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Abstract
Thrombus formation and deposition is the most frequent reason for a forced

oxygenator exchange during extracorporeal support. However, the risk of complication
is much higher for these emergent oxygenator exchanges as opposed to planned
ones, which is especially dangerous for patients in a critical state. They are the
ones who can most benefit from a reliable method for early blood clot detection.
This master’s thesis focuses on utilizing electrical impedance tomography (EIT)
for oxygenator blood clot detection. During the course of this work, a complete
optimization pipeline was designed and implemented in MATLAB. Electrode positions
and injection-measurement (I-M) pattern were optimized first, which lead to more
homogeneous and sensitive measurements. Next, two reconstruction algorithms were
used to reconstruct thrombi in the 3D space of the oxygenator. A Graz consensus
Reconstruction algorithm for EIT (GREIT) reconstruction matrix was trained on
targets emphasizing reconstruction mainly in areas with a higher likelihood of thrombi
deposition (oxygenator edges and corners). A LeNet reconstruction convolutional
neural network (CNN) was trained as well. Thrombus detection and thrombosis
severity assessment followed. Four fully connected (FC) neural networks were trained
to detect clots and assess thrombosis severity based on voltage measurements and
reconstructed images. Information from the voltage measurements turned out to be
more useful for classification, whose final accuracy reached over 90 %. The proposed
approaches were evaluated on real oxygenator mock. It was shown that oxygenator
clot detection with EIT should be possible and is worth further research. The entire
optimization pipeline was set up to facilitates easy modifications of the implemented
algorithms in the future. In this way it, the thesis enables simple research continuity.

Keywords:

electrical impedance tomography, extracorporeal membrane oxygenation, mem-
brane oxygenator, thrombi, electrode optimization, image reconstruction, thrombi
detection, neural networks
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Abstrakt
Vznik a depozice trombů je nejčastější příčinou pro nucenou výměnu oxygenátorů

při mimotělní podpoře krevního oběhu. Výskyt komplikací je ovšem mnohem častější
v případě nucené výměny než u výměny plánované. Neplánovaná výměna je extrémně
nebezpečná především pro pacienty v kritickém stavu. Spolehlivá metoda pro včasnou
detekci trombů v oxygenátorech by tedy byla velmi přínosná. Tato diplomová práce
se soustředí na využití elektrické impedanční tomografie (EIT) pro detekci krevních
sraženin v oxygenátorech. V rámci práce byl v MATLABu navržen a implementován
kompletní nástroj pro optimalizaci EIT měření. Nejprve byly optimalizovány pozice
elektrod a metoda pro vysílání a snímání signálu, což vedlo k homogennějším a
citlivějším měřením. Následně byly použity dva algoritmy pro rekonstrukci trombů
v 3D prostoru oxygenátoru. Rekonstrukční matice GREIT (Graz consensus Recon-
struction algorithm for EIT) byla natrénována na sraženinách v oblastech vysoké
pravděpodobnosti vzniku trombů (hrany a rohy oxygenátoru) v rámci optimalizace
rekonstrukce. Dále byla natrénována konvoluční neuronová síť architektury LeNet.
Následovala detekce trombů a určení závažnosti krevních sraženin. Za tímto cílem
byly natrénovány čtyři neuronové sítě z plně propojených vrstev. Vstupem pro ně
byly napětí z elektrod a také rekonstruovaný obraz. Ukázalo se, že napětí jsou pro
klasifikaci výrazně užitečnějším vstupem a výsledná přesnost klasifikace překročila 90
%. Navržené postupy byly ověřeny na reálném modelu oxygenátoru. Výsledky práce
ukazující potenciál využití EIT pro detekci krevních sraženin v oxygenátorech. V
rámci práce vznikl komplexní a snadno modifikovatelný nástroj, který může pomoci
v budoucímu výzkumu problematiky.

Klíčová slova:

elektrická impedanční tomografie, extrakorporální membránová oxygenace, mem-
bránový oxygenátor, krevní sraženiny, optimalizace elektrod, rekonstrukce obrazu,
detekce krevních sraženin, neuronové sítě
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Chapter 1
Introduction

Extracorporeal membrane oxygenation (ECMO) is a method which has been
around for decades. While the procedure has helped many patients survive long
enough to enable their treatment and aided the safer execution of heart surgeries,
there are still many issues connected to it. Among these, the formation of blood
clots inside the oxygenator itself is most common. Since the occurrence of thrombi
in oxygenators can become detrimental to their function, early and reliable detection
of these clots is needed. The detection methods used today are either not robust
enough to detect all blood clots, have a significant detection lag time, or require the
activity of already over-stretched medical staff.

The potential of impedance analysis for early blood clot detection in ECMO has
been well documented in recent literature sources. The main goal of this thesis is,
therefore, to exploit this potential and find the best approach for the detection and
localization of thrombi in oxygenators. The optimization of this detection method
is divided into four main tasks, which are addressed in this thesis according to the
workflow depicted in Figure 1.1.

Figure 1.1: Simplified thesis workflow. Blue rectangles represent consecutive thesis goals
and grey rectangles represent inputs and outputs.

.The first task is the optimization of electrode configurations and injection-
measurement patterns. This optimization should result in more sensitive mea-
surements capable of revealing thrombi locations mainly in regions with the
highest probability of occurrence..The following task is to enhance image reconstructions and processing for
optimal clot detection. Enhancements should lead to better image reconstruction
resistant to measurement noise and without significant artifacts.
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1. Introduction ..........................................
.The third task is the development of robust post-processing methods for thrombus

identification and characterization. This will enable a quick assessment of the
clotting severity in the oxygenator..The last step lies in the practical validation of the proposed approach on a mock
oxygenator fabricated over the course of a previous thesis.

This thesis is divided into three main segments. Part one describes ECMO as a
method, explains the issues of thrombus formation tied to it including the principles
behind blood clotting. It also explains the principles behind electrical impedance
tomography (EIT) and of methods used for the optimization of the used method.
Part two is dedicated to the description of materials and methods (both experimental
and statistical) used during modeling, optimization and measurements on the mock
oxygenator. In part three, the results of the experiment are shown and discussed.
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Theoretical background and literature
research
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In this section, I will give a brief introduction to the topics and principles tied to
blood clot detection in extracorporeal membrane oxygenation (ECMO) oxygenators.
I will start with a short introduction to blood and the hemostasis mechanism, focusing
mainly on the mechanisms of clot formation. Subsequently, I will introduce the
principles and applications of ECMO and issues that can arise during its use. The
main problem discussed here will again be thrombus formation, this time inside
oxygenators. In this section, the principles of thrombus detection based on electrical
impedance tomography (EIT) will also be presented. The main focus of the final
section of this theoretical introduction will be neural networks, which were often
used in my implementation of the EIT algorithm.

Chapter 2
Blood

Blood is the body fluid with the greatest volume (ca. 5 – 6 liters in adults). It fulfills
several functions crucial to our survival. Namely, it is responsible for transportation
through the body, bringing oxygen and nutrients to cells and removing carbon
dioxide and metabolic waste. It regulates our body temperature and prevents
blood loss through clot formation. Additionally, it plays a vital role in the correct
immune functions by transporting both antibodies and white blood cells. Blood
comprises two main components - plasma and cells. Plasma is a watery solution
containing proteins (e.g. hemoglobin or fibrinogen) and electrolytes (e.g. sodium
or potassium) and forms roughly 55 % of the total blood volume. In addition to
these (bio)chemical components, there are three basic cell types present in blood:
erythrocytes (responsible for gas transport; ca. 5 million cells/µl), thrombocytes
(responsible for primary hemostasis; ca. 300 thousand cells/µl) and leukocytes
(responsible for immune responses; ca. 8 thousand cells/µl). The volumetric fraction
of these cellular components in blood is called hematocrit and is usually around
45 %.

2.1 Hemostasis

One of the crucial functions of the cells and proteins contained in blood is hemosta-
sis, the physiological reaction to vascular injury. It involves several steps which
plug the damaged part of a vessel and so stop the bleeding. The first step of the
hemostasis process is vasoconstriction, during which the vessel narrows, slows blood
flow and increases shear rates. As a result of this fast response, the wound is closed
by a plug made of activated thrombocytes in a process called primary hemostasis
(PH). The increase of shear rate during PH activates thrombocytes in the blood
stream via two distinct mechanisms. The cells can either be activated directly by
shear rate changes or indirectly through bonds to the von Willebrand factor (vWF).
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2. Blood .............................................
This factor is found in blood as a globular polymer, which exposes only few binding
sites to its surroundings. However, under the changes in shear rate, the globular
polymer is elongated to a linear one, which uncovers more binding sites. These
binding sites can then attach both collagen exposed in the vessel defect area and
thrombocytes.1 Both these activation pathways lead to aggregates of thrombocytes
at the site of injury.

After the thrombocytes initially cover the wound, a plasmatic reaction called
secondary hemostasis (SH) begins. During this reaction, the protein fibrin is produced
in order to reinforce the thrombus (a clot created by thrombocytes). Since large
amounts of fibrin are needed, this reaction takes place via mediators (in this case
thrombin), which can amplify fibrin formation over the course of three distinct stages.
In the initial stage of SH (called initiation), tissue factor bearing cells are uncovered
and a prothrombinase complex activated by the exposed tissue factor forms the
initial amount of thrombin. The second stage, called amplification, is characterized
by massive thrombin dissociation from tissue factor bearing cells. Throughout the
last stage, called propagation, a thrombin burst occurs, which stimulates a massive
thrombin conditioned fibrinogen to fibrin activation. In the end, a solid durable clot
is formed from thrombocytes and fibrin.2

There are two basic types of thrombi based on the environment and conditions
under which they are formed. White thrombi are formed in regions with high shear
rates and are composed mainly of thrombocytes and fibrin. They are formed via
the previously outlined mechanism. On the other hand, thrombi of a red color are
formed in regions with lower shear rates and are composed mainly of erythrocytes
and fibrin. While the latter are found mainly in veins, the former appear most often
in arteries. It should be noted that there is a continuous spectrum of thrombus
composition with the rule being that erythrocytes are increasingly likely to form a
thrombus with decreasing shear rates.3

2.2 Hemostasis antagonists

Under normal circumstances, the pro-coagulation factors in the bloodstream (such
as fibrin and thrombin) are in balance with anti-coagulation substances. When these
factors are out of balance, blood may be less likely to coagulate in case of bleeding
and cause massive blood loss or internal bleeding, or more likely to coagulate and
create unwanted thrombi in the blood stream, which may then lead to thrombosis
(the blocking of veins or arteries by blood clots). The development of thrombosis
is governed by three main factors (Virchow’s triad): hypercoagulability, stasis, and
vessel damage. When at least 2 of the 3 factors occur concurrently, there’s an
increased risk of developing a thrombosis. Stasis is characterized by a turbulent or
stagnating flow of blood. It occurs most commonly at vessel bifurcations or stenotic
regions and is considered to be the most common thrombosis-inducing factor. In
combination with either hypercoagulability or vessel damage, stenosis usually leads
to clot formation. While hypercoagulability is caused by abnormalities in elements of
the coagulation pathway, which leads to easier thrombus formation, vascular damage
encompasses any abnormality resulting in the disruption of vascular endothelium
(causes span from surgical intervention, to chemotherapy or sepsis).4
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To keep the concentration of pro- and anti-coagulatory factor in balance, several
physiological hemostasis antagonists, each with its unique anti-coagulation mechanism,
are permanently released from a healthy endothelium (e.g. antithrombin III or the
tissue factor pathway inhibitor) or based in healthy plasma (e.g. heparin, which
amplifies antithrombin III).5,6

When the body’s hemostasis system is out of balance, however, clinicians may
prescribe or administer a myriad of anticoagulants to help counteract coagulation
factors. This can prevent clotting-related issues such as myocardial infarctions,
strokes or deep vein thrombosis. Among the most often clinically-used anticoagulants
are:. Heparin – injected subcutaneously or using an IV line, administration leads to

an increase in its physiological concentration. Coumarins – oral long-term medication, these molecules block vitamin K, which
is necessary for the production of coagulation proteins in the liver. New oral anticoagulants – oral medication, these pharmaceuticals affect specific
coagulation factors and are therefore easy to monitor. Citrate – infused into blood, this molecule binds free Ca2+ (coagulation factor
IV)

Each of these anticoagulants has its advantages and disadvantages and should be ad-
ministered by a clinician based on the patient’s state and medical history. Additionally,
we still lack a universal substance that would work well for all hemocoagulation-related
issues.7,8

Chapter 3
Extracorporeal Membrane Oxygenation

Under normal circumstances, the heart drives blood through the body in order for
it to fulfill its transportation function. The blood is also driven through lungs, where
it is decarboxylized (carbon dioxide (CO2) is removed) and oxygenated (oxygen (O2)
is bound to hemoglobin molecules). In cases of severe system failure, the function of
the heart or lungs may be compromised and blood can no longer distribute O2 to
tissues and remove CO2. When such problems arise, clinicians may use extracorporeal
membrane oxygenation (ECMO). During this procedure, the function of the patient’s
heart, lungs, or both heart and lungs is temporarily substituted using an oxygenator
in combination with a blood pump. The pump drives blood through the oxygenator,
where blood is decarboxylized (the CO2 is removed) and oxygenated (the O2 is
added) before being returned to the blood stream.9
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3. Extracorporeal Membrane Oxygenation ..............................
3.1 A Brief History of ECMO

Oxygenators first came into use in the 50s in cardiopulmonary bypasses, which
enabled the conducting of surgeries on stopped hearts. The earliest oxygenators
were bubble-type, meaning that blood came into direct contact with bubbles of air
of defined dimensions. However, the direct contact of blood with air often led to
thrombus formation, cell damage due to prolonged contact, or the occurrence of air
embolisms. The addition of a gas exchange membrane separating air from blood led to
a radical improvement in these areas and allowed for longer and more efficient ECMO
use. Such membrane oxygenators are used to this day. With the help of ECMO
and anti-coagulation drugs (e.g. heparin), the survival time of patients on ECMO
increased from several hours to several days in the 70s. Since then, two distinct forms
of ECMO have been developed – venoatrial (VA) ECMO and venoventricular (VV)
ECMO – where the latter provides only respiratory support and the heart must still
pump oxygenated blood into the systemic circuit on its own, while the former fully
compensates both the heart and lungs. Today, ECMO is mainly used in the intensive
care unit (ICU) treatment of acute respiratory distress syndrome (ARDS) patients.

With the increasing use of ECMO devices in clinics all around the world came a
need for their coordination and procedure standardization. This led to the foundation
of the Extracorporeal Life Support Organization (ELSO) – a nonprofit consortium
of institutions, researchers and industry partners working on ECMO and ECLS.
To this day, there are more than 550 centers all around the world in the ELSO
registry. Among other advantages, the formation of this organization allows for more
comprehensive analysis of patients on ECMO and extracorporeal life support (ECLS).
A report giving statistics on patients from 1990 to 2022 was published by ELSO in
2023. It shows that over the course of these years, 67 % of patients survived the
procedure and 54 % of patients survived to discharge or transfer. It also documents a
greater chance for a neonatal or pediatric patient to survive the procedure as opposed
to an adult. Detailed statistics are depicted in Figure 3.1.10–12

3.2 The ECMO circuit

Figure 3.2 shows a simplified schematic of an ECMO circuit. From it, we can
see the main components - the blood pump and the oxygenator. The circuit also
includes cannulas, which secure the drainage of blood from the patient’s bloodstream
into the oxygenator as well as its return into the body. While it is possible to return
the blood at the same site as it is drained (called single site cannulation), dual site
cannulation (during which blood is drained and returned to the body in different
locations) is still a more common procedure. In dual site cannulation the drainage
cannula is usually inserted into the femoral vein for both VV and VA cases. Through
the drainage cannula, deoxygenated (venous) blood is drained and flows through the
blood pump to the oxygenator. Here, the blood is oxygenated and decarboxylated on
a gas exchange membrane. The exchange rate is driven by partial pressure gradients
and diffusion and is regulated by the O2 concentration in the incoming air and air
flow. Thanks to the integration of a heat exchanger, the circulating blood may also
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Figure 3.1: ECLS survival statistics between the years 1990 and 2022.

be cooled or warmed according to current medical needs. From the oxygenator, blood
is returned back to the patient’s body via a return cannula. This cannula is usually
placed in the femoral artery for VA ECMO and in the internal jugular vein for VV
ECMO. This way the body gets blood of an ideal O2 content and temperature, which
is then distributed to the organs.

3.2.1 Blood pumps for ECMO

There are two main pump technologies used in ECMO devices. The first option
is a roller pump, in which blood is pushed through a soft tube in a peristalsis-like
manner. A pump roller first squeezes the tube behind the volume of blood to be
transported to prevent back-flow and then pushes the blood forward though the tube.
The second option is a centrifugal pump, in which an impeller rotates to drive blood
through the system. Both these pumps have their advantages and disadvantages.
While roller pumps require an additional blood reservoir, as the actual drainage
of blood is gravity-driven, centrifugal pumps have no spacial limitations, as the
initial priming with blood is enough for the pump to continue pumping. Apart
from spatial constraints, the safety of these pumps is also a big concern. A study
conducted by Halaweish et al. in 201513 revealed that despite lower doses of heparin
(an anti-coagulant) administered with centrifugal pumps, there was a higher incidence
of bleeding as opposed to roller pumps. Another study, conducted by Papadimas
et al. in 2021,14 showed that roller pumps are associated with a lower incidence of
hemolysis, cardiac complications, renal complications and death in children. However,
newly developed centrifugal pumps with low priming volumes and minimal blood
trauma could enable the development of much smaller and cheaper ECMO devices
for children.15 Nowadays, the overall trend is to replace roller pumps with centrifugal
pumps. This transition was documented to lead to better results in terms of hemolysis
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Figure 3.2: A simplified schematic of an ECMO circuit based on [9]. Blue arrows
represent deoxygenated and carboxylized blood while red arrows represent oxygenated
and decarboxylized blood.

occurrence in some cases (e.g. [16]), but other studies couldn’t prove these beneficial
outcomes (e.g. [17]).

3.2.2 Membrane Oxygenators

Modern oxygenators are exclusively membrane gas exchangers and often carry the
name "membrane lung" (ML). The main goal of oxygenators is to facilitate oxygen
and carbon dioxide exchange. There are three important oxygenator components
that ensure this objective is achieved as harmlessly as possible for the patient..Oxygenator body.Membrane. Heat exchanger

The body of the ML comprises a cuboidal or cylindrical volume through which
the patient’s drained blood flows. There are different flow patterns present in the
oxygenator depending on the shape of the body. Several inlets and outlets are
incorporated for gas and fluid flow.11 Inside the oxygenator body, gas exchange takes
place on a membrane with a surface area that can reach several m2, which consists
of hollow fibers usually made from either silicone, microporous polypropylene, or
poly-methyl pentene (PMP).

Original silicone hollow fibers were of a bigger diameter (ca. 800 µm) and wall
thickness (ca. 200 µm) then they are today. They had poor gas permeability but
were free of plasma leakage, a dangerous phenomenon when the blood plasma leaks
into the gas compartment and may result in the formation of condensation on the gas

10



....................................... 3.2. The ECMO circuit

side or the presence of very high driving pressures. On the other hand, microporous
polypropylene fibers have better gas transfer capabilities but once the micropores
lose their hydrophobic character, plasma leakage becomes a big issue. In PMP fibers,
gas exchange takes place through a plasma tight polymer matrix with hydrophobic
properties. This enhances the separation of the blood and gases and prevents plasma
leakage. PMP oxygenators also have a low priming volume (the volume of blood
needed in the system for the pump to begin functioning) and a reduced pressure
drop (the difference in pressures upstream and downstream of the oxygenator),
which makes them most used today.18–20 However, novel fine silicone materials with
sufficient mechanical strength are being developed (e.g. in Japan21,22). These new
fibers can support a wall thickness of 50 µm and a diameter of 300 µm under sufficient
gas transfer performance for long-term ECMO support and are therefore a promising
candidate for future use.

Apart from membranes for gas exchange, oxygenators may also encompass heat
exchangers, which are responsible for adjustments of the patient’s blood temperature.
They are usually made from polyurethane, polyester or stainless steel and their
surface area varies approximately from 0.1 to 0.7 m2. With a temperature gradient
present between water in the heat exchanger and the patient’s blood, a thermal bridge
is created and temperature adjustments to blood are possible. There is a reasonable
belief that inducing hypothermia (lower temperature) may help minimize several
pathological pathways that pose a thread to ECMO patients. However, clinical proof
for this claim is still low.11,23

There are currently many companies on the market offering different oxygenators,
some of them with advanced sensors measuring oxygen saturation, hematocrit or
blood temperature (e.g. Maquet Cardiopulmonary GmbH, Rastatt, Germany).11,24

Today, one of the crucial hurdles that needs to be overcome in regards to oxygena-
tor safety is the fact that the oxygenator poses the largest blood-ECMO contact
area. This may lead to complications for patients on ECMO. The correct choice
of oxygenator is therefore crucial.9,11 There are several important parameters that
are evaluated when comparing different oxygenators and their influence on patients
including:. Priming volume (when it is low enough, little donor blood may be needed to

prepare the oxygenator),.Membrane gas permeability for O2 and CO2 (good permeability enables the
ideal oxygenation and decarboxylation of blood),. Plasma leakage (plasma may leak through micropores in membrane fibres into
the gas compartment, decreasing the efficiency of gas exchange),. Pressure drop (a bigger pressure drop indicates more resistance of the oxygenator
to blood flow),. Shear stress and flow characteristics (these influence hemolysis and thrombo-
genicity inside the oxygenator),. Biocompatibility of materials (this lessens the toxicity and thrombogenicity of
the oxygenator).
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3. Extracorporeal Membrane Oxygenation ..............................
Of the parameters influencing oxygenator safety, biocompatibility stands out as

the one most easily adapted over multiple oxygenator types. When blood comes
into contact with a foreign surface, the human body reacts almost instantly. Within
milliseconds coagulation and inflammatory systems are activated and the process
of rejecting the foreign material begins. This process poses a big problem for all
medical devices interacting with human blood. Therefore, a systemic anti-coagulation
together with the utilization of biocompatible materials and coatings is necessary,
particularly for long-term ECMO applications. Biocompatible coatings are based on
antithrombotic biomolecules such as heparin, polymers or glycoproteins. The most
frequently used coatings in ECMO devices are based on heparin (e.g. the Carmeda
coating).11

3.3 Thrombus formation in the ECMO circuit

As seen in the previous section, there are many parameters influencing thrombus
formation. A thrombotic clot within the ML is a serious and quite common problem
which occurs during ECMO treatment. Acute thrombosis of the oxygenator or blood
pump happens in 35 % of the cases. Unfortunately, the details of the ML thrombus
formation are still not precisely understood. It is however documented that fibrous
or cellular deposits residing on the membrane fibers can lead to:. an increase in blood flow resistance and risk of hemolysis,. a reduction of oxygenation and decarboxylation capabilities,. further activation of coagulation processes, and. an induction of thromboembolic complications if dislodged.

