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Autor: Peter Nutter

Obor: Matematické inženýrství
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lářská práce se zaměřuje na využití strojového učení pro predikci délky prežití transplantované ledviny. Reálná
data z databáze americké organizace, United Network for Organ Sharing (UNOS), a Institutu klinické a experi-
mentální medicíny (IKEM) byla použita k vytvoření několika modelů, včetně Coxovy regrese, Random Survival
Forests, neuronové sítě DeepSurv a dalších parametrických modelů. Námi vyvinuté modely nabízejí možnosti pro
zdokonalení skórovacího systému aktuálně používaného v USA, nebo dokonce pro vytvoření a zavedení kom-
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testovaných modelů dosáhly výsledků srovnatelných s aktuální literaturou. Tato práce nejen potvrzuje potenciál
strojového učení v oblasti transplantační medicíny, ale také otevírá možnosti pro zlepšení úspěšnosti léčby. Zá-
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Introduction

Kidney transplantation stands as a life-saving intervention for individuals with end-stage kidney
disease. The efficacy of this procedure, however, depends heavily on a complex matching process that
uses numerous criteria to pair donors with recipients [33]. Machine learning algorithms have shown
significant promise in enhancing the effectiveness of this process by predicting patient survival post-
kidney transplantation. This thesis dives into this promising field, aiming to explore and compare various
predictive models and machine learning techniques specific to kidney graft survival [37].

To accomplish this, a detailed review of existing literature on machine learning methods and pre-
dictive analysis techniques will be conducted. A broad spectrum of models, algorithms, and evaluation
methods will be examined, setting the stage for a comprehensive comparison of their predictive capabil-
ities. We will also delve into the existing kidney transplant allocation policies in the United States, the
European Union, and the Czech Republic, identifying potential areas of improvement.

Our research will make use of two primary resources: the United Network for Organ Sharing (UNOS)
database, which contains records of over a million kidney transplant patients in the USA since 1987, and
a smaller dataset from IKEM, the Institute for Clinical and Experimental Medicine in Prague.

While developing the predictive models, we will evaluate machine learning tools and libraries, such
as PyTorch, SciKit Learn, SciKit Survival, and PySurvival. The ultimate goal is to evaluate these models’
capability in predicting kidney graft survival after transplantation using real-world data. Through this
research, we aim to provide meaningful contributions that could improve the transplantation allocation
system and enhance kidney transplant patients’ survival rates.

Contextual Background

This thesis explores the use of machine learning techniques to predict kidney transplant survival, at
the intersection of medical informatics and transplantation medicine. The topic was chosen for its poten-
tial to advance the field of kidney transplantation and its relevance to Mild Blue, a company specializing
in medical software development.

In collaboration with the Institute for Clinical and Experimental Medicine (IKEM), Mild Blue devel-
oped a software tool, TXM (Transplant Exchange Matcher), which optimizes paired kidney exchanges
to increase the number of possible transplants. The optimization algorithm primarily considers Human
Leukocyte Antigen (HLA) matching.

This thesis aims to expand the variables considered in kidney transplantation by exploring additional
factors that could influence graft survival. We will develop and compare multiple machine learning
models for predicting graft survival, potentially offering valuable insights for refining tools like TXM.

As a member of the Mild Blue team, I have a unique perspective on the challenges and opportunities
in this field. This experience informs the methodology of this thesis, ensuring it is grounded in practical
realities while advancing the field of computer science in the context of medical software development.
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Chapter 1

Overview of Machine Learning

1.1 Definition of Machine Learning

Machine learning (ML) is a subfield of artificial intelligence that aims to develop algorithms and
models capable of learning from data and making predictions. Its wide range of applications include
healthcare, finance, marketing, and many other fields [4].

ML algorithms are designed to automatically identify patterns in data and use them to predict out-
comes for new, previously unobserved data. There are three main types of ML algorithms: supervised
learning, unsupervised learning, and reinforcement learning.

Supervised learning involves training algorithms on a labeled dataset where the desired outcomes are
known. It is typically used for classification and regression tasks. Unsupervised learning, on the other
hand, involves training algorithms on an unlabeled dataset where the desired outputs are unknown. It is
commonly used for clustering and dimensionality reduction. Reinforcement learning involves algorithms
that learn through feedback in the form of rewards or punishments. This type of learning is often used in
the context of games and decision making.

There are many ML algorithms, each with its own strengths and weaknesses. The most commonly
used algorithms include linear regression, logistic regression, decision trees, random forests, k-nearest
neighbors, support vector machines, neural networks, and gradient boosting [4].

Choosing the right ML algorithm depends on the nature of the data and the specific problem to
be solved. In this paper, we focus on the use of ML algorithms to predict graft survival after kidney
transplantation.

1.2 Types of Machine Learning Algorithms

Supervised Learning

Supervised learning is the most widely used type of machine learning algorithm, and it is typically
used for classification and regression tasks. In this type of learning, the algorithms are trained on a
labeled dataset, where the desired outputs are known. The algorithm then uses the patterns it identifies in
the data to make predictions about new, unseen data. This type of learning is suitable for problems where
the desired outputs are well-defined and the relationship between the inputs and outputs can be modeled
[4].

Classification is a type of supervised learning where the algorithm is trained to predict the class label
of a given input. For example, given a dataset of patient information, a classification algorithm can be
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trained to predict whether a patient will survive after a kidney transplant or not. Logistic regression and
decision trees are two commonly used classification algorithms.

Regression is another type of supervised learning where the algorithm is trained to predict a continu-
ous output. For instance, given a dataset of patient information, a regression algorithm can be trained to
predict the number of days a patient is likely to survive after a kidney transplant. Linear regression and
support vector regression are two common regression algorithms.

Unsupervised Learning

Unsupervised learning is used for tasks such as clustering and dimensionality reduction. In this type
of learning, the algorithms are trained on an unlabeled dataset, where the desired outputs are not known.
The algorithm then identifies patterns in the data and groups similar data points together. This type
of learning is used when the desired outputs are not well-defined or when the relationship between the
inputs and outputs cannot be modeled [4].

Clustering is a common unsupervised learning technique that aims to group similar data points to-
gether. For instance, a clustering algorithm can be used on a dataset of patient information to group
patients with similar medical histories. K-means and hierarchical clustering are two frequently used
clustering algorithms.

Dimensionality reduction is another type of unsupervised learning where the algorithm aims to re-
duce the number of variables in a dataset while preserving the relevant information. This can be espe-
cially useful for datasets with a high number of variables, where identifying the most important variables
can help simplify the data analysis process. For instance, a dimensionality reduction algorithm can be
used on a dataset of patient information to identify the most important variables that contribute to patient
survival after a kidney transplant. Principal Component Analysis (PCA) and Independent Component
Analysis (ICA) are two commonly used dimensionality reduction algorithms.

Reinforcement Learning

Reinforcement learning is a category of machine learning that employs rewards or penalties as feed-
back to train the algorithm. This approach is geared towards maximizing the reward signal, as the algo-
rithm learns to make decisions. Reinforcement learning has proven particularly useful in game-playing
and decision-making tasks. Two commonly used algorithms for reinforcement learning are Q-learning
and Monte Carlo Tree Search [4].

1.3 Essential Concepts and Techniques in Machine Learning

In this section, we will discuss essential concepts and techniques that underpin the development
of effective machine learning models. These concepts and techniques apply across various algorithms,
ensuring that the models are robust, accurate, and well-suited for the problem at hand.

1.3.1 Preparing the Data

Data Preprocessing

Data preprocessing is a crucial step in the machine learning pipeline, as it prepares the dataset for
training and evaluation. This process involves several techniques, such as data cleaning, which deals
with inconsistencies, duplicate entries, and inaccuracies in the data. Handling missing values is another
essential aspect of data preprocessing, and it can be addressed using various methods, including deletion,
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imputation, or interpolation. Outlier detection and removal help identify and eliminate data points that
significantly deviate from the norm and may adversely impact model performance. Data transformation
techniques, such as normalization and standardization, are used to scale and adjust the distribution of the
data to facilitate better learning by the algorithms.

Feature Engineering

Feature engineering plays a vital role in improving the performance of machine learning models
by selecting, creating, and transforming features. This process begins with feature extraction, which
involves extracting relevant information from raw data to create new, informative features. Feature scal-
ing ensures that all features have the same range and magnitude, preventing those with larger values
from dominating the learning process. Dimensionality reduction techniques, such as Principal Compo-
nent Analysis 1.4.2, help reduce the number of features while retaining important information, which
can alleviate overfitting and reduce computational complexity. Feature selection methods, such as filter,
wrapper, and embedded methods are employed to identify the most relevant and informative features for
the problem at hand, which can enhance model performance and interpretability.

Handling Imbalanced Data

Imbalanced datasets, where one class is significantly underrepresented, pose challenges for machine
learning algorithms, as they tend to be biased towards the majority class. Techniques for handling imbal-
anced data include resampling methods (oversampling the minority class or undersampling the majority
class), using cost-sensitive learning, employing ensemble methods like SMOTE (Synthetic Minority
Over-sampling Technique), or using evaluation metrics that are less sensitive to class imbalance, such as
precision-recall curves or F1 score.

1.3.2 Model Development

Model Selection

Model selection is the process of choosing the most appropriate machine learning algorithm for a
given problem. It involves considering factors such as dataset size, complexity, and expected model
performance. Different algorithms have varying strengths and weaknesses, and the choice of algorithm
can significantly impact the quality of predictions. To make an informed decision, it is essential to
understand the problem domain, data distribution, and the underlying assumptions of the algorithms.
Comparing the performance of multiple algorithms using cross-validation and performance metrics can
help identify the most suitable model for the task.

Bias-Variance Tradeoff and Overfitting/Underfitting

Understanding the bias-variance tradeoff is crucial in developing effective machine learning models.
Bias refers to the error introduced by approximating a real-world problem using a simplified model, while
variance refers to the error arising from a model’s sensitivity to small fluctuations in the training data.
A model with high bias is prone to underfitting, meaning it does not capture the underlying structure of
the data, while a model with high variance is prone to overfitting, meaning it learns noise in the training
data, leading to poor generalization on unseen data. Striking the right balance between bias and variance
is essential for optimal model performance. Techniques such as regularization, cross-validation, and
ensemble learning can help manage the tradeoff and reduce the risk of overfitting or underfitting.
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Hyperparameter Tuning

Hyperparameter tuning is the process of optimizing the parameters of a machine learning algorithm
to achieve the best possible performance. Hyperparameters are external factors that govern the learning
process and are not learned during training. Examples of hyperparameters include the learning rate in
gradient descent, the depth of a decision tree or the number of hidden layers in a neural network. Tech-
niques for hyperparameter tuning include grid search, which exhaustively tries all possible combinations
of hyperparameter values within a predefined range; random search, which randomly samples hyperpa-
rameter values from a specified distribution; and Bayesian optimization, which uses a probabilistic model
to guide the search for optimal hyperparameters. By fine-tuning hyperparameters, a model’s performance
can be significantly improved, making it better suited for the problem at hand.

Optimization and Training Techniques

Effective training and optimization techniques are essential in developing accurate and efficient ma-
chine learning models. Methods such as gradient descent, batch gradient descent, mini-batch gradient
descent and stochastic gradient descent help minimize the loss function, and find the best parameters for
the model. Advanced optimization algorithms, like Adam, RMSprop, and AdaGrad, adapt learning rates
during training to enhance convergence speed and model performance [4].

Regularization

Regularization is a technique used to prevent overfitting in machine learning models by adding a
penalty term to the loss function. Regularization methods constrain the model’s complexity, making it
less prone to overfitting. Common regularization techniques include Lasso (Least Absolute Shrinkage
and Selection Operator) and Ridge regression. Lasso regularization adds an L1 penalty term, which is
the sum of the absolute values of the model coefficients, while Ridge regression adds an L2 penalty
term, which is the sum of the squared values of the model coefficients. By incorporating regularization,
researchers can develop models that are more robust and generalize better to new, unseen data.

Kernel Methods and the Kernel Trick

Kernel methods are powerful techniques that allow linear algorithms to solve non-linear problems
by mapping the input data into a higher-dimensional space where they become linearly separable. The
kernel trick involves using a kernel function to compute the inner product of the transformed data points
in this higher-dimensional space without explicitly performing the transformation. This approach reduces
computational complexity and enables the use of algorithms like Support Vector Machines and Kernel
Principal Component Analysis on non-linear data [4].

Ensemble Methods

Ensemble methods are learning techniques that combine multiple models to improve the overall per-
formance of machine learning algorithms. These techniques leverage the strengths of individual models
to create a more accurate and robust final prediction. Bagging, or bootstrap aggregating, is an ensemble
method that trains multiple models independently on random subsets of the dataset, with replacement,
and combines their predictions through majority voting or averaging. Boosting is another ensemble tech-
nique that trains models sequentially, with each model focusing on the instances that were difficult for
the previous model to predict correctly. Stacking, or stacked generalization, trains multiple models on
the same data and then uses their predictions as input for a meta-model that makes the final prediction.
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By employing ensemble methods, the performance of machine learning algorithms can be enhanced,
resulting in better predictions and more accurate models.

1.3.3 Model Evaluation

Cross-Validation

Cross-validation is a crucial technique for assessing the performance of machine learning models
and preventing overfitting. It involves dividing the dataset into multiple subsets, using one subset for
validation and the rest for training, and repeating this process for each subset. This way, the model is
tested on different portions of the data, providing a more reliable estimate of its performance. Techniques
such as k-fold cross-validation, where the dataset is split into k equal-sized folds, and leave-one-out
cross-validation, where a single observation is used as the validation set, are commonly used. Stratified
k-fold cross-validation ensures that the proportion of classes is maintained across all folds, which is
particularly useful when dealing with imbalanced datasets. Cross-validation helps to fine-tune model
parameters and select the best-performing model for the task at hand.

