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Abstract

In this thesis vortex curves in systems
with periodically placed point interactions
of equal strength are examined. The first
part of the thesis deals with the necessary
theory concerning this topic. Then a code
in Wolfram Mathematica 13.2 is set up to
compute vortex curves numerically. This
code is utilized to deal with the cases of a
finite subset of points on the straight line,
in the square lattice and in the (regular)
hexagonal lattice. It has been found out
that for some strength parameters of the
point interactions and for certain range
of deviations from the perpendicularly ap-
proaching particle (8° ± 0.5°), the vortex
curves form larger loops around all the
point interactions. Moreover, in the case
of the lattice, new vortex lines occur in
front of and behind the lattice itself.

Keywords: vortex curves, point
interaction, delta interaction, global
effects
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Abstrakt

V této bakalářské práci jsou zkoumány ví-
rové křivky v periodických systémech bo-
dových interakcí stejné síly. V první části
práce je shrnuta teorii potřebná pro dané
téma. Dále byl vytvořen kód v programu
Wolfram Mathematica 13.2 pro numerický
výpočet vírových křivek. Z konečně peri-
odických systémů byly ke zkoumání zvo-
leny konfigurace stejně vzdálených bodů
na přímce, v čtvercové mřížce a pravi-
delné šestiúhelné mřížce. Díky kódu bylo
zjištěno, že pro některé hodnoty síly bo-
dových interakcí a do jisté odchylky od
kolmého směru dopadu částice (8° ± 0.5°)
tvoří vírové čáry větší smyčky okolo všech
interakcí. V případě mřížky se dokonce
objevily vírové smyčky před, a za mřížkou
samotnou.

Klíčová slova: vírové křivky, bodová
interakce, delta interakce, globální jevy

Překlad názvu: Vírové křivky v
systémech s bodovými interakcemi
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Introduction

The present bachelor thesis deals with the vortex curves in systems with point
interactions. The vortices are an important effect and they found their way
into the different branches of physics, which shall be discussed in more detail
in the following two sections. They appear in nonlinear differential equations
– Navier-Stokes for fluids and Ginsburg-Landau for superfluids, however they
also emerge in linear equations such as the Schrödinger equation, when
describing scattering. We will show some results of scattering on a finitely
periodic structures, described by means of the Schrödinger Hamiltonian of
the type H = −∆ +

∑N
i=1 λiδi(·).

0.1 Vortices

In physics vortex means a circular motion of particles around a curve in some
area of liquid. It is defined by the vorticity in the fluid, which indicates the
tendency of the fluid to rotate, that can be defined as −→v ≡ ∇ × −→u , where −→u
is the velocity. We can distinguish vortices according to their shape - tornado,
where the axis can be curved but it is not closed; and ring, where the axis is
circular (i.e. closed). They are often observed in hydrodynamics.

Motion in hydrodynamics can be described by partial differential equations.
Here we will focus on Newtonian fluids, i.e. those that obey Newton’s law
of viscosity, which is the simplest model of viscous fluids. This law puts
in relation the strain rate ∇u (i.e. the rate of change of deformation over
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time) and the viscous stress τ (both 3 × 3 matrices) through constant (for a
particular temperature) viscosity (fourth order) tensor µ

τ = µ(∇u). (0.1.1)

In the case of an incompressible isotropic (mechanical properties are the same
along all the axes) fluid, this equation simplifies into the following form

τ = µ
du

dx
. (0.1.2)

As we can see, the strain rate, represented by the shear rate du
dx , and the

stress, in the form of the shear stress τ , are in direct proportion with a scalar
proportionality constant, the shear viscosity µ.

The motion of a Newtonian fluid can be described by the incompressible
Navier-Stokes (N-S) equation

∂u
∂t

+ (u · ∇)u − ν∆u = −1
ρ

∇p+ g, (0.1.3)

where p is the pressure, ρ is the mass density, g are external forces and ν is
the kinematic viscosity defined as ν = µ

ρ with µ being the dynamic viscosity.
This equation is nonlinear. The time dependent solution u(t) is interpreted as
the flow velocity and it is a vector field that for any point in the fluid and any
time results in vector of velocity. The N-S equation is solvable only for some
special cases, otherwise we have to apply numerical methods to find solutions.
In addition, it is still unknown, whether there is always a smooth solution to
this equation. In fact this belongs, together with six other questions, to the
"Millennium Prize Problems" supported by the Clay Mathematics Institute.

If we simplify the N-S equation by taking the viscosity equal to zero, we
will arrive at the incompressible Euler equations (E), which can be formulated
in two forms – the convective form (= Lagrangian form)

Dρ

Dt
= 0, Du

Dt
= −∇p

ρ
+ g, ∇ · u = 0, (0.1.4)

where we use notation from L-S. The first equation is the incompressible
continuity equation and the third equation is the incompressibility constraint.
The second form is called the conservation form (= Eulerian form)

∂

∂t

ρj
0

 + ∇

 j
1
ρ j ⊗ j + pI

j
ρ

 =

0
f
0

 , (0.1.5)

where j = ρu is the momentum density, f = ρg is the force density and I is
the identity matrix. Both of these forms are still nonlinear.

2



.................................. 0.2. Quantum vortices

0.2 Quantum vortices

Vortices can also be observed in superfluids and superconductors (such as liq-
uid helium and atomic gases), where they are called, in view of their properties,
quantum vortices. In this case they are described as flux circulation.

Superfluid is a state of fluid with zero viscosity, so that the motion in the
fluid is frictionless and therefore without any loss of kinetic energy. In the
context of vortices, this would result in a vortex in a superfluid that would
spin endlessly. Superfluidity occurs, for example, in helium (specifically in
the isotopes 3He, 4He) when reaching very low temperatures [15].

Superconductors are materials, in which the electrical resistance suddenly
changes to zero at a critical temperature, which is typical for each super-
conductor – compared to normal conductors, where the resistance gradually
decreases as the temperature approaches the absolute zero. During the tran-
sition to its superconductive state, cooled below the critical temperature, the
superconductor exhibits the Meissner effect, where all magnetic flux lines are
expelled from the superconductor. Superconductors can be further divided
into two groups, depending on how the Meissner state (the state in which
none or just a small amount of magnetic field is inside) breaks down, when
a strong magnetic field above the critical value Hc1 is applied. The type-I
superconductors will suddenly break the Meissner state when the critical
magnetic field strength is exceeded, whereas the type-II will change into the
mix of ordinary and superconducting states, known as the vortex state, in
which part of the magnetic flux pierces the superconductor. This process
also features formation of magnetic field vortices called fluxons or Abrikosov
vortices. As the strength of the field rises further, the material is being pierced
by the magnetic flux more and more and the density of vortices increases
until the second critical value Hc2 is reached and there the type-II super-
conductor changes from the mixed state into the state, where the Meissner
effect is broken completely. A fluxon can be described as a small part of
the material in the ordinary state surrounded by the superconducting state,
where the supercurrents circulate around the part in the ordinary state. As
discovered by B. S. Deaver, W. M. Fairbank [5] and R. Doll, M. Näbauer [6]
independently in 1961, the magnetic flux crossing is then quantized.

In superfluids, we have a set of the Ginsburg-Landau (G-L) equations

αψ + β|ψ|2ψ + 1
2m∗ (−iℏ∇ − e∗A)2ψ = 0,

∇ × B = µ0j, j = e∗

m∗ Re{ψ∗(−iℏ∇ − e∗A)ψ},
(0.2.1)

3
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nonlinear equations describing the motion, where e∗ is an effective charge and
m∗ is the effective mass – the mass which the particle appears to have when
it responds to forces and interacts with other particles. A is the magnetic
vector potential, which satisfies A = ∇ × B, and j is the electric current
density (without dissipation).

These G-L equations arise from the second-order phase transition, that
Landau studied in 1930s [12], pursuing general theory of continuous (second-
order) phase transitions.

The classification of the phase transitions was originally proposed by P.
Ehrnfest and was based on the behaviour of the thermodynamic free energy,
which depends on other thermodynamic variables. The order of the transition
has been determined by the lowest derivative of the free energy that was not
continuous at the transition (see for example [10]). Hence the terminology
reflecting the behaviour of the first derivative: discontinuous ≡ first order
and continuous ≡ second order. Later, the classification was reformulated,
bearing the same names, to include other situations that did not fit into the
original classification, such as the Ising model.

Landau’s theory builds upon the premise that the free energy of system
should obey symmetry of the Hamiltonian and that it should be analytic
in the order parameter and its gradients. This allows us to rewrite the free
energy in the vicinity of the critical temperature Tc as the Taylor expansion
in the order parameter.

During the phase transition, the symmetry is often broken. This symmetry
break can be parameterised by the order parameter, usually a real number. In
some cases of the phase transition, for example superfluids and ferromagnetics,
the parameter can be a complex number, a vector or a tensor, depending on
the degree of freedom of the phase transition.

Ginsburg and Landau discussed the form of the order parameter for the
superconductor and arrived at the complex field

ψ(r) = |ψ(r)|eiϕ(r). (0.2.2)

|ψ(r)|2 can be interpreted in the same way as in quantum mechanics – as
a measure of the local superfluid density. Later there appeared additional
interpretation as a fraction of electrons that have condensed into the superfluid
state [8].

In both of the hydrodynamic equations (N-S, E), as well as in the super-
conductor equations (G-L) we can find vortices – solutions that have non-zero

4



.................................. 0.2. Quantum vortices

vorticity. One of the few exactly solvable N-S equations, the Taylor-Green
vortex [14], can serve us as an example in hydrodynamics. In the supercon-
ductors, vortices have been used by A. Abrikosov to explain the magnetic
behavior of the type-II superconductors [1]. However, the study of vortices is
not necessarily bound to nonlinear partial differential equations. Vortices can
also be found in linear differential equations, such as a Schrödinger equation,
when describing a scattering. This has been observed, for instance, in [4], [7],
and it will be the subject of our investigation here.
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Chapter 1

Formulation

In this chapter we will describe the point interactions and some of their
properties using the textbook [2].

