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Abstract
The interactions in laser heated plasma
often take place under non local trans-
port conditions, when predictions of clas-
sic diffusive models give inaccurate results.
When high gradients of temperature and
density are present, heat propagates not
only by spreading the collisions of rela-
tively slow moving particles. Fast moving
particles such as electrons could escape
the region of high density, thus carrying
out significant amount of energy. The
purpose of this work is to introduce the
reader to the concept of non-local heat
transport in laser heated plasma, and de-
scribe key moments of a neural network
model, purpose of which is to predict be-
havior of heat flux inside hohlraums used
at the National Ignition Facility.
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electron transport, neural network, heat
transport

Supervisor: Ing. Milan Holec, Ph.D.
7000 East Ave., Livermore, California,
USA

Abstrakt
Interakce v laserem ohřátém plazmatu
často probíhají za podmínek tzv. nelo-
kálního transportu elektronů, kdy před-
povědi klasického difuzního modelu dá-
vají nepřesné výsledky. Za přítomnosti vel-
kých gradientů teploty a hustoty plazmatu
se teplo šíří nejen prostřednictvím srá-
žek relativně pomalých částic. Rychle se
pohybující částice (např elektrony) jsou
schopny opustit oblast vysoké hustoty a
tím odnést z této oblasti značné množ-
ství energie. Cílem této práce je seznámit
čtenáře s koncepcí nelokálního transportu
tepla v laserem ohřátém plazmatu a po-
psat klíčové momenty modelu neuronové
sítě, která předpovídá chování tepelného
toku uvnitř hohlraumu, jenž je používán
v National Ignition Facility.

Klíčová slova: plazma, laser, nelokální
transport elektronů, neuronová síť,
přenos tepla

Překlad názvu: Aplikace strojového
učení při nelokálním hydrodynamickém
modelování termojaderné fúze
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Introduction

Due to the fact that humanity has been trying to achieve the stability of the
thermonuclear process for more than half a century, many technical solutions
to this physical problem have been proposed during this time. One of such
solutions is the design of inertial fusion, where capsules containing deuterium
and tritium are irradiated by laser beams and thus implode in a central hot
spot. Experiments with inertial fusion are being conducted in the Lawrence
Livermore National Laboratory, where significant improvements have been
made to this design [1, 2, 3].

Predicting the plasma behavior in laser heated plasma is a complex problem,
that can’t be solved without numerical implementation of a model, that should
adequately bring us closer to the physical context of heat transport. Often it
is done using magneto-hydrodynamics models [4, 5], frequently implemented
numerically [6, 7].

The well known and the most popular model which can describe transport
of heat is so-called diffusive model, also known as Fourier law q = k∇T ,
which says that magnitude of heat flux is directly proportional to temperature
gradient. Unfortunately, as a price for its simplicity, this approach becomes
inaccurate in case of nonlocal electron transport discussed in this thesis.

Our approach is to predict heat flux, occurring under non-local transport
in hohlraum, using feed forward Multilayer Perception (MLP). With this
we expect significantly faster calculation of heatflux q and consequently
better performance of simulations of time evolution of plasma temperature.
It is worth mentioning, that recently an Artificial Neural Network (ANN)
predicting heatflux was used and compared with SNB approach (see Section
2.4) in the article of Lamy et al. [8], where ANN was applied in several cases
of laser driven ablation of a plastic target.

The rest of this thesis is organized as follows: In the first chapter, the basics
of Inertial Confinement Fusion (ICF) and transport theory are presented.
This is followed by the second chapter, where a few popular kinetic and
hydrodynamic models are discussed. The third chapter describes our MLP
model and the method of implementing time evolution of the temperature
profile using the Newton Implicit method. The results of the work are
presented in the fourth chapter, where our MLP model is compared with two
different hydrodynamic models previously discussed in the second chapter.
Finally, the thesis concludes with a summary of findings.
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Chapter 1

Introduction to Inertial Confinement Fusion
and Transport Phenomena

Inertial confinement fusion (ICF) is an approach to achieve controlled nuclear
fusion, which has the potential to provide abundant and clean energy for the
future. It involves using high-energy lasers or particle beams to compress and
heat a target containing fusion fuel, typically in the form of small pellets or
capsules. The intense pressure and temperature generated in the process aim
to initiate a self-sustaining fusion reaction.

The fundamental principle behind ICF is to create conditions similar
to those found in the core of stars, where nuclei fuse together releasing a
significant amount of energy. By confining and compressing the fuel to high
densities and temperatures, fusion reactions can occur, leading to the release
of large amounts of energy. Under these conditions the fusing matter stays
in the state of plasma - an aggregate state, which is characterized by its
specificity to stay quasineutral (the sum of charges in plasma as a whole
is roughly zero, although locally it may be charged) and perform collective
behavior, e.g. shielding charges of individual particles [9].

In order for the reactions to be self-sustainable, a condition called the
Lawson criterion has to be fulfilled within plasma inside the confinement
device [3]. Lawson criterion describes circumstances at which fusion self-
heating power just balances losses from bremsstrahlung x-ray radiation.
Generally, the Lawson criterion represents an inequality, one side of which
is a product of fusing nuclei’ density n and confinement time τ , and the
other side is an expression dependent on kinetic energy of particles (which
is proportional to the temperature of plasma T ), reactivity section ⟨σv⟩ and
energy ε, that releases as a result of fusion reaction.