Model Evaluation Metrics

Selecting appropriate evaluation metrics is vital for measuring the performance and efficacy of ma-
chine learning models. Each metric is designed for specific tasks, and understanding their characteristics
is key to making sense of model performance. For classification tasks, typical metrics are accuracy,
precision, recall, F1 score, and area under the ROC curve. In regression tasks, mean squared error,
mean absolute error, and R-squared are commonly used. For clustering tasks, silhouette score, adjusted
Rand index, and mutual information are frequently employed. By comprehending the properties of these
metrics, data scientists can accurately assess and interpret the performance of machine learning models
[28].

1.4 Popular Machine Learning Algorithms.

In addition to the three broad categories of machine learning, there are several commonly used al-
gorithms and techniques that are applied in various applications. Some of the most popular algorithms
include:

1.4.1 Supervised Learning Algorithms

Linear Regression

Linear regression is a supervised learning algorithm for predicting continuous numerical outcomes.
It models the relationship between a dependent variable y and one or more independent variables X by
fitting a linear equation y = Xβ + ϵ to the observed data, where β represents the coefficients, and ϵ rep-
resents the error term. Although designed for linear relationships, it can handle non-linear relationships
with appropriate data transformations. It has a closed-form solution (β = (XT X)−1XTy) for efficiency,
but iterative methods like gradient descent can also be used. Linear regression is simple, interpretable,
and serves as a useful baseline for comparing other algorithms [4].
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Naive Bayes

Naive Bayes is a family of probabilistic machine learning algorithms that are based on Bayes’ theo-
rem, with the "naive" assumption that all features are independent of each other. Despite this simplifying
assumption, Naive Bayes has been proven effective in many applications, particularly in text classifica-
tion tasks such as spam detection and sentiment analysis. Naive Bayes classifiers are computationally
efficient and easy to implement, making them a popular choice for tasks where the independence as-
sumption is reasonable [28].

K Nearest Neighbors

K Nearest Neighbors (KNN) is a simple and popular machine learning algorithm used for both re-
gression and classification problems. In KNN, the algorithm is trained on a set of labeled data, and then,
for a given test sample, it identifies the k nearest labeled data points and classifies the test sample based
on the majority class of the k nearest data points.

KNN works by calculating the distance between the test sample and all the training samples, then
selecting the k training samples with the shortest distance to the test sample. The majority class of these
k nearest neighbors is then used to classify the test sample.

This algorithm is particularly useful for small and moderate-sized datasets, and it is easy to imple-
ment. However, KNN can be computationally expensive, as the time complexity increases with the num-
ber of samples and features in the dataset. Additionally, KNN may not perform well in high-dimensional
feature spaces, as it can be sensitive to irrelevant features.
KNN is widely used in many applications, such as image classification, anomaly detection, and recom-
mendation systems. In the medical field, KNN has been used for classification tasks, such as diagnosing
diseases, and it has also been used in gene expression analysis [11, 31].

Support Vector Machines

Support Vector Machines (SVM) is a powerful machine learning algorithm used for classification
and regression tasks. It efficiently identifies complex relationships in high-dimensional spaces by uti-
lizing kernel functions. The algorithm works by finding the optimal hyperplane that maximizes the
margin between different classes, thus providing the best separation. SVM’s versatility makes it suitable
for various applications, including modeling kidney transplant outcomes based on features like patient
demographics, donor characteristics, and clinical factors [29].

Decision Trees

Decision Trees, renowned for their simplicity and interpretability, serve as the foundation for more
advanced techniques. The construction of a tree involves a recursive partitioning of data. This parti-
tioning is based on selecting the feature that maximizes information gain, a decision guided by metrics
like Gini impurity or entropy. However, single decision trees tend to overfit when faced with complex
datasets [4].

Random Forests

Random Forest enhances decision tree performance by constructing multiple trees during training.
Notable for its accuracy, generalization capability, and interpretability, this ensemble algorithm selects
random subsets of features and samples at each node when constructing trees. This diversification re-
duces noise susceptibility. Predictions are made by aggregating individual tree results through majority
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voting (classification) or averaging (regression), increasing model stability and reducing variance. Ran-
dom Forests also provide feature importance measures, beneficial for identifying significant variables in
various applications [4].

Gradient Boosting Machines

Gradient Boosting Machines (GBM) is a powerful ensemble machine learning algorithm used for
classification and regression tasks. It iteratively builds an ensemble of weak learners, typically decision
trees, to minimize a loss function by focusing on improving the model’s performance on the most chal-
lenging cases. GBM’s ability to adapt to complex patterns makes it effective in handling large datasets
and providing accurate predictions [29].

1.4.2 Unsupervised Learning Algorithms

Principal Component Analysis

Principal Component Analysis (PCA) is a widely used dimensionality reduction technique that aims
to transform the original dataset into a new coordinate system such that the first few principal components
capture most of the variance in the data. By reducing the number of variables in a dataset, while preserv-
ing the relevant information, PCA can help to minimize the computational complexity and mitigate the
"curse of dimensionality" in high-dimensional datasets.

1.4.3 Neural Networks

Neural networks are a subset of machine learning algorithms that are inspired by the structure and
function of the human brain. They are designed to learn from input data and make predictions based on
that data.

In a neural network, multiple layers of interconnected nodes, or artificial neurons, process and ana-
lyze the input data. Each neuron receives input from other neurons and then processes the information
and produces an output. The output of one layer serves as input for the next layer, until a final output is
produced.

The structure and interconnections of a neural network can be adjusted to optimize the processing of
input data. This is done through a process called training, where the network is exposed to a large amount
of input data and the weights of the connections between neurons are adjusted in order to produce more
accurate predictions.

Several different types of neural networks exist, each with a unique structure and purpose. Some
common types include feedforward neural networks, recurrent neural networks, convolutional neural
networks, and autoencoders.

Feedforward neural networks are the simplest type of neural network and are used for a wide range of
tasks, including image recognition, natural language processing, and recommendation systems. Recur-
rent neural networks are designed to handle sequential data and are often used in speech recognition and
language translation. Convolutional neural networks are used specifically for image recognition tasks
and are optimized for processing data with spatial relationships. Autoencoders are neural networks that
are used for dimensionality reduction and data compression.

Neural networks have proven to be highly effective for a wide range of machine learning tasks and
continue to be a subject of active research. The ability to adjust a network’s structure and interconnections
allows for a high degree of customization and specialization, making neural networks a powerful tool in
the machine learning toolbox.
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1.4.3.1 Multi-Layer Perceptrons (MLPs)

Multi-Layer Perceptrons (MLPs) represent a specific subclass of feedforward neural networks. Com-
posed of an input layer, one or more hidden layers, and an output layer, they provide an algorithmic
architecture wherein each layer is fully interconnected to the next. This comprehensive interconnection
ensures that each node in a given layer receives input from all nodes of the previous layer and forwards
output to all nodes in the subsequent layer.

The input layer accepts raw data with each node corresponding to an individual feature in the data.
The hidden layers, which house the majority of computational processing, apply weights to their inputs
and pass the results through a non-linear activation function, such as ReLU, sigmoid, or tanh. This
transformation allows the MLP to capture complex, non-linear patterns within the data [4].

The output layer, receiving data processed from the hidden layers, reformats it according to the nature
of the problem – a softmax function for multi-class classification, a sigmoid for binary classification, or
no activation function for regression tasks.

The training process, typically based on backpropagation with optimization techniques such as stochas-
tic gradient descent (SGD), Adam, or RMSProp, involves iterative adjustment of the weights connecting
nodes. The optimization aims to minimize a loss function that measures the difference between the net-
work’s predictions and the true values. This process enables the MLP to learn the underlying function
that maps inputs to outputs.

MLPs are instrumental in learning and approximating a broad range of functions, allowing their
application in various tasks, from computer vision to natural language processing. The inherent flexi-
bility of MLPs to learn intricate patterns makes them a foundational tool in deep learning research and
applications.

1.4.4 Challenges and Opportunities

Machine learning has the potential to significantly improve healthcare outcomes. It can enhance the
work of healthcare professionals in various areas, such as diagnosis, prognosis, treatment selection, and
planning interventions. By using data-driven techniques to analyze large and complex datasets, including
electronic health records, medical images, genomic sequences, and data from wearable sensors, machine
learning can help doctors make more accurate and timely decisions. It can also uncover new patterns and
provide valuable insights. As a result, integrating machine learning into healthcare could improve the
quality and efficiency of healthcare services, reduce costs, and minimize the risks associated with human
errors [26, 24].

However, integrating machine learning into healthcare also comes with several challenges. These
include technical issues related to data quality and availability, the interpretability and explainability of
models, and concerns about privacy and security. Medical data can also contain inaccuracies, biases,
or sensitive information, which requires careful handling. Ethical issues may also arise, such as the
potential for unfair or discriminatory outcomes and questions about responsibility and accountability.

Successfully implementing machine learning in medicine requires a careful balance between the ben-
efits and drawbacks of data-driven approaches. It also requires close collaboration between researchers,
healthcare practitioners, and policymakers to ensure that machine learning is used in a safe, ethical, and
effective way. By addressing these challenges, the medical community can fully leverage the potential
of machine learning to transform healthcare and improve patient outcomes [42].
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Chapter 2

Kidney Transplantation: Current
Practices and Challenges

2.1 Overview of Kidney Transplantation

Kidney transplantation serves as the preferred treatment for end-stage renal disease (ESRD), provid-
ing superior quality of life and increased survival rates compared to dialysis. The procedure entails the
surgical implantation of a healthy kidney from a living or deceased donor into a recipient with ESRD.
Despite progress in transplantation techniques and immunosuppressive therapies, challenges persist in
enhancing long-term graft survival and addressing the rising demand for donor kidneys [33].

2.2 Factors Affecting Kidney Transplant Outcomes

A variety of factors influence kidney transplant outcomes, including the human leukocyte antigen
(HLA) system, blood type compatibility, recipient and donor demographics, comorbidities, and wait-
ing times [47]. Machine learning algorithms can incorporate these factors to optimize donor-recipient
matching and allocation strategies.

2.2.1 Human Leukocyte Antigen (HLA) System

The HLA system, or Human Leukocyte Antigens, consists of a group of genes that encode proteins
vital for the regulation of our immune response. These proteins are found on the surfaces of cells and
help the immune system distinguish between self and foreign cells. The HLA system is divided into two
primary classes: class I (HLA-A, HLA-B and HLA-C) and class II (HLA-DP, DQ and DR).

Historically, in kidney transplantation, the HLA antigens HLA-A, HLA-B, and HLA-DR have been
considered the most relevant. However, recent research [1] suggests that the importance of these antigens
may not be as straightforward as previously thought. This is a topic of ongoing investigation.

HLA proteins are incredibly diverse, contributing to more than 10% of our genetic diversity [17],
making it the most gene-dense region of our genome. This diversity is crucial as it affects how well our
immune system can recognize and respond to foreign substances.

Achieving a high degree of HLA matching between the donor and recipient is essential for the long-
term success of kidney transplants. Better HLA matching decreases the likelihood of graft rejection, as
the recipient’s immune system is less likely to identify the transplanted organ as foreign.
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2.2.2 Other Medical Factors Affecting Transplant Outcomes

Besides HLA matching, numerous other medical factors contribute to kidney transplant success.

• Blood type compatibility (ABO system): Ensuring blood type compatibility between the donor
and recipient is vital for a successful transplant. ABO-incompatible transplants have a higher risk
of graft rejection and inferior outcomes.

• Panel reactive antibodies (PRA) and donor-specific antibodies (DSA): Preformed antibodies against
donor HLA antigens in the recipient’s bloodstream can result in antibody-mediated rejection and
graft loss. PRA reflects the percentage of potential donors to whom a recipient has antibodies,
while DSA are antibodies specific to the donor’s HLA antigens.

• Age, sex, and other demographic factors: Donor and recipient demographics, such as age and
sex, can impact transplant outcomes. Generally, younger donors and recipients exhibit better graft
survival rates.

• Comorbidities: The existence of comorbid conditions in the donor or recipient, like diabetes or
cardiovascular disease, can affect graft survival and patient outcomes.

• Physical size: The physical size of the donor and recipient also plays a significant role in transplant
success. The size of the donor organ needs to be compatible with the recipient’s body size to ensure
proper fit and function.

• Cold Ischemic Time: This is the time from when the organ is removed from the donor’s body and
cooled to slow metabolism, until it is transplanted into the recipient. Shorter cold ischemic times
are generally associated with better organ function post-transplant.

• Creatinine Level: This is a waste product in the blood created by the normal wear and tear on
muscles of the body and kidneys filter creatinine from the blood. High levels of creatinine can
indicate kidney damage or failure.

• Primary diagnosis: The primary diagnosis of kidney disease in the recipient, which led to the need
for a transplant, can significantly influence the success of the transplant.

• Functional health status at transplant: The recipient’s functional status at the time of the transplant
can affect their post-transplant recovery and overall outcomes.

2.2.3 Waiting Time

Waiting times for kidney transplantation can significantly impact transplant outcomes. These waiting
times differ between deceased donor and living donor transplants, with living donor transplants generally
having shorter waiting times. Longer waiting times can lead to a decline in the recipient’s health and an
increased risk of mortality before transplantation.

2.2.4 Types of Kidney Transplants

Deceased donor transplants

These transplants involve the use of kidneys from donors who have been declared brain dead or
experienced cardiac death. The organs are procured following a strict consent and medical evaluation
process.
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Living donor transplants

In this type of transplant, a healthy individual voluntarily donates one of their kidneys to the recipient.
Living donor transplants often have better outcomes due to shorter waiting times and improved HLA
matching.

Paired exchange programs

Paired exchange programs: These programs facilitate kidney transplantation for incompatible donor-
recipient pairs by identifying other pairs in a similar situation and swapping donors, allowing for com-
patible transplants.

2.3 Donor-Recipient Pairing Strategies Across Regions

2.3.1 United States

The Organ Procurement and Transplantation Network (OPTN) manages kidney allocation in the
United States. The OPTN faces the challenge of ensuring equitable and efficient organ distribution,
necessitating continuous adaptations to maximize organ utility. The key tool to achieve this is the Kidney
Allocation System (KAS), which takes into account factors such as HLA typing, Kidney Donor Profile
Index (KDPI), waiting time, Estimated Post Transplant Survival (EPTS) score, medically urgent status,
and deceased donor classifications [36].