1.1 The point interaction in 3D

In this thesis we consider a quantum mechanical description of a particle
interacting with N scatters on potentials Vi, i ∈ {1, ..., N}, which can be
described by the following Schrödinger Hamiltonian

H = −∆ +
N∑

i=1
λiVi, (1.1.1)

where ∆ =
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
denotes the Laplace operator in L2(R3). If we

take the potential in the form of a 3-dimensional Dirac’s δ-function we get a
formal Hamiltonian, which will be given a rigorous meaning later,

H = −∆ +
N∑

i=1
λiδi, (1.1.2)

where δi(x) = δ(x − xi), and xi,...,N = (xi, yi, zi) are N distinct points in R3

with a formal coupling constant λi ∈ (−∞,∞], interpreted as the strength
of the point source located at xi. The free particle case corresponds to
λ = 0, although we will see that the same situation for the transformed
point interaction strength α corresponds to α = ∞. Resolvents of these

9



1. Formulation .....................................
models can be expressed explicitly in terms of the locations and strengths of
the sources. Such models appear in the literature under the names: "point
interaction model", "zero-range potential model", "delta interaction model",
"Fermi pseudopotential model" or "contact interaction model". A wider
historical context of this theory can be found, for example, in [2].

1.2 One-centre point interaction

The treatment of the point-interaction model is based on the restriction to func-
tions that vanish at the location of point interaction. For the negative Laplace
operator, the domain is D(−∆) := {ψ ∈ L2(R3)| − ∆ψ ∈ L2(R3)} = H2(R3),
which is a Hardy space and here the Laplacian is self-adjoint. However,
starting with the one-centre case

H = −∆ + λδ(· − y) (1.2.1)

if we restrict the laplacian to the functions f ∈ C∞
c (R3 \ {y}), where

f ∈ C∞
c (X) ⇔

{
f ∈ C∞(X)
supp(f) := {x ∈ X | f(x) ̸= 0}

(1.2.2)

i.e. the set of smooth, compactly supported functions which vanish in the
vicinity of the point y, we get Hy = −∆|C∞

c (R3\{y}), which is not self-adjoint
anymore. Taking a closure Ḣy of Hy in L2(R3) (i.e. D(Ḣy) = H2,2

0 (R3 \ {y}),
where Hm,n denotes Sobolev spaces), we search for a self-adjoint extension of
this operator, which we could identify with the formal Hamiltonian. According
to [11] we can write its adjoint as

Ḣ∗
y = −∆, D(Ḣ∗

y ) = {g ∈ H2,2
loc (R3 \ {y}) ∩L2(R3) | ∆g ∈ L2(R3)}, y ∈ R3.

(1.2.3)
The deficiency indices n± can be deduced from (1.2.4) with all of its assump-
tions, since they are defined as n± = dimKer(Ḣ∗

y ± k2). The unique solution
of

Ḣ∗
yψ(k) = k2ψ(k), ψ(k) ∈ D(Ḣ∗

y ), k2 ∈ C \ R, Im(k) > 0 (1.2.4)

can be calculated and has the following form

ψ(k, x) = eik|x−y|

|x− y|
. (1.2.5)

Because of the requirement that the functions must belong to L2(R3), we
arrive at one acceptable solution for each deficiency index, i.e. the deficiency
indices are (n+, n−) = (1, 1). From that it follows that Ḣy has a self-adjoint

10



.............................. 1.2. One-centre point interaction

extension [3]. With the help of the Theorem 1.2.2, we obtain a 1-parameter
family of self-adjoint extensions

D(Hθ,y) = {g + cψ+ + ceiθψ− | g ∈ D(Ḣy), c ∈ C},
Hθ,y(g + cψ+ + ceiθψ−) = Ḣyg + icψ+ − iceiθψ−, θ ∈ [0, 2π), y ∈ R3,

(1.2.6)

where (including the normalisation constant)

ψ±(x) = ei
√

±i|x−y|

4π|x− y|
, x ∈ R3 \ {y}, Im

√
±i > 0. (1.2.7)

Then it is possible to implement spherical coordinates with the centre in
y, in which we can decompose L2(R3) functions into the spherical (with S2

being an unit sphere in R3) and the radial part

L2(R3) = L2((0,∞); r2dr) ⊗ L2(S2). (1.2.8)

With the use of the unitary transformation

U : L2((0,∞); r2dr) −→ L2((0,∞); dr), (Uf)(r) = rf(r), (1.2.9)

it is possible to rewrite the radial part

L2((0,∞); r2dr) = U−1L2((0,∞); dr). (1.2.10)

The basis for the spherical part consists of spherical harmonics {Yℓ,m | ℓ ∈
N0, m = 0,±1, ...,±ℓ}. Using the notation where [f1, ..., fn] is linear span of
the vectors f1, ...fn, these two simplifications result in the following form of
the decomposition

L2(R3) =
∞⊕

ℓ=0
U−1L2((0,∞); dr) ⊗ [Yℓ,−ℓ, ...Yℓ,0, ...Yℓ,ℓ]. (1.2.11)

With respect to this decomposition, and with the help of unitary translation
Ty to the centre y (i.e. (Tyg)(x) = g(x + y), g ∈ L2(R3), y ∈ R3), we can
rewrite Ḣy

Ḣy =T−1
y

{ ∞⊕
ℓ=0

U−1ḣℓU ⊗ 1

}
Ty, y ∈ R3,

ḣℓ = − d2

dr2 + ℓ(ℓ+ 1)
r2 , r > 0, ℓ = 0, 1, 2, ...,

D(ḣ0) ={ϕ ∈ L2((0,∞)) |ϕ, ϕ′ ∈ ACloc((0,∞)); ϕ(0+) = ϕ′(0+) = 0;
ϕ′′ ∈ L2((0,∞))},

D(ḣℓ) ={ϕ ∈ L2((0,∞)) |ϕ, ϕ′ ∈ ACloc((0,∞));

− ϕ′′ + ℓ(ℓ+ 1)
r2 ϕ ∈ L2((0,∞))}, ℓ ≥ 1,

(1.2.12)

11



1. Formulation .....................................
where ACloc((0,∞)) denotes the set of absolutely continuous functions on
(0,∞).

The unit operator 1 in the angular part is obviously self-adjoint. By
standard results [13] ḣℓ, ℓ ≥ 1 are self-adjoint but the case for ℓ = 0 requires
additional examination. ḣ0 has deficiency indices (1, 1) and can therefore be
parameterized by a 1-parameter family of self-adjoint extensions h0,α

h0,α = − d2

dr2 ,

D(h0,α) ={ϕ ∈ L2((0,∞))|ϕ, ϕ′ ∈ ACloc((0,∞)); −4παϕ(0+) + ϕ′(0+) = 0;
ϕ′′ ∈ L2((0,∞))}, −∞ < α ≤ ∞.

(1.2.13)

Using g̃(r) = rg(r), g̃ ∈ D(ḣ0), and substituting (1.2.7) into the linking
condition at 0, where the δ-function is located in transformed coordinates
(i.e. ψ′(0+) − ψ′(0−) = αψ(0) generally and here restricted to the interval
[0,∞) and thus effectively evaluating ψ′(0−) = 0), we obtain

4πα
[
g̃(r) + c

4πe
i
√

ir c

4πe
iθei

√
−ir

]∣∣∣∣
r=0+

=

= d

dr

[
g̃(r) + c

4πe
i
√

ir c

4πe
iθei

√
−ir

]∣∣∣∣
r=0+

= c

4πe
i 3π

4 − eiθei π
4 ,

(1.2.14)

where the third equality evaluates the middle term of the equation. From
this we have

α = 1
4π cos

(
π

4

) [
tan

(
θ

2

)
− 1

]
, (1.2.15)

and finally we can write the 1-parameter family of self-adjoint extensions of
Ḣy as

Hθ,y = T−1
y

{[
U−1h0,αU ⊕

∞⊕
ℓ=1

U−1ḣℓU

]
⊗ 1

}
Ty. (1.2.16)

The parameter α can be interpreted as a "renormalised coupling constant" λ
in the one-point case of (1.1.1), i.e. as a strength parameter of the δ-function,
where the case α = ∞ leads to the case of the "free Hamiltonian" H = −∆.
In this way we arrive at Theorem 1.2.1 describing self-adjoint extensions.

In the following section 1.2.1.2 we have theorems describing the resolvent
(using Krein’s formula 1.2.3) and domain, and in section 1.2.1.3, Theorem
1.2.6 describes some of the spectral properties of these extensions.

12



.............................. 1.2. One-centre point interaction

1.2.1 Properties of one-centre point interaction

Here we restate some useful theorems from the textbook [2].

1.2.1.1 Self-adjoint extensions

Summarizing the discussion above, we have the following theorem.
Theorem 1.2.1 ([2] - Th. I.1.1.1). All self-adjoint extensions of Ḣy are given
by

−∆α,y = T−1
y

{[
U−1h0,αU ⊕

∞⊕
l=1

U−1ḣlU

]
⊗ 1

}
Ty,

−∞ < α ≤ ∞, y ∈ R3,

(1.2.17)

where ḣl = − d2

dr2 + l(l+1)
r2 , r > 0, l = 0, 1, 2, ... , that are self-adjoint for l ≤ 1,

whereas ḣ0 has deficiency indices (1,1) and U is a unitary transformation

U : L2((0,∞); r2dr) −→ L2((0,∞; dr), (Uf)(r) = rf(r). (1.2.18)

All self-adjoint extensions h0,α of ḣ0 may be parameterized by

h0,α = − d2

dr2

D(h0,α) ={ϕ ∈ L2((0,∞))|ϕ, ϕ′ ∈ ACloc((0,∞)); −4παϕ(0+) + ϕ
′(0+) = 0;

ϕ
′′ ∈ L2((0,∞))}, −∞ < α ≤ ∞.

