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Abstract

Electrical impedance tomography (EIT) is a cheap and non-invasive medical imaging
method widely used for continuous mechanical ventilation monitoring at the bedside. How-
ever, the measured impedance changes are induced not only by lung volume changes, which
are most observable, but also by changes in lung tissue perfusion. Since the respective two
EIT signal components are described in the frequency domain by a superposition of over-
lapping harmonic elements, they cannot be easily reconstructed using traditional filtering
methods. Moreover, the current promising algorithms are not suitable for real-time appli-
cations. Therefore, this work investigates different adaptive and dynamic methods, such
as comb filtering or harmonic regression, to find the most suitable one for real-time source
separation in EIT. After analyzing multiple possibilities, comb filtering, as the most ef-
fective method to be implemented and combined with other filtering methods, is selected
to serve as a proof of concept. However, since it requires accurate instantaneous heart
and respiratory rate estimation, multi-pitch estimation methods based on grid search and
interval length estimation are implemented and improved to produce the best possible
results. The implemented algorithms are validated and compared using a validation signal
with known ground truth generated with an existing EIT synthesizer. For performance
assessment, pitch estimation and source separation quality measures are developed. In the
end, the best-performing algorithm proves that comb filtering can provide good source sep-
aration results in real time when combined with the implemented multi-pitch estimation
algorithms and other filtering methods. Although the implemented algorithms have cer-
tain limitations and no real EIT signal measured in patients was used for their validation,
they represent a further step towards real-time source separation in EIT.

Keywords: electrical impedance tomography (EIT), source separation, multi-pitch esti-
mation, comb filtering, EIT signal synthesis

Supervisor: Diogo Silva, MSc.
Chair of Medical Information Technology (MedIT)
at the Helmholtz Institute for Biomedical Engineering
RWTH Aachen University
Pauwelsstr. 20, 52074 Aachen

ix





Abstrakt

Elektrická impedanční tomografie (EIT) je levná a neinvazivní zobrazovací metoda, která
se široce používá k průběžnému monitorování umělé plicní ventilace na lůžku. Změny
měřené impedance jsou však vyvolány nejen změnami objemu plic, které jsou nejvíce
pozorovatelné, ale také změnami prokrvení plicní tkáně. Vzhledem k tomu, že odpoví-
dající složky signálu EIT jsou ve frekvenční oblasti popsány superpozicí překrývajících
se harmonických frekvencí, nelze je snadno rekonstruovat pomocí tradičních filtračních
metod. Současné perspektivní algoritmy navíc nejsou vhodné pro použití v reálném čase.
Proto tato práce zkoumá různé adaptivní a dynamické metody, jako je hřebenová filtrace
nebo harmonická regrese, s cílem najít tu nejvhodnější pro separaci zdrojů EIT signálu
v reálném čase. Po analýze více možností je jako nejefektivnější metoda na implementaci
a kombinaci s dalšími filtračními metodami vybrána hřebenová filtrace, aby posloužila pro
základní ověření jako tzv. proof of concept. Protože však vyžaduje přesný odhad okamžité
srdeční a dechové frekvence, jsou implementovány a optimalizovány metody odhadu zák-
ladní frekvence založené na vyhledávání v mřížce a odhadu délky intervalu, aby bylo
dosaženo co nejlepších výsledků. Implementované algoritmy jsou ověřeny a porovnány
pomocí validačního signálu se známými složkami, tzv. ground truth, vygenerovaného po-
mocí existujícího EIT syntezátoru. Pro hodnocení výkonu jsou vyvinuta měřítka kvality
odhadu základní frekvence a separace zdrojů. Algoritmus s nejlepšími výsledky nakonec
dokazuje, že hřebenová filtrace může v kombinaci s implementovanými algoritmy odhadu
základní frekvence a dalšími filtračními metodami poskytnout dobré výsledky separace
zdrojů v reálném čase. Přestože mají implementované algoritmy určitá omezení a při je-
jich validaci nebyl použit žádný skutečný signál EIT změřený na pacientovi, představují
další krok směrem k separaci zdrojů v EIT v reálném čase.

Klíčová slova: elektrická impedanční tomografie (EIT), separace zdrojů, odhad základní
frekvence, hřebenová filtrace, syntéza EIT signálu

Překlad názvu: Simulační výběr adaptivního algoritmu separace zdrojů v reálném čase
pro EIT
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1 Introduction

Electrical impedance tomography (EIT) was first published in 1978 by Ross P. Henderson
and John G. Webster [1] as a new medical imaging method, and since then, it has become
widely used. It has been employed primarily at the bedside for continuous ventilation
monitoring thanks to being minimally invasive, radiation-free, relatively cheap, and real-
time.

The principle of EIT is measuring the impedance inside the patient’s body using surface
electrodes. Specifically, when acquiring thorax images, the changes in impedance due
to breathing are usually reconstructed. However, these changes are induced not only by
varying lung volume but also by blood volume changes in the heart and vessels.

Since gas exchange efficiency in the lungs depends on both ventilation and perfusion,
separating these two sources of the EIT signal continuously and in real-time would make
the ventilation monitoring more accurate and enable a possible use of EIT for simultaneous
cardiac activity monitoring.

However, separating cardiac-related signal (CRS) and ventilation-related signal (VRS)
is not an easy task because, according to [2] and [3], the perfusion-related changes in
thoracic impedance are about one order of magnitude smaller than the changes induced
by ventilation. Furthermore, as shown in, for example [3], the harmonics of these two
signals usually overlap in the frequency domain, and, therefore, the signals cannot be
separated accurately enough using only simple filtering methods, such as low-pass (LP) or
high-pass (HP) filtering. Last but not least, the signals are non-stationary, which requires
a time-adaptive approach.

Therefore, source separation in EIT is a long-standing problem, and there are some promis-
ing attempts at solving it, e.g., [4], [5], [6]. However, currently available algorithms cannot
perform the separation continuously and in real time.

To address this, different dynamic source separation approaches are investigated and com-
pared in this work. After analyzing various possibilities, one of the methods is implemented
and combined with accurate respiratory rate (RR) and heart rate (HR) estimation algo-
rithms to prove the general concept. Moreover, a validation signal is simulated using an
existing EIT signal synthesizer to validate and compare all the implemented algorithm
combinations using various performance metrics.
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2 Theoretical background

This chapter provides a theoretical background to the topics most important for the thesis.
The first section explains the basic principles of EIT, including impedance measurement
with the surface electrodes, the so-called adjacent stimulation pattern, and image recon-
struction using time differential imaging. Moreover, the origins of the EIT signal are de-
scribed in more detail, and the most common current applications of EIT are presented.

The second section describes the previously published approaches to source separation in
EIT investigated in this work. This includes the algorithms based on principal component
analysis (PCA) and empirical mode decomposition (EMD) and those relying on frequency
domain analysis, namely harmonic regression and comb filtering.

Consequently, the two approaches to estimating RR and HR that are considered for adap-
tation and combination with the selected source separation method are summarized in the
following section. This includes the grid search algorithm and the continuous local interval
estimator (CLIE).

Finally, the last section briefly introduces the synthesis of the EIT signal. Two general
approaches, anatomical and mathematical modeling, are described in detail.

2.1 EIT fundamentals

EIT is a two-dimensional imaging method that measures the body’s electrical properties,
namely the impedance, using a set of electrodes attached to the body surface, typically
around the thorax. Such a measurement is minimally invasive, radiation-free, and, there-
fore, suitable for continuous long-time monitoring. Therefore, it has been employed mainly
at the bedside for monitoring regional lung ventilation in mechanically ventilated patients
[7].

Moreover, EIT is computationally inexpensive, cheap, and real-time, with the ability to
produce a video with the frame rate reaching up to 50 frames per second (fps). Unfortu-
nately, because of the measurement principle, EIT has a very low spatial resolution limited
to the distance between electrodes (approximately 20 - 30 mm) at best [3].

EIT for cardiorespiratory monitoring utilizes the fact that the lung tissue has a different
impedance when inflated or deflated, and the blood has a different impedance than the
tissue. However, measuring absolute impedance values is challenging for many reasons.
Instead, the current state-of-the-art is time-differential (relative) EIT imaging [2]. Figure
2.1 shows the schematic representation of the EIT measurement workflow presented in [7].
The following sections describe the involved steps one by one in more detail.

3



2 Theoretical background

Figure 2.1: Schematic representation of the EIT measurement workflow [7].

2.1.1 Impedance measurement

In general terms, impedance is the opposition of a matter to alternating current introduced
by the electrodes in a closed electrical circuit. Mathematically expressed, impedance is
a complex quantity Z described by equation

Z = R + jX, (2.1)

where R is the resistance, j is the imaginary unit, and X is the reactance. The resistance
expresses the given matter’s opposition to the DC component of the introduced current,
and the reactance represents the effects of the constantly-changing AC component of the
introduced current.

However, as comes from Ohm’s law, impedance Z is also given as

Z = V

I
, (2.2)

where V is voltage and I is electric current. Therefore, the impedance of the human tissue
(the so-called bioimpedance) can be determined by injecting a small alternating current,
e.g., 5 mA at a frequency of 50 kHz, and measuring the generated voltage [2].

4



2.1 EIT fundamentals

2.1.2 Adjacent stimulation

The most common impedance measurement method in EIT is the adjacent stimulation
(adjacent drive configuration). Usually, a belt containing 16 electrodes is placed on the
body surface around the thorax. For lung imaging, the 4th–6th intercostal space is typically
used [7, 2], as shown in the following figure.

Figure 2.2: Typical electrode belt placement on the patient’s body [8].

The adjacent stimulation works by injecting a small alternating current using one electrode
pair and measuring the generated surface voltages using the remaining electrode pairs.
When the voltages are measured, the current injection is switched to the neighboring
electrode pair, and the whole pattern is rotated [2, 7, 9], as shown in the figure below.

Figure 2.3: EIT measurement using the adjacent stimulation pattern [9].

The entire image is reconstructed once the current injection rotates around the thorax
completely [2]. The EIT video is then created by placing the time-consecutive images in a
sequence.

5



2 Theoretical background

2.1.3 Image reconstruction

Image reconstruction in EIT aims to reconstruct the impedance distribution in the mea-
surement plane using the measured surface voltages. At first sight, it might seem reason-
able to use the same backprojection algorithm as computed tomography (CT) does. And
indeed, this is how the first EIT reconstruction methods worked [3].

As explained in [10], during the CT examination, the X-rays come out from the X-ray
tube and travel through the patient to be measured on the detector. When assuming they
are always straight and parallel, the image can be reconstructed based on the detector
measurement and the known geometry of the CT scanner.

However, in EIT, the pathways of the injected current through the body are not straight
nor parallel. Therefore, when the CT backprojection algorithm is applied, only a low-
quality reconstruction with many inaccuracies and errors can be achieved [3]. Therefore,
more sophisticated EIT reconstruction algorithms have been developed over time.

Forward and inverse problem

In principle, two problems can be addressed in EIT image reconstruction. First, the for-
ward problem can be described as a simulation of the measured voltages using prior knowl-
edge of the impedance distribution in the body. The forward problem can be expressed
by equation

v = f(z), (2.3)

where v is the surface voltage, and z is the impedance distribution. This can be easily
solved using, for example, the finite element method (FEM) [3].

However, the EIT reconstruction has to find the impedance distribution using the measured
surface voltage, which requires solving the inverse problem described as

z = f−1(v). (2.4)

Unfortunately, the inverse problem is ill-posed and analytically unsolvable. Therefore,
its solution is the critical part of the EIT reconstruction. However, obtaining absolute
impedance values would be very difficult because it would require a perfect knowledge of
the absolute electrode positioning and the geometry of the patient’s thorax [2]. Thus, the
so-called relative EIT imaging, introduced in [11] and [12], is typically used instead.

6



2.1 EIT fundamentals

Time differential imaging

Time differential imaging is one of the relative EIT imaging methods. Instead of recon-
structing the absolute impedance values, the impedance changes x = ∆z are reconstructed
using normalized voltage differences

y = v − vref

vref

, (2.5)

where vref is the voltage measurement at a specific time point [12]. Consequently, physio-
logical processes such as breathing and heartbeats are displayed in an EIT image sequence.
However, the absolute impedance values are lost.

GREIT

Although more methods are available, the current state-of-the-art EIT reconstruction is
the Graz consensus reconstruction algorithm for EIT (GREIT), presented by Andy Adler
et al. in [13]. As explained by the authors, GREIT is based on a linear reconstruction,
mathematically described as

x̂ = Ry, (2.6)
where x̂ is the reconstructed impedance change, and R is the reconstruction matrix. The
essential task is to find the reconstruction matrix R as accurately as possible [13].

As further explained by the authors, a finite element model such as the one shown in
Figure 2.4 is first generated. Next, known target electrical conductivity values are defined
to create a set of training data. Subsequently, the forward problem is solved to obtain a
simulated voltage measurement ỹ while accounting for the measurement noise and elec-
trode movement artifacts. Since the target conductivity distribution is known, the perfect
reconstruction would reproduce it precisely using ỹ [13].

