastest decomposer.
Since its algorithm is a parallelized version of CMPP’s algorithm, its performance also heavily
depends on the dimensions of the input matrix, as shown in Figure 3.1. For the analysis of
PCM_xPP, Figure 3.7 displays the execution times of its variants when double precision was used.
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Figure 3.7: Execution times of the variants of PCM_xPP on the subset of matrices shown in
Table 3.2 using double precision.

As can be seen in Figure 3.7, PCM_8PP consistently outperforms PCM_16PP, which in turn
consistently outperforms PCM_32PP. Similarly to ICM_xPP, the difference in execution times
increases with larger matrix dimensions.

In the context of the Decomposition benchmark for decomposers, the input matrix was stored in
row-major order, which resulted in slightly lower execution times for the variants compared to
when column-major ordering was used. The higher performance of the decomposer with row-major
ordering was unexpected since it meant that accesses to global memory were not coalesced. As
mentioned in Section 2.2.2, the thread blocks of PCM_xPP are one-dimensional and consist of x2

threads. In the context of PCM_32PP, when the threads of a block read a column of elements from
global memory in each iteration of the for loop shown in Listing B.2, the addresses accessed by the
threads are not adjacent. As a result, the global memory access of threads belonging to each warp
is not coalesced. This means that the read operations performed by the warp are divided into more
memory transactions compared to coalesced global memory access. Nevertheless, uncoalesced
access to global memory did not seem to have a noticeable impact on the performance of PCM_xPP.
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The differences in the performance of the variants of PCM_xPP can be attributed to idle resources.
This claim is based on the observation that the execution time of PCM_32PP and PCM_16PP
consistently appears to be worse than that of PCM_8PP for larger sparse matrices. The GPU used
for the benchmarks, Nvidia A100, has the following limitations per SM [9]:

1. maximum threads per SM: 2048,

2. maximum warps per SM: 64, and

3. maximum thread blocks per SM: 32.

Therefore, the PCM_32PP decomposer, which uses blocks of 1024 threads, can only schedule two
of its blocks per SM before the threads-per-SM limit is reached. Moreover, a block of threads
cannot be released from an SM until all of its warps have completed their work [56]. Consequently,
if one warp within the block takes longer to complete its work, it can potentially hold the entire
block of 1024 threads in the SM, preventing the scheduling of another thread block. This situation
results in idle resources on the SM, as the other warps have already completed their work. Notably,
this scenario is more likely to occur with blocks consisting of a larger number of threads.

This congestion is less likely to occur for blocks with fewer threads since each SM can handle more
blocks simultaneously. For example, PCM_16PP, which uses blocks of 256 threads, can schedule
up to eight of its blocks per SM. Similarly, PCM_8PP can schedule up to 32 of its blocks, each
consisting of 64 threads, per SM.

Earlier, it was mentioned that this behavior can be observed for larger sparse matrices. This is due to
larger matrices generally requiring more computing threads, thus necessitating more thread blocks.
Furthermore, the sparsity of the matrices increases the likelihood of an unequal distribution of work
across warps, as the majority of elements are zero. In other words, during the decomposition of
sparse matrices, it is more likely for many warps to be working with zeros while other warps are
working with nonzeros, which results in the latter requiring more time and causing the idleness of
resources.

This behavior seems to occur in Figure 3.7, where the execution time of PCM_32PP appears to
spike for larger sparse matrices such as nd3k and msc10848. Additionally, the figure shows that the
PCM_16PP decomposer also exhibits a noticeable spike in execution time for the msc10848 sparse
matrix. In contrast, the PCM_8PP decomposer, which employs smaller thread blocks compared to
the other variants, shows the best performance.

It should be noted once again that the implementation of PCM_xPP was not optimized in any way.
This means that optimization techniques such as shared memory usage, block-level loop unrolling,
and others were not employed. Consequently, as mentioned in Section 2.2.2, PCM_xPP is highly
inefficient and fails to fully exploit the computational power of the GPU. However, despite its
lack of optimization, PCM_xPP still demonstrates better performance compared to the complex
implementation of ICM_xPP. This suggests that ICM_xPP may be suitable for specific types of
matrices, such as those encountered in the BDDCML benchmark discussed in Section 3.2.

Performance Comparison Relative to CuSolverDnXgetrfPP For completeness, this section
presents the performance comparison of the decomposers listed in Table 3.3 relative to the Cu-
SolverDnXgetrfPP decomposer. First, the speedup relative to the CuSolverDnXgetrfPP decomposer,
using both double and single precision, is presented in Figure 3.8. Then, the execution times of the
decomposers for both double and single precision are presented in Tables 3.4 and 3.5, respectively.
Note that the tables only show the execution times of the best-performing variants of ICM_xPP and
PCM_xPP.
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Figure 3.8: Speedup comparison of the decomposers listed in Table 3.3 relative to CuSolverD-
nXgetrfPP on the subset of matrices shown in Table 3.2 using double and single precision. The
vertical axis is log-scaled for improved visibility of differences between implementations.

Figure 3.8, and Tables 3.4 and 3.5 suggest that CuSolverDnXgetrfPP is the fastest decomposer
among those benchmarked in the Decomposition benchmark for decomposers. However, the results
presented only compare the decomposers on a subset of 15 matrices. To provide further support for
the claim, it is necessary to evaluate the performance of CuSolverDnXgetrfPP on the entire set of
50 matrices.
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Matrix CuSolverDnXgetrfPP CMPP ICM_32PP PCM_8PP
poc-8_4_2-1 0.0012 0.0026 0.0028 0.0079
Cejka558 0.0025 0.0431 0.1536 0.0328
poc-24_2_2 0.0089 1.6072 0.1233 0.2498
Cejka2599 0.0138 4.9971 2.5359 0.7432
poc-32_2_2 0.0172 10.0834 0.3185 1.4109
c-22 0.0211 17.0976 1.3125 2.1916
Cejka4156 0.0252 22.8199 9.3951 2.7534
freeFlyingRobot_9 0.0309 39.4910 7.5774 3.7317
Cejka6574 0.0536 102.0215 48.6333 7.3379
fp 0.0613 149.0108 10.3767 10.0030
Cejka8385 0.0692 250.6601 123.9475 12.6962
nd3k 0.0728 261.3578 108.3278 13.9076
Cejka10135 0.0981 1282.0280 243.4973 18.8531
msc10848 0.1037 653.4609 231.3460 20.6770
sinc15 0.1237 536.8241 290.3724 24.3491

Table 3.4: Execution times (in seconds) of the decomposers listed in Table 3.3 on the set of matrices
(Table 3.2) using double precision. Only the execution times of the best-performing variants of
ICM_xPP and PCM_xPP are presented.

Matrix CuSolverDnXgetrfPP CMPP ICM_32PP PCM_8PP
poc-8_4_2-1 0.0012 0.0028 0.0021 0.0065
Cejka558 0.0024 0.0441 0.1347 0.0244
poc-24_2_2 0.0079 1.6099 0.0684 0.1509
Cejka2599 0.0120 4.8680 1.8898 0.2926
poc-32_2_2 0.0221 8.7752 0.1594 0.4945
c-22 0.0199 15.2680 0.8297 0.9173
Cejka4156 0.0210 21.4828 6.4306 1.2250
freeFlyingRobot_9 0.0276 36.1487 5.1294 1.7961
Cejka6574 0.0412 90.2590 32.6642 3.7836
fp 0.0546 159.8940 6.0036 5.0968
Cejka8385 0.0727 276.4194 82.7072 6.2676
nd3k 0.0834 225.9154 70.8304 7.4513
Cejka10135 0.0859 374.2370 162.5578 9.5356
msc10848 0.0917 481.6722 155.3406 11.6422
sinc15 0.1075 517.0449 - 12.6665

Table 3.5: Execution times (in seconds) of the decomposers listed in Table 3.3 on the set of matrices
(Table 3.2) using single precision. Only the execution times of the best-performing variants of
ICM_xPP and PCM_xPP are presented. The execution time of ICM_32PP is missing for the sinc15
matrix as ICM_xPP failed to decompose the matrix using single precision.

Comparison of Execution Times on All Matrices

This section presents a comparison of the execution times of the decomposers listed in Table 3.3 on
the set of 50 matrices using both double and single precision. The benchmarks were run on the
platform specified in Section 3.1.1. Similarly to the benchmark results presented in Section 3.1.3,
the matrices were sorted according to their dimensions from smallest to largest. The execution
times are presented in Figure 3.9.
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Figure 3.9: Execution times of decomposers listed in Table 3.3 on the entire set of 50 matrices
using double and single precision. The vertical axis, representing execution time in seconds, is
log-scaled for improved visibility of differences between implementations. Note that in the graph
depicting the results for single precision, the data for the sinc15 matrix is not available for the
ICM_xPP decomposer as it failed to decompose the matrix.

As depicted in Figure 3.9, CuSolverDnXgetrfPP exhibits the best performance among the bench-
marked decomposers. The only scenario where it was surpassed by all other decomposers was with
a 4-by-4 testing matrix. Additionally, for matrices with IDs 0 to 7, it exhibited slower performance
compared to CMPP. However, it is worth noting that the dimensions of matrices 0 to 7 range from
4-by-4 to 230-by-230; such matrices are not commonly encountered in real-life problems.

In general, PCM_xPP and ICM_xPP exhibited faster performance when using single precision
compared to double precision. On the other hand, CuSolverDnXgetrfPP demonstrated only minor
differences in performance between double and single precision.

The figures provide additional support for the claim stated in the analysis of ICM_xPP in Sec-
tion 3.1.3 that larger thread blocks have a positive impact on its performance. For instance,
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Figure 3.9a clearly illustrates the difference in performance between the variants of ICM_xPP.
Specifically, ICM_32PP consistently outperforms ICM_16PP, which in turn consistently outper-
forms ICM_8PP.

Similarly, the figures provide additional support for the claim made in the analysis of PCM_xPP
in Section 3.1.3 that smaller thread blocks decrease resource idleness. Specifically, PCM_8PP
consistently outperforms PCM_16PP, which in turn consistently outperforms PCM_32PP. For
example, when considering double precision, PCM_32PP exhibited a significant spike in execution
time for the sparse matrices listed in Table 3.6.

ID Matrix Rows/Columns Nonzeros Avg. nonzeros per row
25 bayer06.mtx 3008 20715 6.887
30 c-22.mtx 3792 28870 7.613
44 nd3k.mtx 9000 3279690 364.410
48 msc10848.mtx 10848 1229776 113.364

Table 3.6: Sparse matrices for which the execution time of PCM_32PP spiked compared to the
other variants of PCM_xPP. The average number of nonzeros per row is rounded to three decimal
places.

Note that, in Figure 3.9, the spikes in execution time of PCM_32PP are more pronounced for the
larger matrices listed in Table 3.6. This was one of the key points of the claim made in the analysis
of PCM_xPP. However, Figure 3.9a also shows a spike in the execution time of PCM_32PP for
matrix 37 (Cejka6192), which is a dense matrix. Since this behavior does not occur for any of the
other dense matrices, the reason for this sudden increase in execution time remains unclear.

To put the results of the entire set of matrices into perspective, Table 3.7 presents the total time
taken by each decomposer to decompose the entire set of 50 matrices.

Total execution time [s]Decomposer Double precision Single Precision
CuSolverDnXgetrfPP 1.41 1.30
CMPP 5034.38 3742.05
ICM_8PP 2751.50 1459.26
ICM_16PP 2138.09 984.42
ICM_32PP 1669.74 920.30
PCM_8PP 221.59 113.10
PCM_16PP 240.95 133.38
PCM_32PP 387.39 275.34

Table 3.7: Total execution time (in seconds) taken by each decomposer to decompose the set of
50 matrices on the RCI cluster, specified in Section 3.1.1, using double and single precision. The
execution times are rounded to three decimal places.

In terms of execution speed, both Figure 3.9 and Table 3.7 demonstrate that CuSolverDnXgetrfPP
is the fastest decomposer. Excluding CuSolverDnXgetrfPP, the fastest decomposer is PCM_xPP,
specifically the PCM_8PP variant. Although the variants of ICM_xPP were generally slower than
the variants of PCM_xPP for most matrices, they exhibited promising performance for specific
matrix types, such as the poc matrices obtained from the BDDCML benchmark.
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Accuracy of Results on All Matrices

Another important aspect in the performance of a decomposer is the accuracy of the results it
produces. The maximum absolute difference between the expected results and the actual results
for the entire set of 50 matrices is shown in Figure 3.10. For context, the maximum absolute
difference for decomposers was defined in Equation 2.7 as max |A − LUP|, where A is the input
matrix, L and U are the results of the decomposition operation, and P is the permutation matrix.
Note that the permutation matrix was represented by a vector in the implementations. This section
mentions decomposers ICM_xPP and PCM_xPP instead of their variants, as the variations of the
decomposers did not differ in terms of accuracy, i.e., there was no need to specifically address each
variant.
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Figure 3.10: Accuracy of results achieved by the decomposers listed in Table 3.3 (excluding the
different variants) on the entire set of 50 matrices using both double and single precision. The
matrix ID signifies the ID of the matrices after they have been sorted according to their dimension
from smallest to largest. The vertical axis is log-scaled for improved visibility. Note that the
accuracy values for the first matrix for CMPP, ICM_xPP, and PCM_xPP are not plotted as their
results matched the expected results, i.e., the plotted values would be equal to log 0. Additionally, it
is important to mention that the vertical axes of both graphs do not cover the same range.
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As depicted in Figure 3.10, the decomposers implemented by the author of this thesis exhibited an
acceptable level of accuracy in comparison to the established CuSolverDnXgetrfPP when double
precision was used. However, when it came to single precision, the accuracy of the decomposers
was found to be inferior to that of CuSolverDnXgetrfPP. Given the large discrepancy in result
accuracy between double and single precision, they will be analyzed separately.

Double Precision In addition to the accuracy of results shown in Figure 3.10a, a selection of
statistical indices is presented in Table 3.8 to offer additional insights into the performance of the
decomposers.

Decomposer Mean Std. dev. Q1 Q2 Q3 Max.
CMPP 1.27e−3 8.84e−3 1.14e−13 2.40e−9 1.18e−7 0.063
CuSolverDnXgetrfPP 1.02e−6 5.74e−6 2.27e−13 4.27e−11 3.52e−10 4.01e−5
ICM_xPP 0.023 0.163 1.06e−11 7.12e−8 1.42e−6 1.152
PCM_xPP 0.948 6.705 1.06e−11 6.11e−8 8.96e−7 47.414

Table 3.8: Statistical indices of the accuracy of results achieved by the decomposers in the Decom-
position benchmark using double precision. Columns Q1, Q2, and Q3 represent the first, second,
and third quartiles, respectively. The indices were computed using LibreOffice Calc, a spreadsheet
software.

The statistical indices in Table 3.8 show that the CuSolverDnXgetrfPP decomposer produced
the most accurate results followed by CMPP. However, cases where the CuSolverDnXgetrfPP
decomposer produced less accurate results than all remaining decomposers have been observed,
e.g., for matrices 35 (exdata_1) and 40 (fp). For these matrices, the relative inaccuracy of Cu-
SolverDnXgetrfPP is present for both double and single precision, as Figures 3.10a and 3.10b show,
respectively. The reasons for the relative inaccuracy are unclear as there is no consistent pattern
that would indicate a matrix characteristic unfavorable to CuSolverDnXgetrfPP.

