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Introduction

In numerical mathematics, it is often necessary to approximate a gradient of a scalar function f .
One possible way to achieve this is to discretize the domain Γ of the problem by the means of a
mesh and then compute a discrete approximation of ∇ f , denoted ∇h f , based on this mesh.

Various types of meshes exist, some more suitable than others for certain tasks. Our main concern
will be triangular and polyhedral meshes. Triangular meshes are easy to manipulate, but compu-
tations on them may be slow due to the high amount of cells required to cover certain domains.
Polyhedral meshes are more flexible and are often used to discretize more complex domains. This
Bachelor project focuses exclusively on two-dimensional triangular meshes because of their in-
herent simplicity which can be exploited in calculations.

The main objective of this Bachelor project is to optimize polyhedral meshes with respect to the
finite volume method gradient approximation. Our goal is to alter the geometry of meshes in
such manner that the finite volume approximation differs from the analytical gradient as little as
possible. We do not want to change the topology of the meshes at all. We often forbid movement
of border vertices. This constraint maintains consistency not only in topology, but also the meshed
domain remains the same.

The means to achieving our goal will be mainly the C++ library TNL, [4], and specifically its tools
for manipulating meshes, [6], [7].

In the first chapter, some necessary pieces of theory are introduced and the objective of the Bach-
elor project is formulated in mathematical language as an optimization problem with the objective
function L, generally referred to as a loss function.

The second chapter introduces gradient descent, both as a method for solving general optimization
problems, and as a method tailored specifically for our mesh optimization.

The third chapter then elaborates on different ways of evaluating the gradient ∇L, a crucial element
for effective gradient descent.

Continuing with the fourth chapter, we explore implementation of meshes in TNL. We also present
the code where we implement the solution of the problem as discussed in prior chapters.

Finally, the fifth chapter shows sample computations performed by the programs developed in
chapter four. For this, we utilize a mesh generating software, [3], as well as some visualization
tools, [10], [11].

Two appendices are also provided. They further enhance the text, but are not essential for under-
standing its gist.
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Chapter 1

Optimization problem

As was stated in the introduction, the goal of this Bachelor project is to optimize a mesh for
the finite volume gradient approximation of a function f : Rn → R, so that the finite volume
approximation is as close to the real (sometimes referred to as "analytical") gradient as possible,
under the constraint that topology of the mesh is not altered. Another logical request would be not
to alter the meshed domain. This is easily achievable by the means of the library TNL.

In other words we minimize the difference of the analytical gradient ∇ f and its numerical approx-
imation ∇h f . Precisely, we calculate

argmin
y∈2Γ

L (1.1)

where the loss function L is defined as L(y) ≡ ∥∇h f (y)−∇ f (y)∥2. y represents all possible meshes
on the domain Γ which satisfy other arbitrary constraints. This argmin L = y∗ is an abstract
representation of an optimal mesh with respect to the finite volume gradient approximation ∇h f ,
considering all the constraints employed.

We intend to find this optimal configuration using a gradient descent method which converges to
y∗. In order to achieve this, some necessary theory will be presented in the first part of this Chapter.
In the rest of it, we will examine the optimization problem closer.

The following definitions and theorems are formulated to suit the scope of this Bachelor project,
i.e. not necessarily as generally as possible.

1.1 Unstructured Meshes

Meshes are used in numerical mathematics as means of discretization of a domain. They consist of
cells which are bordered by faces. Faces are manifolds bordered by the points (or vertices, nodes)
of the mesh, just like in Figure 1.1. The following definitions are generally based on [6] and [7].

Definition 1 (Mesh). A mesh is a collection of geometric objects arranged in such manner, that
they cover a certain subset of Rn.

The aforementioned objects are generally referred to as mesh entities.

If for two mesh entities E1, E2, it holds that E2 ⊂ E1, we refer to E2 as to a subentity of E1.
Similarly, under these conditions E1 is a superentity of E2.

13



CHAPTER 1. OPTIMIZATION PROBLEM 14

v0 v1

v2

v3

f0

f1

f2

f3 C

Figure 1.1: Example of mesh entities, C denotes a cell, fi stands for faces and v j for vertices.

Dimension of the mesh is a number N0 ∋ n = max
{
d | d is the dimension of a mesh entity

}
.

The n−dimensional entities of an n−dimensional mesh are referred to as cells, the (n−1)−dimensional
ones are faces and the 0−dimensional entities are vertices.

Remark. To put the terms sub- and superentity into perspective, let us consider Figure 1.1 one
more time. All the other entities are subentities of C. C is a superentity of all the other entities.
The vertices v1 and v2 are subentities of the face f1. f2 is a superentity of v2 and v3 etc. This
concept is refered to as incidence of mesh entities.

Definition 2 (Mesh entities’ incidence). Mesh entities E1, E2 are incident if

• E1 is a subentity of E2, or

• E1 is a superentity of E2.

One way of systemizing meshes is discerning structured and unstructured ones.

• Structured meshes are such, whose entities can be numbered in a way, that each entity’s
location is exactly given by this number.

• Unstructured meshes do not have the structured property described above. Vertices of un-
structured meshes are subentities of a variable number of superentities.

Another possible systemization is by the shape of the cells. Let us consider a 2D mesh, which
can be triangular, quadrangular or polygonal. The first two options are self-explanatory, a polyg-
onal mesh is such, whose cells are general polygons in 2D (some of them may be triangles or
quadrangles). For examples, see Figure 1.2.

This Bachelor project is dealing with unstructured triangular meshes.

1.2 Generalized Stokes’ Theorem

Next, let us introduce a well known theorem, which is, however, central to the idea of finite volume
method, and allows us to derive an elegant gradient approximation.

Theorem 1 (Generalized Stokes’ Theorem, scalar field gradient case). Let Ω ⊂ Rn be an open
connected space, f : Ω→ R be a scalar field. Then∫

Ω

∇ f =
∫
∂Ω

n f ,
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Figure 1.2: A structured quadrangular mesh on the left and an unstructured triangular mesh on
the right hand side. The cells of the triangular meshes have different sizes and rotations and it is
not possible to determine their locations by numbering them.

where n is the unit outward normal vector to ∂Ω.

Remark. The following formulation suits the application in this Bachelor project better. Let
V be an n-dimensional volume and S ≡ ∂V be the (n − 1)-dimensional surface of V such that
S ≡

⋃m
j=1 σ

j, then ∫
V
∇ f dV =

∫
S

n f dS =
∑
σ⊂S

∫
σ

n f dS =
m∑

j=1

∫
σ j

n f dS .

1.3 Approximation of ∇ f

Let us approximate both sides of the equation in Theorem 1. The process relies on the following
theorem.

Theorem 2 (First integral mean value theorem). Let f : [a, b] → R be a continuous function.
Then there exists c ∈ (a, b) such that∫ b

a
f (x)dx = f (c) · (b − a) (1.2)

Remark. The Theorem 2 can be generalized to Rn. Instead of the interval [a, b], consider an open,
convex subset Γ ⊂ Rn. Then, there exists c ∈ Γ such that

∫
Γ

f = f (c) · m(n)(Γ), where m(n) denotes
the n−dimensional Lebsegue measure.

Remark. Theorem 2 assures that one can approximate an integral of a continuous function by that
function’s value somewhere in the integration domain. In practice, this point x∗ is not computed
exactly, but rather chosen arbitrarily. The choice is not necessarily accurate and this is what creates
an approximation error in this process.

It is, however, possible to decrease this error by choosing a denser mesh with smaller cells. Given
that our arbitrary choice xc lies within the same cell as x∗, these two are getting closer as the cell
gets smaller.

For the left hand side, we obtain ∫
V
∇ f dV ≈ ∇ f (x∗)m(n)(V),
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where x∗ ∈ V is an n-dimensional analogue of the point c ∈ (a, b) from Theorem 2 and m(n) denotes
the n-dimensional Lebesgue measure (for mesh applications, this is mostly volume or surface).

For the right hand side, the approximation goes like∫
∂V

n f dS ≈
∑
σ⊂S

m(n−1)(σ) f (xσ)nσ (1.3)

where m(n−1) denotes n− 1-dimensional Lebesgue measure and xσ is an arbitrarily chosen point in
the surface σ, again based on Theorem 2.

Since measures of mesh entities are easy to obtain via TNL’s template function getEntityMeasure
and normals nσ and function values f

(
xσ

)
can be computed using plain C++ (or TNL) arithmetic

functions, the only thing we do not know is ∇ f
(
x∗

)
, which can thus be expressed simply by com-

paring the equations 1.2 and 1.3, resulting in

∇ f
(
x∗

)
≈

1
m(n)

∑
σ∈S

m(n−1) f
(
xσ

)
n (1.4)

where n is the unit outward normal vector to the face σ. An implementation of this approximation
for a triangular mesh is listed in section 4.2.

