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Abstract: This thesis introduces new software for the detection and recog-

nition of randomly generated patterns, which are utilized for the

processing of image data during impact dynamics experiments. The

tool enables the identification of the pattern’s position and its fur-

ther utilization in tracking its motion during the experiment, as

well as its automatic integration into subsequent image processing

methods. The automation of individual processes significantly min-

imizes the manual workload in the evaluation process. Employing

multiple independent image processing techniques provides possi-

bilities to review accuracy and reliability of the results and also pro-

vides result redundancy. The method has been evaluated on sam-

ple datasets, representing not only potential usage of the method,

but also interesting materials with potential applications in various

fields, including aviation. The sample datasets demonstrate that un-

der suitable conditions, the method’s outcomes are fully comparable

with alternative image processing approaches, such as digital image

correlation, as well as non-image data obtained from strain gauges.

However, in certain cases, particularly when debris is present in

the pattern region, the method exhibits systematic failure, yielding

results that vary in quality compared to image correlation.
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Abstrakt: Tato práce představuje nový software pro detekci a rozpoznání

náhodně generovaného obrazce, který je využíván pro zpracov-

ání obrazových dat při rázových experimentech. Nástroj umožňuje

zjištění polohy tohoto obrazce a její další využití pro zjištění pohybu

během experimentu, a také jako vstup do dalších metod zpracov-

ání obrazu. Automatizace jednotlivých procesů umožňuje omezení

opakujících se manuálních činností při vyhodnocování experimen-

tálních dat. Využití více nezávislých metod zpracování obrazu

naskýtá možnost vyhodnocení správnosti získaných dat a poskytuje

redundanci výsledků. Metoda byla testována na vzorových setech

dat, které reprezentují nejen jednotlivé možnosti metody, ale rovněž

zajímavé materiály s potenciálem použití v celé řadě oblastí, včetně

letectví. Vzorové sety dat ukazují, že při příhodných podmínkách

jsou výsledky této metody plně srovnatelné s alternativní metodou

zpracování obrazu, digitální korelací obrazu, a také s neobrazovými

daty získanými z tenzometrů. V některých případech, zejména když

jsou přítomny trosky vzorku v oblasti s obrazcem, metoda system-

aticky selhává a v závislosti na charakteru dat metoda poskytuje

horší i lepší výsledky než korelace obrazu.
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1. Introduction

Dynamic impacts, the high velocity events, characterized by high-rate loading have a criti-

cal impact to various technologically significant applications, spanning a diverse spectrum

of fields. Examples of such applications include armor penetration, the crashworthiness

of vehicles, high-speed machining, etc. Within the aviation industry, high-rate loading

is a crucial consideration for different aircraft components, such as landing gear during

landings, airframes in the event of bird strikes or hail strikes (or any crash scenario), and

more [1].

When high-rate loading occurs, the mechanical response of materials generally differs from

cases involving lower loading rates (rates close to quasi-static loading). The study of this

phenomenon relies on experimental capabilities to achieve high-rate loading. However,

the knowledge, that the material properties under impact are different from those under

static loading, has been known since the 19th century [2]. In this context, J. Hopkinson’s

work in 1872 demonstrated that metals can withstand significantly higher impulsive loads

in simple tension compared to static loading conditions [3]. The commencement of more

sophisticated high-rate loading experiments can be traced back to approximately the half

of the 20th century [4].

High-speed cameras were introduced to the experimental setup quite early in the devel-

opment of high-rate loading experiments. However, due to the camera’s low resolution,

low frame rate, and limited computational power for image processing, the camera’s data

were not utilized for obtaining experimental data, but only for observation purposes. Re-

cently, with advancements in camera and IT equipment technology, high-speed cameras

can now serve as a relevant source of experimental data [5]. Nevertheless, this approach

to high-rate loading experiments imposes high requirements for image data quality, which

cannot always be met in many cases, such as when there is the presence of sample debris

covering a large area of the captured picture.

The conventional approach to processing image data from experiments involves using

the digital image correlation method [6]. With recent advancements in information tech-

nology, new opportunities have arisen for the integration of machine learning and deep

learning techniques into data processing of experimental data. These new approaches can
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serve as complementary methods to the conventional approach [7], or even provide an

alternative technique that yields comparable results to the standard methods [8].

Another trend in experimental mechanics is the development of automatic fault recogni-

tion methods during image processing. These methods are essential for automatic image

processing techniques as they can recognize instances when the method fails and can

potentially correct the results [9].

Additionally, in context of introduction above, in this thesis I focus on the development

of an automated pattern detection software. The software will be used during post-

processing of data acquired from impact dynamics experiments.
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2. Methods

2.1 Digital Image Processing

Image processing encompasses a wide range of techniques and algorithms aimed at improv-

ing, manipulating, and analyzing images. These techniques enable us to extract meaningful

information, enhance the visual quality, and find patterns in the image. Digital image pro-

cessing can be classified into several distinct classes of operations, each serving a specific

purpose: image enhancement, image restoration, image analysis, and image compression.

Image enhancement techniques manipulate images mostly by using heuristic approaches

to obtain images from which human viewers can extract more information. These tech-

niques aim to improve the visual quality and perceptual characteristics of the image.

Image restoration methods utilize statistical and mathematical models to predict miss-

ing or damaged parts of an image caused by degradation. By establishing statistical and

mathematical models of the degradation process, these methods aim to restore the im-

age to its original state. Image analysis techniques facilitate the automated extraction

of information from images through a systematic processing approach. These techniques

encompass various operations that enable the delineation and characterization of image

components and features. Examples of image analysis include image segmentation, edge

extraction, and texture and motion analysis. Within the scope of this thesis, the image

analysis component of image processing, especially image recognize (computer vision), is

identified as the most valuable and relevant part [10].

