
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Estimating Kidney Transplantation
Donor-Recipient Compatibility Using Machine

Learning

Odhad kompatibility dárce a příjemce pro
transplantaci ledvin pomocí strojového učení

Bachelor’s Degree Project

Author: Matěj Klouček

Supervisor: Ing. Tomáš Kouřim

Consultant: Ing. Pavel Strachota , Ph.D.

Academic year: 2022/2023

Acknowledgment:
I would like to thank Ing. Tomáš Kouřim for his expert guidance and express my gratitude to Ing. Pavel
Strachota, Ph.D. for his assistance with the formal aspects of this project.

Author’s declaration:
I declare that this Bachelor’s Degree Project is entirely my own work and I have listed all the used sources
in the bibliography.

Prague, August 2, 2023 Matěj Klouček

Název práce:

Odhad kompatibility dárce a příjemce pro transplantaci ledvin pomocí strojového učení

Autor: Matěj Klouček

Obor: Matematické inženýrství

Zaměření: Matematická informatika

Druh práce: Bakalářská práce

Vedoucí práce: Ing. Tomáš Kouřim, Mild Blue, s.r.o.

Konzultant: Ing. Pavel Strachota , Ph.D., Katedra matematiky FJFI ČVUT

Abstrakt: Se zvyšující se prevalencí onemocnění spojených s ledvinami je vylepšení procesu hledání
vhodných párů dárců a příjemců zásadní pro zmírnění zátěže, kterou pro zdravotnický systém představují
pacienti se selhávajícími ledvinami. Předchozí studie ukázaly, jak mohou metody strojového učení být
použity pro predikování času přežití po transplantaci ledvin. V této studii je pro ohodnocení kompatibility
mezi dárci a příjemci použit model náhodného přežívacího lesa, který predikuje dobu přežití na základě
jejich pre-transplantačních metrik. Model je také použit pro zkoumání různých faktorů ovlivňujících
přežití štěpu. Součástí studie je také podrobné prozkoumání algoritmů, které stojí za modelem náhodného
přežívacího lesa, a analýzy přežití, která se běžně využívá v medicínském výzkumu.

Klíčová slova: strojové učení, rozhodovací strom, náhodný les, transplantace ledvin, analýza přežívání,
náhodný přežívací les

Title:

Estimating Kidney Transplantation Donor-Recipient Compatibility Using Machine Learning

Author: Matěj Klouček

Abstract: With the increasing prevalence of kidney-related diseases, the improvement of the donor-
recipient match-making process becomes crucial for alleviating some of the burden placed on the health-
care system by patients with failing kidneys. Several other studies have already demonstrated how ma-
chine learning methods could be used for predicting survival time after renal transplantation. In this
study, the random survival forest model is used to evaluate compatibility between donors and recipients
by predicting their survival time based on their pre-transplantation metrics. The model is then also used
to investigate the various factors influencing graft survival. The study also includes an in-depth exami-
nation of the algorithms behind the random survival forests model, as well as survival analysis, a field of
statistics commonly used in medical research.

Key words: Machine learning, Decision tree, Random forest, Renal transplantation, Survival analysis,
Random survival forest

Contents

Introduction 8

1 Machine Learning 10
1.1 General Overview of Machine Learning . 10

1.1.1 Classification of Machine Learning Models . 10
1.2 Building a Machine Learning Model . 11

1.2.1 Data Preprocessing . 11
1.2.2 Evaluating Performance . 13
1.2.3 Feature Selection . 13
1.2.4 Hyperparameter Tuning . 13

1.3 Decision Trees and Random Forests . 14
1.3.1 Decision Trees . 14
1.3.2 Ensemble Learning and Random Forests . 16

2 Renal Transplantation 19
2.1 Chronic Kidney Disease . 19
2.2 Current Strategies for Assessing Donor-Recipient Compatibility 19

2.2.1 HLA Typing . 20
2.3 Goals . 21

3 Survival Analysis 22
3.1 Introduction to Survival Analysis . 22

3.1.1 Data Censoring . 22
3.1.2 Survival and Hazard Functions . 22
3.1.3 Hazard Ratio . 23

3.2 Survival Analysis Methods . 23
3.2.1 Kaplan-Meier Estimator . 23
3.2.2 Log-rank Test . 24
3.2.3 Cox Regression . 25

4 Random Survival Forests 28
4.1 Building a Random Survival Forests Model . 28
4.2 Hyperparameters . 30
4.3 Harrell’s Concordance Index . 30

4.3.1 Calculating Harrell’s Concordance Index . 31
4.4 Permutation Variable Importance . 32
4.5 Other Methods . 32

6

5 Data and Software Architecture 34
5.1 Data Acquisition . 34
5.2 Software Architecture . 34

5.2.1 Python . 34
5.2.2 Jupyter Notebook . 35
5.2.3 scikit-learn and scikit-survival . 35
5.2.4 Other Libraries . 35
5.2.5 Cluster Computing . 36

6 Model Training 37
6.1 Data Preprocessing . 37

6.1.1 Separating Living and Deceased Donors . 37
6.1.2 Reducing Number of Features . 38
6.1.3 Ensuring Correct Formatting . 40
6.1.4 Imputing Missing Values . 40
6.1.5 Feature Encoding . 40

6.2 Feature Selection . 40
6.2.1 Discussion of Features . 41

6.3 Hyperparameter Tuning . 41
6.4 Model’s Capabilities . 42

6.4.1 Model’s Limitation . 43

7 Model Evaluation 44
7.1 General Evaluation . 44

7.1.1 Important Features . 44
7.1.2 Comparison to Conventional Models . 47

7.2 Performance on Different Population Samples . 47
7.3 Usage for Computing Compatibility . 49

7.3.1 Practical Application . 50
7.3.2 Age Bias . 50

7.4 Possibilities for Future Research . 51

Conclusion 52

7

Introduction

Kidney transplantation is the single best treatment for patients with end-stage kidney disease as it
has demonstrated the best quality of life improvement and the best survival rate among other possible
treatments [2, 3]. However, demand for transplants (allografts) greatly exceeds supply [1, 3] and finding a
compatible donor-recipient pair is often a highly time-consuming task, which results in patients spending
a prolonged time on the waiting list for potential transplantation. While on the waiting list, patients have
to undergo dialysis multiple times a week for several hours, which supplements the functions of their
failing kidneys, which greatly reduces the quality of the patient’s life and puts an additional burden on
the healthcare system due to the high cost and resources required for dialysis treatment. It is, therefore,
crucial to minimize the time patients spend on the waiting list by optimizing the process of finding
suitable donor-recipient pairings.

Even more important than the swiftness of the donor-recipient matchmaking is the quality of the
given match, as that plays the most crucial role in determining the patient’s prospects. Currently, only a
handful of factors are taken into consideration when looking for suitable donor-recipient pairs, such as
whether they are immunologically compatible, their medical histories and their blood type. These meth-
ods have been proven successful at minimizing the risk of an acute transplant rejection, however, there
may be other factors that influence the graft’s long term performance that are currently unaccounted for.
Therefore, in order to reduce the flow of people returning to the waiting list and to prevent premature
deaths because of failed grafts, it is necessary to uncover these patterns and take them into account when
computing compatibility between potential donors and recipients. This is where machine learning can
play a crucial role by analyzing large amounts of data and identifying patterns that can help find compat-
ible pairs or, conversely, detect incompatible pairings that would otherwise undergo transplantation.

The research will involve analyzing data on past transplantations from the US-based United Network
for Organ Sharing (UNOS) dataset, including information on both living and deceased donors, recipients,
and their post-transplant outcome. This data will be used to train and test a machine learning model that
will evaluate the compatibility between a donor and a recipient by computing a risk score based on the
metrics describing the given donor-recipient pairing. Such a score can then be used to compare the
quality of multiple possible matches in order to select the most compatible donor-recipient pairing.

In particular, this project will be focused on the Random Survival Forests model, which is a machine
learning model that has demonstrated a promising performance in related scientific papers [5]. Addi-
tionally, the research will also examine the performance of the developed model on different population
samples within the UNOS dataset.

The results of this study will hopefully provide valuable insights into application of machine learning
in the field of transplantation medicine. If the models developed in this research are found to be effective
in predicting compatibility, it could lead to a better and more efficient matching of donors and recipients,
resulting in risk reduction for the transplant patients as complications such as graft rejection would be
less probable. Furthermore, this research will also provide a valuable contribution to the broader field

8

of medical research by demonstrating the potential of machine learning in improving the success rate of
medical treatments and reducing the burden on the healthcare system.

9

Chapter 1

Machine Learning

1.1 General Overview of Machine Learning

Machine learning is a rapidly growing field within the larger discipline of artificial intelligence.
Within the domain of machine learning, computers develop algorithms and statistical models by learning
from data without requiring explicit programming for their learning process.

The key idea behind machine learning is to create algorithms (models) capable of recognizing pat-
terns and relationships within large datasets. These models are then utilized to make predictions or
decisions using new, unseen data that was not part of their training process.

In general, machine learning is a great tool for solving problems that would conventionally require an
infeasible amount of programming or when working with large amounts of data from which information
is not easily extractable.

1.1.1 Classification of Machine Learning Models

Machine learning models can be classified based on several parameters including the type of data
used in training the models and the way they handle new data [7].

Classification by Data Type

Supervised Learning is a type of machine learning, where models require a labeled dataset for their
learning, which means that the desired output needs to be provided to the computer during the training
process along with the data. Supervised learning can be further subdivided into regression and clas-
sification tasks based on whether the desired output is a continuous numerical value or a discrete one,
respectively. Examples of supervised learning models include: linear and logistic regression, decision
trees, random forests, supporting vector machines. and neural networks [7].

The opposite of supervised learning is unsupervised learning, where models are trained on an un-
labeled dataset with the aim of finding patterns in the given data or grouping data with similar charac-
teristics. An example of unsupervised learning is clustering, which is used to find groups with shared
characteristics, association, which is used to find relation between input variables (also called predictors)
in a given dataset, or dimensional reduction, which is used to simplify data in order to more easily extract
information from it [7].

A combination of these, called semi-supervised learning, uses a combination of both labeled and
unlabeled data. Typically, an unsupervised machine learning model is used first in order group similar
examples and assign the unlabeled data a label based on the labeled example they were grouped with.

10

CHAPTER 1. MACHINE LEARNING 11

Then, a supervised machine learning model is used on this newly labeled data. However, models using
the reverse order also exist. Using semi-supervised learning is advantageous to using a simple super-
vised machine learning model as it allows working with larger amounts of data that would otherwise be
unusable because of the lack of labeling, thus potentially resulting in higher accuracy of the model [7].

Reinforcement learning is a specialized case of semi-supervised learning, where the model is trained
using feedback from the environment and is often used in cases where no labeled data exists or when the
labeled dataset does not provide the best course of action. The learning system (called agent in this case)
learns by performing actions from which it receives either rewards or penalties from the environment and
based on these has to develop a strategy to maximize rewards (called policy) [6, 7].

Instance-based vs. Model-based

Instance-based learning algorithms work by comparing the similarity of new input data to the training
data. An example of this is the k-nearest neighbors algorithm, which finds k examples from the training
data that have the most similar features to the given input and outputs either the most frequent or the
average label value in this cohort.

On the other hand, model-based learning algorithms develop a mathematical function whose pa-
rameters are learned from the training data. Predictions about new data are then obtained by providing
the newly introduced data as an input to the function. Model-based learning algorithms include linear
regression, neural networks, decision trees, and random forests.

1.2 Building a Machine Learning Model

The process of building a machine learning model generally consists of the following steps [6].

1.2.1 Data Preprocessing

Before a machine learning model can even begin to be trained, it is necessary that the training data is
formatted correctly. The process of transforming the dataset into a correct format is called preprocessing
and is an integral part of the process of building almost every machine learning model. Preprocessing
includes, but is not limited to, the following techniques.

Imputing

One of the most common challenges tackled during preprocessing is missing values. Majority of
machine learning models are not capable of handling entries with missing values, so unless there is
another model at disposal that can handle missing values, the missing values need to be handled in one
of the following ways.

The easiest option is to drop either the features or the samples containing missing values from the
dataset. This is fast and reliable, however, it is not optimal as it can lead to a potential loss of important
information that the model could otherwise learn from.

A preferable alternative is replacing the missing values based on some given rule. This process is
called imputing and can be performed in many different ways. One of the most popular imputers is
the SimpleImputer() provided by the scikit-learn library (described in Section 5.2.3). For numerical
features, it replaces missing values with either the mean or the median of the values in the column that
the missing value is located in. In the case of categorical features, it replaces missing values with the
most common category in the particular column. Also in the case of both categorical and numerical
values, it can simply replace the missing values with a given constant value [17].