1.4 A closer look at the Optimization problem

Now that we have derived ∇h f , an approximation of the gradient ∇ f , let us explore ways to
optimize the mesh for it. For this reason, we will now reformulate the function L from L=L(y),
where y represents a mesh to L=L(x1, . . . , xN), where xi is a vertex of the mesh y.

Let ∥·∥ ≡ ∥·∥2, N be the number of vertices of a 2-dimensional triangular mesh. As per [6], each cell
Ci is bordered by faces σi0, σi1, σi2 with corresponding vectorsσi0 = xi2 − xi1, σi1 = xi0 − xi2 and
σi2 = xi1 − xi0 respectively, i.e. face vectors point counter clockwise and the face σi j is opposite
to the point xij in each respective cell, as shown in Figure 1.3 below.

Let f be a scalar function f : Rn → R, superscript denotes index of a vector, subscript denotes a
vector component.

In the following text, we minimize the loss function

L(x1, ..., xN) =
N∑

i=1

∥∇h f (xi) − ∇ f (xi)∥2,

where

∇h f
(
xi
)
=

1
m(2)(Ci)

∑
σ

m(1)(σ) f
(
xσ

)
nσ

is the gradient approximation described in section 1.3.

Specifically in case of a triangular mesh
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xi0

xi1

xi2

σi2

σi0

σi1
Ci

Figure 1.3: A single triangular cell. The numbering of the entities is in line with TNL’s implemen-
tation, according to [6].

∇h f
(
xi
)
=

1
m(2)(Ci)

2∑
j=0

m(1)(σ j) f
(
xσ

j)
nσ

j
.

At times, the notation f (xi) ≡ f i will be used for the sake of clarity and fitting the text in a page.

To perform the optimization, we calculate

∇L(x1, ..., xN),

which is a vector of 2N components, i.e. dimension of the problem times number of vectors in the
mesh we want to optimize, or 2 components for each xi, i ∈ {1, ...,N}.

This requires us to obtain partial derivatives of all the following functions1:

• m(2) : R2 × R2 × R2 → R+0 ,

• m(1) : R2 × R2 → R+0 ,

• n : R2 × R2 → R2,

• xσ : R2 × R2 → R2

• f : R2 → R.

The derivatives are to be understood in a sense that ∂k1 is the partial derivative by the first compo-

nent of the k-th vertex of the mesh, as shown in Figure 1.4. This way, a vector
(
∂k1xk

∂k2xk

)
represents

a translation of a single vertex in direction of ∇L. Calculation of these derivatives is conducted in
the Appendix Appendix A.

1Note that we are using the very same formulae which are implemented in TNL to compute these values. There are
of course multiple ways to obtain e.g. measure of a 2D triangle. For more insight into implementation, see [5].
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xk

∂k1
∂k2

xk +

(
ε

0

)
xk +

(
0
ε

)

Figure 1.4: A scheme of ∂k1 and ∂k2 .

m(2)(Ci) denotes the 2D Lebesgue measure of a cell. In the triangular case m(2)(Ci) = 1
2 |detAi|,

where Ai is a 2 × 2 matrix of any two vectors representing the triangle’s faces.

m(1)(σ) is the length of a triangle’s face σ. An intuitive approach is to use the L2 norm, meaning

m(1)(σi j) = ∥xi(j+2)%3 − xi(j+1)%3∥ =
((

xi(j+2)%3
1 − xi(j+1)%3

1
)2
+

(
xi(j+2)%3

2 − xi(j+1)%3
2
)2
) 1

2 .

n denotes a unit outward normal to a face σij = xi(j+2)%3 − xi(j+1)%3. This means that n(σij) =
1
∥σi j∥

 σij
2

−σij
1

. In deed, the dot product n · σij = σij
1σ

ij
2 − σ

ij
1σ

ij
2 = 0.

xσij
is the center of σi j, that is xσij

= 1
2
(
xi(j+1)%3 + xi(j+2)%3).



Chapter 2

Gradient descent solution

2.1 Gradient descent in general

A robust way to solve the optimization problem 1.1 is to employ a gradient descent method.
In general, gradient descent methods can find a function’s extrema by exploiting the fact that a
gradient vector ∇ f always points in the direction of the fastest growth of f . They generate a
sequence {yn}∞n=1 which converges to the function’s extreme y∗. To find a minimum, we choose an
arbitrary y1, evaluate ∇ f (y1) and generate y2 like y2 ≡ y1 − ∇ f (y1).

An improvement of the basic idea is to introduce a relaxation parameter, let us denote it λ, whose
function is to control the speed of the convergence of the algorithm. A good choice of λ can result
in significantly faster convergence, one such case is illustrated in Figure 2.1. The black ellipses
demonstrate the function’s contour lines and the minimum is in y∗. The red trajectory demonstrates
the process of gradient descent with a poor choice of λ, while the blue trajectory converges faster
due to a well-chosen λ, which restricts the step size and ensures faster convergence.

y1

y2

y3

y4

y5

y∗ ŷ2

ŷ3

ŷ4

ŷ5

Figure 2.1: Two possible sequences of gradient descent steps with different choices of the λ pa-
rameter. Some choices result in faster convergence than others.

All in all, a gradient descent method which converges to a minimum of the function f generates a
convergent sequence {yn}∞n=1 which follows the recurrent formula below.

yn+1 ≡ yn − λ∇ f (yn) (2.1)

19



CHAPTER 2. GRADIENT DESCENT SOLUTION 20

In a computer implementation, we cannot compute an infinite amount of steps. Instead, we set a
stop condition and the computation stops when this condition is satisfied. Let us assume the stop
condition was satisfied in step k. We then consider yk to be the minimum. The exact choice of
stop condition determines how accurate this consideration is.

2.2 Gradient descent for our problem

Our aim is now to perform this process on L. For that, we need its gradient, ∇L. ∇L can be
computed using three different approaches:

• analytical differentiation of the numerical scheme introduced in section 3.1, the results are
summarized in subsection 3.1.1 and the calculations which lead to those results are described
in Appendix A in detail,

• approximating derivatives of L based on the so called finite differences, further explained in
section 3.2,

• utilizing the library autodiff [8] to obtain the partial derivatives of L using automatic differ-
entiation as described in 3.3.

Since ∇L is a 2N-dimensional vector, for i ∈ N̂, the vector
(
∇L2i

∇L2i+1

)
gives the direction of the

fastest growth of L, given only the position of the vertex xi is altered. This is displayed in Fig-
ure 2.2. The opposite vector thus denotes the direction in which a gradient descent method moves
individual vertices in order to minimize L.

xi

xj

xk

xl

xm

(
∇L2i

∇L2i+1

)

Figure 2.2: Components of ∇L ∈ R2N displayed as N vectors ∈ R2.

The following flowchart, Figure 2.3, represents a gradient descent method’s workflow.

Figure 2.3 is a high level overview of what each of the three presented approaches does. The
main difference among them is how they achieve the step "Compute ∇Lini". This is dealt with in
chapter 3.
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Start

Compute Lini,
compute ∇Lini

Compute ∇Lini

Perform a
step of GD

Compute Lnew

Lnew ≤Lini Lnew 7→ Lini

Stop

YES

NO

Figure 2.3: Gradient descent method workflow.



Chapter 3

Computation of ∇L

In this chapter, we examine different methods of evaluating ∇L.

3.1 Analytical approach

Perhaps the most intuitive approach to obtain a gradient is to manually calculate formulae for
derivatives of the loss function L by all its variables, evaluate them in certain points and arrange
the results in a vector.

It is apparent that this approach is very inefficient because for each individual numerical scheme
and any choice of the loss function, the derivatives need to be calculated again, which is a tedious
and error-prone process. The calculations need to be redone whenever one wants to optimize
meshes with a different topology or switch from 2D to 3D.

Having concluded all the calculations, one also has to implement them correctly, which is, again,
an error-prone process. The other two approaches to mesh optimization described in Sections 3.2
and 3.3 effectively eliminate these difficulties.

The desired partial derivatives are now presented as formulae. Their detailed calculation can be
found in Appendix A.