To provide image processing techniques, the MATLAB Image Processing Toolbox (MIPT)

was used [11] and some of the functions included in MIPT that were utilized in the thesis

will be described in following chapters (2.1.2 to 2.1.5) . The image processing methods

discussed in the following sections were implemented using Matlab® software [12], version

R2022b. The objective of the process is to achieve pattern detection of a randomly gen-

erated pattern physically embedded within the image data. More details were are listed

in Computational protocol, Section 2.7.
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2.1.1 Logic of the Process

The process of calculating the pattern mask from the gray scale image dataset is schemat-

ically shown in Figure 2.1. Firstly, local statistical values are calculated. Different patterns

can be localized using the fact that each pattern (or background, etc.) has distinct sta-

tistical values in the local area of its presence. The appropriate statistical variable is

mostly chosen empirically to best fit the investigated pattern. Secondly, the image of sta-

tistical values is binarized into two sets: the pattern (foreground) and the background.

In cases where any pattern area encompasses a recognized background, this background

is moved to the recognized pattern set. Mostly, the foreground area consists of several

non-connected regions. If they cannot be connected via the previous step (Area Closure),

the best foreground has to be selected.

Figure 2.1: The process of mask recognition

After obtaining the pattern mask, the pattern location is included in it. Then, with knowl-

edge of the pattern’s location, an area including the pattern can be chosen as the input

for the Digital Image Correlation (DIC) method. Generally, the pattern can be located

in every captured image of the dataset, and independently, the pattern’s movement can
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be tracked using DIC. From the movement, specifically the displacement, the velocity

of the pattern, or respectively the sample, can be easily calculated, providing valuable ex-

perimental results. Additionally, other non-image data, such a strain gauge measurements,

can be utilized to compare displacement or velocity values. This process is schematically

shown in Figure 2.2.

The steps mentioned in the previous paragraphs are detailedly described in the following

sections.

Figure 2.2: The process of image processing

2.1.2 Calculation of Statistical Measures of Texture

When using MIPT (MATLAB Image Processing Toolbox), there are several possibilities

used to calculate the local statistical values within an image. MIPT provides the following

functions: rangefilt, stdfilt and entropyfilt function.

The rangefilt function calculates the local range of the pixel intensities, while the stdfilt

function calculates the local standard deviation. Additionally, the entropyfilt func-

tion calculates the local entropy, which represents the statistical measure of randomness
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in the image [11].

To utilize these functions, the input parameters, apart from the original image, include

the specification of the neighborhoods where the local statistical values should be com-

puted. As illustrated in Figure 2.3, an example demonstrates the calculation of a local

statistical value within the pixel’s neighborhood.

The neighborhood mask can be configured into various shapes utilizing functions such as

strel. In Figure 2.4, an illustrative example showcases the usage of the strel function

to generate a circular mask [13].

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

6 7 7 7 7

11 12 12 12

Minimum value
 in neighborhood

Maximum value
 in neighborhood

15 - 3 = 12

Figure 2.3: Example of the calculation of the local range in the image

using the rangefilt function with 3x3 neighborhood [11]

0 0 0 1 0

0 1 1 1 1

0 1 1 1 1

1 1 1 1 1

0 0

1 0

1 0

1 1

0 1 1 1 1

0 1 1 1 1

1 0

1 0

0 0 0 1 0 0 0

1
R = 3

Origin
SE=

Figure 2.4: Example of creating the disk neighborhood mask [13]
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2.1.3 Binarized Image

To define the region of interest (ROI), the binary mask is used. A mask with pixel val-

ues of 1 represents image pixels belonging to the ROI, while a mask with pixel val-

ues of 0 denotes image pixels that correspond to the background. One of the possibil-

ities in MIPT to generate binary mask of ROI is to use the imbinarize function. In

this case, the ROI is generated by definition of the threshold for the pixel’s intensity.

By default, the imbinarize function uses Otsu’s method which selects the threshold

value to minimize the intraclass variance in the ROI and background pixels. In addition,

the imbinarize function allows for the input of a user-defined threshold value [14].

2.1.3.1 Otsu’s Method of Binarization

The method employed, Otsu’s method, is a non-parametric and unsupervised approach

utilized for the automatic threshold selection in the binarization process. It aims to de-

termine an optimal threshold that maximizes the separation between the two resulting

classes based on discriminant criteria. The process is straightforward and will be described

in this section [15].

The equations below are based on Otsu’s article [15]. Let the image have N pixels at L

gray level, so at the i level ni pixels can be found . The histogram is normalized and

regarded as a probability distribution:

pi =
ni

N
. (2.1)

An obvious corollary of the aforementioned fact is that the sum of pi over all L levels equals

1. Additionally, it is expected that the probability of occurrence in level i, denoted as pi, is

greater than or equal to zero. When segmenting pixels into two classes, denoted as C0 and

C1, using a threshold at level k, C0 represents the pixels at levels ranging from 1 to k, while

C1 represents the pixels at levels ranging from k + 1 to L. Subsequently, the probability

of occurrence in class C0 is denoted as ω0, while the probability of occurrence in class C1

is denoted as ω1. Furthermore, the mean class values, represented by µ0 and µ1, can be

defined in a similar manner.
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ω0 = P(C0) =
k∑

i=1

pi = ω(k) (2.2)

ω1 = P(C1) =
L∑

i=k+1

pi = 1− ω(k) (2.3)

µ0 =
k∑

i=1

i · P(i|C0) =
k∑

i=1

i ·
pi
ω0

=
µ(k)

ω(k)
(2.4)

µ1 =
L∑

i=k+1

i · P(i|C1) =
L∑

i=k+1

i ·
pi
ω1

=
µT − µ(k)

1− ω(k)
(2.5)

where

ω(k) =
k∑

i−1

pi (2.6)

µ(k) =
k∑

i−1

i · pi (2.7)

and µT is the total mean level µT =
∑L

i=1 i ·Pi. Then the class variances σ2 are given by

the following equations.