Early researchers recognized that the most favored fusion reaction is deu-
terium(D) – tritium(T) fusion D+T −→ n(14.1MeV) +4 He(3.5MeV) because
it has the largest reactivity for relatively low temperature ≈ 4.3 keV. For D-T
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1. Introduction to Inertial Confinement Fusion and Transport Phenomena..............
reaction, Lawson criterion in first approximation reads

nτ ≥ 12
⟨σv⟩

kBT

εDT
(1.1)

1.1 Radiation hydrodynamic model of inertial
confinement fusion

For further development of technologies related to fusion energy, we must
have a clear understanding of the processes taking place in fusion devices.
Thus, it is crucial to comprehend the transport phenomena that occur in
fusion plasma. These phenomena may be described either by kinetic theory,
which examines the behavior of each individual particle within the plasma, or
by assuming a macroscopic picture of the process and using fluid dynamics.
As one may expect, the latter is significantly easier to model in computer
simulations, although it offers a simplified description of plasma, treating it
as a continuous medium rather than a collection of individual particles, as in
the case of kinetic theory.

Regarding nonlocal electron transport, a phenomenon that is poorly de-
scribable statistically, kinetic theory provides a more accurate description at
the cost of computational resources. Detailed atomic calculations of equations
of state (EOS) end up consuming up to 90% of the computation, and kinetic
modeling closure is expected to be similarly costly.

Our goal is to model nonlocal electron transport more accurately than
currently existing hydrodynamic approaches, but with less computational
expense than a kinetic description. However, since our solution is still based on
the hydrodynamic model of ICF, we first need to introduce the hydrodynamic
description of plasma.

Due to the significant difference in mass between ions and electrons within
plasma, electrons play a predominant role in heat transport. Consequently,
our focus will be on electron transport when discussing energy transport, as it
is the primary contributor. Charged particles of type α and β in plasma can
be modeled by the deterministic Vlasov model of charged particles (reviewed
in [10])

∂fα

∂t
+ v · ∇xfα + qα

mα

(
E + v

c
× B

)
· ∇vfα =

∑
β

( dfα

dt

∣∣∣∣ fβ

)
, (1.2)

where fα(t, x,v) represents the density function of particles α at time t,
spatial point x, and velocity v, E and B are the electric and magnetic fields
in plasma, qα and mα being the charge and mass of electron. The right
hand side of the previous equation represents the change in time of electron
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.................. 1.1. Radiation hydrodynamic model of inertial confinement fusion

distribution function fα due to collisions with ions, and this is what is the
greatest difficulty in solving this equation.

As was discussed in the beginning of this section, working directly with
kinetic equations is a rather laborious process and in some cases the accuracy
of solutions will not suffer from certain simplifications. One of such simpli-
fications are the generally accepted equations of fluid dynamics, derived as
moments of the equation (1.2). More about models using kinetic theory will
be written at the beginning of the next section. Here we will prepare the
theoretical basis of fluid dynamics.

The equations of fluid dynamics comprise conservation laws of mass, mo-
mentum, and energy. We consider collision interactions only between electrons,
i.e. fe = fα = fβ.

Let us first define some summational invariant for which the following
applies

ψα + ψβ = ψ′
α + ψ′

β, (1.3)

where ψ′
α and ψ′

β represents the value of ψα and ψβ after collision. Then for
any such function ψ the following also applies [11]

∑
α,β

∫
ψα

( dfα(vα)
dt

∣∣∣∣ fβ

)
coll

d3vα = 0, (1.4)

where we also used ψα = ψβ.

If we multiply Boltzmann transport equation by a velocity dependent
summational invariant ψα(v) related to particle of type α and integrate it
over the velocity space d3v, the conservation theorem can be written as

∂

∂t
(nα⟨ψα(vα)⟩α) + ∇x · (nα⟨ψα(vαvα)⟩α)−

− nαqα

mα
⟨(E + vα × B) · ∇vψα(vα)⟩α =

∫
ψα

∑
β,α

( dfα

dt

∣∣∣∣ fβ

)
coll

d3vα.
(1.5)

If for ψα we substitute the following five collisional invariants

ψα1 = mα1, ψα2 = mαvα1, ψα3 = mαvα2, ψα4 = mαvα3, ψα5 = mα

2 |vα|2,
(1.6)

we obtain the equation of continuity, the three equations of momentum, and
the energy equation for the field.

dρ
dt = −ρ∇ · u, (1.7a)

ρ
du
dt = −∇p, (1.7b)

ρ
dε
dT

dT
dt + dϵR

dt =
(
ρ2 ∂ε

∂ρ
− p

)
∇ · u − ∇ · (qH + qR) +QIB, (1.7c)
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1. Introduction to Inertial Confinement Fusion and Transport Phenomena..............
where equation (1.7a) represents the conservation of the single-fluid mass with
combined density ρ = ρe + ρi of electron ρe and ion ρi densities, (1.7b) are
the single fluid moment equations, (1.7c) is in principle the energy equation
of electrons and radiation, which bounds the radiation field and electrons
in an inherent way. Here we use the electron heat flux notation qH . The
term QIB stands for the laser-plasma coupling due to inverse-bremsstrahlung
mechanism.

Since the system of equations (1.7) is not closed, in order to solve them
the nonlocal transport hydrodynamic closure has to be provided [12]:

clNonlocalHydro =
(
∂ε

∂T
(ρ, T ), ∂ε

∂ρ
(ρ, T ), p(ρ, T ), qH(ρ, T ), ϵR,qR

)
(1.8)

First three terms of the closure may be given by equations of state and are pro-
vided by the equation of state libraries, such as QEOS[13, 14], BADGER[15]
or SESAME [16]. In this thesis I particularly focus on the term represent-
ing electron heatflux - qH, and I will consider one-temperature single-fluid
dynamics, which implies Te = Ti.

