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Abstract
In this thesis, we explore the evolving

domain of autonomous driving, delving
into Machine learning methodologies. We
primarily focus on the foundational prin-
ciples of Deep Neural Networks (DNN)
and the specialized architecture of Con-
volutional Neural Networks (CNN). Our
aim was to train a neural network for
autonomous navigation within Udacity’s
Car Simulator environment. The design
phase involved meticulous data collection,
processing, and image optimization, sig-
nificantly influencing the model’s perfor-
mance. With a noteworthy validation loss
achieved through rigorous optimization,
our model showcased substantial robust-
ness. This model was then integrated into
a simulation, ensuring real-time bidirec-
tional communication and adept vehicular
control. Our research highlights the sig-
nificant impact that machine learning can
have on the development of autonomous
vehicles.

Keywords: Autonomous Driving, CNN,
DNN, validation loss

Supervisor: Oswald Cyril Ing., P.hD.

Abstrakt
V této práci prozkoumáme vyvíjející se
doménu autonomního řízení a ponoříme
se do metodik strojového učení. Primárně
se zaměřujeme na základní principy Deep
Neural Networks (DNN) a specializova-
nou architekturu konvolučních neurono-
vých sítí (CNN). Naším cílem bylo vy-
trénovat neuronovou síť pro autonomní
navigaci v prostředí Car Simulator spo-
lečnosti Udacity. Fáze návrhu zahrnovala
pečlivý sběr dat, jejich zpracování a op-
timalizaci obrazu, což výrazně ovlivnilo
výkon modelu. Díky pozoruhodné ztrátě
ověření dosažené díky přísné optimalizaci
náš model předvedl značnou robustnost.
Tento model byl poté integrován do simu-
lace zajišťující obousměrnou komunikaci
v reálném čase a šikovné řízení vozidla.
Náš výzkum zdůrazňuje významný dopad,
který může mít strojové učení na vývoj
autonomních vozidel.

Klíčová slova: Autonomní řízení, CNN,
DNN, ztráta ověření

Překlad názvu: Aplikace metod
strojového vidění a strojového učení pro
vývoj modelu a simulaci autonomně
řízeného vozidla
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0.1 List of Abbreviations

NHTSA National Highway and Traffic Safety Administration

HIL Hardware-in-the-Loop

SIL Software-in-the-Loop

MP Modular Pipeline

IL Imitation Learning

AI Artificial Intelligence

ML Machine Learning

PID Proportional Integral Derivative

MPC Model Predictive Controller

CAGR Compound Annual Growth Rate

ADAS Advanced Driver Assistance Systems

MSE Mean Squared Error

MLP Multiple Layer Perceptron

ANN Artificial Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network
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Chapter 1
Introduction

The quest for automation has relentlessly pushed the boundaries of tech-
nological innovation, aiming to render tasks more efficient, safer, and less
reliant on human intervention. A striking exemplification of this pursuit is the
realm of self-driving cars—a paradigm shift promising to revolutionize how
we envision and experience transportation. Combining intricate algorithms,
and the power of machine learning, autonomous vehicles hold the potential
to streamline urban traffic, and adapt seamlessly to changing road scenarios
using real-time image processing. This can significantly improve vehicular
safety and efficiency, setting new benchmarks for the industry.

This study thoroughly examines the intersection of computer vision and ma-
chine learning and how they can be utilized to model and simulate self-driving
cars. As self-driving cars rely heavily on interpreting their surroundings,
computer vision acts as their cognitive system, enabling them to perceive
and understand the environment. Coupled with machine learning algorithms,
these vehicles perceive, learn, adapt, and make driving decisions analogous to
human drivers with potentially reduced error rates.

The following chapters navigate through various facets of this captivating
intersection of technology. Beginning with a comprehensive overview of the
current feasible applications and advancements in simulator technologies, the
research unravels both non-AI and AI-centric approaches to autonomous
driving. This sets the foundation for a deeper dive into fundamental machine
learning concepts, eventually leading up to the crux of the research—the
design, implementation, integration, and testing of an autonomous driving
model using Convolutional Neural Networks (CNNs). Alongside, Python,
renowned for its vast applicability in data science and artificial intelligence
(AI), is the foundational programming language driving the core of this
research. Further enhancing our modeling capabilities is Keras, an efficient
and high-level neural networks API, which serves as the primary conduit for
constructing and refining our experimental models.
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................................. 1.1. Background and Related Work

1.1 Background and Related Work

The concept of autonomous driving revolves around various ’autonomy levels,’
each defining a distinct degree to which a vehicle can function without
human intervention. The spectrum extends from cars equipped with essential
driver assistance features to the envisioned fully autonomous vehicles. To
truly understand how autonomous driving has evolved, we must dissect
these autonomy levels outlined by the National Highway and Traffic Safety
Administration (NHTSA) Figure 1.1 [1].