Figure 2.4: Finite element model of an adult thorax with rectangular electrodes [13].

7



2 Theoretical background

The authors of GREIT defined a set of training EIT images and designed several figures
of merit to assess the reconstruction quality. The figures of merit were described in detail
by the authors and took various image properties into account: signal amplitude, position
error, resolution, shape deformation, and ringing artifacts in the inverted image [13].

The reconstruction matrix R is calculated using an iterative approach with step k. The
optimal R∗ minimizes the reconstruction error

ϵ2 =
∑

k

∥x̃(k) − Rỹ(k)
t ∥2

w(k) , (2.7)

where x̃ is the training image of impedance changes, and w is a diagonal matrix of pixel
weights. [13, 3].

It is to be pointed out that the reconstruction matrix R is calculated without using any
real data. Then, it is used to quickly solve the inverse problem of EIT when the real
voltage measurements are available. Given that the EIT reconstruction can be linearized,
as long as the actual geometry of the body and the simulated finite element model are
close to each other, good reconstruction results can be achieved [13, 3].

Reconstructed image and EIT signal

A reconstructed EIT image shows the cross-section of the thorax. The left and right sides
of the image represent the right and left sides of the thorax, respectively. The upper and
lower sides of the image represent the ventral and dorsal sides of the body, respectively
[3]. Therefore, the heart can be found mostly between the top and center of the image,
while the lungs are usually located on the sides and on the bottom.

Figure 2.5: Typical heart (dark red) and lung (light blue) locations in EIT image [14].

The colors in the EIT image, better pronounced in Figure 2.3, usually represent the ampli-
tude of the impedance change in the given pixel [2]. Typical resolutions of the EIT images
are 32x32 or 64x64 pixels.
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Considering time differential imaging, the EIT signal in one image pixel is the impedance
change in the given pixel over time. The term global impedance change or global EIT
signal refers to one signal representing a sum of all impedance changes over the whole EIT
image divided by the number of image pixels. Similarly, the EIT signal of a specific image
area can be obtained by summing over a defined region of interest (ROI) and dividing by
the number of pixels in the given region [3, 7].

2.1.4 EIT signal origins

This section briefly summarizes the processes inside the thorax that cause impedance
changes, thus affecting the EIT signal. The most significant changes in impedance are
caused by respiration; less important yet observable are the changes caused by cardiac
activity [3, 2].

Due to periodic changes in air volume inside the alveoli during the breathing cycle, the
surrounding tissue is stretched and shrunken repeatedly. Consequently, the average cur-
rent pathways are prolonged and shortened during inspiration and expiration. Thus, the
electrical impedance of the lung tissue increases during inspiration and decreases during
expiration [9].

Since the blood has a significantly lower impedance than the tissue, increasing blood
volume in a given region lowers the impedance in that region. It is to be noted that the
influence of perfusion on EIT signal can be observed in both the heart and lung regions [9].
As shown in Figure 2.6, the impedance changes caused by the heart activity are responsible
for small ripples superimposed on the slower oscillations caused by respiration.

Figure 2.6: Example of a global EIT signal [15]

Minor impedance changes inside the human thorax can also be caused by other physio-
logical processes, e.g., changes in ion concentrations. However, these changes are usually
slow, and their influence is not comparable to respiration and perfusion [3].
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2.1.5 Applications

EIT is commonly used for mechanical ventilation monitoring in patients at the intensive
care unit (ICU). However, since the efficiency of gas exchange in lungs depends on both
ventilation and perfusion, simultaneous monitoring of the cardiac activity is also very
important.

It is to be noted that there are also some other possible applications of EIT, such as
functional brain imaging, especially in some clinical situations where standard methods
are not suitable. For example, EIT could help improve the limited understanding of how
information is processed in neuroanatomical pathways [3]. However, such applications are
not important for this work.

Ventilation monitoring

When a patient at the ICU suffers from acute respiratory failure, mechanical ventilation
is monitored continuously with EIT to detect changes in the patient’s condition and for
individual treatment adaptation. With regional ventilation distribution monitoring, some
acute injuries can be quickly identified [3].

Therefore, EIT has become well-established, and over the years, many different measures
for ventilation distribution monitoring have been developed. For example, intuitive infor-
mation is provided to clinicians at the bedside by the percentage of ventilation in the given
image quadrant or with the Center of Ventilation (CoV) [2].

Moreover, the global inhomogeneity index (GI index) and the coefficient of variation (CV)
were developed to quantify the ventilation distribution’s homogeneity. Other measures,
such as tidal variation (TV) and its distribution, are also commonly used [3].

Perfusion monitoring

As explained in [3], EIT has a very high potential when used in perfusion monitoring thanks
to being non-invasive, real-time, and achieving high temporal resolution. There are three
classes of hemodynamic parameters worth considering for EIT application - pressure, flow,
and functional volume status [3].

However, since the impedance changes related to cardiac activity and lung perfusion are
about one order of magnitude smaller than the changes caused by mechanical ventilation,
obtaining accurate information on the hemodynamic parameters, such as cardiac output
or stroke volume, and lung perfusion using EIT is very challenging [2, 3].
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Therefore, several measurement and analysis techniques have been developed over the
years to separate the VRS and CRS in the EIT signal, sometimes referred to as the
mixed (EIT) signal. These include, for example, electrocardiogram-gated averaging, apnea
measurements, or frequency domain filtering [2].

2.2 Source separation in EIT

Source separation in EIT aims to separate VRS and CRS in the mixed EIT signal. How-
ever, as already mentioned in the previous chapter, this is not an easy task because (a)
the CRS is about one order of magnitude smaller than the VRS [2], [3], (b) traditional
frequency filtering, i.e., low-pass or high-pass, is not suitable because of the overlapping
harmonic frequencies as shown in Figure 2.7, and (c) a real-time, computationally inex-
pensive solution is required to keep EIT applicable for ventilation and perfusion monitoring
at the bedside.

Figure 2.7: A simplified spectrum of an EIT signal [3].

To address the problem of the small CRS amplitude, several measurement methods have
been developed so far. One of them is called electrocardiography (ECG) gating. As
explained in [2], this technique amplifies the CRS by summing over N heart cycles starting
at each QRS complex. At the same time, the ECG signal is measured synchronously with
the EIT signal. That way, the signal strength of CRS is amplified by a factor of

√
N .

However, considering, for example, 200 heart cycles, the visualization of CRS on the
diagnostic screen is delayed by 100 heartbeats, which excludes real-time analysis [2].

Another measurement technique is based on briefly interrupting the ventilation to exclude
the VRS from the measured signal completely. It has been proved in [16] and [17] that
the apnea methods can provide valuable information on stroke volume and, potentially, on
local V/Q distribution. However, as mentioned in [2], the ventilatory situation is changed
during the apnea, which can lead to further changes in cardiac activity and perfusion.
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Moreover, introducing even a short apnea period in mechanically ventilated patients at
the bedside might be undesirable when, for example, a patient suffers an acute respiratory
failure and his life depends on mechanical ventilation.

Another option to enhance CRS is using a hypertonic saline solution as an electrical
impedance contrast agent. This has been demonstrated in [18]. However, this method
is invasive and non-repeatable since a relatively high-concentration saline is intravenously
injected. Moreover, as mentioned in [2], even though it seems to have some potential
for quantification and future clinical application, this analysis is not beat-to-beat and
is delayed by the time-of-flight necessary for the passage of the contrast agent (about
10 seconds) [2]. This prevents such a method from a potential application for real-time
monitoring at the bedside.

Since all the measurement methods presented above have certain limitations, developing
an accurate real-time source separation algorithm based on the standard EIT signal anal-
ysis is very important. In the following sections, some possible approaches considered in
this work are described in detail.

2.2.1 Principal component analysis (PCA)

In [4], J. M. Deibele et al. proposed a method of fitting the so-called template functions for
the pulmonary and cardiac components into the input signals. These template functions
are estimated using PCA and frequency domain filtering [4].

As presented by the authors of [4], the assumption that each input signal matrix X is
composed of unknown ventilation (V), cardiac (C) and noise (or remainder, R) components,
yields the possibility to write

X = XV + XC + XR. (2.8)
Thus, after finding the first principal component

BV = PCA(X, 1), (2.9)

the ventilation component can be estimated using the least mean squares (LMS) as

X′
V = LMS(X, BV ). (2.10)

However, as the authors of [4] explain, the first approximation of the cardiac component
would contain a lot of noise when obtained as

X′
C = X − X′

V (2.11)

because the XR component is still unknown. Therefore, the first two approximations of
XV and XC are further processed to yield better results [4].
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The subsequent processing is performed using the template functions and various filtering
methods followed by another PCA and LMS to finally obtain accurate ventilation and
cardiac component estimation XV and XC [4].

Figure 2.8 shows the results of the proposed algorithm as presented by [4]. The upper
figure on the left shows the input signal X, and the lower figure shows the isolated cardiac
component XC (solid) and ECG signal (dashed) for comparison. The lines in the right
figure are depicted with an offset for better discrimination [4].

Figure 2.8: Input signal and the results of the PCA source separation [4].

As stated by the authors of [4], their method enables an observer to examine the variation
of the cardiac signal beat-by-beat after a one-time setup period of 20 s, and the results
are superior to frequency domain filtering. Furthermore, no time delay (lag) is induced by
the proposed algorithm between the true signal and the estimated components [4].

However, they admit that the complexity of the calculations restricts the PCA to be
performed every two minutes only. Therefore, the proposed algorithm cannot work con-
tinuously in real-time, and, more importantly, it yields good results only when cardiac and
ventilation activity change slowly over time [4].

2.2.2 Empirical mode decomposition (EMD)

A different approach was proposed by X. Sun et al. in [5]. They introduced a method
based on multi-dimensional ensemble empirical mode decomposition (MEEMD) to explore
the so-called intrinsic mode functions (IMF) of the VRS and CRS in the mixed EIT
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signal. Such an approach is inspired by the nonlinear and time-variant mechanics of the
cardiorespiratory system [5].

In mathematical terms, EMD is a part of the so-called Hilbert-Huang transform (HHT),
initially proposed by Norden E. Huang et al. in [19]. HHT is an algorithm for obtaining
instantaneous frequency information. Unlike Fourier transform, HHT was developed espe-
cially for analyzing data from nonlinear and nonstationary processes. EMD is a necessary
step of HHT to reduce any given data into a collection of IMF to which the so-called
Hilbert spectral analysis can be applied [19].

As explained in [19], IMF represent simple oscillatory modes as counterparts to simple
harmonic functions. By definition, IMF are any functions with the same number of extrema
and zero crossings. The envelopes of these functions, defined by all the local maxima and
minima, are symmetric with respect to zero [19].

To utilize EMD for source separation in EIT, the authors of [5] first select three EIT
image pixels, each from a different region: the ventilation-dominated region, the cardiac-
dominated region, and the overlapping region. After that, they employed 1D-EMD on each
pixel’s EIT signal and conducted a multi-scale analysis of the decomposed components,
thus changing EMD to MEEMD [5].

To extract the VRS and CRS, the authors projected physiological components into IMF
based on a specific two-stage combination strategy. As proposed in [5], a decomposition
of a signal into N IMF and a residue rN is described by equation

s(t) =
N∑

j−1
cj + rN , (2.12)

with the analytic signal

zj(t) = cj(t) + yj(t) · i = aj(t) · ei·θ(t), (2.13)

where yj(t) is the HHT. As further explained in [5], the local properties of the jth IMF can
be emphasized by HHT, defined as

yj(t) = 1
π

∫ ∞

−∞

cj(τ)
t − τ

dτ. (2.14)

With aj(t) =
√

c2
j(t) + y2

j (t) being the instantaneous amplitude and θj(t) = arctan yj(t)
cj(t) the

instantaneous phase, the instantaneous frequency, indicating the rate of phase change, is
given as

ωj(t) = dθj(t)
dt

. (2.15)
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Finally, as stated by the authors of [5], using the instantaneous amplitude and phase, the
original signal can be expressed by equation

s(t) = ℜ

 N∑
j=1

aj(t) · ei
∫

ωj(t)dt

 . (2.16)

Figure 2.9 shows the results of the proposed method as presented in [5]. The input EIT
signal involves an apnea period after inhalation, clearly observable in the original signal
waveform (a) and the VRS waveform (e).

Figure 2.9: Results of the EMD separation in the ventilation-dominated region [5].

Similar to the PCA source separation described in the previous section, the results of
the EMD source separation look very promising. However, the algorithm proposed in
[5] cannot work in real-time, although the authors claim that a real-time implementation
seems feasible in the near future.

2.2.3 Harmonic regression

In [6], A. Battistel et al. showed a possible way how to exploit the differences in fundamen-
tal frequencies of VRS and CRS using linear regression in the frequency domain. According
to the authors, when making certain assumptions, an EIT signal can be expressed as

y(t, θ) =
Np∑
p=0

∑
f∈H

(
θg

f,p cos(2πft) − θh
f,p sin(2πft)

)
b̃p(t), (2.17)
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where θ is a parameter vector containing coefficients θg
f,p and θh

f,p, and b̃p(t) are the so-called
basis functions [6].