In general, three types of transport are distinguished: diffusive transport,
nonlocal transport, and free streaming. Recent studies [17, 18] indicate
the need to consider nonlocal electron transport when studying processes
occurring both in magnetic and inertial confinement fusion devices. I also will
show the difference between heatflux predicted by Fourier law and heatflux
defined by equation (3.5). To categorize these differences between three
mentioned transport modes we employ a quantity called Knudsen number -
Kn. The Knudsen number is a vital dimensionless quantity that characterizes
the type of transport. It is calculated as the ratio of the mean free path of a
particle, denoted by λ, to the characteristic length of plasma inhomogeneity,
represented by L. The characteristic length can be expressed as L = |∇T |

T ,
where ∇T refers to the temperature gradient. Therefore, based on the electron
temperature gradient, the Knudsen number is given by Kn = λ|∇T |

T . When
the Knudsen number falls within the range of 0.001 to 10, heat transport
exhibits nonlocal behavior. This pattern is commonly observed in the electron
behavior of the corona of ablating surface, or in scrape-off layer in tokamaks.
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Chapter 2

State-of-the-Art of Nonlocal Electron
Transport

In this chapter I will first introduce the basis of currently used kinetic models,
and in the second part of the chapter the most commonly used hydrodynamic
closures will be discussed. The key equation to describe transport of particles
is the Boltzmann’s equation. We consider the Lorentz force as the only force
acting on individual particles. Boltzmann’s equation in this case reads

∂fe

∂t
+ ve · ∇xfe + qe

me

(
E + ve

c
× B

)
· ∇vefe =

(
∂fe

∂t

)
i
, (2.1)

The right-hand side of equation (2.1) gives the change in fe produced by
encounters of electrons with ions and using Fokker-Planck equation it can be
expressed as (

∂fe

∂t

)
i

= Cee(fe, fe) + Cei(fe, fi). (2.2)

In order to work with the right-hand side explicitly, we can write equation
(2.2) using Taylor expansion (pages 94 to 96 in [19]) as

Cee(fe, fe) + Cei(fe, fi) = −νei
∂f⟨∆vl⟩
∂vl

+ νei

2
∂2f⟨∆vl∆vk⟩

∂vl∂vk
, (2.3)

where νei is the electron-ion collision frequency. Thus we get Vlasov-Fokker-
Planck equation (VFP), that reads

∂fe

∂t
+ ve · ∇xfe + qe

me

(
E + ve

c
× B

)
· ∇vefe = − νei

∂f⟨∆vl⟩
∂vl

+ νei

2
∂2f⟨∆vl∆vk⟩

∂vl∂vk
,

⟨∆vl⟩ :=
∫

P ∆vl d3(∆v), (2.4)

⟨∆vl∆vk⟩ :=
∫

P ∆vl∆vk d3(∆v),

where P is transition function from state v to v +∆v, complying normal-
ization condition

∫
Pd3(∆v) = 1.

7



2. State-of-the-Art of Nonlocal Electron Transport........................
2.1 Kinetic models

Most kinetic models that describe particle transport in plasmas utilize VFP
equations. One such model is the code called IMPACT [20], which was used
to generate the data for our model described in the third chapter. IMPACT
stands out as the first 2D VFP code to self-consistently include magnetic
fields and it incorporates several other innovations. Firstly, it treats the
electric field implicitly, along with the electron distribution function, which
sets it apart from previous VFP codes. Secondly, it became the first 2D
VFP code to solve the full matrix equation that arises when using implicit
differencing. This fully implicit approach provides the benefit of making
the code robust and capable of utilizing large time steps well beyond the
characteristic collision time [20]. IMPACT employs VFP equation (2.4) in
combination with Ampere’s and Faraday’s laws to describe the magnetic field.
However, instead of directly dealing with VFP, IMPACT employs Cartesian
tensor expansion

fe(x,v, t) =
∑

p

fp(v,x, t) :p (v̂)p, (2.5)

where :p represents tensor contraction over p indices. IMPACT employs the
so-called diffusive approximation, which involves truncating the expansion at
the first two terms. In other words, the distribution function fe(v, x, y, z, t)
is split into three parts: fe ≈ f0(v, x, y, t) + f1(v, x, y, t) · v̂ with setting
fz = 0. The tensor expansion up to the first order is considered sufficient
because the magnitudes of components of the Cartesian tensor series are
ordered as f0 ∼ ϵ−1f1 ∼ ϵ−2f2 etc., where ϵ = λ/Ln, and λ ≪ ϵ throughout.
Nevertheless, the IMPACTA code was developed, which differs from IMPACT
mainly by the inclusion of that second-order term f2 [21]. Another new
method based on IMPACT, that uses Finite Element Method was introduced
in [22].

Instead of using tensor expansion it is also popular to approximate fe with
spherical harmonics as

fe(x,v) =
Nl∑
l=0

Nm∑
m=−Nm

fm
l (x, ν, t)Pm

l (cos θ)eimϕ, (2.6)

where Nl, Nm are the number of terms in the expansion, and Pm
l (cos θ) is

the associated Legendre polynomial for the fm
l term of the expansion. f0

0 is
the isotropic component of the distribution, while f1

m carries the first order
vector information. Such expansion is used in OSHUN[23, 24] code, which
is a successor of KALOS code, where the idea of different treatment of fast
electrons (treated kinetically) and cold plasma (treated as a fluid) was used
in order to economize computing resources.

As mentioned earlier, kinetic models offer the most accurate results, but
this accuracy comes at the cost of significant computational expenses. To

8



.......................................2.2. Spitzer-Härm

reduce the time required for simulations, various hydrodynamic approaches
have been proposed, and some of these approaches will be discussed in the
next three sections.

2.2 Spitzer-Härm

The Spitzer-Härm (SH) approach first introduced in [25], also known as the
Spitzer-Härm conductivity, is a widely used method for calculating heatflux
in plasma. It provides an estimation of thermal conductivity by taking into
account the interactions between charged particles and their surrounding
medium.