Figure 1.1: Autonomous Driving Levels [1]

Levels of Autonomous Driving:..1. Level-0: No automation - In this stage, the human driver solely manages
all driving operations without assistance from the vehicle’s systems.
Classic or vintage cars without modern assistance technologies would
fall under this category [1]...2. Level-1: Driver assistance - At this level, the vehicle can assist with
either steering or braking, but not both simultaneously. Features like
Adaptive cruise control systems and lane-keeping assist systems are
standard features for this category [8]...3. Level-2: Partial automation - Vehicles can simultaneously manage
steering and acceleration/deceleration at this level. Despite this, the
human driver should monitor the traveling environment while performing
other duties. The Tesla Autopilot system is a well-known example
of Level-2 automation, providing steering, braking, and acceleration
assistance to the driver [9]..4. Level-3: Conditional automation - The vehicle under specific conditions
(e.g., on highways) can control all driving tasks. However, the human
driver must be ready to take control [8]. Audi’s Traffic Jam Pilot,
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................................. 1.1. Background and Related Work

capable of handling the vehicle in heavy traffic up to speeds of 60 km/h,
exemplifies Level-3 automation [10]...5. Level-4: High automation - Vehicles operating at this level can assume
complete control of all driving tasks under certain conditions without
requiring human intervention or attention. If a change of affairs arises,
the vehicle can halt and park itself securely. This level is exemplified
by Google’s Waymo’s testing of Level-4 vehicles on public roads in 2017
[11]...6. Level 5: Full automation - At this ultimate level, the driving system
takes complete control over the entire driving task under all circumstances,
and the human driver does not need to be inside the car. While many
autonomous vehicle developers aspire to this level, no authentic Level-5
vehicles exist yet [8].

As autonomy increases with each level, the imperative for solid and reliable
systems to navigate complex real-world scenarios grows significantly, under-
scoring the need for rigorous testing and validation through some car-driving
simulations to replicate the real world [1]. In the next chapter will discuss
some of the most feasible applications of self-driving car simulations.
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Chapter 2
Feasible applications of self-driving Cars

The evolution of driving simulators has mirrored and supported the pro-
gression of autonomous vehicle technology. With the emergence of more
sophisticated machine learning and computer vision techniques in the 21st
century, driving simulators began employing higher-fidelity models of road
networks, vehicle dynamics, and traffic behavior [12]. The availability of
open-source driving simulators like CARLA and AirSim among others, which
even integrates weather patterns and pedestrian behavior, exemplifies the
current state of simulator technology [13].
Additionally, the rise of Hardware-in-the-Loop (HIL) and Software-in-the-
Loop (SIL) simulation methods allows for simultaneous testing of software
and hardware components of autonomous vehicles in a controlled setting
environment. [14]. In this section, we will cover some of the most common
automated vehicle simulation platforms used in the industry today.

2.1 CARLA

CARLA (Car Learning to Act) is a noteworthy open-source driving simulator
developed collaboratively by Intel Labs, the Toyota Research Institute, and
the Computer Vision Center in Barcelona, Spain [5]. Designed to support the
testing and development of autonomous driving (AD) technologies, CARLA
strives to provide a realistic virtual environment that can mimic diverse
real-world driving conditions [13].

CARLA’s simulation framework incorporates various elements, including
various vehicle models, urban layouts, pedestrians, buildings, and street signs.
It allows for the flexible setup of sensor groups, delivering critical signals
and data that can aid in training automated driving strategies. It can pro-
vide detailed data on metrics such as speed, acceleration, GPS coordinates,
collisions, and other violations. The software’s ability to generate different
environmental conditions, such as time of day and weather, further augments
its usefulness for autonomous vehicle testing. Importantly, it provides com-
prehensive technical feedback, which is crucial for the learning process of
automated driving systems [13].

CARLA employs three different testing methodologies to study automated

5



............................................ 2.2. Airsim

driving performance. The first involves a classic Modular Pipeline (MP)
composed of a vision-based perception module, a rule-based planner, and
a maneuver controller. The second and third methods utilize deep neural
networks. One employs Imitation Learning (IL) to map sensor inputs to
driving commands, while the other uses reinforcement learning (RL) to
train autonomous driving agents through trial and error. These testing
methodologies are employed in conjunction with a range of controlled, goal-
directed navigation scenarios of increasing complexity [13].