For example, it was theorized that ICM_xPP produced more accurate results when decomposing
matrices 35 and 40 due to their higher condition numbers, 1.06e+12 and 4.78e+12, respectively. In
other words, the iterative approach of ICM_xPP was theorized to produce accurate results when
decomposing numerically unstable matrices. However, this theory was disproved by a counterex-
ample, as the ICM_xPP decomposer produced less accurate results than CuSolverDnXgetrfPP on
matrix 26 (bayer09), which has a condition number equal to 2.63e+21. Note that the condition
numbers were computed using a Matlab script that utilizes the approach presented in Algorithm
907 [57, 58, 59]. The script is available on request or as an attachment to this thesis.

In the description of the implementation of the ICM_xPP decomposer in Section 2.2.2, it was
mentioned that the processing tolerance was specifically chosen to be zero. The reasoning behind
this claim was that setting the tolerance to even a small nonzero value, e.g., 1e−5, could potentially
decrease the accuracy. To support this claim, the accuracy of results for various processing
tolerances is presented in Figure 3.11.

As can be seen in Figure 3.11, ICM_xPP with its processing tolerance set to zero is the most accurate
among the explored processing tolerances. It is noteworthy that ICM_xPP with its processing
tolerance set to 1e−10 also produces accurate results. Interestingly, for four matrices, it produced
marginally more accurate results compared to the zero-tolerance variant. The reason behind this
behavior is unclear. Nevertheless, the accuracy of the 1e−10 variant was inferior to that of the
zero-tolerance variant in multiple cases.
For the remaining processing tolerances, ICM_xPP produced less accurate results compared to
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Figure 3.11: Accuracy of the results achieved by ICM_xPP with various processing tolerances on
the entire set of 50 matrices using double precision. The name of each decomposer follows the
naming pattern decomposer <processing_tolernace>. The vertical axis is log-scaled for improved
visibility. Note that the accuracy values for the first matrix are not plotted as the decomposers
produced results produced that matched the expected results, i.e., the plotted value would be equal
to log 0. Additionally, certain accuracy values are missing as their decomposers failed to decompose
those particular matrices. Specifically, ICM_xPP 1e−2 failed to decompose matrices 6 (west0156),
27 (garon1), and 47 (TSOPF_FS_b162_c1), while ICM_xPP 1e−1 failed to decompose matrices 6
(west0156), 17 (b2_ss), 27 (garon1), 33 (freeFlyingRobot_9), and 47 (TSOPF_FS_b162_c1).

the 1e−10 variant. However, the variants with looser processing tolerances may still be useful if
ICM_xPP is employed as a preconditioner, particularly in scenarios where high accuracy may not
be necessary. An example of such a scenario is the "Poisson equation on a cube" problem, whose
benchmark results are discussed in Section 3.2.

With regard to the ICM_xPP decomposer with its processing tolerance set to zero, the obtained data
seems to contradict the theory proposed in Parallel LU Decomposition for the GPU [2]: "Since
Crout’s method is direct, it can be theorized that rounding errors may result in it providing less
accurate results compared to its numerical modification". However, it is important to note that the
theory was formulated without considering partial pivoting. Therefore, the results of this benchmark
indicate that combining the iterative approach of ICMx and partial pivoting is not a viable approach
for LU decomposition in terms of accuracy.

When considering the CMPP and PCM_xPP decomposers, the values in Table 3.8 highlight
occasional inaccuracies. For example, in Figure 3.10a, it can be seen that both decomposers exhibit
large discrepancies between the expected and actual results for matrix 50 (sinc15). This inaccuracy
is reflected in their mean values, as shown in Table 3.8, deviating significantly. Additionally, the
relatively small value of the third quartile further supports this observation. The inaccuracy of
CMPP, a naive and strictly sequential implementation, can be attributed to conditional partial
pivoting as the accuracy of CMPP was higher when every element was pivoted regardless of its
value. The comparison of the accuracy of results between CMPP and PCM_xPP, considering both
conditional partial pivoting and full partial pivoting, is presented in Figure 3.12. The term full
partial pivoting represents partial pivoting where every element of the main diagonal is pivoted,
regardless of its value.
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Figure 3.12: Accuracy of results achieved by CMPP and PCM_xPP with different types of partial
pivoting on the entire set of 50 matrices using double precision. The name of each decomposer
follows the naming pattern decomposer <type_of_pivoting>. The vertical axis is log-scaled for
improved visibility. Note that the accuracy values for the first matrix are excluded from the plot as
the results produced by the decomposers matched the expected results.

As shown in Figure 3.12, CMPP and PCM_xPP produced less accurate results with conditional
partial pivoting than with full partial pivoting. This decrease in accuracy would be concerning if
CMPP and PCM_xPP were intended to be fully-functional decomposers. However, as previously
mentioned, both decomposers primarily served as a proof-of-concept for conditional partial pivoting
and as a baseline comparison for ICM_xPP.

In the introduction of Processing by Sections in Section 2.2.2, the upper bound for conditional
partial pivoting was introduced. It was explained that the upper bound is necessary only for
ICM_xPP, as without it, the decomposer would decompose certain matrices incorrectly. In this
context, the version of ICM_xPP without the upper bound for conditional partial pivoting will be
referred to as ICM_xPP_NaN. Specifically, ICM_xPP_NaN would produce results that contained
-NaN values in seven of the 50 matrices. The only common characteristic of the matrices was that
they were all sparse. To illustrate this issue, Figure 3.13 depicts the nonzero element pattern of the
LU matrix produced by ICM_32PP_NaN through the decomposition of the msc10848 matrix. The
figure also displays the iterative and pivoting metrics of the decomposer that were collected during
the decomposition of the aforementioned matrix.

As depicted in Figure 3.13a, the resulting matrix consisted mostly of -NaN values. When considering
the metrics presented in Figure 3.13b, it can be seen that ICM_32PP_NaN erroneously classified
the sections containing -NaN values as processed.

This issue was discovered while plotting the nonzero element patterns of the LU matrices produced
by ICM_32PP_NaN. The unit tests and benchmark results did not reveal any indications of invalid
values. The maximum absolute difference was calculated as follows: TNL::max( TNL::abs(
A - A_res ) ), where A_res represents the result of L*U. The value of the maximum absolute
difference did not indicate the presence of -NaN values, as the TNL::abs() function returned
-NaN.

Furthermore, as depicted in Figure 3.13b, the dark blue sections were processed in a single iteration.
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(a) Nonzero element pattern of the LU matrix pro-
duced by ICM_32PP_NaN through the decompo-
sition of the msc10848 matrix. The blue square
indicates the presence of NaN values (-NaN in
absolute value).
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(b) Iterative and pivoting metrics of ICM_32PP_NaN
collected during the decomposition of the msc10848
matrix. Each square represents a 1024-by-1024 section
of the matrix. The color in each square represents the
number of iterations performed on that section. The left
and top axes show the section ID in each dimension,
while the bottom axis shows the number of pivots per-
formed in a diagonal section.

Figure 3.13: Nonzero element pattern of the LU matrix produced by ICM_32PP_NaN through
the decomposition of the msc10848 matrix. The corresponding iterative and pivoting metrics of
ICM_32PP_NaN are included.

This implies that during the processing check, as shown on Page 58 in Listing 2.9 on Line 93, the
-NaN values were incorrectly evaluated as processed. Specifically, the condition ( abs( val - NaN
) > process_tol ) was evaluated as false due to the abs() function also returning -NaN.

Nevertheless, how ICM_xPP_NaN computed the -NaN values remains unclear. However, it was
observed that the introduction of the upper bound for conditional partial pivoting resolved the
issue in all affected matrices. Although the inclusion of the upper bound had a negative impact
on the performance of ICM_xPP on those particular matrices, it did not affect the performance
of the decomposer on the remaining matrices. It is hypothesized that the use of the upper bound
for conditional partial pivoting serves as a temporary checkpoint in the computation, effectively
eliminating any potential issues that could result in the computation of -NaN values. However, it is
also possible that the introduction of the upper bound inadvertently masks another underlying issue
in the implementation.

While the issue seems to have been resolved by introducing the upper bound for conditional partial
pivoting, further investigation should be conducted to gain a better understanding of the underlying
causes. Additionally, to prevent similar issues from going unnoticed in the future, the result
verification process for the Decomposition benchmark for decomposers ought to be revised. The
discovery of this issue revealed that the maximum absolute difference is not a reliable measure of
accuracy, as it does not consider the relative accuracy of results. For example, a maximum absolute
difference of 1e−4 may appear reasonable, however, if the values in the input matrix are small, such
as 1e−8, then the resulting decomposition is highly inaccurate.
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Single Precision The statistical indices of the accuracy of the results obtained using single
precision are presented in Table 3.9.

Decomposer Mean Std. dev. Q1 Q2 Q3 Max.
CMPP 6.35e+3 3.73e+4 6.10e−5 1.717 64.000 2.62e+5
CuSolverDnXgetrfPP 7.49e+2 4.66e+3 9.01e−5 0.016 0.227 3.28e+4
ICM_xPP 6.37e+4 3.29e+5 2.08e−3 15.671 299.311 2.10e+6
PCM_xPP 4.96e+5 2.67e+6 0.002 27.828 565.789 1.84e+7

Table 3.9: Statistical indices of the accuracy of the results produced by the decomposers in this
benchmark using single precision. Columns Q1, Q2, and Q3 represent the first, second, and third
quartiles, respectively. The indices were computed using LibreOffice Calc, a spreadsheet software.

Overall, the decomposers were less accurate when using single precision. From Table 3.9, it can
be seen that the mean maximum absolute difference was higher for the majority of decomposers
compared to when double precision was used. However, the values of the first and third quartiles
suggest that the mean values are heavily influenced by 12 to 13 of the 50 matrices.

When using single precision, the most accurate results were produced by the CuSolverDnXgetrfPP
decomposer. Conversely, the remaining decomposers produced relatively highly inaccurate results.
Excluding CuSolverDnXgetrfPP, the most accurate decomposer was CMPP. However, similar to
double precision, the accuracy of the results produced by CMPP suffered due to conditional partial
pivoting. The accuracy of the decomposer was higher when full partial pivoting was used. The
comparison of the accuracy of results between CMPP and PCM_xPP, considering both conditional
partial pivoting and full partial pivoting, is presented in Figure 3.14.
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Figure 3.14: Accuracy of results achieved by CMPP and PCM_xPP with different types of partial
pivoting on the entire set of 50 matrices using single precision. The naming pattern for each
decomposer is decomposer <type_of_pivoting>. The vertical axis is log-scaled for better visibility.
Note that the accuracy values for the first matrix are excluded from the plot as the results produced
by the decomposers matched the expected results.

Figure 3.14 highlights the instability of conditional partial pivoting. Specifically, it demonstrates
that the difference in accuracy between CMPP conditionalPP and PCM_xPP conditionalPP is much
greater with single precision compared to double precision. These results indicate that conditional
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partial pivoting, when combined with lower precision, leads to an unstable approach that produces
inaccurate results.

To summarize the accuracy of results on all matrices, the decomposer that consistently produced
the most accurate results regardless of the precision used was CuSolverDnXgetrfPP. Excluding
CuSolverDnXgetrfPP, CMPP is recommended for both double and single precision in terms of
accuracy. However, if high accuracy is required, then CMPP with full partial pivoting is more
suitable compared to CMPP with conditional partial pivoting.

Summary of Decomposers Benchmark The fastest and most accurate decomposer on the set
of 50 matrices was CuSolverDnXgetrfPP. Among the decomposers implemented by the author
of this thesis, PCM_8PP is a suitable choice if execution speed is the primary requirement, as it
consistently performs well. However, for sparse matrices with most of their elements on the main
diagonal, ICM_32PP can be a suitable alternative. Furthermore, for specific problems, such as the
"Poisson equation on a cube" problem implemented in BDDCML, ICM_32PP may outperform
PCM_8PP. On the other hand, if highly accurate results are required, CMPP is recommended, even
at the cost of execution speed.

3.1.4 Solvers Benchmark

This section presents benchmark results obtained by solving systems of linear equations that
originated from the set of 50 matrices. The benchmark for solvers consists of each matrix being
used as a coefficient matrix A in AX = B. Specifically, the benchmark comprises the following
steps:

1. The matrix is decomposed either by CMPP or GEM depending on which of the two matrices,
L or U, is expected by the solver to contain a unit diagonal. If the unit diagonal is expected in
U, then CMPP is used, whereas if it is expected in L, then GEM is used.

2. To mitigate possible inaccuracies caused by the decomposer, matrices L and U are multiplied
to create A_res which is later used instead of A for the verification of results.

3. The matrix of 10 right-hand sides, B, is filled with ones.

4. The solver receives the decomposed matrices, L and U, the pivoting vector piv, the matrix of
unknowns, X, and the matrix of right-hand sides, B.

5. The system is solved 10 times by the solver, and the collected metrics are subsequently
averaged and logged.

The solvers compared in this benchmark are listed in Table 3.10.

Note that the processing tolerance of IS_xPP was set to zero, as higher accuracy of the produced
results is required. As mentioned in Section 2.2.2, the implementation of solvers was not part of
the diploma thesis assignment. Furthermore, neither SSPP nor IS_xPP were prioritized in terms of
optimization. Therefore, the benchmark results of the solvers will only be presented briefly for the
entire set of 50 matrices.

First, the execution times of the solvers listed in Table 3.10 on the set of 50 matrices are presented
for both double and single precision. Then, the accuracy of the results is discussed.
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Solver
Name Abbreviation Variants Performer

Sequential Solver with Partial Piv. SSPP - CPU
CuBLAStrsm with Partial Piv. CuBLAStrsmPP - GPU
CuSolverDnXgetrs with Partial Piv. CuSolverDnXgetrsPP - GPU
Iterative Solver with Partial Piv. IS_xPP 8, 16, 32, 64, 128 GPU

Table 3.10: Solvers compared in the benchmark: SSPP (described in Sequential Solver with Partial
Pivoting (SSPP) in Section 2.2.2), CuBLAStrsmPP (mentioned in Section 2.1.2), CuSolverD-
nXgetrsPP (mentioned in Section 2.1.2), and IS_xPP (described in Iterative Solver with Partial
Pivoting (IS_xPP) in Section 2.2.2). The Variants column indicates the different configurations
of each solver. The IS_xPP solver was benchmarked as five separate solvers depending on the
CUDA thread block configuration. The x in IS_xPP represents the number of threads per block in
the 1st dimension. The Performer column specifies the primary device used by each solver. The
CuBLAStrsmPP solver assumed that the unit diagonal was present in matrix U.

Comparison of Execution Times on All Matrices

The comparison of execution times of the solvers listed in Table 3.10 on the set of 50 matrices
using both double and single precision is presented in Figure 3.15.