Despite the result of SH we are interested in is the expression of heatflux
as a hydrodynamic quantity, the derivation of Spitzer-Härm heatflux starts
from Boltzmann’s equation (2.1) and follows the same steps from (2.2) to
(2.4). The approach is based on common assumptions such as neglecting all
interactions between electrons for which the distance of closest approach (or
collision parameter) exceeds the Debye length, and considering only collisions
resulting in deflection of electrons at angles less than 90◦. Besides these, the
Spitzer-Härm approach is based on the following assumptions:..1. The Fokker-Planck equation may be used to give the collision term on

the right-hand side of Equation (2.1)...2. A steady state is established...3. The particle velocity is determined by the Maxwell velocity distribution
f0 with low perturbation f1, whose square may be neglected. Hence,
f = f0 + f1.

The approximate electron distribution function satisfying the electron trans-
port equation (2.4) takes the form [25]

fe = ne(
π 2kBTe

me

) 3
2

exp
(

−me|v|2

2kBTe

)(
1 −D

(
me|v|2

2kBTe

))
, (2.7)

where the transport function reads

D(ω) = λ(ω − 4)n · ∇xTe

Te
, (2.8)

In paper [26] the function D(ω) was further extended by the electron-electron
collision operator, which had to be solved numerically. The latter concludes,
that the mean free path of electrons should be adjusted as

λSH = 0.024Z + 0.058
1 + 0.24Z λ. (2.9)

9



2. State-of-the-Art of Nonlocal Electron Transport........................
After integrating the equation (2.7) over the velocity space, one obtains[12]:

q = −κSHT
5
2 ∇T, (2.10)

where κSH is

κSH = (Z + 0.24)
(Z + 4.2)

1.31 × 1010

ZΛei
(2.11)

and the Coulomb logarithm is (see NRL Plasma Formulary [27])

Λei = 23 − ln
(√

neZ

T
3/2
e

)
.

The Spitzer-Härm approach provides a reasonable approximation of the
heatflux in many plasma scenarios, including laboratory experiments and
astrophysical plasmas. However, it has limitations and may not accurately
capture the behavior of highly non-equilibrium or strongly magnetized plasmas.
In such cases, more sophisticated models or numerical simulations are required.

Thanks to its relative simplicity, the Spitzer-Härm approach has signifi-
cantly contributed to the understanding of heat transport in plasmas. It has
been and still is extensively applied in various fields, including fusion research,
astrophysics, and space physics, enabling researchers to analyze and predict
the behavior of plasma systems under different conditions. However, as we
will show later, the Spitzer-Härm approach has its limitations, especially in
cases where nonlocal electron transport is present, since the Spitzer-Härm
solution for heatflux is still dependent only on local plasma parameters.

2.3 Heatflux limiter

In the hotter region of the heat front, the heatflux is observed to be several
times smaller than the value given by the SH description, and is limited
to a fraction ≈ 0.1 − 0.2 of the free-streaming value qfs = vth nekBT , where
vth =

√
kBTe/me.

On the contrary, at the base of the heat front, the conductivity exceeds the
SH conductivity, because the flux has a nonlocal part due to the hot, nearly
collisionless electrons streaming away from the top of the heat front. Fluid
codes describing laser-irradiated targets usually model the heatflux by a local
law of the type q = min(qSH, flimqfs), where qSH, is the SH heatflux (2.10),
and flim is the flux-limit factor.

From the definition of Knudsen number Kn it is seen that nonlocal transport
lies somewhere between diffusive transport and free streaming of particles.
Heatflux limiter approach combines both modes of transport and evaluates it
as a continuous transition from qSH to qfs. One of the possible definitions of

10



............................. 2.4. Convolution LMV and SNB models

limited heatflux reads:

qlim = flim qfs

(
1 − exp

( −qSH
flim qfs

))
, (2.12)

where flim is the already mentioned flux-limit factor varying between 0.03
and 0.15.

2.4 Convolution LMV and SNB models

However, as was pointed out and as we will show later, the description of
heatflux in (2.12) is deficient in modeling heat transport in many respects,
and it cannot take into account its nonlocal character. Hence a new approach
was introduced in paper of Luciani Mora and Virmont (LMV) [28].

The LMV approach aims to estimate the heatflux and energy transport in
ICF implosions with improving the Spitzer-Härm heatflux (2.10). LMV is
not dependent only on local plasma parameters, it considers the parameters
all along the profile by applying the convolutional kernel

qSNB =
∫ ∞

−∞
W (x,x′)qSH(x′) dx′

a λe(x′) , (2.13)

where a is an adjustable parameter, according to [28] a ∈ (30, 35), λe is an
effective collision mean free path given by

λe = (Z + 1)−1/2 (kBTe)2

4πnee4 logΛ (2.14)

and the convolution kernel reads

W (x,x′) = 1
2a(Z + 1)

1
2λe(x′)

exp
(

−
∣∣∣∣∣

∫ x
x′ nex′′dx′′

a(Z + 1)
1
2λe (x′)ne(x′)

∣∣∣∣∣
)
. (2.15)

In the original paper of Luciani et al. the term W (x,x′) behaves like a δ
function, so for small temperature and density gradients the heatflux given
by (2.13) behaves exactly like heatflux provided by Spitzer and Härm from
(2.10).

The original 1D LMV model was further extended into higher dimensions
by Schurtz, Nikolaï and Busquet (SNB)[18]. But we will not further describe
it here, since just like LMV we will consider one-dimensional profiles of plasma
parameters.
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Chapter 3

Machine Learning-Driven Hydrodynamic
Closure

The creation of our model was motivated by the need for a relatively quick
calculation of heatflux that would correspond to nonlocal transport. For this
reason a deep learning forward Multilayer Perception (MLP) consisting of
two hidden layers was implemented using PyTorch Lightning[29] library in
Python programming language.

Here I would like to mention once again a work of Lamy et. al. where
ANN predicting heatflux was used to replace SNB module [8]. Similar to
our approach, they implemented the ANN in Python. But unlike our work,
the neural network replaced the hydrodynamic model, not the kinetic one,
however, their work was also carried out in 2D.