CHAPTER 1. MACHINE LEARNING 12

Encoding Categorical Features

Another challenge tackled during preprocessing arises from the fact that most machine learning mod-
els only allow numerical features as input. As a result, categorical values need to be transformed into
numerical features in a process called encoding. One of the most simple, yet most efficient methods
of encoding is one-hot encoding, which transforms a categorical feature with unique values (x1, . . . xn)
into n columns as shown in Table 1.1. For each row, let y denote the original categorical value, i.e.
y ∈ (x1, . . . xn) and let y j denote the value of the encoded column j ∈ n̂. Then

y j =

1 ⇐⇒ y = x j

0 else
(1.1)

Table 1.1: One-hot encoding

organ

R_Kidney
L_Kidney
Pancreas

R_Kidney
Pancreas

−→

organ_L_Kidney organ_Pancreas organ_R_Kidney

0 0 1
1 0 0
0 1 0
0 0 1
0 1 0

Splitting Data into Training, Validation and Test Sets

The goal of machine learning is to create models that are able to make predictions when faced with
new data that the model hasn’t seen during the training process. To achieve this, it is necessary to split
the data into 3 parts: Training set, Validation set and Test set. If a model is trained using all available
data, it may perform well on said data, but may be unable to generalize for new instances, thus making it
useless in practice, which is why it is important to keep some of the data aside for validation and testing.
The datasets used for validation and testing are also referred to as the hold-out sets [6].

It is desirable to keep the majority of the data for training, with the usual distribution being 70% for
training and 15% for testing and validation each. However, with larger datasets, it is possible to allocate
even higher percentage of the data to training.

Once the model has been trained using the training set, the performance of the model is tested using
the test set, i.e. data that it has not seen before. A good metric for measuring the quality of the model is
the generalization error, given by the error rate of the predictions that the model makes based on samples
from the hold-out sets, i.e., samples it has not seen during the training process. Though not all models
use generalization error for evaluation, for example, models focused on time-to-event predictions are
usually evaluated using the C-index described in Section 4.3.

Better performance of the model can be achieved using a validation set, which gives the option to
select the best values for the model’s hyperparameters (specifics of a given machine learning model that
are set before the training process begins). This is done by training the model multiple times on the
training set with different hyperparameters and then comparing their performance on the validation set.
Once the best model has been selected, it is then trained using both the training and the validation set
and its performance is then measured using the test set [7].

CHAPTER 1. MACHINE LEARNING 13

1.2.2 Evaluating Performance

If the model performs well on the training set (e.g. its generalization error is low), but poorly on
the hold-out sets, it means that the model has learned unnecessary details (also called noise) from the
training set which then hampers its ability to generalize for new instances. This phenomenon is called
overfitting and is a common problem that arises during the process of developing a machine learning
model. Overfitting is usually caused either by the data being too noisy (errors in the data, many outliers),
the dataset being too small, or by having too many irrelevant features. The above mentioned problems can
be overcome by gathering more data, removing outliers and locating errors in the data or by simplifying
the model by choosing fewer features. Another way of solving the issue of overfitting is constraining
how much the model can change the values of its parameters, thus making the model simpler and less
prone to overfitting. This is called regularization [7].

Machine learning models can also face the opposite problem, i.e., not being able learn the underlying
patterns in the training data and thus being inaccurate on both the hold-out and training data. This is
called underfitting and can be solved by either using a more appropriate (and more complex) model for
the given task, selecting better features to train the model on or reducing any constraints that might have
been set to simplify the model in order to prevent overfitting [7].

1.2.3 Feature Selection

As mentioned in Section 1.2.2, one of the most common causes for overfitting is having too many
features included in the model. To solve this, only the features with the highest feature importance (i.e.,
contributing the most to the model’s performance) are selected and used for training of the final model.
This can prevent overfitting and thus increase the model’s accuracy scores [17]. Moreover, this also
greatly enhances the model’s explainability [6] and speeds up the training process.

For example, in the case of classification decision trees and random forests described in Section
1.3, feature importance is most commonly computed using the mean decrease in impurity (MDI) also
known as Gini importance. For each feature used as an input for a given tree, the MDI is calculated as
the mean improvement in the accuracy of the given tree when splitting on this feature. In the case of
random forests, this importance is then averaged over all trees. This is a very efficient way of computing
feature importance as it can be calculated during the training process. However, this method can be
biased towards overestimating importance of variables with bigger scaled values. To address this issue,
numerical features are often scaled to the 0 − 1 range in a process called normalization.

A more reliable, though more computationally demanding, alternative is the permutation importance
described in Section 4.4.

1.2.4 Hyperparameter Tuning

An integral part of building a well-performing machine learning model is selecting the best hyperpa-
rameters for a given algorithm. These parameters are not optimized by the learning algorithm itself and
therefore require experimentation to find the best combination of values for them [6].

A common way of finding the best combination of hyperparameters is grid search, which works by
creating a set of values for each hyperparameter and then evaluating the model’s performance for every
combination of these hyperparameters. For numerical parameters, a logarithmic scale is typically used to
create a set of possible values (e.q. [0.01, 0.1, 1, 10, 100, 1000]), while for categorical hyperparamaters,
it is possible to simply iterate over all possible values. When the best combination of hyperparameters is
found, it can be beneficial to experiment with values closer to the found optimal combination [6].

CHAPTER 1. MACHINE LEARNING 14

1.3 Decision Trees and Random Forests

1.3.1 Decision Trees

Decision trees are a supervised, model-based machine learning method used for both regression and
classification, whose main benefit is that it can handle complex and nonlinear relations in data. There
are two types of decision trees based on the type of target variable: Classification trees and Regression
trees.

Decision trees are in practice mostly binary trees where in each parent node (also called a decision
node) a set of attributes of a feature vector is examined in order to make a split based on a given criteria.
The specifics of this criteria are learned during the training process. For example, if a value of some given
feature is below a specific threshold, the left branch is followed, otherwise the right branch is followed.
The threshold is set to either maximize or minimize a certain performance metric of the model. Once the
leaf node (also called terminal node) is reached, the example is assigned either a probability of belonging
to a given categorical value in case of classification trees, or a numerical value in case of regression trees.

Different decision tree algorithms use different split rules also known as criterions. For example,
one of the most common algorithms used for generating a classification tree is called ID3, which selects
which attributes from the feature vector to split upon based on Entropy, Information gain or Gini Impurity
of the subsets created by the split made on each feature. In the case of regression trees, the criterion used
is often based on the reduction of mean squared error between labels and their mean values. Another
type of criterion is used by survival trees, building blocks of random survival forests, which use the log-
rank test statistic in order to maximize the difference between the predicted survival in the child nodes.
Both survival trees and random survival forests are described in greater detail in Chapter 4.

1.3.1.1 Building a Classification Tree

A classification tree using the ID3 algorithm is built as follows [6]:
Let C={1, 2, . . . , p} be the set of possible categorical labels,

{(
x(i), y(i)

)}N

i=1
is a collection of labeled ex-

amples from the training dataset with numerical features, where N is the size of the collection, x(i) =

(x(i)
1 , . . . , x

(i)
n) is an n-dimensional feature vector of the example i ∈ N̂ and y(i) ∈ C is its label. The deci-

sion tree model is represented by a function f (x, a), which estimates the probability that a given example
x belongs to class a ∈ C i.e., it is defined as

f (x, a) def
= Pr (y = a | x) , (1.2)

where x is a n-dimensional feature vector and y is a random variable describing the class of a given
example.

Let S k denote a set of labeled examples belonging to node k of the decision tree, let pS k (a) denote
the proportion of examples in S k that belong to class a, i.e.,

pS k (a) =

∣∣∣∣{(x(i), y(i)
)
∈ S k | y

(i) = a
}∣∣∣∣

|S k|
, (1.3)

and let Fk denote the set of all features available for splitting the node k, i.e., features that have not been
used to split previous nodes.

In the first step of the algorithm, the decision tree consists only of its root node, which contains all of
the labeled examples (i.e. S 0 =

{(
x(i), y(i)

)}N

i=1
), and all features are available for splitting (i.e., F0 = n̂).

Next, the decision tree is grown by splitting each node as follows. For node k (starting with the root
node, i.e., k = 0), the algorithm iterates over all possible features j ∈ Fk and all possible threshold values

CHAPTER 1. MACHINE LEARNING 15

t j ∈ T j where T j is the set of all possible threshold values for the feature j. The possible threshold
values can be chosen, for example, as midpoints between observed values of the given feature, e.g. if
x j ∈ [1, 2, 3] then the possible threshold values T j may be chosen as T j = [1.5, 2.5]. For each iteration
(ordered pair

(
j, t j

)
), S k is split into two disjoint subsets defined as

S k−
def
=

{(
x(i), y(i)

)
∈ S k | x

(i)
j < t j

}
and S k+

def
=

{(
x(i), y(i)

)
∈ S k | x

(i)
j ≥ t j

}
. (1.4)

The quality of the split is then evaluated using the algorithm’s criterion. Assuming, for example, that
the tree’s criterion is entropy, the entropy of a set of examples S k belonging to node k is given by

H(S k) = −
∑
a∈Ck

pS k (a) log2 pS k (a) (1.5)

where Ck is a set of all categorical labels appearing in node k, and pS k (a) is the proprotion function
defined in (1.3).

The quality of the given split is then determined by the weighted sum of entropies of the two subsets
created by the split, i.e.,

H(S k−, S k+) =
|S k−|

|S k|
H(S k−) +

|S k+|

|S k|
H(S k+), (1.6)

where S k− and S k+ are disjoint subsets created by splitting S k (note that |S k−| + |S k+| = |S k|).
The best split (ordered pair

(
j̃, t̃ j

)
) is then given by minimizing the entropy of the split, i.e.,(
j̃, t̃ j

)
= arg min

j∈F,t j∈T j

H(S k−, S k+). (1.7)

Once the best split has been found, each of the created subsets then acts as a new decision node. The
branching then continues with the exception that only the attributes that were not previously identified
as a best split are considered for splitting. In another words, given that j̃ ∈ Fk was chosen as the optimal
feature to split upon, then only Fk \

{
j̃
}

are considered for splitting in the child nodes of k. The same
logic applies to any subsequent splits.

The algorithm stops if there are either no further attributes to split upon, all possible decisions would
reduce entropy less then a set amount, or the tree reaches a set maximum depth (the minimum number
of edges connecting the root to a leaf node).

When a new input x, with the same attributes as the feature vectors used in the training process,
is introduced to the decision tree, the tree is followed from the root node down as follows. For each
decision node, let j denote the feature that has been used for splitting the given node, and let t j denote
the threshold value learned during the training process for feature j. If x j < t j, the left branch is followed,
else, the right branch is followed. This process repeats until a leaf node is reached. Let S n denote the set
of labeled examples belonging to this leaf node, then ∀a ∈ C

f (x, a) = pS n (a) =

∣∣∣∣{(x(i), y(i)
)
∈ S n | y

(i) = a
}∣∣∣∣

|S n|
. (1.8)

The example x is then classified as belonging to the class c ∈ C if

c = arg max
a∈C

f (x, a) (1.9)

CHAPTER 1. MACHINE LEARNING 16

1.3.1.2 Building a Regression Tree

The algorithm for building a regression tree works in much the same fashion as the one used for
classification trees. However, instead of entropy, the algorithm minimizes the mean squared error (MSE).
More specifically, the algorithm works as follows [7, 17].

Let
{(

x(i), y(i)
)}N

i=1
again denote a collection of labeled examples with numerical features from the

training dataset, where N is the size of the collection, x(i) = (x(i)
1 , . . . , x

(i)
n) is an n-dimensional feature

vector of the example i ∈ N̂ and y(i) ∈ R is a real-valued label. The model is this time represented by
a function f (x) ∈ R that takes a n-dimensional feature vector, with the same type of attributes as x(i), as
input, and outputs a real-valued prediction. Let S k also again denote the set of labeled examples included
in node k and let Fk be the set of all features available for splitting the node k.

The MSE of examples S k belonging to node k is given by

H (S k) =
1
|S k|

∑
i∈Ik

(
y(i) − yk

)2
(1.10)

where Ik is a set of indices of examples belonging to node k and yk is the mean value of labels of examples
belonging to node k, i.e.

yk =
1
|S k|

∑
i∈Ik

y(i). (1.11)

Using the same notation as in Section 1.3.1.1, the quality of a split of node k made on feature j ∈ Fk

with threshold value t j ∈ T j is again measured by

H(S k−, S k+) =
|S k−|

|S k|
H(S k−) +

|S k+|

|S k|
H(S k+) (1.12)

where S k− =
{(

x(i), y(i)
)
∈ S k | x

(i)
j < t j

}
and S k+ =

{(
x(i), y(i)

)
∈ S k | x

(i)
j ≥ t j

}
.

Analogously, the best split is then given by(
j̃, t̃ j

)
= arg min

j∈F,t j∈T j

H(S k−, S k+). (1.13)

The regression tree is then grown using the same principles as described in Section 1.3.1.1, with the
exception that the algorithm is stopped once all possible splits would reduce the MSE (not entropy) less
than a set amount.