As a result, none of the methods achieved perfect performance, indicating
that the challenges of AD are far from fully solved. While the MP and IL
methods showed comparable success, their performance was still less than
ideal in the more complex tasks and scenarios. Despite the potential the RL
has shown in other applications [15], it fell short in this study, demonstrating
the brittleness and complexity of this approach when applied to autonomous
driving. Therefore, further advances in learning algorithms, model archi-
tectures, and training diversity are needed to improve the performance and
robustness of AD systems significantly [13].

2.2 Airsim

AirSim’s significance as a testing platform for autonomous vehicles can be
understood by the variety of research it has facilitated. Not only does AirSim
support the development and validation of autonomous driving algorithms,
but it also plays a crucial role in exploring novel techniques to bridge the
reality gap – the difference between the simulation and real-world performance.
It provides rich 3D visuals, and it’s designed for hardware-in-the-loop with
physically and visually realistic simulations [16].

AirSim is characterized by its high-fidelity visuals, physics, and sensor
models. This enables autonomous vehicles’ algorithms to be trained in a
highly realistic virtual environment, which improves the transferability of
these algorithms to the real world. The simulator allows for a variety of
sensors, including LiDAR, GPS, and depth cameras. AirSim also offers a
comprehensive API for researchers to manipulate the environment and vehicle
dynamics [16].

It has been employed to train a Deep Deterministic Policy Gradient (DDPG)
agent for autonomous driving. A study reported that combining reinforcement
learning with the photorealistic simulation environment provided by AirSim
resulted in better performance in lane-following and obstacle-avoidance tasks.
Nevertheless, these studies also acknowledge that challenges remain. Despite
AirSim’s high-fidelity simulations, the reality gap still exists and poses difficul-
ties in transferring the learned policies to real-world applications. Researchers
highlight the importance of continued improvements in simulation realism
and developing more effective Sim2Real transfer learning techniques. [17].
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2.3 CarSim

CarSim is a high-fidelity, commercially available simulator extensively used
in both academia and industry for developing, testing, and validating AD
technologies. This software is known for its ability to accurately simulate
the dynamic behavior of vehicles under a wide range of conditions and
configurations. It’s versatility can be attributed to its comprehensive vehicle
models, road models, and detailed environmental settings. Its physics-based
vehicle models, including passenger vehicles, commercial trucks, and trailers,
consider various vehicle components and their dynamic interactions [18].

This simulator offers different road scenarios that cater to various driving
conditions, including rural, urban, and highway driving. This range of
scenarios enables a thorough examination of the vehicle’s response under
different circumstances. The simulator also supports incorporating traffic
and pedestrians into the simulation, providing a more realistic evaluation
environment [19].

CarSim also allows for integrating various sensor models, including camera, LI-
DAR, and RADAR, critical for developing and testing perception algorithms
for autonomous vehicles. Additionally, CarSim has a Hardware-in-the-Loop
(HIL) capability, enabling testing of actual hardware components in a sim-
ulated environment. This feature is particularly useful for testing sensor
hardware and control units [19][20]. In addition to that, This approach is
particularly promising for the evaluation and development of Advanced Driver-
Assistance Systems (ADAS), enhancing safety and performance metrics in
this evolving field [20].

However, future enhancements, including integrating more vehicle subsys-
tems and control units in the HIL simulations for a more realistic representa-
tion of real-world conditions, are still required [20].

CarSim is proprietary software, making it less accessible for some researchers
and developers compared to open-source alternatives. Nevertheless, it’s
advanced capabilities and high fidelity make it a favored choice for rigorous
testing and validation of autonomous vehicle technologies [19] [20].

2.4 Udacity

Udacity, a pioneering platform in the field of online education, introduced a
unique Self-Driving Car Engineer Nanodegree program aimed at nurturing
future professionals in autonomous vehicle technology. While it isn’t a
simulator per se, as part of this comprehensive program, they have developed
an open-source simulator that can be used to test self-driving algorithms [21].

This simulator is designed to support developing and testing autonomous
driving algorithms in a virtual environment. It offers a variety of scenarios for
testing different aspects of autonomous vehicle functionality, such as traffic
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light detection, steering control, and throttle control [21] [22].

The simulator’s architecture includes a simple, user-friendly interface, primar-
ily focusing on testing self-driving cars’ functionality in different circumstances.
It enables the users to gather data on vehicle’s behavior under varying envi-
ronmental and road conditions [22].

Udacity introduces the concept of end-to-end learning for control tasks, where
a neural network learns to map raw sensor data directly to steering commands.
This is demonstrated in Behavioral Cloning, where a deep learning model
is trained to mimic human driving behavior based on data collected from
simulator driving sessions [7].