3.1.1 Formulae

3.1.1.1 ∂k1:

∂k1xσ
ij
=


1

2

0

 if k1 = i(( j + 1)%3) or k = i(( j + 2)%3)

0 else

,

∂k1m(1)(σij) =


1
∥σij∥
σij

1 if k1 = i(( j + 2)%3)

− 1
∥σij∥
σij

1 if k1 = i(( j + 1)%3)

0 else

,

22



CHAPTER 3. COMPUTATION OF ∇L 23

∂k1nij =



− 1
2∥σij∥3

2σij
1

σij
2

−σij
1

 + 1
∥σij∥

 0
−1

 if k1 = i(( j + 2)%3)

− 1
2∥σij∥3

2σij
1 · (−1) ·

σij
2

−σij
1

 + 1
∥σij∥

01
 if k1 = i(( j + 1)%3)

0 else

,

∂k1m(2)(Ci) =


1
2 S

(
− xi1

2 + xi2
2
)

if k1 = i0
1
2 S

(
− xi2

2 + xi0
2
)

if k1 = i1
1
2 S

(
− xi0

2 + xi1
2
)

if k1 = i2
0 else

,

∂k1

(
m(2)(Ci)

)−1
=



−1

2
(
m(2)(Ci)

)2 S
(
− xi1

2 + xi2
2
)

if k1 = i0

−1

2
(
m(2)(Ci)

)2 S
(
− xi2

2 + xi0
2
)

if k1 = i1

−1

2
(
m(2)(Ci)

)2 S
(
− xi0

2 + xi1
2
)

if k1 = i2

0 else

,

3.1.1.2 ∂k2:

∂k2xσ
i j
=


0

1
2

 if k2 = i(( j + 2)%3) or k2 = i(( j + 1)%3)

0 else

,

∂k2m(1)(σij) =


2
∥σij∥
σij

2 if k2 = i(( j + 2)%3)

− 2
∥σij∥
σij

2 if k2 = i(( j + 1)%3)

0 else

,

∂k2nij =



− 1
2∥σij∥3

2σij
2

σij
2

−σij
1

 + 1
∥σij∥

10
 if k2 = i(( j + 2)%3)

− 1
2∥σij∥3

2σij
1 · (−1) ·

σij
2

−σij
1

 + 1
∥σij∥

−1
0

 if k2 = i(( j + 1)%3)

0 else

,

∂k2m(2)(Ci) =


1
2 S

(
− xi2

1 + xi1
1
)

if k2 = i0
1
2 S

(
xi2

1 − xi0
2
)

if k2 = i1
1
2 S

(
− xi1

1 + xi0
1
)

if k2 = i2
0 else

,
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∂k2

(
m(2)(Ci)

)−1
=



−1

2
(
m(2)(Ci)

)2 S
(
− xi2

1 + xi1
1
)

if k2 = i0

−1

2
(
m(2)(Ci)

)2 S
(
xi2

1 − xi0
2
)

if k2 = i1

−1

2
(
m(2)(Ci)

)2 S
(
− xi1

1 + xi0
1
)

if k2 = i2

0 else

.

3.1.1.3 Derivatives of L(x1, ..., xN)

If we start differentiating L, we obtain

∂k1 L(x1, ..., xN) = 2
N∑

i=1

(
∂k1

(
∇h f i)

1 ·
[
∇h f i − ∇ f i]

1 + ∂k1

(
∇h f i)

2 ·
[
∇h f i − ∇ f i]

2

)
.

Since ∇h f i is a product of four functions, it has to be differentiated accordingly. For f , g, h, i
functions of x, the following holds:

∂x( fghi) = (∂x f )(ghi) + (∂xg)( f hi) + (∂xh)( fgi) + (∂xi)( fgh).

That implies

∂k1∇h f i = ∂k1

(
1

m(2)(Ci)

) 2∑
j=0

m(1)(σ j) fσ
j
nσ

j
+

1
m(2)(Ci)

2∑
j=0

∂k1

(
m(1)(σ j)

)
fσ

j
nσ

j

+
1

m(2)(Ci)

2∑
j=0

m(1)(σ j)∂k1

(
fσ

j)
nσ

j
+

1
m(2)(Ci)

2∑
j=0

m(1)(σ j) fσ
j
∂k1

(
nσ

j)
.

Since fσ
j
≡ f (xσij

) is a compound function, the definitive formula which will later be used for
implementation is

∂k1∇h f i = ∂k1

(
1

m(2)(Ci)

) 2∑
j=0

m(1)(σ j) fσ
j
nσ

j
+

1
m(2)(Ci)

2∑
j=0

∂k1

(
m(1)(σ j)

)
fσ

j
nσ

j

+
1

m(2)(Ci)

2∑
j=0

m(1)(σ j) · ∇
(
f (xσ

j
)
)
· ∂k1xσ

j
· nσ

j
+

1
m(2)(Ci)

2∑
j=0

m(1)(σ j) fσ
j
∂k1

(
nσ

j)
.

Each multiplication is to be interpreted as multiplication of matrices, where scalars are s ∈ R1,1,
∇ f ∈ R1,2 and all the other vectors v ∈ R2,1. The immediate result of this is that ∂k1∇h f i is a well
defined scalar, because ∇ f · v ∈ R1,1. Another possible interpretation would be that ∇ f · v is a dot
product of two vectors from R2.

We can calculate the other partial derivative in a similar fashion,

∂k2∇h f i = ∂k2

(
1

m(2)(Ci)

) 2∑
j=0

m(1)(σ j) fσ
j
nσ

j
+

1
m(2)(Ci)

2∑
j=0

∂k2

(
m(1)(σ j)

)
fσ

j
nσ

j
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+
1

m(2)(Ci)

2∑
j=0

m(1)(σ j) · ∇
(
f (xσ

j
)
)
· ∂k2xσ

j
· nσ

j
+

1
m(2)(Ci)

2∑
j=0

m(1)(σ j) fσ
j
∂k2

(
nσ

j)
.

3.1.2 Verification of the calculations

Since some of the partial derivatives in subsection 3.1.1 are fairly complicated, we decided to
check the handcalculated results with results of numerical computations done by the python pack-
age MyGrad [9].

The procedure in general consisted of defining the derivatives’ formulae, plugging random values
in them and comparing them with numerical differentiation done by MyGrad. For clarity, we
present a snippet of the code, namely a part used to check if the derivatives of m(1) were calculated
correctly. The rest of the code is at disposal at [13] in the file autodiff.ipynb.

# importing packages
import numpy as np
import mygrad as mg
import random as rn

# defining necessary functions
# Kronecker delta
def delta( first, second ):
if( first is second ): return 1
else: return 0

# m^(1)
def m(x00, x01, x10, x11):
return mg.sqrt((x00-x10)**2+(x01-x11)**2)

# 1st partial derivative
def dm1(x00, x01, x10, x11, j):
return 1/m(x00, x01, x10, x11) * (x10-x00) * (delta(x10, j) - delta(x00, j))

# 2nd partial derivative
def dm2(x00, x01, x10, x11, j):
return 1/m(x00, x01, x10, x11) * (x11-x01) * (delta(x11, j) - delta(x01, j))

# checking if the analytical and numerical derivatives
# vary by more than 10e-6, which should imply equality
count = 0
for i in range(1000):
x00 = mg.tensor(rn.random()*100)
x01 = mg.tensor(rn.random()*100)
x10 = mg.tensor(rn.random()*100)
x11 = mg.tensor(rn.random()*100)
ms = m(x00, x01, x10, x11)
ms.backward()
num = x00.grad
difference = mg.abs(num - mg.tensor( dm1( x00, x01, x10, x11, x00 ) ) )
if( difference > 0.000001 ):
print( difference )
print( ’for values x00:’ + str(x00) + ’, x01: ’ + str(x01) + ’, x10: ’ +

str(x10) + ’, x11: ’ + str(x11) )
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count += 1
print( count )

If count == 0 after a thousand random picks of x00, x01, x10, x11, we could safely conclude
that the calculations described in subsection 3.1.1 were in deed correct.

Interestingly enough, not only was the value of difference never above 10e-6, for which we
tested in the first place, but we also never encountered one different from Tensor(0.), which is
zero in terms of mygrad’s Tensor data type.

We took similar approach to check whether all individual derivatives were implemented correctly
in C++. For this, we used the library autodiff [8].

3.2 Finite difference approach

This way of gradient approximation, referred to as finite difference, is, among others, discussed in
[1], Chapter 10.10, and in [2] in Chapter 8.1.

Let us illustrate the approach on a function u : R2 → R, u = u(x, y). Then, a partial derivative of u
can be obtained in the following manner

∂xu(x, y) = lim
ε→0

u(x + ε, y) − u(x, y)
ε

.

The finite difference mimics the limit by computing a similar fraction

∂xu(x, y) = δxu(x, y) + O(ε) ≡
u(x + ε, y) − u(x, y)

ε
+ O(ε),

where e.g. ε ≡ 10−6, 10−8, 10−10, 10−12, . . .

3.3 Automatic differentiation approach

This section is heavily based on the information presented in [2], chapter 8.2.

There are multiple ways to perform automatic differentiation. In this appendix, we will briefly
describe them and outline their advantages and drawbacks.

In general, this technique exploits the fact, that all elementary functions can be evaluated using a
tree of simple binary or unary operations. The binary operations are

• addition,

• subtraction,

• multiplication,

• division,

• power

and the unary operations include e.g.

• trigonometric functions,
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• exponential, logarithm,

• . . .

A compound function can then be evaluated using a forward sweep through a tree of the operations
above (which is specific for each individual function), a procedure shown in Figure 3.1. The vector
(a, b) where we evaluate the function is called a seed vector.

f (a, b) = x6

x6 = x4 + x5

x4 = x2 · x3

x3 = sin(x1)

x1 = a

x2 = b

x5 = x2 · x2

x2 = b x2 = b

Figure 3.1: Evaluation of a function f (x1, x2) = x2 sin(x1) + x2
2 at the point (a, b). This procedure

is refered to as a forward sweep. The vector (a, b) is called a seed vector.