2.3.1.1 Core Elements of the Kidney Allocation System

In the United States, the Organ Procurement and Transplantation Network (OPTN) implemented
the Kidney Allocation System (KAS) in December 2014. The KAS was developed to address issues
such as high kidney discard rates, inequitable access to transplants for candidates with special health
conditions, and a matching system that resulted in unrealized life years and high re-transplant rates. The
key elements of KAS are:

1. HLA Typing: This identifies genetic markers that affect the immune response, aiming to maximize
compatibility and minimize the risk of organ rejection.

2. Waiting Time: The duration a candidate has been on the waiting list is considered, with unique
rules for adults and children.

3. Estimated Post Transplant Survival (EPTS) Score: A comparative measure, applicable to adult
candidates, which estimates post-transplant survival time against national benchmarks.

4. Medically Urgent Status: Candidates meeting specific criteria are assigned medically urgent status
and receive priority.

5. Deceased Donor Classifications: Kidneys from deceased donors are categorized based on their
Kidney Donor Profile Index (KDPI) score, which takes into account various medical factors of the
deceased donor.

Special circumstances are also taken into account under KAS. These include scenarios involving pre-
vious organ donors and highly sensitized individuals. As the allocation process unfolds, factors such
as blood type compatibility, multi-organ combinations, and dual kidney exchanges become increasingly
significant.
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2.3.1.2 Kidney Donor Risk Index (KDRI) and Kidney Donor Profile Index (KDPI) Calculation

The KDRI and KDPI [35] are numerical scales used to evaluate the quality of a donated kidney for
transplantation, playing a key role in kidney allocation decisions.

KDRI Calculation

The KDRI is a sum of ten donor characteristics known to impact graft survival. These include factors
such as age, height, weight, ethnicity, medical history, cause of death, serum creatinine, Hepatitis C Virus
(HCV) status, and Donation after Cardiac Death (DCD) status. The total value represents a quantitative
assessment of donor risk associated with the kidney.

From KDRI to KDPI

The Kidney Donor Profile Index (KDPI) is derived from the Kidney Donor Risk Index (KDRI) by
normalizing the KDRI value relative to a reference population of donors from the previous year. For
example, a KDPI of 90% means the donor’s KDRI (which indicates the relative risk of graft failure) is
greater than 90% of recovered kidneys.

KDRI and Kidney Pairing

KDRI and KDPI help match donors with appropriate recipients. For example, kidneys with a higher
KDRI (indicating higher risk) might be allocated to older recipients or those with fewer alternatives,
while kidneys with a lower KDRI (lower risk) might be allocated to younger recipients or those expected
to live longer. The continued refinement of KDRI/KDPI calculations could include additional medical
and demographic factors to enhance the accuracy of donor-recipient matches.

2.3.1.3 Calculating Estimated Post-Transplant Survival (EPTS)

The Estimated Post-Transplant Survival (EPTS) score [27] is a crucial component in kidney alloca-
tion decisions. Ranging from 0% to 100%, it aims to predict the longevity of a kidney graft in a specific
patient.

The calculation of the EPTS score involves four primary factors: the candidate’s age, duration on
dialysis, presence of diabetes, and previous solid organ transplants. The formula developed by the Sci-
entific Registry of Transplant Recipients (SRTR) integrates these parameters to generate a raw EPTS,
which is then converted to an EPTS score using an annually updated mapping table.

Implemented in 2014 with the new Kidney Allocation System, the EPTS score, in conjunction with
the Kidney Donor Profile Index (KDPI), facilitates longevity matching to optimize the use of donated
organs.

2.3.2 European Union and Related Organ Allocation Systems

Within Europe, the process of organ allocation, specifically kidney transplantation, remains largely
decentralized with separate systems employed within individual member states. One of the more note-
worthy systems in operation is the Eurotransplant Kidney Allocation System (ETKAS), which oversees
organ allocation across Austria, Belgium, Germany, Luxembourg, the Netherlands, and Slovenia, serving
over 12,000 patients suffering from end-stage renal disease [25, 13].
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The fundamental objective of ETKAS is to maximize the use of available donor organs while main-
taining a transparent selection process for recipients. In order to accomplish this, it utilizes sophisticated
algorithms that consider various aspects:

• Medical Urgency and Transplantability: Patients are categorized based on the severity of their
condition and their suitability for a transplant. Those deemed as high urgency, meeting specific
criteria like lack of dialysis access or severe neuropathy, are awarded an extra 500 points in the
scoring system.

• Special Programs: ETKAS offers specific programs like the Acceptable Mismatch (AM) program
for highly sensitized patients and the Eurotransplant Senior Program (ESP) to match elderly donors
and recipients.

• Blood Group Compatibility: ETKAS strictly adheres to AB0 blood group compatibility rules to
minimize the risk of organ rejection.

• Point-based Ranking System: In cases of multiple suitable recipients, ETKAS uses a point-based
system to rank them. The scoring considers factors such as urgency status, HLA match grade,
mismatch probability, waiting time, and distance from the donor hospital. Additional points are
awarded for high urgency, pediatric patients, patients receiving a kidney after another organ trans-
plant, and patients with end-stage renal disease who previously donated a kidney. The point dis-
tribution varies among the participating countries to ensure fair organ allocation. HLA matches
play a critical role in this system, with perfect matches receiving the maximum points and each
additional mismatch leading to a decrease in points.

• Pediatric and Preemptive Patients: Points for HLA antigen mismatches are doubled for pediatric
patients, who also receive a gradually phased-out bonus between the ages of 18 to 30. Preemptive
patients, however, do not receive points for waiting time.

• Allocation Algorithms: Different allocation algorithms are applied depending on the donor’s age.
These prioritize AM program patients, zero HLA mismatch patients, and then rank other patients
according to their point score.

In essence, ETKAS is a comprehensive organ allocation system that balances multiple considerations to
maximize the use of available kidneys and ensure equitable organ distribution. It showcases significant
progress in coordinating organ transplantation across multiple countries, even though it doesn’t cover all
of Europe.

2.3.3 Czech Republic

The transplantation practice in the Czech Republic, though smaller in comparison to countries like the
United States, has consistently achieved significant success in kidney transplantation. The first successful
kidney transplantation in the country dates back to 1961, with the first living donor kidney transplantation
carried out at the Institute for Clinical and Experimental Medicine (IKEM) in Prague in 1966 [43].

The Czech Transplantations Coordinating Center (Koordinační středisko transplantací, or KST) over-
sees the complex process of organ transplantation in the Czech Republic. With IKEM and Motol at the
helm, the country has seen encouraging graft survival rates, reporting 92% to 95% and 81% to 84% at 1
and 5 years post-transplant, respectively.

The organ allocation system in the Czech Republic is regulated by the KST, underpinned by a metic-
ulous process focusing on both medical and non-medical criteria. The key criteria for kidney allocation
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are blood group, Panel Reactive Antibodies (PRA), Human Leukocyte Antigens (HLA) and time on the
waiting list. The level of PRA reflects patient sensitivity and based on these levels, patients are divided
into three categories: hypersensitized, moderately sensitized, and non-sensitized. HLA antigens play a
pivotal role in transplantation with a compatibility index, based on 27 levels of compatibility, used to
select suitable donors. The active waiting time is also a significant criterion for kidney allocation. In
addition, a crossmatch test is conducted pre-transplant to ensure the recipient does not have antibodies
against the donor. Non-medical factors, such as ensuring equitable contribution and utilization of organs
among transplant centers, are also considered. This criterion ensures that transplant centers not only
transplant organs but also contribute to the organ donation pool. Thus, patients from centers that have a
higher donation-to-transplantation ratio may receive a certain level of priority in the allocation process
[45].

What stands out about the Czech system is its active participation in international kidney exchange
programs, evidenced by its partnerships initiated with Vienna, Austria, in 2012 and with Israel in 2019.
In addition, the integration of a novel tool, TX Matching, developed by Mild Blue, has been a pivotal
development in enhancing the effectiveness of paired kidney exchange programs. This tool uses an open-
source algorithm that accommodates various parameters, providing flexibility in searching for suitable
donors and improving transplant success rates [7, 44].

2.4 Current Limitations, Challenges, and Prospects for Improvement in
Allocation Systems

2.4.1 Opportunities for Enhancement

• Data Availability and Collection: Leveraging advances in data collection can expose potential
areas of improvement and enable the creation of robust machine learning models that aid complex
decision-making processes.

• International Collaborations: Enhancing international partnerships for paired kidney exchange
programs can expand the donor pool, potentially improving match outcomes.

• Scoring System Enhancement: Broadening the variables incorporated into scoring systems like
KDPI and EPTS can improve their predictive capacity. In this context, the models developed in
this thesis represent a significant advancement, as they propose a more comprehensive and inclu-
sive approach. This involves considering a wider array of donor and recipient factors, potentially
leading to a significant enhancement in medical decision-making and transplant success rates.

While these enhancements hold potential, it’s critical to note that significant research and validation are
required before implementation. Nevertheless, their exploration could lead to improved efficiency and
efficacy in kidney transplantation, resulting in improved patient outcomes.

2.4.2 Persistent Challenges

• Graft Rejection and Immunosuppression: Balancing the need to prevent graft rejection with im-
munosuppressive medications while avoiding over-immunosuppression remains a major challenge
in kidney transplantation. Machine learning algorithms hold promise in personalizing immuno-
suppression regimens and tracking patient responses [39].

• Disparities in Access and Outcomes: Inequalities in access to kidney transplantation and the re-
sulting outcomes persist among different racial, ethnic, and socioeconomic groups. Geographical
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disparities also contribute to variations in organ availability and transplant center performance
[15].

• Organ Shortage and Allocation: The demand for kidney transplants far exceeds the available donor
organs. Strategies to address this issue could include public awareness campaigns, and innovations
in organ preservation and transplantation technologies.
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Chapter 3

Survival Analysis and Machine Learning
in Kidney Transplantation

3.1 Survival Analysis

Survival analysis, a specialized branch of statistics, is indispensable for studying kidney transplant
survival time. Unlike standard statistical approaches, survival analysis is uniquely equipped to handle
time-to-event data, which is central to medical studies like ours where the event of interest is kidney graft
failure.

This type of data often includes cases where the event has not yet occurred for some subjects at
the end of the study period, a situation referred to as "censoring". Without survival analysis, these
censored observations would need to be excluded or approximated, potentially leading to biased results.
Survival analysis allows us to incorporate this censored data effectively, providing a more accurate and
comprehensive analysis of survival times [9].

3.1.1 Censoring

Censoring can be classified into right censoring, left censoring, and interval censoring. Right cen-
soring occurs when a subject exits the study before the event happens, or the study concludes before
the event takes place. There are two types of independent right censoring: Type I and Type II. Type I
censoring is associated with a fixed study end time with no event occurrence. On the other hand, Type II
censoring happens when the study concludes after a predetermined number of events among the subjects
have occurred.

Left censoring, which is rare, happens when the event of interest has occurred before the study begins.
Interval censoring arises when subjects enter and exit observation, and the event of interest occurs within
a certain time interval, but the exact time is unknown.

Truncation, another concept in survival analysis, results from the study design and leads to the ex-
clusion of certain subjects. Right truncation occurs when all subjects have already experienced the event
of interest (e.g., a historical survey of patients on a cancer registry), while left truncation happens when
subjects have been at risk before the study begins (e.g., life insurance policyholders where the study
starts on a fixed date, and the event of interest is age at death).

For our research, we concentrate predominantly on right censoring, specifically Type I censoring.
This form of censoring becomes particularly relevant in the context of our study on UNOS data on kidney
transplants. Given the nature of the dataset, the majority of censoring is Type I and occurs due to the
study cut-off in 2022, before the failure of many transplanted kidneys could be observed. This is common
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in medical studies like ours, where the objective is to observe long-term outcomes. In these scenarios,
the study often concludes before the event of interest (e.g., graft failure) happens for all subjects [9].

For our analysis, each observation is represented as a tuple containing the time to event and the
censoring indicator.

D = (t1, δ1), (t2, δ2), ..., (tn, δn) (3.1)

where ti represents the time to event for the i-th observation, and δi is the censoring indicator for the
i-th observation. The censoring indicator δi takes the value 1 if the event of interest occurred for the i-th
observation and 0 if the observation was censored.

3.1.2 Terminology and Notation

In this section, we will discuss the statistical foundation of survival analysis, which involves three
essential functions that are related to the survival distribution. These functions are the survival function,
probability density function, and hazard function, and they all have unique aspects that contribute to the
analysis.

The survival function, denoted as S (t), is the probability that an individual will survive beyond a
given time t, where t ≧ 0, and S (t) = P(T > t), with T representing the survival time of a random
variable. This function is derived from the cumulative distribution function of T , which is expressed as
shown in equation:

S (t) = 1 − P(T ≤ t) = 1 − F(t) (3.2)

It is commonly used to identify the median, which is more informative than the mean when there are
outliers present. The survival function is a non-increasing function where S (t) = 1 when t = 0 and
S (t) = 0 when t = ∞, indicating that the probability of survival decreases as time goes on [9]. An
illustrative example of a survival curve is provided in Figure 3.1.

In survival analysis, the Probability Density Function (PDF)

f (t) =
dF(t)

dt
(3.3)

describes the relative likelihood of observing a particular value of a random variable T , which represents
the time to event of interest. The PDF is defined for t ≥ 0 and it is a non-negative function, meaning that
f (t) ≥ 0 for t ≥ 0. The probability of T falling in the interval (t, t + ∆t) is approximately equal to f (t)∆t,
for a small ∆t. Since the time to event of interest cannot be negative, the PDF is zero for t < 0.

The hazard function h(t) is the instantaneous rate at which events occur at a given time, given that an
individual has survived up to that time.

h(t) = lim
∆t→0

P(t ≤ T < t + ∆t | T ≥ t)
∆t

= lim
∆t→0

P(t ≤ T < t + ∆t)
∆t · S (t)

=
f (t)
S (t)

= −
S ′(t)
S (t)

(3.4)

The cumulative hazard function H(t) describes the accumulated risk up to time t.