Once fully grown, the model’s predictions are calculated by taking the mean value of labels of ex-
amples belonging to a terminal node that is reached when an input x is introduced to the model. Let n
denote such a terminal node. The prediction is then given by

f (x) =
1
|S n|

∑
i∈In

y(i). (1.14)

1.3.2 Ensemble Learning and Random Forests

Ensemble learning is a machine learning technique that combines the predictions of multiple simpler
models in order to boost its overall performance on a given task. An example of an ensemble learning
method is random forests, which build on the foundation of decision trees by aggregating the predictions
made by a set amount of decision trees, allowing the model to make more accurate predictions than any
single decision tree could make by itself. The key idea behind random forests is that every decision tree
is trained using different input features and different subsets of the training samples, which helps reduce
overfitting and improves the generalization capabilities of the model.

CHAPTER 1. MACHINE LEARNING 17

1.3.2.1 Examples of Random Forests

A random forests model trained for a classification problem consists of an ensemble of classification
trees. When making predictions based on an example it has not seen during the training process, the ran-
dom forests model classifies the input as belonging to class c, if c got the highest number of votes by the
individual classification trees [7]. A class c gets a vote by a classification tree when the input x is assigned
the highest probability of belonging to c, i.e., class c ∈ C gets the vote⇐⇒ c = arg max

a∈C
Pr (y = a | x) ,

where C is the set of all possible classes.
Similarly, a random forest built for a regression problem consists of an ensemble of regression trees.

The prediction of the forest is given by taking the average of the predictions made by the individual
regression trees, i.e.

f̂ (x) =
1
N

N∑
n=1

fn(x) (1.15)

where x is an input feature vector, f̂ is the forest’s prediction, N is the total number of trees and fn are
the predictions made by the individual regression forests.

1.3.2.2 Building a Random Forest

The process of building a random forest model can be divided into four steps [6, 7]:

1. Sampling the data: In order to boost the performance of a random forests model (and other ensem-
ble learning methods), it is vital to train the decision trees on different samples of the data in order
to minimize risk of the predictors making the same kind of error. Samples are taken randomly from
the dataset in order to create multiple different subsets of the data. This process can be divided
based on whether the samples are taken ”with replacement” or not, i.e., whether instances of the
data can be used in the training of multiple trees (bagging) or just once (pasting). Bagging is the
generally more often used case for random forests.

2. Feature sampling: In order to even more differentiate the individual decision trees, only a random
subset of the input features are considered when building a particular decision tree. The model
will perform best when the input features are independent of each other.

3. Building the decision trees: For each sample of the data and for each set of input features, a
decision tree is built using a given split criterion. For even more randomized trees, it is possible to
randomly select a threshold values for each split in the decision trees, instead of searching for the
best possible threshold. These are called Extremely Randomized Trees.

4. Aggregating Predictions: Random forests make predictions by aggregating the predictions made
by the individual decision trees as shown in Section 1.3.2.1.

Some of the most important hyperparameters to be set before the beginning of the training process are the
number of trees in the forest, the maximum allowed depth of the trees, the size of the bootstrap sample,
the size of the feature sample, and the split criterion used to build the decision trees.

1.3.2.3 Weak and Strong Learners

The reason why random forests are effective, and therefore so popular, lies in the law of large num-
bers. This means that by combining predictions from multiple weak learners, each only slightly better
than random guessing, the ensemble model achieves much higher accuracy (strong learner) [7, 10].

CHAPTER 1. MACHINE LEARNING 18

For example, consider a classification random forest as described in Section 1.3.2.1 that is designed
to classify inputs into two categories. Suppose that the forest consists of 1000 classification trees whose
predictions are correct only 51% of the time (weak learners), i.e., the probability that they will give their
vote to the correct class is 51%. When the votes of all 1000 trees are combined, the probability that
the correct class will receive more votes is 74.68%. This implies that the random forest will accurately
categorize a newly introduced input with 74.68% success rate making it a fairly strong learner.

Chapter 2

Renal Transplantation

2.1 Chronic Kidney Disease

The chronic kidney disease (CKD) is a medical condition in which kidneys gradually lose their ability
to filter waste products and excess fluids from the blood system. CKD is the main cause for renal trans-
plantation worldwide as roughly 90% of all renal transplantation are performed to treat end-stage renal
disease, which is the final stage of CKD. The prevalence of CKD is estimated to be between 8% and 16%
worldwide [11] and is observed to be on the rise, as in 2015, CKD caused roughly 1.2 million deaths
compared to 409, 000 in 1990. Symptoms of CKD include fatigue, nausea, loss of appetite, leg swelling,
and itching. As the disease progresses, it may result in health complications such as anemia, cardiovas-
cular disease, bone disease and nerve damage. In the final stages when the kidneys fail altogether, the
affected person needs to regularly undergo dialysis, which supplements the kidney’s functions. However,
this needs to be done several times a week and each session lasts between 3 to 5 hours, which results in
a significant decrease in the quality of the patients life. Thus, when possible, transplantation is a much
preferred treatment for CKD.

2.2 Current Strategies for Assessing Donor-Recipient Compatibility

There are a number of procedures that both the patient and a potential donor have to undergo before
a transplantation. The results of these procedures are then used to assess the compatibility between the
patient and the potential donor.

Firstly, their overall health is checked in order to evaluate whether they are a suitable candidate
for the procedure. This includes blood tests, imaging studies, and other diagnostic tests to check for
any underlying health conditions that could affect the success of the transplantation, such as history of
diseases related to the functionality of kidneys. It is also necessary for the donor and the recipients to
have compatible blood types.

Second, a process called HLA typing is performed both on the patient and the potential donor.
HLA typing assumes paramount importance in determining the immunological compatibility between
the donor and the recipient, which is necessary for a successful transplantation. Transplantation between
an immunologically incompatible paring could lead to an acute transplant rejection, which happens when
the recipient’s immune system perceives the graft as foreign and rejects it.

19

CHAPTER 2. RENAL TRANSPLANTATION 20

2.2.1 HLA Typing

The process of HLA typing involves testing the person’s blood and tissue to determine their human
leukocyte antigen (HLA) type, which is a protein that plays a key role in the body’s immune response.
Incompatible pairs are discarded while potentially compatible pairs have their blood tested against each
other in a laboratory using a process called cross-matching.

Cross-matching involves testing the blood of the potential donor against the blood of the recipient to
ensure that there are no antibodies that could cause an adverse reaction. If the recipient’s serum contains
antibodies that react with the donor’s cells, the complement will be activated and will cause the cells
to burst, or lyse. This reaction can be observed under a microscope, and the degree of lysis can be
graded to determine the strength of the reaction. When no reaction occurs, the cross-match is called
negative, whereas if a reaction occurs, the cross-match is called positive. A positive cross-match does
not automatically mean that the transplantation cannot proceed though, as a successful transplantation
may still be possible if the reaction is not too severe, given that the patient is in favorable health condition
and that they are given additional treatment with immunosuppressive drugs that suppress the activity of
the immune system. This is often the case when other donors are not easily available.

2.2.1.1 HLA Mismatch

The decision on which pairings to discard and which ones to to perform a cross-match on is done by
calculating a HLA mismatch. The HLA antigens are classified based on their biochemical and functional
properties [1]: HLA class I and HLA class II. Class I antigens are present on the surface of most nucleated
cells in the body, while class II antigens are specific to certain cells related to immune function [1]. These
classes are then further subdivided into loci (a locus denotes a specific position on a chromosome): HLA-
A, HLA-B and HLA-C in the case of HLA class I, and HLA-DR, HLA-DQ, HLA-DP in the case of HLA
class II. Each locus is further divided into alleles (an allele represents specific DNA sequences at a given
locus): HLA-B27, HLA-DRB101, and so on [1]. Each locus has two alleles, one from each parent.
When calculating the HLA mismatch, a score is given based on the number of allele mismatches for
each subclass (HLA-A, HLA-DR, etc.). A higher score indicates a greater degree of immunological
incompatibility in the pairing. The relationship between HLA mismatches and allograft survival time
has been revealed thanks to the UNOS data, that will be used later [1].

Within the UNOS dataset, only the HLA-A, HLA-B, and HLA-DR loci are used for computing
mismatch. As illustrated in Table 2.1, a mismatch is calculated for each locus (A, B, DR) by counting
how many of the two antigens are different between the donor and the recipient. The overall HLA
mismatch is then given by the sum of these locus mismatches. Note that D- represents donor’s typing
while R- represents recipient’s typing.

For example, in the first row of the Table 2.1, the HLA mismatch is 5 since both of the alleles at the
HLA-B and HLA-DR locus differ, therefore, the HLA mismatch at the locus level is 2 for the HLA-B
and HLA-DR loci. At the HLA-A locus, both the donor and the recipient have one identical allele (2),
therefore, the mismatch at the HLA-A locus is only 1. In total, the HLA mismatch is 1 + 2 + 2 = 5.

Table 2.1: HLA Mismatch
donor’s HLA typing recipient’s HLA typing mismatch at locus level total mismatch

DA1 DA2 DB1 DB2 DDR1 DDR2 RA1 RA2 RB1 RB2 RDR1 RDR2 AMIS BMIS DRMIS HLAMIS
2 31 18 38 11 13 2 97 44 97 1 4 1 2 2 5
3 68 7 62 4 15 1 3 52 62 4 15 1 1 0 2
26 29 53 70 11 15 23 24 38 53 14 15 2 1 1 4
1 29 8 44 3 7 1 29 8 44 3 7 0 0 0 0
23 68 44 48 1 8 2 24 52 35 2 8 2 2 1 5

CHAPTER 2. RENAL TRANSPLANTATION 21

2.3 Goals

The aforementioned procedures have been very successful at reducing the risk of graft failure shortly
after the transplantation. In recent years, improvements in these techniques have successfully minimized
the risk of an acute transplantation rejection within the first year of the transplantation below 15% [2].
Nevertheless, it may be possible that there are yet undiscovered correlations affecting the long-term
performance of the graft, that are not being accounted for in the current donor-recipient matchmaking
process. The progress made in the field of transplantation medicine has also resulted in the abundance of
data about both pre-transplant conditions as well as patient follow-up. This presents an opportunity for
the use of machine learning techniques, aimed at uncovering these correlations.

Given that the majority of well-documented data originates from the last 30 years, which is signif-
icantly shorter than the average human lifespan, solely considering patients whose grafts have already
failed would introduce a bias towards individuals who had a lower probability of survival from the out-
set. Therefore, it is necessary to include all patients in the analysis, including those with still functioning
grafts as well as those lost to follow-up (i.e. the status of their graft is unknown). The difficulty lies
in the fact that conventional machine learning models do not inherently handle this type of data when
considering the patient’s survival time as the target variable. However, there exists a field of statistics
that addresses these challenges called survival analysis.

Chapter 3

Survival Analysis

3.1 Introduction to Survival Analysis

Survival analysis is a collection of statistical procedures for data analysis, in which the outcome
variable of interest is time until an event occurs, usually referred to as time-to-event or survival time.
[15]. More specifically, time-to-event refers to the time from the beginning of a follow-up, i.e., the
period during which the subject of a study is observed, usually from the date of diagnosis, the start of
a treatment or a transplantation, until the occurrence of an event of interest, usually meaning the death
of a patient, disease incidence, relapse from remission, recovery or in the case of kidney transplantation:
graft failure. Survival analysis is not limited to medical applications, as it is often used, for instance, to
model reliability in engineering, studying the time until the failure of mechanical system occurs.

Survival analysis involves several statistical techniques that are commonly used in medical research,
namely the Kaplan-Meier estimator, the Log-Rank test and the Cox proportional hazards model, just to
name a few. These will be explained in detail further in this chapter, with the former two also being a
vital part of the algorithm behind random survival forests described in Chapter 4.

3.1.1 Data Censoring

A crucial challenge that all survival analysis methods have to tackle is data censoring, which refers
to the lack of data about the exact survival time of an individual. Censoring may happen, for example,
when a study ends before an individual experiences an event, or if the individual withdraws from the
study. This kind of censoring is called right censoring, meaning that if the survival time were to be
plotted along a horizontal axis, the event would happen to the right side of the cutoff point of the study,
but it is unknown by how much.

Left censored data is also possible, but is uncommon in the case of post-transplantation data as the
the date of transplantation is naturally almost always known. Left censoring can happen, for example, in
the case of predicting the survival time after exposure to a virus, as the exact date of this occurrence is
often unknown.