As depicted in Figure 3.15, CuBLAStrsmPP and CuSolverDnXgetrsPP were the fastest solvers
overall, regardless of the precision used. The results indicate that, similar to ICM_xPP, the
performance of the iterative approach of IS_xPP depends on the characteristics of the matrix. For
example, when double precision was used, IS_xPP outperformed SSPP on 26 out of the 50 matrices.
These 26 matrices were made up of 19 sparse matrices from The university of Florida sparse matrix
collection [53] and seven dense matrices from the "Poisson equation on cube" problem implemented
in BDDCML. When considering matrices with dimensions up to approximately 3600-by-3600
(matrices 0 to 29), it can be seen that the execution times of IS_xPP are closer to those of the
established CUDA solvers compared to matrices with larger dimensions. This suggests that the
performance of IS_xPP and SSPP does not scale well.

Additionally, when examining the variants of IS_xPP, it is evident that IS_128PP is consistently
surpassed by variants with a smaller number of threads per block, for both double and single
precision. To confirm this observation, Figure 3.16 presents a comparison of execution times for
the IS_xPP variants on the set of matrices when double precision was used.

As depicted in Figure 3.16, IS_8PP consistently demonstrated better performance compared to
IS_16PP, which in turn consistently outperformed IS_32PP, and so on. These findings suggest
that IS_xPP is also affected by the resource idleness issue described on Page 78 for PCM_xPP. In
IS_xPP, the thread blocks comprise x-by-8 threads, as shown in Listing E.1 on Line 52. Each row
of threads within the eight rows of threads in the thread block is responsible for computing values
for one right-hand side. The number of rows in the thread block has remained constant since the
initial implementation of the solver. As solvers were not a part of the diploma thesis assignment, the
implementation of thread blocks that would dynamically adapt to the number of right-hand sides
was not prioritized. Each thread in the 1st dimension is responsible for computing one element
of a right-hand side. For example, thread (x = 10, y = 5) is responsible for computing the 10th
element of the 5th right-hand side.

To aid the explanation of the resource idleness that arises in IS_xPP as a result of its thread block
structure, the visualizations of forward and backward substitution are shown in Figure 3.17.
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(a) Double precision
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(b) Single precision

Figure 3.15: Execution times (in seconds) of solvers listed in Table 3.10 on the set of 50 matrices
using double and single precision. The vertical axis is log-scaled for improved visibility.

For simplicity, hereafter, the substitutions are assumed to work with only one right-hand side, unless
stated otherwise. In Figures 3.17a and 3.17b, each row represents the computation of a value by its
assigned thread. Since a warp comprises 32 threads, each warp is responsible for computing 32
adjacent elements. Starting with the first thread of the warp, each subsequent thread performs an
additional calculation. For example, thread 0 computes the value with one calculation, while thread
1 computes the value with two calculations, and so on. Therefore, the time it takes for each warp to
complete its work depends on the thread with the most calculations to perform, i.e., the last thread.

The number of threads per block for IS_8PP, IS_16PP, IS_32PP, IS_64PP, and IS_128PP is 64, 128,
256, 512, and 1024, respectively. The maximum number of thread blocks per SM for each variant
is 32, 16, 8, 4, and 2, respectively. For example, IS_128PP can only allocate two thread blocks per
SM. Since each thread block covers the computation of 128 elements, the thread computing the
last element has to perform an additional 128 calculations compared to the first thread of the block.
Therefore, while the threads of the last warp are still computing their elements, the warps preceding
the last warp are idle as they will have completed their work earlier. In other words, the last warp

92



0 5 10 15 20 25 30 35 40 45 50
10−4

10−3

10−2

10−1

100

101

102

Matrix ID

E
xe

cu
tio

n
tim

e
[s

](
lo

g
sc

al
e)

IS_8PP IS_16PP IS_32PP IS_64PP IS_128PP

Figure 3.16: Execution times (in seconds) of the variants of IS_xPP on the set of 50 matrices using
double precision. The vertical axis is log-scaled for improved visibility.

(a) Forward substitution (b) Backward substitution

Figure 3.17: Visualizations of the forward and backward substitution algorithms. The visualizations
assume a single right-hand side. Each row in both figures represents the computation of one value
in the output vector of the substitution. The arrows indicate the use of previously-computed values
in the computation of succeeding values. Taken from Backward substitution [60] and Forward
substitution [61].

of each thread block holds the thread block in an SM, preventing the scheduling of another thread
block.

As with PCM_xPP, the variants of IS_xPP with fewer threads per block were able to utilize SMs
more efficiently, as more of their smaller blocks could be allocated per SM. It can be argued that
the idleness of resources is further exacerbated by the fixed size of the 2nd dimension of the thread
block, which is set to eight. If the number of threads per block were to adapt to the number of
right-hand sides, the number of threads in each block would decrease, enabling the allocation of
more blocks per SM.

To put the results into perspective, Table 3.11 displays the total time taken by each solver to solve
systems derived from the entire set of 50 matrices.
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Total execution time [s]Solver Double precision Single Precision
SSPP 120.963 114.645
CuBLAStrsmPP 0.479 0.209
CuSolverDnXgetrsPP 0.505 0.274
IS_128PP 561.879 414.728
IS_16PP 282.535 156.937
IS_32PP 351.020 279.547
IS_64PP 415.793 334.692
IS_8PP 224.219 115.321

Table 3.11: Total execution time (in seconds) taken by each solver to solve systems derived from
the set of 50 matrices using double and single precision. The execution times are rounded to three
decimal places.

As demonstrated in Figure 3.15 and confirmed in Table 3.11, the fastest solver for the set of 50
matrices was CuBLAStrsmPP. Excluding the solvers from CUDA libraries, SSPP was the fastest
solver, even though it outperformed IS_8PP on only 24 out of 50 matrices.

Accuracy of Results on All Matrices

The accuracy of the values of unknowns produced by solvers is a crucial performance indicator.
The maximum absolute difference between the expected results and the actual results for the set of
50 matrices using both double and single precision is presented in Figure 3.18. For context, the
maximum absolute difference for solvers was defined in Equation 2.8 as max |LUPX − B|, where
L (lower-triangular matrix), U (unit upper-triangular matrix), and P (permutation matrix) are the
results of the decomposition operation performed on the input matrix; X represents the matrix of
unknowns whose values are computed by a solver, and B denotes the matrix of right-hand sides
(with all values equal to 1). Note that the permutation matrix was represented by a vector in the
implementations. This section mentions the IS_xPP solver instead of its variants, as they did not
differ in terms of accuracy, i.e., there was no need to specifically address each variant.

As mentioned in the caption of Figure 3.18, IS_xPP occasionally produced invalid results. Specifi-
cally, when using double precision, for four matrices, the solver produced results that resulted in
the maximum absolute difference being equal to 1.797 693e+308, which is the highest possible
value that a variable of type double can store. In the case of single precision, the solver produced
invalid results for twelve matrices, with the maximum absolute difference equal to -3.402 823e+38
which is close to the lowest possible value that a variable of type float can store. Among the
twelve matrices, eleven were sparse, and one was dense. Additionally, it is worth noting that the
CPU version of IS_xPP also produced the same invalid results, indicating that the issue lies with the
algorithm itself rather than the GPU implementation. The reason behind IS_xPP computing invalid
values in the mentioned cases is currently unclear. One possible hypothesis is that the computation
of certain values is being skipped, leading to a cascade of erroneous calculations.

For completeness, the statistical indices of the accuracy of the results produced by the solvers are
presented in Table 3.12 for double precision and in Table 3.13 for single precision. Note that both
tables contain two instances of IS_xPP: IS_xPP and IS_xPP_inv. The former does not consider the
invalid values in its indices, while the latter does.

As observed in Tables 3.12 and 3.13, the accuracy of the results decreased significantly from double
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Figure 3.18: Accuracy of results achieved by the solvers listed in Table 3.10 (excluding the different
variants) on the entire set of 50 matrices using both double and single precision. The matrix
ID represents the ID of the matrices after they have been sorted according to their dimensions
from smallest to largest. The vertical axis is log-scaled for improved visibility. The blue vertical
lines indicate matrices for which IS_xPP produced invalid results. The accuracy values for the
invalid results were not plotted to avoid distorting the vertical axis and allow for comparison of the
remaining accuracy values. Additionally, it is important to mention that the vertical axes of both
graphs do not cover the same range.

to single precision. Specifically, focusing on double precision and excluding IS_xPP_inv, it can
be seen from the 3rd quartiles and the maximum values that the mean values were heavily offset
by 12 to 13 matrices. For example, except for IS_xPP_inv, the maximum inaccuracy among all
solvers was consistently observed with the 156-by-156 matrix west0156. This can be attributed to
the matrix’s high condition number of approximately 6.09e+19, which indicates its sensitivity to
numerical errors and makes it more challenging for the solvers to achieve accurate results.

Both Table 3.12 and Table 3.13 show that the accuracy of IS_xPP, i.e., excluding the invalid results,
is not poor relative to the other solvers. However, as the issue with its implementation causes it
to produce invalid values, its actual performance in terms of accuracy renders it unusable. This
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Solver Mean Std. dev. Q1 Q2 Q3 Max.
SSPP 4.20e+4 2.97e+5 5.82e−11 4.38e−8 4.99e−6 2.10e+6
CBLAStrsmPP 4.20e+4 2.97e+5 4.08e−11 8.75e−8 6.70e−6 2.10e+6
CSDnXgetsfPP 4.19e+4 2.97e+5 1.96e−12 4.63e−11 4.39e−10 2.10e+6
IS_xPP 1.82e+5 1.24e+6 3.55e−11 2.20e−8 2.16e−6 8.39e+6
IS_xPP_inv 1.43e+307 4.93e+307 1.56e−11 7.12e−9 1.49e−6 1.80e+308

Table 3.12: Statistical indices of the accuracy of the results produced by the solvers in this
benchmark using double precision. Columns Q1, Q2, and Q3 represent the first, second, and third
quartiles, respectively. To avoid formatting issues, the names of the CuSolverDnXgetrsPP and
CuBLAStrsmPP solvers are abbreviated. The indices were computed using LibreOffice Calc, a
spreadsheet software.

Solver Mean Std. dev. Q1 Q2 Q3 Max.
SSPP 9.01e+13 6.37e+14 0.025 23.018 1.37e+3 4.50e+15
CuBLAStrsmPP 9.01e+13 6.37e+14 0.023 13.568 672.659 4.50e+15
CuSolverDnXgetrsPP 2.25e+13 1.59e+14 6.57e−4 0.016 0.155 1.13e+15
IS_xPP 1.19e+14 7.31e+14 0.009 0.484 112.875 4.50e+15
IS_xPP_inv 8.17e+37 1.47e+38 3.98e−6 0.030 43.327 8.17e+37

Table 3.13: Statistical indices of the accuracy of the results produced by the solvers in this
benchmark using single precision.

conclusion is supported by the statistical indices of IS_xPP_inv.

To summarize, the most accurate solver for both double and single precision on the set of 50
matrices was CuSolverDnXgetrsPP, followed by CuBLAStrsmPP. The current implementation of
IS_xPP cannot be recommended for use as it contains an unknown issue.

Taking into account both execution time and the accuracy of the results, the best-performing
solver is CuSolverDnXgetrsPP. It exhibits only a marginal increase in execution time compared to
CuBLAStrsmPP while producing more accurate results.

3.1.5 Summary of the Results of the Decomposition Benchmarks

Overall, in terms of both execution speed and accuracy, the decomposers and solvers provided by
the CUDA libraries outperformed the others. Specifically, the CuSolverDnXgetrfPP decomposer
demonstrated the fastest execution speed while producing the most accurate results. Although
the CuSolverDnXgetrsPP solver was marginally slower than CuBLAStrsmPP, it produced more
accurate results. Among the decomposers implemented by the author of this thesis, PCM_xPP
emerged as the fastest and most accurate overall. However, for specific types of matrices, the
ICM_xPP decomposer may be more suitable compared to PCM_xPP. Additionally, the processing
tolerance of ICM_xPP may prove useful if the decomposer is used as a preconditioner that is not
expected to produce highly accurate results. While the benchmark results of the IS_xPP solver
confirmed that the iterative approach can save time for certain matrix types, its implementation
contains an unidentified issue and thus it was disqualified.
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3.2 BDDCML Benchmark

This section presents the benchmark results of the "Poisson equation on a cube" problem imple-
mented within BDDCML, as introduced in Section 2.3. The benchmark was conducted only using
double precision, as single precision was not supported by the problem at the time. Additionally,
the benchmark was run only for a selection of decomposers, i.e., the performance of solvers was not
compared. This decision was made based on two reasons: firstly, the solvers implemented by the
author of this thesis for the GPU were deemed unusable, and secondly, comparing the performance
of solvers from CUDA libraries with the naive CPU implementation of SSPP would not bring any
meaningful insights.
For each decomposer, the benchmark involved the following steps:

1. Perform a warm-up by running the poisson_on_cube executable with undemanding param-
eters.

2. For each value in the set { 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 }, run the poisson_on_cube
executable 10 times, providing the value as the first argument (poisson_on_cube <value>
<arg2> <arg3>). Note that the decomposer is called multiple times within each run.

3. Collect and save the logs generated by each run, as they contain the metrics relevant to this
benchmark.

The logs are then parsed to obtain the metrics which are subsequently averaged using the Python
script mentioned in Section 2.3. While the poisson_on_cube executable accepts three parameters,
only the value of the first parameter varied throughout the benchmark. The parameters of the
executable are as follows:

1. num_el_per_sub_edge - The number of elements per sub-edge of the cube. In terms of
BDDCML, it is denoted by H/h, where H is the size of an edge and h represents the size of
the edge of an element [62]. H/h is also referred to as the subdomain size [62].

2. num_sub_per_cube_edge - The number of sub-edges per cube edge. For this benchmark,
the value was set to 4.

3. nlevels - The number of levels in the BDDC method. For this benchmark, the value was
set to 2.

In brief, the "Poisson equation on a cube" problem in BDDCML is divided into three stages that
are timed separately:

1. loading - This stage involves loading the data for the problem.

2. pc_setup - The Preconditioner Setup stage includes the utilization of a decomposer as a
preconditioner along with a solver.

3. Krylov method - This stage involves employing matrix-vector multiplication alongside a
solver to iteratively improve the solution. The number of iterations required for the Krylov
method to reach the desired relative residual serves as an indicator of accuracy for the
decomposer utilized in the pc_setup stage, as the matrices used in this stage are provided by
the preconditioner.

In this section, only the last two stages will be mentioned as they utilize the procedures (decom-
posers and solvers) provided by the Decomposition project. Similar to the Decomposition project
benchmarks, only the variants of the procedures with partial pivoting were employed.
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Firstly, the specifications of the platform on which the benchmark was executed are provided, as
they slightly differ from those of the system used for the Decomposition project benchmarks. Then,
the types of matrices encountered by the decomposers in the benchmarks are described. Finally, the
performance of decomposers is analyzed.

3.2.1 Benchmark Platform Specifications

Similarly to the benchmarks of the Decomposition project, the BDDCML benchmark was also
run on the RCI cluster. However, due to the higher GPU memory requirements of the problem,
particularly with larger values of H/h, a different compute node was used. Although the node also
contained an AMD CPU and an Nvidia GPU, the hardware configuration differed. Furthermore,
adjustments had to be made to the configuration since BDDCML relies on multiple other libraries.
Refer to Table 3.14 for the hardware and software configuration.