With some further modifications and after showing the benefits of using the so-called
Hermite polynomials and Hermite functions, the authors describe how the estimation of
the coefficients θg

f,p and θh
f,p in the frequency domain is performed.

As explained in [6], the frequency domain data can be written in matrix form

Yw = Kθ + V, (2.18)

where Yw is the frequency-domain data y(t), K is a regression matrix consisting of the
basis functions B̃p, and V is a noise vector. This way, the optimal parameters θ̂ can be
obtained by least squares method as

θ̂ = arg min
θ

||Yw − Kθ||2 = (KT K)−1 KT Yw. (2.19)

Finally, the coefficients corresponding to the respiration and perfusion frequencies and
their harmonics are obtained from the estimated parameter vector θ̂ and the separated
VRS and CRS are reconstructed using equation 2.17 [6].

The following figures show the results presented in [6]. In Figure 2.10, the red diamonds
represent the harmonics of the respiration, the violet circles that of the cardiac signal, and
the green squares that of the intermodulations.

Figure 2.10: Global impedance signal in the frequency domain [6].
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2.2 Source separation in EIT

Figure 2.11: Left figure: Global impedance signal with its reconstruction (a) and residuals (b),
right figure: Reconstructed VRS (a) and CRS (b) [6].

Although the results look promising, a possible real-time implementation should be dis-
cussed. One option might be to implement the so-called Dynamic harmonic regression
as presented, for example, by Peter C. Young et al. in [20]. The authors described their
method as a flexible approach to non-stationary time series analysis that, from the com-
putational standpoint, benefits mainly from using an extremely fast alternative to the
maximum likelihood estimation [20].

A much easier way would be to perform the proposed harmonic regression on a measured
signal window of a specific size. However, the algorithm must be fast enough to perform
the separation until the new window is available. Moreover, the window length would
probably be treated as a parameter for optimization or even implemented as adaptive to
changing fundamental frequencies in the input signal.

2.2.4 Comb filtering

Comb filtering is a well-established audio processing method with several advantageous
properties that can benefit the source separation algorithm. Although no renowned
publications on comb filters used for source separation in EIT were found, there are
several publications on notch filters used for movement artifacts (MA) removal in
photoplethysmography (PPG) signal, e.g., [21], [22], [23] and ECG noise removal, e.g.,
[24], [25], [26].

In simple terms, a notch filter is a very narrow band-stop filter, whereas creating a comb
filter usually means applying more notch filters in a cascade. The purpose of a notch
filter is to suppress the exact given frequency in the input signal. Figure 2.12 shows the
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frequency response of an exemplary comb filter with the notch frequency of 1 kHz and its
second and third harmonics.

Figure 2.12: Frequency response of a comb filter [27]

Since the so-called finite impulse response (FIR) filters require high orders to achieve
a narrow bandwidth (high selectivity), infinite impulse response (IIR) filters are usually
used as notch filters instead. In [28] or [27], the implemented second-order notch filters
are designed with a typical transfer function

H(z) = 1 − 2 cos(ωn)z−1 + z−2

1 − 2r cos(ωn)z−1 + r2z−2 , (2.20)

where ωn = 2πfn

fs
with fn being the notch frequency and fs the sampling frequency. The

r parameter controls the filter’s bandwidth and should be set close to, but less than, one
to achieve narrowband notches and avoid filter stability problems [27].

All the publications mentioned in the first paragraph of this section provide good algo-
rithms for PPG signal enhancement or ECG noise removal. However, to keep this section
concise, only one of the publications is described below as a general example of a notch
filtering application.

In [21], Q. Zhang et al. presented a new method for motion artifact removal in PPG. As
explained by the authors, the proposed method utilizes accurate HR estimation to first
suppress the HR and its second harmonic in the raw PPG signal. The clean PPG signal
is then recovered by subtracting the notch-filtered result from the raw signal.

The authors of [21] introduced a novel HR correction stage to improve the accuracy of
HR estimation. They combined the estimation algorithm with a band-pass filter and an
LMS-Newton adaptive filter based on adaptive noise canceling. Figure 2.13 describes the
complete processing pipeline of the proposed algorithm, and in Figure 2.14, the results
presented in [21] are shown.
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2.3 Multi-pitch estimation in EIT

Figure 2.13: Complete signal processing pipeline presented in [21].

Figure 2.14: MA-corrupted raw PPG signal (a) and clean PPG signal (b) [21].

The results presented in [21] look highly promising. Moreover, the proposed algorithm
is adaptive thanks to the combination of notch filtering with accurate HR estimation
performed on the windowed input signal. Therefore, a real-time implementation should
be possible using the windowing technique.

2.3 Multi-pitch estimation in EIT

The performance of all source separation methods based on the frequency domain anal-
ysis, such as the harmonic regression or comb filtering, highly depends on the accuracy
of fundamental frequency estimation. In general, there are two possible approaches on
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how to implement the RR and HR estimation. It can either be incorporated inside the
source separation algorithm, making it self-adaptive (closed-loop approach), or performed
by a different algorithm designed specifically for the frequency estimation (open-loop ap-
proach).

Advantage of the closed-loop approach is that the source separation is self-adaptive and
utterly independent of any other algorithm. However, there might be some limitations to
optimizing the frequency estimation while maintaining the overall accuracy and computa-
tion speed of the complete ensemble.

To address this, a well-established and optimized multi-pitch estimation method is utilized
in the open-loop approach. The source separation algorithm then uses the estimated
frequencies for the separation. This allows for independent optimization and comparison
of the algorithm components, potentially making the results more accurate. However,
it can be computationally ineffective since it increases the complexity of the complete
ensemble.

In simple terms, the so-called multi-pitch estimation is a general name for various frequency
estimation and tracking algorithms, well-know in audio and speech processing [29], [30],
[31]. Some concepts can easily be adapted to estimate RR and HR from the mixed EIT
signal. Such methods are mainly based on frequency domain analysis, and in the following
sections, two of them are described in detail.

2.3.1 Grid search

The basic idea of grid search is very similar to harmonic regression. The EIT signal is
assumed to be composed of a sum of sine and cosine functions with different fundamental
frequencies. In [32], D. F. Silva and S. Leonhardt published the results of their development
of a grid search-based algorithm for RR and HR estimation in EIT.

The proposed algorithm uses a grid of predefined frequencies for the parallelized harmonic
regression in the time domain. A score function based on linear least squares (LLS)
combined with the so-called Laplacian prior is then used to find RR and HR simultaneously,
based on the EIT signal reconstruction [32]. Moreover, the algorithm uses the windowed
input signal to simulate a real-time implementation.

The proposed application of grid search in EIT source separation is based on the fact that
mixed EIT signal is mainly composed of the VRS, CRS, their intermodulation, and noise.
If the noise is neglected, the discretized superposition of the signal components x(t) can be
described in the frequency domain by the intertwining harmonics of RR and HR [3] and
a set of harmonics corresponding to the intermodulation with a fundamental frequency IR
= HR - RR [33].
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However, since the proposed algorithm utilizes only a two-dimensional frequency grid (one
dimension for RR and the other for HR), the intermodulation component is also neglected.
Therefore, as explained in [32], discrete signal model with sampling period ∆t can be
expressed in the time domain as a sum of sine and cosine functions using the following
equation:

y(k) =
2∑

i=1

Ni∑
l=1

λi,l cos(2πlf0,ik∆t) − γi,l sin(2πlf0,ik∆t), (2.21)

where f0 = [f0,RR, f0,HR]T is the set of fundamental frequencies distinguished by i =
{1, 2} =̂ {RR, HR}, and Ni is the number of harmonics associated with each fundamental
frequency f0,i. The scalars λi,l = Ai,l cos(ϕi,l) and γi,l = Ai,lsin(ϕi,l) encode both the
amplitude and phase information of the signal. The explained parameters are gathered in
a column-vector θLLS,i = [Ai,1, ..., Ai,Ni

, ϕi,1, ..., ϕi,Ni
]T corresponding to the fundamental

frequency f0,i [32].

As further described by the authors, the equation 2.21 in matrix notation becomes

y = M(f0) · θLLS, (2.22)

where y is the input signal, M(f0) is a regression matrix containing the sums of sine
and cosine functions associated with the fundamental frequencies f0, and θLLS is a matrix
comprised of the parameter vectors [32].

Therefore, when knowing f0 defined with the frequency grid and, consequently, M(f0), an
estimation of θLLS is obtained for each point in the frequency grid using LLS:

θ̂LLS(f0) = (MT (f0)M(f0))−1 MT (f0) y. (2.23)

After the linear regression is performed with the known θ̂LLS and the signal estimation
ŷ is available, the best estimation of the RR and HR f̂0 = [f̂0,RR, f̂0,HR]T is found by
minimizing the estimation error:

f̂0 = min
f0

E(f0) = min
f0

||y − M(f0) · θ̂LLS(f0)||2. (2.24)

The authors of [32] perform a simple validation using a signal created with the EIT syn-
thesizer presented in [34] and briefly described in section 2.4. The validation signal is
defined as a weighted sum of the generated cardiac and respiratory signals with weights
ωcard ∈ {0.1, 0.2, ..., 0.9}, ωresp ∈ {0.1, 0.2, ..., 0.9}, and ωcard + ωresp = 1. Common accu-
racy metrics, namely the root mean square error (RMSE), bias (offset), and Bland-Altman
plot (see 3.4.2) are used.

Figure 2.15 shows the RMSE values for all ωcard and ωresp combinations. It is found that the
implemented algorithm works best when 0.3 ≤ ωcard ≤ 0.7, and no reasonable accuracy
can be achieved when the amount of VRS and CRS in the input signal is significantly
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different [32]. This is expected since the linear regression described above assumes the
input signal as a superposition of the VRS and CRS, both represented equally.

Figure 2.15: Total estimation RMSE for all ωcard values [32].

Figure 2.16 shows the estimates compared to the true values of RR and HR. The results
look highly promising when considering only the values of ωcard associated with reasonable
accuracy. Also, the Bland-Altman plot proves that the estimation does not show any
significant trend, and the bias and limits of agreement (LoA) are small.

Figure 2.16: RR and HR estimates (left) and Bland-Altman plots (right) [32].

2.3.2 Continuous local interval estimator (CLIE)

The CLIE algorithm was initially presented by Christoph Brüser et al. in [35] for the
derivation of beat-to-beat intervals from ballistocardiography (BCG). Five years later, in
[36], Christoph Hoog Antink et al. published promising results of their investigation on
possible CLIE application for HR variability derivation from photoplethysmography.
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According to the authors of [35], the local interval length Tk and the local frequency fk at
the time point tk where the heartbeat occurs can be defined as

Tk = tk − tk−1, (2.25)

fk = 1
Tk

, (2.26)

where k = {2, ..., N} with N being the number of detected heartbeats. As the authors
explain, CLIE aims to estimate Tk from the signal’s fundamental frequencies directly. Such
an approach is inspired by the pitch tracking method, well-known in speech processing and
widely used for continuous and real-time fundamental frequency estimation [35].

As described in [35], CLIE uses three fundamental frequency estimators to increase the ro-
bustness of estimation on a moving processing window. However, instead of being designed
to contain multiple oscillations of the fundamental frequency, the processing window size
is set so that the window includes only two heartbeats. The three interval estimators are
modified auto-correlation SCorr, modified average magnitude difference function SAMDF ,
and maximum amplitude pairs SMAP [35].

However, in [36], C. H. Antink et al. presented some changes regarding their application of
CLIE. The first estimator, the so-called lag-adaptive short-time autocorrelation (LASTA)
score function, is described as

SLAST A(η) = 1
η

·
η∑

ν=0
ω[ν] · ω[ν − η], (2.27)

where ω[ν] is the analysis window and η is a respective lag. The modified second and third
estimators are

SAMDF [η] =
[

1
η

η∑
ν=0

|ω[ν] − ω[ν − η]|
]−1

, (2.28)

SMAP [η] = max
ν∈{0,...η}

(ω[ν] + ω[ν − η]) . (2.29)

This ensures that the exact number of samples necessary for each candidate lag ν is
considered [36].

Whereas the authors of [35] used a probabilistic estimator fusion to obtain a combined
score function, the fusion presented in [36] is different. As claimed by C. H. Antink et al.,
the estimation accuracy is improved by defining the fused score function

Sfused(η) = SLAST A(η) · SAMDF (η) · SMAP (η). (2.30)

To increase the robustness of the estimation, the authors of [36] introduced a lag-adaptive
prior. Such prior uses the previously estimated intervals to improve the current estima-
tion. According to the authors, the MIT-BIH Arrhythmia database was analyzed and the
Laplace distribution using the median of 10 previous estimates is implemented. Since the
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prior is adapted by D. F. Silva and S. Leonhardt in [32], it is described in more detail in
section 3.2.2.

Finally, as presented in [36], the optimal interval is equal to the optimal lag η∗ found by
maximizing the combined score function:

η∗[i] = arg max
η

(Sfused[i, η] · Sprior[i, η]). (2.31)

Moreover, a post-processing moving median filter is utilized to remove the estimation
outliers.