3.1.2 Survival and Hazard Functions

The two fundamental functions of survival analysis are the survival function denoted by S (t) and the
hazard function, also called the instantaneous failure rate denoted by h(t). The survival function de-
scribes the probability of an individual surviving (i.e., not experiencing an event) longer than a specified

22

CHAPTER 3. SURVIVAL ANALYSIS 23

point in time t. In another words, it is defined as [15]

S (t) = Pr(T > t) (3.1)

where T is a random variable describing the survival time of an individual.
In contrast, the hazard function, as hinted by its alternative name, gives the instantaneous potential

per unit time (usually days) for the event to occur, given that the individual has survived up to time t.
That is, the hazard function is focused on failing (i.e., the event occurring) compared to the survival
function, which is focused on not failing (i.e., surviving) [15]. What is meant by the word potential, is
the probability of an event happening within a given time frame, and as this potential is instantaneous, it
is given by the following limit [15]

h(t) = lim
∆t→0

Pr (t ≤ T < t + ∆t | T ≥ t)
∆t

. (3.2)

While the survival function may seem to be the obvious choice for describing models aimed at
predicting survival time, it is usually the hazard function with which survival models are described, since
it provides a more direct measure of risk over time. Importantly, either of the functions can be derived
from the other one using one of the following formulae: [15]

S (t) = exp

−
t∫

0

h(u)du

 (3.3)

h(t) = −

 dS (t)
dt

S (t)

 (3.4)

3.1.3 Hazard Ratio

One of the most common goals of survival analysis is to describe a correlation between a given
exposure variable (i.e., a feature of an instance in the data) and the outcome variable (e.g., survival
time). This relationship is described using the hazard ratio (HR), which describes the relative risk of an
event occurring in one group compared to another. It is calculated as the ratio of the hazard functions of
the two groups:

HR(t) =
h1(t)
h2(t)
. (3.5)

A hazard ratio of 1 means that the probability of an event occurring at a given time is the same in
both groups. For example, if the two groups are divided by their value of a certain exposure variable and
their hazard ratio is 1, this means that there is no relationship between said exposure variable and the
outcome variable.

Analogously, a hazard ratio of 5 would mean that the first group has a five times larger hazard than
the second group [15].

3.2 Survival Analysis Methods

3.2.1 Kaplan-Meier Estimator

One of the most widely used methods for estimating survival functions is the Kaplan-Meier estimator,
which works as follows [15]. Suppose we have a dataset containing n entries with each entry i containing

CHAPTER 3. SURVIVAL ANALYSIS 24

information about an individual’s survival time Ti and censoring status δi, where δi = 1 if an event has
been observed at time Ti and δi = 0 if the entry is right censored at time Ti. Let τ denote the set of all
unique event times, let f j denote the denote the number of individuals who fail at time t j∈ τ, and let
r j denote the number of individuals at risk at time t j ∈ τ (i.e., patients who have yet to experience an
event or are yet to be censored). Note that multiple individuals in the dataset can have the same survival
time, however, τ includes each survival time only once. The probability of an individual surviving past
t j ∈ τ, given that they have already survived until at least t j, is then given by the conditional probability
Pr(T > t j | T ≥ t j) which is itself given by

Pr(T > t j | T ≥ t j) = 1 −
f j

r j
. (3.6)

Also note that the number of individuals at risk does not take in account the individuals that were previ-
ously censored, that is r j = r j−1 − f j−1 − c j−1, where c j−1 is the number of individuals that were censored
during [t j−1, t j).

The survival function outputs the probability of an individual surviving past a given time t, therefore,
thanks to the chain rule of probability, the Kaplan-Meier curve Ŝ estimates the survival function at times
t j ∈ τ as follows [15]

Ŝ (t j) = Pr(T > t j) =
j∏

k=1

Pr(T > tk | T ≥ tk). (3.7)

Due this notation, the Kaplan-Meier formula is often referred to as the product-limit formula, as it is a
product of probabilities that is limited by the time point being observed. The Kaplan-Meier curve itself
assumes that Ŝ (t) remains constant over t j ≤ t < t j+1, therefore the curve has a ”stair-like” shape.

3.2.2 Log-rank Test

The log-rank test is a statistical test used for comparing survival distributions of two or more groups
and decide whether their survival curves are statistically equivalent or not [15]. The log-rank statistic is
also used as a split-rule criterion for building survival trees that are explained in Section 4, where it is
used to compare the difference in observed survival times between two groups created by a possible split
in a given node of a survival tree. Therefore, the following explanation of the log-rank statistic is only
concerned with comparing two groups.

Assume a dataset contains information about two groups of individuals along with their survival time
and censoring status, let τ again denote the set of all unique event times regardless of the group. Then,
an expected count of failures e(i)

j at time t j ∈ τ is computed for each group as

e(1)
j =

r(1)
j

r(1)
j + r(2)

j

· (f (1)
j + f (2)

j), e(2)
j =

r(2)
j

r(1)
j + r(2)

j

· (f (1)
j + f (2)

j) (3.8)

where r(i)
j is the number of individuals from group i at risk at time t j and f (i)

j is the number of failures in
group i at time t j.

Let Oi − Ei =
∑

t j∈τ f (i)
j − e(i)

j represent the sum of the differences between the observed and the
expected counts of failures over all of the unique event times for group i. The log-rank statistic for group
i is then given by

L(i) =
(Oi − Ei)2

Var(Oi − Ei)
. (3.9)

Note that for two groups: O1 − E1 = − (O2 − E2).

CHAPTER 3. SURVIVAL ANALYSIS 25

3.2.3 Cox Regression

Cox regression, also referred to as the Cox proportional hazards model, is a statistical model used for
analysis of time-to-event data. Specifically, it is used to model an individual’s hazard function based on
a set of given predictor variables [15]. It is commonly used in medical research to investigate the factors
that influence the duration until an event occurs. For example, it can be used for predicting survival
curves of patients who have undergone kidney transplantation and for identifying factors that impact the
likelihood of graft failure. The Cox regression model will also be used later as a benchmark to compare
the performance of the machine learning model with a conventional survival analysis model.

3.2.3.1 Formula

The general formula of the Cox regression model describes the hazard function as

h(t | x) = h0(t) exp

 k∑
i=1

βixi

 (3.10)

where x = (x1, x2, . . . xn) is a n-dimensional feature vector, h0(t) is an unspecified baseline hazard func-
tion, and β = (β1, β2, . . . , βn) represent constant coefficients associated with the corresponding features.
The fact that h0 is unspecified, makes Cox regression a semi-parametric model (in contrast to parametric
models, whose functional form is known) [15]. Parametric models are more precise when fitted correctly,
however it may not always be clear which parametric model is appropriate for a given problem. As a
result, a semi-parametric model is a great tool when uncertain about which parametric model to use, as a
semi-parametric model will typically approximate the results of the correct parametric model [15].

A core assumption behind the Cox proportional hazards model, and thus by extension equation
(3.10), is that the baseline hazard function is dependent only on time, whereas the second part of the
expression e

∑k
i=1 βiXi is only dependent on x, which means the features are time-independent. This as-

sumption is called the proportional hazards assumption. If time-dependent features were to be consid-
ered, a variation of the Cox model would be required, called the extended Cox model.

To measure the effect of a particular predictor variable on the overall hazard, a hazard ratio is cal-
culated without the need to know the baseline hazard function explicitly using only estimates of the β
coefficients.

3.2.3.2 Partial Maximum Likelihood Estimation

The estimates for the β coefficients can be obtained using a partial maximum likelihood estimation
method and are denoted as β̂. The estimated model would then be

ĥ(t | x) = ĥ0(t) exp

 k∑
i=1

β̂ixi

 (3.11)

Given that we have a random sample of N individuals
{(

x(i), y(i)
)}N

i=1
, where x(i) are n-dimensional

feature vectors describing the given individuals, and y(i) =
(
T (i), δ(i)

)
are ordered pairs, where T (i) and δ(i)

are the observed survival time and censoring status respectively. Assuming that the samples come from
an unknown joint probability distribution, the maximum likelihood estimation for β is given by

β̂ = arg max
β∈Θ

L (β) (3.12)

CHAPTER 3. SURVIVAL ANALYSIS 26

where L is the maximum likelihood function and Θ is a parameter space. The maximum likelihood
function is conventionally defined as

L (β) =
k∏

i=1

fYi(yi, β) (3.13)

where fYi is the univariate probability density function associated with the i-th random variable from
the random sample. However, one of the key features of the Cox model is that there is no assumed
distribution for the survival time, therefore it is not possible to compute a full maximum likelihood [15]
as defined in (3.13).

Therefore, a partial likelihood is used, which only considers probabilities of the subjects who fail,
i.e., with censoring status δ(i) = 1. This means that the partial likelihood function can be written as

L =
p∏

j=1

L j (3.14)

where p is the number of failures within the random sample and L j is the likelihood of failing at the j-th
time. The set of individuals at risk of failing at time j is denoted by R(t j). Note that R

(
t j
)

represents a
set of individuals at risk compared to r j used before, which only represents the number of individuals at
risk. This distinction in notation is made because it simplifies the equation (3.15). L j is defined as a ratio
of a hazard function (given by (3.10)) of the individual, who failed at time j over the sum of the hazards
of individuals at risk at time j, i.e.

L j (β) =
h0 (t) exp

(
β · x(j)

)
∑

i∈R(t j) h0 (t) exp
(
β · x(i)) (3.15)

where x(j) denotes the feature vector describing the individual who failed at time j and x(i) for i ∈ R(t j)
denotes the vector of predictor variables describing the individuals at risk at time j. Note that β · x(j) is a
dot product. It is also important to note that in contrast to the notation used for Kaplan-Meier estimator,
p represents the number of all events, not just the number of unique event times. This ensures that there
is only one hazard function in the numerator of the (3.15) equation.

As h0 (t) cancels out, the partial likelihood function can be written as

L (β) =
p∏

j=1

exp
(
β · X j

)∑
i∈R(t j) exp (β · Xi)

(3.16)

Once the partial likelihood function L is formed, the equation (3.12) is generally solved by maximiz-
ing the natural log of L, i.e., finding the roots of

∂ ln L
∂βi

= 0 for i = 1, . . . , k (3.17)

This gives us a system of equations that can be solved numerically [15].

3.2.3.3 Hazard Ratio Estimation

As described in Section 3.1.3, the hazard ratio is defined as the ratio of hazards of two different
individuals. The estimation of the hazard ratio is therefore given by

ĤR =
ĥ(t | x∗)
ĥ(t | x)

(3.18)

CHAPTER 3. SURVIVAL ANALYSIS 27

where x∗ =
(
x∗1, x

∗
2, . . . , x

∗
n

)
and x = (x1, x2, . . . xn) are feature vectors of two different individuals. The

ratio is commonly written so that the higher-valued hazard is in the numerator. This ensures that the ratio
is always greater than 1. By using (3.11) we get that

ĤR =
ĥ0(t) exp

(∑k
i=1 β̂ix∗i

)
ĥ0(t) exp

(∑k
i=1 β̂ixi

) = exp

 k∑
i=1

β̂i
(
x∗i − xi

) (3.19)

meaning that the hazard ratio stays constant over time, i.e. the hazards are proportional and the effect of
the predictor variables on the hazard rate remains constant over time.

Now, in order to compute the effect of a feature j on the overall hazard while adjusting for other
variables, let vectors x∗ and x be defined asx∗i = xi for i , j

x∗j , x j
(3.20)

The estimated hazard ratio for the predictor variable X j is then given by

ĤR = exp
(
β̂ j

(
x∗j − x j

))
(3.21)

As hazard functions are always positive and the ratio is written in way as to ensure that it is always
greater than 1, the greater the hazard ratio, the greater the predictor’s influence on the overall hazard.

Chapter 4

Random Survival Forests

Random survival forests (RSF) are an ensemble machine learning method used for analyzing right-
censored survival data. RSF combines the concepts of survival analysis and random forests, which
allows it to handle issues commonly associated with conventional survival analysis methods, such as
restrictive assumptions about the model’s parameters (e.g., proportionality in the Cox regression model),
the inability to handle nonlinear relations in the data, and issues with missing data. It also addresses issues
associated with regular random forest models, such as being restricted to regression and classification
tasks and the inability to handle right-censored survival data [13].

The building blocks of RSF are survival trees, which are a modification of decision trees (described
in Section 1.3.1) designed to handle survival data. Each tree in the forest outputs a either a cumulative
hazard function H (t | x) or a survival function S (t | x). Both take a vector of predictive variables x,
describing a given individual, and time t as inputs. The forest’s overall prediction, i.e., the ensemble
cumulative hazard function He (t | x) or the ensemble survival function S e (t | x), is then computed as the
average of the individual tree’s predictions.

4.1 Building a Random Survival Forests Model

The algorithm for building a RSF model as implemented in the works as follows [13, 16].

1. A set number of subsets is taken from the training dataset using the bootstrap sampling method as
described in Section 1, with each sample excluding, on average, 37% of the original data.

2. A binary survival tree (BST) is built for each of the bootstrap samples. The algorithm for growing
a BST generally follows the same principles as described in Section 1.3.1 , i.e., at each node the
algorithm iterates over all possible features (the number of which can be limited) and threshold
values for them, and decides on the best split. The best split is decided by maximizing the log-rank
statistic (described in Section 3.2.2), which compares the survival curves of the two groups created
by the potential split. The algorithm is restricted by a criterion that each node should contain at
least 1 unique event time. This leads to a point where no new splits can be made, meaning that the
tree has been fully grown. Other hyperparameters limiting the growth of the tree can also be set,
which are described in Section 4.2.