Clotting necessitates an imminent exchange of the ML, which is a dangerous procedure
for patients in critical conditions.

When blood comes into contact with the foreign ECMO surface, a layer of plasma
proteins (mainly fibrinogen) is created on the surface. This triggers thrombocyte
adhesion to the fibrinogen receptors and also starts the coagulation cascade, which
results in thrombin production. This reaction is slowed by biocompatible surfaces
and coatings but hemocompatibility is still limited. Therefore, proper clot monitoring
in the ECMO circuit is necessary, mainly in areas with turbulent or stagnant flow
(e.g. tubing, fittings or cannulas). Flow plays an important role in cell movement
and thrombus formation. While increased shear rates activate thrombocytes, in low
shear rate conditions, erythrocytes, leukocytes and thrombocytes can from stable
aggregates. Therefore, a solution is not as simple as just decreasing the shear rates
inside the oxygenator, as the fluctuation of shear rates in either direction may cause
clots to form.

In a study conducted by Conway et al. in 2020,25 the clot burden from explanted
oxygenators was compared to a computational fluid dynamics simulation of clot
formation. The largest clot burden was found in the corners, likely caused by an
insufficient regional wash combined with a lower volume to surface area ratio that
enables clots to adhere well. Several studies have already reported on thrombus
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composition, which might lead to a better understanding of underlying drivers for
clotting mechanism. A study conducted in 2022 by Staessens et al.26 focused on
VA-ECMO thrombi. They found out that these thrombi were mainly heterogenous
with fibrin and vWF being the main components. Based on composition differences,
two distinct thrombus types were identified. The first type was rich in erythrocytes
and poor in fibrin and the second type was poor in erythrocytes and rich in fibrin.
Interestingly, the location of these thrombi within the device wasn’t type-specific.

Another study conducted by Hastings et al. in 201727 focused on analysing
clots from pediatric ECMO patients and the relation between their location and
hemodynamic simulations. They came to a statistically significant conclusion that
most clots were adherent to the junctions made by the tubing and connectors rather
than randomly disturbed throughout the circuit tubing. Nonadherent coiled clots with
a length of more than 5 cm were also found in the upstream part of the oxygenator.
The comparison to hemodynamic simulations revealed that clots coincided directly
with low shear rate zones. The conducted histology revealed a thrombus composition
consistent with coagulation caused by low shear rates (clots were rich in fibrin and
erythrocytes with minimal thrombocytes presence). The study also showed a higher
occurrence of clots in centrifugal pumps as opposed to roller pumps.11,28–30

3.4 Thrombus detection in the ECMO circuit

Various parameters are being monitored in clinics in order to detect clots during
ECMO treatment. Three main methods exist for clot detection, each with its own
benefits and drawbacks. The simplest check performed regularly is a visual inspection
of the externally visible parts of the oxygenator and tubing. However, this method
will not reveal thrombi hidden within the oxygenator. Research was conducted on
the relationship between externally visible clots and internal clots, but no significant
correlation was found. Additionally, visual thrombus detection also requires manual
inspection by a nurse or clinician, thus adding to the workload of medical personnel.

The second method of clot detection in ECMO is based on the measurement of
partial O2 and CO2 pressures in the oxygenator outlet, which are directly influenced
by thrombus formation on the membrane surface. Gas transfer capabilities are limited
by the presence of the thrombus and oxygenation and decarboxylation efficiency
is decreased. This method is only targeted at thrombi localized on the membrane
surface, however.

The most commonly-used method measures pressure drops on the oxygenator.
One pressure sensor is placed upstream and a second sensor downstream of the ML,
with the difference between the pressure at these two senors being called the pressure
drop. Accumulated thrombi cause an increase in flow resistance, which translates
into an increased pressure drop. When the pressure drop increases too much, the
oxygenator needs an acute exchange. There is a direct relationship between the
pressure drop and the clot volume and progression, but it is not possible to make a
reliable analysis based just on this parameter.31,32

In order to circumvent sudden ECMO problems related to thrombi formation
resulting in an imminent need for oxygenator exchange, an automatic and reliable
method for early blood clot detection would be extremely beneficial.
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3.5 Detection of blood clots based on bioimpedance

One such a method could be distinguishing blood from blood clots based on their
bioimpedance.33 The difference in bioimpedance between blood and thrombi has
been shown in a study conducted by Noshiro et al. in 2007.34 In a frequency range
from 100 kHz to 800 kHz, the authors observed a conductivity difference around 4
mS.cm-1 = 0.4 S.m-1 between normal and coagulated blood. This difference decreases
with increasing frequencies over 800 kHz. According to a study conducted by Gelfan
and Quigley in 1930,35 thrombus impedance starts to rise sharply ca. ten minutes
after the start of coagulation. Although this principle of blood clot detection has been
utilised by several researchers, there are some factors complicating its use. Blood
impedance is dependent not only on the blood coagulation state, but also on the
hematocrit value, flow, erythrocyte orientation or temperature. The impedance of
the blood clot alone is also influenced by clot composition adding in more variables
to consider for method development.

In a study conducted in 2021 by Chen et al.,36 a portable EIT device was developed
for thrombus detection under stationary and dynamic (moving thrombus) conditions.
The device used 8 electrodes and an iterative reconstruction algorithm. Authors were
able to reliably detect thrombi 3 mm and 5 mm in size with good positional precision
in both cases. Another study conducted by Türkmen et al. in 202331 demonstrated
that bioimpedance analysis can reliably indicate clot formation inside a blood-perfused
test chamber. A special impedance-measuring device was used (AFE4300, Texas
Instruments Inc., Dallas, TX, USA) for the bioimpedance measurements. A direct
correlation between bioimpedance increase and clot formation was observed. No
change in bioimpedance also implicated no clotting activity. Authors also monitored
pressure drop over the test chamber and compared clot detection and prediction
abilities of these two approaches. A significantly earlier response was observed in the
increase of bioimpedance than in pressure drop, with the time difference between
these two methods being 8 minutes. Pressure drop monitoring acted as a detector
only if extensive clotting occurred and the flow path was dramatically constricted,
whereas bioimpedance changed even when only marginal blood cell residues were
present in the test chamber.

In a different study conducted in 2015 by Sapkota et al.,37 electrical resistance
tomography was applied to thrombus visualization in blood, both under static and
dynamic (moving thrombus) conditions. Thrombi of sizes larger than 3 mm were
detected under static conditions. Smaller thrombi didn’t cause a significant increase
in measured resistivity. Authors suggest that higher resistivity is caused mainly by
the local hematocrit value and orientation of erythrocytes. Under dynamic conditions,
the authors observed that variation of blood flow from 0.55 l.min-1 to 2.68 l.min-1

caused a higher relative resistivity change than a thrombus. However, thrombi
bigger than 3 mm in diameter were successfully detected in both static and dynamic
conditions.

The mentioned studies prove that thrombus detection based on impedance change
is feasible and has a great potential to enhance the current state of thrombus detection
in ECMO circuits. EIT could bring automated and reliable early thrombus detection
to clinics and thus make this method safer for patients and relieve the workload for
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medical personnel.38

Chapter 4
Electrical impedance tomography

The detection or mapping of the electrical properties of objects (such as the
bioimpedance of blood and thrombi) is called electrical impedance tomography (EIT).
More specifically, EIT allows for the depiction of inner conductivity distributions
based on impedance measurements at surface electrodes. EIT devices are small,
quick to set-up, non-invasive, relatively cheap and radiation-free, which gives them
superiority over computed tomography (CT) or magnetic resonance imaging (MRI).
The resulting images have a relatively low spatial resolution, but a high temporal
resolution (few tens of ms). During EIT, high-frequency (above 50 kHz) low-amplitude
(less than 5 mA) electrical currents are injected through pairs of electrodes. The
resulting electric potentials are measured on the surface (again between pairs of
electrodes) and reconstruction algorithms are then used to compute conductivity
distribution. This problem is ill-posed and nonlinear.39

Bedside monitoring is the main use-case for EIT nowadays. Doctors are able to
monitor pulmonary and heart activity virtually in real time and make necessary
adjustments (for example to ventilator parameters) to better suit the patient’s needs
and avoid a ventilator-induced lung injury. The most common way to perform EIT
is through a belt with incorporated electrodes (typically 16) placed on the patient’s
thorax. In this case, reconstructed conductivity values lie in a 2D plane specified by
the belt electrodes.40–43

4.1 Bioimpedance measurements

When used for measurements on living organisms, the property measured using
EIT is bioimpedance. This is a physical quantity that reveals how much the respective
tissue opposes the flowing current, which, in the case of organisms, takes the form of
moving ions. Different tissues modify the current differently; some have a mostly
resistive character and some have a significantly capacitive behaviour. The differences
between these characters allow us to map the inside of the studied space. In our
case, we will look more closely at blood as a target of bioimpedance measurements.
Blood is one of the best conductors inside the body with constituent cells effectively
behaving as capacitors. Its resistivity is largely dependent on current frequency as
a low-frequency current can’t enter the cells and travels around them and a high-
frequency current penetrates them. Based on these properties, a cellular impedance
model can be constructed as an electronic circuit with two resistors and one capacitor
as seen in Figure 4.1.

Impedance is a complex quantity, which is usually denoted as Z and is defined by
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Figure 4.1: A cellular impedance model based on [42]. Ri represents intracellular
resistance, Re represent extracellular resistance and Cm represents membrane capacitance
of cells.

Equation (4.1)
Z = R+ j.X (4.1)

where R represents resistance (the real part) and X represents reactance (the complex
part connected to the capacitive behaviour). Impedance can be computed using
Ohm’s law according to Equation (4.2)

Z = V

I
(4.2)

where V represents voltage and I represents current.
EIT devices inject a known current into the patient and measure voltage, which

allows for the computation of impedance from Ohm’s law. Electrodes are usually able
to measure both the voltage amplitude and phase shift, but most image reconstruction
algorithms use only the amplitude. Thus, it is common to use only the real part of
the computed impedance, which is inverted into conductivity according to Equation
(4.3).

σ = 1
ℜ{Z}

(4.3)

Based on measured and computed values, an inner conductivity map can be
created. EIT contains two mathematical problems which map the inner conductivity
distribution to surface potentials at the electrodes (the forward problem (FP)) and
vice versa (the inverse problem (IP)) based on used injection-measurement (I-M)
patterns. The solution of the FP is the used to learn how to map the conductivity
distribution in the IP. Thus, both problems need to be solved for the development of
EIT-based methods.

4.2 Forward problem

The forward problem (FP) calculates potentials on the boundary using an estima-
tion of model of the conductivity distribution and can be expressed as (4.4)

v = F (σ, q) (4.4)
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where v represents the vector of measured voltages at surface electrodes, σ represents
the matrix of conductivity distribution and q represents the vector of the current
injection pattern.

The most common model developed to solve the FP is called the complete electrode
model (CEM), which incorporates skin-electrode impedance. It is based on Maxwell
equations and boundary conditions. Time and spatial discretization is used to solve
the partial differential equations resulting from this model, as the analytical solution
is too complex to compute.44,45

4.2.1 The finite element method

The prevailing approach to the numeric solution of the FP is the finite element
method (FEM). Complex problems defined in geometrical domains are reduced to
finding a solution in a finite number of points (nodes), which divide the domain into
smaller regions (finite elements). Simplices (triangles for 2D space and tetrahedra
for 3D space) created by triangulation are commonly used as these finite elements.
A continuous function of the unknown field variable of interest (in our case electrical
voltage or current) is approximated from solutions at the given nodes using piece-wise
linear functions in each finite element. The finite elements in the mesh are tied
together via a set of linear algebraic simultaneous equations.

The number of finite elements and their size determine the solution resolution. For
the purposes of EIT, it is better to choose smaller elements (a denser mesh) around
the electrodes and bigger elements (a sparser mesh) elsewhere to save computation
power and keep accuracy. Meshes for forward and inverse problems are often different
with the inverse mesh being coarser. This is done to prevent so called inverse crime.46

4.2.2 Sensitivity matrices

Based on the FP, we can compute a sensitivity matrix (also called a Jacobian
matrix or a Jacobian). This gives us a way to investigate how sensitive each voltage
measurement is to small conductivity changes in the FEM mesh and therefore how
well our EIT method reacts to these changes. This matrix is defined by Equation
(4.5)

Ji,j = ∂vi

∂σj
(4.5)

where J ∈ RnV ×nM is a sensitivity matrix with dimensions given by the number of
voltage measurements (nV ) and the number of finite elements (nM ), Ji,j represents
position i,j in the sensitivity matrix, vi represents the i-th voltage measurement,
and σj represents the j-th finite element. All of the measurements of one frame are
squeezed into one column and all of the finite elements are squeezed into one row.
This way all of the sensitivity information is contained just in a single matrix.

Regions well covered by each voltage measurement are easily identifiable based on
the sensitivity matrix. This way, the FP can help us tune measurement parameters
such as electrode positions. These can be adjusted based on the information from
sensitivity matrix in order to enhance the sensitivity in specific regions of interest.44
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4.3 Injection and measurement patterns

In addition to electrode positions, injection-measurement (I-M) patterns may be
tuned for better imaging. These patterns tell us which electrodes will inject a signal
into the measured volume and which will measure it. A four-terminal method (also
called the bipolar method) is the prevailing I-M system for EIT. Four electrodes are
simultaneously used during these measurements - two electrodes (the injecting pair)
deliver an AC current and two different electrodes (the measuring pair) measure the
resulting voltage.33 With 16 electrodes being the most common for EIT devices, it is
possible to measure at 13 other electrode pairs for one injecting pair. There are 16
possible shifts of the injection pair which results in a total of 16× 13 = 208 voltage
measurements. Because of the reciprocity principal, which states that a swap of
injecting and measuring pair yields the same conductivity data, there are only 104
independent measurements available. This corresponds to a general Equation (4.6)
giving the number of independent measurements from N electrodes for the bipolar
method published by Brown in 2003:47

Nim = N × (N − 3)
2 (4.6)

where Nim represents the number of independent voltage measurements.
Such a bipolar method eliminates the influence of skin-electrode impedance on the

measurement because skin-electrode impedance is negligible compared to the input
impedance of the measuring electrode pair. In order to speed up data acquisition, it
is also possible to concurrently measure voltages at all other available electrode pairs.
The chosen data acquisition pattern influences which parts of the studied volume
will be most sensitively scanned and also the quality of the final reconstruction.48

4.3.1 Adjacent pattern

The most commonly used I-M pattern is the adjacent-adjacent pattern. Adjacent
electrodes are used as both injection and measurement pairs. While the adjacent-
adjacent pattern has by far the greatest sensitivity around the electrodes, it has
problems with objects in the middle of the measured volume. From a distinguishability
measure developed by Adler et al. in 201149 (based on the signal-to-noise ratio and
the probability of conductivity change detection in regions of interest), the adjacent-
adjacent I-M pattern turned out to have to poorest performance out of all examined
patterns. Based on their findings they encourage clinics to start using other I-M
patterns (for example trigonometric patterns or pair I-M patterns separated over 90
degrees).

4.3.2 General injection-measurement patterns for the bipolar
method

A sequence (also called frame) of measurements of a bipolar configuration is
finished when all injecting and measuring pairs have systematically rotated around
the diameter and switched all possible positions. Any arbitrary I-M pattern may
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be described by an I-M number combination. Both I and M give the number of
positions between the electrodes (offset), which is fixed during rotation. Adjacent
electrodes have an offset of 1 position, so the adjacent-adjacent pattern covered in
previous section can be labeled as a 1-1 pattern. On the other hand, the opposite
pattern, which utilizes electrodes directly opposing each other for both injection and
measurement, can be labeled as an 8-8 pattern.

In a study conducted in 2022 by Smela,48 all 36 independent I-M combinations for
16 electrodes were analyzed. Most of the configurations with less than 104 independent
measurements had a bad spatial resolution and performed poorly. It was observed
that adjacent-adjacent and opposite-opposite patterns performed significantly worse
than patterns 3-3 or 7-7. Both of these patterns are reasonably sensitive both in the
center and near the edge.

4.4 Time-difference EIT

There are different EIT modalities based on the goal of the reconstruction. The
most common approach in the medical field is difference EIT, which compares a set
of two measurements. Time-difference EIT uses two sets of voltage measurements
recorded at different points in time to reconstruct changes in conductivities. Usually,
the first measurement is called a reference or homogeneous measurement and doesn’t
contain any targets or abnormal anatomical features. This measurement is commonly
averaged to improve stability and lower the effect of random noise. The second
measurement, on the other hand, contains inhomogenities that we want to see as
significant in the reconstructed difference image. The difference voltage is often
normalized to the reference voltage according to Equation (4.7).

∆v = vinhom − vref

vref
(4.7)

where ∆v represents a vector of normalized difference voltages, vref represents a
vector of reference homogenous voltage measurements and vinhom represents a vector
of inhomogenous voltage measurements. The main factor contributing to the broad
use of difference EIT is the fact that it compensates time-invariant errors caused
by noise, the device setup, and electrode or domain shape inaccuracies. The only
drawback is that information about absolute conductivity is lost.

Another approach, mostly used in geological sciences, is absolute EIT. It is
more technically challenging, because systemic errors will stay in the measurements.
Therefore, much stricter requirements on parameters of the EIT device itself apply.
System accuracy is highly dependent on channel-to-channel variations and errors
must be mitigated as much as possible.39,42,50

4.5 Inverse problem

The inverse problem (IP), which is also called reconstruction, lies in the recon-
structing of the conductivity distribution from voltage measurements and can be
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formalized using Equation (4.8)

σ = F−1(v, q) (4.8)

where σ represents a matrix of the conductivity distribution, v represents a vector
of measured voltages at surface electrodes, and q represents a vector of the current
injection pattern.

In the reconstruction algorithms of methods such as computed tomography (CT),
it is possible to assume that beams pass through the object in a straight trajectory
and their attenuation is caused only by the elements along their path. This imaging
method property is called local and unfortunately doesn’t apply in EIT. In the
case of EIT, scattering is present a lot more and almost every voxel in the image is
projected into all measured signals. As a result it is necessary to solve a system of
simultaneous equations relating every voxel to every measurement in order to find
the reconstructed image.

Another unpleasant property of EIT is its non-linearity. This causes large conduc-
tivity changes to produce much smaller voltage differences. Additionally, measured
voltages will saturate for large conductivity contrasts. Superposition also doesn’t
apply to EIT. A measurement of two spatially close regions doesn’t yield the same
result as combination of these two separate measurements. However, the biggest
problem for EIT is the severe ill-posedness of the reconstruction problem. In the
best case 104 independent measurements are available for one frame for a typical
reconstruction grid of 32× 32 = 1024 pixels for the 2D case. For this reason regular-
ization techniques are applied to tackle the under-determined problem. Let us now
focus on reconstruction algorithms for time-difference EIT.42

4.5.1 Backprojection

The first reconstruction algorithms were developed on the basis of filtered back-
projection used in CT reconstruction. Their principle lies in the superposition of
high-pass filtered projections over the reconstructed image. In the case of EIT, back-
projection can be performed along equipotential lines. The historically most-used
algorithm called Sheffield Backprojection differs slightly from this principle by using
regularization. It performed reasonably well on experimental data, was quick and not
overly demanding resource-wise. However, compared to state-of-the-art algorithms,
it lacks quality and reconstructed images regularly contain radial artifacts.42,51

4.5.2 Linear reconstruction algorithms

A second family of reconstruction algorithms simplifies the EIT forward problem
by assuming that measured voltages are linearly dependent on the conductivity
changes through the Jacobian. This means a linear approximation of the FP around
initial conductivity distribution σ0 can be expressed by Equation (4.9):

F (σ, q) ≈ F (σ0, q) + J∆σ (4.9)

where J represents the Jacobian and other parameters are the same as in the
general formulation of the FP in Section 4.2. Therefore, Equation (4.10) applies to
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time-difference imaging as follows:

∆v = J∆σ + n (4.10)

where ∆v represents the vector of measured difference voltages, J represents the
Jacobian, ∆σ ∈ RnM ×1 represents the flattened matrix with conductivity changes,
and n represents ideal uncorrelated white Gaussian noise.

The general goal of these linear algorithms is to perform an approximation of
Jacobian inversion and compute a reconstruction matrix R ∈ RnM ×nV to perform
reconstruction based on Equation (4.11).

σ̂ = R∆v (4.11)

One-step linear Gauss-Newton

One of the approaches to Jacobian inversion by utilizing linear approximation is the
one-step linear Gauss-Newton (OSLGN) method. As the name suggests, it calculates
the reconstructed image in just one iteration. The reconstructed conductivity
distribution σ̂ is calculated so that it is faithful to both the measured voltages and
"reasonable assumptions" while utilising Tikhonov regularization. The solution is
derived from Equation (4.12):

min∥∆v − Jσ̂∥2Σ−1
n

+ ∥σ̂∥2Σ−1
σ

(4.12)

where Σ−1
n ∈ RnV ×nV represents the diagonal covariance matrix of measurement

noise n with single elements Σ−1
n[i;i] = σ2

i , σ2
i represents the noise variance of voltage

measurement i, and Σ−1
σ ∈ RnM ×nM represents the expected image covariance. Both

covariance matrices are usually modelled heuristically based on prior considerations.
Two more matrices are define to simplify the final equation. Matrix V (given by
Equation (4.13)) models measurement accuracy and matrix P (given by Equation
(4.14)) is a regularization matrix which models the prior likelihood of image elements
and their interactions.

V = σ2
nΣn (4.13)

σ2
n represents the average measurement noise amplitude. Matrix V is equal to the

identity matrix for identical measurement channels (V = I).