For the performance assessment of the proposed algorithm, the authors of [36] used the
same metrics as the authors of [32]. RMSE, bias (offset), and the so-called Bland-Altman
plot are utilized to compare the results of CLIE and CLIE with Laplace prior (CLIEp)
to some of the well-established HR estimation methods, specifically peak-to-peak (P2P),
peak-to-peak of the first derivative (P2P’), troth-to-troth (T2T), CLIE, and . Table 2.1,
presented in [36], compares beat-to-beat estimation errors.

absolute error [ms] relative error [%]
method offset RMS offset RMS

P2P -0.19 13.96 -0.0057 1.63
P2P’ -0.09 17.94 -0.0071 2.06
T2T -0.12 11.90 0.0008 1.27
CLIE -0.19 10.68 -0.0061 1.16
CLIEp -0.35 11.45 -0.0168 1.23

Table 2.1: Beat-to-beat interval estimation errors [36].

Figure 2.17 shows the Bland-Altman plots. When analyzing the displayed results and the
results shown in Table 2.1, it is clear that the CLIE and the CLIEp achieve a comparable
accuracy to the other, already well-established, methods.

Figure 2.17: Bland–Altman plots presented in [36].
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2.4 EIT signal synthesis

When performing an EIT measurement in patients, only a mixed EIT signal can be ac-
quired. As a consequence, it is impossible to compare the separated signals to the ground
truth when validating a source separation algorithm. However, when synthesizing a mixed
EIT signal from the given VRS and CRS, the ground truth is known.

Use of a synthesized EIT signal in source separation was already presented in [32], described
in section 2.3.1. In [37], the so-called source consistency method was used to synthesize
boundary voltage data for EIT.

2.4.1 Anatomical models

There are two general approaches to modeling the impedance changes in the thorax. The
first one is to model the physiological properties of the cardiorespiratory system as faith-
fully as possible, which inevitably results in complex anatomical models.

For example, in 2017, Martin Proença published a thesis [38] where he developed a 4D
bioimpedance model of the human thorax. The main focus of the included model-based
feasibility study is to simulate peak arterial pressure (PAP)-affecting pathologies and en-
able the estimation of the pulmonary pulse transit time based on the PAP measurement.

The model presented in [38] consists of an anatomically realistic static 3D model of the
whole pulmonary arterial tree combined with a dynamic model of pulmonary circulation.
The model is transformed into a 4D bioimpedance model by describing how the pressure-
induced distension of the pulmonary arteries affects the conductivity at each location in
the lungs [38].

Finally, the so-called Maxwell Garnett mixing formula [39] is used to obtain conductivity
values. It combines lung tissue as a dielectric medium with conductivity inclusions from
blood vessels. Since D. F. Silva and S. Leonhardt adopted this approach in [40], it is
described in more detail in section 3.3.1.

Figure 2.18: Visualization of the anatomical model of the pulmonary arterial tree [38].
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2 Theoretical background

Figure 2.19: Structure of the global model of the pulmonary circulation [38].

Figure 2.20: Generated pressure waves and average EIT signal in a pulmonary ROI [38].

2.4.2 Mathematical models

The second approach is to model the function of the cardiorespiratory system using math-
ematical models mimicking the system’s behavior. For example, in 2017, C. H. Antink et
al. published their framework for multimodal cardiorespiratory signals synthesis [34]. The
presented model consists of two general parts: (a) six modality-independent coupled os-
cillators and (b) modality-dependent waveform generators, which utilize various template
functions.

According to the authors, the coupled oscillators are described with nonlinear ordinary
differential equations, including RR and HR parameters and the modulation functions to
simulate physiological processes such as Mayer oscillations. It is to be noted that due to
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2.4 EIT signal synthesis

the nonlinear coupling, the solution of the differential equations is too complex. Therefore,
a numerical solution is found using the Runge-Kutta method [34]. Figure 2.21 shows the
overall structure of the synthesizer.

Figure 2.21: Overall structure of the synthesizer [34].

As further presented in [34], measurements from three databases are used for validation.
Therefore, different modality signals, namely respiration, ECG, blood pressure (BP), BCG,
PPG, and flow signals, are synthesized and compared to the ground truth. Figures 2.22
and 2.23 show some of the presented results.

Figure 2.22: Measured and synthesized respiration, ECG, and BP signals [34].
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2 Theoretical background

Figure 2.23: Measured and synthesized BCG, PPG, and flow signals [34].

As shown by the authors, the synthesizer presented in [34] generates the signals with
correct phase relationships and mimics several aspects of physiological coupling. However,
as the authors admit, the model does not allow for a respiratory pattern or amplitude
change [34].
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3 Methods and implementation details

This chapter describes the implementation of the multi-pitch estimation and source sepa-
ration algorithms in MATLAB software in detail. As shown in section 2.2, there are several
approaches to be considered for real-time source separation in EIT. However, some of them
are more suitable than the others. Therefore, this chapter starts with their comparison.
The reasons for the chosen methods are given and their implementation is described in
detail.

Next, the EIT signal synthesizer utilized to simulate a validation signal is presented. The
input parameters for the synthesizer are explained and the signal itself is analyzed in detail
in the time and frequency domains.

Finally, the performance assessment metrics used for the validation and comparison of the
implemented algorithms are explained.

3.1 Comparison of available methods

It was shown in [4] that the methods based on PCA can achieve good separation of the
EIT signal components while keeping the algorithm easy to understand and the results
interpretable. However, they cannot model temporal dynamics and, therefore, adapt to
non-stationary signals. When the windowing method is applied, the algorithm is expected
to provide the separation results for each sample quick enough to follow the EIT frame
rate of at least 50 fps.

Although there are some possible real-time or at least dynamic PCA implementations,
e.g., [41] or [42], such implementation would cost a lot of additional effort. As already
explained in 2.2.1, the algorithm implementation presented in [4] cannot work in real-time.
Another concern is that even if a more computationally efficient real-time implementation
is developed, it might still require higher computational power than is usually available at
the bedside.

In [5], the authors presented very promising results of their separation algorithm based on
EMD. Because the EMD was initially developed as a frequency domain analysis method for
non-stationary signals, its biggest advantage is that it can model the temporal dynamics
and, therefore, adapt to the changes in the input signal. However, since the mathematical
background behind EMD is quite complex, the method is harder to understand and the
interpretation of the results is less convenient than with PCA. Moreover, for a real-time
implementation, the windowing method has to be used.

There are several real-time implementations of EMD, e.g., [43], [44], and [45]. Therefore,
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the authors can be trusted when claiming in [5] that a real-time implementation should
be possible in the near future, even though their algorithm is actually based on slightly
more complex approach, MEEMD. However, there are still similar concerns as with PCA
when a real-time implementation at the bedside with a limited computational power of
the hardware is considered.

As presented in [6], linear regression can be performed in the frequency domain to separate
the VRS and CRS in the mixed EIT signal. Such approach is simple to understand and
the results are easily interpretable. The real-time implementation using the input signal
windowing seems feasible since linear regression is usually computationally very effective
and it should be quite easy to modify the algorithm proposed in [6].

However, there is still one method considered more suitable for a simple proof-of-concept
algorithm. In section 2.2.4, various applications of comb filtering on biosignal processing
are presented. Comb filtering seems to work well for MA removal in PPG signals and noise
removal in ECG signals as long as the HR is estimated accurately.

Moreover, since signal filtering is usually very fast, a real-time implementation able to
perform the separation with each new sample, i.e., with the frequency of 50 Hz, should be
feasible with no concerns. At the top of that, the filtering is incredibly easy to understand
and the results can be interpreted directly.

3.2 Implementation of the selected methods

After thoroughly analyzing the already published approaches, comb filtering is selected to
be implemented in this work as a proof-of-concept for real-time source separation in EIT.
It is decided to take the open-loop approach and first implement the multi-pitch estimation
methods, described in section 2.3, in real-time and enhance their performance to achieve
as accurate as possible estimation of HR and RR. Next, the estimated frequencies are used
as the inputs of a simple comb filtering algorithm in combination with standard filtering
methods, such as LP and HP filtering, and some post-processing.

Figure 3.1 shows a complete signal processing pipeline. For clarity, each pipeline block
is explained one by one in the following sections. In each section, a brief theoretical
introduction is followed by the implementation details. However, a thorough validation
and comparison of all the implemented algorithms are provided in chapter 4.

Figure 3.1: A diagram showing the complete signal processing pipeline.
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3.2.1 Pixel detection algorithm

The pixel detection algorithm is a simple tool for finding EIT image pixels with a de-
fined ratio of component representation based on frequency domain analysis. Its primary
purpose is to find the balanced signal for the grid search algorithm, which performs best
when the VRS and CRS are represented equally in the input signal, as already explained
in section 2.3.1. Moreover, the CLIE algorithm presented in section 2.3.2 and modified in
this work to estimate both RR and HR utilizes the pixel detection algorithm to find the
ventilation-dominated and cardiac-dominated signals, as explained in 3.2.3.

Although the pixels can easily be selected by location in the image, such selection cannot
assure the given ratio of component representation. Therefore, the whole EIT image
sequence (EIT video) is first transformed from the time domain into the frequency domain
using Fast Fourier Transform (FFT) implemented in MATLAB. Next, the component
representation ratio

R = Ac,max

Ar,max

(3.1)

is calculated for each pixel using maximum amplitudes in pre-defined frequency bands for
cardiac activity (Ac,max) and for respiration (Ar,max).

The frequency bands are defined as 0.17 Hz (10 breaths per minute (bpm)) to 0.5 Hz (30
bpm) for respiration and 0.67 Hz (40 beats per minute (bpm)) to 3.33 Hz (200 bpm) for
cardiac activity. These values are set with the basic knowledge of typical RR and HR
values.

After the component representation ratios R are found, the algorithm chooses the pixels
where the dominance ratio is as close as possible to the given value, e.g., 1.0. However, if
the cardiac-dominated signal is required, the pixel with maximum RD is selected. Similarly,
when the respiration-dominated signal is needed, the pixel with minimum RD is selected.

The implemented pixel detection algorithm is tested with satisfying results. Since its
outputs are used to validate and compare the implemented multi-pitch estimation and
source separation algorithms, see chapter 4 for more details and figures.

However, it is to be noted that for a real-time implementation, only a small portion of the
EIT image sequence, e.g., a setup period of 10 seconds with stable RR and HR, should
be used. After the setup period, the selected pixels would be fixed, and the source sepa-
ration would be performed with each new sample without the pixel detection algorithm.
For this reason, the computational time needed for pixel detection is further considered
unimportant.
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3.2.2 Multi-pitch estimation using grid search

The general principle of a grid search approach is well-known. A set of given values is
exhaustively searched to find the optimal ones. The grid search implemented in this work
is based on the algorithm presented in [32] and described in detail in section 2.3.1.

Reminding the basics, it utilizes a predefined 2D grid of frequencies for the input EIT signal
reconstruction with linear regression. Thus, finding the best-matching reconstructed signal
best estimates the RR and HR. Moreover, the input signal is processed using a sliding
window to simulate a real-time application.

However, after testing the original implementation presented in [32], it is still necessary to
significantly reduce the computational time and make the algorithm parameters adaptive to
the changing RR and HR input signal. Therefore, significant modifications are introduced
in this section. Four different versions of the complete algorithm are implemented and
tested. However, a thorough validation and comparison is provided in section 4.1.1 as well
as the parameter optimization in section 4.2.1.

Original implementation

Once the grid search algorithm is initiated, the 2D frequency grid of f0 = (fRR, fHR) is
initialized, and all the respective regression matrices M(f0), described in section 2.3.1, are
calculated. When applied to real-time signals, the algorithm needs a period corresponding
to the processing window length W to calculate the first estimation assigned to the sample
located right at the end of the window. The value of W is found empirically as 180 samples.
Considering the EIT frame rate (sampling frequency) fs of 50 fps (Hz), this corresponds
to 3.6 seconds.

The following estimates are calculated immediately one by one since the sliding window
shift is set as one sample. This is suitable for the real time application where the samples
are processed continuously one by one.

Among other parameters, the accuracy of the grid search algorithm depends on the grid
resolution. In [32], the grid step is defined as 2.5 bpm in both RR and HR. During the
algorithm development and testing in this work, this value is changed slightly to 2.0 bpm,
while further changes are not beneficial for the overall algorithm performance. Table 3.1
shows all the grid parameters.

i ∆f0,i (bpm / Hz) f0,i,min (bpm / Hz) f0,i,max (bpm / Hz)
RR 2.0 / 0.03 10 / 0.17 60 / 1.00
HR 2.0 / 0.03 40 / 0.67 200 / 3.33

Table 3.1: Parameters of the frequency grid.
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After performing the linear regression and finding the EIT signal estimation for each point
in the frequency grid, the estimation errors described by equation 2.24 are inverted to
represent a linear least squares score function SLLS(f0).

As explained in [32], a compound Laplacian prior SLAP (f0, f̃0), adapted from [36], is defined
as

SLAP,i(f0,i, f̃0,i) = 1
2bi

· e
−

|f0,i−f̃0,i−1|
bi , (3.2)

where f̃0,i is the median of previous n estimates, representing a location parameter of the
Laplace distribution µ = f̃0,i+1. Parameter bi > 0 is a scale parameter, sometimes referred
to as diversity.