Hardware
Component Specification
CPU AMD EPYC 7763 @ 2.45GHz (32 cores, 64 threads)
Memory 1000GB
GPU 8x Nvidia Tesla A100 40GB

Software
Library/Tool Version Library/Tool Version
CMake4 3.24.3 MUMPS5 5.6.0
GCC6 12.2.0 OpenBLAS7 0.3.21
CUDA8 12.0.0 Open MPI9 4.1.4
MAGMA10 2.7.1 ParMETIS11 4.0.3
METIS12 5.1.0 ScaLAPACK13 2.2.0

Table 3.14: Hardware and software configuration of the RCI cluster node on which the BDDCML
benchmark was run. The information is sourced from RCI Cluster Wiki [52] and from the computa-
tion job’s configuration. The hardware configuration is specified in a batch script, which includes
SLURM-specific job settings and Bash code for the compute node to execute. The dependencies
were either specified in the batch file as modules or provided as directories. The benchmark scripts
are available on request or as an attachment to this thesis.

It is important to mention that the executable was run using srun with pmix14, which is the standard
SLURM command to start an MPI program. In particular, the number of MPI ranks launched to
execute the poisson_on_cube program was 32. Furthermore, the ranks were distributed equally
across the eight GPUs available using the modulo operation: my_device = my_rank % 8.

4CMake website URL: https://cmake.org
5MUMPS website URL: https://mumps-solver.org/index.php
6GCC website URL: https://gcc.gnu.org
7OpenBLAS website URL: https://www.openblas.net
8CUDA website URL: https://developer.nvidia.com/cuda-toolkit
9Open MPI website URL: https://www.open-mpi.org

10MAGMA website URL: https://icl.utk.edu/magma
11ParMETIS website URL: https://github.com/KarypisLab/ParMETIS
12METIS GitHub repository URL: https://github.com/KarypisLab/METIS
13ScaLAPACK website URL: https://netlib.org/scalapack
14PMIX website URL: https://pmix.github.io
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3.2.2 Matrices in the Benchmark

As mentioned before, the set of values used for H/h was limited to the interval [5, 50]. The values
in the set determine the size of the matrices passed to the decomposer. The largest value in the
interval, 50, was chosen as the ICM_xPP decomposer would run out of GPU memory for higher
values of H/h since the matrices were stored in column-major order on the GPU.

Given the values of H/h, the dimensions of the matrices that decomposers factorized during the
pc_setup stage ranged from 104-by-104 to 15,028-by-15,028. As mentioned earlier, the decomposer
can be called multiple times during the execution of poisson_on_cube. The dimensions of the
matrices provided to the decomposer can vary slightly within the same run. For example, for pois
son_on_cube 5 4 2, the dimensions of the matrices ranged from 104-by-104 to 178-by-178. The
nonzero element pattern of the matrices was similar even with different values of H/h. While the
matrices were mostly dense, they occasionally contained patches of zeros, as shown in Figure 3.19.

(a) poisson_on_cube 8 4 2 (b) poisson_on_cube 8 4 2

(c) poisson_on_cube 8 4 2 (d) poisson_on_cube 32 4 2

Figure 3.19: Visualization of the nonzero element patterns in matrices encountered in the BDDCML
benchmark. The captions indicate the configuration in which each matrix appeared.
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In Figure 3.19, matrices with different element patterns can be observed in the same configuration:
poisson_on_cube 8 4 2. Furthermore, while the nonzero element pattern in Figure 3.19d appeared
in poisson_on_cube 32 4 2, it seems to be a denser representation of the nonzero element pattern
displayed in Figure 3.19b, which appeared in poisson_on_cube 8 4 2.

3.2.3 Benchmark Results

This section presents the benchmark results obtained by running the BDDCML benchmark using
the decomposers listed in Table 3.15, paired with the CuBLAStrsmPP solver (except for the
MAGMA decomposer, which uses its own solver). CuBLAStrsmPP was chosen as it supports the
unit diagonal both in L and U.

Decomposer
Name Abbreviation Variants Performer

CuSolverDnXgetrf with Partial Piv. CuSolverDnXgetrfPP - GPU
Iterative Crout’s Method with Partial Piv. ICM_xPP 8, 16, 32 GPU
magma_dgetrf_gpu MAGMAgetrf - CPU + GPU
Parallel Crout’s Method with Partial Piv. PCM_xPP 8, 16, 32 GPU

Table 3.15: Decomposers compared in the benchmark: CuSolverDnXgetrfPP (mentioned in
Section 2.1.2), ICM_xPP (described in Iterative Crout’s Method with Partial Pivoting (ICM_xPP)
in Section 2.2.2), MAGMAgetrf (description available in the MAGMA documentation15), and
PCM_xPP (described in Parallel Crout’s Method with Partial Pivoting (PCM_xPP) in Section 2.2.2).
The Variants column indicates the different configurations of the decomposer. For example,
ICM_xPP was benchmarked as three separate decomposers depending on the CUDA thread block
configuration. In the case of PCM_xPP, the thread blocks are one-dimensional, and the number of
threads per block is x2. Unless stated otherwise, the processing tolerance for ICM_xPP was set
to zero, and the lower bound and upper bound of conditional partial pivoting tolerance were set
to 1e−5 and 1e+5, respectively. For PCM_xPP, the conditional partial pivoting tolerance was set
to 1e−5. Note that the magmaf_dgetrf_gpu() function was already used in BDDCML prior to
this thesis and it is not available in the Decomposition project. The Performer column specifies the
primary device used by each decomposer.

First, the speedup comparison in the Preconditioner Setup stage between the baseline implemen-
tation in BDDCML, MAGMAgetrf, and the other decomposers listed in Table 3.15 is presented.
Then, a comparison of the highest-performing decomposers is provided. Finally, the accuracy of
the results is mentioned.

Speedup Comparison of Decomposers in the Preconditioner Setup Stage

This section presents the speedup comparison of the decomposers listed in Table 3.15 relative to
MAGMAgetrf. For clarity, the times discussed in this section represent the total time taken by the
pc_setup stage. Specifically, for each benchmark, the poisson_on_cube executable was run ten
times for each value of H/h. The recorded times from all runs were subsequently averaged and
logged. The speedup comparison is shown in Figure 3.20.

As depicted in Figure 3.20, the pc_setup stage was completed in the shortest time when either
MAGMAgetrf or CuSolverDnXgetrfPP were used. Specifically, with MAGMAgetrf, the execution

15MAGMA Documentation for getrf URL: https://icl.utk.edu/projectsfiles/magma/doxygen/group_
_magma__getrf.html
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Figure 3.20: Speedup comparison of the pc_setup stage for the decomposers listed in Table 3.15
relative to MAGMAgetrf.

of the stage was faster for smaller values of H/h, whereas for larger values, it was faster with
CuSolverDnXgetrfPP. In general, the use of the decomposers implemented by the author of this
thesis resulted in the pc_setup stage taking longer to complete. Out of the author’s decomposers,
ICM_xPP achieved the best performance.

ICM_xPP The best-performing variant of ICM_xPP was ICM_32PP. Specifically, ICM_32PP
consistently outperformed ICM_16PP, which in turn consistently outperformed ICM_8PP. This
performance difference among the variants aligns with the results obtained by the variants of
ICM_xPP in the Decomposition benchmark for decomposers, as mentioned on Page 77. To further
analyze ICM_32PP, Figure 3.21 presents the LU matrices ICM_32PP produced, along with its
iterative and pivoting metrics for H/h ∈ {25, 50}. The matrices presented in Figure 3.21 were chosen
at random, as ICM_32PP was called multiple times within each run of the poisson_on_cube
executable. Incidentally, the nonzero element pattern of both matrices was similar.

The iterative and pivoting metrics of ICM_32PP presented in Figures 3.21b and 3.21d indicate that
the performance can be attributed to three factors:

1. Firstly, the initial estimate of LU (the input matrix) was suitable, as indicated by the lower
number of iterations for sections with column and row IDs equal to 0. However, the low
number of iterations can also be attributed to the patches of zeros, as mentioned in the
following point.

2. Secondly, the matrices contained patches of zeros, which are known to reduce the number of
iterations required to process sections. For example, in Figure 3.21d, the sections below and
to the right of section (6, 6) required fewer iterations compared to the surrounding sections,
as they computed patches of zeros. While the patches are not visible in Figure 3.21c due to
the matrix dimensions, they are visible in Figure 3.21a, where the nonzero element pattern is
similar.
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(a) Nonzero element pattern of the LU matrix
produced by ICM_32PP for a 1,964-by-1,964
matrix when H/h was set to 25.
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(b) Iterative and pivoting metrics of ICM_32PP col-
lected during the decomposition of a 1,964-by-1,964
matrix when H/h was set to 25. Each square represents
a 256-by-256 section of the matrix.

(c) Nonzero element pattern of the LU matrix
produced by ICM_32PP for a 7,664-by-7,664
matrix when H/h was set to 50.
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(d) Iterative and pivoting metrics of ICM_32PP col-
lected during the decomposition of a 7,664-by-7,664
matrix when H/h was set to 50. Each square represents
a 768-by-768 section of the matrix.

Figure 3.21: Visualization of the nonzero element patterns of LU matrices produced by ICM_32PP
in the pc_setup stage for H/h ∈ {25, 50}. The figure includes the iterative and pivoting metrics of
ICM_32PP. In the LU plot, the color of nonzero elements depends on their absolute value. Small
entries are light orange, large entries are black, and the color of mid-range entries ranges from light
green to deep blue depending on the median of log10 of the nonzero values (with slight alterations)
[55]. The color of zero entries is white. In the metrics plot, the color in each square represents the
number of iterations performed on that section. The left and top axes indicate the section ID in
each dimension, and the bottom axis displays the number of pivots performed in a diagonal section.

3. Thirdly, despite the matrices being dense, the individual sections did not require many
iterations to be processed. For example, approximately 86% of the elements in the input
matrix for H/h = 25 were nonzero, while for H/h = 50, the percentage increased to 92%.
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The summary of the decomposition benchmarks in Section 3.1.5 suggested that using a higher
processing tolerance for ICM_xPP may be suitable when the decomposer is employed as a precon-
ditioner that is not expected to be highly accurate. As mentioned earlier on Page 97, the Krylov
method stage uses the LU matrices produced by the decomposer to iteratively improve the solution.
Hence, an inaccurate decomposition could potentially benefit the overall execution time of the
problem. To investigate this claim, ICM_32PP with various processing tolerances was utilized as a
decomposer in the pc_setup stage. Only the ICM_32PP variant is presented since it consistently
outperformed the other variants of ICM_xPP. Figure 3.22a illustrates the speedups of ICM_32PP
with various processing tolerances relative to MAGMAgetrf. Furthermore, the figure also displays
the execution times of the pc_setup stage for ICM_32PP with various processing tolerances and
MAGMAgetrf.
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Figure 3.22: Speedup comparison of the pc_setup stage for ICM_32PP with various processing
tolerances relative to MAGMAgetrf. The execution times of the stage are included for context.
The name of each ICM_32PP decomposer follows the naming pattern decomposer <process-
ing_tolerance>.
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As depicted in Figure 3.22, increasing the processing tolerance of ICM_32PP resulted in improved
performance. For example, with H/h set to 50, "ICM_32PP 1" achieved a speedup of 0.92 relative
to MAGMAgetrf. It is worth noting that larger processing tolerances were not explored, as the
performance gains between tolerances 0.5 and 1 were minimal, as shown in Figure 3.22a.

However, as described on Page 85, increasing the processing tolerance results in lower accuracy of
the results. This decrease in accuracy is observed in the Krylov method stage, where the matrices
produced by ICM_32PP are used. Specifically, a higher number of iterations are needed to achieve
the desired accuracy of the solution, consequently leading to longer execution times of the stage.
Figure 3.23 presents the number of iterations and the execution times of the Krylov method stage
for ICM_32PP with various processing tolerances, as well as for MAGMAgetrf.
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Figure 3.23: Number of iterations and execution times of the Krylov method stage for ICM_32PP
with various processing tolerances and MAGMAgetrf. The name of each ICM_32PP decomposer
follows the naming pattern decomposer <processing_tolernace>.

As expected, Figure 3.23a demonstrates that the number of iterations in the Krylov method stage in-
creases as the processing tolerance values in ICM_32PP rise. However, as depicted in Figure 3.23b,
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the corresponding execution times of the stage, while increasing, remain relatively small compared
to those of the pc_setup stage. Consequently, the time saved by utilizing ICM_32PP with a high
processing tolerance in the pc_setup stage far outweighs the time lost in the Krylov method stage
due to the inaccurate results produced by the decomposer.

Comparison of the Highest-Performing Variants

For completeness, Figure 3.24 displays the speedup comparison of the best-performing variants,
including the various processing tolerances, of each decomposer listed in Table 3.15, compared to
MAGMAgetrf on the "Poisson equation on a cube" problem.
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Figure 3.24: Speedup comparison of the best-performing variants, including the various processing
tolerances, of each decomposer listed in Table 3.15, relative to MAGMAgetrf on the "Poisson
equation on a cube" problem.

As depicted in Figure 3.24, overall, the "Poisson equation on a cube" problem was completed
the fastest when CuSolverDnXgetrfPP was used along with CuBLAStrsmPP as the solver. Its
performance was followed by MAGMAgetrf, and ICM_32PP 1 (with CuBLAStrsmPP as the
solver).

Accuracy of Results

The accuracy of results in the BDDCML benchmark was evaluated based on the number of iterations
required in the Krylov method stage. However, excluding ICM_xPP with increased processing
tolerances, the number of iterations was the same for all decomposers across all values of H/h.
In other words, the number of iterations for all decomposers listed in Table 3.15 matched that of
MAGMAgetrf in Figure 3.23a.

3.3 TNL Time-Series Problem Benchmark

During the development of the project, a hypothesis was formulated by doc. Ing. T. Oberhuber,
Ph.D., that the initial estimate in ICM_xPP could be beneficial for time-series problems. Specifically,
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it was proposed that the LU matrix from the previous time step could be used as an initial estimate
in ICM_xPP for the current time step, potentially reducing the number of iterations needed to
process the matrix. This hypothesis was based on the observation that the input matrices undergo
only slight changes between consecutive time steps, suggesting that the decomposed matrices may
require fewer iterations to process.

For this purpose, doc. Ing. T. Oberhuber, Ph.D. implemented a benchmark for Mean curvature
flow16 in TNL17. The benchmark specifically focused on ICM_xPP and aimed to determine whether
using the LU matrix from the previous time step as the initial estimate would improve performance
compared to using the default initial estimate (the input matrix). Surprisingly, the benchmark results
revealed no discernible difference in performance between the two approaches. Therefore, the
benchmark results are not presented in this thesis. The reason behind the lack of difference remains
unclear. However, it offers an interesting area for further investigation in future research.

3.4 Summary of Comparisons

This section summarizes the results of the benchmarks performed for the decomposers and solvers
available in the Decomposition project.