P = σ2
σΣσ (4.14)

σ2
σ represents the amplitude of the expected conductivity change.
Solving Equation (4.12) yields solution (4.15):

σ̂ = R∆v = (JT V −1J + λ2P −1)−1JT V −1∆v (4.15)

where λ = σn
σσ

is a regularization hyperparameter which controls the resolution
noise attenuation

tradeoff. The solution from Equation (4.15) can be simplified as Equation (4.16) if
V = I.
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σ̂ = R∆v = (JT J + λ2P −1)−1JT ∆v (4.16)

Image elements can be assumed independent with identical variance for a simplified
reconstruction, which leads to P = I and 0-th order Tikhonov regularization. This
reconstruction tends to push reconstructed noise towards boundaries and make the
reconstruction more sensitive to objects placed at these boundaries. Other priors can
be utilized as well, such as NOSER (P is scaled by the sensitivities of each element)
or a Laplacian filter. Other regularization approaches are also possible; Tikhonov
regularization can be replaced by truncated singular value decomposition (SVD) or
iterative reconstruction techniques.52

GREIT

A consensual reconstruction algorithm called Graz consensus Reconstruction
algorithm for EIT (GREIT) was assembled during an EIT conference in 2009 in Graz
by Adler et al.52 It is now the most frequently used reconstruction algorithm. It
depends on the forward model, noise model and desired performance metrics and
results in reconstructed images on a grid of 32 × 32 pixels. The forward model
is based on a CEM, utilizes an FEM mesh and also contains information about
electrode size and contact impedance.

The first type of noise considered in the noise model is electronic measurement noise.
It is considered uniform and Gaussian, although some calibrated EIT measurements
show non-Gaussian and inter-channel-varying behavior. Authors therefore recommend
using a pre-measurement calibration protocol and an integrating model of the specific
hardware into the forward model. The second type of noise considered is caused by
electrode movement artefacts. They usually originate in posture change or breathing.
It is possible to mitigate the influence of movements by augmenting the forward
model based on conductivity change and electrode movement.

A training set of "desired images" (σ̃t
(k)) is created based on figures of merit (FoM).

At first, small "point" conductivity changes called targets are created (σ(k)
t ). They

are randomly and uniformly spread throughout the medium with a diameter smaller
than 5 percent of the medium size. This means they are smaller than the inherent
EIT resolution. The desired image corresponding to the conductivity target has the
same center, but also a defined circular area which accounts for blurring. This allows
GREIT to achieve a more uniform resolution throughout the whole domain.

For each desired image for training σ̃t
(k), image weighing w(k) may be defined,

which allows for the tuning of the relative importance of FoM in all pixels of the image.
There is an inner circular zone around the target center where the reconstructed
image amplitude should reach maximum and be flat to satisfy the amplitude response
(AR) and position error (PE) performance metrics. Then there is an outer circle
which marks the boundary of where the reconstructed image should be zero to satisfy
the ringing (RNG) and shape deformation (SD) performance metrics. In these two
regions the corresponding weights w(k) are large to provide a penalty for images
reconstructed outside of the specified region. Between these two circles there is a
transition zone where the reconstructed amplitude should gradually decrease down
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to zero. In this zone small values of w(k) allow for flexible adjustments of other
specifications. The structure of a desired image is depicted in Figure 4.2.

Figure 4.2: The upper row contains image amplitudes on the dashed line crossing the
target center while the lower row contains the images alone. Left: σ

(k)
t - A simulated

target with the same maximum amplitude in the whole target region. Center: σ̂t
(k) -

A reconstructed image with visible artefacts of deformed circular shape and significant
ringing. Right: σ̃t

(k) - A desired image with highlighted inner and outer circles forming
three important zones with different desired amplitudes, weights w(k) are symbolized by
error bar lengths. This figure was adapted from [52].

Another training group is based only on noise and artefacts. Random noisy images
are generated with corresponding desired images of zeros. Training on noise should
make reconstruction less prone to amplifying noise.

Iterative evaluation over the whole training set based on FoM leads to the final
reconstruction matrix R. The optimization criterion is determined by Equation (4.17)
and the whole minimization process results in a generalized Tikhonov regularization.

ϵ2 =
∑

k

∥σ̃t
(k) −R∆v(k)∥2w(k) (4.17)

For a single training target k: σ̃t
(k) represents the desired image, R represents the

reconstruction matrix, ∆v(k) represents the FEM simulated voltage difference vector
between homogenous and inhomogenous (without target and with target) cases and
w(k) represents the pixel weighing matrix.52

Figures of merit

Desired performance measures of an ideal EIT reconstruction algorithm are es-
tablished and organized in several FoM. These FoM are valid for point targets with
properties listed in Section 4.5.2. A 1

4 -amplitude set labeled as σ̂q contains all
reconstructed image pixels [σ̂]i greater than 1

4 of the maximum amplitude in the
reconstructed image. The center of gravity (CoG) of both σ̂ and σ̂q is calculated.
Parameters rt and rq then represent the distance of the CoG from the domain center.
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4. Electrical impedance tomography .................................
Amplitude response

The amplitude response (AR) metric indicates the ratio of pixel amplitudes in the
target image to the reconstructed image. A spherical target of a conductivity of σt

with a volume of Vt in the electrode plane in a body of a homogenous reference σr

is assumed. AR is the most important FoM and should be constant for any target
position. Reconstruction matrices are often scaled in a way that AR = 1 for small
spherical targets with σt−σr

σr
≈ 1 in the center of the domain. AR is calculated

according to Equation (4.18).

AR = Σk[σ̂]k
Vt

σt−σr
σr

(4.18)

Position error

The position error (PE) metric indicates the extent to which reconstructed images
faithfully represent target position and should be ideally small and similar for all
radial target positions. It is calculated according to Equation (4.19).

PE = rt − rq (4.19)

A positive PE value indicates a push of the reconstructed image to the domain center.

Resolution

The resolution (RES) metric indicates the size of the reconstructed target as
fraction of the domain and is equivalent to the point spread function (PSF). It should
be uniform and small at all domain locations to accurately represent the shape of
the target conductivity distribution. RES is calculated according to Equation (4.20).

RES =
√

Σk[σ̂q]k
A0

(4.20)

where Σk[σ̂q]k represents the area of the 1
4 -amplitude set and A0 represents the area

of the entire reconstructed domain in pixels.

Shape deformation

The shape deformation (SD) metric indicates the extent of non-circular artefacts
that occur when reconstructing circular targets. It corresponds to the fraction of
the reconstructed 1

4 -amplitude set which doesn’t fit within a circle of an equal area
and should be small and uniform. Reconstructed images will otherwise lead to an
incorrect interpretation of results. SD is calculated according to Equation (4.21)

SD = Σk /∈C [σ̂q]k
Σk[σ̂q]k

(4.21)

where C represents a circle centered at the CoG of σ̂q with an area of 1
4 -amplitude

given in pixels.
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Ringing

The ringing (RNG) metric indicates how much the main reconstructed target area
is surrounded by areas of an opposite sign. It can be compared to an overshoot of a
second-order system. RNG should be low and uniform. Big overshoots might easily
result in the incorrect interpretations of the reconstructed images. One example is
negative ringing between lungs. This produces a conductive pattern which might be
mistaken for the heart. RNG expresses the ratio of image amplitude of an opposite
sign outside circle C to image amplitude within C and is computed according to
Equation (4.22).

SD =
Σk /∈C&[σ̂]k<0[σ̂]k

Σk∈C [σ̂q]k
(4.22)

Noise figure

The noise figure (NF) metric indicates how much random measurement noise is
amplified in the reconstructed image. It corresponds to the ratio of output to input
signal-to-noise ratio (SNR). In the case of EIT, SNR is defined as SNR = mean|signal|

std(signal)
in terms of image amplitude. The reason behind the modification of the SNR
function (as opposed to its typical counterpart) is the tendency of linear image
reconstruction to conserve amplitude rather than energy. A trade-off between good
noise performance and other figures of merit is always present. NF should be low and
ideally tuned to the EIT device used for measurements. It is generally recommended
to keep NF = 0.5 for GREIT. NF is computed according to Equation (4.23).

NF = SNRout

SNRin
=

E[mean|x̂t|]
E[std(x̂n)]
E[mean|yt|]
E[std(ŷn)]

(4.23)
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Chapter 5
Neural networks

The optimization over many parameters without the need for excessive measuring
is crucial to EIT method development. To achieve this, neural networks (NNs) are
often used to optimize not only electrode positions and I-M patterns, but also image
reconstruction.

The first simple systems mimicking human brain behaviour emerged in the 1940s.
However, these so called artificial NNs only started gaining in popularity with the
massive increase in computational power in recent years. Nowadays they play a
crucial role in many fields such as image processing or autonomous driving. The
main idea behind NNs is inspired by neurons. Neurons pass information to further
neurons only when time and spatial summation of the incoming signal exceeds a
certain threshold. This non-linear behavior is applied in modern NNs.53

5.1 Perceptron

The elementary element of an NN is called a perceptron. It is similar to a neuron
and has several real number inputs, internal trainable weights and bias, and one real
number output. All inputs are weighed with perceptron weights and then summed.
Finally, an activation function is applied and the output is computed. The specific
behavior of a perceptron with output o is defined by Equation (5.1)

o = f

{
n∑

k=1
wixi + b

}
(5.1)

where n represents the number of inputs and weights, f represents the activation
function, wi represent perceptron weights, xi represent inputs, and b represents bias.
This perceptron alone can be trained as a binary linear classifier with an output
of either 0 or 1 if a binary step function with a learned threshold is used as the
activation function.53

5.2 Activation functions

Activation functions are responsible for the non-linear behavior of NNs. There are
more variants which are used, depending mainly on NN type and use.
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...................................... 5.3. Fully connected layers

5.2.1 Sigmoid

One of the most widely used activation functions is the sigmoid. It maps the whole
real axis to a range of [0, 1] and is therefore mostly used for probabilistic outputs.
It is differentiable and has a smooth gradient, which is beneficial for the learning
process. The output is defined by Equation (5.2).

f(x) = 1
1 + e−x

(5.2)

5.2.2 Tanh

The hyperbolic tangent (tanh) activation function is very similar to the sigmoid
in shape. As opposed to the sigmoid function, however, the tanh function maps
the whole real axis to a range of [−1, 1]. It is often used in inner layers of NNs and
helps with centering data for next layers. It also supports easy learning thanks to
differentiability and a smooth gradient. The output is defined by Equation (5.3).

f(x) = ex − e−x

ex + e−x
(5.3)

5.2.3 ReLU

Other activation functions aren’t differentiable in the whole domain and therefore
require definition of derivatives in specific points. One example is the rectified linear
unit (ReLU) function, which consists of two linear functions with an output defined
by Equation (5.4).

f(x) = max(0, x) (5.4)

All negative inputs are mapped to zero and only the maximum positive input is
taken into consideration and directly fed through to the output. ReLU is simple
to implement and very popular mainly in convolutional layers. There is a slight
modification called leaky ReLU which maps negative values linearly to smaller
negative values. It helps the network produce a non-zero gradient for negative inputs
as well as for positive ones. Leaky ReLU is defined by Equation (5.5).53,54

f(x) =
{
x ... x > 0
ax ... x ≤ 0

(5.5)

All mentioned activation functions are depicted in Figure 5.1

5.3 Fully connected layers

A NN completely composed of perceptrons is called fully connected (FC). All
neurons in one layer are connected to all neurons in both the previous and next
layers. This way each neuron influences all neurons in the following layer and is
influenced by all neurons in the preceding one. To train the whole NN, all weights
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5. Neural networks ........................................

Figure 5.1: Activation functions for NNs.

and biases for all perceptrons have to be learned, which is very memory-demanding.
When processing an image with a size of 2 megapixels, just the input layer would
have to contain 2 million neurons. Perceptrons of FC layers are present as the output
in nearly all classification NNs. An example of FC layer with 4 inputs, 1 hidden layer
and 3 outputs is depicted in Figure 5.2.

5.4 Convolutional layers

Due to the pitfalls of using FC NNs for tasks concerning images such as clas-
sification or segmentation, a better approach was designed based on convolution.
Convolution is utilized in the form of matrix multiplication, where a learnable kernel
of a predetermined size is convolved with the input image. Usually a square kernel
slides along the whole input image and extracts local features into an output called
a feature map. There are several key parameters in the convolution process. Apart
from an input image and kernel, stride and padding determine the output feature
map. A simple example of a kernel might be a diagonal 3x3 matrix which detects
diagonal edges in the input image during convolution.54 The principle on fimage
convolution may be seen in Figure 5.3.

5.4.1 Padding

An inherent property of convolution in that it shrinks the output compared to the
input depending on the stride size. Therefore, padding may be added to the input
image to keep the original dimensions in the output image as well. Several padding
types are commonly used depending on the application.54,55
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.......................................5.4. Convolutional layers

Figure 5.2: A fully connected NN with neural connections indicated by colored lines.

Figure 5.3: The principle of a convolutional neural network. Subfigures a, b, and c show
steps 1, 2, and 9 of the convolution, respectively. This figure was taken from [54].
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5. Neural networks ........................................
. Zero padding adds zeros around the image.. Replication padding repeats values nearest to the padded pixels.. Reflection padding mirrors values from inside the image to the padded pixels.

An example of the convolution of a padded image may be viewed in Figure 5.4.

Figure 5.4: The principle of padding in a convolutional neural network. Here a simple
zero padding was added to the input image increasing its size by one pixel in each
direction. This figure was taken from [54].

5.4.2 Pooling

In order to extract abstract features and lower image dimensions, a pooling
operation may be used. It is also applied through convolution and is based on
mathematical operations. The non-learnable kernel with a predefined mathematical
operation slides along the whole image and extracts features.54,56

.Min pooling extracts the minimum value from the image within the current
kernel position..Max pooling extracts the maximum value from the image within the current
kernel position..Average pooling computes the average value of all pixels within the current
kernel position.

5.5 Network training

The main purpose of NN training is to learn the weights of convolutional and FC
layers. In the beginning, random weights are assigned to all learnable parameters
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........................................ 5.5. Network training

and then a set of training samples is fed to the NN together with ground truth
information. During a forward pass, an output is generated which is then compared
to the ground truth. In the process of back-propagation governed by gradient descent,
network weights are adjusted according to computed derivatives based on the output
difference. The overall goal of the training process is the minimization of a loss
function L usually defined as the mean square error (MSE) between NN output σ(θ)
and ground truth σref according to Equation (5.6).

LMSE(σ, σref , θ) = 1
N

N∑
k=1

(σ(θ)k − σk
ref )2 (5.6)

where σk
ref represents the k-th pixel of the ground truth output, θ represents NN

parameters and N represents the number of pixels.53

5.5.1 Regularization

A regularization term can be added to the loss function L which takes into account
the size of the NN parameters. The hyperparameter λ, which sets the importance
of the regularization term in the loss function, then enables balancing variance and
bias according to Equation (5.7).

L(σ, σref , θ) = 1
N

N∑
k=1

(σ(θ)k − σk
ref )2 + λ∥θ∥ (5.7)

It is important not to overfit the NN to training data and let it generalize for
input data not matching the training dataset as well. Therefore, the input dataset is
usually divided into training, validation and test parts. The validation dataset is
used during training to monitor the capability of the NN to generalize outside the
training dataset. Finally, performance is evaluated on the test dataset.57

5.5.2 Normalization

Some features entering the neural network might not be of the same scale as others,
which might confuse the NN. Normalization is therefore performed for both the input
and also inner layers to improve performance. Coefficients are usually scaled to a
range of [0, 1] or [−1, 1]. If the data has a normal distribution, it is advantageous
to perform normalization to the mean and standard deviation, which leads to a
standard normal distribution N (0, 1). Normalization leads to a more stable gradient
descent behavior and prevents values from getting either extremely high or low.58

There are several normalization types commonly used for NN layers, however, the
main two are:. Layer normalization - performs normalization over one layer.. Batch normalization - performs normalization of small batches of training data

over one layer.
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Part II

Materials and methods
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In this section, I will explain the approach I used during the implementation of
the thesis goals. Firstly, I will describe the SW, HW and mock oxygenator used for
all simulations and measurements. The second part will cover electrode position
and injection-measurement pattern optimization. The third part will concern image
reconstruction and processing. Even though only 3D reconstructions are considered
in this thesis, resulting reconstructions will be referred to as images. The fourth
part will be devoted to the post-processing of reconstructed images and thrombus
identification and characterization. The final part will show the validation of the
proposed methods on a real mock oxygenator.

Chapter 6
Support materials

In this section, I will cover materials that helped me in the completion of my
thesis goals. I will also describe the code structure used throughout the thesis. All
the materials mentioned in this section act as building blocks for simulations and
measurements.

6.1 Used HW and SW

While some problems were computed on a personal laptop (Lenovo IdeaPad 5
Pro 14ITL6 laptop with a 4-core Intel i5-1135G7 processor, a maximum frequency
of approximately 4.2 GHz, and 16 GB of RAM), more complex simulations were
carried out on CESNET metacentrum59 clusters with AMD EPYC 7543 32-core
processors, a maximum frequency of approximately 3.8 GHz, and 16 GB of allocated
RAM. Models, neural networks, statistical analysis and all other operations were
programmed in MATLAB, where version 2023a60 was installed. Unless stated
otherwise, the described functions and structures were implemented by me.

6.1.1 Sciospec

A commercial Sciospec ISX-3 device produced by Sciospec Scientific Instruments
GmbH (Bennewitz, Germany) with 16 electrodes was used for actual measurements.
It is a single channel impedance analyzer capable of measuring in a frequency range
between 100 mHz and 10 MHz and covers a significant impedance range of 300 dB
(from several mΩ to several TΩ). Measurements with two to four electrodes are
available, which means that bipolar measurements with a defined I-M pattern are
possible. The device is depicted in Figure 6.1.61
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6. Support materials........................................

Figure 6.1: The Sciospec ISX-3 impedance analyzer by Sciospec Scientific Instruments
GmbH (Bennewitz, Germany), image taken from [61].

6.1.2 EIDORS

For all simulations, the Electrical Impedance and Diffuse Optical tomography
Reconstruction Software (EIDORS) software suite62 was used. It is an open-source
software created with the goal to provide a free service for image reconstruction in
EIT. It provides reference implementations of algorithms that researchers may use
for comparison with newly developed techniques. A new version called EIDORS3D
facilitates the possibility to solve 3D reconstructions, which was very useful for this
thesis. There are also NETGEN63 features integrated, which make it possible to
easily create model meshes and thereby process the entire EIT simulation pipeline in
EIDORS.

EIDORS operates with four primary objects represented by structures. The
fwd_model object contains information about the FEM model, electrodes and I-
M pattern properties. The FEM model is described by spatial coordinates of
nodes (nodes), composition of FEM elements from nodes (elements) and boundary
nodes (boundaries). Electrodes are described by respective nodes (nodes) and
contact impedances (z_contact). The I-M pattern is described by stimulation type
(voltage or current; stimulation), injecting electrode pairs (stim_pattern) and
measuring electrode pairs (meas_pattern). The data object contains information
about the simulated data frame. All the measurements done according to the
selected I-M pattern are stored in the meas vector. The inv_model object contains
information necessary for image reconstruction. A specific EIT modality can be
chosen under reconst_type, a prior matrix can be adjusted under R_prior and a
hyperparameter may be specified under hyperparameter. The image object contains
the reconstructed or simulated conductivities of FEM elements under elem_data.44

Several EIDORS and NETGEN functions were frequently used throughout the
thesis and are listed below.44.The ng_mk_gen_models function was used for generating the model mesh and

fwd_model object based on input parameters. Mesh shape was generated
according to a .geo file or string description of individual geometric components
forming its boundaries. The generated mesh is denser around specified electrodes
and its refinement can be adjusted.
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........................................ 6.2. Mock oxygenator

.The ng_mk_fwd_model function was used to create a fwd_model object according
to a .vol mesh..The mk_image function then created an image according to the fwd_model
object and specified conductivity values..The calc_jacobian function was used to compute the Jacobian for a given
image according to the perturbation method..The mk_stim_patterns function was used to specify an I-M pattern structure
according to the selected number of electrodes and I-M number combination..The fwd_solve function then solved the FP for given conductivities according
to the selected I-M pattern..The inv_solve function was used to solve the IP for given homogeneous and
inhomogenous measurements according to the selected reconstruction algorithm..The show_fem_enhanced function enabled nice customized visualizations of
FEM models.

6.2 Mock oxygenator

An oxygenator from Maquet Cardiopulmonary GmbH (Rastatt, Germany) called
HLS Module Advanced (depicted in Figure 6.2) was chosen as the main research
object. It comprises two compartments divided by a separation grid and two pairs
of inlets and outlets for air and blood, respectively. In the first compartment blood
passes through both gas-exchange fibers (made from PMP) and heat exchange fibers
(made from polyurethane). In the second compartment only gas-exchange takes
place.

In previous work a mock oxygenator was designed and fabricated according to the
HLS Module Advanced. This mock is used for all simulations and real measurements.
It shares the same inner-volume dimensions (a width and depth of 9 cm and a height
of 5 cm) where blood flows and is being oxygenated. Additionally, the mock includes
drilled holes prepared for electrodes which facilitate direct contact with blood. The
electrode positions are placed at both top and bottom planes in a symmetrical grid.
Because of the construction of the actual oxygenator, it wouldn’t be possible to
insert electrodes on the sides, therefore no holes were drilled there. A separation grid
was created in the middle of the mock to emulate the compartment divider. The
mock is constructed only for static tests without any possibility for circulation. For
fabrication simplification all fibers were left out.

6.2.1 FEM model

The FEM model was created using the ng_mk_gen_models function. It is composed
of three basic geometrical primitives, one block and two planes. The orthobrick
command created the block for given extremes in x,y and z axes. The middle of
the block lies in the coordinate system origin with extremes for each axis (Exax)
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6. Support materials........................................

Figure 6.2: HLS Module Advanced oxygenator by Maquet Cardiopulmonary GmbH
(Rastatt, Germany).24

being: Exx = [−4.5, 4.5] cm, Exy = [−4.5, 4.5] cm, Exz = [−2.5, 2.5] cm. The
first plane coincides with top of the brick and contains all possible electrodes. It
would be possible to make a separate FEM model for different electrode positions,
but it is computationally much more efficient to create just one model with all
possible electrode positions densely meshed. The maximal mesh-size was set to 2
mm as a compromise of good simulation accuracy and feasible memory requirements.
The final generated mesh (depicted in Figure 6.3) includes 373,202 elements and
70,914 nodes. The separation grid, with a conductivity of 1× 10−6 S.m-1 is modeled
as individual rods according to cylinder equation (x − xc)2 + (z − zc)2 < r2

r or
(y − yc)2 + (z − zc)2 < r2

r depending on rod direction. Variables xc, yc and zc

correspond to rod center coordinates and rr corresponds to the rod radius. The
separation grid consists of elements that are inside cylinders described by the equations
above. It would be possible to generate the separation grid more realistically with
finer mesh, but far more elements and memory would be needed, which is not worth
the benefit of slightly better accuracy.