(1.2.19)

The special case α = ∞ just leads to kinetic energy Hamiltonian −∆
(the Friedrichs extension of Ḣy) in L2(R3)

−∆∞,y = −∆ on D(−∆) = H2,2(R3). (1.2.20)

If |α| < ∞, −∆α,y describes a point interaction centred at y ∈ R3.

1.2.1.2 Basic properties of −∆α,y

Theorem 1.2.2 ([2] - Th. A.1). Assume Ȧ to be densely defined, closed,
symmetric operator in some Hilbert space H with deficiency indices (1, 1). If

Ȧ∗ϕ(z) = zϕ(z), ϕ(z) ∈ D(Ȧ∗), z ∈ C − R, (1.2.21)

13



1. Formulation .....................................
then all self-adjoint extensions Aθ of Ȧ may be parameterized by a real
parameter θ ∈ [0, 2π) where

D(Aθ) = {g + cϕ+ + ceiθϕ−|g ∈ D(Ȧ), c ∈ C},
Aθ(g + cϕ+ + ceiθϕ−) = Ȧg + icϕ+ − iceiθϕ−, 0 ≤ θ < 2π,

(1.2.22)

and
ϕ± = ϕ(±i), ||ϕ+|| = ||ϕ−||. (1.2.23)

Theorem 1.2.3 (Krein for deficiency indices 1, [2] - Th. A.2). Let B and
C denote any self-adjoint extensions of Ȧ, which is defined as in previous
theorem. Then we have

(B − z)−1 − (C − z)−1 = λ(z)(ϕ(z̄), ·)ϕ(z), z ∈ ρ(B) ∩ ρ(C), (1.2.24)

where λ(z) ̸= 0 for z ∈ ρ(B) ∩ρ(C) and λ and ϕ may be chosen to be analytic
in z ∈ ρ(B) ∩ ρ(C). In fact, ϕ(z) may be defined as

ϕ(z) = ϕ(z0) + (z − z0)(C − z)−1ϕ(z0), z ∈ ρ(C), (1.2.25)

where ϕ(z0), z0 ∈ C − R, is a solution of

Ȧ∗ϕ(z) = zϕ(z), ϕ(z) ∈ D(Ȧ∗), z ∈ C − R (1.2.26)

for z = z0 and λ(z) satisfies

λ(z)−1 = λ(z′)−1 − (z − z′)(ϕ(z̄), ϕ(z′)), z, z′ ∈ ρ(B) ∩ ρ(C), (1.2.27)

if ϕ(z) is chosen according to (1.2.25).
Theorem 1.2.4 ([2] - Th. I.1.1.2). The resolvent of −∆α,y with one centre is
given by

(−∆α,y − k2)−1 = Gk +
(
α− ik

4π

)−1
(Gk(· − y), ·)Gk(· − y),

k2 ∈ ρ(−∆α,y), Im(k) > 0, −∞ < α ≤ ∞, y ∈ R3,

(1.2.28)

where
Gk = (−∆ − k2)−1, Im(k) > 0, (1.2.29)

which in three dimensions has an integral kernel

Gk(x− x′) = eik|x−x′|

4π|x− x′|
, Im(k) > 0, x, x′ ∈ R3, x ̸= x′. (1.2.30)

And the integral kernel of the resolvent of −∆α,y has the form

(−∆α,y − k2)−1(x, x′) = eik|x−x′|

4π|x− x′|
+

(
α− ik

4π

)−1 eik|x−y|

4π|x− y|
eik|y−x′|

4π|y − x′|
,

k2 ∈ ρ(−∆α,y), Im(k) > 0, x, x′ ∈ R3, x ̸= x′, x ̸= y, , x′ ̸= y.

(1.2.31)
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.............................. 1.2. One-centre point interaction

Theorem 1.2.5 ([2] - Th. I.1.1.3). The domain D(−∆α,y), −∞ < α ≤
∞, y ∈ R3, consists of all elements ψ of the type

ψ(x) = ϕk(x) +
(
α− ik

4π

)−1
ϕk(y)Gk(x− y), x ̸= y, (1.2.32)

where ϕk ∈ D(−∆) = H2,2(R3) and k2 ∈ ρ(−∆α,y), Im(k) > 0. The
decomposition (1.2.32) is unique and with ψ ∈ D(−∆α,y) of this form we
obtain

(−∆α,y − k2)ψ = (−∆ − k2)ϕk. (1.2.33)

Next, let ψ ∈ D(−∆α,y) and assume that ψ = 0 in an open set U ⊆ R3. Then
−∆α,yψ = 0 in U .

1.2.1.3 Spectral properties of −∆α,y

Theorem 1.2.6 ([2] - Th. I.1.1.4). Let −∞ < α ≤, y ∈ R3. Then essen-
tial spectrum σess(−∆α,y) is purely absolutely continuous and covers the
nonnegative real axis

σess(−∆α,y) = σac(−∆α,y) = [0,∞), σsc(−∆α,y) = ∅. (1.2.34)

(Here σac and σsc denote the absolutely and singularly continuous spectrum,
respectively.)
If α < 0, −∆α,y has precisely one negative, simple eigenvalue, i.e. its point
spectrum σp(−∆α,y) is given by

σp(−∆α,y) = {−(4πα)2}, −∞ < α < 0, (1.2.35)

with
4π(−α)

1
2G−4πiα(x− y) = (−α)

1
2
e4πα|x−y|

|x− y|
, (1.2.36)

its strictly positive (normalized) eigenfunction. If α ≥ 0, −∆α,y has no
eigenvalues, i.e.

σp(−∆α,y) = ∅, 0 ≤ α ≤ ∞. (1.2.37)

1.2.2 Stationary scattering theory for one-centre point
interaction

Thanks to the spherical symmetry we can apply a partial wave decomposition
(1.2.17). Since for l ≥ 1 −∆α,y coincides with −∆, −∆α,y describes an s-wave

15



1. Formulation .....................................
interaction (l = 0, i.e. the solutions are independent of the angular variables).
Thus we can focus mainly on the case l = 0.

If we define

ψ0,α(k, r) = 1
k

sin(kr) + 1
4πα− ik

eikr, k ≥ 0, r ≥ 0,

− ∞ < α ≤ ∞.
(1.2.38)

By simple observation, we can see that the following relations hold true

− 4παψ0,α(k, 0+) + ψ′
0,α(k, 0+) = 0,

− ψ′′
0,α(k, r) = k2ψ0,α(k, r), r > 0,

lim
ε→0

lim
r′→∞

e−i(k+iε)r′

h0,α − (k + iε)2 (r, r′) = ψ0,α(k, r), k ≥ 0, r ≥ 0,

−∞ < α ≤ ∞.

(1.2.39)

Consequently, ψ0,α(k, r) constitute a set of generalised eigenfunctions associ-
ated with h0,α. Similarly,

ψl(k, r) = (πr)
1
2Jl+ 1

2
(kr), k ≥ 0, r ≥ 0, l = 1, 2, ..., (1.2.40)

are generalised eigenfunctions of ḣl, l = 1, 2, ..., where Jν denote Bessel
functions of order ν. If we introduce the phase shift δ0,α(k) as

cos[δ0,α(k)] = 4πα√
(4πα)2 + k2 , sin[δ0,α(k)] = k√

(4πα)2 + k2 ,

k ≥ 0, −∞ < α ≤ ∞,

(1.2.41)

we can rewrite equation (1.2.38) into the following form

ψ0,α(k, r) = eiδ0,α(k)

k
sin[kr + δ0,α(k)], k > 0, r ≥ 0, −∞ < α ≤ ∞.

(1.2.42)
From equations (1.2.40, 1.2.41) one can derive the on-shell partial wave
scattering matrix

φ0,α(k) = e2iδ0,α(k) = 4πα+ ik

4πα− ik
, k ≥ 0, −∞ < α ≤ ∞,

φl(k) = 1, δl(k) = 0, l = 1, 2, ...
(1.2.43)

Now it is useful to compare it with the effective range expansion for real-
valued spherically symmetric potentials V , obeying∫ ∞

0
re2ar|V (r)|dr < ∞ for some a > 0. (1.2.44)
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.............................. 1.2. One-centre point interaction

Such an expansion is useful in the low-energy scattering and, in our case,
reads

k2l+1 cot[δl(g, k)] = − 1
al(g) +rl(g)k

2

2 +O(k4), k ≥ 0, g ∈ R, l = 0, 1, ...,

(1.2.45)
where the right-hand side is real analytic in k2 near k = 0, and the δl(g, k)
is by definition a phase shift associated with the Schrödinger operators
− d2

dr2 + l(l+1)
r2 +̇gV (r). The coefficients al(g) are the partial wave scattering

lengths and rl(g), l = 0, 1, ..., are the effective range parameters. From the
explicit expressions of equation (1.2.45) for the point interaction (1.2.41)

k cot[δ0,α(k)] = 4πα, δl(k) ≡ 0, l = 1, 2, ..., (1.2.46)

we can see that the effective range expansion is already exact in zeroth order
with respect to k2, i.e. the s-wave scattering parameters are given by

a0,α = − 1
4πα,

r0,α ≡ 0 etc., −∞ < α ≤ ∞, α ̸= 0,
(1.2.47)

and all the low-energy parameters vanish in higher partial waves l = 1, 2, ....
This shows that the δ-interaction is indeed a zero-range interaction and acts
(nontrivially) only in the s-wave l = 0. Moreover, it provides a physical
interpretation of the boundary condition parameter 4πα as the negative
inverse scattering length.

Next let

Ψα,y(kω, x) = eikωx + eikωy

(4πα− ik)
eik|x−y|

|x− y|
,

k ≥ 0, ω ∈ S2, −∞ < α ≤ ∞, x, y ∈ R3, x ̸= y.