3. Once a tree is fully grown, it outputs either a survival function or a cumulative hazard function
(CHF), which are calculated as follows. Let A denote the set of all terminal nodes.

(a) If the preferred output is a survival function, for every terminal node, that is ∀ j ∈ A, a
survival curve Ŝ j (t) is computed using the Kaplan-Meier estimator in the same manner as

28

CHAPTER 4. RANDOM SURVIVAL FORESTS 29

described in Section 3.2.1, with the individuals from the given bootstrap sample belonging to
the given terminal node j being used as the group on which the Kaplan-Meier survival curve
is calculated on.

(b) Otherwise, for every terminal node j ∈ A, a CHF denoted by Ĥ j(t) is calculated as follows.
Suppose that each node j ∈ A contains a set of individuals

(
T1, j, δ1, j

)
, . . . ,

(
Tn(j), j, δn(j), j

)
,

where n(j) is the number of cases belonging to the node j, Ti, j is the survival time of the i-th
case belonging to the node j , δi, j ∈ {0, 1} is the censoring status of the i-th case at time Ti, j.
Let t1, j < t2, j < . . . < tN(j), j denote the unique event times observed in node j, where N(j) is
the total number of observed unique event times, and let fk, j and rk, j represent the number of
individuals who either experienced an event (failed) or were at risk at time tk, j respectively.
The CHF for the node j is then given by the Nelson-Maier estimator

Ĥ j(t) =
∑
tk, j≤t

rk, j

fk, j
. (4.1)

4. When the RSF model is asked to make predictions for a feature vector x, each survival tree is
followed from the root node down in accordance with the rules it learned during the training
process as described in Section 1.3.1.1, until a terminal node i ∈ A is reached.

(a) The survival function of the whole tree is then given by

S (t | x) = Ŝ i(t), (4.2)

(b) Alternatively, the CHF of the tree is given by

H(t | x) = Ĥi(t). (4.3)

5. Next, both the ensemble survival function S e (t | x) and the ensemble cumulative hazard function
He (t | x) are computed in a similar manner by averaging over the predictions made by all grown
tress. More specifically, let N denote the number of survival trees in the ensemble.

(a) The survival function is then given by

S e (t | x) =
1
N

N∑
n=1

S n(t | x) (4.4)

where S n is a survival function predicted by the n-th tree in the ensemble (defined in (4.2)).

(b) Analogously, the ensemble cumulative hazard function is given by

He(t | x) =
1
N

N∑
n=1

Hn(t | x) (4.5)

where Hn is a cumulative hazard function predicted by the n-th tree in the ensemble (defined
in (4.3)).

CHAPTER 4. RANDOM SURVIVAL FORESTS 30

4.2 Hyperparameters

Like any other machine learning model, the RSF model has multiple hyperparameters that define
its behavior. As RSF are derived from conventional random forests, they also share many of the same
hyperparameters. The most important hyperparameters that the scikit-survival’s (see Section 5.2.3) im-
plementation of RSF allows to be set are [16]:

• n_estimators: The number of survival trees in the forest. More trees generally result in better
predictions, however, they also lead to longer training times, and the benefits gained by adding
more trees diminish, reaching a point where the added computational complexity is not worth it
[17].

• max_depth: The maximum allowed depth of a tree. If none is set, then tree is allowed to grow
until all leaves contain less than min_samples_split [17].

• min_samples_split: The minimum number of samples required to split a node. As mentioned
before, this parameter can limit the growth of survival trees and therefore speed up the training
process. However, setting this parameter too high can result in underfitting as the model may fail
to capture more complex relations in the data.

• min_samples_leaf: The minimum number of samples required to be in a leaf node. This will
ensure more samples are used for calculating the survival / cumulative hazard functions. Therefore,
raising this number will smooth the predictions [16]. However, setting this parameter too high may
worsen the model’s ability to make accurate predictions. If none is set, the default value is 1.

• max_features: The maximum number of features to be considered when looking for a best split.
Having only a random subset of the features available when looking for the best split may help to
differentiate the individual trees and reduce overfitting. However, setting this number too low may
again reduce the accuracy of the model.

4.3 Harrell’s Concordance Index

The prediction error of a random survival forests model is estimated using the Harrell’s concordance
index (also known as C-index) [13], which is a metric commonly used in medical research to evaluate
survival models. The C-index is defined as the ratio of correctly ordered pairs to comparable pairs [16]
(explained in more detail in 4.3.1). The C-index is also closely related to the Area under the ROC
curve (short for Receiver Operating Characteristics curve) also known as AUC, which is a graphical plot
that illustrates the performance of a binary classification model at different classification thresholds [14,
Classification - ROC Curve and AUC].

Specifically, the ROC curve plots the true positive rate (TPR) defined as

T PR =
T P

T P + FN
(4.6)

where T P is the number of true positives (i.e. positive cases correctly classified by the model) and FN is
the number false negatives (i.e. positive cases incorrectly classified as negative), against the false positive
rate (FPR) defined as

FPR =
FP

FP + T N
(4.7)

where FP is the number of false positives (i.e. negative cases incorrectly classified as positive) and T N
is the number of true negatives (i.e. negative cases correctly classified as negative) [14]. Lowering the

CHAPTER 4. RANDOM SURVIVAL FORESTS 31

classification threshold results in more cases being classified as positive, thus generally increasing both
the true positive and the false negative rate.

The area under the ROC curve (AUC) can be interpreted as the probability that a given model will
rank a random positive example more highly (e.g. it will assign a higher probability of being positive)
than a random negative example. The AUC, as well as the C-index, can attain values from 0 to 1, where
1 means a perfect model whose predictions are always correct and 0 being the opposite. A random
classifier that assigns the predicted value with a uniform distribution, will have an AUC of 0.5. Generally,
models with an AUC above 0.7 are considered to be good predictors. An example of a machine learning
models that use the AUC for evaluation of their performance are classification decision trees (described
in Section 1.3.1) and by extension random forests used for classification .

The C-index works in similar fashion to the AUC in the sense that it compares two individuals, and
checks whether the model assigns a more favorable hazard function to the patient with longer observed
survival time. More specifically, let t1, . . . tn be a set of pre-chosen time points, then, we say that individ-
ual i has a worse predicted outcome than individual j if

n∑
k=1

He(tk | xi) >
n∑

k=1

He(tk | x j) (4.8)

where xi and x j are feature vectors describing the individuals i and j respectively, and He is the ensemble
CHF defined in (4.5). However, not all individuals can be compared to each other due to censoring.
Therefore, there is specific set of rules that define comparable pairs, which are explained in the next
section.

4.3.1 Calculating Harrell’s Concordance Index

The C-index is calculated as follows [13].

1. Find all possible pairs of cases across the test (or validation) dataset while excluding the following
cases:

• pairs
(
(Ti, δi), (T j, δ j)

)
where the case with the shorter survival time is right-censored,

i.e., Ti < T j ∧ δi = 0

• pairs
(
(Ti, δi), (T j, δ j)

)
with equal survival times where both cases are also right-censored,

i.e., Ti = T j ∧ δi = δ j = 0

The cases that are left are called permissible (or comparable) and we denote their set by P.

2. For each permissible pair
(
(Ti, δi), (T j, δ j)

)
, a value for ci, j is assigned as follows:

(a) if Ti , T j and, without the loss of generality, suppose that Ti < T j

ci, j =


1 if i has worse predicted outcome than j (defined in (4.8))
0.5 if the predicted outcomes of i and j are tied (equality in (4.8))
0 if j has worse predicted outcome than i

(b) if Ti = T j ∧ δi = δ j = 1

ci, j =

1 if predicted outcomes of i and j are tied
0.5 else

CHAPTER 4. RANDOM SURVIVAL FORESTS 32

(c) if Ti = T j ∧ δi , δ j and, without the loss of generality, suppose that δi = 1

ci, j =

1 if δi = 1 =⇒ i has worse predicted outcome than j
0.5 else

3. The C-index is then given by

C =
1
|P|

∑
i, j∈P,i, j

ci, j (4.9)

where |P| denotes the number of permissible pairs.

4.4 Permutation Variable Importance

Since survival trees use the log-rank statistic as a split criterion as opposed to impurity used in
conventional decision trees, variable importance cannot be computed using the mean decrease in impurity
method described in 1.2.3. Consequently, the permutation feature importance, described in the original
paper introducing random forests [10], is used to compute variable importance. Fortunately, permutation
importance is also implemented within the scikit-learn package (see Section 5.2.3).

Permutation importance is computed by first calculating a baseline metric by evaluating the model’s
performance when trained on the complete set of features. Next, a feature is permutated from the val-
idation set, and the model’s performance is evaluated again. The permutation importance of a given
variable is then given by the the difference between the baseline metric and the model’s performance
after permuting said variable [17].

4.5 Other Methods

Random survival forest is not the only model that combines conventional machine learning tech-
niques with survival analysis. The scikit-survival library (see Section 5.2.3) also provides implementa-
tions of survival support vector machine and survival gradient boosting.

Survival Support Vector Machine

The survival support vector machine is an extension of the conventional support vector machine
(SVM), which is a supervised machine learning model that works by mapping the feature vector of each
sample into high-dimensional space and calculating a hyperplane that separates them based on their
labels, called a decision boundary. When making predictions on a new input, the SVM makes a decision
based on which side of the decision boundary the new case falls [6].

The survival SVM differs from the regular SVM in the sense that it uses survival time as well as
censoring status as labels and uses both of these to calculate the hyperplane. The survival SVM can work
with two types of problems: a regression problem which outputs predicted survival time, and a ranking
problem which ranks individuals based on their survival time. This is however slightly disadvantageous
as these types of predictions are not easily transferable to standard survival analysis outputs, namely the
survival and hazard functions [16].

Survival Gradient Boosting

Survival gradient boosting builds on the basis of regular gradient boosting, which is an ensemble
supervised machine learning technique that works by combining predictions of many weak learners

CHAPTER 4. RANDOM SURVIVAL FORESTS 33

(described in Section 1.3.2.3), and sequentially improving their performance by gradually optimizing a
loss function by using its gradient. Gradient boosting models generally achieve greater accuracy than
random survival forests, but take much longer to train [6, 16].

While in the case of conventional gradient boosting, the loss function is given by prediction error
(e.g. mean squared error), in the case survival gradient boosting the loss function is the partial likelihood
loss of the Cox proportional hazards model described in Section 3.2.3.

The reasons for why the RSF model was chosen include the above-described disadvantages of the
aforementioned alternatives and the promising accuracy that the RSF model displayed in the related
articles [5, 3].

Chapter 5

Data and Software Architecture

5.1 Data Acquisition

The data used for training was obtained from the United Network for Organ Sharing (UNOS) which is
a nonprofit organization that manages the organ transplant system in the United States. The organization
oversees transplantation procedures (matching donors, ensuring fair graft allocation) for multiple organs
such as kidneys, heart, lungs, liver, pancreas and intestines. As a result, UNOS maintains a large database
of organ transplantations carried out between 1984 and 2022. Specifically, there are more than a million
entries regarding kidney transplantations, an amount sufficient for training a machine learning model.

The data can be obtained free of charge via https://unos.org (a VPN may be needed for access
from outside the US) upon filling out the request form on the website and signing relevant documents
regarding the use of the data that will be sent via email. The data was obtained in the form of a tab-
delimited file that was transformed into a MongoDB database using the following GitHub repository:
https://github.com/ceharvs/transplant2mongo . The database tables were then converted into
a JSON format using the Database tools plugin in IntelliJ IDEA Ultimate.

Alongside the data from the UNOS database, another dataset was provided by the Czech Institute for
Clinical and Experimental Medicine (IKEM), however the dataset was limited in size and thus was not
suitable for training a machine learning model.

As the dataset provided by IKEM was the first to be acquired, the option to train the model partly
on generated data was considered to supplement the limited size of the IKEM dataset. However, as the
much larger UNOS dataset was acquired, this was no longer necessary.

5.2 Software Architecture

A number of software tools and libraries were used for building the survival analysis machine learn-
ing model, with the backbone of the project being the Python-based scikit-survival package, which is
itself built upon the scikit-learn package. Additionally, the pandas and numpy libraries were used for
both preprocessing of the data and evaluating the models performance, and finally, the matplotlib library
was used for visualization of the results. The following sections offer a brief introduction to each of the
aforementioned software tools and libraries.