Neural networks are an example of nonlinear operators consisting of a
hierarchy of layers, where weights and parameters of the activations functions
are adjusted (trained). An example of a modern architecture suitable for our
regression problem that includes adaptive activation functions is reviewed
in [30]. Physics-informed neural networks (PINNs) represent another class
focusing on inherent physical mechanisms encrypted by using PDE as a
part of the loss function. PINNs are considered state-of-the-art PDE solvers
requiring minimal data input [31]. Next, convolution neural networks (CNNs)
have been successfully used for regression problems in multiple dimensions
like the ones we would need to solve for radiation hydrodynamic closure [32].
The model above also uses transfer learning [33, 34, 35, 36]. By means of
a recurrent neural network (RNN) development known as “long short-term
memory”, which allows the model to retrain useful dependencies and adapt
the accuracy to new datapoints [37]. Lastly, Transformers represent a very
robust and successful architecture to surrogate operators. In particular, the
Vision Transformer (ViT)[38, 39], they would be an excellent model for more
complex models beyond the heat flux moment of the distribution function.
However, in order to get competitive performance out of a transformer, one
needs to train it on a significantly more data than a traditional neural network.
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3. Machine Learning-Driven Hydrodynamic Closure .......................

(a) : Profiles of the initial data (b) : Structure of input vector

Figure 3.1: Profiles of the initial data and construction of data vector. Each
profile contains 400 datapoints.

The training of our MLP took place using ReLU[40] activation function,
and Mean Squared Error (MSE) as a loss function. The latter was minimized
with the Stochastic gradient descent (SGD)[41] optimizer.

In order to describe our model in more detail we will start with introducing
the initial data, on which the MLP was trained, tested and using which MLP
was compared with other models mentioned previously.

3.1 Data preparation

The initial data represents five profiles of different plasma parameters: electron
temperature Te, heatflux qIMPACT, electron density ne, relative ionization rate
Z and Knudsen number Kn. The latter wasn’t eventually used in our MLP
but the profile of Kn is still representative in terms of spatial localization
of nonlocal transport, moreover calculated Kn was later used to correct the
conduction parameter α given by MLP in time evolution of the temperature
profile. The calculation of qIMPACT was performed using the IMPACT code.
The data generated by IMPACT [42] represents the values of the plasma
parameters at 20 ns after a simulated laser heats the wall of hohlraum(placed
on the right side of the profile, where ne reaches its highest values). These
profiles are shown in Fig. 3.1a. Data used for training and validation of
our MLP was prepared by partitioning 400 point long initial profiles into
segments, each consisting of 23 consecutive spatial points, over a 476 µm
interval, containing 23 points. We collected data for the following plasma
parameters: electron temperature Te, electron density ne, ionization rate
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Z, gradient of electron temperature ∇Te, and the single value of heatflux
qIMPACT sitting at the center of the interval. The composition of 23×4 values
of Te, ne, ∇Te, Z appertaining to 23 spatial points will be called input vector,
and the value of heatflux appertaining to the center of that interval will be
used for training of the MLP. Figure 3.1b depicts the construction of one
such input vector with q included.

The rationale behind this approach is that the heatflux at any spatial point
depends not only on the values of the plasma parameters at that point but
also on the values of these parameters in the surrounding region. This way
we incorporate nonlocality into our model.

The same operation then was performed over all intervals of the same
length along the x-axis in a manner similar to a convolutional process, thus
creating a dataset used for training and testing the MLP.

3.2 Multilayer perceptron

The basic component of MLP is the neuron, representing a single number
and connected to every other neuron of adjacent layers. It takes an input of
N dimensions, multiplies it by a weight matrix, adds a nonliniear variable
called bias, and passes the result in the activation function, which in our case
is the ReLU function fReLU(x) = max{0, x}. Mathematically, the calculation
of j-th neuron belonging to l+1-st layer reads[8]

al+1
j = fReLU

(
N∑

i=1
al

iw
l+1
i,j + bl+1

j

)
, (3.1)

where l is a layer’s index. Our MLP consists of the input layer V⃗ , two hidden
layers L⃗1 and L⃗2, and output layer R⃗. Those layers are connected by weight
matrices w1,2,3

ij and biases b⃗1,2,3. Each i-th neuron of the input layer V⃗ is
equal to the i-th component of input vector we defined in previous section,
consequently their lengths are also equal. We have set the lengths of both
hidden layers L⃗1 and L⃗2 equal to 30. Finally the output layer consists of
2 neurons, one for the heatflux and one for conduction parameter β. The
representative scheme of our MLP is shown in the Fig. 3.2.

All the neurons and biases of the MLP are adjustable (trainable) and
during the training they are adjusted so that, the difference between the
result of MLP action and the values we recognize as accurate (training data)
is as small as possible. In order to achieve this we use the method called
Stochastic Gradient Descent (SGD). The method resides in representing the
Mean Squared Error (MSE) of the values of output layer neurons R⃗ w.r.t.
training data Y⃗ as a function of all the neurons and biases,

MSE = 1
n

∑
i

(Ri − Yi)2 = MSE
(
w1,2,3

ij , b⃗1,2,3
)
. (3.2)
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3. Machine Learning-Driven Hydrodynamic Closure .......................
In order that MLP gives a precise result we want to minimize MSE, which
is achieved by calculating the gradient of MSE and iteratively changing
the neurons, weights and biases in direction of the descending gradient.
Mathematically, if we label all the variables of MSE as x then one change of
x according to SGD can be written as

x := x − η∇MSE(x), (3.3)

where η is a constant often called learning rate, and the change of x described
by equation (3.3) is called learning step. The distinguishing feature of SGD
method is that one learning step is made for only one sample of training data
chosen randomly from the whole training database.

We have trained our MLP on 40% of the whole database prepared by the
convolutional process, described earlier. 10% of the database was dedicated
to validation, and the remaining 50% for testing of the MLP. All three sets
of data were picked randomly and exclusively from the database.