(1.2.48)

Then, from the observation of the decomposition (1.2.17) and the wave
function (1.2.38), Ψα,y(kω, x) is the scattering wave function corresponding
to −∆α,y. Bessel function expansion of eikω|x−y|

eikωyΨα,y(kω, x) = 4π
|x− y|

Ψ0,α(k|x− y|)Y00(ω)Y00(ωx)

k ≥ 0, ω ∈ S2, −∞ < α ≤ ∞, x ̸= y, ωx = x

|x|
.

(1.2.49)

And again, by simple observation, Ψα,y(kω, x) fulfils

−4πα|x− y|Ψα,y(kω, x) + x− y

|x− y|
∇xΨα,y(kω, x)|x=y = 0,

− (∇Ψα,y)(kω, x) = k2Ψα,y(kω, x), x ̸= y,

lim
ε→0

lim
|x′|→∞
|x′|
x′ =−ω

4π|x′|e−i(k+iε) |x′|
−∇α,y − (k + iε)2 (x, x′) = Ψα,y(kω, x)

k ≥ 0, ω ∈ S2, −∞ < α ≤ ∞, x ̸= y.

(1.2.50)
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1. Formulation .....................................
The on-shell scattering amplitude fα,y(k, ω, ω′) associated with −∇α,y is then
given by

fα,y(k, ω, ω′) = lim
|x|→∞
|x|
x

=ω

|x|e−ik|x|[Ψα,y(kω′, x) − eikω′x] = eik(ω′−ω)y

4πα− ik
,

k ≥ 0, ω, ω′ ∈ S2, −∞ < α ≤ ∞, y ∈ R3,

(1.2.51)

and the corresponding off-shell extension fα,y(k, p, q) is then defined as

fα,y(k, p, q) = ei(p−q)y

4πα− ik

k ∈ C, k ̸= − 4πiα, p, q ∈ C3, −∞ < α ≤ ∞, y ∈ R3,

(1.2.52)

and we get
fα,y(k, ω, ω′) = fα,y(k, p, q)||p|=|q|=k,

p, q,∈ R3, ω = p

|p|
, ω′ = q

|q|
.

(1.2.53)

Finally, the unitary on-shell scattering operator Sα,y(k) in L2(S2) is

Sα,y(k) = 1 − k

2πi
1

4πα− ik
(e−ik(·)y, ·)e−ik(·)y

k ≥ 0, −∞ < α ≤ ∞, y ∈ R3,
(1.2.54)

and for the choice of y = 0, it can be simplified to the form

Sα,y(k) = 1 + 2ik
4πα− ik

(Y00, ·)Y00. (1.2.55)
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............................... 1.3. Finite number of centers

1.3 Finite number of centers

Now let us focus on the multiple center problem

H = −∆ +
N∑

i=1
λiδi(· − yi). (1.3.1)

In contrast to the one-centre case, here we meet a family of operators, for
N given independent centres Y = {y1, ..., yN }, which is described below in
Theorem 1.3.1.

From [9, Chapter 3] it follows, that there is a N2-parameter family of self
adjoint extensions of −∆|DY

. However, we will only study the N -parameter
family of extensions where the interaction is local. The resolvents of these
operators are given by Krein’s formula (Th. 1.3.2) and they can be written
in the following form

(−∆α,Y − k2)−1 = Gk +
N∑
j,ℓ

[Γα,Y ]−1
j,ℓ (Gk(· − yj), ·)Gk(· − yℓ),

k2 ∈ ρ(−∆α,Y ), Im(k) > 0, −∞ < α ≤ ∞, y ∈ R3,

(1.3.2)

with the same notation as in Theorem 1.2.4 and where Y = {y1, ..., yN } are
distinct points and

Γα,Y =
[(
α− ik

4π

)
δj,ℓ −Gk(yj − yℓ)

]N

j,ℓ
. (1.3.3)

Due to the nature of the point interaction it is reasonable to expect locality
of −∆α,Y – in the sense that if ψ = 0 in U ⊂ R3, then also −∆α,Y ψ = 0
in U . Consequently, Theorem 1.3.3 gives us the domain D(−∆α,Y ) and it
is a generalisation of Theorem 1.2.5 for the 1-centre case. We can see that
DY ⊆ D(−∆α,Y ) and that

−∆α,Y |DY
= ∆|DY

, (1.3.4)

which proves that −∆α,Y is among the self-adjoint extensions from Theo-
rem 1.3.1.

The essential spectrum of this operator −∆α,Y is described in section 1.3.1.2.
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1.3.1 Properties for N centers

Here we restate some useful theorems from the textbook [2].
Theorem 1.3.1 ([2] - Th. II.1.1.2). The closed symmetric operator

ḢY = −∆|DY
, (1.3.5)

where
DY = {ψ ∈ H2,2(R3)|ϕ(yj) = 0, yj ∈ Y, j = 1, ...N} (1.3.6)

has deficiency indices (N,N) and deficiency subspaces read

K± = Ran(ḢY ± i)⊥ = [G√
±i(· − y1), ..., G√

±i(· − yN )],
Im(±i) > 0.

(1.3.7)

1.3.1.1 Basic properties of −∆α,Y

Theorem 1.3.2 (Krein for deficiency indices N>1, [2] - Th. A.3). Let the Ȧ be
a densely defined, closed, symmetric operator in H , with deficiency indices
(N,N), N ∈ N and with two two self-adjoint extensions B and C. Denoting
Å as a maximal common part of B and C [i.e. (Å ⊆ B, Å ⊆ C)(∀A′|A′ ⊆
B, A′ ⊆ C)(A′ ⊆ Å)]. And let M, 0 < M ≤ N , be the deficiency indices of
Å and {ϕ1(z), ..., ϕM (z)} a corresponding span of subspace of Å:

Å∗ϕm(z) = zϕm(z), ϕm(z) ∈ D(Å∗), m = 1, ...,M, z ∈ C − R,
(1.3.8)

and {ϕ1(z), ..., ϕM (z)} are linearly independent. Then

(B − z)−1 − (C − z)−1 =
M∑

m,n=1
λm,n(z)(ϕn(z̄), ·)ϕm(z), z ∈ ρ(B) ∩ ρ(C),

(1.3.9)
where matrix λ(z) is nonsingular for z ∈ ρ(B)∩ρ(C) and λm,n(z) and ϕm(z),
m, n = 1, ...,M , may be chosen to be analytic in z ∈ ρ(B) ∩ ρ(C). In fact,
ϕm(z) may be defined as

ϕm(z) = ϕm(z0) + (z − z0)(C − z)−1ϕm(z0), m = 1, ...,M, z ∈ ρ(C),
(1.3.10)

where ϕm(z0), m = 1, ...,M, z0 ∈ C − R are linearly independent solutions
of (1.3.8) for z = z0 and the matrix λ(z) satisfies

[λ(z)]−1
mn = [λ(z′)]−1

mn − (z − z′)(ϕn(z̄), ϕm(z′)), m, n = 1, ...,M
z, z′ ∈ ρ(B) ∩ ρ(C),

(1.3.11)

if the ϕm(z), m = 1, ...,M , are defined according to (1.3.10).
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Theorem 1.3.3 ([2] - Th. II.1.1.3). The domain D(−∆α,Y ), yj ∈ Y, −∞ <
αj ≤ ∞, j = 1, ..., N , consists of all functions ψ of the type

ψ(x) = ϕk(x) +
N∑

j=1
ajGk(x− yj), x ∈ R3 − Y, (1.3.12)

where

aj =
N∑

ℓ=1
[Γα,Y (k)]−1

j,ℓ ϕ(yℓ), j = 1, ..., N, (1.3.13)

and ϕk ∈ D(−∆) = H2,2(R3) and k2 ∈ ρ(−∆α,Y ), Im(k) > 0. This decompo-
sition is unique, and with ψ of this form we have

(−∆α,Y − k2)ψ = (−∆ − k2)ϕk. (1.3.14)

Furthermore, let ψ ∈ D(−∆α,Y ) and assume ψ = 0 in an open set U ⊆ R3.
Then −∆α,Y ψ = 0 in U .

1.3.1.2 Spectral properties of −∆α,Y

Theorem 1.3.4 ([2] - Th. II.1.1.4). Let yj ∈ Y, −∞ < αj ≤ ∞, j = 1, ..., N .
Then the essential spectrum of the operator −∆α,Y is purely absolutely
continuous and equals

σess(−∆α,Y ) = σac(−∆α,Y ) = [0,∞), σsc(−∆α,Y ) = ∅. (1.3.15)

Moreover,
σp(−∆α,Y ) ⊂ (−∞, 0) (1.3.16)

and −∆α,Y has at most N (negative) eigenvalues counting multiplicity. Let
Im(k) > 0. Then

k2 ∈ σp(−∆α,Y ) ⇔

⇔ det[Γα,Y (k)] = det
[(
αj − ik

4π

)
δj,ℓ −Gk(yj − yℓ)

]
= 0

(1.3.17)

and the multiplicity of the eigenvalue k2 equals to the multiplicity of eigenvalue
0 of the matrix Γα,Y (k). Moreover, let E0 = k2

0 < 0 be an eigenvalue of
−∆α,Y . Than the corresponding eigenfunctions ψ0 are of the form

ψ0(x) =
N∑

j=1
cjGk0(x− yj), Im(k0) > 0, (1.3.18)

where (c1, ..., cN ) are eigenvectors with eigenvalue zero of the matrix Γα,Y (k0).
If −∆α,Y has a ground state it is nondegenerate and the corresponding
eigenfunction can be chosen strictly positive (i.e. the associated eigenvector
(c1, ..., cN ) fulfills cj > 0, j = 1, ..., N).
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1.3.2 Stationary scattering theory for N centers

Let

Ψα,Y (kω, x) = eikωx +
N∑

j,l=1
[Γα,Y (k)]−1

j,l e
ikωyl

eik|x−yj |

4π|x− yj |
,

det[Γα,Y (k)] ̸= 0, k ≥ 0, ω ∈ S2, αj ∈ R,
yj ∈ Y, j = 1, ..., N, x /∈ Y,

(1.3.19)

where Y ⊂ R3 is still a set of independent centres. Then Ψα,Y is formally of
the form (1.3.12) with ϕk(x) = eikωx, which is not in L2(R3) but satisfies