5.2.1 Python

Python is an interpreted, general-purpose, high-level, non-typed, object-oriented programming lan-
guage that consistently ranks among the most used programming languages in the world [18]. The

34

https://unos.org
https://github.com/ceharvs/transplant2mongo

CHAPTER 5. DATA AND SOFTWARE ARCHITECTURE 35

reasons for its popularity include relatively easy human readability, built-in data structures such as lists
and dictionaries, wide range of libraries that provide additional functionality, automatic memory man-
agement and the fact that Python is cross platform, meaning that code written on one machine should in
theory run on different machines, regardless of their operating system. [19, 20]

5.2.2 Jupyter Notebook

Jupyter Notebook is a notebook authoring web application that provides tools for interactive com-
puting with computational notebooks (also knows as notebook interface). Computational notebooks are
documents that enable users to integrate executable computer code, plain text, visualization and other
interactive tools in a structured manner [22]. One of the fundamental advantages of computational note-
books is the ability to partition code into smaller self-contained units, with each unit having the result
of their execution attached to them. This facilitates easier analysis of results and makes information ex-
traction more efficient. This proves to be beneficial especially in the fields of data analysis and machine
learning, where extracting information from data is of utmost importance. Jupyter Notebooks are pri-
marily used for executing Python code. Nonetheless, as indicated by its name, Jupyter Notebooks also
provide support for the Julia and R languages.

5.2.3 scikit-learn and scikit-survival

scikit-learn

scikit-learn is an open-source machine learning Python module. It is written in Python and C and is
the most frequently used library for machine learning [6]. scikit-learn provides tools for every part of the
process of building a machine learning model, namely data preprocessing, model selection, fitting, and
evaluation, among others [17].

scikit-survival

scikit-survival is a Python module built on top of scikit-learn. It utilizes the functionalities of scikit-
learn for machine learning while allowing the user to implement survival analysis methods in their mod-
els [16]. Included in the library are many of the standard data analysis methods including the Kaplan-
Meier estimator 3.2.1 and Cox Regression 3.2.3 as well as methods combining survival analysis with
machine learning methods such as the random survival forests model described in Chapter 4.

5.2.4 Other Libraries

Pandas

Pandas is an open-source library built on top of the Python programming language used for manipu-
lation with data and data analysis in general. The core of the library is the DataFrame object that is used
to organize data in a tabular format. Pandas provides a multitude of tools for working with DataFrames,
including the ability to extract statistics about the data, handling of missing values, reshaping data sets,
as well as the ability to import and export DataFrames in various formats such as .csv, .json, and more
[23].

NumPy

NumPy is an open-source Python library used for working with numerical data. More specifically,
it provides tools for working with multidimensional numerical arrays and is widely used in other data

CHAPTER 5. DATA AND SOFTWARE ARCHITECTURE 36

analysis-oriented libraries such as Pandas, Matplotlib and scikit-learn. The centerpiece of the library
is the ndarray which is a homogenous n-dimensional array object, that is equipped with methods to
efficiently operate on it [24].

Matplotlib

Matplotlib is a Python library based on NumPy used for creating both static and animated visualiza-
tions of data. These visualizations mainly appear in various types of plots such as line plots, histograms,
scatter plots, and 3D plots. It draws inspiration from the MATLAB programming language, and Mat-
plotlib itself provides an extension called Pyplot, which is a collection of functions that replicate the
behavior of MATLAB for Python [25].

5.2.5 Cluster Computing

Due to the large size of the tables extracted from the UNOS dataset, reaching up to 40GB in the JSON
format, conducting any meaningful operations locally became infeasible since in order to do any sort of
processing, the data needed to be first loaded into main memory, which is far beyond the capacity of reg-
ular computers. As a result, all computing was conducted remotely on the HELIOS high-performance
computing cluster hosted at the Department of Mathematics, Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University in Prague. The cluster can provide up to 384GB of main mem-
ory on a single node, which was a sufficient for the needs of this project. The connection to the cluster
was established using SSH in the Linux shell. To enhance practicality, remote nodes were forwarded
onto localhost, which allowed working with Jupyter notebooks directly via a web browser on a local
machine. More information about the cluster such as regarding the hardware specs can be found at [21].

Chapter 6

Model Training

The code used for training the machine learning model, including pipelines used for data prepro-
cessing, training, and evaluating the random survival forest model are publicly available in the form of
Jupyter Notebooks at: https://github.com/matejkloucek/bp_don_rec_compatibility .

Instructions on how to properly execute them are included in the README file located in the above
GitHub repository.

6.1 Data Preprocessing

6.1.1 Separating Living and Deceased Donors

There are 6 tables to be extracted from the UNOS dataset using MongoDB as mentioned in Section
5.1, but only 3 are relevant to this study. These 3 are:

• Kidney_Pancreas, which contains information about kidney and pancreas transplantations per-
formed between 1994 and 2022 in the US including information about both recipients and donors.

• Living_Donor, which contains detailed information about living donors.

• Deceased_Donor, which contains detailed information about deceased donors

The Kidney_Pancreas table also happens to be the largest in terms of file size. After converting the
table to JSON format, the resulting file size reached to approximately 40GB. Consequently, loading the
file into a Pandas DataFrame took a significant amount of time. Therefore, it proved advantageous to
convert all tables from JSON to .csv format, which drastically reduced loading time. This efficiency can
be attributed to the fact that unlike JSON, which stores data in a hierarchical structure using key-value
pairs, the .csv format stores data in a tabular (and therefore faster to read from) format.

In its original form, the Kidney_Pancreas dataset contained 1108884 entries and 470 columns. It
contains information about both living and deceased donors, but the details regarding the donors are
limited in scope, particularly in the case of living donors. To address this limitation, a table join was
performed with the Living_Donor and Deceased_Donor tables to provide more information about the
donors. This joining was performed on the DONOR_ID column, which is a foreign key in the
Kidney_Pancreas table that identifies the graft’s donor for the given transplantation, and refers to a
primary key in either the Living_Donor or the Deceased_Donor table. There were 174381 entries
sharing a common DONOR_ID between the Kidney_Pancreas and Living_Donor tables and 399822
entries sharing it between the Kidney_Pancreas and Deceased_Donor.

37

https://github.com/matejkloucek/bp_don_rec_compatibility

CHAPTER 6. MODEL TRAINING 38

Preliminary results gained by experimenting with the RSF models have revealed that the features
impacting graft survival vary between living donor and deceased donor transplantations. For example,
the cause of death of the donor appears to significantly influence the graft’s survival time after transplan-
tation. Consequently, this paper will focus solely on transplantations from a living donor. As a result,
the dataset has been split based on the type of transplantation performed, separating living and deceased
donor transplantations. The subset resulting from this split containing information about the living donor
transplantation will from now on be referred to as Kidpan_Living. The Kidpan_Living table had
174381 entries and 649 columns. This number of columns is usually considered to be too high for an
effective machine learning model as it could lead to overfitting and poor explainability. Therefore, the
number of features had to be reduced significantly.

6.1.2 Reducing Number of Features

In addition to the dataset, UNOS provides a .xlsx file called STAR Files Data Dictionary (STAR =
Standard Transplant Analysis and Research), which contains information about what each of the columns
represents. This dictionary was used in the following sections to provide context for the dataset’s features.

Simultaneous Transplantations

The dataset contains information about both kidney and pancreas transplantations, as they are some-
times performed together in a medical procedure known as the simultaneous kidney-pancreas transplant
(SKP) [27]. In fact, most (83%) of pancreas transplantation are performed in the context of SKP’s [28].
However, the focus of this paper is solely on kidney transplantations and the number of SKPs is rel-
atively low compared to the number of standalone kidney transplantation. Therefore, individuals who
had undergone a SKP were dropped from the dataset. All columns regarding pancreas transplantation
were dropped as well. These columns were selected manually based on their description in the STAR
dictionary.

Follow-up Data

As the goal of this paper is to predict compatibility of patients prior to transplantation, any column
that contains information about the patient’s status after or at the time of the transplantation had to
be removed from the dataset. This was also done by manually selecting such columns based on their
description in the STAR dictionary. The only follow-up features that were retained are the GTIME_KI
and GSTATUS_KI columns, which describe the graft’s survival time and censoring status respectively.

Note for following chapters: Owing to the nature of the GTIME_KI and GSTATUS_KI columns, the
survival times computed and predicted in the following sections and chapters describe the survival time
of the graft itself, not necessarily the survival time of the patient, as the graft may fail but the patient
may continue to live on either by returning to dialysis or by getting another transplant. The opposite
may also happen, i.e., patient dies with a functioning kidney. Out of the total 174381 entries in the
Kidpan_Living table, 106910 were censored while still alive, 40714 experienced graft failure, and
26732 patients died with a functioning graft. In terms of graft survival, the death of a patient with
a functioning graft is considered a censoring event, given that the patient died of causes unrelated to
kidneys. Nevertheless, for the sake of simplicity, the survival time of the graft will sometimes be referred
to as the patient’s or recipient’s survival time.

CHAPTER 6. MODEL TRAINING 39

Duplicate Columns

As the original Kidney_Pancreas table also contained some information about donors, duplicate
columns were created upon merging with the Living_Donor and Deceased_Donor tables. Some were
easy to identify as they shared the same name, while others had to be identified manually.

Irrelevant Columns

The STAR dictionary was also used to identify obviously irrelevant features and drop them to speed
up the training process. These include IDs, codes and form statuses used internally by either UNOS or
individual transplant centers.

Deceased and Living Donor Columns

As mentioned above, the Kidney_Pancreas table itself contains limited information about both
deceased and living donors. Therefore, columns regarding deceased donors had to be dropped from the
dataset used for training of the model for living donors. This was done by excluding columns with high
percentage of missing values (> 50%) as the columns regarding deceased donors would be left unfilled
in the case of grafts from living donors. The STAR dictionary was also used to check that no obviously
relevant columns were lost in the process.

Low Quality Data

Dropping columns with high percentage of missing values was also done to prevent a significant loss
of information by having to either impute large amounts of missing values or discarding entries with
missing features. Columns with only one unique value were dropped as well.

HLA typing

As illustrated in the Table 2.1, each locus of both the donor and the recipient has two columns. These
columns are categorical and represent different alleles. The number of unique alleles exceeds 100 in some
cases. This would create a problem when encoding categorical columns as it would create an enormous
amount of new columns. Fortunately, these columns can be dropped from the dataset as they are already
used for calculating HLA mismatch, and therefore dropping them does not result in a significant loss of
information.

In addition, as discussed in Section 2.2.1, the value of the HLA mismatch column is a sum of the
mismatches at the A, B, and DR loci. Including both the overall HLA mismatch and the mismatch at the
individual loci introduces multicollinearity to the model, thereby potentially compromising its accuracy.
Therefore, the model was first trained using only the mismatches at the locus level, with the aim of
discovering whether any of the locus-level mismatches had a larger impact on survival time than others.
The results revealed that the mismatch at the HLA-DR locus had the biggest impact on survival, while
the mismatch at the HLA-B locus had the smallest impact. This is in line with the findings of related
studies, such as [29].

Nevertheless, the accuracy of the model did not significantly differ between the case where only the
overall HLA mismatch was used, and the case where only the individual locus-level mismatches were
used. Subsequently, only the overall HLA mismatch was used for the training of the final model in order
to simplify it.

Overall, these measures reduced the number of features to 136.

CHAPTER 6. MODEL TRAINING 40

6.1.3 Ensuring Correct Formatting

Upon loading the dataset into a DataFrame, many of the columns had incorrect data types. Specifi-
cally, there were two issues:

1. Categorical variables that were described using digits were incorrectly classified as numerical.
This would lead to misleading results and had to be dealt with by identifying these columns using
the STAR dictionary and changing their data type to object so that they could be encoded later.

2. Columns containing dates were formatted as strings and were thus identified as categorical. This
would lead to problems when encoding since there would be a new column created for every
unique time. This was dealt with by only using the year and setting its datatype to float64.

6.1.4 Imputing Missing Values

Missing values were imputed using scikit-learn’s SimpleImputer() with the mean strategy for nu-
merical features and most_frequent strategy for categorical features.

6.1.5 Feature Encoding

The RSF model requires all input variables to be numerical. However, many of the features in the
dataset were categorical and therefore had to be encoded before they could be used for training of the
RSF model. Scikit-learn’s OneHotEncoder was used to encode the categorical variables. After merging
the encoded categorical columns with the numerical columns, the resulting dataset had 810 columns.

6.2 Feature Selection

In order to simplify the model and improve its performance, the best features were selected by calcu-
lating their importance using permutation importance described in Section 4.4. In comparison to variable
importance calculated by the Gini importance (described in Section 1.2.3), computing permutation im-
portance is a highly time consuming, as well as resource demanding task.

The scikit-learn’s implementation of permutation importance allows computing of permutation im-
portance to be done in parallel on multiple cores. However, due to the specifics of the implementation
of random survival forests in the scikit-survival’s package, this was extremely memory demanding and
couldn’t be completed even using the Helios cluster. Therefore, the computations were performed using
only a single core, which resulted in computation times of up to 10 hours.