As shown in Figure 3.2, the Laplacian prior smoothens the score function. The value of n
is set accordingly to [36] and [32] as ten samples. However, it is to be further optimized as
well as the values of b = {bRR, bHR}. Therefore, the optimal values are shown in section
4.2.1.

Figure 3.2: Example of SLLS (left picture) and combined score S (right picture) [32].

Next, both SLLS and SLAP are normalized so that the sum of their values equals one. That
makes it possible to treat the scores as probabilities and combine them into the overall
estimation score

S(f0, f̃0) = SLLS(f0) ·
2∏

i=1
SLAP,i.(f0,i, f̃0,i). (3.3)

Finally, maximizing the score function gives the best estimation of f0. Since no post-
processing is implemented in the original version or the others, the RR and HR estimation
is given as

f̂0 = arg max
f0

S(f0, f̃0). (3.4)

33



3 Methods and implementation details

Laplace prior thresholding

The second algorithm version introduces the most beneficial upgrade from the computa-
tional time standpoint, as shown in section 4.1.1. The idea behind Laplace prior thresh-
olding is that there is no need to perform the linear regression with all the frequencies in
the predefined grid for each input signal sample when there is already some information
about the most promising estimates available.

Therefore, once the SLAP is known for the given sample, only the frequencies corresponding
to SLAP ≥ h, where h is the given threshold, are calculated. Since the Laplace distribution
slightly changes with each new sample, the threshold is implemented as adaptive using

h = p · max(SLAP ), (3.5)

where p ∈ (0, 1) is ideally the highest possible value that results in no loss in estimation
accuracy. The initial value of p is found empirically as 0.75 while subject to parameter op-
timization described in section 4.2.1. Eventually, this modification is found very beneficial
without having any drawbacks as shown in section 4.1.1 and, therefore, is implemented in
the following grid search algorithm versions as well.

Adaptive parameters

In the third implemented version, the algorithm’s parameters are modified to be adaptive.
First, the adaptive processing window length is introduced. Due to the limitations of the
original implementation, the adaptive processing window is incorporated into the existing
code as a cropping window of size m that allows only a smaller portion of the processing
window for regression calculations.

A proportional relation of m to the previously estimated frequencies is empirically found
to make it adaptable to the changes in estimated RR and HR, thus improving the accuracy
of the estimation. The relation is given by equation

m = 2 · fs ·
(∑2

i=1 f̃0,i

2

)−1

, (3.6)

where f̃0,i is the median of n previously estimated frequencies as defined already for Lapla-
cian prior. Moreover, it increases the estimation robustness of a potential real-time appli-
cation of the grid search algorithm.

Consequently, the processing window size W is re-defined as

W = 2.5 · fs

f0,RR,min

= 750 samples =̂ 15 s (3.7)
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to always accommodate at least 2.5 cycles of respiration and omitted from further param-
eter optimization.

Finally, it makes sense to also modify n accordingly to m with equation

n = r · m, (3.8)

where r ∈ (0, 1). The value of r is initially set as 0.15 while being subject to parameter
optimization described in section 4.2.1. Therefore, its final optimal value is shown there.

Super-resolution

Finally, the benefits of the so-called super-resolution are investigated in the last imple-
mented version of the grid search algorithm. Super-resolution is a well-known approach
in image processing that aims to approximate the image values between the defined pix-
els, thus seemingly increasing the image resolution. There are many examples of super-
resolution algorithms, such as [46] and [47].

In this work, a 2D bilinear interpolation is implemented, utilizing a 2D Taylor series
approximation to estimate the values of the combined score function S between the pre-
defined points of the frequency grid.

As explained, for example, in [48], two-dimensional Taylor series of f(x, y) around the
point (a, b) is generally given by equation

f(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) + 1
2! [fxx(a, b)(x − a)2

+ 2fxy(a, b)(x − a)(y − b) + fyy(y − b)2] + ...,
(3.9)

where fx = df(x,y)
dx

and fy = df(x,y)
dy

are the first-order partial derivatives of f(x, y) while
fxx = df(x,y)

dx2 , fxy = df(x,y)
dxdy

, and fyy = df(x,y)
dy2 are the second-order partial derivatives of

f(x, y).

The best linear approximation of f(x, y) around the point (a, b) is then given as

L(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b). (3.10)

To implement Taylor series into the grid search algorithm, the first- and second-order
derivatives are calculated for the neighboring points of the maximum overall estimation
score S. The new peak is considered to be precisely where the first-order derivative of
the interpolation function equals zero, and the second-order derivative is negative, which
ensures concavity. With the new peak already known, the respective coordinates (x, y), in
our case equal to (fRR, fHR), are found. If this peak is higher than the one found before,
the final frequency estimates are changed.
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Theoretically, the pre-defined frequency grid resolution does not limit the estimation ac-
curacy when applying the super-resolution algorithm. This can be used to achieve better
overall accuracy of the estimation with the same frequency grid, or the number of points
in the grid can be lowered by setting higher ∆f0,i while retaining approximately the same
estimation accuracy but with lower computational time. However, as shown in section
4.1.1, the super-resolution does not perform as expected.

3.2.3 Multi-pitch estimation using CLIE

As already mentioned in section 2.3.2, the CLIE algorithm was initially presented by
Christoph Brüser et al. in [35]. In this work, the original implementation for HR estimation
from BCG signals is modified to estimate RR and HR from EIT signals. With the proposed
iterative approach, CLIE is used twice to estimate RR and HR individually.

Two methods of the iterative approach are implemented as two different algorithm versions.
However, both use the windowing technique to simulate a real-time application while the
window shift is set as one sample. Similarly to the grid search algorithm, RR and HR are
thus estimated sample by sample after the first signal window is available.

As shown in Figure 3.3, to obtain RR estimation, both versions start with filtering the win-
dowed ventilation-dominated or balanced signal selected by the pixel detection algorithm
(see section 3.2.1). Using a second-order Butterworth LP filter with a cutoff frequency
fc,LP = 0.8 Hz (48 bpm), the amount of high-frequency cardiac-related oscillations in the
input signal is significantly reduced. The value of fc,LP is initially set with the author’s
knowledge of typical RR and HR values but adjusted empirically to improve the results.
The LP-filtered signal is then processed with CLIE, and the RR is estimated.

However, the two proposed methods use different tools to obtain HR estimation. The first
algorithm version utilizes a second-order Butterworth HP filter with a cutoff frequency
fc,HP = fc,LP to filter out low-frequency oscillations from the input cardiac-dominated
signal selected by the pixel detection algorithm.

The second version uses a comb filter, described in detail in section 3.2.4, to separate the
VRS from the balanced input signal. More specifically, the RR estimates obtained with
CLIE are used as notch frequencies and the comb-filtered signal is then filtered with the
same above-mentioned HP filter to separate any remaining low-frequency oscillations.

In the end, the HR is estimated by CLIE in both implemented versions. Figure 3.3 shows
the two signal processing pipelines introduced by the two implemented versions of the
iterative CLIE algorithm.
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Figure 3.3: Processing pipelines of the two CLIE algorithm versions.

The CLIE implementation’s critical parts have already been converted from MATLAB
into C before. Thus, when CLIE is implemented in the proposed iterative approach,
the estimation is already fast enough for a potential real-time application. However, some
modifications, presented in the following section, are still necessary to improve the accuracy
and robustness of the estimation. Moreover, a thorough validation and comparison of both
implemented versions of the iterative algorithm are presented in section 4.1.2.

Modifications of the original implementation

The modified CLIE algorithm implemented in this work introduces two adaptive processing
window sizes, one for RR and one for HR estimation. Therefore, the initial window sizes
WRR,1, WHR,1 are set to include at least one cycle of the ventilation or cardiac activity
using

WRR,1 = fs

f0,RR,min

= 300 samples =̂ 6 s, (3.11)

WHR,1 = fs

f0,HR,min

= 75 samples =̂ 1.5 s, (3.12)

where f0,RR,min = 0.17 Hz (10 bpm) and f0,HR,min = 0.67 Hz (40 bpm). Therefore, the
initial delay needed to gather all the necessary samples for the first estimation of both RR
and HR is 6 seconds.

After that, the estimated frequencies are available sample by sample, and the size of each
following processing window is set equal to the previous interval estimation:

Wi,j = Îi,j−1, (3.13)
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where i = {RR, HR} denotes the type of estimation and j the current estimation sample.
To add some robustness, the window size is changed every si-th sample only, while s =
[sRR, sHR] = [50, 25] is set initially, but later subjected to parameter optimization described
in section 4.2.2.

Moreover, a simple outlier detection is implemented to significantly reduce the number of
outliers produced during the interval calculations. With the knowledge of the previously
estimated interval, it is assured that the current estimation does not differ by more than
50 % from the previous one.

Finally, a post-processing median filter window sizes are initially set as M = [MRR, MHR] =
[50, 25] while subjected to parameter optimization described in section 4.2.2. Because of the
implemented outlier detection, the moving median window can be set much shorter than
in the original CLIE implementation. This leads to much faster algorithm adaptability
while not losing the smoothing ability of the median filter.

However, it is to be noted that in the actual real-time implementation, the median filtering
would have to be performed on each processing window individually instead of the complete
estimated signal.

3.2.4 Source separation using comb filtering

This section describes the implementation of a comb filter for source separation in EIT. As
already mentioned in section 2.2.4, different publications describing various comb-filtering
applications have some similarities. For example, many of them use notch filters in cascade
to create a comb filter, accompanied by other filters, e.g., band-pass or moving average,
to improve the results.

Since all the published results look promising, the implementation presented in this work
takes a similar approach. However, the algorithms presented in section 2.2.4 are designed
for motion-artifact removal in the PPG signal or noise removal in the ECG signal. Neither
of them is explicitly developed for source separation in EIT.

Therefore, the critical task is first to prove that comb filtering is applicable for source
separation in EIT and can produce valid results. The implementation presented here thus
provides a proof-of-concept and possibly a starting point for more complex implementa-
tions.
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Implementation details

A simple comb filtering algorithm is designed in the so-called open-loop approach, already
explained in section 2.3. The implemented multi-pitch algorithms estimate the RR and
HR accurately, ensuring the comb filter is also accurate and, more importantly, adapts its
notch frequencies accordingly to the input signal.

The implementation of the filter itself is done in MATLAB using in-built functions iirnotch
and filtfilt. According to MATLAB documentation [49], iirnotch returns the numerator
and denominator coefficients of a digital second-order IIR notch filter. The user-defined
parameters of the designed filter are the normalized frequency ω0

0 < ω0 = fn · 2
fs

< 1.0, (3.14)

where fn is the notch frequency in Hz,and the quality factor

Q = ω0

B
, (3.15)

where B is the bandwidth [49].

As explained in MATLAB documentation [50], filtering a signal with filtfilt means per-
forming zero-phase digital filtering. In other words, the input signal is processed in both
the forward and reverse directions using the given numerator and denominator coefficients
of the transfer function. As a result, zero phase distortion is achieved, the magnitude of
the transfer function is squared, and the filter order is doubled.

Zero phase distortion ensures that the features of the unfiltered signal in the time domain
waveform are preserved precisely at the same locations after filtering [50]. Zero-phase
filtering was successfully utilized, for example, by C. Park et al. in [22] for PPG signal
enhancement.

The implementation of the comb filter algorithm developed in this work is inspired by
those presented in papers mentioned in section 2.2.4, e.g., [27], [22], and [21]. The input
signal is swept over with the sliding window. For simplicity, the windowing is performed
without any overlap, and the window size is set empirically as 200 samples. However, it is
to be noted that in a true real-time implementation, when comb filtering is combined with
multi-pitch estimation, the window size would have to be the same as that introduced by
the respective multi-pitch estimation algorithm.

For every window, three notch filters are designed to filter out the RR or HR harmonics.
At this point, the VRS is filtered out in VRS separation, and analogously, the CRS is
filtered out when performing CRS separation. The quality factor Q = 1 is set empirically
for all notch filters. The comb filtering is then performed with the three notch filters in
two cascades, one for VRS and the other for CRS separation.
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Next, depending on the type of separation, the remaining signal is filtered with a second-
order Butterworth HP or LP filter to remove any remaining low- or high-frequency com-
ponents, respectively. The cut-off frequencies are set as fc,HP = 0.17 Hz (10 bpm) and
fc,LP = 3.33 Hz (200 bpm).

Subsequently, the filtered signal is subtracted from the input signal. That way, the inter-
modulation component (and potentially some noise) is also filtered out in both the VRS
and CRS separations. Since the CRS can be expected to be in the opposite phase with the
VRS (see section 2.1.4), the separated CRS is multiplied by -1 to match the true signal.

Finally, to smoothen the transitions between the processing windows, a moving average
window of size of 25 samples is utilized. Figure 3.4 shows the complete signal processing
pipelines of the VRS and CRS separations.

Figure 3.4: Processing pipelines of the implemented comb filtering algorithms.