(−∆ϕk)(x) = k2ϕk(x) (1.3.20)

in the distributional sense. Furthermore,

(−∆Ψα,Y )(kω, x) = k2Ψα,Y (kω, x), x /∈ Y, (1.3.21)

and

lim
ϵ→0

lim
|x′|→∞
x′

|x′| =−ω

4π|x′|e−i(k+iε)|x′|
[
−∆α,Y − (k + iε)2

]−1
(x, x′) = Ψα,Y (kω, x),

det[Γα,Y (k)] ̸= 0, k ≥ 0, αj ∈ R, yj ∈ Y, j = 1, ..., x /∈ Y.
(1.3.22)

And therefore the functions Ψα,Y constitute the generalized eigenfunctions of
−∆α,Y or, in other words, the scattering wave functions. With this in hand
the on-shell scattering amplitude fα,Y (k, ω, ω′) associated with −∆α,Y equals
to

fα,Y (k, ω, ω′) = lim
|x|→∞

x
|x| =ω

|x|e−ik|x|[Ψα,Y (kω′, x) − eikω′x]

= 1
4π

N∑
j,l=1

[Γα,Y (k)]−1
jl e

ik(ylω′−yjω),

det[Γα,Y (k)] ̸= 0, k ≥, αj ∈ R, yj ∈ Y, j = 1, ..., N, ω, ω′ ∈ S2.
(1.3.23)

Hence the off-shell extension fα,Y (k, p, q) of fα,Y (k, ω, ω′) reads

fα,Y (k, p, q) = 1
4π

N∑
j,l=1

[Γα,Y (k)]−1
jl e

i(ylq−yjp),

det[Γα,Y (k)] ̸= 0, k ∈ C, αj ∈ R, yj ∈ Y, j = 1, ..., N, p, q ∈ C3,
(1.3.24)

so as to make
fα,Y (k, ω, ω′) = fα,Y (k, p, q)||p|=|q|=k,

p, q ∈ R3, ω = p

|p|
, ω′ = q

|q|
.

(1.3.25)
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............................... 1.3. Finite number of centers

Thus, the unitary on-shell scattering operator Sα,Y (k) in L2(S2) equals

(Sα,Y (k)ϕ)(ω) = ϕ(ω) − k

2πi

∫
S2

fα,Y (k, ω, ω′)ϕ(ω′), ϕ ∈ L2(S2),
(1.3.26)

and with insertion of (1.3.23)

Sα,Y (k) = 1 − k

8π2i

N∑
j,l=1

[Γα,Y (k)]−1
j,l (e−ikyl(·), ·)e−ikyj(·)

det[Γα,Y (k)] ̸= 0, k ≥ 0, αj ∈ R, yj ∈ Y, j = 1, ..., N.

(1.3.27)
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Nodal lines of various N-point
configurations
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Chapter 2

Models of various point interaction
arrangements

2.1 Introduction

In quantum mechanics, the vortical behaviour is closely related to the phase
ϕ of the wavefunction. If we take the wavefunction in the form ψ(x) =√
ρ(x)eiϕ(x), we can express the probability current as j(x) = ρ(x)∇ϕ(x)

(using ℏ = 2m = 1). In the region with no external forces, the integral of j(r)
over a closed loop can only be nonzero if it encircles a singularity in which
the phase ϕ is ambiguous. However, since the solutions to the stationary
Schrödinger equation are smooth functions, such singularities are ψ = 0
(these sets are called the nodal lines of the scattering wavefunction) [7]. The
scattering wavefunctions often have nodal lines and they are in the forms
of closed loops. The probability current in the vicinity of the nodal lines is
locally cylindrical (tornado shaped) and thus it can be called tornado type
singularity.

In this chapter we will have a look at models of scattering on the finite
periodic structures of the point interactions. In these models we are interested
in tornado type singularities of the corresponding wave function. Code to
simulate such interactions has been made in Wolfram Mathematica 13.2 and
is available at https://github.com/breuefil/VortexCurves.git.
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2. Models of various point interaction arrangements .....................
2.1.1 Mathematical problem in the background of the code

As we mentioned above, to find the nodal sets (i.e. the singularity points),
we have to solve the following equation, using Ψα,Y (k, ·) as in (1.3.19) with
the fixed momentum k

Ψα,Y (x, y, z) = 0 ⇐⇒ Re(Ψα,Y )(x, y, z) = 0 = Im(Ψα,Y )(x, y, z).
(2.1.1)

From now on, the graphs of a plane section will use blue for the Re(Ψα,Y )(x, y, z)
and orange for Im(Ψα,Y )(x, y, z) – an example with the direction of motion of
the particle is shown in Fig. 2.1. We will use precision of 3 decimal places of
the strength parameter to show where the nodal lines change, unless a higher
precision is required.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-4

-2

0

2

4

x

y

Re[ψ]

Im[ψ]

Direction of
a particle

Figure 2.1: Perpendicular wave with equal point strengths α = −0.5, wave
momentum k = (2, 0, 0)
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............................. 2.2. Point interactions on the line

2.2 Point interactions on the line

2.2.1 Perpendicular wave approaching 10 points on line

In this section we will simulate a 10-point interaction, where the points are
equidistantly distributed on the y-axis (i.e. yj = (0, yj2 , 0), j = 1, 2, ..., 10)
in points yj2 ∈ {−9

2 ,−
7
2 ,−

5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2} and the wave has a per-

pendicular momentum k = (k, 0, 0) to this on the line configuration of the
point interactions. This configuration leads to a simplification of the N-point
interaction scatter (1.3.19) into the form

Ψα,Y (k,x) = eikx +
10∑

j,l=1
[Γα,Y (k)]−1

j,l e
ikyl1

eik|x−yj |

4π|x − yj |
, (2.2.1)

with x = {x, y, z}, yj = {yj1 , yj2 , yj3}, and where

Γα,Y (k) :=
[(
α
ik

4π

)
δjl − G̃k(yj − yl)

]10

j,l=1
, (2.2.2)

where G̃k(x) is the regularised Green’s function

G̃k(x) =

 eik|x|

4π|x| , |x| ≠ 0,
0, |x| = 0.

(2.2.3)

We choose the interaction strengths for all of the point interactions to be
equal to α (i.e. αj = α, j = 1, 2, ..., 10) and we are interested in the behaviour
of the nodal lines depending on α. The wave momentum is chosen in this
setting to be k = 2(1, 0, 0), i.e. with the magnitude k = 2, although it is
logarithmically proportional to the interaction strength, so that the same
results can be obtained with the transformed variables α and k and with
transformed spacing of the point interactions.

In our simulation for α ≤ −0.215 nodal lines occurred around every point,
as shown in the demonstrative case of α = −0.3 in Fig. 2.2. With the growth
of the strength parameter α, the number of nodal lines gradually decreases
as the lines merge together until α = −0.166, where there is only one line
around all the points, and this state persists to α = −0.117. Fig. 2.3 shows
an example of this formation for α = −0.150. From α = −0.116, several
nodal lines appear again and their number changes with the parameter α
until α = 0.085, where they disappear completely (Fig. 2.4).

All the changes in the number of loops are shown in Tab. 2.1. In this
perpendicular case, the loops often (dis)appear in pairs, which is caused by
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2. Models of various point interaction arrangements .....................
the reflection symmetry along the xz-plane. The interval of α for the given
number of loops denotes the interval, including its extreme values, where the
loop count does not change. Between the adjacent intervals, the change of a
loop count occurs. This change, when two neighbouring loops merge or one
loop splits into multiple loops, is accompanied by the effect that the "two"
loops connect at one point and thus resembling figure 8 shape.

Interval of α Loop count
(-∞, -0.215) 10

(-0.214, -0.181) 8
(-0.180, -0.1792) 6
(-0.1791, -0.1777) 5
(-0.1776, -0.167) 3
(-0.166, -0.117) 1
(-0.116, -0.068) 3
(-0.067, -0.053) 5
(-0.052, -0.031) 6
(-0.030, -0.018) 4
(-0.017, -0.016) 6
(-0.016, 0.0098) 5
(0.0099, 0.0108) 7
(0.0109, 0.0119) 9
(0.0120, 0.0122) 7
(0.0123, 0.130) 6
(0.131, 0.066) 4
(0.067, 0.084) 2

(0.085, ∞) 0

Table 2.1: Change of the number of loops for perpendicularly approaching wave
with momentum k = (2, 0, 0), depending on α
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(a) Section by the z=0 plane

(b) Nodal lines

Figure 2.2: Nodal lines for the the strength parameter α = −0.3, the same for all
of the 10 interactions and for perpendicular wave with momentum k = (2, 0, 0)
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2. Models of various point interaction arrangements .....................

Figure 2.3: Nodal line for the strength parameter α = −0.150, the same for all of
the 10 interactions and for perpendicular wave with momentum k = (2, 0, 0)

Figure 2.4: No nodal lines for the strength parameter α ≥ 0.085, the same for all
of the 10 interactions and for perpendicular wave with momentum k = (2, 0, 0)
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............................. 2.2. Point interactions on the line

2.2.2 Wave approaching 10 points on line at an angle

In this section, the setting is similar to that in section 2.2.1 except for the
wave momentum k = kω, where ω = (ω1, ω2, 0), |ω| = 1, although other
forms of ω could be used as well due to the rotational symmetry around the
axis y. This assumption simplifies the scattering (1.3.19) into the following
form

Ψα,Y (k,x) = eik(ω1x+ω2y) +
N∑

j,l=1
[Γα,Y (k)]−1

j,l e
ik(ωyl1 +ωyl2 ) eik|x−yj |

4π|x− yj |
. (2.2.4)

2.2.2.1 45° angle

The first wave momentum setting we use is k =
√

2(1, 1, 0) (i.e. unit direction
ω = 1√

2(1, 1, 0) with a wave speed k = 2). Similarly as in the perpendicular
case, for values lower than or equal to the critical interaction strength α0 =
−0.157, we obtain a nodal line around each point interaction (Fig. 2.6).