H(t) =
∫ t

0
h(u)du (3.5)

Given the relationships established between the survival function S (t), cumulative hazard function
H(t), hazard function h(t), and probability density function f (t), we can derive additional connections
among these functions. For instance, we can express the cumulative hazard function H(t) in terms of the
survival function S (t) for continuous instances:
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Figure 3.1: Survival Curve Graph Example
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S (t) = exp[−H(t)] (3.6)

Estimating survival or cumulative hazard functions in survival analysis can be challenging; hence, a
risk score η with an arbitrary scale is defined. This risk score is used for ordering individuals based on
their likelihood of experiencing the event of interest, providing valuable insights and a practical alterna-
tive to the actual prediction of time for various applications.

3.1.3 Likelihood and Censoring

In this section, we delve into the construction of the likelihood function for parametric models.
Consider independent observations represented as pairs (Ti,Ci), where i ranges from 1 to n. Here, T
represents the time to event or failure, and C denotes the censoring time, or the duration of observation.

We define Xi as the minimum of Ti and Ci, symbolizing the observed time, whether it’s the failure
or censoring time. We also introduce δi, a binary variable indicating whether the failure time is observed
(Ti <= Ci). Our dataset comprises independent pairs (X1, δ1), ...(Xn, δn).

Assume that T1, ...,Tn are identically distributed with survival function S (x; θ), density f (x; θ), and
hazard function h(x; θ), where θ is a parameter vector. We also posit that Ti and Ci are stochastically
independent. Ci possesses its own survival function Gi(x) and density gi(x), which can vary across
observations.

The likelihood can be expressed using Lemma 2.1, as outlined in the lecture notes from Matfyz [19]:

L(θ) =
n∏

i=1

[
gi(Xi)S (Xi; θ)

](1−δi) [ f (Xi; θ)Gi(Xi−)
]δi

If the censoring mechanism is independent (sometimes called non-informative) then we can ignore
gi and Gi:

L(θ) = C
n∏

i=1

S (Xi; θ)(1−δi) f (Xi; θ)δi

This indicates that censored observations provide information through the survival function, while
uncensored individuals contribute information through the density function. Here, C is a constant that
does not depend on the parameter vector θ. This constant, a result of disregarding the censoring mecha-
nism, will not influence the estimation of θ when maximizing the likelihood.

We can further rewrite this using h(t):

L(θ) = C
n∏

i=1

S (Xi; θ)h(Xi; θ)δi

We can maximize this likelihood using methods such as Newton or Fisher scoring [5]. With this
model, we can compute all the parametric models mentioned later.

3.1.4 Non-Parametric Models

When no event times are censored, the non-parametric estimator of the survival function 3.2 is given
by 1 − F̂(t), where F̂(t) is the empirical cumulative distribution function.

Ŝ (t) =
# subjects with survival time T > t

# subjects
(3.7)
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F̂(t) =
# subjects with survival time T ≤ t

# subjects
(3.8)

3.1.4.1 Nelson-Aalen

In the presence of right-censored data, the Nelson-Aalen [8] estimator can be employed to estimate
the cumulative hazard rate function, which is denoted by H(t). The estimator is defined as:

Ĥ(t) =
∑
t j≤t

d j

n j
,

where Ĥ(t) represents the estimated cumulative hazard rate function at time t, d j is the number
of events observed at time t j, and n j refers to the number of individuals at risk immediately before
time t j. Consequently, the Nelson-Aalen estimator is an increasing right-continuous step function with
increments of d j

n j
at the observed failure times.

The Nelson-Aalen estimator is applicable not only to right-censored data but also left-truncated data,
which is common in epidemiological studies. In such cases, the number at risk n j, is the count of
individuals who have entered the study before time t j and are still in the study just prior to t j.

Using the Nelson-Aalen estimator, we can estimate the survival function indirectly by computing the
exponent of the negative Nelson-Aalen estimator using the equation 3.6:

Ŝ (t) = exp[−Ĥ(t)]

3.1.4.2 Kaplan-Meier

When some events are right censored or there are tied event times, we can use the Kaplan-Meier
product-limit estimator [9].

Ŝ (t) =
∏
ti≤t

(1 −
di

ni
) (3.9)

where Ŝ (t) is the estimated survival probability at time t, di is the number of events at time ti, and ni is
the number of individuals at risk (i.e. not yet experienced the event and not censored) of experiencing
the event at time ti. The product is taken over all time points ti less than or equal to t.

3.1.5 Parametric Models

Parametric models make assumptions about the distribution of the survival times, which can lead
to more efficient estimates when those assumptions hold true. Some of the most important parametric
models for survival analysis include the Exponential, Weibull, Gompertz, Log-normal, and Log-logistic
models.

3.1.5.1 Exponential Model

The Exponential model assumes that the hazard function is constant over time, making it a simple
and useful model for situations with a constant failure rate. This model is an example of an Accelerated
Life Model (ALM), a class of parametric models in survival analysis that assume the effect of covariates
is multiplicative on the scale of the survival time. We will use the same notation and assumptions as
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in Section 3.1.3, but now T1, . . . ,Tn are sampled from Exp (hi). In the Exponential Model, the hazard
function h(t,Zi) and the survival function S (t,Zi) are defined as follows:

λ = α exp
(
βT Zi
)

h(t,Zi) = λ

S (t,Zi) = e−ht

Here, Zi denotes a vector of covariates for each individual i, with each vector containing p different
covariates. The term λ by itself represents the hazard rate, which is assumed to remain constant over
time in this model.

The parameter α acts as a scaling factor, modifying the baseline hazard rate. The expression βT Zi

encapsulates the impact of the covariates Zi on the hazard rate. In this model, the covariates are assumed
to multiplicatively affect the hazard rate.

Our objective is to estimate the regression parameters, encapsulated in the vector β, and the scaling
parameter α. According to Section 3.1.3 the likelihood function will have the form [5, 19]:

L(α, β) = C
n∏

i=1

[
α exp

(
βT Zi
)]δi exp

[
−α exp

(
βT Zi
)

Xi
]

ln L(α, β) =
N∑

i=1

[
δi lnα + δi

(
βT Zi
)
− α exp

(
βT Zi
)

Xi
]
+C

where Xi is the observed time for the i-th individual.

3.1.5.2 Weibull Model

The Weibull model is a versatile and widely used parametric model in survival analysis that gener-
alizes the Exponential model. It allows for hazard functions that can increase, decrease, or stay constant
over time, making it suitable for a wide range of applications. The hazard function for the Weibull model
is given by:

λ = α exp
(
βT Zi
)

h(t,Zi) = γλ(λt)γ−1

S (t,Zi) = exp(−(λt)γ)

where γ > 0 is the shape parameter and Zi are random covariate vectors with dimension p. When
γ = 1, the Weibull model reduces to the Exponential model, as the hazard function becomes constant
over time. For γ > 1, the hazard function increases over time, while for γ < 1, the hazard function
decreases over time.
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3.1.5.3 Gompertz Model

The Gompertz Model is another parametric model with the base hazard being time varying. The
shape of the hazard is characterized by the fact that the log is linear in t. It reflects very well adult
mortality in the developed world.

λ = α exp
(
βT Zi
)

h(t,Zi) = λ exp(γt)

S (t,Zi) = exp(−
λ

γ
(eγt − 1))

When γ = 0 the hazard is constant and the model can be interpreted as an exponential model. If
γ > 0 the hazard increases over time and for γ < 0 the reverse is true.

3.1.6 Semi-parametric Models

3.1.6.1 Cox Proportional Hazards Model

The Cox Proportional Hazards Model, also known as the Cox Regression Model, is a popular method
used in survival analysis. It’s a semi-parametric technique, meaning it doesn’t make specific assumptions
about the shape of the hazard function, which describes the risk of an event happening at a certain time.

The model is used to understand how different factors (predictor variables) can affect the likelihood
of an event happening. However, it doesn’t define the entire hazard function itself, it only calculates the
effect of these predictor variables on the hazard function.

One key assumption of the Cox model is that the ratio of the hazard functions for any two individuals
(or groups) remains constant over time, regardless of the values of their predictor variables. This is
known as the ’proportional hazards’ assumption.

The ratio itself is called the ’hazard ratio’, and it’s used to compare the risk of the event happening
between two individuals or groups, based on their predictor variables. So, if you’re comparing two
groups, the hazard ratio tells you how much more (or less) likely the event is to happen in one group
compared to the other, taking into account their predictor variables. This proportional hazards assumption
is the foundation of the Cox model.

In the Cox model [6], the hazard function is expressed as the product of a baseline hazard function,
denoted as h0(t), and an exponential function derived from the linear combination of predictor variables,
Zi. This can be depicted as:

h(t,Zi) = h0(t) × exp(βT Zi) (3.10)

In this equation, β represents the regression coefficients associated with each predictor variable. The
baseline hazard function, represented as ho(t), signifies the risk for a subject when all covariate compo-
nents are equal to zero. Since the baseline hazard function remains unspecified, it contributes to the Cox
model’s semi-parametric attribute.

Moving forward, the survival function in the Cox model is given by:

S (t,Zi) = exp

−
t∫

0

h(t,Zi)

 =
exp

−
t∫

0

h0(t)



exp(βT Zi)

= [S o(t)]exp(βT Zi)
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The survival function, S (t,Zi), is defined by this equation as the baseline survival function, S o(t),
raised to the power of the exponential of the predictor variables’ linear combination, exp(βT Zi). Here,
the baseline survival function, S o(t), represents the survival probability when all predictor variables are
zero.

Unique to the Cox proportional hazards model is its approach of determining regression coefficients
by optimizing the partial likelihood function, as opposed to maximizing the traditional likelihood func-
tion. This function is devised by acknowledging the event sequence rather than the specific times of
their occurrence. Each individual in the risk set contributes to this function at every event time, and
each contribution is proportionate to the individual’s estimated hazard rate. The process of optimizing
the partial likelihood involves identifying the coefficient values that make the observed event order most
probable, considering the covariate values. This method is efficient in using data and respecting the event
order, and it sidesteps unnecessary assumptions about the baseline hazard function [19]. The detailed
derivation of this partial likelihood is complex and beyond the scope of this explanation [21]:

L(β) =
n∏

i=1

 exp(βT Zi)∑
j:t j≥ti

exp(βT Z j)


δi

(3.11)

Here, Zi is the vector of predictor values for the i-th individual, and δi is the indicator variable that
takes the value of 1 if the individual experiences the event and 0 if the individual is censored. The
likelihood function above applies only when there are no tied survival times in the data. When tied times
are present, the likelihood function must be adjusted using methods such as the Breslow or Efron method
[5].

The Cox model does not estimate the baseline hazard function or the survival function directly. To
obtain these functions, additional methods, such as Breslow’s method for estimating the baseline hazard
function [22], need to be applied.

It is important to note that the Cox model does not include an intercept term, as the baseline hazard
function effectively serves this purpose. There are also extensions of the Cox model that accommodate
time-varying covariates. In these cases, the covariate vectors Zi change over time, allowing the model to
capture the dynamic effects of predictor variables on the hazard rate.

3.1.6.2 Regularization in the Cox Model

Regularization in the Cox model is a method used to enhance the stability and interpretability of the
model, especially when dealing with complex data structures. It’s particularly useful when the predictors
in the model are highly correlated, a condition known as multicollinearity. Regularization is applied to
the partial likelihood function 3.11 and works by shrinking the estimated coefficients towards zero. This
helps to mitigate the effects of multicollinearity, making the model more reliable. Common types of
regularization techniques used in the Cox model include L1, L2, and Elastic Net regularization.

L1 Regularization (Lasso)

L1 regularization, also known as Lasso (Least Absolute Shrinkage and Selection Operator), adds an
L1 penalty term to the partial likelihood function of the Cox model. The L1 penalty term is the sum
of the absolute values of the coefficients multiplied by a tuning parameter (λ). The L1-regularized Cox
model is formulated as:

L1(β) = PL(β) − λ ∗
∑
|β j|
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where PL(β) is the partial likelihood of the Cox model, β j represents the j-th coefficient, and λ is the
tuning parameter that controls the amount of shrinkage.

L1 regularization has the property of producing sparse coefficient estimates, effectively performing
feature selection by setting some coefficients to zero.

L2 Regularization (Ridge)

L2 regularization, also known as Ridge regularization, adds an L2 penalty term to the partial likeli-
hood function of the Cox model. The L2 penalty term is the sum of the squared values of the coefficients
multiplied by a tuning parameter (λ). The L2-regularized Cox model is formulated as:

L2(β) = PL(β) − λ ∗
∑

(β2
j)

where PL(β) is the partial likelihood of the Cox model, β j represents the j-th coefficient, and λ is the
tuning parameter that controls the amount of shrinkage.

L2 regularization does not produce sparse estimates like L1 regularization but tends to shrink all
coefficients towards zero uniformly.

Elastic Net Regularization

Elastic Net regularization is a combination of L1 and L2 regularization techniques. It adds a linear
combination of an L1 penalty term and an L2 penalty term to the partial likelihood function of the Cox
model, controlled by a mixing parameter α. The Elastic Net-regularized Cox model is formulated as:

EN(β) = PL(β) − λ
[
α ∗
∑
|β j| + (1 − α) ∗

∑
(β2

j)
]

where PL(β) is the partial likelihood of the Cox model, β j represents the j-th coefficient, λ is the
tuning parameter that controls the overall amount of shrinkage, and α is the mixing parameter (0 ≤ α ≤ 1)
that determines the balance between L1 and L2 regularization. When α = 1, the Elastic Net is equivalent
to L1 regularization (Lasso), and when α = 0, it is equivalent to L2 regularization (Ridge).

Elastic Net regularization combines the advantages of both L1 and L2 regularization. It can produce
sparse coefficient estimates while also handling multicollinearity among predictors. By adjusting the
mixing parameter α, the Elastic Net can be fine-tuned to strike the right balance between L1 and L2
regularization, depending on the specific problem and dataset at hand.