6.3 Electrode position generation

During the process of FEM model creation, nodes corresponding to respective
electrodes were saved for all plausible electrode positions limited by the holes drilled
into the mock oxygenator. The findNearestPlausibleElectrodePosition was
implemented for finding the nearest plausible electrode position according to the
L2 norm. When plausible Euclidean coordinates of an electrode are determined,
my implemented getElectrodeNodes function finds corresponding nodes, which are
then used in the fwd_model.electrode to specify used electrodes.

A generateElectrodePositions function for the generation of electrode positions
was also created. The number of electrodes at the top and bottom plane of the
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...................................6.3. Electrode position generation

Figure 6.3: The generated FEM model of the oxygenator with a sample set of electrodes
(depicted in green) and separation grid (depicted in blue). Red is used to number
visualized electrodes.

oxygenator can be specified. There is nothing to suggest that one side of the
oxygenator should be disproportionately populated with electrodes, so a balanced
case is considered in this thesis. Eight electrodes are therefore generated on the top
and eight electrodes at the bottom. Generated electrode centers lie on radials evenly
dividing the top and bottom planes (radials are 360◦

8 = 45◦ apart). A sample set of
electrodes together with highlighted radials is depicted in Figure 6.4. This function
enables both random and constrained position generation on the radials. Random
distances from top or bottom plane centers are generated from a normal distribution
N (µpos, σpos) of a given mean µpos and standard deviation σpos.

Figure 6.4: A sample set of generated electrode locations with highlighted radials.
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6.4 Target generation

For inhomogenous simulations, spherical targets are generated using the function
generateTargets. A probability function of thrombi occurrence was derived based
on the assumed flow distribution. There weren’t any available data on flow patterns
in the HLS Module Advanced specifically, so a simple Gaussian approximation was
chosen. A 3D Gaussian with mean values µx = 0, µy = 0 and µz = 0 and standard
deviations of σx = 0.045, σy = 0.045 and σz = 0.025 was designed based on Equation
(6.1).

p(x, y, z) = 1
σxσyσz(2π) 3

2
e

− (x−µx)2

σ2
x

− (y−µy)2

σ2
y

− (z−µz)2

σ2
z (6.1)

A likelihood function of thrombi occurrence was created by analytically inverting the
probability density function values for all voxels inside the FEM model according to
equation 6.2.

L(x, y, z ∈ oxygenator) = σxσyσz(2π)
3
2 e

(x−µx)2

σ2
x

+ (y−µy)2

σ2
y

+ (z−µz)2

σ2
z (6.2)

The highest likelihood of thrombus occurrence based on this model is in the corners
of the oxygenator where flow tends to stagnate the most. A histogram of likelihood
values is depicted in Figure 6.5a. This distribution doesn’t apply for the real
measurements which are static without any flow.

A cumulative distribution function (CDF) (depicted in Figure 6.5b) was created
for the possibility of the pseudo-random selection of thrombi locations based on a
given CDF percentile. Random noise of a low amplitude was added to the CDF
value which results in slightly different thrombi locations even for the same CDF
values. The likelihood distribution is symmetrical with respect to the center of the
oxygenator with ellipsoidal isolines. Therefore more voxels with the same respective
thrombi likelihood exist for one concrete CDF value. A random sample is chosen
from these, which leads to better coverage of the entire model volume. An example
of a generated set of thrombi is depicted in Figure 6.5c

Targets are incorporated into the model in the same way as the separation grid.
All FEM elements which are inside the generated target are selected based on the
sphere equation (x− xc)2 + (y − yc)2 + (z − zc)2 < r2

t , where xc, yc and zc represent
center coordinates of the target and rt represents the target radius. Respective
conductivities are then adjusted.

The conductivity of blood in the FEM model is set at 6.62× 10−1 S.m-1 according
to the IT’IS Foundation database.64 The conductivity of targets emulating clots was
set to approximately one tenth of blood conductivity (6.62× 10−2 S.m-1) according
to.34 This difference in conductivities for blood and thrombi is probably higher than
an average conductivity difference in vivo and represents the best case scenario for
thrombus detection.
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................................... 6.5. Oxygenator object structure

(a) : Thrombus occurrence normalized likeli-
hood histogram. (b) : Thrombus occurrence likelihood CDF.

(c) : 3D thrombus occurrence likelihood
distribution with a sample set of generated
thrombi.

Figure 6.5: Thrombus occurrence likelihood representation.

6.5 Oxygenator object structure

An oxygenator structure containing all simulation parameters was created to
enable simple global parameter changes. It contains several substructures with data
organized coherently in all of them:.The data structure contains information about oxygenator dimensions and

extremes..The electrodes structure contains specifications of the electrode generation
process or electrode diameters..The FEM structure contains forward and inverse model images, I-M pattern
information, all plausible electrode position nodes, and homogeneous conductivity
values..The NNdetection structure contains parameters for the NN used for thrombi
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detection..The NNelectrodes structure contains parameters for the NN optimization of
electrode positions..The NNreconstruction structure contains parameters for the reconstructive
NN..The reconstruction structure contains reconstruction parameters used for
both the EIDORS inv_solve function and the NN..The separationGrid structure contains all information about the separation
grid..The targets structure specifies parameters for target generation such as target
diameter or default CDF generation percentiles..The visualizations structure contains specifications for FEM visualization
and color options for other visualizations.

The setOxygenatorParam function is responsible for saving all required data and
exporting the structure which is later loaded into other scripts.

Chapter 7
Preliminary experiments

Many preliminary simulations were conducted to assess the influence of various
parameters on measured voltages and the Jacobian. Four electrode sets (depicted in
Figure 7.1) were constructed for the sake of these experiments. They were created
under the assumption that thrombi are likely to be present in the corners and on the
edges of the oxygenator according to the inverted Gaussian distribution described
earlier by Equation (6.2). Electrode set 1 covers the full oxygenator volume and
therefore should be able to catch all possible conductivity changes. The problem of
this arrangement is a low sensitivity near the center of the oxygenator. Electrode
sets 2 and 3 should better cover the center of the oxygenator and still be able to
sufficiently cover its edges and corners. Electrode set 4 should be able to perfectly
cover corners and edges, but will again have a lower sensitivity to thrombi found in
the center of the oxygenator.

7.1 Injection-measurement pattern design

The reciprocal geometry of the oxygenator and electrodes is unique and no recom-
mended I-M pattern exists for this arrangement. A general I-M pattern was designed
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............................... 7.1. Injection-measurement pattern design

(a) : Electrode set 1. (b) : Electrode set 2.

(c) : Electrode set 3. (d) : Electrode set 4.

Figure 7.1: Electrode sets for preliminary experiments.

based on electrode set 1 (depicted in 7.1a). All sensible pairs of electrodes were
chosen and semi-automatically inserted into the EIDORS fwd_model.stimulation
structure. Chosen electrode pairs are depicted in figures 7.2 and 7.3. They were
chosen in such a way, that their signals would include both intra-plane and inter-plane
excitations and measurements. All electrode pairs were used as both injecting and
measuring. Only independent measurements in the sense of reciprocity were taken
into account. When deciding between reciprocal measurements, the electrode pair
with the lowest electrode number was selected as the injecting pair. This means that
for a measurement two hypothetical electrode pairs 5-8 and 6-7, the 5-8 pair would be
selected as injecting and the 6-7 pair as measuring. This leads to an overall pattern
with non-equal number of measuring pairs for each injecting pair. EIDORS forward
and inverse solvers are capable of handling this case, however, so no adjustments
were necessary for the FP and IP solution.

The designed I-M pattern includes 1,560 measurements on 61 stimulating pairs
of electrodes. This is a significant increase compared to the generally used 104
non-reciprocal measurements for a typical adjacent I-M pattern. It is also clear that
some of the measurements are of a low sensitivity. For example, when injecting
current into two adjacent electrodes on one side of the oxygenator, not much useful
information can be gained by measuring on an adjacent pair of electrodes on the other
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7. Preliminary experiments .....................................
side of the oxygenator. Therefore, the most sensitive measurements were selected,
enabling the acquisition of useful signal without overly amplifying noise.

(a) : Straight inter-plane pairs covering
oxygenator walls.

(b) : Inter-plane corner diagonal pairs
covering oxygenator diagonals.

(c) : Inter-plane edge diagonal pairs cov-
ering walls and the oxygenator center,
other sets of pairs generated by 90, 180
and 270 degrees rotation of these along
z-axis.

Figure 7.2: Inter-plane pairs in a general I-M pattern.

7.1.1 Selecting most sensitive measurements

Three methods based on Jacobian analysis were considered for measurement
selection. Two of them - the L1- and L2-norms - assess individual measurement
sensitivity. These selection methods stem from the idea that the greater the magnitude
of the sensitivity Jacobian vectors (rows with elements corresponding to the given
measurement), the better the ability of the measurement to mirror conductivity
changes to voltage changes. Vectors with greater magnitude are also more robust
to noise and lead to smaller posterior variance for the inverse problem. Both the
L1-norm and L2-norm were used to sort measurements according to equations (7.1)
and (7.2), respectively.65
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............................... 7.1. Injection-measurement pattern design

(a) : Intra-plane diagonal pairs covering
the inner space of the plane, other sets
of pairs were generated by a 90 degree
rotation of these along z-axis.

(b) : Adjacent intra-plane pairs covering
oxygenator edges.

(c) : Intra-plane cross pairs covering oxy-
genator walls.

(d) : Intra-plane corner-corner pairs cov-
ering oxygenator edges for cases where
central electrodes are moved closer to
the center.

Figure 7.3: Intra-plane pairs in a general I-M pattern.

∥Jmeas∥1 =
nM∑
k=1
|Jmeas,k| (7.1)

∥Jmeas∥2 =

√√√√nM∑
k=1

(Jmeas,k)2 (7.2)

In this equation, Jmeas represents a single Jacobian element corresponding to mea-
surement and nM represents the number of finite elements. However, these norms
are computed for each measurement independently and may lead to the choosing
of similar element during final selection. While both the chosen measurements may
then have high L1- or L2-norm values, they will not bring additional information to
the solution when used together as opposed to just one being utilized.

The third method is based on an approach developed by Onsager et al. in 202165

and is aimed at finding the most sensitive I-M pattern that doesn’t contain these
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7. Preliminary experiments .....................................
similar measurements. Similar measurements are characterized by their correspond-
ing sensitivity vectors being almost parallel (i.e. they cover the same elements).
Independent measurements are, on the other hand, characterized by their corre-
sponding sensitivity vectors being orthogonal (they cover different elements). The
selection of independent measurements is beneficial, as it results in a smaller posterior
covariance for the inverse problem. The best I-M patterns chosen based on this
selection method include long and mutually orthogonal sensitivity vectors. The
sensitivity parallelotope volume, formed by constituent sensitivity vectors, is a good
measure for the previously described features. For the case of two sensitivity vectors,
the parallelotope forms a part of 2D plane. A parallelotope consisting of three
vectors forms a 3D body. The volume of an n-dimensional parallelotope may be
computed in two basic ways. One approach utilizes SVD. The Jacobian J may be
decomposed according to Equation (7.3) into a total of three matrices U , Σ and V .
Matrices U and V are positive semi-definite and contain left ui and right vi singular
vectors. They can be derived by the eigendecomposition of matrices JTJ and JJT ,
respectively, and represent rotation. The Σ matrix, which represents scaling, is a
diagonal matrix containing the singular values σi of J .

J = UΣV T (7.3)

The n-dimensional parallelotope formed by n sensitivity vectors has a volume of Vn,
which is calculated according to Equation (7.4) as the square root of the multiplied
singular values.

Vn =

√√√√ n∏
k=1

σk (7.4)

An equivalent option to get the volume is to calculate the square root of the determi-
nant of the JmeasJ

T
meas matrix according to Equation (7.5). Matrix Jmeas contains

only the selected sensitivity vectors from the Jacobian, from which we wan to compute
the volume.

Vn =
√

det(JmeasJT
meas) (7.5)

An algorithm for selecting measurements based on the largest parallelotope volume
is described in Algorithm 1. It was necessary to scale the Jacobian using specific
coefficients to keep the resulting volume within a reasonable range. Without any
correction, the value was close or equal to either zero or infinity after only a few tens
of iterations. Overall results of measurement selection are described in Section 12.1.

7.2 Influence of input parameters on measurements

In order to assess if the I-M protocol optimization can lead to better measurements,
several simulations were done. The goal was to observe changes in voltage measure-
ments and the Jacobian caused by the change of input parameters (e.g. electrode
positions, I-M pattern, or target conductivity). The influence of these parameter
changes was observed individually to allow for the unambiguous determination of
changes caused. Noise wasn’t considered in these simulations.
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........................... 7.2. Influence of input parameters on measurements

Algorithm 1 Pseudocode for the selection of measurements based on largest paral-
lelotope volume

Used variables: n . . . number of selected measurements, J . . . Jacobian,
nV . . . total number of measurements in the I-M pattern, cF . . . a flag for finding a
suitable coefficient for Jacobian, cI . . . an iteration counter for the suitable
coefficient search, v . . . the computed volume, Jp . . . a matrix containing selected
sensitivity vectors with candidate vectors, I . . . indices of measurements chosen in
ascending order, σk . . . k-th singular value, mV . . . maximum volume,
mV I . . . maximum value index
Inputs: J , n
Output: I

1: procedure selectMostSensitiveMeasurements(J , n)
2: for m← 1 to n do ▷ Until number of measurements wanted is achieved
3: mV ← 0, mV I ← 0
4: for p← 1 to nV do
5: if p /∈ I then ▷ Except for measurements already selected
6: cF ← false
7: while cF is false do ▷ Search for coefficient scaling volume
8: Jp ← [J(I); J(p)] ▷ Add potential measurement to the existing

selection
9: σk ← SVD(JpJ

T
p ), v ←

√∏n
k=1 σk ▷ Find σk, compute volume

10: if v < 10−200 then ▷ Volume too small
11: J ← J1.3 1

cI

12: else if v > 10100 then ▷ Volume too large
13: J ← J1.2 1

cI

14: else
15: cF ← true
16: end if
17: cI ← cI + 1
18: end while
19: break ▷ Correct scaling found, continue to measurement selection
20: end if
21: end for
22: for p← 1 to nV do ▷ All measurements are considered possible
23: if p /∈ I then ▷ Except for those already selected
24: Jp ← [J(I); J(p)] ▷ Add the potential measurement to the

selection
25: σk ← SVD(JpJ

T
p ), v ←

√∏n
k=1 σk ▷ Find σk, compute the volume

26: if v > mV then ▷ The volume is largest so far
27: mV ← v, mV I ← p
28: end if
29: end if
30: end for
31: I(end+1) ← mV I ▷ Add the index corresponding to largest volume to

the output
32: end for
33: end procedure 47



7. Preliminary experiments .....................................
7.2.1 Influence of electrode positions

To evaluate influence of electrode positions on voltage measurements and the
Jacobian, the four electrode sets previously introduced in Section 7 and depicted in
Figure 7.1 were used. A homogeneous simulation was conducted with the separation
grid present in the FEM model. A grid of 600 targets (each with a diameter of
1 cm ) spanning the entire oxygenator was created for inhomogenous simulations.
Target centers were equidistantly chosen in all dimensions for the thrombi not to
overlap. Sparsely generated targets are shown solely in the first quadrant (for easier
orientation) in Figure 7.4. Inhomogenous simulations were carried out individually
for all generated targets in the grid. Therefore, the sensitivity of measurements
to target position could be assessed in all oxygenator areas. Both absolute and
relative voltage differences between homogeneous and inhomogenous simulations
were considered. The Jacobian was computed for homogeneous cases using the

calc_jacobian function. The designed I-M pattern introduced in Section 7.1 was
used for simulations. Results are described in Section 12.2.

Figure 7.4: Part of generated target grid for preliminary experiments.

7.2.2 Influence of the I-M pattern

To evaluate the influence of the I-M pattern on voltage measurements and the
Jacobian, electrode set 1 (introduced in Section 7 and depicted in Figure 7.1a) was
used. I-M patterns were generated using the EIDORS mk_stim_patterns function
according to the I-M convention mentioned in Section 4.3.2. These conventional
I-M patterns were compared to the I-M pattern introduced is Section 7.1. Similar
simulations were run as in the previous case. Results are described in Section 12.3.

7.2.3 Influence of target conductivity

To evaluate the influence of target conductivity on voltage measurements, the
previously created target grid was used and conductivity was varied between 10-6

and 103 multiples of background conductivity (6.62× 10−1 S.m-1). All physiological
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conductivity values of human tissues are safely within this range. This extreme
extent of target conductivities was chosen in order to allow general conclusions to
be made based on voltage changes for conductivity values of different orders of
magnitude. Electrode set 1 was used in combination with the fully designed I-M
pattern (containing all 1560 measurements). Results are described in Section 12.4.

Chapter 8
Electrode position and I-M pattern optimization

Preliminary experiments revealed that optimizing electrode positions and the I-M
pattern can lead to better signal acquisition. Therefore, the next step consisted of
the optimization of these parameters. It was decided that electrode position and I-M
pattern optimization would be decoupled from optimization of image reconstruction.
The reason behind this is the bias that various reconstruction algorithms introduce
into the overall optimization process. A possible approach, which would certainly
lead to optimized I-M patterns and electrode positions, would be to simulate all
possible combinations and choose the best one. This approach would, however, take
up too much computational time and consume too many resources. Instead, a neural
surrogate based on Smyl and Liu (2020)66 was taught to understand the relationship
between chosen features and electrode positions. Results are described in Section
12.3.

8.1 Training data for NN optimization of electrode
position

Training data for the NN were generated using simulations and subsequent feature
extraction. Firstly, 8000 random electrode sets in different spatial arrangements
were generated using the generateElectrodePositions function. Both electrode
sets with the same electrode placement and different electrode placement in the top
and bottom planes were generated. Together with variations in the symmetry of
electrode placement in one plane, 2918 unique electrode sets were selected using the
checkDupliciteElectrodeSets function for NN training. An electrode set was

considered unique only in cases where at least 2 electrodes differed in position from
all other electrode sets. Overall, 35016 input sample vectors were at disposal.

I decided to keep only 208 measurements from the designed I-M pattern to corre-
spond with the standard number of measurements used in practice. Measurements
were selected according to the maximization of the L1- and L2-norms of sensitivity
vectors and parallelotope volumes as described in Section 7.1.1. Previously calculated
measurements for electrode sets 1 to 4 were used, because they are representative of
randomly generated electrode positions. 36 measurements maximizing the parallelo-
tope volume, 8 measurements maximizing the L1-norm of the sensitivity vector and
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8. Electrode position and I-M pattern optimization...........................
8 measurements maximizing the L2-norm of the sensitivity vector were used for each
of the four electrode sets. This summed up to the required 208 measurements.

Twelve sets with six targets each were generated using the generateTargets
function. All six targets within one set were randomly drawn from the thrombus
likelihood distribution described in Section 6.4. This was done to ensure sensitivity
to conductivity changes in all areas of the oxygenator. Percentiles for generation were
chosen equidistantly spread from 5 to 98. All targets used for training are depicted
in Figure 8.1.

Figure 8.1: Targets for NN training data generation in red and separation grid in blue.

Several features were extracted from the simulations and then used as inputs for
the NN. The Jacobian was calculated for each electrode set and a relative voltage
difference was calculated from the forward problem solutions of all combinations of
generated target sets and electrode sets. SVD as well as L1-norm calculation was
performed on the Jacobian of all 208 sensitivity vectors corresponding to individ-
ual measurements. Features described in Table 8.1 were designed based on these
calculations.

8.2 NN architecture

The used NN consists of two FC hidden layers with the number of neurons in layer
1 given by Equation (8.1) and the number of neurons in layer 2 given by Equation
(8.2). Each inner layer is followed by a leaky ReLU activation function layer.

nl1 = floor
(√

(N + 2)nelSets + 2
√
nelSets

N + 2

)
(8.1)

nl2 = floor
(
N

√
nelSets

N + 2

)
(8.2)

The input of the NN is composed of neurons accepting selected features, while the
output consists of a regression layer. This layer compares a flattened vector of the
3D coordinates of electrode positions corresponding to the respective input feature
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.......................................... 8.3. NN training

# Feature Description
1 mean ∆V mean voltage difference of the measurements
2 median ∆V median voltage difference of the measurements
3 Q1(∆V) first quartile of the voltage difference of the measurements
4 Q3(∆V) third quartile of the voltage difference of the measurements
5 min ∆V minimum voltage difference of the measurements
6 max ∆V maximum voltage difference of the measurements
7 mean J mean L1-norm of the sensitivity vectors
8 median J median L1-norm of the sensitivity vectors
9 Q1(J) first quartile of the L1-norm of the sensitivity vectors
10 Q3(J) third quartile of the L1-norm of the sensitivity vectors
11 min J minimum L1-norm of the sensitivity vectors
12 max J maximum L1-norm of the sensitivity vectors
13 max σk maximum singular value of the Jacobian SVD decomposition
14 min σk minimum singular value of the Jacobian SVD decomposition
15 rank(J) rank of the Jacobian based on the number of singular values

bigger than one hundredth of the maximum singular value

Table 8.1: Features designed for NN optimization for electrode position training.

values to electrode positions computed by the NN based on input values. For the 16
electrodes in three dimensions used in this thesis a regression layer with 48 neurons
was needed.

8.3 NN training

In total, five neural networks were trained for five different sets of input features,
each of which was scaled to a range of [0, 1] before training. Input features were
selected based on correlation analysis in order to exclude redundancies. Input data
were randomly divided into three parts to form training, validation and test datasets.
80 percent of the data was used for training and 10 percent for either validation
or tests. MATLAB’s trainNetwork function was used to train a network with
parameters given in Table 8.2. A stochastic gradient descent with momentum and a
gradually decreasing learning rate of an initial value of 1× 10−3 was selected as a
solver. The regularization of NN parameters was included as well as a regularization
factor of 1× 10−6. Validation checks were performed regularly to prevent overfitting
to the training dataset. Overall, 200 training epochs were completed.