This idea can be taken one step further by evaluating a certain derivative at each node as well.

Another important ingredient is, of course, the chain rule, which states that for a function u
(
v(x)

)
,

where v(x) ∈ Rn, u
(
v(x)

)
∈ Rm, the following holds:

∂(u ◦ v) j

∂xi
(a) =

m∑
k=1

∂u j

∂vk

(
v(a)

)∂vk
∂x j

(a).

Finally, we do know how to differentiate each of the unary and binary operations presented above.

3.3.1 Forward mode

Knowing the facts above allows us to efficiently compute partial derivatives with the forward
autodiff technique. Let us demonstrate on an example, where we aim to obtain ∂ f

∂x1
(a, b). In

a forward sweep, we can evaluate ∂
∂x1

at every seed node using well known rules for ordinary
derivatives of elementary functions and operations allowed in the evaluation true. These rules
include:
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•
(
f + g

)′
= f ′ + g′,

•
(
f · g

)′
= f ′g + g′ f ,

•
(
xk)′ = kxk−1,

•
(
sin(x)

)′
= cos(x) and other differential trigonometric identities,

•
(
ex)′ = ex.

In a forward sweep, these derivatives propagate further into the tree using the chain rule and
leading up to (in this case) ∂

∂x6
. For a better visualization, let us show this in Table 3.1 and in a tree

in Figure 3.2.

x1 = a
.

x1 = 1

x2 = b
.

x2 = 0

x3 = sin(a)
.

x3 = cos(a) ·
.
a = cos(a) · 1

x4 = x2 · x3 = bx3
.

x4 = x2
.

x3 +
.

x2x3 = b cos(a) + 0

x5 = x2 · x2
.

x5 =
.

x2x2 + x2
.

x2 = 0 + 0

x6 = x4 + x5
.

x6 =
.

x4 +
.

x5 = b cos(a)

Table 3.1: Evaluating derivatives which lead to ∂ f
∂x1

(a, b) in a forward sweep.
.
y ≡

∂y
∂x1

(a).

Another way to gain an insight into the forward autodiff process would be to write the derivative
like this

∂

∂x1

(
x2 sin(x1) + x2

2

)
=

∂

∂ sin(x1)

(
x2 sin(x1) + x2

2

)
·
∂

∂x1

(
sin(x1)

)
= x2 · cos(x1)

∂x1

∂x1
= x2 cos(x1),

where the zero derivatives are already omitted.

3.3.2 Reverse mode

In the forward mode, the denominator of the derivative ∂y∂x1
was fixed and denoted

.
y. In the reverse

mode we denote e.g. ∂ f
∂y ≡ y, or in other words, we fix the numerator. The seed is f = ∂ f

∂ f = 1
in the top node. For the reverse mode to work, a tree of function evalutaion must exist before
the computation, so it is necessary to evaluate the function itself by a forward sweep (without
evaluating the dotted derivatives).

The evaluation of the tree then goes top to bottom and returns the whole gradient ∇ f (which in
this case is the vector

(
∂ f
∂x1
,
∂ f
∂x2

)
) after a single sweep.

The process is demonstrated in Figure 3.3. At the beginning, we set x6 ≡ 1 and all the other
derivatives with a bar to be 0. The top derivatives then propagate to the bottom with the aim to
evaluate a and b, the two components of ∇ f (a, b).

3.3.3 Comparision of the modes

For a scalar function f : Rn → R, the forward mode only returns one of the n derivatives needed
to assemble a gradient vector after each sweep. The reverse mode on the other hand returns the
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f (a, b) = x6
∂ f
∂x1

(a, b) = b cos(a)

x6 = x4 + x5
.

x6 = b cos(a)

x4 = x2 · x3
.

x4 = b cos(a)

x3 = sin(x1)
.

x3 = cos(a)

x1 = a
.

x1 = 1

x2 = b
.

x2 = 0

x5 = x2 · x2
.

x5 = 0

x2 = b
.

x2 = 0
x2 = b
.

x2 = 0

Figure 3.2: Evaluation of ∂ f
∂x1

(a, b) using a forward sweep.

whole gradient after a single reverse sweep. The reverse mode, however, requires that the function
evaluation tree is stored in the computer’s memory. Depending on the exact value of n, individual
functions and implementations of autodiff algorithms, this may or may not be more efficient than
executing multiple forward sweeps.

For vector functions (which are by no means in scope of this Bachelor project) F : Rn → Rm, the
derivative DF(x) is an m × n matrix. A single forward sweep gives a column of this matrix (note
that this works for m ≡ 1 as well) while a reverse sweep gives a row. Thus for m significantly
larger than n, the forward mode is generally more efficient. This efficiency further depends on the
exact implementation.
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f (a, b) = x6
x6 = 1

x6 = x4 + x5
x4+ = x6
x5+ = x6

x4 = x2 · x3
x3+ = bx4
b+ = x3x4

x3 = sin(x1)
a+ = x3 cos(a)

x1 = a
a = b cos(a)

x2 = b
b = sin(a) + 2b

x5 = x2 · x2
b+ = 2bx5

x2 = b
b = sin(a) + 2b

Figure 3.3: Evaluation of ∂ f
∂x1

(a, b) using a reverse sweep.



Chapter 4

Implementation

In this chapter, we present the code in which we implemented an algorithm to optimize meshes
for computation of the gradient approximation from section 1.3.

The first section 4.1 is dedicated to describing how meshes are dealt with in the TNL library based
on [6] and [7].

In the rest of the chapter, our own code is presented. Since there is a lot of template use, the code
contains more whitespaces than usual to allow for faster orientation.

4.1 TNL

4.1.1 Non-mesh data structures

Apart from meshes, which will be described in subsection 4.1.2, TNL implements other data
structures which allow for quick and effortless work. In the context of this Bachelor project, they
are mostly template classes TNL::Containers::Array and TNL::Containers::Vector.

Array functions similarly to plain C++, as it is a simple container for a certain number of vari-
ables of the same type. It serves as a base data structure for TNL meshes and matrices [5]. All
infromation about a mesh is stored using Array (either plain or as a matrix).

A Vector extends Array with simple element-wise arithmetics, e.g.

TNL::Containers::Vector< double, TNL::Devices::Host > u = { 1.0, 2.0, 3.14 };
std::cout << u << "\n";

TNL::Containers::Vector< double, TNL::Devices::Host > v;
v = 2 * u;
std::cout << v << "\n";

The code snippet above prints

[ 1, 2, 3.14 ]
[ 2, 4, 6.28 ].

31
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4.1.2 Meshes

TNL supports a data structure for unstructured meshes, as well as several vital operations on this
structure, which include:

• getEntitiesCount() to return the amount of entities of chosen dimension,

• getSubentityIndex() to return an index of a subentity with respect to its superentity,

• getEntityCenter() to return central point of an entity (cell or face),

• getEntityMeasure() to return measure of an entity (cell or face),

• . . .

We only mentioned some of the functions which are often used in this Bachelor project. A com-
plete list of mesh functions is best accessible at [5].

If a mesh is not constant, it is possible to manipulate its points via mesh.getPoints(), which
returns a TNL::Containers::Vector of all the points, where index of a mesh point matches its
index in the Vector.

The data structure, whose implementation is described in [7] in detail, contains information about

• coordinates of the mesh’s vertices,

• incidence of individual entities,

• neighboring cells,

• boundary tags.

Knowledge of this information is enough to unequivocally represent the stored mesh. The data
structure is briefly described in the rest of this section.

4.1.2.1 Vertex coordinates

The vertices are saved in a TNL::Containers::Array of m · n elements, where m is the number
of vertices and n their dimension. Components of xk are stored in elements k · m, . . . , k · m + n, as
is illustrated in Figure 4.1.

. . .x0
0 x0

1 x0
2 x1

0 x1
1 x1

2 xm−1
0 xm−1

1 xm−1
2

x0 x1 xm−1x2, . . . , xm−2

Figure 4.1: Illustration of an array of mesh vertices.

Vertices are the only entities whose exact coordinates need to be saved, since all other entities
consist of vertices. The rest of the mesh can be recovered from knowledge of incidence of the
remaining entities.

4.1.2.2 Incidence

The information about incidence of entities is stored in a binary incidence matrix, let us denote
it Id1,d2 , which has a row for each d1-dimensional entity (e.g. cell) and a column for each d2-
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dimensional entity (e.g. face). Then
(
Id1,d2

)
j,k
= 1 if the j-th d1 dimensional and the k-th d2

dimensional entity are incident (i.g. if the face fk is a subentity of the cell C j) and else,
(
Id1,d2

)
j,k
=

0. A sample mesh and its incidence matrices are illustrated in Figure 4.2. The illustrated matrices
can be transposed to present an inverse relationship between subentities and their superentities,
Id1,d2 = I

T
d2,d1

[6].