3.3 Validation signal synthesis

A synthesized EIT signal is used to validate and compare all the implemented algorithms.
That way, the outputs of the multi-pitch estimation and source separation algorithms
can be compared to the ground truth, as already mentioned in section 2.4. Therefore,
the following sections provide a detailed description of the utilized synthesizer and the
generated validation signal.

3.3.1 EIT signal synthesizer

To synthesize the validation signal, Fast 4D FEM Model for EIT Source Separation Bench-
marking [40] is used. This synthesizer is currently in development by D. F. Silva and S.
Leonhardt at the chair of Medical Information Technology (MedIT) at RWTH Aachen
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University, while being inspired by the model designed by M. Proença in [38], already
introduced in section 2.4.

As explained in [40], D. F. Silva and S. Leonhardt introduced an anatomical model of
the heart, lungs, and pulmonary arteries. To simplify the model, a single heart ventricle
is represented by two concentric ellipsoids, while each lung is modeled using one hemi-
ellipsoid. An ellipsoidal cylinder models the thorax. Around the half-height of the thorax
cross-section, 16 equidistantly placed electrodes are simulated [40].

Figure 3.5: Visual representation of the anatomical model [40].

According to the authors, the pulmonary tree is built from small, medium, and large
vessels. Therefore, the following equation utilizes a scaled and offseted template function
Ti(ϕ) for each vessel caliber i = {small, medium, large} to model the volume changes with
quasiperiodic volume functions as

Vi(t) = Vmax,i −
(

∆Vi(t)
2 · Ti(ϕ) + ∆Vi(t)

2

)
, (3.16)

where Vi is the volume of the respective organ over time t oscillating with ∆Vi below
a maximum value Vmax,i, according to a template function Ti ∈ [−1, 1] with ϕ = ϕ(t) as
its cycle phase [40].

As further explained in [40], the synthesizer is equipped with the cardiorespiratory fre-
quency coupling, initially presented in [34], to simulate the signal’s non-stationarity due
to the so-called respiratory sinus arrhythmia and Mayer wave oscillations. That way, the
heart-lung interactions are simulated through differential equations with two user-defined
frequency coupling parameters. These parameters’ values are designed for synthesizing
physiologically relevant EIT signals comparable to those measured in adults.

According to [40], the conductivities of muscles, fat, bones, and blood in the ventricle
are set constant. The conductivities of lung tissue and blood in the lungs are defined as
functions of local organ movement and arterial flow.

The vessel distribution in the pulmonary tree is given by the custom radial density func-
tions amorphously distributed throughout the lungs. The amorphous distribution leads
to lower computational costs while not significantly lowering the model’s overall accuracy
because of EIT’s spatial resolution limitations [40].
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As further explained in [40], the blood volume in an element of the FEM mesh is empirically
defined as a weighted sum of the contributions from all vessel calibers. The following
equation, initially presented by Klaas R. Visser in [51], models flow-dependent intravascular
blood conductivity changes

∆σperf (ϵ, t) = −0.45 · HCT ·
(

1 − e−0.26 ( v(ϵ,t)
r(ϵ,t) )

0.39)
, (3.17)

where ∆σperf (ϵ, t) is the change in blood conductivity in element ϵ at time t, considering
cylindrical vessels with changing radius r(ϵ, t), as defined with equation 3.16, and v(ϵ, t)
is the mean velocity of blood with hematocrit value HCT = 43 % passing through the
vessels [40].

According to [40], the lung tissue conductivity in an element σvent(ϵ, t) is assumed to oscil-
late between deflated (σ = 0.270 S/m) and inflated (σ = 0.110 S/m) states synchronously
to the volume changes Vvent(ϵ, t). The volume changes are considered to be homogeneously
distributed over all lung mesh elements. Moreover, time delay t0 is applied to the conduc-
tivity, volume, and flow curves of lung elements at a distance d from the pulmonary valve
using t0 = d

PWV , with pulse wave velocity (PWV) set as 200 cm/s [40].

Finally, the mixed conductivity of element ϵ at time t is obtained from the Maxwell Garnett
mixing formula, initially presented in [39] and utilized also in [38], expressed as

σ(ϵ, t) = σvent(ϵ, t) +
1
3 · fv(ϵ, t) · [σperf (ϵ, t) − σvent(ϵ, t)] · a(ϵ, t)

1 − 1
3 · fv(ϵ, t) · [σperf (ϵ, t) − σvent(ϵ, t)] · b(ϵ, t) , (3.18)

where a(ϵ, t), b(ϵ, t) are substitutions to make the equation simpler to understand, and
fv(ϵ, t) is a local volume fraction in element ϵ over time t. Furthermore, a dielectric
background of lung tissue σvent(ϵ, t) is assumed to contain cylindrical perfusion inclusions,
encoded by M = (0.5, 0.5, 0) [40].

a(ϵ, t) =
3∑

i=1

σvent(ϵ, t)
σvent(ϵ, t) + Mi · [σperf (ϵ, t) − σvent(ϵ, t)] , (3.19)

b(ϵ, t) =
3∑

i=1

Mi

σvent(ϵ, t) + Mi · [σperf (ϵ, t) − σvent(ϵ, t)] , (3.20)

fv(ϵ, t) = Vperf (ϵ, t)
Vperf (ϵ, t) + Vvent(ϵ, t) . (3.21)

As presented in [40], a mixed EIT signal, VRS, and CRS can be generated using the
proposed synthesizer. To obtain a VRS or CRS, σ(ϵ, t) is simply set as σvent(ϵ, t) or
σperf (ϵ, t), respectively. Therefore, the model can produce realistic non-stationary EIT
signals while preserving all physiological characteristics relevant to source separation.

Initially, all the necessary model parameters and template functions were set accordingly
to various publications, e.g., [38], [52] while subject to further optimization. However, as
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3.3 Validation signal synthesis

utilized in this work, the synthesizer configuration does not include spontaneous venti-
lation modeling, which is still in development. Therefore, only mechanical ventilation is
simulated.

Furthermore, the provided implementation allows for various physiological parameter set-
tings. It also accepts definitions of different vessels’ spatial densities and enables the
employment of user-defined templates for volume and flow equations. This allows for the
simulations of, for example, various ventilation or perfusion injuries [40].

3.3.2 Input values for the synthesizer

To synthesize the validation signal, it is first necessary to set the respective parameters of
the EIT synthesizer. It is decided to synthesize three validation signals (mixed, VRS, and
CRS) with only one setting of parameter values that would simulate all possible situations
at the bedside. This can be achieved with the following parameters: a set of RR values
fRR [bpm] and HR values fHR [bpm], the time duration of the synthesized signal tsim [s],
and the sampling frequency fs [Hz] which corresponds to EIT video frame rate in fps.

It is to be noted that the model interpolates the fRR and fHR values to smoothen any
sudden transitions. During the interpolation, the given values are considered equally
distributed in time. That way, a valid EIT signal is always synthesized based on various
input RR and HR. Moreover, the true RR and HR values after the interpolation are known
and can be analyzed and compared to, e.g., multi-pitch estimation results.

To simulate as many potential situations as possible, the values of fRR and fHR are designed
to contain three plateaus (very low, very high, and a medium one) and some fast and slow
changes. Since the fs is given as 50 Hz, the tsim is set to 120 s to provide a good compromise
between computational costs and valid RR and HR changes. The following table shows
the exact input values of fRR and fHR.

set of values [bpm]
fRR {13, 12, 18, 23, 45, 46, 33, 30, 27, 25, 24}
fHR {50, 50, 70, 90, 180, 180, 130, 120, 110, 100, 100}

Table 3.2: The input values of fRR and fHR for the EIT synthesizer.

As shown in Table 3.2, a sort of resting state is simulated in the first ca. 13 seconds of the
signal with a very low plateau. For this purpose, the RR and HR are set close to 12 bpm
and 50 bpm, respectively. By the following slow rise to approx. 20 and 80 bpm, somewhat
increased activity is simulated. Next, with a steep increase to the high plateau at approx.
45 and 180 bpm followed by an abrupt decrease to approx. 30 and 130 bpm, a more
challenging signal for multi-pitch estimation and source separation is created. Finally,
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3 Methods and implementation details

the last slow decline and a medium plateau simulate a sort of resting activity after, for
example, a challenging physical exercise.

The input values of RR and HR are chosen based on the author’s knowledge and study
of literature on typical RR and HR values in adults, e.g., [53], [54], and [55]. Also, the
values are designed so that the ratio of HR to RR, commonly known as pulse-respiration
quotient (PRQ), stays close to 4 [56, 57]. Based on these studies, PRQ seems relatively
stable regardless of whether there is a resting state or a physical exercise.

Figure 3.6 shows the true RR and HR values after the interpolation. Those are the exact
values used for validation signal synthesis. Therefore, they are considered the ground truth
frequencies and compared to multi-pitch estimation results in section 4.1.
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Figure 3.6: The true values of RR and HR after the interpolation.

It is to be pointed out that such fast and significant changes in RR and HR would most
likely not be observed in adults at the bedside since there is no challenging physical exercise.
However, in neonates, the resting RR and HR are usually much higher (approx. 30-50 and
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3.3 Validation signal synthesis

120 - 150 bpm, respectively), and the changes are faster and more significant than in adults
[58, 59].

Moreover, the synthesized validation signal should serve as a set of many possible real-life
situations stacked one by one instead of replicating a signal measured continuously in one
subject. Moreover, it should be as general as possible since when the proposed algorithms
can follow changes with overestimated speed and magnitude, they can easily follow the
true ones. Ultimately, such values can provide a perfect understanding of the algorithms’
performance in real-life situations.

3.3.3 Synthesized EIT signals

Finally, the validation signals are synthesized. In Figure 3.7, all three types of the generated
signals are shown in the time domain. Although the signals are synthesized for all pixels
in a 64x64 image, only a signal in a typical lung pixel with coordinates (x, y) = (49, 30) is
selected for the visualization. Moreover, only the first 60 seconds of the synthesized signals
are shown for clarity.
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Figure 3.7: First 60 seconds of the synthesized signals in a lung pixel in the time domain.
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At first sight, the influence of changing RR and HR can be seen. Also, the mixed EIT
signal has the usual EIT signal properties, i.e., fast oscillations caused by cardiac activity
are superimposed on the slow ones caused by ventilation. Compared to the example of
a global EIT signal shown in Figure 2.6, the synthesized signal looks slightly different,
probably because the synthesizer does not model spontaneous ventilation.

The effect of the mechanical ventilation simulation is observable in VRS since the shape of
its waveform looks quite similar to the typical volume curves observed in patients during
ventilator therapy [60, 61]. Moreover, the VRS amplitude is approximately five times
higher than the CRS.

It might be surprising that the CRS waveform contains some low-frequency oscillations.
This happens because the CRS in the lungs corresponds to the perfusion of lung tissue and,
therefore, is influenced not only by cardiac activity but also by lung movements during
ventilation. To prove that the synthesized CRS is valid, Figure 3.8 shows all three signals
in a typical cardiac-dominated heart pixel with coordinates (x, y) = (43, 16) found with
the pixel detection algorithm.

0 10 20 30 40 50 60
-100

-50

0

50

100
Mixed signal in a heart pixel

0 10 20 30 40 50 60
-10

-5

0

5

10
VRS in a heart pixel

0 10 20 30 40 50 60

Time [s]

-100

-50

0

50

100
CRS in a heart pixel

Figure 3.8: First 60 seconds of the synthesized signals in a heart pixel in the time domain.
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3.3 Validation signal synthesis

As shown in Figure 3.8, the mixed signal and VRS in a heart pixel look very different
than in a lung pixel, and no slow oscillations can be observed in the CRS. Moreover, the
mixed signal is composed almost exclusively of the CRS since the amplitude of the VRS
is extremely small. This can be expected since the EIT signal in the heart is influenced
almost solely by cardiac activity.

To prove that the synthesized signals also have valid physiological properties in the fre-
quency domain, they are converted from the time domain using FFT and shown in Figure
3.9. The mixed signal and VRS in a lung pixel are displayed, whereas the CRS in a heart
pixel is shown. For clarity, only the first 20 seconds of each signal, with low and steady
frequencies, are shown.
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Figure 3.9: First 20 seconds of the synthesized EIT signals in the frequency domain

It is to be pointed out that the first cardiac and intermodulation harmonics almost overlap
with the third ventilation harmonic, and the second intermodulation harmonic almost
overlaps with the fifth ventilation harmonic. This also happens sometimes in real EIT
signals measured in patients.
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3 Methods and implementation details

Eventually, the synthesized validation signals are considered realistic enough to be used
for the validation and comparison of the implemented multi-pitch and source separation
algorithms presented in the following chapter.

3.4 Performance assessment metrics

Standard estimation accuracy metrics, namely the RMSE and bias, are used to measure
the accuracy of all the implemented algorithms. To better assess the overall algorithms’
performance, time domain, and, in the case of the multi-pitch estimation algorithms,
Bland-Altman plots are analyzed. Moreover, the time needed to process one input signal
sample is measured.