As a result the MLP prediction of the q heat flux is depicted in Fig. 3.3.
While externally the curve predicted by the MLP aligns with the kinetic
simulation data, the issue arises from the oscillating behavior of the gradient
∇q, as is evident in the graph shown in Fig. 3.4. These oscillations will pose a
significant problem when dealing with the time evolution of the temperature
profile, given that ∇q is a key component in the equation of heat conduction.

A comparison of heat flux profiles calculated using different models is
presented in Figure 3.5. From this figure, it is evident that our trained model
provides results closest to those of the kinetic model on which the model was
trained. This outcome is expected, and it is worth noting that for a more
unbiased assessment of the model’s effectiveness, a larger amount of data
would be required both for training and comparison. Since we do not possess
additional data for training, we can at least compare the behavior of the
models when simulating the time evolution of the temperature profile. The
next section is mainly dedicated to the implementation of our MLP model to
solve the thermal transport problem.
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w1,2,3
i,j are the weight matrices. Biases are not included in the scheme.

Figure 3.2: The representative scheme of MLP structure.

3.3 Novel nonlocal thermal transport model

We want to solve the heat conduction model

d ε(t, x)
dt

= −∇ · q(t, x), (3.4)

where

q(t, x) = −α(t, x)κ(t, x)T (t, x)β(t,x)∇T (t, x), (3.5)

and

ε(t, x) = CV (x)T (t, x) = 3
2n(x) kB T (t, x), (3.6)

and α(t, x) is a MLP-driven variable heat flux limiter and β(t, x) is obtained
as a fit to self-similar solution with nonlinearity n of the heat wave from
planar source given by Eq. 10.32, Section X.5 in [43], see Figure 3.6.

The variables are written in Gauss units ε
[

erg
cm3

]
, T [eV], q[ erg

cm2 ] with
kB = 1.380649 × 10−16 erg

K = 1.602178 × 10−12 erg
eV and α, β are dimensionless.
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3. Machine Learning-Driven Hydrodynamic Closure .......................

Figure 3.3: Profile of neural network prediction compared to kinetic reference
IMPACT.

The conductivity κ in our model is defined in Gauss units as

κ(t, x) = κSH τβ(t,x)− 5
2 , (3.7)

where κSH is Spitzer-Härm conductivity from (2.11) and τ = 1
Tpreheat

.
The electron of velocity v travels the mean free path in background plasma at
density ne, temperature Te, and ionization Z (electron-electron and electron-
ion combined effect approximated by Epperlein [44])

λ(v, ne, Z, Te) = v4

neΓΛei(ne, Z, Te)
1√
Z + 1

, (3.8)

where Γ = 4πq4
e

m2
e

= 8.06 × 1017 in Gauss units. Commonly, the mean free path
refers to the mean free path of thermal electron

λth = λ(v =
√
kBTe/me, ne, Z, Te). (3.9)

Knudsen number Kn = λth
L , where L = Te

|∇⃗Te|
is the characteristic electron dis-

tribution scale length, represents a non-dimensional parameter characterizing
the local transport regime if Kn < 10−3. 1

We use Tpreheat = 2.5 keV to safely include the preheat region of
the hohlraum wall simulation.

Inhibition ratio Rq = qSH
qMLP

, where qSH is Spitzer-Härm heatflux (2.10), can
be evaluated at every point of the neighborhood and post-processed through
convolution to obtain a nonlocal information R̄q. We expect β R̄q≫1−→ 2.5 and

β
R̄q≪1−→ 0.
1In case that Kn < 10−3 we can express α as α = 1 + Kn + O(Kn2). This happens in

local diffusion approximation in (3.5) and β = 2.5.
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Figure 3.4: ∇q profile of neural network prediction compared to kinetic reference
IMPACT.

Practically both α(t, x) and β(t, x) are given by MLP 2, but α is calculated
indirectly from heatflux qMLP as inverted inhibition ratio R−1

q

α = qMLP
qSH

. (3.10)

This definition raises a problem at the edges of the profile, where qSH is
effectively zero. Thus we define and use a corrected value αcor as

αcor = 1 + s(α− 1)Kn2

1 + sKn2 , (3.11)

where parameter s was empirically set equal to 2.5 × 105. The motivation
behind this definition is that αcor

Kn≪1−→ 1 and αcor
Kn∼1−→ α. This eliminates

the problem of α rising effectively to infinity at edges of the profile. From
this point on, we will keep αcor in mind when mentioning α, thus α := αcor

In order to solve (3.4), (3.5), and (3.6), we define a functional in 1D

F (T ) := CV
d T

dt
− d

dx

(
α(T ) κ T β(T ) d

dx
T

)
︸ ︷︷ ︸

q

(3.12)

and our task will be to find T that solves

F (T ) = 0. (3.13)
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qVFP heat flux profile provided by IMPACT[42]. ql is a heatflux predicted
by heatflux limiter (2.12)

Figure 3.5: Nonlocal heat flux within the expanding hohlraum wall

We discretize the problem on a general 1D mesh with cell-related variables
indexed by integers and node-related ones by half-integers, as shown in
Fig. 3.7.