Overall, the best-performing decomposer was CuSolverDnXgetrfPP, as it exhibited superior perfor-
mance in both execution speed and accuracy in every benchmark it was a part of. When considering
the decomposers implemented by the author of this thesis, PCM_xPP demonstrated consistent
performance with an acceptable level of accuracy. However, for problems that require a precon-
ditioner that does not need to produce highly accurate results, ICM_xPP is a suitable alternative.
It is important to note that increasing the processing tolerance of ICM_xPP can lead to higher
performance, however, there is no guarantee that it will produce usable results.

In terms of solvers, both CuSolverDnXgetrsPP and CuBLAStrsmPP were the best-performing,
with the former being marginally faster than the latter while being slightly less accurate. It is worth
noting that CuBLAStrsmPP allows for the unit diagonal to be stored either in L or U, whereas
CuSolverDnXgetrsPP only supports a unit diagonal in L. While IS_xPP demonstrated that its
iterative approach can avoid unnecessary calculations in certain problems, it produced invalid
results for others, even with its processing tolerance set to zero. Therefore, it is not recommended
for use.

16Mean curvature flow on Wikipedia: https://en.wikipedia.org/wiki/Mean_curvature_flow
17Mean curvature flow benchmark in TNL: https://gitlab.com/tnl-project/tnl/-/tree/TO/grid/src

/Benchmarks/MeanCurvatureFlow
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Conclusion

The objective of this thesis was to implement an iterative parallel LUP (Lower-Upper decom-
position with Pivoting) algorithm, analyze its performance in BDDCML (multilevel Balancing
Domain Decomposition by Constraints solver Library), and compare it to other established LUP
implementations.

The first part of the thesis introduced the hardware of CPUs and GPUs, providing a basic un-
derstanding of their suitability for computations. The specifications of recent GPUs were also
presented to strengthen the theoretical foundation. The relevant aspects of the software layer for
code orchestration on Nvidia GPUs, CUDA, were then introduced, along with parallel computa-
tion concepts used in the implementation. Finally, the theoretical foundation concluded with the
introduction of LUP algorithms and their application in solving systems of equations.

Then, the implementation of the project that encompassed procedures related to solving systems of
equations using LUP was presented. Building upon the information presented in the first chapter,
the implementations of the LUP procedures were detailed. Additionally, the unit tests, which
assured the quality of the implemented algorithms, were presented, along with the benchmarks that
were later used to evaluate the performance of the implementations.

Finally, the procedures implemented in the project were compared to established CUDA libraries in
terms of execution speed and accuracy of results on a state-of-the-art HPC cluster. The comparison
of performance was facilitated through two benchmarks. The first benchmark - Decomposition
benchmark - evaluated the raw performance of the procedures on a set of 50 matrices with varying
characteristics. The second benchmark - BDDCML benchmark - involved assessing the perfor-
mance of the procedures as part of BDDCML.
The results of the Decomposition benchmark revealed that among the procedures implemented, the
PCM_8PP (Parallel Crout’s Method with Partial Pivoting and 82 threads in each one-dimensional
CUDA thread block) decomposer exhibited the most consistent performance, while the ICM_32PP
(Iterative Crout’s Method with Partial Pivoting and 32-by-32 CUDA thread blocks) decomposer
showed suitability only for specific types of matrices. However, both decomposers performed
worse compared to the CusolverDnXgetrf procedure provided by CUDA. The implemented solver,
IS_xPP (Iterative Solver with Partial Pivoting and x-by-8 CUDA thread blocks), was deemed
unusable as it occasionally provided invalid results.
The second benchmark revealed that ICM_32PP was able to compete with CUDA’s cusolverD-
nXgetrf and MAGMA’s magma_dgetrf_gpu. Specifically, the relaxed processing tolerance of the
iterative approach of ICM_32PP allowed it to complete the benchmark at 90% of the speed of
magma_dgetrf_gpu.

As mentioned in Section 3.1.3, using the maximum absolute difference between actual and expected
results as a measure of accuracy has its limitations. Furthermore, the time-consuming nature
of the accuracy measurements restricted the number of matrices that could be included in the
benchmark. Therefore, future work could include developing a more suitable and efficient approach
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for measuring the accuracy of results. This revised approach could also help elucidate the issues
highlighted in Sections 3.1.3 and 3.1.4. Further areas of future improvement could include refining
the algorithm of ICM_xPP based on the benchmark results, and implementing project-based
enhancements, such as automated benchmarks and automated processing of their results. These
enhancements would significantly contribute to the overall efficiency and effectiveness of the
project.
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Appendix A

CMPP Implementation

The implementation of CMPP and the functions it uses are shown in Listing A.1.

1 t e m p l a t e < typename Matrix , typename Vector >
2 vo id
3 CroutMethod : : decompose ( Matrix& LU , Vector& piv )
4 {
5 u s i n g Real = typename Matrix : : RealType ;
6 u s i n g Index = typename Matrix : : IndexType ;
7

8 c o n s t Index num_rows = LU.getRows ( ) ;
9 c o n s t Index num_cols = LU.getColumns ( ) ;

10

11 / / P i v o t i n g t o l e r a n c e
12 c o n s t Real piv_tol = 1.0e−5;
13

14 a u t o LU_view = LU.getView ( ) ;
15 a u t o piv_view = piv.getView ( ) ;
16

17 / / F i l l t h e p i v o t i n g v e c t o r wi th i n c r e m e n t s o f 1 s t a r t i n g from 1 t o ←↩
num_rows.

18 BaseDecomposer : : setDefaultPivotingValues ( piv ) ;
19

20 Index i , j , k , sum ;
21

22 f o r ( j = 0 ; j < num_cols ; ++j ) {
23 f o r ( i = j ; i < num_rows ; ++i ) {
24 sum = 0 ;
25 f o r ( k = 0 ; k < j ; ++k )
26 sum += LU_view ( i , k ) * LU_view ( k , j ) ;
27

28 LU_view ( i , j ) = LU_view ( i , j ) − sum ;
29 }
30

31 i f ( TNL : : abs ( LU_view ( j , j ) ) <= piv_tol ) {
32 pivotRowOfMatrix_host ( j , LU_view , num_rows , num_cols , piv_view ) ;
33

34 i f ( LU_view ( j , j ) == 0 ) {
35 / / L a s t e l e m e n t i n t h e m a t r i x does n o t r e q u i r e p i v o t i n g as no ←↩

e l e m e n t s a r e computed u s i n g i t , i . e . , d i v i s i o n by z e r o c a n n o t ←↩
o c c u r

36 i f ( j != num_rows − 1 )
37 th row Exceptions : : MatrixSingular ( "LU" , j , j ) ;
38 }
39 }
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40

41 f o r ( i = j + 1 ; i < num_rows ; ++i ) {
42 sum = 0 ;
43 f o r ( k = 0 ; k < j ; ++k )
44 sum += LU_view ( j , k ) * LU_view ( k , i ) ;
45

46 LU_view ( j , i ) = ( LU_view ( j , i ) − sum ) / LU_view ( j , j ) ;
47 }
48 }
49 }
50

51 t e m p l a t e < typename Index , typename MatrixView , typename VectorView , typename ←↩
Real = typename MatrixView : : RealType >

52 std : : pair< Real , Index >
53 pivotRowOfMatrix_host ( c o n s t Index& j , MatrixView& M , c o n s t Index& num_rows , ←↩

c o n s t Index& num_cols , VectorView& piv )
54 {
55 / / Find t h e row from t h e j − t h row ( i n c l . i t ) w i th max. v a l u e i n t h e j − t h ←↩

column
56 Real max = TNL : : abs ( M ( j , j ) ) ;
57 Index piv_row = j ;
58

59 f o r ( Index i = j + 1 ; i < num_rows ; ++i ) {
60 Real zij = TNL : : abs ( M ( i , j ) ) ;
61 i f ( zij > max ) {
62 max = zij ;
63 piv_row = i ;
64 }
65 }
66

67 i f ( piv_row != j ) { / / Exchange rows j , p iv_row
68 swapRows_host ( M , j , piv_row , num_cols ) ;
69 piv ( j ) = piv_row + 1 ;
70 }
71

72 r e t u r n std : : make_pair ( max , piv_row ) ;
73 }

Listing A.1: Excerpt from the implementation of CMPP. The pivotRowOfMatrix_host()
function, presented below the decompose() method, is implemented in the parent class of Crout
Method: BaseDecomposer. Note that the code has been slightly modified for brevity. For example,
the swapRows_host() function has been omitted as it is a basic operation, and the checks for
appropriate sizing of matrices/vectors have been removed.
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Appendix B

PCM_xPP Implementation

The implementation of PCM_xPP is shown in Listing B.1. Note that the kernels called in Listing B.1
are shown separately in Listings B.2 and B.3.

1 t e m p l a t e < c o n s t i n t BLOCK_SIZE >
2 t e m p l a t e < typename Matrix , typename Vector >
3 vo id
4 CroutMethod< BLOCK_SIZE > : : decompose ( Matrix& LU , Vector& piv )
5 {
6 u s i n g Real = typename Matrix : : RealType ;
7 u s i n g Index = typename Matrix : : IndexType ;
8

9 c o n s t Index num_rows = LU.getRows ( ) ;
10 c o n s t Index num_cols = LU.getColumns ( ) ;
11

12 a u t o LU_view = LU.getView ( ) ;
13 a u t o piv_view = piv.getView ( ) ;
14

15 / / F i l l t h e p i v o t i n g v e c t o r wi th i n c r e m e n t s o f 1 s t a r t i n g from 1 t o ←↩
num_rows.

16 BaseDecomposer : : setDefaultPivotingValues ( piv ) ;
17

18 c o n s t Real piv_tol = 1.0e−5;
19

20 constexpr i n t threads_perBlock = BLOCK_SIZE * BLOCK_SIZE ;
21 / / Round t o n e a r e s t h i g h e r m u l t i p l e o f t h r e a d s _ p e r B l o c k − on ly i f ←↩

t h r e a d s _ p e r B l o c k i s a m u l t i p l e o f 2
22 c o n s t Index num_cols_rounded = ( num_cols + threads_perBlock − 1 ) & −←↩

threads_perBlock ;
23 c o n s t Index blocks_perGrid = num_cols_rounded / threads_perBlock ;
24

25 f o r ( Index diag = 0 ; diag < num_rows ; ++diag ) {
26 ColCompute_kernel<<< blocks_perGrid , threads_perBlock >>>( LU_view , diag ,←↩

num_rows ) ;
27

28 i f ( TNL : : abs ( LU_view.getElement ( diag , diag ) ) <= piv_tol ) {
29 std : : pair< Real , Index > max_elem = pivotRowOfMatrix_device< ←↩

threads_perBlock >( diag , LU_view , num_rows , num_cols , piv_view ) ;
30

31 i f ( max_elem.first == 0 ) {
32 / / L a s t e l e m e n t does n o t r e q u i r e p i v o t i n g as no e l e m e n t s a r e computed←↩

u s i n g i t − d i v i s i o n by z e r o c a n n o t o c c u r f o r t h e l a s t e l e m e n t
33 i f ( diag != num_rows − 1 )
34 th row Exceptions : : MatrixSingular ( "LU" , diag , diag ) ;
35 }
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36 }
37

38 RowCompute_kernel<<< blocks_perGrid , threads_perBlock >>>( LU_view , diag ,←↩
num_cols ) ;

39 }
40 }
41

42 t e m p l a t e < c o n s t i n t THREADS_PER_BLOCK , typename Index , typename MatrixView , ←↩
typename VectorView , typename Real = typename MatrixView : : RealType >

43 std : : pair< Real , Index >
44 pivotRowOfMatrix_device ( c o n s t Index& j , MatrixView& M , c o n s t Index& num_rows←↩

, c o n s t Index& num_cols , VectorView& piv )
45 {
46 a u t o fetchAbsElement = [ = ] __cuda_callable__ ( Index row )
47 {
48 r e t u r n abs ( M ( row , j ) ) ;
49 } ;
50 std : : pair< Real , Index > max_elem =
51 TNL : : Algorithms : : reduceWithArgument< TNL : : Devices : : Cuda >( j , num_rows , ←↩

fetchAbsElement , TNL : : MaxWithArg {} ) ;
52

53 / / Only need t o swap rows i f t h e p i v o t i n g row i s d i f f e r e n t from j
54 i f ( max_elem.second != j ) {
55 swapRows_device< THREADS_PER_BLOCK >( M , j , max_elem.second , num_cols ) ;
56 piv ( j ) = max_elem.second + 1 ;
57 }
58

59 r e t u r n max_elem ;
60 }

Listing B.1: Excerpt from the implementation of PCM_xPP. The template parameter BLOCK_SIZE
is equivalent to x in PCM_xPP. On input, matrix LU is assumed to contain the values of A, and
piv is expected to be appropriately sized. Furthermore, unlike LU, piv is assumed to be allocated
on the Host. The pivotRowOfMatrix_device() function, presented below the decompose()
method, is implemented in the parent class of CroutMethod: BaseDecomposer. Note that the
code has been slightly modified for brevity. For example, the swapRows_device() function has
been omitted as it is a basic operation, and the checks for appropriate sizing of matrices and vectors
have been removed.

1 t e m p l a t e < typename MatrixView , typename Index >
2 _ _ g l o b a l _ _
3 vo id
4 ColCompute_kernel ( MatrixView LU , c o n s t Index col , c o n s t Index num_rows )
5 {
6 u s i n g Real = typename MatrixView : : RealType ;
7 / / O f f s e t t h r e a d s t o s t a r t from t h e d i a g o n a l e l e m e n t ( i n c l u d i n g i t )
8 c o n s t Index row = b l o c k I d x . x * blockDim.x + t h r e a d I d x . x + col ;
9

10 i f ( row >= num_rows )
11 r e t u r n ;
12

13 Real sum = 0 ;
14 f o r ( Index k = 0 ; k < col ; ++k )
15 sum += LU ( row , k ) * LU ( k , col ) ;
16

17 LU ( row , col ) = LU ( row , col ) − sum ;
18 }

Listing B.2: Implementation of the ColCompute_kernel() kernel which computes one column
of LU.
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1 t e m p l a t e < typename MatrixView , typename Index >
2 _ _ g l o b a l _ _
3 vo id
4 RowCompute_kernel ( MatrixView LU , Index row , c o n s t Index num_cols )
5 {
6 u s i n g Real = typename MatrixView : : RealType ;
7 / / O f f s e t t h r e a d s t o s t a r t from e l e m e n t t o t h e r i g h t o f t h e d i a g o n a l ←↩

e l e m e n t
8 c o n s t Index col = b l o c k I d x . x * blockDim.x + t h r e a d I d x . x + row + 1 ;
9

10 i f ( col >= num_cols )
11 r e t u r n ;
12

13 Real sum = 0 ;
14 f o r ( Index k = 0 ; k < row ; ++k )
15 sum += LU ( row , k ) * LU ( k , col ) ;
16

17 LU ( row , col ) = ( LU ( row , col ) − sum ) / LU ( row , row ) ;
18 }

Listing B.3: Implementation of the RowCompute_kernel() kernel which computes one row of
LU.
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Appendix C

ICM_xPP Implementation

The implementation of ICM_xPP is shown in Listing C.1. Note that the kernels called in Listing C.1
are shown separately in Listings 2.9, 2.10, C.3, and C.4.