σ2
0 =

k∑
i=1

(i− µ0)
2 · P(i|C0) =

k∑
i=1

(i− µ0)
2 pi
ω0

(2.8)

σ2
1 =

L∑
i=k+1

(i− µ1)
2 · P(i|C1) =

L∑
i=k+1

(i− µ1)
2 pi
ω1

(2.9)

To evaluate the goodness of the selected threshold, Otsu introduced 3 variables

λ =
σ2
B

σ2
W

κ =
σ2
T

σ2
W

η =
σ2
B

σ2
T

(2.10)

where σ2
W is the within-class variance, σ2

B is the between-class variance, and σ2
T is the total

variance of the levels.

σ2
W = ω0σ

2
0 + ω1σ

2
1

σ2
B = ω0(µ0 − µT )

2 + ω1(µ1 − µT )
2

= ω0ω1(µ1 − µ0)
2

σ2
T =

L∑
i=1

(i− µT )
2pi

Due to fact that the terms in Equation 2.10 follow the relationship σ2
W + σ2

B = σ2
T ,

the optimal freehold k is the one that maximizes one of the variables and the maximization

of η is the simplest measure with respect to k.
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2.1.4 Area Closure

The imclose function in MIPT performs morphological closing on the gray scale or binary

images. It accomplishes this by utilizing a specified structuring element neighborhood,

which aims to enhance the object connectivity and preserve the structural information.

The primary objective of this function is to fill gaps and holes in the image [16].

2.1.5 Selecting the ROI

The MIPT incorporates the bwpropfilt function, which facilitates the selective filtering

and extraction of the connected components based on specific properties. This function

offers various parameters, including the area, filled area, eccentricity of the ellipse, Euler’s

number, etc. In this thesis, the area parameter was employed to extract the largest area

within a binary mask [17].

2.2 Digital Image Correlation

Digital Image Correlation (DIC) is a computational optical method utilized for track-

ing and image registration techniques widely used for image data processing, applicable

to both 2D and 3D datasets [18]. One possible definition for the two-dimensional discrete

cross-correlation coefficient γ(u, v) is provided by Equation 2.11, where f is a image, t̄ is

the mean of the template and f̄u,v is the mean of f(x, y) in the region under the tem-

plate [19].

γ(u, v) =

∑
x,y[f(x, y)− f̄u,v][t(x− u, y − v)− t̄]√∑

x,y[f(x, y)− f̄u,v]2
∑

x,y[t(x− u, y − v)− t̄]2
(2.11)

In this thesis, the Digital Image Correlation (DIC) method serves as both a comparative

and supplementary technique to the presented image recognition method. Firstly, DIC is

employed to verify the accuracy of the displacement results obtained through the image

recognition method. Secondly, image recognition techniques are utilized to define the input

files required for automating the DIC process.
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2.2.1 RaDIC Software

RaDIC is an in-house developed digital image correlation software used for pattern track-

ing. In this thesis, it is utilized for a comparative analysis with the developed pattern

position tracking approach. One of the main purposes of the developed software is to cre-

ate an initial input file for the RaDIC software by utilizing the knowledge of pattern

position, thus automating the process [20].

2.2.2 Differences Between DIC and Image Recognition

Despite utilizing the same input data and providing information about the displacement,

the methods employed in this thesis differ in their underlying principles. The DIC method

operates by searching for a predefined set of pixels from the previous image in the subse-

quent image and subsequently may update this set. On the other hand, the image recog-

nition method focuses solely on detecting a randomly generated pattern within the image.

The movement data is captured based on the location of the right or left edge of the rec-

ognized pattern mask.

2.3 Data Source

In high-rate loading dynamics experiments, the Split Hopkinson Pressure Bar (SHPB) is

a commonly used experimental approach. The SHPB setup consists of several bars that,

at high velocity, collide with the sample (and each other as well). The setup includes several

strain gauges, and their measurements are combined to provide the displacement/velocity

data of the bars. Additionally, the region of the bar’s impact is monitored by a high-speed

camera. All the strain gauge and camera measurements are synchronized. The setup can

be illustrated in Figure 2.5.

The datasets used in this thesis were obtained during SHPB experiments using a high-

speed camera to capture the region of impact of the bars on the sample.

10



Figure 2.5: Experimental setup of the split Hopkinson pressure bar test [21]

Note: SG – strain gauge

2.4 Data Processing

According to the image recognition process definition, the method yields discrete displace-

ment data for whole numbers of pixels. However, one of the primary objectives of obtaining

movement data is to calculate the velocity of the pattern or the sample containing the pat-

tern. The velocity is determined as the first derivative of the displacement. In scenarios

involving ”slow" movement1, instances occur where the calculated velocity is zero between

certain pairs of consecutive images, while it is overestimated in other pairs. To address

this issue, a weighted average approach is introduced to mitigate the effect of zero ve-

locity intervals and enhance the accuracy of the velocity calculation. This is achieved by

extrapolating the original displacement data, increasing the number of data points, and

applying a weighted average scheme.

The value of the extrapolated data point h(i) for the (non)-integer frame number i is given

by the term in Equation 2.12, where n is the frame number of original data-point, N is

the total number of original data-points, w is the maximal affected distance for calculating

average and f(n, i) is the weighted function. The results of the described data processing

function is displayed in Figure 2.6 (b), which shows the zoomed detail.

h(i) =

∑N
n=1H(n) · f(n, i)∑N

n=1 f(n, i)
(2.12)

1Relative to the camera’s frames per second. In our specific case, slow movement refers to velocities

on the order of tens of meters per second
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where

f(n, i) = w − |i− n|;n ∈ (i− 5, i+ 5)

f(n, i) = 0;n ∈ Z+\(i− w, i+ w)

2.5 Functions Summary

This section describes the functions that were specifically developed and implemented

to achieve the objectives of this thesis. These functions represent one of the key outcomes

of the work. In this section, a detailed description of these functions is provided, including

their input and output variables, as well as other relevant details.