Contrary to the perpendicular case, we did not observe merging of the loops
into one loop around all of the points. Loops appeared and disappeared quite
regularly until they disappeared completely for α = 0.192. The complete
process, which was identical to the perpendicular case in section 2.2.1, can
be seen in Tab. 2.2.

To observe this behaviour, we will next examine small angle deviations
from the perpendicular case in order to find an angle range where the global
effect (a single loop around all of the point interactions) is present.
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2. Models of various point interaction arrangements .....................

Interval of α Loops
(-∞, -0.157) 10

(-0.156, -0.065) 9
(-0.064, -0.033) 8
(-0.032, -0.009) 7
(-0.008, -0.0077) 8
(-0.0076, -0.0074) 7

(-0.0073, -0.006726) 6
(-0.006725, -0.006720) 5
(-0.006719, -0.00670) 6
(-0.0066, -0.006316) 5

(-0.006315, -0.006304) 6
(-0.006303, -0.00629) 7
(-0.00628, -0.0060) 6
(-0.0059, -0.0052) 7
(-0.0051, -0.0048) 6
(-0.0047, -0.0044) 7
(-0.0043, 0.002) 6
(0.003, 0.009) 5
(0.010, 0.0117) 4
(0.0118, 0.0129) 5

...
...

Interval of α Loops
(0.0130, 0.0137) 4
(0.0138, 0.016) 3
(0.017, 0.0171) 4
(0.0172, 0.0177) 3
(0.0178, 0.019) 2
(0.020, 0.023) 3
(0.024, 0.028) 2
(0.029, 0.032) 3
(0.033, 0.037) 2
(0.038, 0.0515) 3
(0.0516, 0.0519) 4
(0.0520, 0.055) 3
(0.056, 0.063) 4
(0.064, 0.071) 3
(0.072, 0.075) 2
(0.076, 0.099) 3
(0.100, 0.104) 4
(0.105, 0.134) 3
(0.135, 0.178) 2
(0.179, 0.191) 1

(0.192, ∞) 0

Table 2.2: Change of the number of loops (right column) for a case of wave
approaching 10-point interactions on a y-axis at an 45° angle [i.e. in a direction

given by n = (1, 1, 0)], depending on α
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Figure 2.5: Real (blue) and imaginary (orange) part of ψ = 0 in the the z=0 plane,
for wave with momentum k =

√
2(1, 1, 0) and interaction strength for all of the

points α = −0.3
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(a) Real (blue) and imaginary (orange) part of ψ = 0 in the the z=0 plane,
for wave with momentum k =

√
2(1, 1, 0) and interaction strength for all of

the points α = −0.3 in the z=0 plane

(b) Viewpoint 1

(c) Viewpoint 2

Figure 2.6: Nodal lines for the strength parameter α = −0.16, the same for all of
the 10 interactions and for wave with momentum k =

√
2(1, 1, 0)
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2.2.2.2 1° deviation from perpendicular case

Let us start from the deviation of approximately 1° from the perpendicular
case in the xy-plane, specifically

k = 2, Ω = (1, 0.0175, 0), ω = Ω
||Ω||

, ||ω|| = 1. (2.2.5)

Here for α ≤ −0.216 there is a loop around each point. For α = −0.215
there are only 9 loops present. Gradually, as α increases, the number of loops
decreases (sometimes a new loop can appear, but in general the number of
loops decreases), until we arrive at α = −0.165, where, again as in the case
of perpendicular wave, we have only one loop encircling all of the points. A
representative example is shown in the set of figures 2.7. This state remains
until α = −0.120, and from α = −0.119 the number of loops increases and
then again declines, similar to the evolution in the perpendicular wave (Tab.
2.1). Finally for α = 0.085 the nodal lines vanish completely.
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(a) Section by the z=0 plane

Figure 2.7: Real (blue) and imaginary (orange) part of ψ = 0 in the z=0 plane, for
the strength parameter α = −0.15, the same for all of the 10 interactions and for a

wave with momentum direction W=(1,0.0175,0), normalised to k = 2
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(b) Viewpoint 1

(c) Viewpoint 2

Figure 2.7: Nodal lines for the strength parameter α = −0.15, the same for all of
the 10 interactions and for wave with momentum direction W=(1,0.0175,0),

normalised to k = 2
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2.2.2.3 8° deviation from the perpendicular wave

We have the following setting

k = 2, Ω = (1, 0.14, 0), ω = Ω
||Ω||

, ||ω|| = 1, (2.2.6)

which corresponds to a deviation from the perpendicular case of about 8°
in the xy-plane. For α ≤ −0.217 there is a loop around each point. For
α = −0.216, there are only 9 loops. Gradually decreasing the number of loops
we get to α = −0.152 where we have only one loop encircling all of the points
(Fig. 2.8). This state remains until α = −0.144, for α = −0.143 we observe
that two loops merge into one, forming for a moment an 8 like figure, and
from α = −0.132 the number of loops increases, and than declines, similarly
to the perpendicular wave (Tab. 2.1). Finally for α = 0.114 the nodal lines
vanish completely.
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(a) Section by the z=0 plane

Figure 2.8: Real (blue) and imaginary (orange) part of ψ = 0 in the z=0 plane, for
the strength parameter α = −0.15, the same for all of the 10 interactions and for a

wave with momentum direction W=(1,0.14,0), normalised to k = 2
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(b) Section by the z=0 plane

(c) Loops

Figure 2.8: Nodal lines for the strength parameter α = −0.15, the same for all of
the 10 interactions and for wave with momentum direction W=(1,0.14,0), normalised

to k = 2
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2.2.2.4 8.5° deviation from the perpendicular wave

We have the following setting

k = 2, Ω = (1, 0.15, 0), ω = Ω
||Ω||

, ||ω|| = 1, (2.2.7)

which corresponds to a deviation from the perpendicular case of about 8.5°
in the xy-plane. For α ≤ −0.215 there is a loop around each point. For α =
−0.214 two loops merge together and thus we only have 9 loops. Gradually, as
we increase the value of α, we get a decreasing number of loops. In the interval
where we previously observed one loop around all of the points, however,
we now get two loops instead. That means we do not observe this global
effect. Specifically two loops appeared from α = −0.161 to α = −0.087 (Fig.
2.9). From α = −0.086 the number of loops increases again and then finally
declines to the point of α = 0.085, where the nodal lines vanish completely.
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(a) Section by the z=0 plane

Figure 2.9: Real (blue) and imaginary (orange) part of ψ = 0 in the z=0 plane, for
the strength parameter α = −0.15, the same for all of the 10 interactions and for a

wave with momentum direction W=(1,0.15,0), normalised to k = 2
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(b) Loops

(c) Close-up

Figure 2.9: Nodal lines for the strength parameter α = −0.15, the same for all of
the 10 interactions and for wave with momentum direction W=(1,0.15,0), normalised

to k = 2
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2.2.3 Summary for 10 point interactions on the line

In this section, we first examined a wave approaching 10 point interactions on
the line perpendicularly (section 2.2.1). For a certain interval of strength of
the interactions α ∈ (−0.166,−0.117) (for our configuration with momentum
k = 2(1, 0, 0) and spacing of 1 between the adjacent points) we observed
one "global line" surrounding all of the point interactions (instead of nodal
line around each point interaction). From the shape of the global line we
conjecture, that in the infinite case, the global effect would take the form
of two (almost straight) lines above and below (positive and negative z
respectively) the points. For this assumption to be confirmed, however, we
would have to use different methods.

Subsequently we investigated (section 2.2.2) whether this global effect also
appears for a small angular deviation from the perpendicular wave, where
we originally noticed this effect. Starting with a deviation of about 1°, we
discovered that the effect holds. During further investigation, we conclude
that this effect occurs for deviations up to 8° (± 0.5°). This deviation emerges
only from the results where we observed the effect and where we did not, and
it does not include, for example, errors arising from the code construction.
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2.3 Point interactions forming a square lattice

In this section we will investigate another periodic structure, a plane square
lattice, that will be perpendicular to the momentum of the particle. Here we
want to choose a sufficiently large periodic structure to approximate an infinite
case, a n × n lattice. The point interactions will be equidistantly arranged in
n rows, each for constant height zζ = ζ, ζ = −n−1

2 ,−n−1
2 + 1, ..., 0, 1, ..., n−1

2 .
Each row will contain n point interactions with y-coordinate yη = η, η =
−n−1

2 ,−n−1
2 + 1, ..., 0, 1, ..., n−1

2 , all with x-coordinate x = 0. The wave
momentum for all waves in this section will be normalised to 2 (i.e. ||k|| = 2),
same as in the previous sections.

2.3.1 Wave perpendicular to 25 points forming a square
lattice

Let us start with a wave that approaches the 5 × 5 grid perpendicularly, with
momentum k = 2(1, 0, 0). Again, we will arrive at simplification (2.2.1) as in
section 2.2.1.

Similarly to the perpendicular wave approaching the points on a line (section
2.2.1), loops around each point interaction occur until certain strength of
the interactions is acquired (here α ≤ −0.320), and then they start to merge
together. Nevertheless, in this particular case we observed that they are
accompanied by additional nodal lines outside of the lattice (with respect to
the x-axis). In the next step we investigated these loops in more detail.

The state, where there are loops only locally around point interactions
occurs for α ≤ −0.620. Subsequently four additional loops appear. Three of
them are located in front of the lattice (at x ≈ −3, at x ≈ −1.5, at x ≈ −4.8)
and one of them is behind it (at x ≈ 4) (with respect to the direction of the
spatial wave), for α = −0.619, α = −0.554, α = −0.398 and for α = −0.487
respectively. These configurations are illustrated in Figs. 2.10, 2.11.