1 t e m p l a t e < c o n s t i n t BLOCK_SIZE >
2 t e m p l a t e < typename Matrix , typename Vector >
3 vo id
4 IterativeCroutMethod< BLOCK_SIZE > : : decompose ( Matrix& A , Matrix& LU , Vector&←↩

piv )
5 {
6 u s i n g Real = typename Matrix : : RealType ;
7 u s i n g Index = typename Matrix : : IndexType ;
8

9 c o n s t Index num_rows = LU.getRows ( ) ;
10 c o n s t Index num_cols = LU.getColumns ( ) ;
11

12 / / Ma t r ix r e p r e s e n t i n g t h e n e x t i t e r a t i o n
13 Matrix LUnext ;
14 LUnext.setLike ( LU ) ;
15

16 / / P r o c e s s i n g t o l e r a n c e
17 c o n s t Real process_tol = 0.0 ;
18 / / P i v o t i n g t o l e r a n c e − l ower bound
19 c o n s t Real piv_tol_lower = 1.0e−5;
20 / / P i v o t i n g t o l e r a n c e − uppder bound
21 c o n s t Real piv_tol_upper = 1.0e+5;
22

23 / / Flag t o i n d i c a t e t h a t t h e d i a g o n a l s e c t i o n has been p r o c e s s e d
24 TNL : : Containers : : Array< bool , TNL : : Devices : : Cuda > processed{ 1 , f a l s e } ;
25

26 / / F i l l t h e p i v o t i n g v e c t o r wi th i n c r e m e n t s o f 1 s t a r t i n g from 1 t o ←↩
num_rows.

27 BaseDecomposer : : setDefaultPivotingValues ( piv ) ;
28

29 / / Dete rmine t h e s i z e o f t h e s e c t i o n based on t h e d i m e n s i o n s o f t h e m a t r i x
30 Index sec_size = min ( max ( num_cols / 10 , ( Index ) 256 ) , ( Index ) 1024 ) ;
31 sec_size = ( sec_size + BLOCK_SIZE − 1 ) / BLOCK_SIZE * BLOCK_SIZE ;
32

33 / / CUDA g r i d c o n f i g u r a t i o n
34 Index blocks = sec_size / BLOCK_SIZE ;
35 dim3 threads_perBlock ( BLOCK_SIZE , BLOCK_SIZE ) ;
36 dim3 blocks_perGrid ( blocks , blocks ) ;
37

38 / / A l l o c a t e and i n i t i a l i z e an a r r a y o f s t r e a m h a n d l e s t o p r o c e s s s e c t i o n s ←↩
i n p a r a l l e l
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39 c o n s t Index nonDiagSecs_perRow = TNL : : ceil ( ( do ub l e ) num_cols / ( do ub l e ) ←↩
sec_size ) − 1 ;

40 a u t o * streams = ( cudaStream_t *) malloc ( nonDiagSecs_perRow * s i z e o f ( ←↩
cudaStream_t ) ) ;

41 f o r ( Index i = 0 ; i < nonDiagSecs_perRow ; ++i )
42 cudaStreamCreate ( &( streams [ i ] ) ) ;
43

44 / / F l a g s i n d i c a t i n g t h e p r o c e s s i n g s t a t u s o f non−d i a g o n a l s e c t i o n s
45 TNL : : Containers : : Array< bool , TNL : : Devices : : Cuda , Index > ←↩

nonDiagSec_processed{ nonDiagSecs_perRow , f a l s e } ;
46 TNL : : Containers : : Array< bool , TNL : : Devices : : Host , Index > ←↩

nonDiagSec_processed_host{ nonDiagSecs_perRow , f a l s e } ;
47

48 / / Views a r e used from h e r e on
49 a u t o A_view = A.getView ( ) ;
50 a u t o LU_view = LU.getView ( ) ;
51 a u t o LUnext_view = LUnext.getView ( ) ;
52 a u t o piv_view = piv.getView ( ) ;
53 a u t o processed_view = processed.getView ( ) ;
54 a u t o nonDiagSec_processed_view = nonDiagSec_processed.getView ( ) ;
55

56 / / Lambda f o r f e t c h i n g t h e i n d e x of bad e l e m e n t s
57 a u t o get_badEl_colIdxs = [ = ] __cuda_callable__ ( Index col ) −> Index
58 {
59 r e t u r n ( abs ( LU_view ( col , col ) ) <= piv_tol_lower | | piv_tol_upper < ←↩

abs ( LU_view ( col , col ) ) ) ? col : num_cols ;
60 } ;
61

62 / / D i a g o n a l s e c t i o n s t a r t and end
63 Index dSec_start , dSec_end ;
64 / / Non−d i a g o n a l s e c t i o n s t a r t , end , and ID
65 Index sec_start , sec_end , sec_id ;
66 / / Row / Column i n d e x of t h e bad e l e m e n t
67 Index badEl_idx ;
68

69 / / Loop t h r o u g h t h e d i a g o n a l s e c t i o n s
70 f o r ( dSec_start = 0 , dSec_end = min ( num_cols , sec_size ) ; dSec_start < ←↩

dSec_end ; dSec_start += sec_size , dSec_end = min ( num_cols , dSec_end + ←↩
sec_size ) )

71 {
72 / / S e t t h e s t a r t i n g p o i n t o f t h e s e a r c h f o r t h e f i r s t bad e l e m e n t
73 Index badEl_searchStart = dSec_start ;
74

75 do { / / P r o c e s s t h e d i a g o n a l s e c t i o n and t h e s e c t i o n s below i t
76 / / Get n e x t b a d E l _ i d x
77 badEl_idx = TNL : : Algorithms : : reduce< TNL : : Devices : : Cuda >( ←↩

badEl_searchStart , dSec_end , get_badEl_colIdxs , TNL : : Min {} , ←↩
num_cols ) ;

78

79 do { / / P r o c e s s t h e d i a g o n a l s e c t i o n
80 / / R e s e t t h e p r o c e s s e d f l a g
81 processed_view.setElement ( 0 , t r u e ) ;
82

83 / / Compute t h e v a l u e s up t o and i n c l u d i n g t h e bad e l e m e n t
84 DSecCompute_kernel< BLOCK_SIZE ><<< blocks_perGrid , threads_perBlock ←↩

>>>( A_view , LU_view , LUnext_view , dSec_start , dSec_end , ←↩
dSec_start , dSec_end , process_tol , processed_view , badEl_idx ) ;

85

86 / / Ass ign t h e v a l u e s computed f o r t h e n e x t i t e r a t i o n
87 DSecAssign_kernel<<< blocks_perGrid , threads_perBlock >>>( LU_view , ←↩

LUnext_view , dSec_start , dSec_end , dSec_start , dSec_end , ←↩
badEl_idx ) ;
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88

89 / / Check i f a bad e l e m e n t i s p r e s e n t i n a d i f f e r e n t column
90 badEl_idx = TNL : : Algorithms : : reduce< TNL : : Devices : : Cuda >( ←↩

badEl_searchStart , dSec_end , get_badEl_colIdxs , TNL : : Min {} , ←↩
num_cols ) ;

91 } w h i l e ( ! processed_view.getElement ( 0 ) ) ;
92

93 / / The D i a g o n a l s e c t i o n c o n t a i n s p r o c e s s e d v a l u e s e x c l u d i n g t h e v a l u e s ←↩
t o t h e bottom− r i g h t o f t h e bad e l e m e n t

94 / / Compute t h e lower s e c t i o n s up t o and i n c l u d i n g t h e column c o n t a i n i n g←↩
t h e bad e l e m e n t

95

96 / / L i m i t t h e number o f t h r e a d s used based on t h e number o f columns t h a t←↩
w i l l be computed

97 Index badEl_idx_cutoff = min ( badEl_idx + 1 , dSec_end ) ;
98 Index lSec_width_rounded = ( badEl_idx_cutoff − dSec_start + BLOCK_SIZE←↩

− 1 ) & −BLOCK_SIZE ;
99 dim3 lSec_blockPerGrid ( TNL : : max ( lSec_width_rounded / BLOCK_SIZE , (←↩

Index ) 1 ) , blocks ) ;
100

101 / / D e f a u l t t o f a l s e so t h a t a l l k e r n e l s a r e run i n t h e f i r s t i t e r a t i o n
102 nonDiagSec_processed_view.setValue ( f a l s e ) ;
103

104 do { / / P r o c e s s t h e lower s e c t i o n s i n p a r a l l e l
105 nonDiagSec_processed_host = nonDiagSec_processed ;
106 nonDiagSec_processed_view.setValue ( t r u e ) ;
107

108 / / Launch k e r n e l s f o r a l l s e c t i o n s below t h e d i a g o n a l s e c t i o n − each ←↩
s e c t i o n has i t s own s t r e a m

109 f o r ( sec_start = dSec_end , sec_end = min ( num_cols , dSec_end + ←↩
sec_size ) , sec_id = 0 ; sec_start < sec_end ; sec_start += ←↩
sec_size , sec_end = min ( num_cols , sec_end + sec_size ) , ++sec_id←↩

)
110 {
111 / / Only compute s e c t i o n s t h a t a r e n o t y e t p r o c e s s e d
112 i f ( ! nonDiagSec_processed_host ( sec_id ) ) {
113 LSecCompute_kernel< BLOCK_SIZE ><<< lSec_blockPerGrid , ←↩

threads_perBlock , 0 , streams [ sec_id ] >>>( A_view , LU_view , ←↩
LUnext_view , dSec_start , badEl_idx_cutoff , sec_start , sec_end←↩
, process_tol , nonDiagSec_processed_view , sec_id ) ;

114

115 NonDiagSecAssign_kernel<<< lSec_blockPerGrid , threads_perBlock , ←↩
0 , streams [ sec_id ] >>>( LU_view , LUnext_view , dSec_start , ←↩
badEl_idx_cutoff , sec_start , sec_end ) ;

116 }
117 }
118 / / Wait u n t i l a l l s e c t i o n s have been computed i n t h i s i t e r a t i o n
119 synchronizeStreams ( streams , nonDiagSecs_perRow ) ;
120 } w h i l e ( ! TNL : : Algorithms : : reduce ( nonDiagSec_processed_view , TNL : :←↩

LogicalAnd {} ) ) ;
121

122 / / P i v o t t h e bad e l e m e n t
123 pivotBadElement< BLOCK_SIZE >( A_view , LU_view , piv_view , badEl_idx , ←↩

num_rows , num_cols , badEl_searchStart , piv_tol_lower , piv_tol_upper←↩
) ;

124

125 } w h i l e ( badEl_idx < dSec_end − 1 ) ;
126

127 nonDiagSec_processed_view.setValue ( f a l s e ) ;
128

129 / / P r o c e s s s e c t i o n s t o t h e r i g h t o f t h e d i a g o n a l s e c t i o n i n p a r a l l e l
130 / / At t h i s p o i n t t h e r e a r e no bad e l e m e n t s i n t h e d i a g o n a l s e c t i o n
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131 do {
132 nonDiagSec_processed_host = nonDiagSec_processed ;
133 nonDiagSec_processed_view.setValue ( t r u e ) ;
134

135 f o r ( sec_start = dSec_end , sec_end = min ( num_cols , dSec_end + sec_size←↩
) , sec_id = 0 ; sec_start < sec_end ; sec_start += sec_size , sec_end←↩
= min ( num_cols , sec_end + sec_size ) , ++sec_id )

136 {
137 / / Only compute s e c t i o n s t h a t a r e n o t y e t p r o c e s s e d
138 i f ( ! nonDiagSec_processed_host ( sec_id ) ) {
139 RSecCompute_kernel< BLOCK_SIZE ><<< blocks_perGrid , ←↩

threads_perBlock , 0 , streams [ sec_id ] >>>( A_view , LU_view , ←↩
LUnext_view , sec_start , sec_end , dSec_start , dSec_end , ←↩
process_tol , nonDiagSec_processed_view , sec_id ) ;

140

141 NonDiagSecAssign_kernel<<< blocks_perGrid , threads_perBlock , 0 , ←↩
streams [ sec_id ] >>>( LU_view , LUnext_view , sec_start , sec_end←↩
, dSec_start , dSec_end ) ;

142 }
143 }
144 / / Wait u n t i l a l l s e c t i o n s have been computed i n t h i s i t e r a t i o n
145 synchronizeStreams ( streams , nonDiagSecs_perRow ) ;
146 } w h i l e ( ! TNL : : Algorithms : : reduce ( nonDiagSec_processed_view , TNL : :←↩

LogicalAnd {} ) ) ;
147 }
148

149 / / R e l e a s e r e s o u r c e s
150 f o r ( Index i = 0 ; i < nonDiagSecs_perRow ; ++i )
151 cudaStreamDestroy ( streams [ i ] ) ;
152

153 free ( streams ) ;
154 }
155

156 vo id
157 synchronizeStreams ( cudaStream_t* streams , c o n s t i n t num_streams )
158 {
159 f o r ( i n t i = 0 ; i < num_streams ; i++ )
160 cudaStreamSynchronize ( streams [ i ] ) ;
161 }

Listing C.1: Excerpt from the implementation of ICM_xPP. The template parameter BLOCK_SIZE
is equivalent to x in ICM_xPP. On input, matrix A is assumed to contain the values of A, matrix LU is
assumed to contain the initial estimate of the decomposition, and piv is expected to be appropriately
sized and allocated on the Host. On output, matrix LU contains the values of matrices L and U
in the format presented in Equation 2.4, and piv contains the row permutations. The synchro
nizeStreams() function is included below the decompose()method. The pivotBadElement()
function is shown in Listing C.2. The code has been slightly modified for brevity, for example, the
checks for appropriate sizing of matrices and vectors have been removed.