2.5.1 imdetect and imdetect2

mask = imdetect(IM, nHood, limitsum)

[mask1, mask2] = imdetect2(IM, nHood, detectnull)

The output of the function is a binary mask indicating the location of the detected pattern.

The mask corresponds to the recognized pattern with the largest area value. In the case

of the imdetect2 function, two regions with the largest areas.

• IM – the original gray scale image

• nHood – the dimension of the square used for defining the neighborhood

• limitsum – the minimum number of pixels in each column in the mask

2.5.2 dataProc

Upvysl = dataProc(Vysl,up_factor,procSize)

The output is the processed data with an increasing number of data-points and calculated

weighted average.

• Vysl – the original results of the displacement

• up_factor – factor of increasing density of the new data-points

• procSize – maximal affected distance for calculating the weighted average

12



(a)

(b)

Figure 2.6: Results of the data processing
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2.5.3 makeradicfile

makeradicfile(stIM, dataPath,row_num, col_num, row_size, col_size,

startimagenumber, jobname, endingimage, exportimages,ID)

Save to current folder initial file for SW RaDIC. This file is required for RaDIC operation.

• stIM – binary mask of recognized pattern

• dataPath – directory, where the image data are stored

• row_num – number of the tracking patterns in one row

• col_num – number of the tracking patterns in one column

• row_size – horizontal dimension of tracking patterns

• col_size – vertical dimension of tracking patterns

• startimagenumber – image number where the DIC begins

• jobname – name displayed in RaDIC SW

• endingimage – image number where the DIC ends

• exportimages – true/false - option for the RaDIC SW to generate images during

the DIC process

• ID – integer to prevent a redundant file name

14



2.6 Graphical User Interface

To facilitate the operation of the functions discussed in Section 2.5, a graphical user inter-

face (GUI) was developed. The presented GUI is one of the main outcomes of the thesis.

It gathers most of the tasks that can be performed using the scripts and programs intro-

duced in this thesis into one comprehensive program. Screenshots of the GUI are presented

in Figures 2.7 to 2.11. After fulfilling the necessary prerequisites, the interface displays

a series of buttons and options in a logical sequence. These elements are presented to en-

sure the proper flow and organization of actions within the interface.

The GUI has the following tasks:

• Provide edge detection

• Export the pattern mask

• Prepare the RaDIC input file

• Provide edge detection tracking and DIC in Matlab

• Compare and display the results of the previous tasks

The comparison of the results is provided to indicate the correctness of the results and

to ensure their redundancy.

In Figure 2.7 app window is displayed. On the left side of the first line, there is a control

panel dedicated to the initial steps. This control panel allows the selection of the images

directory and format. After selecting the path by the Find directory button, the path is

displayed on the right. By pushing the Show button, the image is displayed in the center

of the app window.

A control panel dedicated to image detection is located on the right side of the GUI.

The first section of this panel contains fillable fields for inserting the required parameters

for the imdetect2 function (refer to details in Section 2.5.1). These fields are pre-filled

with empirical values used during experiments. Upon clicking the Pattern detection but-

ton, the imdetect2 function is called and the resulting mask is displayed in the main ap-

plication window. This app state is depicted in Figure 2.8. Then, several options, which

require a binary mask, are displayed, e.g., run Matlab DIC, make RaDIC file or track

of edge movement.
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Figure 2.7: Display source data in the App

Figure 2.8: Display detected pattern

For each of the possible image processing functions (edge detection, DIC in Matlab or

in SW RaDIC), a green color is employed to indicate that the respective task has been

successfully completed. It can be seen in Figure 2.9. Also, the graph of displacement

dependency on the frame number is displayed in the App window.
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Figure 2.9: Screen after the edge detection movement is captured

By pushing the Export RaDIC file button, a new dialogue application is opened (Fig-

ure 2.10). Within this new window, some of the input parameters for the makeradicfile

function (Section 2.5.3) can be filled. The parameters referred to pattern location are

filled automatically.

Figure 2.10: Make RaDIC file dialog window
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Upon clicking the Compare button, the results obtained from the edge detection, Digital

Image Correlation (DIC) implemented in MATLAB, and SW RaDIC are presented in a

single graph, as can be seen in Figure 2.11.

Figure 2.11: Comparison of the results with the different methods

2.7 Computation Protocol

To showcase the accuracy of the edge detection method, three distinct datasets were

utilized. These datasets were acquired during the Direct Impact Hopkinson Bar Tests

conducted on various materials at the Laboratory of Experimental Mechanics, Depart-

ment of Mechanics and Materials, Faculty of Transportation Sciences, Czech Technical

University in Prague. Detailed information regarding these datasets is provided in Ta-

ble 2.1, and examples of the corresponding image data are presented in Figure 2.12. The

gray scale image data was captured using a FASTCAM SA-Z type 2100K-M-32GB cam-

era. Independent data, such as strain gauge readings from both bars, were also obtained

and used for verification of the image data. The images were saved in two formats: raw

and png. For the subsequent image processing methods, the png format was utilized. Per-

tinent information about the camera’s resolution, FPS settings, and other relevant details
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can be found in the cihx file, which is generated in the same folder as the captured images.

The cihx file is in an XML format and contains the necessary metadata.

ID Dataset name Camera FPS Resolution [px]

1 Standard concrete 300 000 256 x 128

2 3D printed bulks 300 000 256 x 128

3 PASLS X3 180 000 384 x 200

Table 2.1: Details for the datasets used in thesis

To develop the image recognition method, a dataset with an image resolution of 256 x

128 pixels was utilized. This dataset was recorded using the same camera with settings

configured to capture images at a high frame rate of 300,000 frames per second (FPS).

In contrast to the typical usage of the developed software, this particular dataset consists

of images featuring a single random pattern that needs to be detected to optimize the de-

velopment process. The dataset exclusively contains captured images featuring a single

moving bar without any additional samples. An example image from this dataset is dis-

played in Figure 2.13.