C1

C2

v1 v2

v3v4

f1

f3

f2f4

f5

C1 C2

f1 1 0

f2 0 1

f3 0 1

f4 1 0

f5 1 1

C1 C2

v1 1 0
v2 1 1
v3 0 1
v4 1 1

f1 f2 f3 f4 f5
v1 1 0 0 1 0
v2 1 1 0 0 1
v3 0 1 1 0 0
v4 0 0 1 1 1

Figure 4.2: A simple mesh and its incidence matrices.

The implementation [7] uses Ellpack matrices for incidence of subentities and Sliced Ellpack
matrices for superentities. These are implemented in TNL::Matrices [5].

4.1.2.3 Neighboring cells

A cell C1 is called a neighbor of cell C2 (and vice versa) if their intersection C1∩C2 , ∅ is a mesh
entity. As per [7], in TNL, this relationship is represented by an adjacency matrix A. A is a binary
square matrix which has a row and a column for each cell of the mesh. It follows Ai, j = 1 if the
cells Ci and C j are neighbors and Ai, j = 0 else. In Figure 4.3, a simple mesh is presented along
with its adjacency matrix.

4.1.2.4 Boundary tag

A cell’s boundary tag refers to whether the cell is a border cell or an interior one. The boundary
tag of a cell is determined by the faces of that cell. If a face belongs to two or more cells, it is an
interior face, else (if it is a subset of only a single cell) the face is a boundary face. If any of the
cell’s faces is a boundary face, then the cell is a boundary cell [7]. We illustrate this in Figure 4.4,
where border faces are red and interior ones are blue. The cell C1 is written in red (a border cell),
because its subentity f1 is a border face.
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C1

C2

C3

C4

C5

C6

A=



1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1


Figure 4.3: An example mesh and its adjacency matrix.

C1

f1

C2

Figure 4.4: The cell C1 has the face f1, which is not subentity of any other cell. Therefore, f1
is a boundary face and C1 is a boundary cell. The cell C2, on the other hand, does not have this
property, all its faces are also subentities of other cells. That is why C2 is an interior cell.

4.2 Computation of ∇h f

In the next listing, we present the code we wrote to compute the finite volume approximation of
∇ f which was discussed in section 1.3. The approximated gradient ∇h f is computed and stored in
a TNL::Containers::Vector. Only the most essential part of the code is listed, the whole code
is accessible at [13] in the file numgrad.cpp.

++ttrmdef@ulttxr.ansittrmde f @ulttxr.

// the function f whose gradient we approximate
template< typename V >
double f( V v )
{
double x = v[0];
double y = v[1];

return x*x*y*y;
}
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// manually computed gradient of the function above to check approximation
accuracy

template< typename V >
V angrad( V v )
{
double x = v[0];
double y = v[1];

V grad = { 0, 0 };
grad[0] = 2*x*y*y;
grad[1] = 2*x*x*y;
return grad;

}

template< typename MeshConfig >
bool grad( const Mesh< MeshConfig, Devices::Host >& mesh, const std::string&

fileName )
{
... code intentionally left out ...

for( int i = 0; i < cellsCount; i++ )
{
auto cell = mesh.template getEntity< MeshType::getMeshDimension() >( i );
PointType sum = { 0, 0 };
for( int j = 0; j < 3; j++ )
{
const auto faceIdx = cell.template getSubentityIndex<

MeshType::getMeshDimension() - 1 >( j );
const auto sigma = mesh.template getEntity<

MeshType::getMeshDimension() - 1 >( faceIdx );

PointType faceVector = mesh.getPoint( cell.template getSubentityIndex<
0 > ( (j+2)%3 ))

- mesh.getPoint( cell.template getSubentityIndex< 0
> ( (j+1)%3 ));

PointType outwardNormal = normalize< PointType >( { faceVector[1],
-faceVector[0] } );

PointType x_sigma = getEntityCenter( mesh, sigma );

double f_sigma = f< PointType >( x_sigma );
sum += getEntityMeasure( mesh, sigma ) * f_sigma * outwardNormal;

}

PointType cellCenter = getEntityCenter( mesh, cell);
analytical[ i ] = angrad< PointType >( cellCenter );

PointType grad = ( 1.0 / getEntityMeasure( mesh, cell ) ) * sum;
grads[ i ] = grad;

}

double error = 0;
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for(int i = 0; i < cellsCount; i++)
{
PointType localError = grads[ i ] - analytical[ i ];
error += l2Norm( localError );

}

return true;
}

4.3 Computation of ∇L and Gradient Descent

As we have shown in chapter 3, there are three different approaches to evaluating ∇L. In this
section, we present implementations of those computations.

4.3.1 Implementation of the Analytical approach

The formulae and their verification were presented in section 3.1. We, however, did not manage to
obtain a convergent gradient descent algorithm. Either we made a mistake in the implementation
or the formulae result in too big of a numerical error in C++. The reader is invited to see the
file opti2.cpp at [13], which summarizes what we managed to implement to the best of our
knowledge and belief.

4.3.2 Implementation of the Finite difference approach

As was stated in section 3.2, our aim here is to compute a fraction which approximates the partial
derivatives with an error of O(ε), like this:

∂xu(x, y) = δxu(x, y) + O(ε) ≡
u(x + ε, y) − u(x, y)

ε
+ O(ε),

where e.g. ε ≡ 10−6, 10−8, 10−10, 10−12, . . .

For a function v : Rn → R, v = v(x1, . . . , xn), the approximation can be generalized in the following
manner:

∂v

∂xi
(x) = ∂iv(x) ≈ δiv(x) ≡

v(x + εei) − v(x)
ε

,

where ei is a unit vector in the direction xi and again ε = 10−6, . . . , 10−12.

C++ does not offer much higher precision by its nature and the accuracy of approximation of
a derivative using a finite difference does not necessarily increase with smaller ε, even though
values as small as 10−16 can be used in C++. This is the result of the fact, that the finite difference
represents a slope of a secant line which, as ε → 0, approaches the tangent line of a function,
whose slope is the derivative. With smaller ε, the secant line is closer to the tangent, but computer’s
rounding errors increase.

The accuracy of such computation is illustrated in Table 4.1. The values are rounded using
std::setprecision(8) and written in the same format in which C++ returns them.

The code used for computation of the table is accessible at [13] in the file diff_testground.cpp.
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f x2 − 2x + 3

x 1 2 3 10 100
d
dx 0 2 4 18 198

δ−4
x 9.9999999e-05 2.0001 4.0001 18.0001 198.0001

δ−6
x 1.0000889e-06 2.000001 4.000001 18.000001 198

δ−8
x 0 2 4 18.000001 197.99991

δ−10
x 0 2.0000002 4.0000003 18.000037 197.997

δ−12
x 0 2.0001778 4.0003556 18.005153 196.45086

Table 4.1: Comparison of ∂x (or dx, the procedure works the same) and δx for various values of ε.
δkx stands for δx, where ε = 10−k.

We chose f (x) = x2 − 2x + 3, because the functions we aim to differentiate are fractions of
polynomials and do not grow significantly more rapidly than this one.

The optimal value which suffers neither from bad approximation of the tangent (e.g. for ε > 10−4),
nor too large rounding errors (ε < 10−12) appears to be "somewhere in the middle", in this case
ε = 10−8, but this number may vary for other functions. It also matters whether the derivative is
small or large. For derivatives ≈ 0, smaller ε works better, for large derivatives, larger ε is the
correct pick.

Overall, we found ε ∈
[
10−6, 10−10] is a good choice which leads to a stable and convergent

gradient descent.

Below, we present the code for a single iteration of the optimization algorithm. Once again,
we only list certain essential parts of the code and leave the rest accessible at [13] in the file
nablaDef.cpp. To automate the process and create an optimization algorithm, it is sufficient to
close the whole code in a loop and choose a stop condition.

The code utilizes lambda functions and TNL’s parallel for cycles, functions forAll and forInterior
(there is also forBoundary, but that one is not required here), to iterate over all (or all interior)
mesh entities of chosen dimension. If the code is run on a CPU (TNL::Devices::Host), this
functionality makes the work easier for a programmer who does not have to write a for cycle
manually. If one uses TNL::Devices::CUDA instead, these cycles work in parallel and accelerate
the computation.