1 t e m p l a t e < c o n s t i n t BLOCK_SIZE , typename MatrixView , typename VectorView , ←↩
typename Index , typename Real >

2 vo id
3 pivotBadElement ( MatrixView& A , MatrixView& LU , VectorView& piv , c o n s t Index&←↩

j , c o n s t Index& num_rows , c o n s t Index& num_cols , Index& ←↩
badEl_searchStart , c o n s t Real& piv_tol_lower , c o n s t Real& piv_tol_upper )

4 {
5 / / The l a s t e l e m e n t o f t h e m a t r i x does n o t r e q u i r e p i v o t i n g as no e l e m e n t s ←↩

a r e computed u s i n g i t , i . e . , d i v i s i o n by z e r o c a n n o t o c c u r f o r t h e l a s t←↩
e l e m e n t

6 i f ( j >= num_cols − 1 )
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7 r e t u r n ;
8

9 std : : pair< Real , Index > max_elem = pivotRowOfMatrices_device< BLOCK_SIZE *←↩
BLOCK_SIZE >( j , A , LU , num_rows , num_cols , piv ) ;

10

11 i f ( max_elem.first == 0 ) {
12 / / The c u r r e n t bad e l e m e n t i n t h e main d i a g o n a l i s z e r o even a f t e r ←↩

p i v o t i n g −> Decompos i t i on f a i l e d
13 th row Exceptions : : MatrixSingular ( "LU" , j , j ) ;
14 }
15 e l s e i f ( isnan ( max_elem.first ) ) {
16 / / The c u r r e n t bad e l e m e n t i n t h e main d i a g o n a l i s NaN −> Decompos i t ion ←↩

f a i l e d
17 th row Exceptions : : NotANumber ( j , j ) ;
18 }
19 e l s e i f ( max_elem.first <= piv_tol_lower | | piv_tol_upper < max_elem.first ←↩

) {
20 / / The v a l u e a t t h e i n d e x of t h e bad e l e m e n t i s n o t w i t h i n t h e a l l o w e d ←↩

range , however , i t i s n o t z e r o / nan , so t h e c o m p u t a t i o n can c o n t i n u e
21 / / S ea rc h f o r t h e n e x t bad e l e m e n t a f t e r t h i s one
22 badEl_searchStart = j + 1 ;
23 }
24 }
25

26 t e m p l a t e < c o n s t i n t THREADS_PER_BLOCK , typename Index , typename MatrixView , ←↩
typename VectorView , typename Real = typename MatrixView : : RealType >

27 std : : pair< Real , Index >
28 pivotRowOfMatrices_device ( c o n s t Index& j , MatrixView& A , MatrixView& M , ←↩

c o n s t Index& num_rows , c o n s t Index& num_cols , VectorView& piv )
29 {
30 a u t o fetchAbsElement = [ = ] __cuda_callable__ ( Index row )
31 {
32 r e t u r n abs ( M ( row , j ) ) ;
33 } ;
34

35 std : : pair< Real , Index > max_elem = TNL : : Algorithms : : reduceWithArgument< ←↩
TNL : : Devices : : Cuda >( j , num_rows , fetchAbsElement , TNL : : MaxWithArg {} )←↩
;

36

37 / / Only need t o swap rows i f t h e p i v o t i n g row i s d i f f e r e n t from j
38 i f ( max_elem.second != j ) {
39 swapRows_device< THREADS_PER_BLOCK >( A , M , j , max_elem.second , num_cols ←↩

) ;
40 piv ( j ) = max_elem.second + 1 ;
41 }
42

43 r e t u r n max_elem ;
44 }

Listing C.2: The definition of the pivotBadElement() function which is responsible for pivoting
a bad element found in column j of the main diagonal. The pivotRowOfMatrices_device()
function, presented below the pivotBadElement() function, is implemented in the parent class of
IterativeCroutMethod: BaseDecomposer. Note that the variant of the swapRows_device()
function presented in the pivotRowOfMatrices_device() swaps the rows in two matrices.

1 t e m p l a t e < c o n s t i n t BLOCK_SIZE , typename ConstMatrixView , typename MatrixView←↩
, typename BoolArrayView , typename Index , typename Real >

2 _ _ g l o b a l _ _
3 vo id
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4 LSecCompute_kernel ( c o n s t ConstMatrixView A , MatrixView LU , MatrixView LUnext←↩
, c o n s t Index sec_start_col , c o n s t Index sec_end_col , c o n s t Index ←↩
sec_start_row , c o n s t Index sec_end_row , c o n s t Real process_tol , ←↩
BoolArrayView processed , c o n s t Index sec_id )

5 {
6 Index ty = t h r e a d I d x . y ;
7 Index tx = t h r e a d I d x . x ;
8

9 / / Each t h r e a d computes one e l e m e n t ( row , c o l )
10 Index row = b l o c k I d x . y * blockDim.y + ty + sec_start_row ;
11 Index col = b l o c k I d x . x * blockDim.x + tx + sec_start_col ;
12

13 / / A d j u s t t h e IDs of t h r e a d s t h a t o v e r r e a c h t h e bounds t o t h e c l o s e s t ←↩
boundary

14 Index max_col = sec_end_col − 1 ;
15 Index max_row = sec_end_row − 1 ;
16 Index row_adj = min ( row , max_row ) ;
17 Index col_adj = min ( col , max_col ) ;
18

19 / / O f f s e t t h e s m a l l e s t i n d e x o f t h e t h r e a d ' s e l e m e n t by BLOCK_SIZE t o a l l o w←↩
f o r l oop u n r o l l i n g

20 / / In a lower s e c t i o n , t h e column i n d e x i s a lways s m a l l e r
21 Index min_row_col = col_adj − BLOCK_SIZE ;
22

23 _ _ s h a r e d _ _ Real L_block [ BLOCK_SIZE ] [ BLOCK_SIZE ] ;
24 _ _ s h a r e d _ _ Real U_block [ BLOCK_SIZE ] [ BLOCK_SIZE ] ;
25

26 Index i , k ; Real sum = 0 ;
27

28 / / Compute t h e sum needed f o r t h e e l e m e n t ( row , c o l ) by l o a d i n g b l o c k s o f ←↩
e l e m e n t s from g l o b a l t o s h a r e d memory and m u l t i p l y i n g them

29 f o r ( i = 0 ; i <= min_row_col ; i += BLOCK_SIZE ) {
30 L_block [ ty ] [ tx ] = LU ( row_adj , i + tx ) ;
31 U_block [ ty ] [ tx ] = LU ( i + ty , col_adj ) ;
32

33 __syncthreads ( ) ;
34

35 #pragma unroll ( BLOCK_SIZE )
36 f o r ( k = 0 ; k < BLOCK_SIZE ; ++k )
37 sum += L_block [ ty ] [ k ] * U_block [ k ] [ tx ] ;
38 __syncthreads ( ) ;
39 }
40

41 / / Loops a r e u n r o l l e d by m u l t i p l e s o f BLOCK_SIZE and t h e r e m a i n i n g e l e m e n t s←↩
a r e computed s e p a r a t e l y

42 L_block [ ty ] [ tx ] = LU ( row_adj , min ( i + tx , max_col ) ) ;
43 U_block [ ty ] [ tx ] = LU ( min ( i + ty , max_row ) , col_adj ) ;
44

45 __syncthreads ( ) ;
46

47 / / T e r m i n a t e t h r e a d s t h a t o v e r r e a c h t h e bounds as t h e y have s e r v e d t h e i r ←↩
p u r p o s e o f r e a d i n g d a t a

48 i f ( row >= sec_end_row | | col >= sec_end_col )
49 r e t u r n ;
50

51 f o r ( k = 0 ; k < tx ; ++k )
52 sum += L_block [ ty ] [ k ] * U_block [ k ] [ tx ] ;
53

54 / / Formula f o r L
55 sum = A ( row , col ) − sum ;
56

57 / / Check i f t h e e l e m e n t ( row , c o l ) has been p r o c e s s e d
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58 / / Read LU( row , c o l ) from s h a r e d memory i n s t e a d o f g l o b a l memory
59 i f ( abs ( L_block [ ty ] [ tx ] − sum ) > process_tol )
60 processed ( sec_id ) = f a l s e ;
61

62 / / Ass ign t h e e l e m e n t f o r t h e n e x t i t e r a t i o n
63 LUnext ( row , col ) = sum ;
64 }

Listing C.3: Implementation of the LSecCompute_kernel() kernel which computes one iteration
of a lower section. Note that the matrices, vectors, and arrays are passed using their views, and the
scalar values are copied to the local memory of each thread.

1 t e m p l a t e < c o n s t i n t BLOCK_SIZE , typename ConstMatrixView , typename MatrixView←↩
, typename BoolArrayView , typename Index , typename Real >

2 _ _ g l o b a l _ _
3 vo id
4 RSecCompute_kernel ( c o n s t ConstMatrixView A , MatrixView LU , MatrixView LUnext←↩

, c o n s t Index sec_start_col , c o n s t Index sec_end_col , c o n s t Index ←↩
sec_start_row , c o n s t Index sec_end_row , c o n s t Real process_tol , ←↩
BoolArrayView processed , c o n s t Index sec_id )

5 {
6 Index tx = t h r e a d I d x . x ;
7 Index ty = t h r e a d I d x . y ;
8

9 / / Each t h r e a d computes one e l e m e n t ( row , c o l )
10 Index row = b l o c k I d x . y * blockDim.y + ty + sec_start_row ;
11 Index col = b l o c k I d x . x * blockDim.x + tx + sec_start_col ;
12

13 / / A d j u s t t h e IDs o f t h r e a d s t h a t o v e r r e a c h t h e bounds t o t h e c l o s e s t ←↩
boundary

14 Index max_col = sec_end_col − 1 ;
15 Index max_row = sec_end_row − 1 ;
16 Index row_adj = min ( row , max_row ) ;
17 Index col_adj = min ( col , max_col ) ;
18

19 / / O f f s e t t h e s m a l l e s t i n d e x of t h e t h r e a d ' s e l e m e n t by BLOCK_SIZE t o a l l o w←↩
f o r l oop u n r o l l i n g

20 / / In a r i g h t s e c t i o n , t h e row i n d e x i s a lways s m a l l e r
21 Index min_row_col = row_adj − BLOCK_SIZE ;
22

23 _ _ s h a r e d _ _ Real L_block [ BLOCK_SIZE ] [ BLOCK_SIZE ] ;
24 _ _ s h a r e d _ _ Real U_block [ BLOCK_SIZE ] [ BLOCK_SIZE ] ;
25

26 Index i , k ; Real sum = 0 ;
27

28 / / Compute t h e sum needed f o r t h e e l e m e n t ( row , c o l ) by l o a d i n g b l o c k s o f ←↩
e l e m e n t s from g l o b a l t o s h a r e d memory and m u l t i p l y i n g them

29 f o r ( i = 0 ; i <= min_row_col ; i += BLOCK_SIZE ) {
30 L_block [ ty ] [ tx ] = LU ( row_adj , i + tx ) ;
31 U_block [ ty ] [ tx ] = LU ( i + ty , col_adj ) ;
32

33 __syncthreads ( ) ;
34

35 #pragma unroll ( BLOCK_SIZE )
36 f o r ( k = 0 ; k < BLOCK_SIZE ; ++k )
37 sum += L_block [ ty ] [ k ] * U_block [ k ] [ tx ] ;
38 __syncthreads ( ) ;
39 }
40

41 / / Loops a r e u n r o l l e d by m u l t i p l e s o f BLOCK_SIZE and t h e r e m a i n i n g e l e m e n t s←↩
a r e computed s e p a r a t e l y
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42 L_block [ ty ] [ tx ] = LU ( row_adj , min ( i + tx , max_col ) ) ;
43 U_block [ ty ] [ tx ] = LU ( min ( i + ty , max_row ) , col_adj ) ;
44

45 __syncthreads ( ) ;
46

47 / / T e r m i n a t e t h r e a d s t h a t o v e r r e a c h t h e bounds as t h e y have s e r v e d t h e i r ←↩
p u r p o s e o f r e a d i n g d a t a

48 i f ( row >= sec_end_row | | col >= sec_end_col )
49 r e t u r n ;
50

51 f o r ( k = 0 ; k < ty ; ++k )
52 sum += L_block [ ty ] [ k ] * U_block [ k ] [ tx ] ;
53

54 / / Formula f o r U
55 / / Do n o t check f o r d i v i s i o n by z e r o as t h i s k e r n e l assumes t h a t no bad ←↩

e l e m e n t i s p r e s e n t i n t h e d i a g o n a l s e c t i o n
56 sum = ( A ( row , col ) − sum ) / LU ( row , row ) ;
57

58 / / Check i f t h e e l e m e n t ( row , c o l ) has been p r o c e s s e d
59 / / Read LU( row , c o l ) from s h a r e d memory i n s t e a d o f g l o b a l memory
60 i f ( abs ( U_block [ ty ] [ tx ] − sum ) > process_tol )
61 processed ( sec_id ) = f a l s e ;
62

63 / / Ass ign t h e e l e m e n t f o r t h e n e x t i t e r a t i o n
64 LUnext ( row , col ) = sum ;
65 }

Listing C.4: Implementation of the RSecCompute_kernel() kernel which computes one iteration
of a right section.

1 t e m p l a t e < typename MatrixView , typename Index >
2 _ _ g l o b a l _ _
3 vo id
4 NonDiagSecAssign_kernel ( MatrixView LU , MatrixView LUnext , c o n s t Index ←↩

sec_start_col , c o n s t Index sec_end_col , c o n s t Index sec_start_row , c o n s t ←↩
Index sec_end_row )

5 {
6 Index row = b l o c k I d x . y * blockDim.y + t h r e a d I d x . y + sec_start_row ;
7 Index col = b l o c k I d x . x * blockDim.x + t h r e a d I d x . x + sec_start_col ;
8

9 i f ( row >= sec_end_row | | col >= sec_end_col )
10 r e t u r n ;
11

12 LU ( row , col ) = LUnext ( row , col ) ;
13 }

Listing C.5: Implementation of the NonDiagSecAssign_kernel() kernel that assigns values of
the next iteration to the matrix representing the current iteration.
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Appendix D

SSPP Implementation

The implementation of SSPP is shown in Listing D.1.

1 t e m p l a t e < typename Matrix , typename Vector >
2 vo id
3 SequentialSolver : : solve ( c o n s t Matrix& LU , Matrix& X , c o n s t Vector& piv )
4 {
5 u s i n g Real = typename Matrix : : RealType ;
6 u s i n g Device = TNL : : Devices : : Host ;
7 u s i n g Index = typename Matrix : : IndexType ;
8

9 c o n s t Index num_rows = LU.getRows ( ) ;
10 c o n s t Index num_cols = LU.getColumns ( ) ;
11

12 c o n s t Index nrhs = X.getColumns ( ) ;
13 TNL : : Containers : : Vector< Real , Device , Index > sum ( nrhs ) ;
14

15 / / So lve (LU)X = B , where X h o l d s t h e v a l u e s o f B on i n p u t
16

17 / / Order M a t r i x X a c c o r d i n g t o vec
18 i f ( ! piv.empty ( ) )
19 Decomposers : : BaseDecomposer : : orderMatrixAccordingTo ( X , piv ) ;
20

21 / / J u s t t o keep t h e o r i g i n a l l a b e l s i n t h e l o o p s f o r c l a r i t y
22 a u t o X_view = X.getView ( ) ;
23 a u t o Y_view = X.getView ( ) ;
24 a u t o B_view = X.getView ( ) ;
25

26 a u t o LU_view = LU.getConstView ( ) ;
27 a u t o sum_view = sum.getView ( ) ;
28

29 / / Forward s u b s t i t u t i o n : LY = B
30 f o r ( Index i = 0 ; i < num_rows ; ++i ) {
31 sum_view.setValue ( 0 ) ;
32

33 f o r ( Index j = 0 ; j < i ; ++j ) {
34 / / sum += LU( i , j ) * Y( j ) ;
35 a u t o y_row = Y_view.getRow ( j ) ;
36

37 a u t o rhsSum = [ = ] __cuda_callable__ ( Index rhs ) mu tab le
38 {
39 sum_view ( rhs ) += LU_view ( i , j ) * y_row.getValue ( rhs ) ;
40 } ;
41

42 TNL : : Algorithms : : parallelFor< Device >( Index{ 0 } , nrhs , rhsSum ) ;
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43 }
44 / / Y( i ) = ( B( i ) − sum ) / LU( i , i ) ;
45 a u t o y_row = Y_view.getRow ( i ) ;
46 a u t o b_row = B_view.getRow ( i ) ;
47

48 a u t o ySet = [ = ] __cuda_callable__ ( Index rhs ) mu tab le
49 {
50 y_row.setValue ( rhs , ( b_row.getValue ( rhs ) − sum_view ( rhs ) ) / ←↩

LU_view ( i , i ) ) ;
51 } ;
52

53 TNL : : Algorithms : : parallelFor< Device >( Index{ 0 } , nrhs , ySet ) ;
54 }
55

56 / / Backward s u b s t i t u t i o n : UX = Y
57 f o r ( Index i = num_rows − 1 ; i >= 0 ; −−i ) {
58 sum_view.setValue ( 0 ) ;
59

60 f o r ( Index j = i + 1 ; j < num_cols ; ++j ) {
61 / / sum += LU( i , j ) * X( j ) ;
62 a u t o x_row = X_view.getRow ( j ) ;
63

64 a u t o rhsSum = [ = ] __cuda_callable__ ( Index rhs ) mu tab le
65 {
66 sum_view ( rhs ) += LU_view ( i , j ) * x_row.getValue ( rhs ) ;
67 } ;
68

69 TNL : : Algorithms : : parallelFor< Device >( Index{ 0 } , nrhs , rhsSum ) ;
70 }
71 / / X( i ) = Y( i ) − sum ;
72 a u t o x_row = X_view.getRow ( i ) ;
73 a u t o y_row = Y_view.getRow ( i ) ;
74

75 a u t o xSet = [ = ] __cuda_callable__ ( Index rhs ) mu tab le
76 {
77 x_row.setValue ( rhs , y_row.getValue ( rhs ) − sum_view ( rhs ) ) ;
78 } ;
79

80 TNL : : Algorithms : : parallelFor< Device >( Index{ 0 } , nrhs , xSet ) ;
81 }
82 }

Listing D.1: Excerpt from the implementation of SSPP. The code has been slightly modified for
brevity, for example, the checks for appropriate sizing of matrices and vectors have been removed.
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Appendix E

IS_xPP Implementation

The implementation of IS_xPP is shown in Listing E.1. Note that the kernels called in Listing E.1
are shown separately in Listings E.2, E.3, and E.4.