Thus the cell volume is

∆xi = xi+ 1
2

− xi− 1
2
, (3.14)

while the volume of the node-assigned dual cell (distance between neighboring
cell centers) is

∆xi+ 1
2

= xi+1 − xi = ∆xi +∆xi+1
2 . (3.15)

The divergence of q in (3.4) is discretized on the primary cell by the finite
difference

∇ · q|i
1D= d q

dx

∣∣∣∣
i

≈
qi+ 1

2
− qi− 1

2

∆xi
, (3.16)

with the nodal value of the flux (3.5) being approximated as

qi+ 1
2

= (ακT β)i+ 1
2

Ti+1 − Ti

∆xi+ 1
2

, (3.17)

where (ακT β)i+ 1
2

is obtained by some kind of averaging from the two

2MLP was trained to return values of heatflux close to results of kinetic simulation, but
moreover MLP also returns values of β close to the β from self-similar solution.
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Figure 3.6: Self-similar "conductive nonlinearity" exhibited by preheat.
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Figure 3.7: Discretization of the 1D problem

connected cells, for example

(ακT β)i+ 1
2

=

(
ακT β

)
i
+
(
ακT β

)
i+1

2 , (3.18a)

(ακT β)i+ 1
2

=
∆xi

(
ακT β

)
i
+∆xi+1

(
ακT β

)
i+1

∆xi +∆xi+1
, or (3.18b)

(ακT β)i+ 1
2

=
1

∆xi

(
ακT β

)
i
+ 1

∆xi+1

(
ακT β

)
i+1

1
∆xi

+ 1
∆xi+1

, (3.18c)

where we denoted (
ακT β

)
j

= αjκjT
βj

j . (3.19)

Discretizing (3.13), resp. (3.4), (3.5), and (3.6) over the i-th cell, we have

Fi := CV i
d Ti

dt
−

(ακT β)i+ 1
2

Ti+1−Ti

∆x
i+ 1

2
− (ακT β)i− 1

2

Ti−Ti−1
∆x

i− 1
2

∆xi
(3.20)

with space-dependent α and β being provided by the neural network and k,
CV being also functions of x:

α = α(NN(x),Kn(x)), β = β(NN(x)), k = k(Z(x)), CV = CV (n(x)).
(3.21)
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3. Machine Learning-Driven Hydrodynamic Closure .......................
At this point let us remark, that classical heat conductivity in plasma uses
constant β = 5/2, which further simplifies the equations. This is the case for
example in [45]. However, there the problem is transformed using θ = T 7/2

and solved by a mimetic scheme, whereas here we are going to proceed by
Newton’s iterative method.

For a regular mesh (i.e., with equidistant nodes), we have

∆x = ∆xi = ∆xi+ 1
2
, ∀i, (3.22)

and thus (3.20) simplifies to

Fi = CV i
d Ti

dt
− 1
∆x2

(ακT β)i+ 1
2

(Ti+1 − Ti) − (ακT β)i− 1
2

(Ti − Ti−1)


(3.23)

and all three types of averaging (3.18) are equivalent:

(ακT β)i+ 1
2

=

(
ακT β

)
i
+
(
ακT β

)
i+1

2 . (3.24)

There are several ways to solve (3.13), that is, in the discrete case

Fi(T ) = 0, ∀i. (3.25)

Replacing also the time derivative by a finite difference, (3.23) becomes

Fi(T ) = CVi

Ti − T
[t−∆t]
i

∆t
(3.26)

− 1
∆x2

(ακT β)i+ 1
2

(Ti+1 − Ti) − (ακT β)i− 1
2

(Ti − Ti−1)
 ,

where T [t−∆t]
i is the temperature at the previous time level t−∆t. Note that

by using temperature at the actual time level t in the spatial difference (the
term in parentheses), we are aiming at implicit schemes, so that the time
step ∆t is not overrestricted by stability requirements.

3.3.1 Newton’s iteration

For simplicity, let us take in each equation the value of
(
ακT β

)
from the

actual cell instead of using nodal averages at its endpoints. Then we have a
system similar to (3.25) with the i-th equation being

F ∗
i (T ) = CV i

Ti − T
[t−∆t]
i

∆t
− αiκiT

βi
i

Ti−1 − 2Ti + Ti+1
∆x2 . (3.27)
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The Jacobian of such system is a tridiagonal matrix with the elements

Ji,i = ∂F ∗
i

∂ Ti
= CV i

∆t
+ 2 αi ki

∆x2 (βi + 1)T βi
i (3.28a)

Ji,i±1 = ∂F ∗
i

∂ Ti±1
= − αiκiT

βi
i

∆x2 . (3.28b)

Using the exact definition of nonlinear functional F given by (3.26) and
approximate Jacobian (3.28), we can now perform the k-th iteration of
Newton’s method:

T (k+1) = T (k) − J−1 F (T (k)). (3.29)

Keep in mind, that the superscript (k) stands for Newton’s iteration, not
for the evolution in time! Therefore, T [t−∆t]

i in (3.27) stays the same in all
iterations at given time t, until the solution T at this time level has converged.

If we require an exact Jacobian, we can obtain it by deriving from the
equation (3.26) using (3.18). Consequently, it can be deduced that:

Ji,i = ∂Fi

∂ Ti
= CV i

∆t
+ 1
∆x2

(1
2αi+1ki+1T

βi+1
i+1 + 1

2αi−1ki−1T
βi−1
i−1 +

(3.30a)

+ (βi + 1)αikiT
βi
i − 1

2βiαikiT
βi−1
i (Ti+1 + Ti−1)

)
Ji,i±1 = ∂Fi

∂ Ti±1
= 1
∆x2

(1
2βi±1αi±1ki±1T

βi±1−1
i±1 Ti − (3.30b)

−1
2 (βi±1 + 1)αi±1ki±1T

βi±1
i±1 − 1

2αikiT
βi
i

)

3.3.2 Boundary conditions

We will enforce

∇T = 0 (3.31)

on both ends of the domain. To do this on a mesh of N cells indexed from 1
to N (see Fig. 3.7), we formally introduce the ghost values

T0 = T1, TN+1 = TN . (3.32)

Inserting them into the equations (3.27) for the boundary cells (i = 1 resp.
i = N), we get

F1(T ) := CV1
T1 − T

[t−∆t]
1

∆t
−

(ακT β) 3
2
(T2 − T1)

∆x2 , (3.33a)

FN (T ) := CVN

TN − T
[t−∆t]
N

∆t
+

(ακT β)N− 1
2
(TN − TN−1)