All the elapsed times were recorded on a personal laptop equipped with an Intel i5-11300H

processor, 16 GB of LPDDR4 3200 MHz RAM, and running the Windows 11 version

22H2 operating system. It is important to note that for this thesis, Matlab performance

toolboxes, such as Parallel Computing Toolbox or GPU Computing, were not utilized.

For the purpose of comparison, the RaDIC software, developed in Python version 3.7,

was employed.

To visualize the detected mask overlaid on the original image, the built-in Matlab func-

tion imshowpair [22] is utilized. In this visualization, the recognized mask is displayed

in magenta color, while the background is marked with green. The example is shown

in Figure 3.1.

To enable a comparative analysis with the non-image data obtained from the strain gauge

measurements, a conversion of the displacement graph units from the frame numbers and

pixels to the time and millimeters is necessary. This conversion relies on two parameters:

the camera’s frame rate and the known pixelsize. The frame rate is included in the camera

configuration file and is automatically extracted. The second parameter is determined by
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(a) ID 1 – Concrete sample

(b) ID 2 – 3D printed bulk sample

(c) ID 3 – PASLS sample

Figure 2.12: Examples of the experiment’s image data
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Figure 2.13: Data used for developing the image detection software

a length standard with a known dimension, e.g. 10 mm, as depicted in Figure 2.12 (a) on

the right side. The conversion process is semi-autonomous, as a helpful MATLAB script

has been developed, but it requires user cooperation.

The datasets were not only selected to demonstrate the ability of the developed method

but also because they represent interesting materials used in transportation sciences.

Concrete, for example, is commonly used in the transportation infrastructure, such as

runways in aviation. 3D printed bulks represent modern materials with great potential

for future applications. The PASLS samples are made of high-performance polymers,

which can also be used in the aviation industry.

These materials are of interest both for their specific applications and as reference materi-

als for testing the developed method, given their differences in geometry, pattern, contrast,

etc.

21



3. Results

3.1 Pattern Detection

The initial approach to the pattern detection techniques yielded reasonable results, as

depicted in Figure 3.1. However, there was a notable issue where the large area outside

the pattern, particularly the edge between the light bar and the dark background, was

erroneously identified as part of the pattern.

Figure 3.1: Results of the initial approach to the pattern detection

Color legend: magenta – recognized pattern; green/black – background

Subsequently, the method was updated by introducing a parameter to define the minimum

number of recognized pixels in a single column, which was empirically set to 35 pixels. In

general, if the sum of recognized pixels in a column is below this threshold, all the pixels

in that column within the mask are assigned a value of 0. As a consequence of this

approach, the vertical edges of the recognized pattern become clearly visible, although this

was not originally intended, it will be used in the subsequent steps (detailed in Section 3.2).

The outcomes of this modified approach are presented in Figure 3.2, and it was deemed

suitable for the purposes of this thesis.
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Figure 3.2: Results of the final approach to the pattern detection including the limit

for the minimum pixels in a column

Color legend: magenta – recognized pattern; green/black – background

3.1.1 Quantification of Pattern Detection

Due to the high labor requirements involved in result quantification, it was performed

on a limited number of data samples. Nevertheless, subjectively speaking, the results

obtained using the method on different datasets exhibited similarity. Thus, the limited

number of result quantifications can be deemed sufficient to demonstrate the accuracy

of the approach.

Figure 3.3 displays the mask of the pattern that was recognized by the author of this

thesis. The mask includes parts that are poorly visible in the shadows at the border

of the pattern.

To summarize the results, a confusion matrix chart was utilized to classify the pixels,

as shown in Figure 3.4. From a subjective perspective, we anticipated that there would

be some parts in the mask that were labeled as the background by the function, but

in reality, they corresponded to the pattern, albeit with low visibility. This observation

aligns with the 75 % of the well-indicated mask pixels. This value could be improved with

better lighting conditions during the experiment; however, it is not a major concern, as

this specific region of the pattern is not suitable for further image processing methods

such as DIC.
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Figure 3.3: Mask detected by the user

Color legend: magenta – recognized pattern; green/black – background

More importantly, the correspondence between the predicted mask value and the real

(human-indicated) mask value is highly significant, reaching 94% and 98% accuracy, re-

spectively. This high level accuracy ensures that if the detected area is selected for DIC

or any other method, there is a high degree of certainty that the chosen area contains

the pattern. As previously mentioned, there is a border part of the pattern that is not

detected by the function. Figure 2.13 illustrates that this low visibility portion of the pat-

tern is predominantly situated at the top and bottom regions. Therefore, the existence

of clear visible edges on the left and right sides, as mentioned in the previous section,

remains unaffected by this level of accuracy.
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Figure 3.4: Matrix chart of the pixel’s classification

3.1.2 Detection of Two Patterns

Once the method’s accuracy reached a satisfactory level, the process was updated to de-

tect two separate patterns in image data. The process remained largely the same, using

the same logic and sequence of steps as for detecting a single pattern. However, it now

preserved the two largest areas, rather than just the largest area. Additionally, a sorting

logic was implemented, which resulted in the pattern on the left side being returned as

mask1 and the pattern on the right side being returned as mask2. Figure 3.5(a) shows

an example of an image containing two patterns for detection. The results of the pattern

detection function with the additional sorting logic are shown in Figures 3.5(b) and (c).
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(a) Original

(b) Mask 1

(c) Mask 2

Figure 3.5: Two detected patterns in the image

Color legend: magenta – recognized pattern; green/black – background
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3.2 Using Recognized Mask Data

In the event that the pattern is detected in the entire set of images1, valuable information

about the movement of the sample with the pattern can be extracted from the series

of mask data for each image. We have two hypotheses on how to utilize these masks.