Eventually, the RMSE, bias, and LoA are combined into the so-called multi-pitch esti-
mation quality index (MEQI) for parameter optimization of the grid search and CLIE
algorithms. To adapt this approach for source separation, source separation quality in-
dex (SSQI) is developed by combining the RMSE, bias, and Pearson correlation coeffi-
cient.

3.4.1 RMSE and bias

For the accuracy assessment of the implemented multi-pitch estimation algorithms, RMSE
is defined as

RMSEi =

√√√√ 1
N

·
N∑

n=1
(f̂0,i[n] − f0,i[n])2, (3.22)

where i = {RR, HR} denotes the estimated frequency, N is the number of estimates, f0,i

is the vector of true frequencies, and f̂0,i is the vector of the estimated frequencies.

Bias (offset, mean error) is then given as

biasi = 1
N

·
N∑

n=1
(f̂0,i[n] − f0,i[n]). (3.23)

It is to be noted that the RMSE and bias are defined analogously for the accuracy assess-
ment of the implemented source separation algorithms since instead of the RR and HR,
the normalized impedance changes ∆Znorm are estimated.
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3.4 Performance assessment metrics

3.4.2 Bland–Altman plot

Being well-known in analytical chemistry or biomedicine, the so-called Bland–Altman plot
or, in other words, difference plot, is a valuable tool for analyzing the estimation accuracy,
aside from RMSE and bias. In our case, the vertical axis of a Bland-Altman plot shows
the estimation errors defined as

Ei = f̂0,i[n] − f0,i[n], (3.24)

where n ∈ [1, ..., N ] while the horizontal axis is defined by the average frequency values

f0,i = 1
2(f̂0,i + f0,i). (3.25)

Moreover, in a Bland-Altman plot, two horizontal lines at biasi ±LoAi are displayed. LoA
are defined as

LoAi = 1.96 · σEi
, (3.26)

where σEi
is the standard deviation of the estimation error. Therefore, a Bland-Altman

plot provides a complex overview of the estimation errors. Any trends or outliers can be
immediately seen in relation to the average frequencies, and different biases and LoA can
be easily compared.

3.4.3 Computation time

When considering a potential real-time application, the complete algorithm’s computation
time needed for one input signal sample must be lower than the EIT sampling period
Ts = 1

fs
= 1

50 Hz = 20 ms.

Therefore, the computation time is measured using MATLAB stopwatch functions tic and
toc. However, since they cannot reliably measure multiple subsequent time intervals shorter
than 100 ms, the total computation time TC is measured and divided by the number of
estimations N to find the average time needed to obtain one estimate of RR and HR

T est = TC

N
. (3.27)

The measurement is performed in Matlab R2021b installed on a Dell Inspiron 15 5505
laptop equipped with AMD Ryzen 7 4700U 2.00 GHz processor with integrated Radeon
graphics and 16 GB of RAM. The operating system is 64-bit Windows 11 Pro 22H2.
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3 Methods and implementation details

3.4.4 MEQI

For parameter optimization of the multi-pitch estimation algorithms, the MEQI is devel-
oped to provide one simple-to-understand measure of estimation accuracy. To obtain the
MEQI, the RMSE, bias, and LoA values obtained with different parameter settings are
first normalized in the range from zero to one. Next, the average of all the values is found.
Finally, for better interpretability, the MEQI is subtracted from 1

MEQI = 1 − 1
M

2∑
i=1

(RMSEi + biasi + LoAi), (3.28)

where M = 6 is the total number of the summed values and i = {1, 2} =̂ {RR, HR}
denotes the type of estimated frequency. This way, the MEQI values are also defined in
the range [0,1], which is very convenient and simple to understand.

3.4.5 SSQI

The RMSE, bias, and Pearson correlation coefficient are combined to measure the accuracy
of the source separation algorithms. Pearson correlation coefficient ρ is calculated using
MATLAB in-built function corrcoef which, according to the documentation [62], defines
the coefficient as

ρ(A, B) = 1
N − 1

N∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
= cov(A, B)

σAσB

, (3.29)

where µA, µB are the means and σA, σB are the standard deviations of A and B, respec-
tively. In our case, A and B are set as ŷ and y.

The SSQI is given as

SSQI =
(

RMSEV RS + RMSECRS

2

)
·
(

|biasV RS| + |biasCRS|
2

)
·
(

2
ρV RS + ρCRS

)
. (3.30)

Since the RMSE, bias, and Pearson correlation coefficient can have significantly different
values and the SSQI values are not in the range from zero to one, this is not as convenient
measure as MEQI. Moreover, unlike the MEQI, lower SSQI is better. However, the SSQI
provides one simple-to-calculate value for each version of the complete source separation
algorithm, thus making a direct comparison easier.
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4 Results and discussion

This chapter provides the results of the validation and comparison of the implemented
algorithms. First, the multi-pitch estimation algorithms are validated, and their versions
are compared. Next, the best-performing versions of the grid search and CLIE algorithms
are subjected to parameter optimization. In the end, the optimized grid search and CLIE
algorithms are combined with the comb filtering algorithm, and the complete algorithmic
ensemble is used for source separation in the synthesized validation EIT signal.

4.1 Multi-pitch estimation algorithms

The implemented versions of the grid search and CLIE algorithms are validated and com-
pared in the following sections using the synthesized validation signals, already described
in section 3.3.3. Four implemented versions of the grid search algorithm and two versions
of the CLIE algorithm, described in sections 3.2.2 and 3.2.3, are validated and compared
based on the multi-pitch estimation metrics presented in the previous section.

4.1.1 Grid search algorithm

For grid search validation, a balanced EIT signal with the component representation ratio
R = 1 in the pixel with coordinates (x, y) = (53,25), found with the pixel detection
algorithm (see 3.2.1), is used. Figure 4.1 shows its first 60 seconds in the time domain.
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Figure 4.1: First 60 seconds of a balanced EIT signal used for grid search validation.

For clarity, time plots and Bland-Altman plots obtained with each implemented algorithm
version are first shown. Consequently, a comparison table with all performance metrics is
provided, and the best-performing algorithm version is selected.
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Original implementation

No serious modifications are present in the original implementation of the grid search
algorithm. Only slight improvements of the parameter values presented in [32] are found
empirically, e.g., the processing window length W = 180 samples (3,6 s) and the Laplacian
prior scale parameters bRR = 0.5, bHR = 3.5. The number of previous estimations used
for Laplace prior calculation n = 10 was already presented in [36] and [32]. The following
figure shows the respective time-domain and Bland-Altman plots.
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Figure 4.2: Grid search version 1 - time-domain and Bland-Altman plots.
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4.1 Multi-pitch estimation algorithms

Laplace prior thresholding

The second version of the grid search algorithm includes the Laplace prior thresholding
described in section 3.2.2. The parameter p defined by equation 3.5 is initially set as 0.75.
No other parameters of the algorithm are changed. Thus, the respective time-domain and
Bland-Altman plots, shown in the following figure, are the same as those shown in Figure
4.2.
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Figure 4.3: Grid search version 2 - time-domain and Bland-Altman plots.
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Adaptive parameters

Adaptive parameters are implemented in the third version of the grid search algorithm,
allowing it to follow fast RR and HR changes better. As explained in 3.2.2, the W = 750
samples is set to always include at least two respiration cycles while the cropping window
of the adaptive size is introduced. Moreover, the adaptive n is introduced according to
equation 3.8 with the initial value of r set initially as 0.15. The following figure shows the
respective time-domain and Bland-Altman plots.
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Figure 4.4: Grid search version 3 - time-domain and Bland-Altman plots.
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4.1 Multi-pitch estimation algorithms

Super-resolution

In the fourth implemented version, the super-resolution, described in section 3.2.2, is
introduced. The following figure shows the respective time-domain and Bland-Altman
plots.
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Figure 4.5: Grid search version 4 - time-domain and Bland-Altman plots.
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Best-performing version selection

The following table with all the obtained values of the performance metrics is provided
to explain the selection of the best-performing version of the grid search algorithm. All
the obtained values of the performance metrics and the measured computation times are
compared. Moreover, the time-domain and Bland-Altman plots are analyzed.

Version 1 2 3 4
RMSERR [bpm] 2.90 2.90 3.14 3.21
RMSEHR [bpm] 5.39 5.39 3.24 3.24

biasRR [bpm] -0.30 -0.30 0.04 -0.52
biasHR [bpm] -0.77 -0.77 -0.65 -0.94
LoARR [bpm] 5.65 5.65 6.16 6.21
LoAHR [bpm] 10.45 10.45 6.22 6.08

TC [s] 177.86 38.92 37.49 39.89
T est [ms] 30.58 6.69 7.15 7.60

Table 4.1: Performance metrics obtained with each version of the grid search algorithm.

When analyzing Table 4.1 and Figures 4.2, 4.4, and 4.5, it can be seen that the accuracy and
robustness of the HR estimation is improved when the adaptive parameters are introduced
in version 3. Although the accuracy in RR estimation is slightly lower than with the
original implementation, the difference is negligible.

For a potential real-time application, it is essential that the average time needed to obtain
one estimation T est is significantly lowered when the Laplace prior thresholding is intro-
duced in version 2. Another improvement is achieved when the adaptive parameters are
first implemented in version 3 and, consequently, in version 4.

The super-resolution, implemented in version 4, does not seem to provide any improve-
ments neither on the accuracy nor robustness of the estimation. Therefore, version 3 of
the grid search algorithm, which includes the Laplace prior thresholding and adaptive
parameters, is selected for the parameter optimization described in section 4.2.1.

4.1.2 Iterative CLIE algorithm

For the validation of the implemented CLIE algorithms, different EIT signals are used.
Similarly to the grid search algorithm validation, respective time plots and Bland-Altman
plots obtained using each implemented algorithm version are first shown. Next, a com-
parison table with all performance metrics is provided, and the best-performing algorithm
version is selected.

56



4.1 Multi-pitch estimation algorithms

LP and HP filtering

As explained in section 3.2.3, the first version of the iterative CLIE algorithm, based on
the LP and HP filtering, is designed to work with two different input signals, ventilation-
dominated and cardiac-dominated. Therefore, the mixed signals from typical lung and
heart pixels, already shown in Figures 3.7 and 3.8, are used. The following figure shows
the respective time-domain and Bland-Altman plots.
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Figure 4.6: CLIE version 1 - time-domain and Bland-Altman plots.
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LP and comb filtering

Based on the LP and comb filtering, the second implemented version of the iterative CLIE
algorithm needs only one input signal (see 3.2.3). Therefore, the same balanced signal as
for the grid search algorithm validation, shown in Figure 4.1, is utilized.
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Figure 4.7: CLIE version 2 - time-domain and Bland-Altman plots.
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Best-performing version selection

Version 1 2
RMSERR [bpm] 2.15 3.73
RMSEHR [bpm] 2.81 24.17

biasRR [bpm] 0.16 0.68
biasHR [bpm] -0.01 6.89
LoARR [bpm] 4.20 7.19
LoAHR [bpm] 5.52 45.41

TC [ms] 530.56 560.77
T est [ms] 0.10 0.10

Table 4.2: Performance metrics values obtained with each CLIE algorithm version.

When analyzing Table 4.2 and Figures 4.6 and 4.7, it can be seen that the robustness of
the RR and HR estimation is much better with the first CLIE algorithm version.

On the one hand, the comb filter implemented in version 2 produces some outliers and
generally makes the iterative CLIE implementation more complex. On the other hand,
it demonstrates that only one signal can be used when performing multi-pitch estimation
using the modified CLIE algorithm. With additional parameter optimization, the outliers
could be removed to make the estimation almost as with the first version.

However, the simpler and more effective version 1, providing a more robust estimation, is
selected for parameter optimization, described in section 4.2.2.

4.2 Parameter optimization

The accuracy of the open-loop source separation algorithms highly depends on the accu-
racy of the multi-pitch estimation algorithms. Therefore, the best-performing versions of
the grid search (version 3) and CLIE (version 1) algorithms are subjected to parameter op-
timization to improve their performance further. For this purpose, the same input signals
as for the validation of each algorithm’s versions are used.

Similarly to the validation of the algorithms’ versions, the parameter optimization of the
grid search algorithm is described first, followed by the parameter optimization of the
iterative CLIE. Since all the parameters are described in detail in chapter 3, only a simple
list with references follows.
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4 Results and discussion

parameter reference algorithm type
r equation 3.8 grid search
b equation 3.2 grid search
p equation 3.5 grid search
s paragraph containing equation 3.13 CLIE

M second paragraph below equation 3.13 CLIE

Table 4.3: List of optimized parameters of the multi-pitch estimation algorithms.

During the optimization, the RR and HR estimation is performed repeatedly with each
algorithm using a pre-defined set of parameter values. These sets are swept over using a for-
loop (grid search-inspired optimization). The optimum value is then found by maximizing
the MEQI described in section 3.4.4.

Moreover, the respective T est values are compared to confirm that the selected parameter
does not significantly increase the algorithm’s computation time. To keep this section
concise, all the obtained MEQI and computation time figures are shown in appendices A.1
and A.2.

Finally, when the optimal parameter value is found, the respective time-domain and Bland-
Altman plots are analyzed to confirm the selection. The verified parameter value is then set
permanently so the remaining parameters are optimized using the current best-available
algorithm setting.