3.1.7 Machine Learning Techniques for Predictive Analysis

3.1.7.1 Random survival forest (RSF)

RSFs are an advanced version of Random Forests 1.4.1, specifically designed for survival analysis.
They employ decision trees, which are built using a splitting criterion that optimizes the disparity in
survival probabilities among subgroups. This section delves into several splitting criteria proposed and
utilized for RSFs, and evaluates their efficacy in diverse scenarios.

Splitting Criteria in Random Survival Forests [40, 46]:

1. Log-rank Splitting Rule: Incorporated in the original RSF, this rule is grounded on the log-rank
test statistic. It evaluates the survival disparities between two groups at each split, choosing the
split with the most significant difference. While generally efficient, its performance may decline
in the face of high censoring rates or noisy covariates.
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2. C-index Splitting: This splitting criterion, derived from Harrell’s concordance index 3.1.8.1, has
proven to surpass the log-rank statistic under certain conditions: when the signal-to-noise ratio is
high, when the count of informative continuous covariates outweighs that of categorical covariates,
and when the data exhibits a high censoring rate. However, due to its computational intensity, it is
more appropriate for smaller datasets.

3. AUC Splitting: Drawing inspiration from the concordance index, the AUC-based 3.1.8.3 splitting
criterion employs the area under the Receiver Operating Characteristic (ROC) curve to identify
the optimal split. Generally, AUC splitting slightly outperforms log-rank splitting. However, for
datasets with high censoring rates or a multitude of noise covariates, AUC splitting significantly
outshines log-rank.

3.1.8 Evaluation Metrics in Survival Analysis

In survival analysis, the evaluation of model performance is crucial for assessing the quality of pre-
dictions and the usefulness of the models in practical applications. Two important aspects of model
performance are calibration and discrimination [16].

Calibration refers to the agreement between the predicted probabilities of survival and the observed
probabilities in the data. A well-calibrated model will produce accurate survival estimates, which means
that the predicted survival probabilities closely match the observed survival rates at different time points.
Calibration can be assessed using methods like the Brier score or by plotting calibration curves.

Discrimination, on the other hand, measures the ability of a model to distinguish between individuals
with different survival times. A model with high discrimination power can accurately rank individuals
according to their risk of experiencing the event of interest. Common metrics for assessing discrimination
in survival analysis include the concordance index (C-index) and time-dependent area under the receiver
operating characteristic (ROC) curve.

3.1.8.1 Harrell’s C-index

Harrell’s C-index is a crucial tool for evaluating the effectiveness of a risk model in predicting the
sequence of events of interest. For a given patient i, the risk model assigns a risk score, symbolized as
ηi. An efficient model should indicate that patients with shorter time-to-event durations have higher risk
scores. This implies that when comparing two patients, the one with a higher risk score should encounter
the event of interest sooner.

The C-index can be computed by examining the risk scores and times-to-event for every pair of
patients i and j. It calculates the proportion of risk scores correctly ordered among all comparable pairs
of patients, with one patient experiencing the event of interest before the other [16].

c =

∑
i, j I(ηi < η j)I(Xi > X j)d j∑

i, j I(Xi > X j)d j

In this equation, the numerator represents the number of concordant pairs, while the denominator is the
total number of comparable patient pairs. The variable d j is an indicator function that equals 1 if patient
j experiences the event of interest and 0 otherwise. The C-index value ranges from 0 to 1, with higher
values signifying better predictive accuracy. A value near 0.5 implies predictions are as random as a coin
toss, while values near 1 suggest the models’ predictions are good. This method accommodates both
censored and uncensored event data.

The statistical properties of the C-index are important to consider when evaluating its performance in
survival analysis. The C-index is known to be sensitive to censoring, which may introduce bias into the
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performance assessment of a risk model. To address this concern, an alternative version of the C-index,
known as the IPC (inverse probability of censoring) weighted C-index [12] has been proposed. The IPC-
weighted C-index is an unbiased estimator, as it takes censoring into account by applying weights based
on the inverse probability of censoring at different times, leading to a more accurate assessment of the
model’s predictive ability.

For models that provide hazard function, survival function, or scores for different time points, a
time-dependent version of the C-index can be used [3].

3.1.8.2 Brier Score

The Brier score is an additional metric employed to evaluate the calibration of survival models. It
quantifies the average squared discrepancy between the predicted survival probabilities and the actual ob-
served outcomes at a specific time point. Lower Brier scores are indicative of superior model calibration,
as they represent smaller deviations between the predicted probabilities and the actual outcomes.

In many cases, researchers opt for the Integrated Brier Score (IBS), which provides an overall as-
sessment of model performance over the entire time range rather than a specific time point.

To understand this in a mathematical context, the Brier score can be computed using the following
formula:

BS c(t∗) =
1
n

n∑
i=1

[
I(ti ≤ t ∗ ∧δi = 1)

(0 − Ŝ (t ∗ |zi))2

Ĝ(ti)
+ I(ti > t∗)

(1 − Ŝ (t ∗ |zi))2

Ĝ(t∗)

]
In this equation, n represents the total number of individuals in the dataset. The observed time for

individual i is denoted by ti, while δi is the censoring indicator, which equals 1 if the event of interest has
occurred and 0 otherwise. The term Ŝ (t∗ |zi) signifies the predicted survival probability for individual i at
time t∗. Lastly, Ĝ(t) is the estimated censoring survival function at time t, which provides the probability
of an individual being observed (not censored) up to time t [16].

In simpler terms, the Brier score calculates the average of the squared differences between the actual
outcomes and the predicted probabilities of survival for each individual in the dataset. The score is
adjusted by the estimated censoring survival function to account for potential bias introduced by censored
data. This adjustment ensures that the Brier score provides a fair evaluation of the model’s predictive
performance, even in the presence of censored observations.

3.1.8.3 Time-Dependent AUC

The time-dependent Area Under the Receiver Operating Characteristic (ROC) curve, or time-dependent
AUC, is another metric used to assess the discrimination performance of survival models. It measures
the ability of a model to rank individuals according to their risk of experiencing the event of interest at a
specific time point t. The time-dependent AUC is particularly useful when the interest lies in evaluating
the model’s predictive accuracy at specific time points.

The time-dependent AUC for a given time t can be calculated as follows:

ÂUC(t) =

∑n
i=1
∑n

j=1 I(y j > t)I(yi ≤ t)ωiI(η j ≤ ηi)

(
∑n

i=1 I(yi > t))(
∑n

i=1 I(yi ≤ t)ωi)

where n is the number of individuals in the dataset, yi and y j are the observed times for individuals i
and j, respectively, ωi represents the censoring weight [16] for individual i, and ηi and η j are the predicted
risk scores for individuals i and j, respectively.
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The time-dependent AUC ranges from 0 to 1, with higher values indicating better discrimination per-
formance. A value of 0.5 suggests that the model’s predictions are no better than random chance, while
values close to 1 indicate excellent predictive accuracy. By evaluating the AUC at different time points,
the time-dependent AUC allows for a more comprehensive assessment of the model’s discrimination
ability over time.
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Chapter 4

Data Processing and Analysis

This chapter delves into the methodological approach undertaken for the processing and analysis of
the dataset used in this study. It outlines the computational tools and Python libraries employed, the
process of data acquisition, and the subsequent steps of data cleaning, feature selection, partitioning,
imputation, and transformation. These rigorous procedures ensure the robustness and reliability of the
survival analysis models developed, thereby enhancing the validity of the study’s findings.

4.1 Hardware and Software Configuration, Libraries, and Packages Used

In this section, we discuss the hardware and software configuration, as well as the libraries and
packages employed for survival analysis in this thesis. The models were trained on the school cluster
Helios, which provided the necessary computational resources and parallel processing capabilities to
efficiently handle large-scale data and complex algorithms.

4.1.1 Python Libraries and Packages:

A variety of Python libraries and packages were used for training, and evaluating the survival analysis
models. The key libraries used are:

• Scikit-survival [34] is a machine learning library specifically designed for survival analysis and
time-to-event data. It extends scikit-learn, a popular machine learning library in Python, by adding
support for survival analysis techniques, such as Cox regression, random survival forests, and
gradient-boosted survival trees.

• Lifelines [10] is a Python library for survival analysis that focuses on providing an easy-to-use
interface and robust statistical methods for analyzing time-to-event data. It supports Kaplan-Meier
and Nelson-Aalen estimators, Cox proportional hazards regression, and parametric survival mod-
els. This library was utilized primarily for nonparametric models, such as the Kaplan-Meier esti-
mators.

• PySurvival [14] is a Python package optimized with PyTorch that offers various survival analy-
sis models, along with tools for model evaluation, feature selection, and data preprocessing. It
includes implementations of popular models such as the Cox proportional hazards model, acceler-
ated failure time model, and random survival forests.

Although not utilized in this thesis, several R and other Python packages are available for survival analy-
sis and may be considered for further research or comparison purposes. Some of these packages include:
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• PyCox [20] is a Python library designed for deep learning-based survival analysis using PyTorch.
Despite attempts, it was difficult to get it working effectively due to its less intuitive documentation
and API implementation. It allows for the integration of deep learning models, such as neural
networks, with traditional survival analysis techniques like Cox proportional hazards regression.

• ’survival’: One of the most widely-used R packages for survival analysis, it provides a compre-
hensive set of statistical tools for time-to-event data, including Kaplan-Meier estimators, Cox pro-
portional hazards regression, and parametric survival models. The Cox model from this package
was tested and yielded promising results. However, it was ultimately not included as the chosen
implementation of Cox was sourced from the Python libraries.

• ’randomForestSRC’: This package implements random survival forests, a powerful ensemble learn-
ing method for survival analysis that builds on the principles of decision trees and bagging. This
implementation of Survival forests was also tested and showed encouraging outcomes, but its
lengthy training times rendered it not feasible for this study.

• Statsmodels is a Python library that offers a comprehensive suite of statistical models, tests, and
data exploration tools. It provides classes and functions for estimating a wide range of statistical
models, and its results are tested against existing statistical packages to ensure accuracy.

• ’glmnet’: This package provides tools for fitting generalized linear models with Lasso or Elastic
Net regularization, which can be applied to survival analysis through the use of Cox proportional
hazards models.

These libraries and packages, along with the computational resources provided by the Helios cluster,
enabled the development and evaluation of various machine learning models for survival analysis, as
presented in this thesis.

4.2 Data Collection

The process of data acquisition for this study was multifaceted, involving several attempts to secure a
comprehensive and reliable dataset. Initially, the dataset from the Institute for Clinical and Experimental
Medicine (IKEM) was considered. However, it was found to be inadequate for the purposes of this study
due to its limited size, substantial missing values, lack of data on other patient indicators, and outdated
patient visit information.

Efforts were then directed towards securing data from organizations known for their extensive trans-
plant data repositories, including the Scientific Registry of Transplant Recipients (SRTR), the Australia
and New Zealand Dialysis and Transplant Registry (ANZDATA) and the National Health Service (NHS)
in the UK. However, these attempts were met with challenges such as prohibitive data acquisition costs,
the necessity for collaboration with local research groups and specific citizenship or student status re-
quirements. Similar challenges were encountered with organizations in Canada, France, Germany, and
Spain.

Ultimately, the United Network for Organ Sharing (UNOS) agreed to provide their dataset free of
charge, following the signing of a data sharing agreement. This dataset is comprehensive, containing
information about patients across the United States, and offers a wide variance in data, including geo-
graphical location, race, age, and other factors.

Although the IKEM dataset will not be used for model training due to its limitations, it will be utilized
for statistical analysis to provide additional context and insights.
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4.3 Inclusion Criteria and Data Cleaning

The original dataset for this study spanned a vast array of transplant cases, encompassing 1,108,884
entries across 468 variables. To enhance the model’s specificity and relevance, the dataset was meticu-
lously refined using several criteria.

The study included only those patients who had received a single kidney transplant, to eliminate
possible confounding effects associated with multiple or various organ transplants. Moreover, only adult
patients, defined as individuals aged 18 years and above, were considered, owing to the unique physio-
logical and medical aspects associated with pediatric patients.

The model was trained utilizing both living and deceased donor data. While training separate models
for each donor type was tested, it led to inferior performance. Transplant cases involving foreign donors,
defined as organs sourced from donors outside the United States, were excluded due to their limited
representation in the dataset and potential for outcome variability.

Entries with negative event times, presumably errors as a kidney cannot fail pre-transplantation, were
omitted. Other instances of likely errors, such as negative values in features that should inherently be
positive, were also excluded. A temporal cut-off was set, incorporating only transplants executed after
the year 2000 to reflect the significant advancements in transplant procedures and corresponding medical
treatments over the years.

Post-refinement using these filters, the dataset was narrowed down to include 326,440 entries.

4.4 Feature Selection and Engineering

The initial selection of variables for this study was broad, encompassing a wide range of potential
predictors identified from existing research in the field of kidney transplantation. However, to create a
more efficient and interpretable model, it was necessary to reduce the number of variables. This was
achieved through a process of feature selection, which involved evaluating the contribution of each vari-
able to the model’s performance using permutation importance from scikit-learn [2] applied to Cox and
Random Survival Forests.

Variables that did not contribute to an improvement in model performance were excluded. Variables
with a high proportion of missing values were also more likely to be excluded, especially if their inclusion
did not result in a significant performance gain. Through this process, the number of variables was
reduced to a more manageable set of 28 covariates which can be seen in Table 4.1.

It’s worth noting that we also experimented with Principal Component Analysis (PCA) as an alter-
native method for dimensionality reduction. However, the models using PCA components as predictors
resulted in worse performance compared to the models with the selected covariates, leading us to reject
PCA for this particular application.

The principal objective of this research is to forecast kidney graft failure. In order to accomplish
this, we utilized two critical indicators, specifically, the graft status (GSTATUS_KI), and the time until
graft failure or the last follow-up (GTIME_KI). These indicators are elaborated on in Table 4.2. The
graft status acts as a binary measure, with ’1’ representing graft failure and ’0’ symbolizing ongoing
functionality (i.e., censored).