This configuration of the "outside loops" holds until the strength parameter
α = −0.319. For α = −0.318 the closest loop in front of the lattice (with
respect to the direction of the spatial wave) merges with certain loops around
the point interactions (Fig. 2.12).
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From α = −0.329 the loops around each of the point interactions begin to
merge together, starting with the loops in the corners. A global effect, when
loops "in the lattice" form larger loops, occurs for α ∈ (−0.152, −0.107), with
only two loops around the lattice remaining (Fig. 2.13). The last remaining
loop outside the lattice at x ≈ −1.7 (that appeared for α = −0.487 at
x ≈ −1.5 and with the growth of α slightly moved) disappears for α = 0.109.
Finally, for α = 0.208, the last loop in the lattice (which is also the last in
the configuration) disappears and thus there are no nodal lines for α ≥ 0.208.

Some significant changes, described above, can be found in the Tab. 2.3
below.

Interval of α Nodal line change
(-∞, -0.620) Loops are only around each nodal point

-0.619 Additional loop at x ≈ −3 appears
-0.554 Additional loop at x ≈ +4 appears
-0.487 Additional loop at x ≈ −1.5 appears
-0.398 Additional loop at x ≈ −4.8 appears
-0.329 Loops around points start merging together

(-0.319, -0.318) Loop in front of lattice merges with loop around lattice
(-0.153, -0.152) Loop in the middle of lattice disappears
(-0.107, -0.106) Loops around lattice split into smaller loops
(0.108, 0.109) Last loops outside of lattice disappear (x ≈ −1.7)
(0.207, 0.208) Last loops in lattice disappear

(0.208, ∞) No nodal lines

Table 2.3: Some significant changes of nodal line configuration for 25-point
interaction, square lattice perpendicularly approaching wave with momentum

k = (2, 0, 0), depending on α
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(a) Viewpoint 1

(b) Viewpoint 2

(c) Viewpoint 3

Figure 2.10: 25-interaction square lattice - nodal lines for the strength parameter
α = −0.4, the same for all of the 25 interactions and for perpendicular wave with

momentum k = 2(1, 0, 0)

46



........................ 2.3. Point interactions forming a square lattice

(a) Viewpoint 1

(b) Viewpoint 2

(c) Viewpoint 3

Figure 2.11: 25-interaction square lattice - nodal lines for the strength parameter
α = −0.33, the same for all of the 25 interactions and for perpendicular wave with

momentum k = 2(1, 0, 0)
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(a) Viewpoint 1

(b) Viewpoint 2

(c) Viewpoint 3

Figure 2.12: 25-interaction square lattice - nodal lines for the strength parameter
α = −0.3, the same for all of the 25 interactions and for perpendicular wave with

momentum k = 2(1, 0, 0)
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(a) Viewpoint 1

(b) Viewpoint 2

(c) Viewpoint 3

Figure 2.13: 25-interaction square lattice - nodal lines for the strength parameter
α = −0.15, the same for all of the 25 interactions and for perpendicular wave with

momentum k = 2(1, 0, 0)
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2.3.2 Wave perpendicular to 100 points forming a square
lattice

Due to the occurrence of additional loops outside the vicinity of the lattice, we
decided to examine a larger one to see if there is any connection between the
grid size and the behaviour of these loops, and to estimate the behaviour of
the infinite square lattice. Let us now consider a wave approaching the 10×10
grid perpendicularly, i.e. with momentum k = 2(1, 0, 0). The configuration
changes mentioned here are not all of the changes for this case. We describe
only some of the major ones that we observed, and therefore it is possible
that we overlooked some of them, or that we did not consider them to be
important at the time of the examination. Usually we mention critical values
of α, when a new effect is perceptible (and, with the same precision, for
lower value of α when it was not), or the interval at which the change occurs.
Sometimes the resulting effect is obtained after a sequence of smaller changes
(e.g. Fig. 2.16a did not happen all at once, the loops between the points arise
gradually).

As in the previous situations, under a certain critical strength (here αcrit =
−0.652) there are only loops around each point of the lattice. Then, from
α = −0.651, loops appear progressively in front (x < 0) and behind (x > 0)
the grid. In total, 18 loops appear gradually in front of the lattice (x < 0),
including two concentric pairs of loops – at x ≈ −1.5 and at x ≈ −3.0
(specific values are given in Tab. 2.4). Especially notable are these two pairs
of concentric loops (Fig. 2.15) which we did not observe in the 25 point case
in section 2.3.1. The loops behind the lattice (x > 0) require a more detailed
investigation, which will be summarized later. All of the loops in front of the
lattice and one of the configurations behind the lattice can be seen in Fig.
2.15.

Concerning the behaviour of the loops behind the lattice, we will describe
them in more detail in this paragraph. The loop, that appears for α = −0.501
behind the lattice, at x ≈ 18.3, moves with the growth of α closer to the lattice
– for example for α = −0.334 it is located around the interval x ∈ (10, 11.5).
For α = −0.339, four loops behind the lattice appear (Fig. 2.14a), for
α = −0.334, two additional loops emerge – one spatial, extending for about
x ≈ (0.5, 6.5), and the other one flat loop, slightly further from the lattice
(Fig. 2.14b). For α = −0.330 two flat loops, the furthest behind the lattice,
disappear. Next, for α = −0.318, one central loop can be observed (Fig.
2.14d) and then for α = −0.307 the spatial loop and the four loops behind
the lattice split into four perpendicular loops to the lattice. The rest joins
the outside loop of the lattice (Fig. 2.15).
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Again, there is a global effect in the form of two larger loops around
this periodic set-up, for α ∈ (−0.180,−0.105). The loops inside these two
global loops combine to form loops between points of the lattice for α ∈
(−0.175,−0.149) (Fig. 2.16a), and then they start to vanish. From α = −0.129
in the vicinity of the lattice, only the two global loops around remain (Fig.
2.16b). These two loops, for α = −0.104, join to create 4 oval loops, one on
each side of the lattice, and 4 separate loops in the corners (Fig. 2.16c), thus
consequently breaking this global effect. Later, for α = −0.057, each of the 4
oval loops on the side of the grid splits into 3 loops (Fig. 2.16d).

Eventually, more loops appear (example in Fig. 2.17a). Some of them
vanish later (example in Fig. 2.17b) for a moment, so that the configuration
in the vicinity of the lattice consists of only 12 loops (Fig. 2.17c). Thereafter,
the number of loops near the lattice increases (example in Fig. 2.17d) and
later, for the last time, declines. Through these changes, the loops observed
outside of the lattice gradually cease to exist – the last one (x ≈ −10) for
α = 0.109. Finally, for α = 0.207, the remaining loops in the lattice disappear
and for α ∈ (0.207,∞) there are no loops at all.

Specific values of α with the description of the corresponding change are
listed in concise form in Tab. 2.4.
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2. Models of various point interaction arrangements .....................
Strength α Nodal line change

(-∞, -0.652) Loops are only around each nodal point
-0.651 Loop at x ≈ −9.3 appears
-0.641 Loop at x ≈ −10.8 appears
-0.632 Loop at x ≈ −7.6 appears
-0.618 Loop at x ≈ −12.4 appears
-0.589 Loop at x ≈ −14.0 appears
-0.557 Loop at x ≈ −15.6 appears
-0.556 Loop at x ≈ −6.0 appears
-0.528 Loop at x ≈ −17.3 appears
-0.501 Loop at x ≈ 18.3 appears
-0.491 Loop at x ≈ −18.9 appears
-0.458 Loop at x ≈ −20.5 appears
-0.423 Loop at x ≈ −22.0 appears
-0.410 Loop at x ≈ −4.6 appears
-0.386 Loop at x ≈ −23.7 appears
-0.359 Two concentric loops at x ≈ −3.0 appears
-0.356 Two concentric loops at x ≈ −1.5 appears
-0.339 4 loops behind the grid (x ≥ 0) appear
-0.337 Loop at x ≈ −25.3 appears

-0.334 Behind the grid (x ≥ 0) two loops appear.
One spatial x ∈ (0.5, 7), one flat at x ≈ 7.

(-0.331, -0.330) Loop created at α = −0.501
and the next flat loop closer to the lattice disappear

-0.318 Small loop behind the grid (x ≥ 0) appears

(-0.308, -0.307) Spatial loop separates, creates 4 perpendicular loops
and rest joins the outer lattice loop

(-0.301, -0.300) Loops around outer points create one loop

(-0.180, -0.179) Loops around fourth from the middle
points create one loop

(-0.180, -0.179) Loops in the inner 8 × 8 lattice start merging
together, creating loops between the inner points

(-0.176, -0.175) All of the loops of the inner, 8 × 8 lattice
have loops between each other

(-0.130, -0.129) Last loop in the inner 8 × 8 lattice disappears
(-0.105, -0.104) Both loops around lattice connect
(-0.058, -0.057) Loops on the side trisect
(0.108, 0.109) Last loops outside of lattice disappear (x ≈ −10)
(0.206, 0.207) Last loops in lattice disappear

(0.207, ∞) No nodal lines

Table 2.4: Some significant changes of nodal line configuration for 100 point
interaction, square lattice perpendicularly approaching wave with momentum
k = (2, 0, 0), depending on α. x-coordinates in the nodal line change column

indicate approximate positions of points on the loops in the plane z = 0 for the
specific α. With the growth of α, positions and shapes of the loops slightly change.
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........................ 2.3. Point interactions forming a square lattice

(a) α = −0.337 (b) α = −0.334

(c) α = −0.325 (d) α = −0.315

(e) α = −0.308 (f) α = −0.307

Figure 2.14: 100-interaction square lattice - change of the nodal lines in front of
the lattice (for positive x), depending on the strength parameter α, the same for all
of the 100 interactions and for perpendicular wave with momentum k = 2(1, 0, 0).
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2. Models of various point interaction arrangements .....................

(a) Viewpoint 1

(b) Viewpoint 2

(c) Viewpoint 3

(d) Close-up of the part behind the lattice

Figure 2.15: 100-interaction square lattice - nodal lines for the strength parameter
α = −0.3, the same for all of the 100 interactions and for perpendicular wave with

momentum k = 2(1, 0, 0).
Representative example of all loops out of the lattice.