∆x2 , (3.33b)
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which immediately yields the first and last row of the Jacobian matrix

J1,1 = ∂F ∗
1

∂ T1
= CV1

∆t
+ α1κ1
∆x2 (β1 + 1)T β1

1 , (3.34a)

J1,2 = ∂F ∗
1

∂ T2
= − α1κ1T

β1
1

∆x2 , (3.34b)

JN,N−1 = ∂F ∗
N

∂ TN−1
= − αNκNT

βN
N

∆x2 , (3.34c)

JN,N = ∂F ∗
N

∂ TN
= CVN

∆t
+ αNκN

∆x2 (βN + 1)T βN
N . (3.34d)
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Chapter 4

Results

We have implemented the implicit Newton solver of the equation (3.13) and
set the convergence condition as a condition on a relative difference between
mean energies

E
[t−∆t] − E

[t]

E
[t−∆t] ≤ 10−9, (4.1)

where E is calculated as

E =
3
2kB

∑N
i niTi

N
. (4.2)

After making roughly 300-400 time steps, corresponding to 0.4 ns for every
model, we obtained the results shown in Figures 4.1, 4.2 and 4.3 corresponding
to MLP, SH and heatflux limiter model respectively. It is rather clear from
the definition of the convergence condition (4.1) that for every simulation
run the energy losses don’t exceed (4 × 10−7)E0, where E0 is the initial value
of the mean energy of the profile.

The difference between the solutions is rather evident in Fig. 4.4. This
graph compares profiles of T at time 0.4 ns that were obtained with the all
three models used in our simulation. From the this graph it is already clear,
that during the time evolution of T our MLP model exhibits the suppression
of α in the region of high density and temperature gradients just like heatflux
limiter model does, though MLP also shows results of preheat, absence of
which is the heatflux limiter’s weakness.

These conclusions can be made just by the course of temperature profiles,
but we also have tried to show it directly in Fig. 4.5, where the time evolution
of α is shown using color. α is smallest in the region of highest value of
Kn both for MLP and heatflux limiter, while αMLP has additional peaks
where αMLP exceeds 1 around the pit, whereas αlim remains smaller than 1
everywhere.

In Fig. 4.5, it is also visible that αMLP exceeds 1 not only in regions
where preheat is expected but also in the left half of the profile where
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Figure 4.1: Time evolution of T according to MLP solver

Figure 4.2: Time evolution of T according to SH heatflux (2.10)

Figure 4.3: Time evolution of T according to heatflux limiter (2.12)

Kn≪ 1, indicating the diffusive mode of transport. This behavior is a result
of MLP returning a heat flux well exceeding zero in the region of nearly
zero temperature gradient (see Fig. 4.8). Such unexpected behavior can be
considered as an inaccuracy of MLP induced by the supposed lack of training
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Figure 4.4: Comparison of the final profiles (t=0.4 ns) of the solutions.

on various shapes of temperature profiles.

This lack of training also manifests itself in that every newly trained MLP
produces results that follow the same trend although differ from each other.
For instance, in Fig. 4.6, the last temperature profiles obtained from different
MLPs are compared with each other. Although all the profiles have the same
course, there’s deviation along the whole x-axis with some outlying results.
This leads to the need of rechecking of the trained MLP before the simulation
run. A graph of the mean profile of 70 different simulations results with
standard deviation is depicted in Fig. 4.7. From that figure we see that
relative deviation reaches 6.6% of the mean profile given by MLPs exactly in
the region of the highest interest, where the highest temperature and density
gradients are present.

These deviations are caused by randomized process of the training on
relatively small amount of data, residing first in SGD training process and
second in random selection of the training, validation and testing sets for each
individual MLP. This comparison is depicted in Fig. 4.7. This comparison
shows positively the consistency of different MLPs, but does not say anything
about the accuracy of the model itself. It is still possible that all the results
given by the network are beyond a reasonable deviation from the results that
would show kinetic simulations. Being a significantly faster method compared
to kinetic models (106 computationally less expensive [46]), our MLP model,
of course, does not claim the same accuracy that is given by kinetic models.
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Color of each individual line corresponds to the time t for α(t). Profile of
Kn is common for both graphs.

Figure 4.5: Comparison of coefficients α given by MLP and heatflux limiter
respectively

Figure 4.6: Comparison of the final profiles given by 18 separately trained MLPs
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Figure 4.7: Deviation of the 70 separately trained MLPs

Figure 4.8: Time evolution of heatflux qMLP
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Chapter 5

Conclusions

So far there exist many hydrodynamics models developed in order to describe
hot plasma with much less calculational effort than it is inevitable for kinetic
approach. In this bachelor thesis I have presented our hydrodynamic model
which is based on Multilayer Perceptron predicting the heatflux within plasma.
The possibility of prediction of both heatflux inhibition and preheat with the
help of relatively simple MLP were shown in chapter 4. The fact that our MLP
model predicts the behavior of plasma parameters close to the kinetic models
is rather impressive, but our model still suffers from a few imperfections such
as the overestimation of heatflux in regions of low temperature gradient and
general oscillations characteristic for artificial neural networks. This fact
makes our MLP model a great tool for quick estimation of the heatflux but
yet inapplicable in the case when high precision is required.

However the MLP can be relatively easily improved if the training process
is enriched with significantly larger amount of kinetic simulations results
residing not only in profiles of heatflux but also directly with α and β. The
first could eliminate the problem of α definition from (3.10) without using
the correction function (3.11), and the second may help to avoid the need to
use self-similar solutions depicted in Fig 3.6.

In conclusion, it is necessary to note that our model must be further tested
in order to be able to use it in practice. I’m going to devote my further
research work to this aspect as part of my studies at our faculty.

During the preparation of this bachelor thesis, all the instructions listed in
Bachelor Thesis Assignment were fulfilled.
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