Firstly, we can track the center of gravity of the recognized pattern. However, as illus-

trated in Figure 3.6, the black line representing the tracked center of gravity does not

align well with the other independent methods. This phenomenon occurs due to the sig-

nificant increase in the detected pattern size when it moves from a section with poor light

conditions to a better condition. This effect is particularly observed on the sides of the pic-

ture. Consequently, in the initial frames, the displacement of the pattern calculated by

this approach is notably lower. However, in the subsequent part, the trend aligns with

the results obtained from the comparative methods.

As an alternative approach, we discovered that vertical edge detection (specifically the right

edge of the pattern in this case) proves to be significantly more suitable for evaluating

the image data. This phenomenon is caused by the minimum number of mask pixels

declared in each column, as discussed in Section 3.1.

As depicted in Figure 3.6, the results obtained from RaDIC SW, DIC implemented in Mat-

lab, and the edge detection method (with the exception of a few last images in the se-

quence) exhibit similar outcomes. By utilizing the upscale method for Matlab DIC and

the edge detection results, as discussed in Section 2.4, the edge detection data can be

regarded as the true results of processing the image data. However, it is important to con-

sider the requirement of good image conditions which was formulated during the sub-

sequent experiments with real samples. In the cases where debris from a disintegrating

sample covers the pattern, especially its edges, the method may fail to provide accurate

results.
1Assuming that the pattern remains unchanged during the movement and the camera remains in a

static position
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Figure 3.6: Comparison of the used methods

Dataset with 1 pattern for detection – Figure 2.13
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3.3 Unit Conversion

As mentioned in Section 2.7, the unit conversion from pixel to millimeters (or equivalent

length unit) is required for the application of the developed method. To achieve this,

a small semi-automatic MATLAB program was written. The user inputs the image, which

is then cropped to the length label section (Figure 3.7 (a)).

(a) Zoom to length label (b) Binarized image

Figure 3.7: Unit conversion program

The image is then binarized by selecting a threshold value of intensity empirically to 0.1

(Figure 3.7(b)). The sum of the pixel intensities in each column is then calculated and

displayed to the user in a graph (Figure 3.8).

Figure 3.8: Graph of the sum of the pixel intensity in the columns

The user then defines a threshold for the sum of the pixel intensities. In the context

of the graph in Figure 3.8, the threshold is set to 16. The final task of this program

is to calculate the length of the continuous region below this threshold. However, there

may be more than one continuous region below this threshold, and the user has to select

the length value that corresponds to the length of the label of a standardized size. In

this particular case, the length of the region is 44 pixels and the real length is 10 mm.

With this knowledge, it is possible to provide information about the displacement/velocity

in adequate units for laboratory practice.
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3.4 Comparative Analysis

To conduct a comparative analysis of the described method, which involves tracking

the edge of the recognized pattern, alternative approaches were employed using the same

data input (image data). Specifically, the two alternate methods utilized for comparison

were DIC in Matlab and RaDIC, in addition to the image-independent data obtained from

strain gauge measurements during the experiments. For this purpose, several datasets, as

discussed in Section 2.7, were employed. The analysis of these datasets revealed that

the results, in terms of accuracy and suitability for different applications, may vary based

on specific conditions.

3.4.1 Compact Concrete Sample

In this section, we employed a specific sample that did not collapse through the pattern,

and an example of the corresponding image data is displayed in Section 2.7, Figure 2.12.

Figure 3.9 illustrates the dependencies of the incident (right) bar velocity over time,

which were measured or processed using different approaches. Additionally, Figure 3.10

showcases the velocity of the transmission (left) bar. The velocity obtained by tracking

the edge of the recognized pattern is represented by the black line. The separated curves

are further delineated in Figures 3.12 and 3.13.

While a quantified comparative analysis is presented in the subsequent chapter, this sec-

tion primarily focuses on visually comparing the trends in the results, which are appar-

ent to the observer. As evidenced in Figures 3.9 and 3.10, the results obtained using all

the optical approaches closely align with the velocity values measured by the strain gauge.

However, it is noteworthy that visually, the values from the optical approach appear to be

slightly overestimated in comparison to the strain gauge measurements. I surmise that

this overestimation, which is consistent across all the image processing approaches, may

be attributed to inaccuracies in the unit conversion process, which operates solely with

integer values.

Furthermore, the figures reveal individual deviations from the trends of the other curves –

notably, for Matlab DIC in the incident bar at times 5.4 ms and 5.5 ms, and for the edge
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detection in the transmission bar at time 5.4 ms. The abnormality observed in the case

of the edge detection can potentially be explained by the local deterioration of the light

conditions or the presence of debris near the edge of the pattern, leading to a recognition

failure. However, an adequate explanation for the abnormality observed in the Matlab

DIC results for this dataset was not identified.

In Figure 3.11, the detailed view of the peak observed in the incident bar velocity data is

presented. A noticeable observation is that the Matlab DIC and edge detection approaches

tend to preserve the waves in the peak better than RaDIC, particularly in the context

of strain gauge values, as seen in the curves at time 4.85 ms. However, the question remains

unanswered as to whether this phenomenon is merely a coincidence or a distinct feature

of the approaches, particularly in light of the presence of opposite peaks at time 4.75 ms.

The absence of these peaks in the results obtained through the RaDIC approach is not

particularly surprising, given that RaDIC updates the image during the DIC process,

while the DIC in Matlab does not, and the edge detection approach, by its definition,

lacks a similar option.

Figure 3.9: Velocity of the incident bar – concrete sample
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Figure 3.10: Velocity of the transmission bar – concrete sample

Figure 3.11: Velocity of the incident bar – concrete sample – zoom to peak
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Figure 3.12: Velocity of the incident bar – concrete sample (separated curves)
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Figure 3.13: Velocity of the transmission bar – concrete sample (separated curves)
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3.4.2 3D Print Bulk Sample

Similarly to the previous section, this section presents a visual comparison of the results

obtained from a 3D print bulk sample, as shown in Figure 2.12 (b). In Figures 3.15 to 3.18,

the individual velocity graphs of the sample are visualized.