The scikit-learn’s implementation of permutation importance offers a n_repeats parameter, which
controls the number of times a feature is permutated in the dataset resulting in increased accuracy of
the feature importance by reducing randomness. However, this also greatly increases the computational
complexity. Thus, the variable importances were computed initially on a smaller dataset created by
dropping all entries with missing features, with n_repeats=5. This was followed by a computation on
a larger dataset with imputed missing values with n_repeats=2 . The two resulting tables of variable
importances were used to create a list of the 24 most important features. The variable importance of
those features was then validated by computing permutation importance on a dataset consisting only of
these features with n_repeats=15.

The selected features along with their description and variable importance can be found in Table 6.1.
For categorical features, values of their most important encoded sub-feature are listed in this table.

CHAPTER 6. MODEL TRAINING 41

Table 6.1: Variable Importance

Feature Mean Importance St. Dev. Importance Description Data type

AGE 0.030864 0.005634 Recipient’s age Numerical
HLAMIS 0.026286 0.002670 Overall HLA mismatch Numerical
AGE_DON 0.022465 0.002294 Donor’s age Numerical
ON_DIALYSIS 0.016960 0.001749 Is recipient regularly administered dialysis Categorical
ETHCAT 0.015550 0.002744 Recipient’s ethnicity category Categorical
END_BMI_CALC 0.015532 0.001566 Recipient’s BMI Numerical
DIAB 0.015258 0.003513 Recipient’s diabetes status Categorical
ETHCAT_DON 0.014193 0.002354 Donor’s ethnicity category Categorical
PERIP_VASC 0.014067 0.000949 Recipient’s peripheral vascular disease status Categorical
PRI_PAYMENT_TCR_KI 0.014045 0.002648 Recipient’s primary payment source Categorical
CREAT_TRR 0.013607 0.002267 Recipient’s creatinine level Numerical
DIAG_KI 0.013226 0.000166 Recipient’s primary kidney diagnosis Categorical
DAYSWAIT_CHRON_KI 0.013136 0.000824 Days recipient spent on waiting list Numerical
TOT_SERUM_ALBUM 0.013066 0.003109 Recipient’s total serum albumin Numerical
FUNC_STAT_TCR 0.012986 0.000505 Recipient’s functional status Categorical
KI_CREAT_PREOP 0.012894 0.001581 Donor’s creatinine level Numerical
HIST_CIG 0.012423 0.000489 Recipient’s history of cigarette use Categorical
DAYSWAIT_ALLOC 0.012381 0.001300 Days recipient was prioritised for allocation Numerical
DIABETES_DON 0.012289 0.000000 Donor’s diabetes status Categorical
HCV_SEROSTATUS 0.012270 0.000064 Recipient’s hepatitis C status Categorical
PREV_TX_ANY 0.012248 0.000710 Recipient’s past transplantations Categorical
WORK_INCOME_TCR 0.012242 0.000132 Is recipient working for income Categorical
EBV_SEROSTATUS 0.012180 0.000122 Recipient’s status of Epstein-Barr virus Categorical
PRE_TX_TXFUS 0.012018 0.001369 Did recipient receive transfusion Categorical

After one-hot encoding the categrocial features in this reduced dataset, the final number of columns
before training was 171.

6.2.1 Discussion of Features

As can be seen in the Table 6.1, the graft’s survival time is significantly influenced by the recipient’s
age. This finding aligns with expectations, as age often plays a pivotal role in various medical conditions.
Similarly, HLA mismatch (described in Section 2.2.1.1) emerges as a crucial determinant of graft survival
time.

In addition to age and HLA mismatch, variables reflecting the recipient’s overall health, such as BMI
and functional status (ability to perform daily activities), are prominent features in determining graft
survival time. Medical histories of both the recipient and donor, including conditions like diabetes and
hepatitis, also play a role.

Unexpectedly, certain columns, such as PRI_PAYMENT_TCR_KI and WORK_INCOME_TCR, reflecting
the patient’s financial status, are included among the most influential factors. A possible explanation for
this could be that patients with greater financial security can access better medical care, thus increasing
their chances of survival. Additionally, these patients may afford healthier lifestyle choices, such as
improved diet and exercise.

6.3 Hyperparameter Tuning

While for training of the initial models and feature selection, the dataset has been split only into
training and test sets, with 80% of the dataset being reserved for training and 20% for testing. For
hyperparameter tuning, the dataset has been split into three folds: training, validation and test sets, with

CHAPTER 6. MODEL TRAINING 42

the ratio being 70% for training, and 15% for validation and testing each. See Section 1.2.1 for why this
was done.

After experimenting with different combinations of hyperparameters using grid search (described in
Section 1.2.4), the optimal parameters were found to be:

n_estimators=200

min_samples_split=10

min_samples_leaf=15

max_depth=None.

Using these hyperparameters and the reduced list of features, the RSF model achieved an accuracy given
by the C-index of 0.638.

6.4 Model’s Capabilities

Once trained, the model can be used to predict survival functions, as well as cumulative hazard
functions of allografts based on the information regarding the recipient and the donor, as listed in Table
6.1. In addition, the model can also be used to predict a risk score R, which is given by

R (x) =
n∑

j=1

He
(
t j | x

)
(6.1)

where x is an input feature vector, ti represents the unique event times in the training data, n is the
total number of unique event times in the training data, and He (t | x) is the ensemble cumulative hazard
function defined in (4.3) [16]. This risk score could be a good way to quantify the compatibility between
a potential donor-recipient pairing.

Illustrated in Figure 6.1 and Figure 6.2 are predicted survival functions, cumulative hazard functions,
and risk scores of five randomly selected samples from the test set. In the case they were censored, the
dotted line represents their observed time of censoration, else, the dashed line represents the time of graft
failure.

0 2000 4000 6000 8000 10000 12000
Time in days

0.0

0.5

1.0

1.5

2.0

2.5

Cu
m

ul
at

iv
e

ha
za

rd

Risk score
9277
3016
11717
1830
4379

Observed survival time
Event
Censored

Observed survival time
Event
Censored

Figure 6.2: Predicted cumulative hazard functions

CHAPTER 6. MODEL TRAINING 43

0 2000 4000 6000 8000 10000 12000
Time in days

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk score
9277
3016
11717
1830
4379

Observed survival time
Event
Censored

Observed survival time
Event
Censored

Figure 6.1: Predicted survival functions

6.4.1 Model’s Limitation

With increasing time, both the predicted survival and hazard functions eventually flatten, which is an
inaccuracy of the model as survival curves cannot stay constant forever and must eventually decline to
zero.

The plateauing of both of the curves is caused by the limited amount of samples belonging to the
individual terminal nodes of the survival trees. More specifically, this limitation is caused by the high
amount of censoring in the dataset with 55% in the complete Kidney_Pancreas dataset and 61% in
the Kipan_Living dataset. This results in situations where many censored individuals are grouped in a
terminal node while their censoring time extends beyond the last unique event time in the given terminal
node. Consequently, the computed survival functions, using the Kaplan-Meier estimator in each survival
tree, maintain a constant nonzero value beyond the last unique event time.

Chapter 7

Model Evaluation

7.1 General Evaluation

The accuracy of the model given by the C-index is lower than the one developed in [5] which had
a C-index of 0.724. The reasons for include the fact that they used predictors that are unknown until
the transplantation itself. One such example is the cold ischemia time, which describes the time the graft
spends outside the body of both the donor and recipient. This feature in particular has a significant impact
on the recipient’s survival prospects, thus giving their model a significant boost in accuracy. However,
as mentioned before, the goal of this study is to develop a machine learning model that can be used
for computing compatibility in order to match the suitable pairs of recipients and donors and therefore
should only use information that is knows prior to the transplantation. Thus, the model developed in [5],
while more accurate in predicting survival time, is not suitable for such a task.

7.1.1 Important Features

As discussed in Section 6.2.1, the age of the recipient is by far the biggest factor influencing the
graft’s survival time. The impact of the recipient’s age on survival time can also be validated using the
Kaplan-Meier estimator (described in Section 3.2.1). In Figure 7.1, survival curves were computed by
selecting 1000 random samples from the test set for each age group: 0-14, 15-29, 30-44, 45-59, 60+.
Next, survival curves of these cohorts were computed with the Kaplan-Meier estimator using observed
survival times and censoring status.

44

CHAPTER 7. MODEL EVALUATION 45

0 2000 4000 6000 8000 10000 12000
Time in days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Recipient age
0-14
15-29
30-44
45-59
60-74

Figure 7.1: Kaplan-Meier survival curves by age group

From observation, age exhibits little influence on the graft’s survival in the age groups 0-59 and
only begins to have a significant impact in the 60+ age cohort. This trend can also be observed on
the predictions made by the RSF model. Plotted in Figure 7.2 are averages of 1000 survival functions
predicted for each of the age cohort using the same samples as for computing the survival curve in Figure
7.1.

0 2000 4000 6000 8000 10000 12000
Time in days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Recipient age
0-14
15-29
30-44
45-59
60-74

Figure 7.2: Averaged RSF predictions by age

Another feature with a significant variable importance is HLA mismatch (described in Section 2.2.1.1).
By grouping samples by the level of their HLA mismatch and computing their survival curves using the
Kaplan-Meier estimator. It can be observed in Figure 7.3 that recipients with zero HLA mismatches have
more optimistic survival curves than others. It can also be observed that survival curves of recipients with
few (but more than one) mismatches do not differ significantly from the survival curves of recipients with

CHAPTER 7. MODEL EVALUATION 46

higher mismatch levels. Also visible in Figure 7.3, the distance between the survival curves of patients
with some HLA mismatches and the ones without, seems to grow larger with time suggesting that HLA
mismatch level is important not only for preventing acute rejections, but also for long term survival.

It is also important to note that zero HLA mismatch level is in practice mostly found only between
identical twins as the chances of finding a perfectly matched unrelated (or related, but not identical
twin) donor are extremely low. This is because HLA genes are inherited from parents and the number
of different alleles is very high. This would therefore suggest that patients receiving a graft from their
identical twin have a significantly higher chances of survival, while HLA mismatch does not seem to play
a big factor for unrelated donor-recipient pairings as these, in practice, attain HLA mismatch greater than
zero.

0 2000 4000 6000 8000 10000 12000
Time in days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

HLAMIS
0
1
2
3
4
5

Figure 7.3: Kaplan-Meier survival curves by HLA mismatch

This also holds true for the predictions made by the RSF model (see Figure 7.4), which were com-
puted by grouping the entries from the test set by their HLA mismatch, and then averaging the predictions
made for each of the subsets. Note that the model’s predictions start to deviate from the observed survival
curves in Figure 7.3 around the 6000 days mark, which is a result of the plateauing effect described in
Section 6.4.1.

CHAPTER 7. MODEL EVALUATION 47

0 2000 4000 6000 8000 10000 12000
Time in days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

HLAMIS
0
1
2
3
4
5

Figure 7.4: Averaged RSF predictions by HLA mismatch

7.1.2 Comparison to Conventional Models

The Cox Regression model (described in Section 3.2.3) fitted onto the same dataset had a C-index
of 0.619, meaning that the random forests model clearly outperforms Cox regression when making pre-
dictions based on the features listed in Table 6.1. Though it is important to note, that the Cox regression
model took a significantly less amount of time to fit and had considerably lesser memory requirements
in comparison to the RSF model. This prompts the question as to whether such added computational
complexity is worth the improved accuracy.

7.2 Performance on Different Population Samples

In order to investigate the influence of ethnic background on the outcome of a kidney transplantation,
the dataset has been grouped by the ETHCAT and ETHCAT_DON categories representing the recipient’s and
the donor’s ethnic categories respectively. Within the UNOS dataset, individuals are divided into 7 cate-
gories: White, Black, Hispanic, Asian, Native American, Pacific Islander and Multiracial. Consequently,
the dataset was divided into 49 subsets. To ensure adequate sample sizes, only 10 subsets with the most
entries were selected for further investigation. The selected subsets are listed in Table 7.1.

CHAPTER 7. MODEL EVALUATION 48

Table 7.1: Ethnicities of recipients and donors

ETHCAT ETHCAT_DON N. of entries

white white 111515
hispanic hispanic 19054
black black 18308
asian asian 4323
hispanic white 4169
black white 3989
white hispanic 3045
asian white 1866
white black 1045
white asian 751

Plotting the calculated Kaplan-Meier survival curves on a graph (see Figure 7.5) reveals that there
are slight differences between the different groups. Namely, pairings where at least one from the donor-
recipient pairing was Asian, had a more favorable survival curve. On the other hand, pairings where
either the donor or the recipient were Black, had a slightly less favorable survival curve than the others.

0 2000 4000 6000 8000 10000 12000
Time in days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ethnicity
white-white
hispanic-hispanic
black-black
asian-asian
hispanic-white
black-white
white-hispanic
asian-white
white-black
white-asian

Figure 7.5: Kaplan-Meier survival curves by ethnicity

This is even more visible when focusing solely on the pairings where the recipient was white (see
Figure 7.6). Also in Figure 7.6, it can be observed that transplantations between different ethnic cate-
gories in general perform no worse or better than transplantations between the same ethnic group.