8.4 Final electrode positions and I-M pattern selection

Electrode positions acquired using the optimizing NN were evaluated as un-suitable
for the oxygenator case, where thrombi are most probably formed on edges and in
corners. The final electrode set was therefore chosen from the designed electrode
sets. Electrode sets 2 and 3 were selected as final candidates. Both of them were
assigned the best I-M pattern consisting of 208 measurements combined based on
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Parameter Value
Optimizer Stochastic gradient descent with momentum

MiniBatchSize 128
MaxEpochs 100

InitialLearnRate 1× 10−3

LearnRateSchedule piecewise
LearnRateDropFactor 0.1
LearnRateDropPeriod 40

L2Regularization 1× 10−6

Shuffle every-epoch

Table 8.2: Parameters of NN optimizing electrode positions.

the precomputed max L1-norm, L2-norm and parallelotope volume of the sensitivity
vectors. The previously mentioned grid of 600 targets with diameters of 1 cm
spanning the entire oxygenator was used for voltage difference analysis. Sensitivity
analysis was conducted as well as electrode utilization analysis. Detailed results are
available in Section 13.4. Finally, electrode set 2 with respective I-M pattern was
selected for further research.

Chapter 9
Image reconstruction and processing

After the selection of the electrode set and I-M pattern, image reconstruction
commenced. Firstly, different existing approaches were considered in the context of
reconstruction and their feasibility was inspected. Backprojection algorithms perform
poorly even on more complex cases in 2D, so they were omitted from consideration.
Linear reconstruction algorithms still bring simplifications, but perform reasonably
well and have become the gold standard for EIT reconstruction. Iterative algorithms
based on Hessian matrix computations were unfortunately not feasible in this case,
because of the memory demands posed by matrix computation alone. For meshes
with a higher number of finite elements, none of these algorithms is usable. On the
other hand, it is possible to train a reconstruction matrix using the GREIT algorithm,
as it makes use of matrices with a lower number of elements. The utilization of NNs
is also possible, as the number of trainable parameters can easily be adjusted using
the NN architecture, which can be set as arbitrarily complex.

9.1 GREIT reconstruction

Firstly, GREIT reconstruction was optimized for the oxygenator case. Electrode set
2 with the respective I-M pattern selected in Section 13.4 was used. To prevent inverse
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...................................... 9.1. GREIT reconstruction

crime a coarser mesh was created for the inverse model using the ng_mk_gen_models
function. Parameter -maxh was increased tenfold from the forward model to 2 ×
10−2. This resulted in a model with 99,133 finite elements and 22,561 nodes. A
reconstruction model was created using the mk_voxel_volume function, which maps
the inverse model to an output reconstruction grid of 20 × 20 × 10 cubic voxels.
This 4,000 voxel cubic grid was also used for the NN reconstruction.

The Graz consensus Reconstruction algorithm for EIT (GREIT) reconstruction
matrix learning process can be influenced in more ways to reflect the user’s needs.
The main goal in this case was for the reconstruction matrix to perform as well as
possible in the areas where thrombi are most likely deposited (oxygenator edges and
corners). This can be approached in two ways. Firstly, the voxels of desired image
described in Section 4.5.2 can be weighed to skew the importance of certain areas.
This feature is not yet implemented in EIDORS, however, so another approach leading
to the same results was prioritized. This approach is based on the specific choice of
training target locations. Training targets can be easily set as input parameters of
GREIT reconstruction in EIDORS. They were generated by the already implemented
generateTargets function according to a predefined scheme based on the thrombus
likelihood distribution. For each selected percentile range, a given number of thrombi
was randomly drawn from the thrombus likelihood distribution. Targets were drawn
on percentiles which were equidistantly spread between the limit values. In total,
6600 training targets were generated, details are described in Table 9.1.

Thrombi likelihood CDF range Number of targets
[0.02, 0.1] 200
[0.1, 0.2] 200
[0.2, 0.3] 300
[0.3, 0.4] 400
[0.4, 0.5] 500
[0.5, 0.6] 600
[0.6, 0.7] 700
[0.7, 0.8] 800
[0.8, 0.9] 900
[0.9, 0.95] 1000
[0.95, 0.98] 1000

Table 9.1: Description of training targets generated for GREIT reconstruction.

GREIT reconstruction was trained on the absolute difference voltage data simulated
for previously generated targets with a goal NF of 1, 2 and 3. These values were
selected according to general recommendations. An NF of 0.5 is also broadly used,
but wasn’t achievable for this case. Target center positions from the previously
mentioned grid of 600 targets were used. However, targets inside the grid were of
a diameter corresponding to five percent of the oxygenator width, which is a value
typically used for GREIT training. The EIDORS eval_GREIT_fig_merit function
was used to calculate figures of merit (AR, PE, RES, SD, and RNG). Computations
follow the equations described in Section 4.5.2. The resulting reconstruction matrices
were compared based on these FoMs. A few test targets for all considered NF values
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9. Image reconstruction and processing................................
were analyzed as well.

9.2 Reconstruction NN

There have already been several attempts to solve the EIT reconstruction problem
using NNs. In this thesis a convolutional neural network (CNN) LeNet based approach
based on work done by Tan et al.67 in 2019 was utilized. It performed very well on
the 2D cases presented in the article and its possible extension to 3D was inspected
here.

9.3 Training data for reconstruction NN

Training data for the NN were generated using simulations with electrode set 2 and
the respective I-M pattern selected in Section 13.4. Firstly, an enlarged target grid
with a total of 3,971 targets each 1 cm in diameter was created for inhomogenous
simulations. In this grid, targets overlapped by half of their diameter for denser
oxygenator coverage. Target conductivity was randomly varied around the standard
value based on a normal distribution N (0, σtarget

10 ), where σtarget represents the
standard target conductivity. A second group of training data consisted of noise-only
simulations that were used to provide the NN with a negative control. Noise-only
measurements were created as simulations on a homogeneous environment with
normal random noise of a N (0, σback

100 ) distribution, where σback represents background
conductivity. Simulated voltage measurements for both groups were augmented
with 15 dB SNR noise. Overall, 3,971 inhomogenous simulations and 3,971 noise
simulations were created for training.

CNNs rely on the relationships between information from points spatially close
to each other. To satisfy this spacial request, a measurement mapping function
(generateNNinputMapping) was implemented. It converts 208 measurements to
a 2D grid with a size of 16 × 13. In each row only measurements containing a
specified electrode number are utilized. I chose a system where row number 1
contains only measurements with electrode number 1 being utilized as an injecting or
measuring electrode. Row number n then contains only those measurements in which
electrode number n is utilized as injecting or measuring. Relative voltage differences
between homogeneous and inhomogenous cases resulting from 208 measurement
simulations were used as input pixel values. This is done, because the selected I-M
pattern contains 56 different injection pairs with different numbers of respective
measuring pairs. Hence, it is not possible to create a matrix with each injecting pair
measurements in one row.

As mentioned in Section 9.1, a 20 × 20 × 10 cubic voxel grid was used for
reconstruction. Targets used for training were mapped to the respective voxels of
this grid as the NN output. To emulate the desired image approach in GREIT a
transition zone was created around voxels belonging to targets by filtering the image
using a 3D Gaussian kernel with a standard deviation for all axes of σx,y,z = 1. The
resulting NN output data vector contains ones for voxels that belong to the targets,
values in range [0, 1] in close proximity to the target and zeros elsewhere. These
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values can also represent probabilities of thrombus presence in voxels. This is utilized
by a softmax layer of the NN, which converts these values to probabilities for the
final output.

9.4 NN architecture

The used NN consists of layers with parameters described in Table 9.2. For a
simpler orientation, the following labels were used: S . . . stride, K . . . filter size (only
K × K filters were used), nF . . . number of filters, P . . . padding. Two convolution
layers together with max pooling layers were used, as well as two FC layers. ReLU
and leaky ReLU activation functions were used for better learning and a softmax
layer was placed at the output to map NN output values to thrombus probabilities
for individual voxels.

Layer # Layer type Layer parameters
1 input layer accepts 16 × 13 input measurements
2 convolution layer S=1, K=3, nF=32, padding=1
3 leaky ReLU layer activation layer
4 max pooling layer K = 2
5 convolution layer S=1, K=3, nF=64, padding=1
6 leaky ReLU layer activation layer
7 max pooling layer K = 2
8 dropout layer prevention of overfitting
9 FC layer 3200 neurons
10 ReLU activation layer
11 FC layer 4000 neurons (output size)
12 softmax layer conversion to probabilities
13 regression layer comparison with ground truth values

Table 9.2: Overview of layers for the reconstruction NN.

9.5 NN training

Input data were randomly divided into three parts to form training, validation
and test datasets. 80 percent of the data was used for training and 10 percent for
either validation or tests. MATLAB’s trainNetwork function was used to train a
network with parameters given in Table 9.3. A stochastic gradient descent with
momentum and a gradually decreasing learning rate of an initial value of 1× 10−3

was selected as a solver. The regularization of NN parameters was included as well
as a regularization factor of 1× 10−6. Validation checks were performed regularly
to prevent overfitting to the training dataset. Overall, 300 training epochs were
completed.

Unfortunately, the network wasn’t able to converge during learning and the
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10. Thrombus detection and characterization .............................
Parameter Value
Optimizer Stochastic gradient descent with momentum

MiniBatchSize 128
MaxEpochs 300

InitialLearnRate 1× 10−3

LearnRateSchedule piecewise
LearnRateDropFactor 0.1
LearnRateDropPeriod 40

L2Regularization 1× 10−6

Shuffle every-epoch

Table 9.3: Parameters of the NN optimizing electrode positions.

reconstruction problem couldn’t be solved reasonably.

Chapter 10
Thrombus detection and characterization

A rough reconstruction was successfully performed using the GREIT reconstruction
algorithm, which gave an approximate idea whether any thrombi are present in the
oxygenator. In this section the most important outcome of this thesis for clinical
practice is discussed. It is thrombus detection and characterization. Several classifiers
were implemented with the aim of thrombus detection and thrombosis severity
assessment.

10.1 Detecting thrombus presence

The most fundamental question is whether any thrombi are deposited in the
oxygenator. This detection was implemented for both the measured voltages and
reconstructed images. Firstly, the possibility of thrombus detection based on measured
voltages was inspected. Two types of classifiers were tested for this task. A support
vector machine (SVM) classifier was the first choice. In this classifier, a radial basis
function (RBF) kernel was used to better represent the nonlinear nature of the
EIT measurements. Data standardization was performed on the input. The second
choice of classifier was a NN with FC layers and one classification neuron. Next, the
possibility of thrombus detection based on reconstructed images was inspected. Only
an NN approach was selected in this case because of the more complex nature of the
problem. Parameters described in Table 10.1 were used for the training of all the
NNs. Input data were randomly divided into three parts to form training, validation
and test datasets. 80 percent of the data was used for training and 10 percent for
either validation or tests.
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.................................. 10.1. Detecting thrombus presence

Parameter Value
Optimizer Stochastic gradient descent with momentum

MiniBatchSize 128
MaxEpochs 100

InitialLearnRate 1× 10−3

LearnRateSchedule piecewise
LearnRateDropFactor 0.1
LearnRateDropPeriod 60

L2Regularization 1× 10−6

Shuffle every-epoch

Table 10.1: Parameters for the thrombus detection NNs.

10.1.1 Training data for thrombus presence classifiers based on
voltage measurements

Training data were generated using simulations with electrode set 2 and the I-
M pattern selected in Section 13.4. The standard enlarged target grid with 3,971
targets, each 1 cm in diameter, was used for inhomogenous simulations. One
target only was used for each inhomogenous simulation to test the classifier for
the basic case of one thrombus presence. Target conductivity was randomly varied
around the standard value based on a normal distribution of N (0, σtarget

10 ), where
σtarget represents the standard target conductivity. A second group of training data
consisted of noise-only simulations as a negative control. Noise-only measurements
were created as simulations on a homogeneous environment with normal random noise
with a distribution of N (0, σback

100 ), where σback represents background conductivity.
Simulated voltage measurements for both groups were augmented with 15 dB SNR
noise. Overall, 3,971 inhomogenous simulations and 3,971 noise simulations were
created for training. Relative voltage difference data were used as NN input.

10.1.2 NN architecture for thrombus presence classification based
on voltage measurements

The NN has an input layer accepting measured voltages in the form of a 208-element
vector. It further consists of two FC inner layers paired with a ReLU activation
function. The output of the NN is composed of a FC layer with two neurons and a
softmax layer. This arrangement enables classification into two groups – thrombi
present × thrombi missing. The entire network scheme is described in Table 10.2.

10.1.3 Training data for thrombus presence classifier based on
reconstructed images

Training data for the classifier based on reconstructed images stem from the
previously mentioned grid of 600 targets with 1 cm in diameter spanning the entire
oxygenator volume. Target conductivities were varied in the same fashion as described
in Section 10.1.1. Absolute voltage difference data were reconstructed using the
GREIT reconstruction matrix corresponding to NF = 1 described in Section 9.1.
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10. Thrombus detection and characterization .............................
Layer # Layer type Layer parameters

1 input layer accepts vector of 208 input measurements
2 FC layer 200 neurons
3 ReLU layer activation layer
4 FC layer 100 neurons
5 ReLU layer activation layer
6 FC layer 2 neurons corresponding to two classes
7 softmax layer conversion to probabilities
8 classification layer classifies to more probable class

Table 10.2: Overview of layers for a thrombus detection NN based on voltage measure-
ments.

The output of this reconstruction is a vector with 4,000 reconstructed voxels which
is directly used as an input to the NN. Overall, 600 training samples of noisy
inhomogenous simulations and 600 training samples of noise-only simulations were
utilized.

10.1.4 NN architecture for thrombus presence classification based
on reconstructed images

The NN has an input layer accepting the mentioned vector with 4,000 reconstructed
voxels. It also utilizes three FC inner layers paired with a leaky ReLU activation
function. The output of the NN is composed of a FC layer with two neurons and a
softmax layer. The architecture is based on the NN detecting thrombus based on
voltage measurements. One inner layer is added to compensate the increased number
of input elements. The entire network scheme is described in Table 10.3.

Layer # Layer type Layer parameters
1 input layer accepts 4000 reconstructed voxel values
2 FC layer 400 neurons
3 ReLU layer activation layer
4 FC layer 200 neurons
5 ReLU layer activation layer
6 FC layer 100 neurons
7 ReLU layer activation layer
8 FC layer 2 neurons corresponding to two classes
9 softmax layer conversion to probabilities
10 classification layer classifies to more probable class

Table 10.3: Overview of layers for a thrombus detection NN based on reconstructed
images.
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.................................. 10.2. Assessing thrombosis severity

10.2 Assessing thrombosis severity

To assess thrombosis severity, a metric (η) was designed. It is computed as the
ratio of overall thrombus volume to oxygenator volume. This reflects the fact that
an increase in oxygenator thrombosis comes with big risks for patients. The greater
the volume occupied by thrombi, the worse the gas exchange and the greater the
pressure drop over the oxygenator. Two NNs were used to assess the value of η. The
first NN works with voltage differences and the second with reconstructed images as
inputs. Ten classes were created according to Table 10.4 to obtain η values.

Class # η value range
1 [0, 0.1]
2 (0.1, 0.2]
3 (0.2, 0.3]
4 (0.3, 0.4]
5 (0.4, 0.5]
6 (0.5, 0.6]
7 (0.6, 0.7]
8 (0.7, 0.8]
9 (0.8, 0.9]
10 (0.9, 1]

Table 10.4: Values of η and the respective classes.

10.2.1 Training data for the thrombosis severity classifier based on
voltage measurements

Training data were generated using simulations with electrode set 2 and the
respective I-M pattern selected in Section 13.4. The mentioned target grid with 600
targets, each 1 cm in diameter, was used for inhomogenous simulations. Different
levels of clotting severity were simulated by varying the number of randomly chosen
targets. The amount of targets spanned between 1 and 600. The total thrombus
volume for each simulation was computed by summing the volume of finite elements
making up the thrombi. Only data for groups 1 to 4 were generated, because a higher
thrombus presence isn’t realistic. The representation of η groups in training data
was skewed by noise-only simulations that also belong to group 1. There were also
less samples for group 4. Target conductivity for a single training target distribution
was randomly varied around the standard value based on a normal distribution
N (0, σtarget

10 ), where σtarget represents the standard target conductivity. A second
group of training data consisted of noise-only simulations. Noise-only measurements
were created as simulations on a homogeneous environment with normal random noise
with a distribution of N (0, σback

100 ), where σback represents background conductivity.
Simulated voltage measurements for both groups were augmented with 15 dB SNR
noise. Overall, 1,200 measurements with different numbers of targets present were
simulated.
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10. Thrombus detection and characterization .............................
10.2.2 NN architecture for the thrombosis severity classifier based
on voltage measurements

The architecture stems from the NN used for thrombus presence detection based on
voltage measurements described in Section 10.1.2. The only changes being different
amounts of neurons used in each FC layer in the hidden architecture. 600 neurons
are used in FC layer # 1 instead of 200 and 200 neurons are used in FC layer #
2 instead of 100. The output layer contains four neurons enabling the network to
classify the inputs into four groups based on presumed thrombosis severity.

10.2.3 Training data for the thrombosis severity classifier based on
reconstructed images

Training data for the thrombosis severity classifier based on reconstructed images
stem from the training data described in Section 10.2.1. Absolute voltage difference
data were reconstructed using the GREIT reconstruction matrix corresponding to
NF = 1 described in Section 9.1. The output of this reconstruction is a vector of
4,000 reconstructed voxels which is directly used as an input of the NN.

10.2.4 NN architecture for the thrombosis severity classifier based
on reconstructed images

The architecture stems from the NN used for the thrombus presence detection
based on reconstructed images described in Section 10.1.4. The only changes in
hidden architecture being the different amounts of neurons used in each FC layer. 500
neurons are used in FC layer # 1 instead of 400 and 300 neurons are used in FC layer
# 2 instead of 200. The output layer contains four neurons enabling the network to
classify each case into one of four groups according to presumed thrombosis severity.
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Chapter 11
Real mock experiments

To demonstrate the functionality of the proposed approaches, a set of measure-
ments was conducted on the mock oxygenator stationed at the institute for Medical
Information Technology (MedIT) at RWTH Aachen (Aachen, Germany). My col-
leagues at the institute conducted this experiment with the Sciospec device described
in Section 6.1.1. Data was measured using 16 electrodes placed at locations according
to electrode set 2 (depicted in Figure 7.1b) and the optimized I-M pattern with 208
measurements described in Section 13.4. The electrodes were connected to the device
via crocodile clips and extension cords. A saline solution (0.9 % NaCl) was used as
the background medium. The separation grid was included in both the homogeneous
and inhomogenous measurements. An AC current with a frequency of 750 kHz with
an amplitude of 10 mA was used for all injections. A balloon of an approximately
spherical shape filled with air was used for inhomogenous measurements. For the sake
of following computations, the diameter of the target was set to 1 cm. Inhomogenous
measurements for three different balloon positions were conducted. Approximate
balloon target positions together with respective labels are depicted in Figure 11.1.
The experimental setup is depicted in Figure 11.2.

11.1 Thrombus reconstruction and detection

Every measurement was repeated five times in close time proximity and averaged
in order to lower the influence of noise. The device is able to measure complex
impedance, but only the real part was considered. After the measurements were
acquired, reconstruction using the GREIT reconstruction matrix was conducted. The
same reconstruction matrix corresponding to NF = 1 as described in Section 9.1 was
used. Absolute voltage differences were reconstructed. Afterwards, the measured and
reconstructed data were fed to classification NNs to find out whether the thrombi
were detected. Thrombosis severity was tested as well by the respective NN. Already
trained NNs were utilized. Complete description of architectures and parameters of
the NNs is described in section 10.
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11. Real mock experiments.....................................

Figure 11.1: Approximate balloon target positions with respective labels, the green color
represents a position in the top part of the oxygenator over the separation grid and the
brown color position in the bottom part under the separation grid.

(a) : Mock oxygenator without elec-
trodes, target inserted under the sep-
aration grid.

(b) : Mock oxygenator with electrodes
present and target inserted.

Figure 11.2: Experiment setup for real mock measurements at the institute.
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Part III

Results and discussion
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In this section, results and corresponding discussions will be presented. The
structure is organized similarly to the Materials and Methods section (Chapter II)
for easier orientation. Only representative examples of results are depicted in this
section, the rest can be found in Appendix A.

Chapter 12
Preliminary experiments

The preliminary experiments in this thesis were aimed at uncovering whether
changes in electrode positions, I-M patterns, and target conductivity translated to
statistically significant differences in measurements. This helped to conclude which
parameters to include in the subsequent optimization steps.

12.1 Selecting the most sensitive measurements

Firstly, all 1560 measurements from the designed I-M pattern (depicted in figures
7.2 and 7.3) for the four predefined electrode sets (depicted in Figure 7.1) were sorted.
The goal was to attempt to uncover useful measurements and forego the amplification
of present noise caused by including too many measurements. The sorting was
conducted based on three parameters - the L1- and L2-norms of measurement
sensitivity vectors, and their parallelotope volumes. Even with Jacobian scaling, it
was not possible to choose more than approximately 180 measurements based on the
parallelotope volume. The rank of the Jacobian is approximately 104 in all cases,
which leads to the small singular values of any further sensitivity vectors (e.g. 10-14)
and the resulting inability of the computer to numerically express the parallelotope
volume.

Simulations for measurement selection were conducted on all four electrode sets
and three sets of 104 measurements. Each set was selected based on one of the three
described sorting methods. This resulted in 12 unique combinations of electrode
sets and sorting methods. The three selection methods were compared based on
simulated data.

Firstly, selections were compared in terms of utilized electrodes and their spatial
arrangement. Observations were made about the frequency of individual electrode
use and the most commonly utilised electrode pairs. Of particular interest was the
fact whether the most sensitive measurements include inter-plane or intra-plane
injecting and measuring pairs. Measurements were therefore divided into five groups
according to the spatial arrangement of the participating pairs..Group 1: Inter-plane injection and measurement.Group 2: Inter-plane injection, intra-plane measurement
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12. Preliminary experiments ....................................
.Group 3: Intra-plane injection, inter-plane measurement.Group 4: Intra-plane injection and measurement in one plane.Group 5: Intra-plane injection and measurement in opposite planes

It appears from the statistical analysis on electrode set 1 (depicted in Figure 12.1)
that parallelotope volume maximization leads to the most homogenous incidence
of both the electrodes used and spatial arrangement groups present. This confirms
the hypothesis that this approach leads to the homogenous coverage of the entire
oxygenator volume. For both L1-norm and L2-norm-based measurement selection,
one of the spatial arrangement groups is typically not represented at all. Bottom
electrodes are also more heavily utilized than top electrodes adding to the asymmetry
of these measurements.