// loss function
template< typename t >
double L( Containers::Vector< t >& nabla_h,

Containers::Vector< t >& nabla )
{
double L = 0.0;
for( int i = 0; i < nabla_h.getSize(); i++ )
{
L += l2Norm( nabla_h[ i ] - nabla[ i ] ) * l2Norm( nabla_h[ i ] - nabla[

i ] );
}
return L;

}
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const double EPSILON = 1e-8;

// a single iteration of gradient descent
template< typename MeshConfig >
bool nablaDef( Mesh< MeshConfig, Devices::Host >& mesh, const std::string&

fileName )
{
... left out part of the code ...

auto get_nabla_h = [ &mesh, &nabla_h, &nabla ] ( GlobalIndexType i ) mutable
{
auto cell = mesh.template getEntity< MeshType::getMeshDimension() >( i );
PointType sum = { 0, 0 };
for( int j = 0; j < 3; j++ )
{
const auto faceIdx = cell.template getSubentityIndex<

MeshType::getMeshDimension() - 1 >( j );
const auto sigma = mesh.template getEntity<

MeshType::getMeshDimension() - 1 >( faceIdx );

PointType faceVector = mesh.getPoint( cell.template getSubentityIndex<
0 > ( (j+2) % 3 ) )

- mesh.getPoint( cell.template getSubentityIndex< 0
> ( (j+1) % 3 ) );

PointType outwardNormal = normalize< PointType >( { faceVector[ 1 ],
-faceVector[ 0 ] } );

PointType x_sigma = getEntityCenter( mesh, sigma );

double f_sigma = f< PointType >( x_sigma );
sum += getEntityMeasure( mesh, sigma ) * f_sigma * outwardNormal;

}

PointType grad_h = ( 1.0 / getEntityMeasure( mesh, cell ) ) * sum;
PointType grad = angrad< PointType >( getEntityCenter( mesh, cell ) );

for( int j = 0; j < 3; j++ )
{
int globalPointIdx = cell.template getSubentityIndex< 0 >( j );
nabla[ globalPointIdx ] += grad;
nabla_h[ globalPointIdx ] += grad_h;

}
};
mesh.template forAll< MeshType::getMeshDimension() >( get_nabla_h );

// initializing perturbed vectors
Containers::Vector< PointType > nabla_h_eps ( verticesCount );
Containers::Vector< PointType > nabla_eps ( verticesCount );
nabla_h_eps = 0;
nabla_eps = 0;
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auto get_nabla_h_eps = [ &mesh, &nabla_h_eps, &nabla_eps ] ( GlobalIndexType
i ) mutable

{
auto cell = mesh.template getEntity< MeshType::getMeshDimension() >( i );
PointType sum = { 0, 0 };
for( int j = 0; j < 3; j++ )
{
const auto faceIdx = cell.template getSubentityIndex<

MeshType::getMeshDimension() - 1 >( j );
const auto sigma = mesh.template getEntity<

MeshType::getMeshDimension() - 1 >( faceIdx );

PointType faceVector = mesh.getPoint( cell.template getSubentityIndex<
0 > ( (j+2) % 3 ) )

- mesh.getPoint( cell.template getSubentityIndex< 0
> ( (j+1) % 3 ) );

PointType outwardNormal = normalize< PointType >( { faceVector[ 1 ],
-faceVector[ 0 ] } );

PointType x_sigma = getEntityCenter( mesh, sigma );

double f_sigma = f< PointType >( x_sigma );
sum += getEntityMeasure( mesh, sigma ) * f_sigma * outwardNormal;

}

PointType grad_h = ( 1.0 / getEntityMeasure( mesh, cell ) ) * sum;
PointType grad = angrad< PointType >( getEntityCenter( mesh, cell ) );

for( int j = 0; j < 3; j++ )
{
int globalPointIdx = cell.template getSubentityIndex< 0 >( j );
nabla_eps[ globalPointIdx ] += grad;
nabla_h_eps[ globalPointIdx ] += grad_h;

}
};

// computing L(mesh)
double loss = L< PointType >( nabla_h, nabla );

// giving the points vector value of respective vertices
Containers::Vector< PointType > nabla_mesh( verticesCount );
nabla_mesh = 0;

auto kernel = [ &mesh, &nabla_mesh, &nabla_h, &nabla, &nabla_h_eps,
&nabla_eps, get_nabla_h_eps ] ( GlobalIndexType i ) mutable

{
// first partial derivative
PointType eps0 = { EPSILON, 0 };
mesh.getPoints()[ i ] += eps0;
mesh.template forAll< MeshType::getMeshDimension() >( get_nabla_h_eps );
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nabla_mesh[ i ][ 0 ] = ( L< PointType >( nabla_h_eps, nabla_eps) - L<
PointType >( nabla_h, nabla ) ) / EPSILON;

mesh.getPoints()[ i ] -= eps0;
nabla_h_eps = 0;
nabla_eps = 0;

// second partial derivative
PointType eps1 = { 0, EPSILON };
mesh.getPoints()[ i ] += eps1;
mesh.template forAll< MeshType::getMeshDimension() >( get_nabla_h_eps );
nabla_mesh[ i ][ 1 ] = ( L< PointType >( nabla_h_eps, nabla_eps) - L<

PointType >( nabla_h, nabla ) ) / EPSILON;
mesh.getPoints()[ i ] -= eps1;
nabla_h_eps = 0;
nabla_eps = 0;

};
mesh.template forAll< 0 >( kernel );

Containers::Array< double > nabla_arr( 3 * verticesCount );
nabla_arr = 0;
for( int i = 0; i < 3 * verticesCount; i += 3 )
{
nabla_arr[ i ] = nabla_mesh[ i / 3 ][ 0 ];
nabla_arr[ i + 1 ] = nabla_mesh[ i / 3 ][ 1 ];

}

// performing the gradient descent itself
auto descent = [ &mesh, &nabla_mesh ] ( GlobalIndexType i ) mutable
{
mesh.getPoints()[ i ] -= 1e-4 * nabla_mesh[ i ]; // TODO change parameter

};
mesh.template forInterior< 0 >( descent );

... another part which is not listed ...

return true;
}

4.3.3 Implementation of the Automatic differentiation approach

Using the C++ library autodiff, [8], one can obtain partial derivatives of a multivariable function
(e.g. our loss function L) in certain points of its domain (e.g. vertices of a mesh) utilizing the
technique of automatic differentiation.

A function gradient() for direct gradient computation is also implemented. This function re-
turns an instance of ArrayXreal (or ArrayXdual), which is a data structure based on ArrayX
from the library Eigen [12]. This, of course, allows usage of Eigen’s methods to manipulate the
result. On the other hand, there are compatibility issues among Eigen’s and TNL’s exclusive data
structures and functions which need to be taken care of.

An illustrative example of usage of the autodiff library is presented below:
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#include <iostream>
#include <autodiff/forward/dual.hpp>
#include <autodiff/forward/dual/eigen.hpp>
using namespace autodiff;

dual h( const ArrayXdual& x )
{
return sqrt( ( x * x ).sum() );

}

int main()
{
using Eigen::VectorXd;

ArrayXdual x(5);
x << 1, 2, 3, 4, 5;

dual u;

VectorXd nabla = gradient( h, wrt(x), at(x), u );

std::cout << "u = " << u << "\n";
std::cout << "nabla = \n" << nabla << "\n";

return 0;
}

Having obtained the gradient vector in this fairly simple manner, one can perform a single step of
gradient descent and iterate this process until a stop condition is met.

Unfortunately, we did not manage to overcome all the compatibility issues between TNL and
autodiff (or TNL and Eigen, which is the foundation of autodiff) to produce consistent results
without errors. Our best attempt at doing so, including implementation of TNL’s mesh functions
using the means of the autodiff and Eigen libraries, can be seen at [13] in the file nablaAuto.cpp
and we consider it a task to be dealt with in the future.



Chapter 5

Computational study

In this section, we present some illustrative results of the implementations from chapter 4. The
parameters for each computation are:

• initial mesh (number of cells, faces, vertices etc.),

• f , the scalar function whose gradient we approximate,

• λ, the relaxation parameter.

Plots of f on the meshed region are also displayed for comparison/formulation of expectations,
since the algorithm tends to make the mesh denser in areas where f has relatively larger gradients
than elsewhere. The plots were made using the python library matplotlib [10].

Three illustrative results using the finite difference method (4.3.2) are presented.

The stop condition of the algorithm is set as L(before iteration) − L(after iteration)
?
< 10−14. If the

condition is met, the algorithm stops and returns the resulting mesh.

For all computations, ε ≡ 10−8 was used. This seemed like the best fit for the functions we used.
It is very much possible that if one chose a different set of functions, other values of ε would result
in faster convergence, as discussed in 4.3.2.

5.1 Visualization of computed gradients

Before presenting actual optimized meshes, we show how the ∇L looks. We chose the sine func-
tion whose plot is well known and gives a good intuition of where ∇ f should have high values and
thus differ from ∇h f .

∇L for the sine function is shown in Figure 5.1 using Paraview [11]. The figure is in line with our
intuition that the individual vectors formed from components of ∇L are symmetrical around origin
both in norm and in direction.
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Figure 5.1: ∇L for the sine function, above as colormap of norms, below as actual vectors in
(opposite of) whose direction the vertices move in the course of our optimization algorithm.
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5.2 Sine function on a stripe

For the first computation, let f (x, y) = sin(x). The mesh is a stripe along the x axis which is shown
in Figure 5.2. This mesh is then slightly perturbed by the program described in Appendix B,
resulting mesh is in the bottom half of Figure 5.2.