This dataset was specifically chosen to demonstrate a phenomenon where the results

for the incident bar from the edge detection approach closely correspond with the strain gauge

data and other optical approaches. However, intriguingly, the results for the transmission

bar do not follow the trend of the strain gauge or RaDIC results. Surprisingly, even the DIC

in Matlab does not align with the other results, that are considered accurate. It should

be noted that the implementation of DIC in Matlab in this study is only preliminary, and

its complete integration into the comparing software is not within the scope of this thesis.

On the other hand, the inaccuracies observed in the results from the edge detection ap-

proach can be attributed to the presence of a small amount of sample debris at the bar’s

pattern, as can be seen in Figure 3.14. The limited occurrence of sample debris, primarily

at the onset of pattern tracking, suggests that the DIC method, especially RaDIC, can

yield results that closely resemble non-optical methods.

In general, this dataset exemplifies the potential collaboration between the edge detection

approach and the RaDIC software. When the edge detection approach encounters diffi-

culties, knowledge of the pattern location from the initial image allows for the automated

image processing using the RaDIC software, resulting in outcomes that closely align with

the non-optical methods. This serves as a compelling example of how these two methods

can effectively complement each other.
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Figure 3.14: Concrete sample debris

Figure 3.15: Velocity of the incident bar – 3D print bulk sample
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Figure 3.16: Velocity of the transmission bar – 3D print bulk sample
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Figure 3.17: Velocity of the incident bar – 3D print bulk sample (separated curves)
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Figure 3.18: Velocity of the transmission bar – 3D print bulk sample (separated curves)
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3.4.3 PASLS Sample

This dataset was chosen to demonstrate the limitations of the developed method. Since

the data lacks a length label, a direct unit conversion is not feasible, leading to use

bar diameter as a length label. Figures 3.19 and 3.20 present the displacement graphs

for the strain gauge measurements and image data. The velocity graphs cannot be dis-

played as they are unreadable, and no discernible data trend can be observed within them.

This dataset is not well-suited for image processing, as the presence of sample debris sig-

nificantly affects a large area of the pattern, as observed in Figure 3.21. Consequently,

the RaDIC method, which updates the searched pattern, loses the original pattern for track-

ing, as depicted in Figure 3.19 at time 1.5 ms, corresponding to Figure 3.21. According

to the physical aspects of the measurements, the data measured at the time of the pres-

ence of the sample’s debris is deemed uninteresting, as all the relevant material changes

have already been accounted for.

However, excluding instances when sample debris covers the pattern, the edge detec-

tion method partly follows the trend obtained from strain gauge measurements. The

method logic remains unaffected during short periods of pattern loss (unlike the RaDIC

approach, which is significantly affected), and overall, the movement trend aligns with

the strain gauge measurements.

Moreover, with additional user input, it is possible to extrapolate erroneous results around

time 1.5 ms to achieve the same trend. However, the results for the transmission bar dis-

played in Figure 3.20 are strongly affected by the sample debris than those for the incident

bar. Since the transmission bar is mostly stationary, its trend cannot be adequately com-

pared. Nonetheless, it is noteworthy that none of the optical approaches capture the trend

of increased movement at the end of the figure.

This dataset serves to illustrate that while the RaDIC approach may encounter failures

in specific cases, the results obtained through the edge detection approach are more valu-

able, thanks to its distinct data processing logic. Additionally, in cases with excessive

sample debris covering the pattern, none of the optical methods employed in this thesis

yield satisfactory results.
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Figure 3.19: Velocity of the incident bar – PASLS sample
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Figure 3.20: Velocity of the transmission bar – PASLS sample

Figure 3.21: PASLS sample debris
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3.5 Quantification of Results

In this section a detailed discussion of the results obtained from the concrete sample

dataset presented in Section 3.4.1 is provided. This dataset was chosen for a detailed

comparison due to its high trend correspondence with the strain gauge measurements. In

the following section, we describe the parameters used for the quantification of the results,

followed by the presentation of the numeric results.

3.5.1 Definition of the Monitored Parameters

In the graphs presented in Figure 3.22, defined points are shown to provide the numerical

quantification of the results. The definitions of these points are detailed in Table 3.1.

Several parameters were introduced by using points from Table 3.1. By quantifying these

parameters, the accuracy and reliability of the image recognition and tracking methods

used in this study can be assessed. In the following subsections, each parameter will be

discussed individually.

The results are presented as absolute values to demonstrate the dimensions of the time

duration or velocity used in this laboratory practice. In order to assess the accuracy

of the method, we provide the ratio between the results obtained from selected method

and the comparative strain gauge measurements, which are considered as the ground truth.

This comparison allows us to quantify how well the image recognition and tracking meth-

ods perform in capturing the sample’s movement, and provides a measure of the method’s

reliability and precision in relation to the reference measurements.

ratio =
value(X)

value(Strain Gauge)
(3.1)
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(a) Incident bar

(b) Transmission bar

Figure 3.22: Points for the results quantification

Note: The point definitions can be found in Table 3.1
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Point Definition

A1 1
2

of the maximum value at B1

B1 Maximum value between A1 and C1

C1 1
2

of the maximum value at B1

A2 1
2

of the maximum value at B2

B2 Maximum value between A2 and C2

C2 1
2

of the maximum value at B2

D2 1
2

of the maximum value at E2

E2 Maximum value after D2

Table 3.1: Definition of the points in Figure 3.22

3.5.2 Peak Duration

The peak duration parameter compares the duration or length of the peak. For the purpose

of this analysis, the peak is defined as the part of the curve between two points with

their values equal to half of the maximum (which is located between these two points). In

the context of the defined points from Table 3.1, it represents the difference in the x-values

between C1 and A1 for the incident bar, and between C2 and A2 for the transmission

bar. This parameter allows us to evaluate the time span during which the peak occurs.

The values are placed in Table 3.2.