Within our dataset, we engineered two crucial features. One reflects the duration a patient under-
went dialysis before transplantation (DIAL_LEN), and the other pertains to the primary diagnoses of
the kidney recipient (DIAG_KI). The dialysis duration feature was derived from two datetime variables
the initiation of dialysis and the date of transplantation. Despite not providing an exact count of dialy-
sis days due to inherent constraints, permutation importance rankings reaffirmed its significance in our
model, thereby proving its value as a worthwhile approximation.
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The primary diagnosis feature in our dataset initially consisted of a complex structure with 75 cate-
gories. To make this more manageable and effective, we applied a method inspired by the Cox propor-
tional hazards model as referenced in the study [23]. This method helped us restructure the categories
based on the severity of the conditions, simplifying them to just eight. This reengineering operation,
while challenging, led to a significantly improved feature, revealing a category with strong predictive
potential that substantially contributes to our study’s outcomes.

We should note that our dataset also includes variables pertinent to patient survival outcomes, namely
patient status (PSTATUS) and patient survival time (PTIME). The patient status is a Boolean variable,
indicating the most recent status of the patient. In contrast, patient survival time represents the duration
of survival post-transplant in days.

Even though the task of predicting patient survival may be comparatively simpler and the models
might yield more accurate predictions for this task, it does not constitute the primary focus of our study,
which is predicting kidney graft failure. For the purpose of comparison and a comprehensive under-
standing of the models’ capabilities, we have examined their performance on this alternate prediction
task.

Table 4.1: Summary of variables used in the analysis

Variable Name Description Variable Type

AGE Recipient’s age at transplant Numeric
AGE_DON Donor’s age at donation Numeric
BMI_CALC Recipient’s Body Mass Index Numeric

BMI_DON_CALC Donor’s Body Mass Index Numeric
DAYSWAIT_CHRON_KI Days recipient waited for transplant Numeric

COLD_ISCH_KI Kidney cold ischemic time Numeric
KDRI_RAO Kidney Donor Risk Index Numeric

CREAT_TRR Creatinine level of the recipient at the time of transplant Numeric
DIAL_LEN Number of days the patient was on dialysis Numeric
ETHCAT Recipient’s ethnic category Categorical

ETHCAT_DON Donor’s ethnic category Categorical
GENDER Recipient’s gender Categorical

GENDER_DON Donor’s gender Categorical
ABO_MAT Blood type match between recipient and donor Categorical

AMIS A locus mismatch score Categorical
BMIS B locus mismatch score Categorical

DRMIS DR locus mismatch score Categorical
DIAB Recipient’s diabetes status Categorical

DON_TY Type of donor Categorical
DIAL_TRR Recipient’s dialysis status at transplant Categorical

ON_DIALYSIS Was the recipient on dialysis at somepoint before transplant Categorical
REGION Region of the transplant center Categorical

HCV_SEROSTATUS Recipient’s Hepatitis C status at the time of transplant Categorical
DEATH_MECH_DON Deceased Donor’s Cause of Death Categorical

DIAG_KI Primary Diagnosis of the Kidney Recipient Categorical
FUNC_STAT_TRR Recipient’s Functional Health Status at the Time of Transplant Categorical
COD_CAD_DON Mechanism of Death for the Deceased Donor Categorical

HIST_HYPERTENS_DON Donor history of hypertension Categorical

39



Table 4.2: Predictor and Outcome Variables
Variable Name Description Variable Type

GSTATUS_KI Graft status of the kidney transplant Boolean
GTIME_KI Time to graft failure or last follow-up Numeric

4.5 Data Partitioning

The dataset was split into training (60%), validation (20%), and testing (20%) sets. The training set
was used to fit the models, while the validation set assisted in hyperparameter tuning and model selection.
The testing set, held out until the final model was selected, provided an unbiased performance estimate.
A consistent random seed ensured study replicability.

4.6 Data Imputation

Addressing the issue of missing values within predictor variables necessitated the use of an impu-
tation technique, facilitated by the SimpleImputer function from the Python scikit-learn library. This
function is specifically designed for handling missing data, applying distinct strategies for numerical and
categorical variables.

For numerical variables, the SimpleImputer function adopted a "median" strategy. In this method,
the median value was calculated from the available data points of each respective variable, and this
median value was then used to replace any missing entries. On the other hand, for categorical variables,
a "most_frequent" strategy was employed. Here, the SimpleImputer function identified the category that
occurred most frequently within each variable, and used this value to substitute any missing data points.

Such robust handling of missing data ensures the effective operation of machine learning algorithms,
which typically require complete datasets to perform optimally.

4.7 Data Transformation

Following the imputation phase, the dataset’s variables were distinguished into two categories: cat-
egorical and numerical. Specific preprocessing strategies were implemented for each category to opti-
mally prepare them for inclusion in the predictive model.

In dealing with categorical variables, we utilized the OneHotEncoder function. This function restruc-
tures each categorical variable by converting it into a binary vector representation. More specifically, it
takes a categorical variable with ’n’ distinct categories and converts it into ’n’ separate binary features.
Each of these binary features corresponds to a unique category of the original variable. For any given
record, only one of these binary features will have a value of 1 (indicating that the record belongs to
that category), while the rest will have a value of 0 (indicating that the record does not belong to those
categories). This transformation effectively transforms each unique category of a variable into a new,
standalone feature within the dataset.

An important parameter we used in this process is the ’drop’ parameter with ’if_binary’. This pa-
rameter is used to avoid the redundancy that can occur when one-hot encoding binary variables. In a
binary variable, there are only two categories, and therefore, when one-hot encoded, it would create two
identical but opposite binary features. This could lead to multicollinearity, which can negatively impact
some machine learning models.
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For numerical variables, we employed the StandardScaler function. This function standardizes each
variable by deducting the mean value and then scaling it to unit variance. Unit variance indicates that
the spread or distribution of values has a standard deviation of 1, and subtracting the mean ensures that
the resulting distribution is centered around 0. The application of the StandardScaler function effectively
ensures that all numerical variables are converted to a common scale. This standardization process is
indispensable for mitigating the impact of any single variable having an unduly large influence on the
model simply by virtue of its numerical scale.

We also experimented with Min-Max Scaling for the numerical variables, another popular normal-
ization technique that transforms the data to fit within a specified range, typically between 0 and 1.
However, in our testing, we found that the use of Min-Max Scaling did not yield significantly better or
worse results compared to the StandardScaler.

The decision to retain StandardScaler was also supported by its wider applicability and versatility. It
can handle outliers more effectively than Min-Max Scaling and does not distort the distances between
the values for each feature. Furthermore, its use is endorsed by the Scikit-Learn library’s documentation
for survival analysis, further reinforcing its appropriateness in this context.
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Chapter 5

Descriptive and Comparative Analysis

In this chapter, we conduct a comprehensive statistical analysis of our dataset, a crucial step in our
study. This analysis serves a dual purpose: it not only offers a detailed understanding of the variables that
are integral to our research but also uncovers patterns and relationships within the data. These insights
are invaluable as they inform and shape our machine learning models, enhancing their ability to predict
survival following kidney transplants. For the non-parametric models utilized in this section, we opted
for the Lifelines 4.1.1 library, primarily due to its superior support for confidence intervals.

5.1 Descriptive Statistics of the Dataset

The descriptive statistics of our dataset provide a detailed understanding of the numerical and cate-
gorical variables that are crucial to the study.

5.1.1 Numerical Variables

Table 5.1.1 provides a comprehensive overview of the numerical variables in our dataset. The re-
cipient’s age at transplant ’AGE’ ranges from 18 to 96 years, with a mean age of 52 years, indicating
that kidney transplantation is not limited to a specific age group and is common among middle-aged
individuals.

The waiting time for a kidney transplant ’DAYSWAIT_CHRON_KI’ varies significantly, with some
recipients receiving a transplant immediately, while others wait for up to 8554 days. This high standard
deviation underscores the unpredictable nature of organ availability and the urgent need for more organ
donors.

Correlation Matrix

As part of the descriptive analysis, a correlation matrix was computed to examine the relationships
between the numerical variables in the dataset. The correlation matrix is presented in Figure 5.1 The
matrix provides a visual representation of the correlation coefficients between each pair of variables. A
positive correlation indicates that as one variable increases, the other also increases, while a negative cor-
relation indicates that as one variable increases, the other decreases. The highest correlation is between
KDRI and AGE_DON because age is one of the input variables from which KDRI is calculated from.
This high correlation could potentially cause multicollinearity in our model, which is something we need
to consider in our analysis.

42



AG
E

AG
E_
DO

N

BM
I_C

AL
C

BM
I_D

ON
_C
AL
C

DA
YS
W
AI
T_
CH

RO
N_
KI

CO
LD
_IS

CH
_K
I

KD
RI
_R
AO

CR
EA
T_
TR
R

DI
AL
_L
EN

AGE

AGE_DON

BMI_CALC

BMI_DON_CALC

DAYSWAIT_CHRON_KI

COLD_ISCH_KI

KDRI_RAO

CREAT_TRR

DIAL_LEN

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.1: Correlation matrix for all covariates
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Table 5.1: Descriptive statistics for numerical variables

Variable Mean Std Min 25% 50% 75% Max Missing (%)

AGE 52.0 13.5 18.0 43.0 54.0 62.0 96.0 0.0
AGE_DON 39.9 15.0 0.0 29.0 41.0 51.0 88.0 0.0
BMI_CALC 28.1 5.4 15.0 24.0 27.6 31.7 74.2 0.4

BMI_DON_CALC 27.4 6.3 7.7 23.2 26.6 30.5 74.4 1.4
DAYSWAIT_CHRON_KI 685.2 718.9 0.0 138.0 427.0 1032.0 8554.0 0.0

KDRI_RAO 1.26 0.394 0.599 0.960 1.19 1.49 4.24 30.7
CREAT_TRR 7.901 3.619 0.1 5.28 7.4 9.95 36.02 1.9

DIAL_LEN in days 1335.3 1099.3 0 501 1096 1899 15395 20.5
COLD_ISCH_KI in hours 13.7 10.6 0.0 3.4 13.1 20.6 99.0 7.5

Table 5.2: Category percentages in GENDER and GENDER_DON

Category GENDER (%) GENDER_DON (%)

Male 61.1 53.9
Female 38.9 46.1

5.1.2 Categorical Variables

Our dataset offers intriguing insights into the categorical variables, providing an overview of donors’
and recipients’ gender and ethnicity, the degree of mismatch across the A, B, and DR loci, and other key
factors.

An examination of Table 5.2 reveals a pronounced dominance of male recipients and donors. This
aligns with the established pattern of End-Stage Kidney Disease (ESKD) being more prevalent among
men. This imbalance, though anticipated, necessitates further scrutiny to fully grasp its underlying trig-
gers and repercussions.

In terms of ethnicity, as displayed in Table 5.3, the white non-Hispanic population forms the majority
of both donors and recipients, mirroring the demographic distribution of the United States.

Our dataset, via Table 5.4, also emphasizes the frequent occurrence of at least one mismatch in each
transplant locus. This underlines the inherent difficulty in finding an exact match for kidney transplants
but also the potential for success despite some degree of mismatch.

Table 5.1.2 offers valuable insights into patients’ medical histories. A considerable majority under-

Table 5.3: Category percentages in ETHCAT and ETHCAT_DON

Category ETHCAT (%) ETHCAT_DON (%)

White, Non-Hispanic 48.2 68.6
Black, Non-Hispanic 27.1 12.8

Hispanic/Latino 16.6 14.5
Asian, Non-Hispanic 6.3 2.9

Amer Ind/Alaska Native, Non-Hispanic 0.9 0.5
Native Hawaiian/other Pacific Islander, Non-Hispanic 0.4 0.3

Multiracial, Non-Hispanic 0.5 0.4
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Table 5.4: Category percentages in AMIS, BMIS and DRMIS

Category AMIS (%) BMIS (%) DRMIS (%)

0 15.2 10.6 17.2
1 41.6 31.4 47.0
2 42.5 57.2 35.1

Null or Missing 0.7 0.7 0.7

Table 5.5: Dialysis and Medical Status Category Percentages

Category DIAL_TRR ON_DIALYSIS HIST_HYPERTENS_DON HCV_SEROSTATUS

No / Negative 18.2 26.7 74.8 90.6
Yes / Positive 81.2 73.3 20.0 4.8

Null or Missing 0.6 0.01 5.1 4.6

went dialysis before the transplant, and a lesser percentage of donors had a history of hypertension, both
factors that could potentially impact post-transplant outcomes.

Regarding geographical distribution, Table 5.6 indicates that the dataset evenly spans across UNOS
regions, suggesting geographical diversity and representation of the entire United States.

Another crucial observation is the prevalence of cadaverous donors, accounting for nearly 70% of the
dataset. This observation is particularly noteworthy as survival rates typically dip for transplants from
cadaverous donors compared to living donors.

Table 5.7 illustrates that almost a quarter of the population battles type II diabetes, which is associated
with a multitude of health complications.

Among the deceased organ donors in our dataset, the primary causes of death are head trauma and
anoxia, accounting for 23.8% and 21.4% of cases, respectively. Specific category labeled ’Not Applica-
ble’ has been introduced to accommodate living donors. Since the cause of death is irrelevant for these
individuals, this category covers 30.4% of the data, providing a meaningful way to distinguish between
the different types of donors.

5.2 Survival Analysis Using Kaplan-Meier and Nelson-Aalen Models

In this section, we present the results of the survival analysis conducted on the dataset. The Kaplan-
Meier (KM) and Nelson-Aalen (NA) models were used to estimate the survival function and cumulative
hazard function, respectively.