Figure 5.2: The initial stripe mesh and the same mesh with interior vertices randomly perturbed.

As expected, the optimal mesh denses up periodically around the roots of the sine function x = kπ
where the gradient (derivative in this case) is the largest. The optimized meshes are shown in
Figure 5.3, where in the first case, all vertices moved, in the second case, only the interior vertices
were allowed to move.

The parameters of the computations are presented in the following tables, Table 5.1 and Table 5.2.

λ 10−4

Lini 7.61763
L f inal 0.641525

iterations to converge 1186

Table 5.1: Parameters of the computation on a stripe, where all the vertices were allowed to move
(Figure 5.3, top mesh).

5.3 Gaussian on a rectangle

Next, let us consider a 2D Gaussian, f (x, y) = e−x2−y2 . The mesh is a rectangle [−1, 1] × [0, 1], as
shown in Figure 5.4.
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λ 10−4

Lini 7.61763
L f inal 0.932091

iterations to converge 932

Table 5.2: Parameters of the computation on a stripe, where only the interior vertices were allowed
to move (Figure 5.3, bottom mesh).

Figure 5.3: Optimized meshes. In the top one, all vertices were allowed to move, in the bottom
one, the border vertices were fixed. In both cases, the optimized meshes are dense in areas where
the sine function has derivative ≈ 1, whereas they are relatively sparse in areas with derivatives of
sine function ≈ 0.

The optimization procedure resulted in meshes displayed in Figure 5.5, with movement of border
vertices prohibited in the top case and allowed in the bottom case. In Table 5.3 and Table 5.4, we
present parameters of the computations.

Geometrically, it is apparent that both optimized meshes are dense around a circle with a diameter
d < 1. The Gaussian’s growth is the most rapid in this area1 and it is thus logical, that the mesh

1See the bottom picture in Figure 5.5 for intuition. A more thorough approach would be to examine the second
order derivative of the Gaussian to see where its first order derivatives change fast. From this process, one can conclude
that we expect smaller approximation errors right at the origin and very far away from the origin. We expect the mesh
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Figure 5.4: The initial rectangular mesh and the same mesh with interior vertices randomly per-
turbed.

λ 10−4

Lini 0.0475275
L f inal 0.0097512

iterations to converge 1755

Table 5.3: Parameters of the computation on a stripe, where only the interior vertices were allowed
to move (Figure 5.5, top mesh).

λ 10−4

Lini 0.0475275
L f inal 0.000325888

iterations to converge 22166

Table 5.4: Parameters of the computation on a stripe, where all the vertices were allowed to move
(Figure 5.5, bottom mesh).

needs to be dense there to reflect this fact and allow for a better gradient approximation. On the
rectangular mesh from this section, we can obviously only see the top half of this annulus.

5.4 Gaussian on a square

The following example is perhaps even more visual. Once again, our f is the Gaussian, f (x, y) =
e−x2−y2 , but this time, the meshed region is the square [−2, 2]× [−2, 2]. Once again, we can clearly

to dense up in an annulus with center in the origin.



CHAPTER 5. COMPUTATIONAL STUDY 47

see the mesh densing up in a circle around the origin, where f has a high value of the second order
derivative. In the immediate neighborhood of the origin, the second derivative of f is smaller and
the approximation works fine on relatively larger cells.

The initial mesh is in Figure 5.6, the optimized meshes (one where all the vertices could move and
one where the movement of the boundary vertices was prohibited) are then in Figure 5.7.

Tables Table 5.5 and Table 5.6 summarize parameters of the computations.

λ 10−4

Lini 0.0646745
L f inal 0.0022915

iterations to converge 37083

Table 5.5: Parameters of the computation on a square, where only the interior vertices were al-
lowed to move (Figure 5.7, left mesh).

λ 10−4

Lini 0.0646745
L f inal 0.000868945

iterations to converge 94647

Table 5.6: Parameters of the computation on a square, where all the vertices were allowed to move
(Figure 5.7, right mesh).

5.5 Improvement of L quantified

Other than intuitively seeing that a mesh becomes denser where we expected it to, we can, of
course, benchmark the process of improvement quantitatively by checking how the values of the
loss function L have decreased throughout the run of the program. In other words, we look at how
the finite volume approximation ∇h f has been becoming more similar to the actual gradient ∇ f
during the iterations of the algorithm.

Specifically for the computation of the mesh on the right side of Figure 5.7, we present two graphs
in Figure 5.8 made with [10]. On the x axis, there is the number of iterations. The value of L in
individual iterations is represented on the y axis with samples taken every 10000 iterations, and
in the final iteration 94647 respectively. In the top graph, the scale of the y axis is linear, in the
bottom one, the same data is presented on a logarithmic scale on the y axis.

Both graphs indicate that most of the improvement occurs in the first iterations. That is why we
examine the first ten thousand iterations in another graph, Figure 5.9 with samples taken every
500 iterations, and once again with both linear and logarithmic scale for the y axis. We can see
that these graphs look very similar to those in Figure 5.8, which further supports the statement that
the mesh improves the fastest in the very beginning and with each new iteration, the improvement
decreases.

Addition of these graphs for the other computations would not provide any new insight into the
topic, since the shape of the curve in them is always very similar to those from Figure 5.8.
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Figure 5.5: The optimized meshes. In the top case, only the interior vertices moved, in the bottom
case, movement of all vertices was allowed. In both cases, a semicircular area of smaller, denser
cells can be identified. A plot of the Gaussian on [−2, 2] × [−2, 2] is added for perspective.
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Figure 5.6: The initial mesh on a [−2, 2] × [−2, 2] square.

Figure 5.7: The optimal meshes, only interior vertices were allowed to move on the left, all vertices
moved on the right.
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Figure 5.8: Improvement of L during the computation from Table 5.6. The scale of the y axis is
linear in the top graph and logarithmic in the bottom one.



CHAPTER 5. COMPUTATIONAL STUDY 51

Figure 5.9: A closer look at the first ten thousand iterations of the computation.



Conclusion

In this Bachelor project, we have developed an algorithm of mesh optimization for finite volume
method gradient approximation. Our aim was to modify the geometry of a triangular mesh in such
a way, that the finite volume approximation would be as close to the actual gradient as possible.

We introduced the necessary theoretical foundations for this optimization from the fields of calcu-
lus, numerical mathematics and computer implementation of meshes.

Subsequently, we formulated our objective as an optimization problem. A minimum of the objec-
tive function L represents the mesh, for which the finite volume gradient approximation is optimal.

To solve this problem, we used a gradient descent method. We explored different ways to obtain
a function’s gradient, namely in-hand analytical differentiation, finite differences and automatic
differentiation.

The analytical approach proved to be extremely inefficient and we did not manage to overcome
the compatibility issues between the library TNL for mesh manipulation and the autodiff library
for automatic differentiation.

We did, however, find success implementing an optimization algorithm using first order finite
differences as an approximation of actual derivatives. We present this algorithm as a C++ program
which employs highly efficient, GPU-ready functions implemented in TNL.

Finally, we provide illustrative outputs of a computational study performed using the program for
several meshes and functions which allow for an intuitive validation of the results.

We employed gmsh for generation of the meshes used as inputs for our program. For visualization
of results of the computations, ParaView and MatPlotLib were used.
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Appendix A

Analytical derivatives

This part demonstrates detailed process of calculation of the derivatives of the loss function L
introduced in section 1.4. While this procedure is highly impractical, it was done and is thus
presented in this Bachelor project’s body.

Derivatives of m(2)(Ci)

Let us pick any vertex in the cell Ci and two vectors which connect it to the other two vertices, for

example A =
(
σ2

1 −σ0
1

σ2
2 −σ0

2

)
. Measure of the triangle Ci is now m(2)(Ci) = 1

2 det(A). A geometric

interpretation can be seen in Figure A.1, the area of the magenta rhombus is det(A), area of Ci is
1
2 det(A).

xi0

xi1

xi2

Ci

σi2

−σi0

Figure A.1: Measure of a triangular cell.

Let us now express the formula in terms of xij and differentiate. Note that there is an absolute
value in the expression we intend to derive, but since the points of a triangle are never identical,

we never calculate ∂
∂x |x|

∣∣∣∣∣
x=0

which does not exist. Having eliminated this eventuality, we can use

the formula ∂x|x| = sgn(x).

54



APPENDIX A. ANALYTICAL DERIVATIVES 55

m(2)(Ci
)
=

1
2
|detAi| =

1
2

∣∣∣ − σ2
1σ

0
2 + σ

2
2σ

0
1
∣∣∣

=
1
2

∣∣∣(xi2 − xi0)1(xi1 − xi0)2 − (xi1 − xi0)1(xi2 − xi0)2
∣∣∣

=
1
2

∣∣∣xi2
1xi1

2 − xi0
1xi1

2 − xi2
1xi0

2 − xi1
1xi2

2 + xi1
1xi0

2 + xi0
1xi2

2
∣∣∣.