The possible generalization of the findings based on electrode set 1 was confirmed
by the other three electrode sets, where similar patterns were uncovered. Based on
these four models, the following can be induced: parallelotope volume maximization
results in all electrodes being evenly utilized and all spatial arrangement groups being
represented. L1- and L2-norm maximization leads to uneven electrode utilization
with the prioritization of bottom electrodes. L2-norm maximization consistently
avoids group 4 measurements, which tend to have a lower overall sensitivity. This is
caused by the need for the penetration of the oxygenator volume together with the
separation grid by the injecting current, which allows it to influence the measuring
pair on the other side of oxygenator. Measurement group distributions for both
parallelotope volume maximization and L2-norm maximization are stable over all four
electrode placement options. Parallelotope volume maximization results in a large
proportion of group 1 measurements and low proportion of group 5 measurements.
On the other hand, L2-norm maximization leads to a large proportion of group 3
measurements. This is caused by the spatial proximity of injecting and measuring
pairs, because the elements surrounding electrodes have the greatest sensitivity.
Statistics for electrode sets 2, 3 and 4 are depicted in Appendix A.

In addition to the analysis of electrode use and electrode arrangement, the sensi-
tivity distribution of finite elements was explored over the four proposed electrode
placements according to the following procedure. Absolute values of Jacobian sensi-
tivity vectors were summed over selected measurements for all finite elements in the
oxygenator excluding the ones belonging to the separation grid. Distributions were
compared both in spatial and value domains. It appears from the analysis depicted
in figures 12.2 and 12.3 that a few general conclusions, independent of electrode
configuration, can be drawn. Median sensitivity is highest for L1-norm selected
measurements, followed by L2-norm selected measurements. This reflects the fact
that L1-norm is more robust and isn’t influenced that much by outliers as L2-norm.
Parallelotope volume selected measurements lead to sensitivities with the smallest
interquartile range and smallest maximum value. This confirms that parallelotope
volume maximization leads to more homogenous measurements. Other interesting
observation is that, according to their respective distributions, both L1-norm and
L2-norm maximizations result in measurements sensitive to conductivity changes
more or less in the entire oxygenator volume. This is quite surprising because
there is no consideration of spatial homogeneity in norm maximization. The spatial
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distributions of sensitivities for electrode set 1 (depicted in Figure 12.4) show that
the most sensitive elements are placed around electrodes, especially the ones not in
the corners, which was expected. Other sensitive areas are around the separation
grid near the borders of the oxygenator. These observations are valid for all other
electrode sets, whose distributions are depicted in Appendix A. The analysis revealed
also shortcomings of parallelotope volume maximization based measurement selection.
Although it has the most homogenous coverage of the three selection methods, its
sensitivity to conductivity changes is overall smaller then that of measurements
chosen based on the L1 and L2 norms.

The final analysis over the 104 selected measurements for each selection method
includes voltage differences. A homogenous simulation was followed by measurements
on a few targets, chosen to illustrate differences among measurements. Each target
(with a diameter of 1 cm) was placed in a different oxygenator quadrant and in
various distances from the oxygenator center. Simulations were carried out on these
targets and distributions of the measured voltages were observed. Both absolute
and relative voltage differences between inhomogenous and homogenous cases were
considered, the relative voltage difference being more indicative of change significance.
In this section only two targets are depicted for electrode set 1 in Figure 12.5b
for clarity. The rest of the data may be found in Appendix A. The boxplots in
Figure 12.5b reveal that the L2-norm-selected measurements consistently provide
the highest third quartile value in terms of relative voltage change. This contrast
with the highest third quartile value in terms of absolute voltage change which
is held by L1-norm-selected measurements. This can be caused by the fact that
homogenous measurements for L2-norm based measurements are of a significantly
lower magnitude. Furthermore, it is positive that even targets near the center of the
oxygenator cause relative voltage changes of at least a few percent. However, the
change is usually much bigger elsewhere, even hundreds of percent. The absolute
measured voltage change oscillates around tenths of mV for all measurements, which
should be detectable in real-life measurements.

From the results of this preliminary study, we can see the influence of measurements
on important quantities tied to the EIT method. Measurements affect not only
absolute and relative voltage differences, but also the distribution of used electrodes
and the sensitivity of elements inside the measured volume. What’s more, these
parameters are affected differently based on the method, chosen for measurement
selection. This points toward the fact that there is still work to be done in the area
of measurement selection optimization and that the selection is worth optimizing.

12.2 Influence of electrode positions

To determine the significance of the influence of electrode positions on the measured
signal, the four predefined electrode sets (depicted in Figure 7.1) were compared using
all 1560 measurements from the designed I-M pattern (depicted in figures 7.2 and
7.3). Firstly, a sensitivity analysis was conducted. Absolute values of Jacobian matrix
elements were summed both per measurement (over rows) and per finite element (over
columns). The left part of Figure 12.6 shows the absolute Jacobian values summed
over measurements, sorted for each electrode set separately. It appears that the least
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12. Preliminary experiments ....................................
sensitive measurements are of similar magnitude for all electrode sets, whereas for the
most sensitive measurements, magnitude differs. The most sensitive measurements
overall belong to electrode set 4. Measurements of an average sensitivity also differ
among the electrode sets. The right part of Figure 12.6 compares absolute values
of Jacobian elements summed over all finite elements which are again sorted for
each electrode set separately. All electrode sets have similar values corresponding to
both the least and most sensitive element. Elements with average sensitivities differ
among the electrode sets. Figure 12.7 shows the detail of these distributions. The
interquartile range is similar for all electrode sets with the median differing slightly.
However, the difference in mean ranks is statistically significant between all pairs of
groups according to the conducted nonparametric Kruskal-Wallis test (distributions
are not normal) and consequent multiple comparison of mean ranks. The results of
the Kruskal-Wallis test were evaluated at a significance level of α = 0.05 and gave
a test value of X 2(3) = 28366.06 and p-value of p < 10−12. This points to the fact
that there are statistically significant differences among mean ranks of the studied
groups. Multiple comparison results are depicted in detail in Table 12.1. They show
statistically significant differences between all pairs of electrode sets.

Electrode set #1 Electrode set #2 significant difference p-value
1 2 yes <10× 10−12

1 3 yes <10× 10−12

1 4 yes <10× 10−12

2 3 yes <10× 10−12

2 4 yes 7.8× 10−5

3 4 yes <10× 10−12

Table 12.1: Results of multiple comparison following the Kruskal-Wallis test on finite
element sensitivity differences among electrode sets.

A voltage difference analysis for the different electrode positions was carried
out next. Both absolute and relative voltage differences between homogenous and
inhomogenous cases were explored for all 600 targets in the defined grid. Voltage
differences were summed either over targets or over measurements for all electrode
sets. A similar interquartile range and slightly differing medians were observed for
all electrode sets in both cases. Boxplots are depicted in the upper row of Figure
12.8. Relative voltage differences were captured as 95th percentile values again both
per target and per measurement (depicted in the bottom row of Figure 12.8). This
percentile was chosen to eliminate high outlier values. The biggest outlier among
electrode sets is electrode set 4 in the relative voltage difference taken per target. Its
mean relative voltage as well as interquartile range is visibly very different. Statistical
analysis was performed to reveal other significant differences as well. Because of
the non-normal distributions of the data, a nonparametric Kruskal-Wallis test was
used again. Results for absolute voltage differences per target were assessed at a
significance level of α = 0.05 and gave a test value of X 2(3) = 1203.43 and a p-value
of p < 10−12. A consequent multiple comparison showed differences in mean ranks
for several group pairs (details are depicted in Table 12.2). The result of relative
voltage differences per measurement were also assessed at a significance level of α
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= 0.05 and gave test values: X 2(3) = 11.75, p = 0.0083. The consequent multiple
comparison showed only one pair of significantly differing electrode sets - electrode
set 2 and electrode set 3. Details of multiple comparison are depicted in Table 12.3).

Electrode set #1 Electrode set #2 significant difference p-value
1 2 no 3.74× 10−1

1 3 yes 2.77× 10−7

1 4 yes <10× 10−12

2 3 yes 6.67× 10−4

2 4 yes <10× 10−12

3 4 yes <10× 10−12

Table 12.2: Results of multiple comparison following the Kruskal-Wallis test on relative
voltage difference per target among electrode sets.

Electrode set #1 Electrode set #2 significant difference p-value
1 2 no 8.94× 10−1

1 3 no 6.21× 10−2

1 4 no 1
2 3 yes 7.65× 10−3

2 4 no 8.86× 10−1

3 4 no 6.52× 10−2

Table 12.3: Results of multiple comparison following the Kruskal-Wallis test on relative
voltage difference per measurement among electrode sets.

The analysis of electrode set influence on Jacobian and voltage measurements
showed that the most significant changes are Jacobian-related. Only one pair differed
significantly in terms of relative voltage difference. However, the spatial distribution
of finite elements and voltage differences wasn’t considered. This means that relevant
spatial-related differences might be hidden.

12.3 Influence of I-M pattern

The following experiments were conducted using different I-M patterns to uncover
the effect on final measurements. Injection-measurement patterns were chosen based
on typical I-M nomenclature and compared to the custom I-M created for this thesis.
To get a good scope of I-M patterns a representative digest was made, I-M patterns
1-1, 2-4, 3-3, 3-5, 4-5, 6-4, 7-7 and 8-8 were chosen. Firstly, sensitivity analysis on
these I-M patterns was done. Absolute values of Jacobian matrix elements were
summed, this time only per finite element. Different I-M patterns contained different
number of measurements, so all sums for the finite elements of each pattern were
scaled by the respective number of measurements corresponding to this pattern.
Distributions of this sensitivity parameter of all selected I-M patterns are depicted
in Figure 12.9. Statistical analysis was again carried out using the Kruskal-Wallis
test (data distributions are not normal) to find significant differences in mean ranks.
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12. Preliminary experiments ....................................
The result of the Kruskal-Wallis test was assessed on a significance level of α = 0.05:
X 2(8) = 1.25× 106, p < 10−12. A subsequent multiple comparison showed differences
in mean ranks between all pairs of I-M patterns. Results of the multiple comparison
are not included because of numerous combinations.

Voltage difference analysis for the I-M patterns was carried out next. Both absolute
and relative voltage differences between homogenous and inhomogenous cases were
explored for all 600 targets in the defined grid. Voltage differences were summed
over either targets or measurements for all electrode sets and scaled by the number
of measurements for respective I-M patterns. Differing interquartile ranges and
medians were observed for different I-M patterns in both cases (for absolute and
relative voltage differences). Boxplots are depicted in the upper row of Figure
12.10. Relative voltage differences were captured as 95th percentile values again
both per target and measurement (depicted in the bottom row of Figure 12.10).
Statistical analysis was performed to confirm difference significance. Because of
non-normal distributions a nonparametric Kruskal-Wallis test was again used. Result
for relative voltage difference per target are reported for a significance level of α
= 0.05: X 2(8) = 4028.66, p < 10−12. A subsequent multiple comparison showed
differences in mean ranks for most of the I-M pattern pairs. Result for relative
voltage difference per measurement were assessed at a significance level of α = 0.05:
X 2(8) = 274.42, p < 10−12. A subsequent multiple comparison showed differences in
mean ranks for the majority of the I-M pattern pairs. Results of multiple comparisons
are not included because of numerous combinations.

Analysis revealed that some patterns would bring much more information with
the measurements than others. The patterns 1-1 and 8-8 were recognized not to
be suitable for this spatial electrode arrangement, whereas patterns 2-4, 3-5, 7-7
and 6-4 were recognized as much better. The pattern 2-4 was evaluated as by far
the best for relative voltage difference per target and measurement. This pattern
includes both inter-plane and intra-plane measurements, which supports the original
measurements proposed in designed I-M pattern. Sensitivity analysis values for the
designed pattern are lower compared to other patterns because there are numerous
measurements of low sensitivity included. When divided by 1560 measurements, the
average value is really low.

12.4 Influence of target conductivity

The final set of preliminary experiments was aimed at voltage difference analysis
for different target conductivity values. Electrode set 1 with designed I-M pattern
were used. Both absolute and relative voltage differences between homogenous
and inhomogenous cases were explored for all 600 targets in the defined grid. The
conductivites of the targets were varied between 10-6 and 103 multiples of background
conductivity (6.62×10−1 S.m-1). Voltage differences were summed over either targets
or measurements. Boxplots are depicted in the upper row of Figure 12.11. Relative
voltage differences were captured as 95th percentile values again both per target and
measurement (depicted in the bottom row of Figure 12.11). From the boxplots, we
can see that two distinct groups have seemingly formed for all analyzed parameters.
The first group consists of targets with a conductivity value lower than that of the
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background. The actual conductivity value within this group doesn’t appear to
have much of an effect on the observed features. On the other hand, for target
conductivities higher than that of the background, increasing target conductivity
values leads to the increase in medians and a general shift of the distribution towards
higher voltage values. However, differences seem to vanish with further increased
conductivity as well. Statistical analysis was performed to confirm significance of
differences between the given measurements. Because of the non-normal distributions
of data, the nonparametric Kruskal-Wallis test was again utilized. The results of
absolute voltage difference per target are given at a significance level of α = 0.05
and resulting test variables are: X 2(9) = 2450.46, p < 10−12. A subsequent multiple
comparison showed differences in mean ranks between the group of less conductive
targets and more conductive targets. There is not a statistically significant difference
within the lower conductivity group. The result for the relative voltage difference
per measurement were assessed at a significance level of α = 0.05 with the following
outcome: X 2(9) = 7365.92, p < 10−12. The subsequent multiple comparison provided
the same result as in the previous case. Results of multiple comparisons are not
included because of numerous combinations. A saturation property of the EIT was
demonstrated on the targets especially with low conductivity values. Nevertheless,
This will not be a problem for future thrombus reconstruction because the conductivity
difference doesn’t span multiple orders of magnitude.

From this preliminary analysis, we can see that all parameters have a statistically
significant effect on both the measured voltages and Jacobian values. An analysis of
different measurement selection methods revealed significant influence on electrode
utilization and spatial relations of injecting and measuring pairs. Therefore, the
optimization of electrode positions and I-M patterns has the potential to bring more
information from the measurement and lead to a better image reconstruction as
opposed to an unoptimized source of voltage measurements. Additionally, the effect
of target conductivity on the measurements was also shown. This information is
important mainly when dealing with specific thrombi types, but will not be discussed
in more detail in this work. An important consideration for future development is
the size limit for thrombi detectability which wasn’t covered here.
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(b) : Electrode arrangement statistics
for electrode set 1 and max L1-norm
measurements.
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(c) : Statistics of electrode usage for
electrode set 1 and max L2-norm mea-
surements.
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(d) : Electrode arrangement statistics
for electrode set 1 and max L2-norm
measurements.
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electrode set 1 and max parallelotope
volume measurements.
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(f) : Electrode arrangement statistics for
electrode set 1 and max parallelotope
volume measurements.

Figure 12.1: Electrode utilization analysis for measurement selection, electrode set 1.
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Sensitivity analysis for different measurement selection, electrode set 1

(a) : Finite elements sensitivity analysis
for electrode set 1
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Sensitivity analysis for different measurement selection, , electrode set 2

(b) : Finite elements sensitivity analysis
for electrode set 2
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Sensitivity analysis for different measurement selection, electrode set 3

(c) : Finite elements sensitivity analysis
for electrode set 3
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Sensitivity analysis for different measurement selection, electrode set 4

(d) : Finite elements sensitivity analysis
for electrode set 4

Figure 12.2: Finite elements sensitivity analysis
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Sensitivity analysis for different measurement selection, electrode set 1

(a) : Finite elements sensitivity analysis
for electrode set 1 – detail.
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(b) : Finite elements sensitivity analysis
for electrode set 2 – detail.
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Sensitivity analysis for different measurement selection, electrode set 3

(c) : Finite elements sensitivity analysis
for electrode set 3 – detail.
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(d) : Finite elements sensitivity analysis
for electrode set 4 – detail.

Figure 12.3: Finite elements sensitivity analysis – detail.
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(a) : Spatial finite element sensitivity
distribution, max L1-norm, electrode set
1,

(b) : Spatial finite element sensitivity
distribution, max L2-norm, electrode set
1.

(c) : Spatial finite element sensitivity
distribution, max volume, electrode set
1.

Figure 12.4: Spatial finite element sensitivity distribution for electrode set 1, where
sensitivity hot spots are depicted in yellow.
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(a) : Absolute and relative voltage differences, target near oxygenator center, electrode
set 1
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(b) : Absolute and relative voltage differences, target in the corner, electrode set 1

Figure 12.5: Absolute and relative voltage differences for two targets, electrode set 1
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Figure 12.6: Sensitivity analysis of different the electrode sets.
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Figure 12.7: Boxplot sensitivity analysis of the different electrode sets.
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Figure 12.8: Voltage difference analysis for different electrode sets
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Figure 12.9: Sensitivity analysis of different I-M patterns.
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Figure 12.10: Voltage difference analysis for different I-M patterns
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Figure 12.11: Voltage difference analysis for target conductivity.
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Chapter 13
Electrode positions and I-M pattern
optimization

Due to the results of the preliminary experiments, the optimization of electrode
positions and the I-M pattern was attempted next. For the 2918 unique electrode
sets, 208 measurements from the designed I-M pattern and twelve sets of six targets,
35016 input factor combinations were at disposal for NN training. 80 percent of the
input data were used for the real NN training, 10 percent for training validation and
the final 10 percent for the testing of the NN.

13.1 Training data for NN

In the article by Smyl and Liu (2020),66 NN input features consist of the re-
construction difference and condition number of the Hessian matrix. These two
input parameters were chosen as an indicator of EIT data quality, and a measure of
ill-conditioning and reconstruction quality. In my thesis, reconstruction was excluded
from position optimization on purpose, therefore it wasn’t considered as a possible
input in this case. Additionally, because of the huge number of finite elements of the
Hessian matrix H (which is computed from the Jacobian J according to Equation
(13.1)), even the computation of the Hessian alone isn’t feasible memory-wise. It
would contain more than 100 billion elements and would take up tens of gigabytes
alone.

H = JTJ (13.1)

Therefore, alternative features had to be designed as replacements. Features
described in Section 8.1 were considered. Three more features were created by
combining the listed features. The Jacobian condition number ξJ , defined as a ratio
of maximum and minimum Jacobian singular values σk and calculated according
to equation (13.2) was used as an ill-conditioning metric. The next two features
were designed to capture the homogenous coverage of the oxygenator volume by the
electrodes. The first is defined as ψJ - the ratio of the median of the Jacobian sensi-
tivity vector L1-norm and the minimum L1-norm of the Jacobian sensitivity vectors
according to Equation (13.3). The other was denoted as ψ∆V and is calculated as the
ratio of the median relative voltage difference ∆V to the minimum relative voltage
difference ∆V according to Equation (13.4). The added features are summarized in
Table 13.1.
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13. Electrode positions and I-M pattern optimization..........................
ξJ = max σk

min σk
(13.2)

ψJ = medianJ
min J (13.3)

ψ∆V = median∆V
min ∆V (13.4)

# Feature Description
16 median J / min J measure of Jacobian homogeneity
17 max σk / min σk Jacobian condition number
18 median ∆V / min ∆V measure of measurement homogeneity

Table 13.1: Features designed for electrode position optimization using NN training.

With these features added to the list, 18 features in total were available for
selection. A correlation analysis was performed on the full NN input dataset to
discover redundant features. All features were scaled using respective maximum
feature values which resulted in a range of [0, 1] for all features as all the values
of these features are positive. Pearson correlation was then performed over these
features. A visualized correlation matrix is depicted in Figure 13.1. Below, I would
like to point out some of the interesting results originating from this analysis. They
show mainly a divergence between ∆V and the Jacobian..Mean ∆V is weakly correlated to median∆V (r = 8.84× 10−2), whereas mean J

is strongly correlated to median J (r = 0.93)..Mean ∆V is strongly correlated to max ∆V (r = 0.99), whereas mean J is weakly
correlated to max J (r = -0.11).. Both Q1(∆V) and Q3(∆V) are strongly correlated to median∆V (r=0.76). This
applies to the Jacobian as well: Q1(J) and Q3(J) are strongly correlated to
median J (r=0.75, r=0.90).. Rank(J) is strongly negatively correlated to most of the features tied to the
Jacobian (e.g. r = -0.61 for mean J and r = -0.65 for min J)..Median J / min J is strongly negatively correlated to max J (r = -0.87).

After performing correlation analysis, five different feature sets were selected for
NN training. They are described in Table 13.2.

13.2 NN training

Five different NNs were trained based on feature sets 1 to 5. NN labels correspond
to feature set numbers listed above. All networks finished 100 epochs without
overfitting to training data. Validation loss and validation root-mean-square error
(RMSE) decreased steadily with training loss and training RMSE, respectively. On
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Figure 13.1: A visualization of the correlation matrix for electrode position optimization
NN input features, the red color represents a positive correlation and blue a negative
correlation; the sizes of circles are proportional to absolute correlation coefficients.

the other hand, neither the loss, nor error showed any change in the last epochs. The
training can therefore be considered sufficient without being over-trained. Training
statistics for NN 1 and NN 2 are depicted in Figure 13.2. The rest of the statistics
are depicted in Appendix A.

13.3 Optimized electrode positions

To get the optimized electrode positions, scaled input feature values theoretically
corresponding to an optimal electrode set were used as an input vector to the NN.
Afterwards, a forward pass was carried out and optimal electrode set coordinates
were read from NN output. For this analysis, a set of optimal values for all features
had to be created (values are summarized in Table 13.3). Optimal values were chosen
based on generated input data with an emphasis on maximum values being close to
minimum values in order to increase homogeneity.

The output coordinates from the NN output were assigned to nearest plausible
positions using the created findNearestPlausibleElectrodePosition function.
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13. Electrode positions and I-M pattern optimization..........................
Set Features contained in the set Remarks
1 all features redundancy wasn’t consid-

ered
2 mean ∆V, median ∆V, min ∆V, median J,

max J, min σk, max σk / min σk,
median ∆V / min ∆V

all non-redundant features

3 mean ∆V, median ∆V, min ∆V,
median ∆V / min ∆V

non-redundant voltage re-
lated features

4 median J, max J, min σk, max σk / min σk non-redundant Jacobian re-
lated features

5 median J / min J, max σk / min σk,
median ∆V / min ∆V

homogeneity and ill-
conditioning related features

Table 13.2: Selected feature sets for electrode position optimization NN.

Electrode sets computed as the forward pass of optimal feature sets 4 and 5 with
electrodes placed at plausible positions are depicted in Figure 13.3. The remaining
electrode sets are depicted in Appendix A.