Table 5.6: Category percentages in REGION variable

Category 1 2 3 4 5 6 7 8 9 10 11

REGION (%) 3.97 13.00 13.42 9.41 16.32 3.47 9.03 6.10 7.16 8.35 9.79
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Table 5.7: Category percentages in DIAB

Description Percentage (%)
No 65.3
Type I 3.3
Type II 24.6
Type Other 0.5
Type Unknown 6.4

5.2.1 Kaplan-Meier Survival Curve

Figure 5.2 displays the Kaplan-Meier survival curve for our entire research cohort. This curve esti-
mates the probability of survival over time. The median survival time, illustrated by the dashed line, is
3942 days. When calculated without accounting for censored data, the median survival time significantly
reduces to 1583 days. This stark difference underscores the necessity of survival analysis techniques in
handling censored data. Indeed, in our dataset, a substantial 65% of the data is censored, reinforcing this
argument.
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Figure 5.2: Kaplan-Meier Survival Curve UNOS

Figure 5.3 portrays the Kaplan-Meier survival curve derived from a sample of 566 living donors
at IKEM. It’s crucial to acknowledge that a high percentage (90%) of the observations are censored.
This implies that the majority of patients were still alive at the end of the observation period, which is
why the survival curve doesn’t reach the 0.5 probability threshold and a median survival time cannot be
determined.

The IKEM dataset has a relatively small sample size and its patient selection process significantly
varies from standard procedures in the United States. These factors limit the ability to directly compare
survival outcomes between the two groups. Consequently, while this graph provides insights into the
survival time of living donors at IKEM, it doesn’t necessarily reflect survival trends in a broader or dif-
ferent demographic context. Any attempt to compare survival times across different populations should
entail a comprehensive analysis that acknowledges and adjusts for these discrepancies.
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Figure 5.3: Kaplan-Meier Survival Curve IKEM

5.2.2 Nelson-Aalen Cumulative Hazard Curve

The Nelson-Aalen cumulative hazard curve for the entire cohort is shown in Figure 5.4. The curve
provides an estimate of the cumulative hazard over time. The shaded area represents the 95% confidence
interval. It is important to note that the reliability of the curve decreases after about 8000 days due to the
reduced number of individuals at risk.

5.2.3 Histogram of Transplant Year

Figure 5.5 presents a histogram of the transplant year for both censored and non-censored data. The
histogram shows an increase in the number of censored operations over time, reflecting the fact that more
recent transplants have had less time to observe the event of interest.

5.3 Comparative Analysis of Key Variables Across Groups

In this section, we compare the survival probabilities across different groups.

5.3.1 Kaplan-Meier Survival Curves by Ethnicity

Figure 5.6 presents the Kaplan-Meier survival curves for each ethnicity category. The curves reveal
differences in survival probabilities across ethnicities. The median survival times for each group can be
observed in Table 5.8. For instance, the Asian American population shows the highest survival time,
while the Indigenous population shows the lowest. However, it is important to note that these differences
cannot be attributed to specific causes without further investigation.

5.3.2 Kaplan-Meier Survival Curves by Age

Figure 5.7 displays the Kaplan-Meier survival curves grouped by age. For this analysis, patients are
divided into age groups of ten-year intervals, except for the youngest group (18-29 years) and the oldest
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Figure 5.4: Nelson-Aalen Cumulative Hazard Curve
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Figure 5.5: Histogram with Transplant Year - Censored and Non-Censored Data

Table 5.8: Ethnicity Median Survival Time

Ethnicity Median Survival Time

White, Non-Hispanic 4108.0
Black, Non-Hispanic 3295.0

Hispanic/Latino 4355.0
Asian, Non-Hispanic 4903.0
Amer Ind/Alaska Nat. 3212.0

Native Hawaiian 3885.0
Multiracial 4085.0
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Figure 5.6: Kaplan-Meier Survival Curve by Ethnicity

Table 5.9: Median Survival Time by Donor Type

Donor Type Median Survival

Cadaverous 3489.0
Living 4999.0

Table 5.10: Median Survival Time by Gender

Gender Median Survival

Male 3784.0
Female 4180.0

group (80+ years). Interestingly, the data does not show a consistent decrease in survival times with
increasing age. In particular, the median survival time of the 30-39 age group, which is 5004 days, is
longer than that of the younger 18-29 age group, which is 4554 days.

This finding suggests that a younger age does not always result in a longer graft survival time, and
there might be other factors at play. As expected, the oldest recipients, especially those aged 80 or above,
tend to have shorter survival times, with a median survival time of 1843 days. This reflects the complex
relationship between age and other medical and biological factors in the transplantation process.

Being an inherent patient characteristic that cannot be adjusted, age plays a crucial role in the trans-
plantation process and can influence several other factors. This adds a layer of complexity to the analysis.
As such, when interpreting survival probabilities, it’s crucial to consider age alongside other variables.

5.3.3 Survival Analysis by Donor Type and Gender

In this section, we present the results of the survival analysis conducted on the dataset, segmented by
donor type and gender. The median survival times for each category, calculated using the Kaplan-Meier
estimator, are presented in Tables 5.9 and 5.10.
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Figure 5.7: Kaplan-Meier Survival Curves by Age Group

In this chapter, we conducted a comprehensive statistical analysis of our dataset. We provided de-
scriptive statistics of our numerical and categorical variables, and examined the relationships between
our variables using a correlation matrix. We also conducted a survival analysis using the Kaplan-Meier
and Nelson-Aalen models, and compared the survival probabilities across different groups. Our findings
revealed interesting patterns and relationships in our data, and highlighted the importance of considering
multiple variables when interpreting survival probabilities. In the next chapter, we will use this analysis
to inform our machine learning models for survival prediction in kidney transplants.

50



Chapter 6

Model Development and Evaluation

6.1 Model Selection and Evaluation

This study includes a varied selection of models chosen based on their applicability and performance
in survival analysis. These models have been derived from an expansive array discussed previously, with
focus placed on models capable of producing individualized hazard rates or survival functions. This
section delves into the specific implementations of the models mentioned theoretically in Section 3.1.

6.1.1 Parametric Models

These models were included due to their interpretability and straightforward explanation. The Ex-
ponentialFitter, WeibullFitter and Gompertz models from the PySurvival package were utilized, corre-
sponding to the models detailed in Section 3.1.5. These models presume a particular distribution for
survival times, providing a satisfactory fit to the data given that the distributional assumption is cor-
rect. All models utilize PyTorch and gradient descent to minimize their loss function or the negative
log-likelihood as discussed in 3.1.3.

6.1.2 Semi-Parametric Models

The Cox Proportional Hazard model’s usefulness in survival analysis prompted us to select three
distinct implementations for our study. Despite their differences, they all adhere to the same fundamental
principles as outlined in Section 3.1.6.1. These include CoxnetSurvivalAnalysis from scikit-survival,
CoxPHModel from PySurvival, and NonLinearCoxPHModel from PySurvival.

CoxnetSurvivalAnalysis

The CoxnetSurvivalAnalysis, equipped with Elastic Net regularization, ensures computational ef-
ficiency through its C++ implementation of coordinate descent. This method, which optimizes one
variable at a time while keeping others constant, is efficient for large, sparse datasets. However, it may
fall short by converging to a local minimum in non-convex problems, potentially resulting in sub-optimal
model performance. To handle tied events robustly, the model employs Breslow’s estimation, making it
suitable for survival analysis where data sparsity is prevalent and computational efficiency is crucial.
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CoxPHModel

Conversely, the CoxPHModel provides only L2 regularization, using Newton’s method for optimiza-
tion - a technique that relies on the second derivatives of the objective function to achieve quadratic
convergence. It employs the Efron method for handling tied events. This model may operate slower than
the previous implementation but has less risk of failing to find the global minimum due to the inherent
shortcomings of coordinate descent.

NonLinearCoxPHModel

An interesting choice is the NonLinearCoxPHModel, a model that incorporates Neural Networks
to model the Cox model coefficients, thus capturing non-linear relationships. This model uses Efron’s
log-likelihood and PyTorch to compute the gradient and carry out first-order optimization. It serves as
an implementation of the DeepSurv model, a concept propagated by Katzman in [18].

The DeepSurv model, a deep learning-based survival analysis approach, enhances the traditional Cox
proportional hazards model. It includes a Multi-Layer Perceptron (MLP) described in Section 1.4.3.1,
and introduces non-linear activation functions to handle complex feature interdependencies. Constructed
with an input layer, multiple hidden layers, and an output layer built on the principles of the Cox propor-
tional hazards model, the loss function is derived from the Cox model’s partial likelihood, prioritizing
the optimization of risk score prediction.

PySurvival, a Python library, facilitates the implementation of DeepSurv by encapsulating the model
within the NonLinearCoxPHModel class. PySurvival allows for the configuration of the model structure
by defining a list of dictionaries detailing the activation function and neuron count per layer. It supports
multiple activation functions such as ReLU, sigmoid, Atan, BentIdentity, and CosReLU, among others.

The PySurvival loss function employs Efron’s approximation of Cox’s partial likelihood with L2
regularization, offering a robust solution to prevent overfitting. It supports various optimization algo-
rithms like Adam, RMSprop, and SGD, with added features like dropout and batch normalization that
help enhance model generalization and accelerate the training process.

6.1.3 Other Machine Learning Models:

RandomSurvivalForests from scikit-survival: This tree-based ensemble method aptly handles cen-
sored data. Significantly, Random Survival Forests use the log-rank test as their splitting rule. The Scikit
Survival implementation is a close approximation of the method used in the R package ’randomSurvival-
Forest’.

Models that were tested but not used for comparison

A number of models underwent testing but were not used in the comparative study due to various
factors. For instance, the Survival Support Vector Machines from scikit-survival were evaluated but
ultimately excluded from the research. Despite their capability to rank patients, these models lack the
ability to predict survival functions, which is a critical feature for our investigation.

Likewise, gradient boosting models from scikit-survival were considered but their lengthy training
times and non-parallelizable training process made them unsuitable for inclusion. Given the required
number of base learners, these models were determined to be impractical.

In addition to these, we assessed numerous models from a variety of packages and libraries. The goal
was to identify those that provide a combination of strong performance on the dataset and innovative
strategies in survival analysis. Some models were discounted due to subpar performance, excessive
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training durations, or simply being redundant. This culling process allowed us to focus on the most
potent and relevant methods for our study.

Ultimately, the objective of this thorough selection process was to present a focused yet comprehen-
sive evaluation of survival prediction models. This method of evaluation provides valuable insights into
the relative strengths of the models and their applicability to diverse datasets and clinical contexts.

6.2 Model Training

As previously stated, the models were trained on the Helios cluster. Given the substantial size of the
dataset, training times proved to be especially challenging for machine learning models, with durations
varying significantly across different models. To tackle these challenges and accelerate the process, we
leaned heavily on automation.

In our approach, we developed two separate, yet efficient pipelines for training models from the
two different libraries we used, necessitated by their unique APIs. Despite the variance in the training
pipelines, we maintained uniformity in the data processing stage, ensuring consistent pre-processing of
the dataset across different models.

Furthermore, these pipelines automated a series of operations including data preprocessing, model
training or grid search, model evaluation, and saving of the models. All these tasks were executed within
the pipelines, accompanied by comprehensive logging of all processes. This level of automation not
only increased the efficiency of the process but also helped overcome the limitations of using just Jupyter
notebooks, which proved unsustainable given the scale of the task. For transparency and reproducibility,
the Python code is available at: https://github.com/peterstran/ml-unos2.

6.3 Hyperparameter Tuning

We conducted hyperparameter tuning separately for each model to ensure fair conditions. For mod-
els using the scikit-learn API, we utilized existing functions for parameter space search, such as Grid-
SearchCV and RandomSearch. For PySurvival models, we implemented a simple grid search. The
inconsistency in PySurvival’s API and varied model implementations complicated more extensive opti-
mization and cross-validation.

6.4 Model Evaluation

For evaluating our models, we employed a combination of discrimination and calibration measures.
Harrell’s C-Index, C-index IPCW and Mean Area Under the Curve (AUC) served as our discrimination
metrics, providing insights into the models’ ability to correctly distinguish between different outcomes.

For calibration - which assesses the agreement between the predicted probabilities of an outcome and
the actual observed frequencies - we used the Integrated Brier Score. Notably, this score, as well as the
Mean AUC, was calculated from the 10th to the 90th percentile of the uncensored survival times.

All these metrics, which were drawn from the Scikit Survival package, together delivered a compre-
hensive assessment of the models’ predictive accuracy and ability to discriminate outcomes.

Importantly, we based our results on test data, and refrained from further model tuning to prevent
overfitting. This approach ensures that our model evaluations are unbiased and reflective of genuine
performance on unseen data.

53

https://github.com/peterstran/ml-unos2


Chapter 7

Results and Previous Research

7.1 Performance Evaluation of the Machine Learning Models

This section focuses on the evaluation of various machine learning models’ performance, exploring
the results of key metrics such as C-Index IPCW, Harrell’s C-Index, the Integrated Brier Score (IBS),
and Mean AUC.

Table 7.1 encapsulates the performance outcomes of all models incorporated in this study, and the
ensuing sections will offer detailed insight into the individual performance of each model.

The C-Index emerges as our primary metric for comparison, owing to its wide utilization in numerous
studies, making it an optimal point of reference.

One general observation across all models is that the C-Index usually supersedes C-Index IPCW,
as it adjusts to the censoring distribution. Notably, Mean AUC, a distinct measure of discrimination,
doesn’t correspond directly with the ranking dictated by the C-Index. This discrepancy implies that
hyperparameter tuning may inadvertently overlook other performance metrics.

Parametric Models:

Parametric models, though reliant on data fitting, offer the advantage of simplicity and understand-
ability. Among our seven models, the Exponential model recorded the least impressive results, with the
IBS revealing a mismatch between the shape of the underlying function and the data.

The Weibull model performed slightly better in terms of the C-Index but demonstrated a worse IBS
despite having more degrees of freedom. This outcome might be linked to the use of C-Index IPCW in
the Grid Search.