Let us substitute sgn
(
xi2

1xi1
2−xi0

1xi1
2−xi2

1xi0
2−xi1

1xi2
2+xi1

1xi0
2+xi0

1xi2
2
)
≡ S. The derivative

by the first component of the point xk is

∂k1m(2)(Ci) =
1
2

S
(
δi2k1xi1

2 − δi0k1xi1
2 − δi2k1xi0

2 − δi1k1xi2
2 + δi1k1xi0

2 + δi0k1xi2
2
)
.

Similarly, differentiating by the second component of xk, we get

∂k2m(2)(Ci) =
1
2

S
(
xi2

1δi1k2 − xi0
1δi1k2 − xi2

1δi0k2 − xi1
1δi2k2 + xi1

1δi0k2 + xi0
1δi2k2

)
.

In this particular calculation, we need the derivatives of 1
m(2)(Ci)

, or
(
m(2)(Ci)

)−1, which are, based
on the results above, equal to

∂k1

(
m(2)(Ci)

)−1
=



−1

2
(
m(2)(Ci)

)2 S
(
− xi1

2 + xi2
2
)

if k1 = i0

−1

2
(
m(2)(Ci)

)2 S
(
− xi2

2 + xi0
2
)

if k1 = i1

−1

2
(
m(2)(Ci)

)2 S
(
xi1

2 − xi0
2
)

if k1 = i2

0 else

, (A.1)

and

∂k2

(
m(2)(Ci)

)−1
=



−1

2
(
m(2)(Ci)

)2 S
(
− xi2

1 + xi1
1
)

if k1 = i0

−1

2
(
m(2)(Ci)

)2 S
(
xi2

1 − xi0
2
)

if k1 = i1

−1

2
(
m(2)(Ci)

)2 S
(
− xi1

1 + xi0
1
)

if k1 = i2

0 else

, (A.2)

respectively.

Derivatives of m(1)(σi j)

The faces σ of each cell Ci, i ∈ N̂, can be interpreted as vectors σij, where j ∈ {0, 1, 2}. For each j,
the following holds: σij = xi((j+2)%3) − xi(j+1)%3, i.e. the counter clockwise property of faces holds.
The derivatives ∂k1m(1)(σi j) are equal to ∂k1∥σ

i j∥.

∂k1∥σ
i j∥ = ∂k1∥(x

i(j+2)%3 − xi(j+1)%3)∥ = ∂k1

[
(xi(j+2)%3

1 − xi(j+1)%3
1)2 + (xi(j+2)%3

2 − xi(j+1)%3
2)2] 1

2
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Finishing this calculation gives

∂k1

[
(xi(j+2)%3

1 − xi(j+1)%3
1)2 + (xi(j+2)%3

2 − xi(j+1)%3
2)2] 1

2

=
1
2
[
(xi(j+2)%3

1−xi(j+1)%3
1)2+(xi(j+2)%3

2−xi(j+1)%3
2)2]− 1

2 ·2·(xi(j+2)%3
1−xi(j+1)%3

1)(δi( j+2)%3,k1−δi( j+1)%3,k1).

Similarly for ∂k2

∂k2

[
(xi(j+2)%3

1 − xi(j+1)%3
1)2 + (xi(j+2)%3

2 − xi(j+1)%3
2)2] 1

2

=
1
2
[
(xi(j+2)%3

1−xi(j+1)%3
1)2+(xi(j+2)%3

2−xi(j+1)%3
2)2]− 1

2 ·2·(xi(j+2)%3
2−xi(j+1)%3

2)(δi( j+2)%3,k2−δi( j+1)%3,k2).

Derivatives of ni j

A unit outward normal to the vector
(
σij

1 σ
ij
2

)
is the vector ni j = 1

∥σij∥

(
σij

2 −σ
ij
1

)
, given the border

of the polygon, whose part the vector σij is, is counter clockwise oriented.

This fact can be easily derived, e.g. by drawing a sample polygon. This is presented in the
following Figure A.2.

σ =

(
σ1
σ2

)ni j = 1
∥σij∥

(
σ2
−σ1

)

Figure A.2: Normalized outward normal vector of a face.

In terms of mesh points xij,

nij =
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1 − xi(j+1)%3
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2
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)
,

and its derivatives are
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,
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Derivatives of xσij

The vector xσi j
is equal to

xσ
i j
=

1
2
(
xi(j+1)%3 + xi(j+2)%3).

By differentiating these vectors xσi j
, we obtain

∂k1xσ
ij
=

1
2

( (
δi(( j+1)%3),k1

0

)
+

(
δi(( j+2)%3),k1

0

) )
,

∂k2xσ
i j
=

1
2

( (
0

δi(( j+1)%3),k2

)
+

(
0

δi(( j+2)%3),k2

) )
.



Appendix B

Breaking meshes

Since mesh generators such as gmsh [3] tend to apply their own internal optimization procedures
and produce quite uniform, symmetrical meshes, we concluded it might be interesting to apply
optimization algorithms of this Bachelor project not only on the raw gmsh meshes, but also break
them a little first.

By breaking a mesh, we mean adding a random perturbation vector to each vertex of the mesh
in such a way, that the resulting mesh has the same topology as the original one. The geometry,
however, varies.

In Figure B.1, we present one possible case of a raw gmsh mesh and the same mesh "broken" by
the program.

Figure B.1: A mesh produced by gmsh on the left, the same mesh after each interior vertex was
moved by a random perturbation on the right. Both images were produced in Paraview [11].

Below is the code of a program we wrote to perform this mesh deformation. It always checks
that any given point moves by less than by the length of the shortest face in the mesh (marked
minL in the code). For extra safety, there is a parameter P which is set to < 1 and further restricts
movement of the vertices.

Note that this procedure essentially generates a different starting point for the gradient descent
but does not change the resulting optimal mesh which is reachable from any starting mesh. In
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other words, whether we use the output of this program, or the raw gmsh mesh as the input of our
optimization algorithm, its output remains the same.

In the listed part of the code, we excluded the initial include, namespace and "formal TNL"
declarations which do not bring anything new to the table. The whole code is at disposal for
anyone at [13] in the file meshbreaker.cpp.

const double P = 2.0e-1;

template< typename MeshConfig >
bool breakMesh( Mesh< MeshConfig, Devices::Host >& mesh, const std::string&

fileName )
{
using MeshType = Mesh< MeshConfig, Devices::Host >;
using RealType = typename MeshType::RealType;
using GlobalIndexType = typename MeshType::GlobalIndexType;
using LocalIndexType = typename MeshType::LocalIndexType;
using VectorType = TNL::Containers::Vector< RealType, TNL::Devices::Host,

GlobalIndexType >;
using PointType = typename MeshTraits< MeshConfig >::PointType;

// getting the length of the shortest face in the mesh
double minL = getEntityMeasure( mesh, mesh.template getEntity<

MeshType::getMeshDimension() - 1 >( 0 ) );
auto getShortestFace = [ &mesh, &minL ] ( GlobalIndexType i ) mutable
{
auto measure = getEntityMeasure( mesh, mesh.template getEntity<

MeshType::getMeshDimension() - 1 >( 0 ) );
if( measure < minL ) minL = measure;

};
mesh.template forAll< MeshType::getMeshDimension() - 1 >( getShortestFace );

// adding a random perturbation
auto breakMesh = [ &mesh, &minL ] ( GlobalIndexType i ) mutable
{
mesh.getPoints()[ i ][ 0 ] += P * minL * ( ((double) rand() / (RAND_MAX))

* 2 - 1 );
mesh.getPoints()[ i ][ 1 ] += P * minL * ( ((double) rand() / (RAND_MAX))

* 2 - 1 );
};
mesh.template forInterior< 0 >( breakMesh );

// writing the perturbed mesh into a new file
using VTKWriter = Meshes::Writers::VTKWriter< MeshType >;
std::ofstream out = std::ofstream( "broken.vtk" );
VTKWriter writer = VTKWriter( out );
writer.template writeEntities< MeshType::getMeshDimension() >( mesh );

std::cout << "Mesh broken succesfully" << "\n";
return true;

}

int main( int argc, char* argv[] )
{
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if( argc < 2 )
{
std::cerr << "Usage: " << argv[ 0 ] << " [mesh file adress]" << "\n";
return EXIT_FAILURE;

}

bool result = true;

for( int i = 1; i < argc; i++ )
{
const std::string fileName = argv[ i ];
auto wrapper = [&]( auto& reader, auto&& mesh ) -> bool
{
return breakMesh(mesh, "");

};
result &= resolveAndLoadMesh< MyConfigTag, Devices::Host >( wrapper,
fileName );

}

return 0;
}
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