Resulting electrode positions are sometimes slightly outside of the oxygenator and
mostly not directly on either of the electrode planes. The final plausible positions
for two electrodes may sometimes end up in the same place, which is the reason
for the lower number of visible electrodes in some figures. A comparison of the
resulting electrode sets revealed that the network trained on "homogeneity" feature
set 5 actually lead to the most homogenous electrode placement, which is highly
similar in both planes. However, it doesn’t cover oxygenator edges and corners. This
is probably caused by the fact that there is no training penalisation for the case
when these regions aren’t covered. Other electrode sets show significant grouping
of electrodes with electrode arrangement differing in both planes of the oxygenator.
Training electrode sets corresponding to individual input feature values closest to the
optimal feature values were explored to attempt to discern the reasons behind this.
It was observed that some of these training electrode sets show similar arrangements,
which then probably translates to grouping in the resulting electrode sets. The
electrode set for the best value of the rank(J) feature is depicted in Figure 13.4 and
the electrode set for the best value of the median J feature is depicted in Figure 13.5.
The figures for the remaining features are depicted in Appendix A.

13.4 Final electrode positions and I-M pattern selection

The electrode sets given by the previous NN optimization aren’t suitable to cover
regions with a high likelihood of thrombus occurrence. Therefore, it was decided
that the final selection of the electrode set and I-M pattern will be made from
the designed electrode sets. The analysis of NN output electrode sets shows that
electrodes closer to the oxygenator center are advantageous and therefore electrode
set 2 (depicted in 7.1b) and electrode set 3 (depicted in 7.1c) were selected as final
candidates. Each electrode set was assigned measurements from the designed I-M
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Figure 13.2: Training statistics – training loss, training RMSE, validation loss and
validation RMSE – for electrode position optimization NN 1 and NN 2

pattern based on a previously performed sensitivity vector analysis. Overall, 208
measurements were utilised, 104 measurements based on maximum parallelotope
volume, 64 measurements based on maximum L1-norm and 40 measurements based
on maximum L2-norm. Afterwards, Jacobian and voltage difference analysis was
performed in order to choose between the electrode sets.

Distributions of absolute Jacobian values that reflect element sensitivities were
compared first. Results are depicted in Figure 13.6. Electrode set 2 has a higher
maximum sensitivity value and a bigger interquartile range with a higher Q3 value.
Next, absolute Jacobian values were summed over finite elements. For each finite
element, the accumulated sensitivity was compared between the electrode sets. The
result of this analysis is depicted in Figure 13.7. Electrode set 2 has more sensitivity
across finite elements. Afterwards, 0.95 quantiles of both absolute and relative voltage
differences were computed and compared for the two electrode sets. Results are
depicted in Figure 13.8. In this analysis, electrode set 3 provided a greater voltage
difference for both absolute and relative cases.

A final comparison was aimed at electrode utilization. Both electrode set 2
and 3 utilize bottom electrodes for measurements more than top electrodes. This
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# Feature Optimal value
1 mean ∆V 1× 10−1

2 median ∆V 1× 10−1

3 Q1(∆V) 1× 10−2

4 Q3(∆V) 1.5× 10−1

5 min ∆V 1× 10−3

6 max ∆V 2
7 mean J 1× 106

8 median J 1× 106

9 Q1(J) 5× 104

10 Q3(J) 1.5× 106

11 min J 5× 103

12 max J 1× 107

13 max σk 10
14 min σk 1× 10−1

15 rank(J) 208
16 median J / min J 1
17 max σk / min σk 1
18 median ∆V / min ∆V 1

Table 13.3: Optimal feature values for electrode position optimization NN

effect is even more significant for electrode set 3. Both electrode sets utilize mostly
measurements from groups 1, 2, and 3 (as described in Section 12.1). Electrode
utilization statistics are depicted in figure 13.9.

Electrode set 2 with the respective I-M pattern was selected for future experiments
because of better sensitivity and a more homogeneous utilization of electrodes. It
will perform slightly worse in the center of the oxygenator, but slightly better around
oxygenator edges, where thrombi are more often expected. The respective I-M
pattern contains 56 different injecting pairs with number of measuring pairs in range
from 1 to 11 for each injecting pair, a total of 208 measurements. Half of the chosen
measurements stem from sensitivity vector parallelotope maximization, which brings
the best possible homogenous coverage of all finite elements. The other half comes
from maximization of L1 and L2 norms of sensitivity vectors. These measurements
bring amplification of useful signal and mitigate noise influence.
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(a) : Electrode set for optimal feature set 4

(b) : Electrode set for optimal feature set 5

Figure 13.3: Electrode sets computed as the forward pass of optimal feature sets 4 and
5 (electrode position optimization using a NN)
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Figure 13.4: A training electrode set with a minimum difference between the computed
rank(J) feature and the optimal feature value.

Figure 13.5: A training electrode set with a minimum difference between the computed
median J feature and the optimal feature value.
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Figure 13.6: The comparison of absolute sensitivity distribution for electrode sets 2 and
3.
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Jacobian summed absolute element magnitude comparison
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Figure 13.7: The comparison of accumulated absolute finite element sensitivities for
electrode sets 2 and 3.
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(b) : Electrode arrangement statistics
for electrode set 2.
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Figure 13.9: Electrode utilization analysis, electrode set 2 and 3.
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Chapter 14
Image reconstruction and processing

Based on the selected electrode set and the respective I-M pattern a GREIT
reconstruction matrix was trained as well as a reconstruction NN.

14.1 GREIT reconstruction

The GREIT reconstruction matrix was trained on 6600 generated targets using
the EIDORS mk_GREIT_model function. This function optimizes a weight value
which scales noise importance in the process of reconstruction matrix computation
to achieve the goal NF value. Three different GREIT reconstruction matrices were
trained this way for an NF of 1, 2 and 3. The NF of 0.5, which is often mentioned in
literature as the ideal value, couldn’t be reached with any weight value.

The three generated GREIT matrices were compared based on FoM computed by
the EIDORS eval_GREIT_fig_merit function. A boxplot analysis was conducted
for each FoM metric separately. Results are depicted in Figure 14.1.

The boxplots reveal that the greater the NF value the greater the dispersion of
the reconstruction. There are several reconstruction cases where the AR metric
reaches negative values which is indicative of the reconstruction of training targets of
a conductivity higher than that of the background to targets less conductive relative
to background conductivity. The most significantly negative AR values appear for
NF = 3, making it ill-disposed for reconstruction. The most compact distribution for
both AR and RNG metrics were found for NF = 1. This compact property prevails
in the PE, SD and RNG metrics as well.

Visual inspection was carried out on four targets with a diameter of 1 cm. Their
center positions are marked in Table 14.1. Reconstructions for NF = 1 are depicted
in Figure 14.2. Reconstructions for other values of NF are depicted in Appendix A.
Targets that are close to the oxygenator walls are reconstructed far better than targets
near the oxygenator center. However, there are still significant ringing artefacts
of positive conductivity change present. Targets near the center are shifted much
closer to the walls than in ground truth simulations and voxels signalizing lower
conductivity regions are dispersed almost everywhere around the oxygenator. It was
confirmed from the figures that the greater the NF the greater the dispersion of
reconstruction, meaning voxels tied to target conductivity change were reconstructed
to a wider area surroundings the target.
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Figure 14.1: Comparison of FoM metrics for different GREIT reconstruction matrices
corresponding to NF of 1, 2, and 3.

90



..................................... 14.1. GREIT reconstruction

(a) : Target # 1 reconstruction. (b) : Target # 2 reconstruction.

(c) : Target # 3 reconstruction. (d) : Target # 4 reconstruction.

Figure 14.2: GREIT reconstruction for NF = 1 and four different targets.
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Figure 14.3: Training statistics – training loss, training RMSE, validation loss and
validation RMSE – for reconstruction NN.

14.2 Reconstruction NN

The reconstruction NN was trained on 3,971 inhomogenous target simulations
and 3,971 noise simulations. Relative voltage differences were used as NN inputs.
Unfortunately, even after 300 epochs, learning wasn’t successful and didn’t converge.
Both training loss and training RMSE remained approximately stable throughout
the whole training process. The same applies also for validation loss and validation
RMSE. Detailed training statistics are depicted in Figure 14.3.

Target # Center position [x, y, z]
1 [1.9, -0.1, -0.9]
2 [-3.5, -2.7, -0.1]
3 [1.5, -2.5, -2.5]
4 [-4.1, -2.7, -2.5]

Table 14.1: GREIT test target positions in cm from oxygenator center.

Several modifications were performed both on NN architecture and learning
parameters, but no improvement was observed. This means a successful LeNet
application on 3D oxygenator reconstruction isn’t too probable, or would need
significant architecture changes and enhancements. There are several other NN
architectures, e.g. U-Net, worth testing in the future. There is certainly significant
potential for NNs to solve the reconstruction problem.
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Chapter 15
Thrombus detection and characterization

Four different NNs were trained on respective training dataset. The main goal was
to detect thrombus presence and thrombosis severity based on voltage measurements
and reconstructed images. Training statistics for all cases are available in Appendix
A. In all cases, the validation accuracy and loss decrease together with the training
accuracy and loss which indicates that overfitting to training data didn’t occur.
This was confirmed on test data classification which resulted in a similar detection
accuracy as for the validation data.

Accuracy over 94 % was achieved for test data on the thrombus-detection NN
based on voltage measurements. The confusion matrix depicted in Figure 15.1 reveals
3.9 % of false negative cases of measurement classification. These correspond to
thrombus being present in the oxygenator and not being detected, which would be
very dangerous for patients. The number of false negatives should be mitigated in
practice as much as possible. False positives were present in 1.3 % of cases. They
would mean more work for the personnel to check the oxygenator, but wouldn’t
endanger the patient life.
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Confusion matrix for thrombi detection NN
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3.9% 1.3%
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Figure 15.1: Confusion matrix for the thrombus-detection NN with voltage measurements
as input data. Class #1 corresponds to thrombi not present and class #2 corresponds to
thrombi present.

An accuracy over 70 % was achieved for test data on thrombi detection NN based
on reconstructed images. The confusion matrix depicted in Figure 15.2 reveals
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18.4 % of false negatives, which is unacceptable. This further confirms that the
reconstruction is not good and provides far worse results for thrombus detection
than the pure voltage measurements. False positives were present in 9.7 % of cases.
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Figure 15.2: Confusion matrix for the thrombus-detection NN with reconstructed images
as input data. Class #1 corresponds to thrombi not present and class #2 corresponds to
thrombi present.

Over 89 % accuracy was achieved for test data on thrombosis severity classification
NN based on voltage measurements. The confusion matrix depicted in Figure 15.3
reveals dangerous situations when thrombi volume is underestimated occurred in
almost 8 % of cases. This leads to the underestimation of the thrombosis severity
and may lead to critical situations. In almost 6 % of cases the thrombosis severity
was overestimated.

Over 82 % accuracy was achieved for test data on thrombosis severity classification
NN based on reconstructed images. The confusion matrix depicted in Figure 15.4
reveals dangerous situation when thrombi volume is underestimated in more than 6
% of cases. This is a surprisingly good result because the thrombus detection based
on reconstructed images wasn’t reliable at all (accuracy only ca. 70%). In more than
6 % of cases the thrombosis severity was overestimated, especially for thrombosis
severity cases classified into group 2.

A better reconstruction algorithm may lead to better prediction capabilities
of thrombus detection and thrombosis severity assessment models. However, the
currently used GREIT reconstruction generally lead to worse classification results
than when using measured voltages alone. The approach of detecting thrombi directly
from voltage measurements seems to be the most promising, until an enhanced 3D
reconstruction method is developed.
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Figure 15.3: Confusion matrix for thrombosis severity classification NN with voltage
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95



Chapter 16
Real mock experiments

The developed methods were tested on the real mock over the course of several
measurements. For each of the three balloon target positions five measurements
were completed and averaged. The same averaging approach was used also for the
homogenous measurement. GREIT reconstruction lead to results depicted in Figure
16.1. It is obvious that the reconstruction isn’t accurate and the balloon positions
couldn’t be recovered easily from the reconstructed images.

(a) : Reconstructed target 1. (b) : Reconstructed target 2.

(c) : Reconstructed target 3.

Figure 16.1: Mock oxygenator GREIT reconstruction of three test targets.

Even though the reconstruction wasn’t useful for determining the target position,
tests were done to inspect whether it is still possible to detect at least thrombus
presence. The relative voltage differences were also used as thrombi presence pre-
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dictors. The option of thrombosis severity prediction was also explored. Results for
all targets from the classification tasks performed by respective NNs are described
in Table 16.1. Thrombus detection based on voltage measurements was successful
for two targets, whereas detection based on reconstructed image was not successful
at all. Thrombosis severity was correctly assigned in all three cases from voltage
measurements and wrongly assigned in all three cases from reconstructed images. It
was confirmed that the reconstruction perturbed the voltage differences in such a
way that thrombi detection and thrombosis severity assessment became unstable.

Classification task Input data source Predicted outputs
Thrombus detection Voltage measurement [0, 1, 1]
Thrombus detection Reconstructed image [0, 0, 0]
Thrombosis severity Voltage measurement [1, 1, 1]
Thrombosis severity Reconstructed image [4, 2, 4]

Table 16.1: Summarized results of classification tasks on a real mock for test targets 1,
2 and 3; predicted outputs are in following format: [target 1, target 2, target 3].

Increased robustness of the measuring process as well as better reconstruction
approaches might bring better reconstruction results in the future. Better electrodes
and system of their connection to the measuring device should be considered for
future development.
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Chapter 17
Conclusions and future outlook

In this thesis, a complete pipeline for the early detection and characterization of
thrombi in oxygenators was proposed. All simulations and data processing were
done in MATLAB and EIDORS. Many functions complementing EIDORS’ abilities
were implemented along the way to support the method development, e.g. thrombus
generation based a likelihood distribution or electrode position generation. Firstly,
preliminary experiments were conducted to reveal the optimization potential of
electrode placement and I-M patterns. Measurement selection criteria were designed
as well. Afterwards, the search for an optimal electrode placement was conducted
using an NN. This arrangement of electrodes should result in successful thrombi
detection in all oxygenator areas. The optimization didn’t lead to an electrode set
with the desired oxygenator coverage, so a predefined electrode set with an optimized
I-M pattern was used for further stages. 3D image reconstruction was performed next.
A GREIT reconstruction matrix was trained on predefined targets, which enabled
me to include information about the spatial thrombus deposition likelihood. Though
the reconstruction proved to be inadequate for high quality image reconstruction,
some information about thrombi could still be extracted. Secondly, A LeNet CNN
architecture which performs well on 2D EIT reconstruction in practice was chosen
for an extension to 3D. However, training wasn’t successful even though the spatial
relationship of measurements was considered in the LeNet input data. Thrombus
detection and thrombosis severity estimation were inspected next. Four FC NNs
were trained to detect thrombi and assess thrombosis severity both from voltage
measurements and from GREIT reconstructed images. Voltage measurements were
found to be better for these classification tasks. An accuracy of more than 90 %
on test dataset was achieved for thrombi detection based on voltage measurements.
In the end, the proposed approaches were tested on a real mock oxygenator with
air balloon targets. Measured voltages proved to be valuable for thrombi presence
estimation and thrombosis severity assessment even in these real-life measurements.
Overall, it was confirmed that the detection of thrombi in oxygenators using EIT is
possible. The detection of thrombi and determination of thrombosis severity was
achieved using voltage measurements from electrodes. The biggest drawback was
image reconstruction, for which extensive method development is still necessary.
The entire pipeline was set up to facilitate easy modifications of the implemented
algorithms in the future. In this way, it enables a future research continuity.

There are several key aspects that should be considered in the future for a follow-up
of this thesis. Firstly, it is crucial to find out the theoretical limit of thrombi size
detectability for oxygenator. It would be advantageous for practice if thrombi even
several mm in size could be detected. Next, it should be considered whether the
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mock oxygenator isn’t an over-simplified model. The real oxygenator consists of
thousands of tiny non-conductive tubes which certainly significantly alter the current
propagation. There is also a potential to explore influence of different electrode
materials, shapes and amounts. It might be of interest to also simulate measurements
with electrode placements on oxygenator sides. It is possible that this approach
may bring a significant improvement in the method’s detection and reconstruction
capabilities. After static experiments are carried out, a dynamic experiment with
flowing blood should be conducted to evaluate the influence of flow on conductivity
and thrombus detection.

All of these suggestions are aimed mainly at the distant future. As of now, a better
reconstruction approach should be proposed. I think that NNs are the right way
to go as they can perfectly capture the nonlinear essence of EIT. There are many
different architectures that can be tested for improvements in image reconstruction.

99



100



Bibliography

[1] A. Löf, J. P. Müller, and M. A. Brehm, “A biophysical view on von willebrand
factor activation,” Journal of Cellular Physiology, vol. 233, pp. 799–810, may
2017.

[2] D. Monroe and M. Hoffman, “A cell-based model of hemostasis,” Thrombosis
and Haemostasis, vol. 85, no. 06, pp. 958–965, 2001.

[3] G. Lippi and E. Favaloro, “Venous and arterial thromboses: Two sides of the
same coin?,” Seminars in Thrombosis and Hemostasis, vol. 44, pp. 239–248, sep
2017.

[4] D. R. Kumar, E. Hanlin, I. Glurich, J. J. Mazza, and S. H. Yale, “Virchow's
contribution to the understanding of thrombosis and cellular biology,” Clinical
Medicine & Research, vol. 8, pp. 168–172, aug 2010.

[5] K. Neubauer and B. Zieger, “Endothelial cells and coagulation,” Cell and Tissue
Research, vol. 387, pp. 391–398, may 2021.

[6] J. S. O'Donnell, J. M. O'Sullivan, and R. J. S. Preston, “Advances in under-
standing the molecular mechanisms that maintain normal haemostasis,” British
Journal of Haematology, vol. 186, pp. 24–36, mar 2019.

[7] H. M. O. van Straaten, J. A. Kellum, and R. Bellomo, “Clinical review: An-
ticoagulation for continuous renal replacement therapy - heparin or citrate?,”
Critical Care, vol. 15, no. 1, p. 202, 2010.

[8] K. A. Bauer, “Pros and cons of new oral anticoagulants,” Hematology, vol. 2013,
pp. 464–470, dec 2013.

[9] B. Illum, M. Odish, A. Minokadeh, C. Yi, R. L. Owens, T. Pollema, and
J. N. LaBuzetta, “Evaluation, treatment, and impact of neurologic injury in
adult patients on extracorporeal membrane oxygenation: a review,” Current
Treatment Options in Neurology, vol. 23, mar 2021.

[10] W. C. Wrisinger and S. L. Thompson, “Basics of extracorporeal membrane
oxygenation,” Surgical Clinics of North America, vol. 102, pp. 23–35, feb 2022.

[11] F. Sangalli, N. Patroniti, and A. Pesenti, eds., ECMO-Extracorporeal Life
Support in Adults. Springer Milan, 2014.

[12] E. L. S. Organization, “Elso.” https://www.elso.org/, July 2023.

101



[13] I. Halaweish, A. Cole, E. Cooley, W. R. Lynch, and J. W. Haft, “Roller and
centrifugal pumps,” ASAIO Journal, vol. 61, pp. 496–501, sep 2015.

[14] E. Papadimas, L. Leow, Y. K. Tan, L. Shen, K. Ramanathan, A. M. Choong,
and G. MacLaren, “Centrifugal and roller pumps in neonatal and pediatric
extracorporeal membrane oxygenation: A systematic review and meta-analysis
of clinical outcomes,” ASAIO Journal, vol. 68, pp. 311–317, may 2021.

[15] Y. S. Moon, S. Ohtsubo, M. R. Gomez, J. K. Moon, and Y. Nose, “Comparison
of centrifugal and roller pump hemolysis rates at low flow,” Artificial Organs,
vol. 20, pp. 579–581, may 1996.

[16] K. N. Johnson, B. Carr, G. B. Mychaliska, R. B. Hirschl, and S. K. Gadepalli,
“Switching to centrifugal pumps may decrease hemolysis rates among pediatric
ECMO patients,” Perfusion, vol. 37, pp. 123–127, jan 2021.

[17] Özge Erdem, J. W. Kuiper, R. J. Houmes, C. H. van Ommen, J. van Rosmalen,
D. Tibboel, and E. D. Wildschut, “Coagulation complications after conversion
from roller to centrifugal pump in neonatal and pediatric extracorporeal mem-
brane oxygenation,” Journal of Pediatric Surgery, vol. 56, pp. 1378–1385, aug
2021.

[18] B. Meyns, L. Vercaemst, E. Vandezande, H. Bollen, and D. Vlasselaers, “Plasma
leakage of oxygenators in ECMO depends on the type of oxygenator and on
patient variables,” The International Journal of Artificial Organs, vol. 28, pp. 30–
34, jan 2005.

[19] E. Khoshbin, N. Roberts, C. Harvey, D. Machin, H. Killer, G. J. Peek, A. W.
Sosnowski, and R. K. Firmin, “Poly-methyl pentene oxygenators have improved
gas exchange capability and reduced transfusion requirements in adult extra-
corporeal membrane oxygenation,” ASAIO Journal, vol. 51, pp. 281–287, may
2005.

[20] S. Gregory, M. Stevens, and J. Fraser, eds., Mechanical Circulatory and Respi-
ratory Support. Academic Press, Oct. 2017.

[21] S. Yamane, Y. Ohashi, A. Sueoka, K.Sato, J. Kuwana, and Y. Nosé, “Devel-
opment of a silicone hollow fiber membrane oxygenator for ecmo application,”
ASAIO Journal, vol. 44, pp. 384–387, sep 1998.

[22] A. Funakubo, T. Higami, I. Sakuma, Y. Fukui, R. Kawamura, K. Sato, and
A. Sueoka, “Development of a membrane oxygenator for ecmo using a novel fine
silicone hollow fiber,” ASAIO Journal, vol. 42, pp. 837–840, sep 1996.

[23] A. Moreau, B. Levy, F. Annoni, R. Lorusso, F. Su, M. Belliato, and F. S. Taccone,
“The use of induced hypothermia in extracorporeal membrane oxygenation: A
narrative review,” Resuscitation Plus, vol. 13, p. 100360, mar 2023.

[24] Getinge, “Getinge.” https://www.getinge.com/, July 2023.

102



[25] R. G. Conway, J. Zhang, J. Jeudy, C. Evans, T. Li, Z. J. Wu, and B. P.
Griffith, “Computed tomography angiography as an adjunct to computational
fluid dynamics for prediction of oxygenator thrombus formation,” Perfusion,
vol. 36, pp. 285–292, jul 2020.