CHAPTER 7. MODEL EVALUATION 49

0 2000 4000 6000 8000 10000 12000
Time in days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ethnicity
white-white
white-hispanic
white-black
white-asian

Figure 7.6: Kaplan-Meier survival curves: white recipients

These trends can also be observed on the predictions made by the RSF model (see Figure 7.7).

0 2000 4000 6000 8000 10000 12000
Time in days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

HLAMIS
white-white
black-black
hispanic-hispanic
asian-asian

Figure 7.7: Averaged RSF predictions by ethnicity

7.3 Usage for Computing Compatibility

The RSF model could be used in cases where there is one patient looking for a donor and multi-
ple donors are available. The model would assess their compatibility by calculating the risk score of
each of the possible pairings. The pairing with the lowest risk score could be subsequently chosen for
transplantation.

Following is an example of how the model could be used for computing compatibility and thus assist
in the decision-making process of choosing the best donor-recipient paring.

CHAPTER 7. MODEL EVALUATION 50

7.3.1 Practical Application

Table 7.2 contains information about a random patient, Table 7.3 contains information about 5 pos-
sible donors along with a risk score predicted by the RSF model, given that the donor’s kidney was to be
selected for the transplantation. The donor-recipient pairing with the lowest rick score would be selected
for transplantation.

Table 7.2: Patient Information
Column Value

CREAT_TRR 6.82
AGE 57
END_BMI_CALC 28.30
DAYSWAIT_CHRON_KI 211
TOT_SERUM_ALBUM 3.50
DAYSWAIT_ALLOC 211
PREV_TX_ANY N
ON_DIALYSIS Y
DIAB 2
WORK_INCOME_TCR Y
PRI_PAYMENT_TCR_KI 1
PRE_TX_TXFUS N
PERIP_VASC Y
ETHCAT 1
FUNC_STAT_TCR 2090
HCV_SEROSTATUS N
HIST_CIG N
EBV_SEROSTATUS P
DIAG_KI 3069

Table 7.3: Donor information + Risk Score predicted by RSF
AGE_DON HLAMIS KI_CREAT_PREOP ETHCAT_DON DIABETES_DON Risk Score

1 23 3 0.86 2 N 7036
2 30 3 0.86 1 N 7665
3 45 4 0.90 1 N 7878
4 49 0 0.90 1 N 5603
5 41 6 1.00 2 N 7734

In this case, the donor number 4 would be selected.

7.3.2 Age Bias

On the other hand, a situation for which the model might not be suited for is a case where there are
multiple patients and one (or more) donor(s). If the model were to be used to find the best match in this
scenario, the model would tend to select the youngest patient and discriminate against older patients as
the recipient’s age is the most important feature influencing the graft’s survival time (as shown in Section
7.1.1). This however, could result in scenarios where a donor could be the best possible match for an
elderly recipient by all other measures but the recipient’s age, while for the younger patient, even better
suited match might be found in the near future, however the model would still rank the younger patient
as the best match solely because of his age.

CHAPTER 7. MODEL EVALUATION 51

Taking age out of the equation would not be a good solution as that would seriously damper the
models accuracy. There also might be important correlations between age and other features. Preferably,
the resulting risk score could be weighted based on the recipients age, e.g., if R̃ were to denote the
adjusted risk score, R the risk score predicted by the RSF model, w a weight and x the pairing’s feature
vector, then the weighted risk score could be given by

R̃ (x) = w (x) · R (x) (7.1)

where w could, for example, be defined as

w (x) =
(

x(AGE)

c

)−1

(7.2)

where x(AGE) is the recipient’s age attribute of the feature vector and c could be a constant such as the
life expectancy in the given region.

However, as illustrated in Figure 7.1, the recipient’s age only begins to play a factor in the 60+ age
group. Therefore, using the formula suggested in (7.1) may put younger patients at a disadvantage, when
compared to middle-aged patients. Consequently, an alternative solution could be to subtract a certain
amount from the risk score of patients belonging to the 60+ age cohort. Using the same notation as
before, the adjusted risk score could be given by

R̃ (x) =

R (x) if x(AGE) < 60
R (x) − c else

(7.3)

where c could be the difference between the average risk in the 0 − 59 and 60 age cohorts. The average
risk score of both of the cohorts was calculated by sampling 1000 samples from each of the cohorts,
calculating a risk score for each of the samples, and finally taking their averages. The resulting difference
in average risk scores is

c = R̂0−59 − R̂60+ = 2269 (7.4)

where R̂n represent the average risk score of the n age cohort.

7.4 Possibilities for Future Research

In spite of the RSF model’s demonstrated superiority in accuracy in comparison to the Cox Regres-
sion method, which is commonly used for kidney transplant survival estimation, the C-index value of
0.638 indicates that the model is still far from being a reliable predictor. Therefore, a future research
could focus on enhancing the model’s accuracy by altering the model’s algorithm or by working with
higher quality data. For example, the UNOS dataset contains detailed medical information obtained at
the time of transplantation along with abundant follow-up data. However, for the purposes of this study, a
more expansive dataset regarding the pre-transplantation state of both the donor and the recipient would
be advantageous. Consequently, a potential future research could entail gathering of such data.

Furthermore, it can also be expected, that future models will naturally improve their prediction accu-
racy due to the availability of larger quantities of non-censored as well as high-quality data.

Additionally, it may prove worthwhile to adapt the model for scenarios involving multiple donors
and recipients, extending beyond the suggestions outlined in Section 7.3.2.

Conclusion

The increasing prevalence of the end-stage kidney disease imposes a great strain on the healthcare
system. With the demand for kidneys greatly exceeding the supply, patients have to undergo months,
sometimes even years of dialysis waiting list. Consequently, effective matchmaking of recipient parings
is of the utmost importance, not only to ensure that people don’t return to the waiting list but, even more
importantly, to prevent premature deaths. Finding pairings that will ensure the longest possible survival
time is crucial for achieving this goal. This however, is no easy task as there are complex factors affecting
the compatibility of donors and patients, many of which may be currently unaccounted for.

Machine learning demonstrates a promising solution to this problem. As exemplified in this study,
the random forests model, a machine learning model that builds on the foundation of survival analysis,
outperforms the conventionally used Cox proportional hazards model in terms of the accuracy of pre-
dicted survival prospects following a renal transplantation. The random survival forest has the ability
to evaluate the quality of a potential match based on either the predicted survival or cumulative hazard
functions, and could thus be used as a part of the decision-making process of choosing the optimal donor-
recipient pairing. In particular, the risk score derived from the cumulative hazard function could be used
to quantify the compatibility between a recipient and a potential donor, given that any potential biases
are addressed. As demonstrated, these models could also serve as a tool for examining the influence of
various factors on the outcome of renal transplantations, both short-term and long-term.

Although further research is required to improve the model’s reliability to a level suitable for clinical
adoption, the model even in its premature stages is still able to reveal insights into the determinants
impacting graft survival following renal transplantations.

52

Bibliography

[1] S. J. Knechtle, L. P. Marson, P. J. Morris, Kidney Transplantation: Principles and Practice, Else-
vier, 2020.

[2] B. J. Nankivell, D. R. Kuypers, Diagnosis and prevention of chronic kidney allograft loss, The
Lancet, Vol. 378, Issue 9800, 2011, 1428-1437.

[3] S. Senanayake, N. White, N. Graves, H. Healy, K. Baboolal, S. Kularatna, Machine learn-
ing in predicting graft failure following kidney transplantation: A systematic review of pub-
lished predictive models, International Journal of Medical Informatics, Vol. 130, 2019, 103957,
https://www.sciencedirect.com/science/article/pii/S1386505619302977

[4] D.D. Aufhauser Jr., et al., Impact of prolonged dialysis prior to renal transplantation. Clin Trans-
plant, 2018 Jun, 32(6):e13260.

[5] E. Mark, D. Goldsman, B. Gurbaxani, P. Keskinocak, J. Sokol, Using machine learning and an
ensemble of methods to predict kidney transplant survival. PLoS ONE 14(1), 2019, e0209068,
https://doi.org/10.1371/journal.pone.0209068

[6] A. Burkov, The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

[7] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 2nd Edition.
O’Reilly Media, 2019.

[8] M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning. MIT Press, 2018.

[9] C. Strobl, A. Boulesteix, A. Zeileis, T. Hothorn, Bias in random forest variable importance mea-
sures: illustrations, sources and a solution. BMC Bioinformatics. 2007 Jan 25;8:25.

[10] L. Breiman, Random Forests, Machine Learning, 45, 5-32, 2001

[11] V. Jha, et al., Chronic kidney disease: global dimension and perspectives, Lancet, 2013.

[12] D. R. Cox, D. Oakes, Analysis of Survival Data. Chapman & Hall, 1984.

[13] H. Ishwaran, U. B. Kogalur, E. H. Blackstone. M. S. Lauer, Random survival forests. Ann. Appl.
Stat. 2 (3) 841 - 860, September 2008.

[14] Google Developers, Machine Learning Crash Course, https://developers.google.com/
machine-learning/crash-course

[15] D. G. Kleinbaum, M. Klein, Survival Analysis: A Self-Learning Text 3rd Edition. Springer, 2012.

53

https://www.sciencedirect.com/science/article/pii/S1386505619302977
https://doi.org/10.1371/journal.pone.0209068
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course

[16] S. Pölsterl, scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn. Jour-
nal of Machine Learning Research, vol. 21, no. 212, pp. 1–6, 2020.

[17] Pedregosa et al., Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.

[18] Github, The state of open source software. https://octoverse.github.com/2022/
top-programming-languages

[19] Python Software Foundation, Python Documentation, https://docs.python.org/3/

[20] The Python Wiki, https://wiki.python.org/moin/

[21] Pavel Strachota, HELIOS cluster documentation, http://helios.fjfi.cvut.cz/

[22] Project Jupyter, Jupyter Notebook Documentation, https://jupyter-notebook.
readthedocs.io/en/latest/notebook.html

[23] The pandas development team, Pandas, https://pandas.pydata.org/about/

[24] NumPy Developers, NumPy, https://numpy.org/doc/stable/user/absolute_
beginners.html

[25] Matplotlib Development Team, Matplotlib, https://matplotlib.org/

[26] S. Krikov et. al., Predicting Kidney Transplant Survival Using Tree-Based Modeling. ASAIO Jour-
nal 53(5):p 592-600, September 2007.

[27] National Kidney Foundation, A to Z Health Guide, https://www.kidney.org/atoz/content

[28] Jiang AT, BHSc, Rowe N, Sener A, Luke P. Simultaneous pancreas-kidney transplantation: The
role in the treatment of type 1 diabetes and end-stage renal disease. Can Urol Assoc J. 2014
Mar;8(3-4)

[29] Shi X, Lv J, Han W, Zhong X, Xie X, Su B, Ding J. What is the impact of human leukocyte antigen
mismatching on graft survival and mortality in renal transplantation? A meta-analysis of 23 cohort
studies involving 486,608 recipients. BMC Nephrol. 2018 May 18;19(1):116.

54

https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://docs.python.org/3/
https://wiki.python.org/moin/
http://helios.fjfi.cvut.cz/
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html
https://pandas.pydata.org/about/
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://matplotlib.org/
https://www.kidney.org/atoz/content

	Introduction
	Machine Learning
	General Overview of Machine Learning
	Classification of Machine Learning Models

	Building a Machine Learning Model
	Data Preprocessing
	Evaluating Performance
	Feature Selection
	Hyperparameter Tuning

	Decision Trees and Random Forests
	Decision Trees
	Ensemble Learning and Random Forests

	Renal Transplantation
	Chronic Kidney Disease
	Current Strategies for Assessing Donor-Recipient Compatibility
	HLA Typing

	Goals

	Survival Analysis
	Introduction to Survival Analysis
	Data Censoring
	Survival and Hazard Functions
	Hazard Ratio

	Survival Analysis Methods
	Kaplan-Meier Estimator
	Log-rank Test
	Cox Regression

	Random Survival Forests
	Building a Random Survival Forests Model
	Hyperparameters
	Harrell's Concordance Index
	Calculating Harrell's Concordance Index

	Permutation Variable Importance
	Other Methods

	Data and Software Architecture
	Data Acquisition
	Software Architecture
	Python
	Jupyter Notebook
	scikit-learn and scikit-survival
	Other Libraries
	Cluster Computing

	Model Training
	Data Preprocessing
	Separating Living and Deceased Donors
	Reducing Number of Features
	Ensuring Correct Formatting
	Imputing Missing Values
	Feature Encoding

	Feature Selection
	Discussion of Features

	Hyperparameter Tuning
	Model's Capabilities
	Model's Limitation

	Model Evaluation
	General Evaluation
	Important Features
	Comparison to Conventional Models

	Performance on Different Population Samples
	Usage for Computing Compatibility
	Practical Application
	Age Bias

	Possibilities for Future Research

	Conclusion