54
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(a) α = −0.160 (b) α = −0.120

(c) α = −0.104 (d) α = −0.05

Figure 2.16: 100-interaction square lattice - nodal lines for the strength parameter
the same for all of the 100 interactions and for perpendicular wave with momentum
k = 2(1, 0, 0), to show global effect. Here are plotted only loops in vicinity of the

lattice.
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(a) α = −0.04 (b) α = −0.038

(c) α = 0 (d) α = 0.1

Figure 2.17: 100-interaction square lattice - change of the nodal lines in front of
the lattice (for positive x), depending on the strength parameter α, the same for all
of the 100 interactions and for perpendicular wave with momentum k = 2(1, 0, 0).
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2.3.3 Summary for a wave perpendicular to point interactions
forming a square lattice

When examining the wave approaching a square lattice, we again discovered
a global effect, in the form of a loop encircling all of the points of the grid,
which in both cases (5 × 5 and 10 × 10) had one additional concentric loop in
the lattice. Therefore, we have seen that in the case of the lattice, as opposed
to the case of the point interactions on the line (section 2.2), additional loops
can appear during the appearance of a global line.

Furthermore, in the 5 × 5 lattice, we first found loops that were not inside
the lattice, but in front of the lattice as well as behind it (example in Fig.
2.11). To investigate the behaviour of a larger square lattice, we chose a
10 × 10 grid. As expected, the number of these loops increased, and we even
saw concentric loops outside of the lattice, as well as loops that were almost
perpendicular to the grid. In both cases, We also observed that the last loop
outside the lattice disappear earlier (for lower α) than the last loop inside the
lattice. Some of the more important configuration changes are summarised
in Tab. 2.3 for 5 × 5 grids and Tab. 2.4 for 10 × 10 grids.

With regard to both of these two global effects in the infinite lattice, we
conjecture that they would remain closed, unlike in the on line configuration
(section 2.2). However, we would have to use a different approach if we wanted
to prove this assumption.
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2.4 Hexagonal lattice with 6 points on each side

In this section we will study a hexagonal lattice, with 6 points on each side (i.e.
91 points in total) and with the same spacing of 1 between the neighbouring
points (Fig. 2.18), as was used previously. We will again consider a wave
with momentum k = 2(1, 0, 0) – perpendicularly approaching the hexagonal
lattice.

Again here we find critical value of alpha αcrit = −0.624. Below this value
only loops around each of the point interactions occur. Same as in the previous
case of the square lattice in section 2.3.2, we observe two concentric loops
in front of the lattice. For a moment, there are also two almost concentric
(there are in a close proximity in terms of the x-coordinate) loops behind the
lattice.

The behaviour of the loops behind the lattice (x > 0) is discussed here
in more detail. For α = −0.575, the loop at x ≈ 14.5 appears and as the
parameter α increases, this particular loop moves closer to the lattice. For
α = −0.405 at x ≈ 4.2 an additional set of 6 symmetrically (with respect
to the hexagonal symmetry of the lattice) placed loops emerge (Fig. 2.19a).
These six loops join for α = −0.396 to form two concentric loops (Fig. 2.19b).
For α = −0.389 a new set of 6 symmetrically placed independent loops at
x ≈ 1.2 appear (Fig. 2.19d) only for them to be later connected at α = −0.364
with the closer loop from the pair (created for α− 0.396) (Fig. 2.19e). For
α ∈ (−0.354,−0.318) a small loop at x ≈ 0.8 is observed. Finally, we can
perceive more loops, even though some of them later disappear again. For
α = −0.179, there is only one loop behind the lattice (Fig 2.20d).

The last loop outside the lattice (x ≈ −8.1) vanishes for α = 0.122 (Fig.
2.21a). And later, for α = 0.152, the last group consisting of 6 loops in the
lattice disappears (Fig. 2.21b), resulting in the case with zero loops for all
larger strength parameters α.

Compared with the 10 × 10 square lattice case (section 2.3.2), we found no
diametrically distinct results, although the nodal lines slightly differ due to
different geometry of the points. The creation of multiple concentric loops
outside the lattice, which we first observed in the larger square lattice, occurs
here as well (examples in Figs. 2.19, 2.20).
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Figure 2.18: Configuration of the hexagonal lattice with 91 points
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2. Models of various point interaction arrangements .....................

Strength α Nodal line change
(-∞, -0.624) Loops are only around each nodal point

-0.623 Loop at x ≈ −7.7
-0.621 Loop at x ≈ −9.3
-0.599 Loop at x ≈ −10.9
-0.588 Loop at x ≈ −6.0
-0.575 Loop at x ≈ 14.5
-0.566 Loop at x ≈ −12.5
-0.527 Loop at x ≈ −14.1
-0.521 6 symmetrically placed loops at x ≈ −3.0

-0.509/-0.508 6 loops join to create two concentric loops at x ≈ −3.0
-0.504 Loop at x ≈ −4.5
-0.484 Loop at x ≈ −15.8
-0.478 6 symmetrically placed loops at x ≈ −1.4

-0.467/-0.466 Two concentric loops at x ≈ −1.4 from 6 loops joined together
-0.435 Loop at x ≈ −17.4
-0.405 6 symmetrically placed loops at x ≈ 4.2

-0.397/-0.396 Two concentric loops at x ≈ 4.2 from 6 loops joined together
-0.389 6 symmetrically placed loops at x ≈ 1.2
-0.368 Loop at x ≈ −19.0

-0.365/-0.364 6 loops connect with one of the concentric loops at x ≈ 1.2
(-0.354–0.318) Loop at x ≈ 0.8
-0.326/-0.325 Outer loops connect to create one big loop

-0.189/-0.188 Loops around the second most outer points
connect and create one big loop

(0.121, 0.122) Last loops outside of lattice disappear (x ≈ −8)
(0.151, 0.152) Last loops in lattice disappear

(0.152, ∞) No nodal lines

Table 2.5: Some significant changes of nodal line configuration for interaction of 91
points in hexagonal lattice, perpendicularly approached by a wave with momentum

k = (2, 0, 0), depending on α. x-coordinates in the nodal line change column
indicate approximate positions of points on the loops in the plane z = 0 for the

specific α. With the growth of α, positions and shapes of the loops slightly change.
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(a) α = −0.4 (b) α = −0.394

(c) α = −0.394 side view (d) α = −0.380

Figure 2.19: 91-interaction hexagonal lattice, the strength α the same for all the
interactions, perpendicular wave with momentum k = 2(1, 0, 0).

Change of the nodal lines in front of the lattice (x > 0), depending on
α ∈ (−0.405,−0.330).
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2. Models of various point interaction arrangements .....................

(e) α = −0.360
(f) α = −0.356

(g) α = −0.350 (h) α = −0.330

Figure 2.19: 91-interaction hexagonal lattice, the strength α the same for all the
interactions, perpendicular wave with momentum k = 2(1, 0, 0).

Change of the nodal lines in front of the lattice (x > 0), depending on
α ∈ (−0.405,−0.330).
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(a) Viewpoint 1

(b) Viewpoint 2

(c) Viewpoint 3

(d) Close-up of the neighbourhood of the lattice

Figure 2.20: Nodal lines for the strength parameter α = −0.179, the same for all
of the 91 interactions on hexagonal lattice, and for perpendicular wave with

momentum k = 2(1, 0, 0).
For this α there already remains only 17 out of 18 loops in front x < 0 loops, the

farthest one disappeared.
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2. Models of various point interaction arrangements .....................

(a) α = 0.11

(b) α = 0.15

Figure 2.21: Nodal lines for the strength parameter α = −0.179, the same for all
of the 91 interactions on hexagonal lattice, and for perpendicular wave with

momentum k = 2(1, 0, 0).
Configurations before all lines, in front of/behind and in the lattice respectively,

disappear.
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Conclusion

In this thesis, we began by summarising the theory behind the point interac-
tion (section 1), using the textbook [2].

In the following section we focused on the periodic systems of point interac-
tions (section 2). We have found out, that even in the simplest systems (such
as equidistant, same strength, point interactions on a line), a global effect in
the form of a closed loop around all the interactions appear (Fig. 2.3). In
other words, one loop encircling all the point interactions is created instead
of a set of multiple separate loops around each interaction (Fig. 2.2). This
effect is dependent on the strength of the interactions and the angle, under
which the particle approaches this configuration. We created table 2.1 of
configuration changes, depending on the strength of the interactions. We
discovered (section 2.2.2), that a borderline angle, where this global effect
ceases to appear, is 8° (± 0.5°). It also gives a hint that global patterns may
exist in scattering on truly infinite systems. Regarding the scatter on points
on the line, it seems that the global lines might take form of two "parallel"
lines that are not closed. To test this assumption, however, we would have to
use different methods.

Finally we tried a more complex periodic system - a lattice, with a perpen-
dicularly approaching particles and the same strength for all the interactions.
Starting with a rather small 5 × 5 square lattice (section 2.3.1), we observed,
apart from similar effects to those around the point interactions on the line
(Figs. 2.12, 2.13), another global effect in the form of centered loops in front
of and behind the lattice (Figs. 2.10, 2.11, 2.12, 2.13). To find out how
these additional loops change, we tried a larger 10 × 10 lattice (section 2.3.2),
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2. Models of various point interaction arrangements .....................
where more loops appeared outside the designed lattice. For both of these
configurations we made tables with some of the significant changes (Tabs.
2.3; 2.4). In order to verify that these outside loops are not connected just
with a square lattice, we formed a similarly sized 91 point hexagonal lattice.
While investigating this proposed structure, we observed that the shape of
the loops changed according to the symmetry of this case. Nevertheless, we
still observed larger loop around the lattice (Fig. 2.20), as well as loops in
front of and behind the lattice (Figs. 2.19, 2.20, 2.21a). We conjecture that
in infinite lattices of this type all the nodal lines would remain closed.
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