[26] S. Staessens, M. D. Moussa, A. Pierache, A. Rauch, N. Rousse, E. Boulleaux,
A. Ung, L. Desender, B. Pradines, A. Vincentelli, O. Mercier, J. Labreuche,
A. Duhamel, E. V. Belle, F. Vincent, A. Dupont, K. Vanhoorelbeke, D. Corseaux,
S. F. D. Meyer, and S. Susen, “Thrombus formation during ECMO: Insights from
a detailed histological analysis of thrombus composition,” Journal of Thrombosis
and Haemostasis, vol. 20, pp. 2058–2069, sep 2022.

[27] S. M. Hastings, D. N. Ku, S. Wagoner, K. O. Maher, and S. Deshpande, “Sources
of circuit thrombosis in pediatric extracorporeal membrane oxygenation,” ASAIO
Journal, vol. 63, pp. 86–92, jan 2017.

[28] C. Dornia, A. Philipp, S. Bauer, M. Lubnow, T. Müller, K. Lehle, C. Schmid,
R. Müller-Wille, P. Wiggermann, C. Stroszczynski, and A. G. Schreyer, “Analysis
of thrombotic deposits in extracorporeal membrane oxygenators by multidetector
computed tomography,” ASAIO Journal, vol. 60, pp. 652–656, nov 2014.

[29] J. J. Hathcock, “Flow effects on coagulation and thrombosis,” Arteriosclerosis,
Thrombosis, and Vascular Biology, vol. 26, pp. 1729–1737, aug 2006.

[30] M. Lubnow, A. Philipp, M. Foltan, T. B. Enger, D. Lunz, T. Bein, A. Haneya,
C. Schmid, G. Riegger, T. Müller, and K. Lehle, “Technical complications
during veno-venous extracorporeal membrane oxygenation and their relevance
predicting a system-exchange – retrospective analysis of 265 cases,” PLoS ONE,
vol. 9, p. e112316, dec 2014.

[31] M. Türkmen, T. Lauwigi, T. Fechter, F. Gries, A. Fischbach, T. Gries, R. Ros-
saint, C. Bleilevens, and P. Winnersbach, “Bioimpedance analysis as early
predictor for clot formation inside a blood-perfused test chamber: Proof of
concept using an in vitro test-circuit,” Biosensors, vol. 13, p. 394, mar 2023.

[32] A. Kaesler, F. Hesselmann, M. O. Zander, P. C. Schlanstein, G. Wagner,
P. Bruners, T. Schmitz-Rode, U. Steinseifer, and J. Arens, “Technical indicators
to evaluate the degree of large clot formation inside the membrane fiber bundle
of an oxygenator in an in vitro setup,” Artificial Organs, vol. 43, pp. 159–166,
oct 2018.

[33] T. Dowrick, C. Blochet, and D. Holder, “In vivo bioimpedance measurement of
healthy and ischaemic rat brain: implications for stroke imaging using electrical
impedance tomography,” Physiological Measurement, vol. 36, pp. 1273–1282,
may 2015.

[34] M. Noshiro, S. Nebuya, A. Fujimaki, R. Smallwood, and B. Brown, “Frequency
characteristics of the electrical conductivity in normal and coagulated blood,”
in IFMBE Proceedings, pp. 70–72, Springer Berlin Heidelberg, 2007.

103



[35] S. Gelfan and J. P. Quigley, “CONDUCTIVITY OF BLOOD DURING COAGU-
LATION,” American Journal of Physiology-Legacy Content, vol. 94, pp. 531–534,
sep 1930.

[36] H. Chen, J. Yao, L. Yang, K. Liu, B. Chen, J. Li, and M. Takei, “Development of a
portable electrical impedance tomography device for online thrombus detection in
extracorporeal-circulation equipment,” IEEE Sensors Journal, vol. 21, pp. 3653–
3659, feb 2021.

[37] A. Sapkota, T. Fuse, M. Seki, O. Maruyama, M. Sugawara, and M. Takei,
“Application of electrical resistance tomography for thrombus visualization in
blood,” Flow Measurement and Instrumentation, vol. 46, pp. 334–340, dec 2015.

[38] N. Istuk, A. L. Gioia, H. Benchakroun, A. Lowery, B. McDermott, and
M. O'Halloran, “Relationship between the conductivity of human blood and
blood counts,” IEEE Journal of Electromagnetics, RF and Microwaves in
Medicine and Biology, vol. 6, pp. 184–190, jun 2022.

[39] S. Leonhardt and B. Lachmann, “Electrical impedance tomography: the holy
grail of ventilation and perfusion monitoring?,” Intensive Care Medicine, vol. 38,
pp. 1917–1929, sep 2012.

[40] M. Bodenstein, M. David, and K. Markstaller, “Principles of electrical impedance
tomography and its clinical application,” Critical Care Medicine, vol. 37, pp. 713–
724, feb 2009.

[41] E. L. Costa, R. G. Lima, and M. B. Amato, “Electrical impedance tomography,”
Current Opinion in Critical Care, vol. 15, pp. 18–24, feb 2009.

[42] A. Adler and D. Holder, Electrical Impedance Tomography. CRC Press, nov
2021.

[43] D. Nguyen, W. Chik, R. Kosobrodov, M. Barry, J. Pouliopoulos, C. Jin, A. McE-
wan, and A. Thiagalingam, “Pulmonary embolism detection with electrical
impedance tomography,” Heart, Lung and Circulation, vol. 22, pp. S192–S193,
jan 2013.

[44] A. Adler and W. R. B. Lionheart, “Uses and abuses of EIDORS: an extensible
software base for EIT,” Physiological Measurement, vol. 27, pp. S25–S42, apr
2006.

[45] P. M. Faia, R. Silva, M. G. Rasteiro, F. A. P. Garcia, A. R. Ferreira, M. J.
Santos, J. B. Santos, and A. P. Coimbra, “Imaging particulate two-phase flow
in liquid suspensions with electric impedance tomography,” Particulate Science
and Technology, vol. 30, pp. 329–342, jul 2012.

[46] D. Pepper and J. Heinrich, The Finite Element Method: Basic Concepts and
Applications with MATLAB, MAPLE, and COMSOL, Third Edition. Computa-
tional and Physical Processes in Mechanics and Thermal Sciences, CRC Press,
2017.

104



[47] B. Brown, “Electrical impedance tomography (EIT): a review,” Journal of
Medical Engineering & Technology, vol. 27, pp. 97–108, jan 2003.

[48] E. Smela, “EIT for tactile sensing:considerations regarding the injection-
measurement pattern,” Engineering Research Express, vol. 4, p. 045041, dec
2022.

[49] A. Adler, P. O. Gaggero, and Y. Maimaitijiang, “Adjacent stimulation and
measurement patterns considered harmful,” Physiological Measurement, vol. 32,
pp. 731–744, jun 2011.

[50] T. A. Khan and S. H. Ling, “Review on electrical impedance tomography:
Artificial intelligence methods and its applications,” Algorithms, vol. 12, p. 88,
apr 2019.

[51] X. Zheng and G. Kou, “Research on EIT image reconstruction based on im-
proved GREIT algorithm,” in 2019 IEEE International Conference on Signal,
Information and Data Processing (ICSIDP), IEEE, dec 2019.

[52] A. Adler, J. H. Arnold, R. Bayford, A. Borsic, B. Brown, P. Dixon, T. J. C.
Faes, I. Frerichs, H. Gagnon, Y. Gärber, B. Grychtol, G. Hahn, W. R. B.
Lionheart, A. Malik, R. P. Patterson, J. Stocks, A. Tizzard, N. Weiler, and
G. K. Wolf, “Greit: a unified approach to 2d linear eit reconstruction of lung
images,” Physiological Measurement, vol. 30, pp. S35–S55, jun 2009.

[53] K. Suzuki, ed., Artificial Neural Networks - Methodological Advances and Biomed-
ical Applications. InTech, apr 2011.

[54] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: an overview and application in radiology,” Insights into Imaging,
vol. 9, pp. 611–629, jun 2018.

[55] F. Alrasheedi, X. Zhong, and P.-C. Huang, “Padding module: Learning the
padding in deep neural networks,” IEEE Access, vol. 11, pp. 7348–7357, 2023.

[56] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural
networks,” Pattern Recognition, vol. 77, pp. 354–377, may 2018.

[57] F. Mehmood, S. Ahmad, and T. K. Whangbo, “An efficient optimization
technique for training deep neural networks,” Mathematics, vol. 11, p. 1360,
mar 2023.

[58] D. Singh and B. Singh, “Investigating the impact of data normalization on
classification performance,” Applied Soft Computing, vol. 97, p. 105524, dec
2020.

[59] MetaCentrum, “Metacentrum (metavo).” https://metavo.metacentrum.cz/cs/,
Aug. 2023.

[60] T. M. Inc., “Matlab version: 9.14.0.2206163 (r2023a),” 2023.

105



[61] S. S. I. GmbH, “Sciospec isx-3.” https://www.sciospec.com/product/isx-3/, Aug.
2023.

[62] N. Polydorides and W. R. B. Lionheart, “A matlab toolkit for three-dimensional
electrical impedance tomography: a contribution to the electrical impedance
and diffuse optical reconstruction software project,” Measurement Science and
Technology, vol. 13, pp. 1871–1883, nov 2002.

[63] J. Schöberl, “NETGEN an advancing front 2d/3d-mesh generator based on
abstract rules,” Computing and Visualization in Science, vol. 1, pp. 41–52, jul
1997.

[64] I. Foundation, “Tissue frequency chart.” https://itis.swiss/virtual-
population/tissue-properties/database/tissue-frequency-chart/, Aug. 2023.

[65] C. Onsager, C. Wang, C. Costakis, C. Aygen, L. Lang, S. van der Lee, and M. A.
Grayson, “Sensitivity analysis for optimizing electrical impedance tomography
protocols,” 2021.

[66] D. Smyl and D. Liu, “Optimizing electrode positions in 2-d electrical impedance
tomography using deep learning,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, pp. 6030–6044, sep 2020.

[67] C. Tan, S. Lv, F. Dong, and M. Takei, “Image reconstruction based on con-
volutional neural network for electrical resistance tomography,” IEEE Sensors
Journal, vol. 19, pp. 196–204, jan 2019.

106



Appendices

107



108



Appendix A
Additional results

109



A. Additional results........................................

110



..................................... A.1. Preliminary experiments

A.1 Preliminary experiments

Used electrodes, max L1-norm, electrode set 2

Top electrodes Bottom electrodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Electrode number [-]

0

10

20

30

40

50

60

N
u

m
b

e
r 

o
f 

u
s
e

s
 [

-]

Injecting electrodes

Measuring electrodes

(a) : Statistics of electrode usage for
electrode set 2 and max L1-norm mea-
surements.

Electrode arrangement, max L1-norm, electrode set 2

Inter-p
lane in

jectio
n and m

easurement

Inter-p
lane in

jectio
n, in

tra
-plane m

easurement

Intra
-plane in

jectio
n and m

easurement in
 one plane

Intra
-plane in

jectio
n and m

easurement in
 opposite

 planes

Intra
-plane in

jectio
n, in

ter-p
lane m

easurement
0

10

20

30

40

N
u

m
b

e
r 

o
f 

m
e

a
s
u

re
m

e
n

ts
 [

-]

(b) : Electrode arrangement statistics
for electrode set 2 and max L1-norm
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(d) : Electrode arrangement statistics
for electrode set 2 and max L2-norm
measurements.
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(f) : Electrode arrangement statistics for
electrode set 2 and max parallelotope
volume measurements.

Figure A.1: Electrode utilization analysis for measurement selection, electrode set 2.
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measurements.
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(d) : Electrode arrangement statistics
for electrode set 3 and max L2-norm
measurements.
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(f) : Electrode arrangement statistics for
electrode set 3 and max parallelotope
volume measurements.

Figure A.2: Electrode utilization analysis for measurement selection, electrode set 3.
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(b) : Electrode arrangement statistics
for electrode set 4 and max L1-norm
measurements.

Used electrodes, max L2-norm, electrode set 4

Top electrodes Bottom electrodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Electrode number [-]

0

5

10

15

20

25

30

35

40

N
u

m
b

e
r 

o
f 

u
s
e

s
 [

-]

Injecting electrodes

Measuring electrodes

(c) : Statistics of electrode usage for
electrode set 4 and max L2-norm mea-
surements.

Electrode arrangement, max L2-norm, electrode set 4

Inter-p
lane in

jectio
n and m

easurement

Inter-p
lane in

jectio
n, in

tra
-plane m

easurement

Intra
-plane in

jectio
n and m

easurement in
 one plane

Intra
-plane in

jectio
n and m

easurement in
 opposite

 planes

Intra
-plane in

jectio
n, in

ter-p
lane m

easurement
0

10

20

30

40

N
u

m
b

e
r 

o
f 

m
e

a
s
u

re
m

e
n

ts
 [

-]

(d) : Electrode arrangement statistics
for electrode set 4 and max L2-norm
measurements.
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volume measurements.
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(f) : Electrode arrangement statistics for
electrode set 4 and max parallelotope
volume measurements.

Figure A.3: Electrode utilization analysis for measurement selection, electrode set 4.
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(a) : Spatial finite element sensitivity
distribution, max L1-norm, electrode set
2.

(b) : Spatial finite element sensitivity
distribution, max L2-norm, electrode set
2.

(c) : Spatial finite element sensitivity
distribution, max volume, electrode set
2.

Figure A.4: Spatial finite element sensitivity distribution, electrode set 2.
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(a) : Spatial finite element sensitivity
distribution, max L1-norm, electrode set
3.

(b) : Spatial finite element sensitivity
distribution, max L2-norm, electrode set
3.

(c) : Spatial finite element sensitivity
distribution, max volume, electrode set
3.

Figure A.5: Spatial finite element sensitivity distribution, electrode set 3.
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(a) : Spatial finite element sensitivity
distribution, max L1-norm, electrode set
4.

(b) : Spatial finite element sensitivity
distribution, max L2-norm, electrode set
4.

(c) : Spatial finite element sensitivity
distribution, max volume, electrode set
4.

Figure A.6: Spatial finite element sensitivity distribution, electrode set 4.
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(a) : Absolute and relative voltage difference, target approximately in the middle of
distance between center and wall, electrode set 1.
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(b) : Absolute and relative voltage difference, target near the oxygenator center,
electrode set 1.

Figure A.7: Absolute and relative voltage difference for two targets, electrode set 1.
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(a) : Absolute and relative voltage difference, target near oxygenator center, electrode
set 2.
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(b) : Absolute and relative voltage difference, target in the corner, electrode set 2.

Figure A.8: Absolute and relative voltage difference for two targets, electrode set 2.
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(a) : Absolute and relative voltage difference, target approximately in the middle of
distance between center and wall, electrode set 2.
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(b) : Absolute and relative voltage difference, target near the oxygenator center,
electrode set 2.

Figure A.9: Absolute and relative voltage difference for two targets, electrode set 2.
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(a) : Absolute and relative voltage difference, target near oxygenator center, electrode
set 3.
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(b) : Absolute and relative voltage difference, target in the corner, electrode set 3.

Figure A.10: Absolute and relative voltage difference for two targets, electrode set 3.
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(a) : Absolute and relative voltage difference, target approximately in the middle of
distance between center and wall, electrode set 3.
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(b) : Absolute and relative voltage difference, target near the oxygenator center,
electrode set 3.

Figure A.11: Absolute and relative voltage difference for two targets, electrode set 3.
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(a) : Absolute and relative voltage difference, target near oxygenator center, electrode
set 4.
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(b) : Absolute and relative voltage difference, target in the corner, electrode set 4.

Figure A.12: Absolute and relative voltage difference for two targets, electrode set 4.
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..................................... A.1. Preliminary experiments
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(a) : Absolute and relative voltage difference, target approximately in the middle of
distance between center and wall, electrode set 4.
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(b) : Absolute and relative voltage difference, target near the oxygenator center,
electrode set 4.

Figure A.13: Absolute and relative voltage difference for two targets, electrode set 4.
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A. Additional results........................................
A.2 Electrode positions and I-M pattern optimization

Electrode positions optimization NN learning statistics, NN 3
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Figure A.14: Training statistics – training loss, training RMSE, validation loss and
validation RMSE – for electrode position optimization NN 3.

Electrode positions optimization NN learning statistics, NN 4
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Figure A.15: Training statistics – training loss, training RMSE, validation loss and
validation RMSE – for electrode position optimization NN 4.
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.......................... A.2. Electrode positions and I-M pattern optimization

Electrode positions optimization NN learning statistics, NN 5
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Figure A.16: Training statistics – training loss, training RMSE, validation loss and
validation RMSE – for electrode position optimization NN 5.

Figure A.17: Electrode sets computed as forward pass of optimal feature set 1 (electrode
position optimization NN.
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A. Additional results........................................

Figure A.18: Electrode sets computed as forward pass of optimal feature set 2 (electrode
position optimization NN.

Figure A.19: Electrode sets computed as forward pass of optimal feature set 3 (electrode
position optimization NN.
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.................................. A.3. Optimized electrode positions

A.3 Optimized electrode positions

Figure A.20: A training electrode set with a minimum difference between the computed
max ∆V feature and the optimal feature value.

Figure A.21: A training electrode set with a minimum difference between the computed
max J feature and the optimal feature value.
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A. Additional results........................................

Figure A.22: A training electrode set with a minimum difference between the computed
max σk feature and the optimal feature value.

Figure A.23: A training electrode set with a minimum difference between the computed
max σk / min σk feature and the optimal feature value.
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.................................. A.3. Optimized electrode positions

Figure A.24: A training electrode set with a minimum difference between the computed
mean ∆V feature and the optimal feature value.

Figure A.25: A training electrode set with a minimum difference between the computed
mean J, Q1(J), and Q3(J) features and the optimal feature value; electrode placement
for all these features was identical.
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A. Additional results........................................

Figure A.26: A training electrode set with a minimum difference between the computed
median ∆V feature and the optimal feature value.

Figure A.27: A training electrode set with a minimum difference between the computed
median ∆V / min ∆V feature and the optimal feature value.
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.................................. A.3. Optimized electrode positions

Figure A.28: A training electrode set with a minimum difference between the computed
median J / min J feature and the optimal feature value.

Figure A.29: A training electrode set with a minimum difference between the computed
min ∆V feature and the optimal feature value.
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A. Additional results........................................

Figure A.30: A training electrode set with a minimum difference between the computed
min J feature and the optimal feature value.

Figure A.31: A training electrode set with a minimum difference between the computed
min σk feature and the optimal feature value.
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.................................. A.3. Optimized electrode positions

Figure A.32: A training electrode set with a minimum difference between the computed
Q1 ∆V feature and the optimal feature value.

Figure A.33: A training electrode set with a minimum difference between the computed
Q3 ∆V feature and the optimal feature value.
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A. Additional results........................................
A.4 GREIT reconstruction

(a) : Target # 1 reconstruction. (b) : Target # 2 reconstruction.

(c) : Target # 3 reconstruction. (d) : Target # 4 reconstruction.

Figure A.34: GREIT reconstruction for NF = 2 and four different targets.
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......................................A.4. GREIT reconstruction

(a) : Target # 1 reconstruction. (b) : Target # 2 reconstruction.

(c) : Target # 3 reconstruction. (d) : Target # 4 reconstruction.

Figure A.35: GREIT reconstruction for NF = 3 and four different targets.
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A. Additional results........................................
A.5 Thrombi detection and characterization

Thrombi detection NN learning statistics
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Figure A.36: Training statistics – training loss, training accuracy, validation loss and
validation accuracy – for thrombi detection NN with voltage measurements as input
data.

Thrombi detection NN learning statistics
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Figure A.37: Training statistics – training loss, training accuracy, validation loss and
validation accuracy – for thrombi detection NN with reconstructed images as input
data.
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.............................. A.5. Thrombi detection and characterization

Thrombosis severity classification NN learning statistics
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Figure A.38: Training statistics – training loss, training accuracy, validation loss and
validation accuracy – for thrombosis severity classification NN with voltage measurements
as input data.

Thrombosis severity classification NN training statistics
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Figure A.39: Training statistics – training loss, training accuracy, validation loss and
validation accuracy – for thrombosis severity classification NN with reconstructed images
as input data.
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Appendix B
Submitted files

Thesis.pdf
scripts

checkDupliciteElectrodeSets.m
computeNdimensionalVolume.m
createInjectionMeasurementPattern.m
det_NNthrombiDetectionMeasurements.m
det_NNthrombiDetectionReconstruction.m
det_NNthrombiVolumeMeasurements.m
det_NNthrombiVolumeReconstruction.m
det_SVMthrombiDetectionMeasurements.m
det_generateTrainingDataDetection.m
det_generateTrainingDataVolume.m
el_generateTraningDataNN.m
el_selectIMpatternFinalCandidates.m
el_selectIMpatternNN.m
el_trainNN.m
exp_GREITreconstruction.m
exp_IMpatternInfluenceJacobian.m
exp_IMpatternInfluenceVoltage.m
exp_electrodePositionInfluenceJacobian.m
exp_electrodePositionInfluenceVoltage.m
exp_selectSensitiveMeasurementsMagnitude.m
exp_selectSensitiveMeasurementsVolume.m
exp_targetConductivityInfluenceVoltage.m
exp_targetSizeInfluenceVoltage.m
findElementId.m
findNearestPlausibleElectrodePosition.m
findTargetIndex.m
gaussian3D.m
generateElectrodePositions.m
generateTargets.m
generateTrainingDataNNpositionOptimization.m
getClassId.m
getElectrodeNodes.m
getElectrodePositionsNN.m
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B. Submitted files.........................................
real_sciospecGREIT.m
rec_GREITreconstruction.m
rec_GREITtraining.m
rec_NNthrombiReconstruction.m
rec_SVMthrombiDetection.m
rec_createNNinputMapping.m
rec_generateTrainingDataNN.m
rec_saveImdl.m
selectMasurementsIMpattern.m
selectMostSensitiveMeasurements.m
setOxygenatorParams.m
setupRunEIDORS.m
swtest.m
trainNNpositionOptimization.m
viewOxygenatorFEM.m
viewOxygenatorModel.m
vis_el_featuresNNcorrelation.m
vis_el_selectElPosIMP.m
vis_el_targetsNNtraining.m
vis_el_trainNNelectrodes.m
vis_exp_FEMmodels.m
vis_exp_electrodeSets.m
vis_exp_preliminaryExperimentsAnalysis.m
vis_exp_preliminaryExperimentsMeasurementSelection.m
vis_exp_targetDistribution3D.m
vis_ext_activationFunctions.m
vis_ext_barPlot.m
vis_ext_oxygenatorRadials.m
vis_rec_GREITFoM.m
vis_rec_GREITanalysis.m
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