4.2.1 Grid search algorithm

First, the r parameter of the grid search algorithm is optimized with the set of values
{0.05, 0.10, ..., 1.00}. To optimize the b parameter, a 2-column matrix of all the possible
combinations of bRR and bHR is defined. The optimization is performed multiple times to
find the optimal range with a coarse set of values and then to search this range with a
much finer set to find the optimal values as accurately as possible. Finally, the highest
value of p resulting in no loss in the algorithm’s performance is identified in the set of
values {0.40, 0.45, ..., 1.00}.

Figure 4.8 shows the time-domain and Bland-Altman plots obtained with the optimized
grid search algorithm.
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Figure 4.8: Optimized grid search algorithm - time-domain and Bland-Altman plots.

Table 4.4 shows the parameter values before and after the optimization.

parameter original values optimized values
r 0.15 0.20

b = [bRR, bHR] [0.5, 3.5] [0.27, 2.22]
p 0.75 0.85

Table 4.4: Original and optimized values of the grid search algorithm parameters.
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Table 4.5 shows the values of the performance metrics obtained before and after the op-
timization to prove that the optimized parameter values improve the algorithm’s perfor-
mance.

before after
RMSERR [bpm] 3.14 2.87
RMSEHR [bpm] 3.24 3.25

biasRR [bpm] 0.04 0.13
biasHR [bpm] -0.65 -0.66
LoARR [bpm] 6.16 5.63
LoAHR [bpm] 6.22 6.25

TC [s] 37.49 5.65
T est [ms] 7.15 1.08

Table 4.5: Performance metrics obtained before and after the optimization.

With the optimal values of the r and b parameters, the grid search algorithm performs
slightly better in accuracy and robustness. The values of the accuracy metrics shown in
Table 4.5 prove that the estimation is quite accurate considering the ranges of RR and HR
values are more than ten times higher (12 to 46 bpm for RR, 50 to 180 bpm for HR).

However, the most noticeable improvement is achieved with parameter p set as 0.85 since
the average computation time of one estimation T est reaches close to 1 ms. This finally
makes the grid search algorithm competitive compared to the iterative CLIE.

4.2.2 Iterative CLIE algorithm

Similarly to the b parameter in the grid search algorithm, s and M are composed of
two parameters (one for RR and one for HR estimation). However, the RR and HR
estimations of the iterative CLIE algorithm version 1 are entirely independent. Therefore,
the optimization is performed as there would be four stand-alone parameters.

Figure 4.9 shows the time-domain and Bland-Altman plots obtained with the optimized
CLIE algorithm.
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Figure 4.9: Optimized iterative CLIE algorithm - time-domain and Bland-Altman plots.

Table 4.6 shows the parameter values before and after the optimization.

parameter original values optimized values
s = [sRR, sHR] [50, 25] [92, 25]

M = [MRR, MHR] [50, 25] [281, 310]

Table 4.6: Original and optimized values of the CLIE algorithm parameters.

Table 4.7 shows the performance metrics values obtained before and after the optimization
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to prove that the optimized parameter values improve the algorithm’s performance.

before after
RMSERR [bpm] 2.15 1.74
RMSEHR [bpm] 2.81 2.00

biasRR [bpm] 0.16 0.24
biasHR [bpm] -0.01 -0.19
LoARR [bpm] 4.20 3.37
LoAHR [bpm] 5.52 3.19

TC [ms] 530.56 541.74
T est [ms] 0.10 0.10

Table 4.7: Performance metrics obtained before and after the optimization.

With the optimal values of the s and M parameters, the accuracy and robustness of the
iterative CLIE algorithm are noticeably improved compared to the original parameter
values.

When comparing Table 4.7 with Table 4.5, it seems that the CLIE algorithm performs
slightly better than the grid search algorithm. However, it is to be noted that the grid
search algorithm, unlike the CLIE, does not use any post-processing. Since the grid search-
estimated RR and HR fluctuate even around the steady high plateau in the true RR and
HR, some additional moving average window could be applied to smoothen the estima-
tion.

Although the parameter optimization does not lower the T est = 0.1 ms, the iterative
CLIE algorithm is still approximately ten times faster than the optimized grid search
algorithm.

4.3 Source separation algorithms

Eventually, the best-performing optimized versions of the multi-pitch estimation algo-
rithms are combined with the comb filtering algorithm, as explained in section 3.2.4. Fur-
thermore, the true RR and HR values are used to determine whether the accuracy of the
multi-pitch estimation algorithms limits the accuracy of the comb filtering algorithm.

Validation of the three complete algorithmic ensembles is performed using the synthesized
validation signals described in detail in section 3.3.3, namely the signals in a typical lung
pixel (see 3.7).

Figures 4.10, 4.11, and 4.12 show the results of the source separation performed using
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4.3 Source separation algorithms

the comb filtering algorithm combined with the grid search and CLIE algorithms and the
true RR and HR values used for the validation signal synthesis. The complete algorithmic
ensemble versions are numbered from one to three, respectively.
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Figure 4.10: Source separation using comb filtering combined with the grid search algorithm.
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Figure 4.11: Source separation using comb filtering combined with the CLIE algorithm.
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Figure 4.12: Source separation using comb filtering and the true RR and HR values.

Table 4.8 shows the values of performance metrics relevant to the source separation al-
gorithm. These are RMSE, bias, Pearson correlation coefficient ρ, SSQI (see 3.4.5), TC ,
and T est. The versions of the complete algorithmic ensemble for source separation are
numbered in the same order as the above time-domain plots are presented.

Version 1 2 3
RMSEV RS [a.u.] 256.53 248.79 249.38
RMSECRS [a.u.] 57.67 63.22 65.86
biasV RS [a.u.] -1.35 -1.87 -2.37
biasCRS [a.u.] 0.83 -0.92 -1.06

ρV RS [a.u.] 0.97 0.97 0.97
ρCRS [a.u.] 0.48 0.39 0.35
SSQI [a.u.] 235.81 320.15 410.52

TC [s] 6.00 0.57 0.13
T est [ms] 1.15 0.11 0.02

Table 4.8: Performance metrics obtained with each source separation algorithm version.

In the end, the first two implemented source separation algorithm versions show that the
proposed approach might be applicable in real time. The average computation times of
one estimation T est are low enough, and the separated signals’ waveforms show correct
frequency and phase relations. Although the amplitudes of the filtered signals compared
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4.3 Source separation algorithms

to the true signals are smaller, especially those of the VRS, this could be addressed with
further comb filter optimization or signal amplification for compensation.

When the true RR and HR are used, the accuracy is not significantly improved. Although
the slightly worse performance metrics, shown in table 4.8 under version 3, happen mainly
due to longer signals, it is important that they are not noticeably better. Consequently,
this proves that the accuracy of the multi-pitch estimation algorithms is good enough not
to limit the implemented comb filtering algorithm’s accuracy significantly.

As shown in Table 4.8, version 1 of the complete algorithm performs slightly better. How-
ever, version 2 is almost ten times faster. The computation time is still a big concern since
the EIT image usually has 64x64 = 4096 pixels. That means 4096 samples of EIT signals
would have to be separated in less than 20 ms to provide a complete source separation of
the EIT video with a frame rate of 50 fps.

It is to be noted that the grid search is currently implemented in MATLAB only. There-
fore, converting the critical implementation parts into C would significantly decrease the
computation time. However, even with the CLIE algorithm, the time needed to separate
4096 samples would be 0.02 · 4096 = 81.92 ms. Thus, lowering the computation time is
still a critical target for a potential real-time application.
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Figure 4.13: Detail of the source separation results shown in Figure 4.11.

As shown in Figure 4.13 and Table 4.9, the separation is more accurate when the true RR
and HR are higher. This is probably due to the fixed size of the comb filter processing win-
dow. As mentioned in section 3.2.4, in a potential real-time implementation, the adaptive
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window size would be forced by the multi-pitch estimation algorithm, making the comb
filtering more dynamic and improving its robustness.

RMSEV RS [a.u.] 286.09
RMSECRS [a.u.] 35.96
biasV RS [a.u.] 2.50
biasCRS [a.u.] -0.57

ρV RS [a.u.] 0.96
ρCRS [a.u.] 0.83
SSQI [a.u.] 275.46

Table 4.9: Performance metrics obtained with the signals shown in Figure 4.13.
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5 Conclusion

This work investigates and compares different dynamic source separation approaches to
find the most suitable one for real-time source separation in EIT. First, after analyzing
various possibilities, two selected multi-pitch estimation algorithms are implemented, one
based on the grid search approach and the other on interval length estimation. These
algorithms are combined with a simple comb filtering algorithm to serve as a proof-of-
concept.

To validate and compare all the implemented algorithm combinations, different perfor-
mance assessment metrics are introduced, and a validation signal is generated using an
existing EIT signal synthesizer. This novel approach can provide a different point of view
on the source separation algorithms since traditional validation using real EIT signals
measured in patients cannot provide the ground truth for the EIT signal’s components.
Moreover, using the ground truth signals, the parameters of the multi-pitch estimation
algorithms are optimized to improve the algorithms’ performance further.

Eventually, the optimized multi-pitch estimation algorithms can provide fast and accurate
frequency estimation from EIT signals (RMSE from 1.74 to 3.25 bpm and bias from -0.66
to 0.24 bpm) even for a challenging input EIT signal generated with RR between 12 and
46 bpm and HR between 50 and 180 bpm.

Consequently, the complete source separation algorithms prove that the proposed approach
is applicable for separating the two main EIT signal components. The separated signals
show correct frequency and phase relations, and the computation times are low enough to
cope with the EIT video frame rate of 50 fps.

However, the presented results are obtained only with a synthesized signal in one lung
pixel. When a proper real-time implementation at the bedside is considered, additional
modifications of the implemented algorithms must be made to improve accuracy and ro-
bustness and further reduce computation time.

Nevertheless, despite these limitations, the presented algorithms represent satisfying proofs
of the general concept. The main focus of future research should be implementing algo-
rithms based on harmonic regression, as this is another highly promising method, and
using real EIT signals measured in patients for comparison and validation.
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A Parameter optimization figures

A.1 Grid search algorithm

Figure A.1 shows all the values of MEQI and T est obtained during r parameter optimization
using the set of values {0.05, 0.10, ..., 1.00}. With the optimum r∗ = 0.20, the grid search
achieves MEQI of 0.84 and T est of 18.14 ms. Although the lowest T est value is achieved
with r = 0.15, the relative difference in computation time of less than 0.4 % is not really
important.
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Figure A.1: MEQI (left) and T est (right) - parameter r optimization.

Figure A.2 shows the values of MEQI and T est obtained during b parameter optimiza-
tion. A 2-column matrix of all the possible combinations is defined. The optimal values
b∗

RR = 0.27 and b∗
HR = 2.22 achieve MEQI = 0.99 and T est = 10.98 ms. Similarly to the

optimization of the r parameter, the minimum T est is slightly lower for different values of
b but the difference is negligible.

77



A Parameter optimization figures

0 50 100 150

Parameter value index [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
E

Q
I 

[a
.u

.]

MEQI plot

0 50 100 150

Parameter value index [-]

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
Average estimation time plot

Figure A.2: MEQI (left) and T est (right) - parameter b optimization.

Figure A.3 shows all the values of MEQI and T est obtained during p parameter optimization
using the set of values {0.40, 0.45, ..., 1.00}. The optimum p∗ = 0.85 achieves MEQI of
1.00 and T est of 0.98 ms. Since any higher value of p leads to a significant loss in the
estimation accuracy, this the lowest achievable T est.
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Figure A.3: MEQI (left) and T est (right) - parameter p optimization.
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A.2 Iterative CLIE algorithm

A.2 Iterative CLIE algorithm

Figures A.4 and A.5 show all the values of MEQI and T est obtained during s parameter
optimization. With the optimal values s∗

RR = 92 and s∗
HR = 25, CLIE achieves MEQI of

[0.83, 1.00] and T est of [0.08, 0.05] ms.
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Figure A.4: MEQI (left) and T est (right) - parameter sRR optimization.
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Figure A.5: MEQI (left) and T est (right) - parameter sHR optimization.
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Figures A.6 and A.7 show all the values of MEQI and T est obtained during M parameter
optimization. With the optimal values M∗

RR = 281 samples and M∗
HR = 310 samples,

MEQI of [0.93, 0.87] and T est of [0.06, 0.06] ms are achieved.

0 100 200 300 400

Parameter value index [-]

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
E

Q
I 

[a
.u

.]

MEQI plot

0 100 200 300 400

Parameter value index [-]

0.062

0.064

0.066

0.068

0.07

0.072

0.074

0.076

0.078
Average estimation time plot

Figure A.6: MEQI (left) and T est (right) - parameter MRR optimization.

0 100 200 300 400

Parameter value index [-]

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
E

Q
I 

[a
.u

.]

MEQI plot

0 100 200 300 400

Parameter value index [-]

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1
Average estimation time plot

Figure A.7: MEQI (left) and T est (right) - parameter MHR optimization.
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