Table 7.1: Performance Metrics of Machine Learning Models

Model C-Index C-Index IPCW Integrated Brier Score Mean AUC C-index Death

Exponential 0.6232 0.6025 0.4189 0.6425 0.6458
Weibull 0.6233 0.6064 0.4979 0.6359 0.6488

Gomperetz 0.6543 0.6422 0.1872 0.6927 0.7134
CoxPHModel 0.6544 0.6420 0.1692 0.6831 0.7227

CoxnetSurvivalAnalysis 0.6533 0.6425 0.1689 0.6898 0.7203
NonLinearCoxPHModel 0.6645 0.6526 0.1668 0.7107 0.7245
RandomSurvivalForest 0.6514 0.6446 0.1678 0.6859 0.7199
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Table 7.2: Hyperparameters of the Pysurvival models

Model Initialization method L2 regularization Learning Rate # Epochs

Exponential Glorot uniform 0.900 0.00079 2200
Weibull Glorot uniform 5.62 0.0010 3000

Gompertz Glorot uniform 5.62 0.00019 5000
CoxPHModel Zeros 0.000100 1.0 -

NonLinearCoxPHModel Glorot uniform 0.00100 0.010 100

Interestingly, the Gompertz model, with a C-index of 0.6543, surpassed both the CoxnetSurvival-
Analysis and RandomSurvivalForest in the C-Index. This victory proves that when the correct distribu-
tion shape is chosen, even simple models can outperform more complex counterparts. Table 7.2 details
the best hyperparameters for these models.

Semiparametric Models

The widely referenced Cox linear model, renowned for its stability and ubiquity in research, provides
a robust benchmark for model performance evaluation.

In our study, the Scikit Survival Cox model, subject to an ElasticNet penalty (L1 ratio) of 0.12,
delivered a C-Index of 0.6533. This performance was marginally suboptimal relative to other models, a
discrepancy potentially attributable to its coordinate descent implementation.

The CoxPHModel, leveraging a fast and reliable Newton optimization, manifested as the second
most proficient model with a C-Index of 0.6544.

Remarkably, the NonLinearCoxPHModel (DeepSurv) presented a dominant performance with a sig-
nificantly elevated C-Index of 0.6645. This model exhibited superior performance not only with respect
to the C-Score but across all other metrics, especially the IBS, indicating successful model calibra-
tion. The training of this model necessitated a sophisticated exploration of a myriad of hyperparameters,
ranging from the selection of the activation function to the determination of the network size. The
top-performing model featured two fully connected hidden layers, each comprising 64 neurons, and
employed the ReLU activation function. Our experiments with larger network sizes did not yield any
improvements.

The optimal hyperparameters for the PySurvival models are listed in Table 7.2. A comprehensive
investigation is imperative to maximize this model’s potential. Implementing this model beyond the
limitations of the PySurvival API could offer additional insights and avenues for enhancement.

Machine Learning Models

We chose the Random Survival Forest (RSF) model for detailed study because we thought it was
the best among different machine learning models. However, despite the time spent on training it, the
model’s performance was lower than expected. The performance score, or C-Index, was 0.6514, which
was lower than our Cox linear models. This was surprising because RSF models are often used in these
types of analyses.

Training these models took a long time, sometimes up to 24 hours, and often caused issues like
memory shortages and crashes on a powerful computer with 370GB of RAM. We were limited to a
maximum of 800 estimators and found that a tree depth of 12 was enough. We used log2 for feature
splits in the decision tree.
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Improvements to the model’s performance might come from better hardware, new data splitting
methods, or different model implementations. However, when we compare this with linear and neural
network models, which require less computing power, RSF models seem costly. Other versions of the al-
gorithm took even longer to train, except for Extra Forest models which were faster but performed worse.
These findings suggest that we need to find better ways to improve these models, while considering their
high resource requirements.

Patient survival prediction results

Each model was trained and evaluated on a patient’s survival indicator, mentioned in 4.4, for compar-
ative analysis. The NonLinearCoxPHModel, employing the same hyperparameters, achieved the highest
score with a C-Index of 0.7245, showcasing the performance disparity among the models. The results
for other models are demonstrated in Table 7.1 under the C-Index Death column.

7.2 Feature Importance Analysis

The predictive power of a machine learning model is largely dependent on the relevance and sig-
nificance of the features it uses. In our study, we leveraged the CoxPHModel and identified the top 10
features through the analysis of absolute coefficient values, as represented in Table 7.3.

Initially, our goal was to calculate permutation feature importance [2] using our most refined neu-
ral network model. We created a parallelized permutation importance function for this purpose, as our
model was not compatible with the sklearn’s default implementation, and PyTorch lacked a native so-
lution. This function assessed feature importance by employing the C-Index, while also incorporating
standard deviation measurements. Regrettably, this approach fell short of our expectations, as permuta-
tion importance can sometimes skew the true significance of features, particularly within neural network
models. A recurring pattern we observed was that highly important features were frequently those with
lower representation in the categorical data. This phenomenon might stem from the model concentrating
on particular data subsets, but it doesn’t necessarily denote universal importance.

Despite these limitations, the output from our model can be leveraged for anomaly detection due
to the highlighted importance of infrequent features. While this information is valuable, translating
these insights into practical applications, like in a kidney scoring/allocation system, presents significant
challenges due to the rarity of these anomalous instances and the complexities associated with integrating
them into the system.

Another complexity encountered was that there is no straightforward method to access the values of
the Cox coefficients in a DeepSurv type model. The coefficients are dictated by the output layer within a
deep network, and the model weights are notoriously challenging to interpret.

Furthermore, evaluating feature importance only illuminates the magnitude of the feature’s impor-
tance, not whether the feature positively or negatively affects outcomes. Hence, we opted for a more
encompassing approach to our analysis, which can better inform the enhancement or development of
numerical scoring systems such as KDPI and EPTS.

It’s critical to clarify that a positive coefficient value suggests an increase in hazard, thereby reducing
the anticipated survival time, whereas a negative coefficient value implies the opposite. Significantly, the
recipient’s age ’AGE’ emerged as the most consequential feature, supporting our initial hypothesis given
its well-documented correlation with kidney graft survival. ’AGE_DON’ ranked seventh, indicating that
the quality of the kidney decreases with donor age.

Another pivotal feature is ’KDRI_RAO’, which shows the impact of kidney quality on graft survival.
Our engineered feature, ’DIAL_LEN’, ranked fifth, outperforming ’DAYSWAIT_CHRON_KI’ - the
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Table 7.3: Top 10 Features Used in the CoxPHModel with their Coefficient Values

Feature name Coef

AGE 0.14

KDRI_RAO 0.11

DIAL_LEN 0.082

ETHCAT - Asian, Non-Hispanic -0.079

DIAB - No -0.072

DIAG_KI - Group 2 -0.070

AGE_DON 0.066

CREAT_TRR -0.058

ETHCAT - Hispanic/Latino -0.057

DIAG_KI - Group 1 -0.054

duration the recipient waited for a transplant - thereby demonstrating the effectiveness of our feature
engineering strategies.

Interestingly, the categories ’ETHCAT’ for ’Asian, Non-Hispanic’ and ’Hispanic/Latino’ ranked
fourth and ninth respectively. This suggests that ethnicity plays a role in transplant predictions, although
the ethical implications of incorporating this into a scoring system or model remain debatable. Both
categories had negative values, suggesting an improvement in expected survival time from the baseline.

The absence of diabetes ’DIAB - No’ emerged as the fifth-ranking feature. This emphasizes the
influence of diabetes on renal graft outcomes, highlighting the complications associated with diabetes
and its detrimental impact on kidney graft survival.

Our self-created diagnosis categories ’DIAG_KI’ took the sixth and tenth place, signifying the crucial
role of diagnosis severity and type in outcome prediction. Representing the least severe chronic kidney
disease diagnoses, these categories could be readily integrated into a new scoring system.

Finally, it’s noteworthy that three of the top ten features were results of our innovative engineering,
underscoring the importance of ongoing exploration and development of new features to enhance the
model’s performance.

7.3 Previous Research on Kidney Transplant Survival Prediction

In this segment, we will conduct a comparative analysis of three influential studies in the field of
kidney transplantation survival prediction. Each research focuses on a different aspect of survival pre-
diction, thus highlighting the complex nature of the process. It’s crucial to emphasize that graft survival
prediction is a distinct and typically more intricate task than patient survival prediction, due to the myriad
factors affecting graft longevity. Two of the chosen studies primarily focus on graft survival, while the
third one provides a comparative angle by focusing on mortality prediction. This selection, while not
exhaustive, offers a comprehensive view of various methodologies in the field.

Senanayake et al. [38] used an Australian dataset to develop and validate predictive models for
graft failure after deceased donor kidney transplantation. Their models included random survival forest,
survival support vector machine, and Cox proportional regression. Notably, the Cox regression and
random survival forest models, with a C-index of 0.67, exhibited superior discrimination of graft failure,
suggesting their potential utility in pre-transplant decision-making.

In Paquette et al.’s study [30], the results indicate that the neural network-based models, namely
DeepSurv, DeepHit, and RNNs, exhibited superior discriminative ability in comparison to traditional
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models like the Cox model and random survival forest model. This superiority was observed in the
C-index metrics, where the neural network-based models scored 0.650, 0.661, and 0.659, respectively,
compared to the Cox model’s 0.646 and the random survival forest model’s 0.644.

Finally, the study by van Walraven et al. [41] shifts focus to predicting mortality among end-stage
renal disease patients considering kidney transplantation. Their predictive model, a prognostic index
derived from twelve variables, effectively divided patients into 26 distinct risk categories, each with a
unique five-year survival rate. The index’s concordance probability was 0.746 (95% CI 0.741–0.751),
demonstrating its strong discriminative power in predicting mortality. This study broadens the scope of
discussion by considering patient survival separate from graft survival.

7.4 Comparison to Previous Research

The comparison of our study with previous pivotal research within the field of kidney transplantation
survival prediction reveals some key insights. The performance of our models aligns closely with the
models presented by Senanayake et al. [38] and Paquette et al.’s study [30]. The difference in the C-
index between the top-performing models across these studies is around a hundredth, which is negligible.
This consistency is encouraging as it indicates the validity and reproducibility of the findings. Notably,
there is a larger gap in the C-index when death is used as the indicator. This is expected as variable
selection and hyperparameter tuning were optimized for the graft survival indicator in our study.
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Chapter 8

Conclusion

8.1 Limitations of the Study and Future Work

Our study, while offering meaningful insights into kidney graft survival prediction, does have cer-
tain constraints that present opportunities for future investigations. Our models have shown promising
results consistent with previous landmark studies, however, more rigorous validation using independent
datasets is required to confirm their reliability across varied patient groups. Additionally, the extensive
computational time and resources required for training specific models, like the Random Survival Forest,
may pose practical implementation challenges. Future research could focus on optimizing these models
for greater efficiency and less computational demand.

Our models primarily targeted graft survival, but there is potential for refinement to improve patient
mortality prediction, as underscored by van Walraven et al.’s study [41]. Our neural networks’ notable
performance in graft survival prediction suggests that subsequent research could expand upon the devel-
opment of larger, more practical neural network models.

An additional area for future exploration involves a closer collaboration with clinicians. Their prac-
tical experience and expertise can help ascertain the deployability and real-world applicability of these
machine learning approaches, ensuring alignment with the complexities of clinical practice. This col-
laboration could deepen our understanding of transplantation medicine, thereby refining the predictive
power and applicability of future models.

8.2 Practical Implications and Applications

The findings from our research carry considerable practical significance, particularly in the Czech
Republic, where no model like ours has been deployed nor its feature importance used to develop a
scoring method akin to KDRI/EPTS. The improved accuracy of our survival prediction models could
inform pre-transplant decisions, helping physicians assess different graft options, and in turn, enhancing
patient outcomes.

A web-based application modelled after the IChooseKidney study [32] could equip patients with
crucial information about transplantation. By providing mortality risk or survival benefit data based
on individual patient profiles, the application could aid in informed decision-making. If UNOS-like
data were made publicly available in the Czech Republic, our models could be tailored to reflect local
demographics more accurately, a concept extendable to other regions not covered in our study.

Our effective application of machine learning techniques, including neural networks, suggests their
potential for broader integration in healthcare and transplantation medicine. Additionally, these models
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could be translated into user-friendly clinical tools offering evidence-based guidance, thus assisting clin-
icians and patients in making informed decisions, improving graft survival rates and patient mortality
outcomes.

8.3 Summary of the Main Findings

The goal of this thesis was to apply machine learning techniques for predicting kidney graft survival,
an intersection of computer science and medical science. We began with a comprehensive review of
contemporary machine learning methods, providing a solid foundation for practical application.

Our systematic exploration of kidney transplantation and the current methods of donor-recipient
compatibility assessment revealed potential weaknesses, thus identifying areas for improvement. We
also delved into survival analysis and the mathematics of predicting time-to-event data, a crucial step
that empowered us to create accurate predictions.

Using software tools such as scikit-learn, PyTorch, scikit-survival, and PySurvival, we analysed real
data from kidney transplants. This allowed us to understand graft survival comprehensively. In our
application phase, we compared various models for predicting graft survival, with Cox linear models,
Gomperetz, and a neural network-based model, the DeepSurv, performing exceptionally well.

Despite the computational demands and the need for substantial validation on independent datasets,
our findings show promising trends. We highlighted the effectiveness of neural networks and suggest fu-
ture research for larger, more deployable models. These models can be refined for better patient mortality
prediction and increased computational efficiency. It is also recommended that medical professionals be
involved in validating the practicality and deployability of such approaches.

In conclusion, our study not only presents promising avenues for immediate application in kidney
transplantation but also proposes a pathway for further investigation. As machine learning continues to
evolve, it promises to revolutionize patient care in kidney transplantation, creating a more hopeful future
for those in need.
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Data Source, Code, and Reproducibility

In this study, the data was supplied by the United Network for Organ Sharing as the contractor for
the Organ Procurement and Transplantation Network. The interpretation and reporting of these data are
the responsibility of the author and in no way should be seen as an official policy of or interpretation by
the OPTN or the U.S. Government. The source of the data is OPTN as of September 2022.

In an effort to uphold transparency and promote reproducibility, the Python code utilized for data pre-
processing, model training, and evaluation has been made publicly accessible. All related resources, in-
cluding the aforementioned code, can be retrieved from the corresponding GitHub repository at: https:
//github.com/peterstran/ml-unos2.
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