Bar/Method
Strain Gauge Edge Detection Matlab DIC RaDIC

[ms] [ms] [ms] [ms]

Incident 0.294 0.297 0.293 0.29

Transmission 0.293 0.293 0.297 0.293

Table 3.2: Peak duration – absolute values

Bar/Method Strain Gauge Edge Detection Matlab DIC RaDIC

Incident 1 1.009 0.998 0.986

Transmission 1 1.001 1.012 1.001

Table 3.3: Peak duration – strain gauge ratio
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In this parameter, the edge detection approach exhibits an error of under 1% compared

to the strain gauge measurements, indicating its high accuracy. The results are similarly

accurate to the RaDIC approach, which is predominantly used as the image processing

method. These very low errors demonstrate that all the methods are equally sensitive

to changes in the velocity of the pattern, whether it is increasing or decreasing.

3.5.3 Peak Height

The peak height represents the velocity of the sample. In this thesis, both the maxi-

mal value within the peak interval and the average value are investigated. In laboratory

practice, the average value holds greater significance. Additionally, the peak is defined

in the same manner as in the previous case, considering points A1/A2 to C1/C2. The

absolute values for the peak height are presented in Table 3.4, and the ratio values are

shown in Table 3.5.

Bar/Method
Strain Gauge Edge Detection Matlab DIC RaDIC

[ms] [ms] [ms] [ms]

Incident (Max) 15.617 16.766 16.397 15.988

Incident (Avg.) 14.134 14.444 14.571 14.699

Transmission (Max) 15.346 16.399 16.397 15.744

Transmission (Avg.) 14.035 14.59 14.515 14.493

Table 3.4: Peak height – absolute values

Bar/Method Strain Gauge Edge Detection Matlab DIC RaDIC

Incident (Max) 1 1.074 1.050 1.024

Incident (Avg.) 1 1.022 1.031 1.040

Transmission (Max) 1 1.069 1.068 1.026

Transmission (Avg.) 1 1.040 1.034 1.033

Table 3.5: Peak height – strain gauge ratio

All the investigated approaches provide overestimated results in order of a few percent.

The edge detection method has average values less overestimated than the maximum
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values, however, the RaDIC approach follows the oposite trend – the results for the average

values are more overestimated than the maximum values. The overestimation is similar

for both approaches. This fact was visually observed in previous sections, where it was

noted that the unit conversion caused an inaccuracy due to only working with an integer

number of pixels. However, the error is small enough to consider these results as similar

to the strain gauge measurements.

3.5.4 Peak Distance

The second duration parameter focuses on the duration between the end of the first peak

and the start of the second peak. This investigation is conducted only for the transmission

bar data, as the second peak is not captured by the camera for the incident bar. Specifi-

cally, the distance is defined by points C2 and D2. The absolute values for this parameter,

along with the ratios to the strain gauge values, are presented in Table 3.6.

Values/Method Strain Gauge Edge Detection Matlab DIC RaDIC

Absolute [ms] 0.538 0.543 0.537 0.533

Ratio [–] 1 1.01 0.998 0.991

Table 3.6: Peak distance for the transmission bar

Similary to the previous sections, the results obtained by the edge detection approach can

be considered of very high quality in this dataset. The edge detection method provides

results that are closest to the strain gauge values. Furthermore, as observed in the peak

duration analysis, it can be postulated that the method is also equally sensitive to changes

in the velocity of the pattern, even for two different peaks in this case.
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Conclusion

The motivation behind this thesis was to develop an autonomous program capable of de-

tecting randomly generated patterns, which are used for enabling image tracking during

impact dynamics experiments. By automating the data evaluation process, the thesis

effectively reduced the manual workload involved in analyzing the measurements.

This thesis has investigated the research of pattern detection in the context of laboratory

practice. A software tool for pattern detection was prepared and developed, featuring

a user-friendly GUI to operate the functions. The GUI also includes options to utilize

different approaches for data processing, such as DIC in Matlab or RaDIC software.

In conclusion, the edge detection function demonstrated high accuracy, with the recogni-

tion of the pattern achieving an accuracy rate above 95 %. Although the function identifies

approximately 75 % of the pattern pixels, it is important to note that the unrecognized

pixels are mainly located in areas with poor lighting conditions, making them unsuit-

able for further image processing methods such as DIC. However, the recognized portion

of the pattern is sufficient to meet the requirements of the potential image processing

methods that may be employed.

A small semi-automatic script was introduced to perform the unit conversion, converting

the pixel length to the standard metric length. When combined with knowledge of the cam-

era’s FPS settings, extracted automatically from the camera’s log file, this enabled the dis-

play of velocity in meters per second over time in seconds. The converted data was then

compared with the strain gauge measurements. The results of this comparative analysis

revealed that the edge detection method’s results closely corresponded with the image-

independent data. The differences in the results were minimal, with variations of approx-

imately a few percent, most of which remained below 2 %. Furthermore, when comparing

the edge detection method with other image processing approaches such as DIC in Matlab

and RaDIC software, the results demonstrated striking similarity, affirming the accuracy

and reliability of the edge detection method in this context.

In the future, the method can be further improved by leveraging some of Matlab’s tool-

boxes that offer parallel computing or computation on graphics cards. This could po-
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tentially enhance the computational efficiency and speed of the image processing tasks.

Additionally, a key area for improvement lies in addressing the program’s behavior when

the pattern is lost due to the presence of sample debris.

Generally, the developed software has proven to be highly efficient in evaluating image

data from the experiments. The automation of the data evaluation process significantly

minimizes the manual workload, as most tasks are carried out automatically without

requiring extensive user input. With its ability to compare results obtained from various

image processing approaches, the software enables a comprehensive review of the accuracy

and reliability of the outcomes. The incorporation of multiple approaches further enhances

the redundancy of the results, ensuring a robust assessment of the experiment’s data.

Overall, the development and refinement of this image recognition method hold great po-

tential for advancing mechanics applications and contributing to the field of experimental

mechanics.
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