1 t e m p l a t e < c o n s t i n t THREADS_PER_BLOCK >
2 t e m p l a t e < typename Matrix , typename Vector >
3 vo id
4 IterativeSolver< THREADS_PER_BLOCK > : : solve ( c o n s t Matrix& LU , Matrix& X , ←↩

c o n s t Vector& piv )
5 {
6 u s i n g Real = typename Matrix : : RealType ;
7 u s i n g Index = typename Matrix : : IndexType ;
8

9 c o n s t Index num_rows = LU.getRows ( ) ;
10 c o n s t Index num_cols = LU.getColumns ( ) ;
11

12 c o n s t Index nrhs = X.getColumns ( ) ;
13

14 / / So lve (LU)X = B , where X h o l d s t h e v a l u e s o f B on i n p u t
15

16 / / Order M a t r i x X a c c o r d i n g t o vec
17 i f ( ! piv.empty ( ) )
18 Decomposers : : BaseDecomposer : : orderMatrixAccordingTo ( X , piv ) ;
19

20 Matrix Xnext ;
21 Xnext.setLike ( X ) ;
22

23 Matrix Y ;
24 Y.setLike ( X ) ;
25 Matrix Ynext ;
26 Ynext.setLike ( Y ) ;
27

28 / / X h o l d s t h e v a l u e s o f B on i n p u t
29 a u t o X_view = X.getView ( ) ;
30 a u t o Y_view = Y.getView ( ) ;
31 a u t o B_view = X.getView ( ) ;
32 a u t o Xnext_view = Xnext.getView ( ) ;
33 a u t o Ynext_view = Ynext.getView ( ) ;
34

35 a u t o LU_view = LU.getConstView ( ) ;
36

37 / / Flag t o i n d i c a t e t h a t a s e c t i o n has been p r o c e s s e d
38 TNL : : Containers : : Array< bool , TNL : : Devices : : Cuda > processed{ 1 , t r u e } ;
39 a u t o processed_view = processed.getView ( ) ;
40 c o n s t Real process_tol = 0.0 ;
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41

42 / / Round t o n e a r e s t h i g h e r m u l t i p l e o f THREADS_PER_BLOCK
43 Index num_rows_rounded = ( num_rows + THREADS_PER_BLOCK − 1 ) / ←↩

THREADS_PER_BLOCK * THREADS_PER_BLOCK ;
44

45 / / Number o f r i g h t −hand s i d e s i s u s u a l l y s m a l l
46 c o n s t Index BLOCK_SIZE_y = 8 ;
47 c o n s t Index nrhs_rounded = ( nrhs + BLOCK_SIZE_y − 1 ) / BLOCK_SIZE_y * ←↩

BLOCK_SIZE_y ;
48

49 c o n s t Index blocks_perGrid_x = num_rows_rounded / THREADS_PER_BLOCK ;
50 c o n s t Index blocks_perGrid_y = nrhs_rounded / BLOCK_SIZE_y ;
51

52 dim3 threads_perBlock ( THREADS_PER_BLOCK , BLOCK_SIZE_y ) ;
53 dim3 blocks_perGrid ( blocks_perGrid_x , blocks_perGrid_y ) ;
54

55 / / Forward s u b s t i t u t i o n : LY = B
56 do {
57 processed_view.setElement ( 0 , t r u e ) ;
58 FowardSubst_kernel<<< blocks_perGrid , threads_perBlock >>>( LU_view , ←↩

Y_view , Ynext_view , B_view , num_rows , nrhs , processed_view , ←↩
process_tol ) ;

59

60 MtxAssign_kernel<<< blocks_perGrid , threads_perBlock >>>( Y_view , ←↩
Ynext_view , num_rows , nrhs ) ;

61 } w h i l e ( ! processed_view.getElement ( 0 ) ) ;
62

63 / / Backward s u b s t i t u t i o n : UX = Y
64 do {
65 processed_view.setElement ( 0 , t r u e ) ;
66 BackwardSubst_kernel<<< blocks_perGrid , threads_perBlock >>>( LU_view , ←↩

X_view , Xnext_view , Y_view , num_rows , num_cols , nrhs , processed_view ,←↩
process_tol ) ;

67

68 MtxAssign_kernel<<< blocks_perGrid , threads_perBlock >>>( X_view , ←↩
Xnext_view , num_rows , nrhs ) ;

69 } w h i l e ( ! processed_view.getElement ( 0 ) ) ;
70 }

Listing E.1: Excerpt from the implementation of IS_xPP. The code has been slightly modified for
brevity, for example, the checks for appropriate sizing of matrices and vectors have been removed.
Note that the CUDA thread blocks used in the implementation are larger in the 1st dimension.
Threads adjacent in the 1st dimension are assigned to neighboring elements in the same column
since the matrices are stored in column-major order on the GPU. In other words, to mitigate
misaligned global memory access, the 1st dimension of threads is used to access elements in a
single column and the 2nd dimension is used to differentiate between right-hand sides.

1 t e m p l a t e < typename ConstMatrixView , typename MatrixView , typename Index , ←↩
typename BoolArrayView , typename Real >

2 _ _ g l o b a l _ _
3 vo id
4 FowardSubst_kernel ( c o n s t ConstMatrixView LU , MatrixView Y , MatrixView Ynext ,←↩

c o n s t MatrixView B , c o n s t Index num_rows , c o n s t Index nrhs , ←↩
BoolArrayView processed , c o n s t Real process_tol )

5 {
6 / / Each t h r e a d computes one e l e m e n t ( row , r h s )
7 c o n s t Index row = b l o c k I d x . x * blockDim.x + t h r e a d I d x . x ;
8 c o n s t Index rhs = b l o c k I d x . y * blockDim.y + t h r e a d I d x . y ;
9

10 / / T e r m i n a t e t h r e a d s t h a t o v e r r e a c h m a t r i x bounds
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11 i f ( row >= num_rows | | rhs >= nrhs )
12 r e t u r n ;
13

14 Real sum = 0 ;
15

16 f o r ( Index j = 0 ; j < row ; ++j )
17 sum += LU ( row , j ) * Y ( j , rhs ) ;
18

19 sum = ( B ( row , rhs ) − sum ) / LU ( row , row ) ;
20

21 / / Check i f t h e e l e m e n t ( row , r h s ) has been p r o c e s s e d
22 i f ( abs ( Y ( row , rhs ) − sum ) > process_tol )
23 processed ( 0 ) = f a l s e ;
24

25 / / Ass ign t h e e l e m e n t f o r t h e n e x t i t e r a t i o n
26 Ynext ( row , rhs ) = sum ;
27 }

Listing E.2: Implementation of the FowardSubst_kernel() kernel which computes one forward-
substitution iteration.

1 t e m p l a t e < typename ConstMatrixView , typename MatrixView , typename ←↩
BoolArrayView , typename Real , typename Index >

2 _ _ g l o b a l _ _
3 vo id
4 BackwardSubst_kernel ( c o n s t ConstMatrixView LU , MatrixView X , MatrixView ←↩

Xnext , c o n s t MatrixView Y , c o n s t Index num_rows , c o n s t Index num_cols , ←↩
c o n s t Index nrhs , BoolArrayView processed , c o n s t Real process_tol )

5 {
6 / / Each t h r e a d computes one e l e m e n t ( row , r h s )
7 c o n s t Index row = b l o c k I d x . x * blockDim.x + t h r e a d I d x . x ;
8 c o n s t Index rhs = b l o c k I d x . y * blockDim.y + t h r e a d I d x . y ;
9

10 / / T e r m i n a t e t h r e a d s t h a t o v e r r e a c h m a t r i x bounds
11 i f ( row >= num_rows | | rhs >= nrhs )
12 r e t u r n ;
13

14 Real sum = 0 ;
15

16 f o r ( Index j = row + 1 ; j < num_cols ; ++j )
17 sum += LU ( row , j ) * X ( j , rhs ) ;
18

19 sum = Y ( row , rhs ) − sum ;
20

21 / / Check i f t h e e l e m e n t ( row , r h s ) has been p r o c e s s e d
22 i f ( abs ( X ( row , rhs ) − sum ) > process_tol )
23 processed ( 0 ) = f a l s e ;
24

25 / / Ass ign t h e e l e m e n t f o r t h e n e x t i t e r a t i o n
26 Xnext ( row , rhs ) = sum ;
27 }

Listing E.3: Implementation of the BackwardSubst_kernel() kernel which computes one
backward-substitution iteration.

1 t e m p l a t e < typename MatrixView , typename Index >
2 _ _ g l o b a l _ _
3 vo id
4 MtxAssign_kernel ( MatrixView M , MatrixView Mnext , c o n s t Index num_rows , c o n s t←↩

Index num_cols )
5 {
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6 / / Each t h r e a d a s s i g n s one e l e m e n t ( row , r h s )
7 c o n s t Index row = b l o c k I d x . x * blockDim.x + t h r e a d I d x . x ;
8 c o n s t Index rhs = b l o c k I d x . y * blockDim.y + t h r e a d I d x . y ;
9

10 / / T e r m i n a t e t h r e a d s t h a t o v e r r e a c h m a t r i x bounds
11 i f ( row >= num_rows | | rhs >= num_cols )
12 r e t u r n ;
13

14 M ( row , rhs ) = Mnext ( row , rhs ) ;
15 }

Listing E.4: Implementation of the MtxAssign_kernel() kernel that assigns values of the next
iteration to the matrix representing the current iteration.
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Appendix F

Python Script for Generating Random
Dense Matrices

The script used to generate random dense matrices for the benchmark implemented in the Decom-
position project is presented in Listing F.1.

1 i m p o r t numpy as np
2

3 from random i m p o r t random
4

5 num_mtx_files = 15
6 num_rows_cols_range = [ 5 0 0 , 11000]
7 elements_range = [ −1000 , 1000]
8 zeros_on_diag = True
9

10 mtx_files = np . random . randint ( low=num_rows_cols_range [ 0 ] , high=←↩
num_rows_cols_range [ 1 ] , size=num_mtx_files )

11 pivoting = " _ p i v o t i n g " i f zeros_on_diag == True e l s e " "
12

13 f o r num_rows_cols i n mtx_files :
14 dense_mtx_filename = f " Cejka { num_rows_cols }_<{ e l e m e n t s _ r a n g e [0]} −{←↩

e l e m e n t s _ r a n g e [1]} >{ p i v o t i n g } . mtx "
15 p r i n t ( f " G e n e r a t i n g { d e n s e _ m t x _ f i l e n a m e } . . . " )
16

17 header_lines = [
18 "%%Mat r ixMarke t m a t r i x c o o r d i n a t e r e a l g e n e r a l " ,
19 "%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ,
20 "% Cejka Dense Mat r i x C o l l e c t i o n " ,
21 "% I n s e r t URL h e r e " ,
22 f "% name : Cejka / { d e n s e _ m t x _ f i l e n a m e } " ,
23 "% d a t e : 2023 " ,
24 "% a u t h o r : L . M. Cejka " ,
25 "% kind : Random Dense Mat r i x wi th 0 . 5 prob . o f 0 on d i a g . " ,
26 "%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ,
27 ]
28 header_lines = [ line + " \ n " f o r line i n header_lines ]
29

30 mtx_info = f " { num_rows_cols } { num_rows_cols } { num_rows_cols * num_rows_cols } \←↩
n "

31

32 rand_floats = np . random . uniform ( low=elements_range [ 0 ] , high=elements_range←↩
[ 1 ] , size=(num_rows_cols*num_rows_cols , ) )

33 rand_floats = [ flt + 1 i f flt == 0 e l s e flt f o r flt i n rand_floats ]
34 rand_floats = [ s t r ( flt ) + " \ n " f o r flt i n rand_floats ]
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35 zero_with_newline = s t r ( 0 ) + " \ n "
36

37 num_zeros_on_diag = 0
38

39 with open ( dense_mtx_filename , 'w ' ) as f :
40 f . writelines ( header_lines )
41 f . write ( mtx_info )
42 f o r col i n r a n g e ( 1 , num_rows_cols + 1) :
43 f o r row i n r a n g e ( 1 , num_rows_cols + 1) :
44 i f zeros_on_diag and row == col and row != num_rows_cols :
45 f . write ( f " { row} { c o l } { r a n d _ f l o a t s [ ( c o l − 1) * num_rows_cols + row ←↩

− 1] i f random ( ) < 0 . 5 e l s e z e r o _ w i t h _ n e w l i n e } " )
46 e l s e :
47 f . write ( f " { row} { c o l } { r a n d _ f l o a t s [ ( c o l − 1) * num_rows_cols + row ←↩

− 1]} " )

Listing F.1: Implementation of the generate-rand-dense-mtxs.py script used to generate
dense matrices in the Matrix Market File Format, as described in Section 2.2.3. Each element in
the matrix is randomly generated within the range of -1000 to 1000. The zeros_on_diag variable,
declared on Line 8, serves as a flag indicating whether the dense matrix can have zeros on its main
diagonal. When the variable is set to True, there is a 50% chance for each element on the main
diagonal to be a zero, as shown on Line 45.
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