These techniques are practiced within Udacity’s simulator, providing a hands-
on learning experience of applying deep learning to autonomous driving tasks.
However, it’s worth noting that while these methods have proven effective in
the controlled environment of the simulator, translating them to real-world
performance is a challenging task that requires rigorous testing and validation
[7].
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Chapter 3
Approaches to Autonomous Driving

The steering control mechanism ensures safe and accurate navigation in the
autonomous driving industry. Various approaches have been employed to
tackle the complex task of steering in self-driving vehicles. These approaches
can be broadly categorized into three main categories:. non-AI approach.AI approach. combination of AI and non-AI methods

Understanding these approaches is crucial for building effective and reliable
steering mechanisms that enable autonomous vehicles to navigate diverse
road scenarios with precision and safety.

3.1 Non-AI Approach

3.1.1 PID Control

PID Control (Proportional-Integral-Derivative) is a classic control strategy
that adjusts the steering input based on three components [23]:. proportional Kp- generates a control action proportional to the error

between the desired and actual steering angles.. Integral Ki- dampens oscillations by considering the rate of change of
the error.. derivative Kd- considers past errors to correct long-term biases or steady-
state errors.

By tuning these components Kp, ki, Kd, the PID controller minimizes the
error and maintains stable and accurate steering control according to the
mathematical formula below [23]:

u(t) = Kp · e(t) + Ki ·
∫ t

0
e(τ) dτ + Kd · de(t)

dt
(3.1)
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Where u(t) represents the control input (steering command) at time t and
e(t) denotes the error between the desired set-point (desired steering angle)
and the measured process variable (actual steering angle) at time t.

Figure 3.1: PID Block Diagram [2]

In a study examining autonomous vehicle simulation, a dual PID controller
system was introduced the primary for lateral movement and the secondary
for speed regulation. Though they operated independently, both controllers
aimed for accurate trajectory following using discretized waypoints paired
with velocity set-points. While safety and comfort were prioritized, and
continuous tuning was applied, the lateral controller struggled with precise
tracking on roads with pronounced curvatures. This suggests that while PID
is adequate for lateral control, incorporating advanced methods like gain
scheduling or superior controllers like MPC might achieve better outcomes [23].
Model Predictive Control (MPC) has shown efficacy in steering autonomous
vehicles, successfully tracing various velocities and trajectories using a simple
kinematic bicycle model [24]. While both MPC and PID controllers are
commonly used in self-driving cars, MPC stands out due to its adaptability
and ability to manage complex systems. Yet, it’s computationally intensive,
and while certain modifications can reduce this demand, they may compromise
optimization. Therefore, learning-based or AI methods, which strike a balance
between computational demands and performance, could be more suitable
for real-world applications

3.2 AI-Approach

Artificial intelligence (AI) approaches in the context of autonomous vehicles
involve utilizing advanced algorithms and techniques to enable vehicles to
sense, perceive, understand, and make decisions autonomously [24].
The automotive AI industry will be dominated by deep learning technology,
a method for applying Machine Learning (ML) (as part of being an AI subset
as shown in figure 3.2, ML can be defined as a field that enables computers to
learn and improve their performance without being explicitly programmed)
[23]. It is now used in autonomous cars for speech recognition, voice search,
sentiment analysis, recommendation engines, picture recognition, and motion
detection [25].
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Additionally, vehicles can perceive the environment by integrating computer
vision with machine learning algorithms, therefore extracting meaningful
insights and patterns from the visual data. This enables more sophisticated
decision-making processes and enhances the vehicle’s ability to navigate
complex road scenarios [26].

Figure 3.2: Relation between Artificial Intelligence, Machine Learning, and
Deep-Learning

According to projections, the Automotive Artificial Intelligence market is
set to expand from USD 2.3 Billion in 2022 to USD 7.0 Billion by 2027. This
represents a Compound Annual Growth Rate (CAGR) of 24.1% over the
five-year period [27]. The key factors contributed to this growth are:. Human-machine interface for infotainment systems including voice and

gesture detection, eye tracking, driver monitoring, virtual assistance, and
natural language interfaces to recognize and classify the data that the
driver uses to create a Level 3 autonomous system [28][29].. Autonomous cars and advanced driver assistance systems (ADAS) in-
cluding sensor-fusion engine control units (ECUs), radar-based detection
units, driver condition assessment, and camera-based machine vision
systems [30].
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Chapter 4
Machine Learning

4.1 Supervised Learning

Supervised Machine Learning is a sub-field of machine learning where the
algorithm learns from labeled training data that consists of input-output pairs.
For example, the goal is to approximate a function f using a machine learning
algorithm. In supervised learning, the function maps elements from an input
domain X to elements in an output domain Y. To approximate f , the machine
learning algorithm is given a set of pairs of inputs and their corresponding
ground truth outputs denoted L = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where
f(xi) = yi. The goal of the machine learning algorithm is to approximate f as
close as possible, meaning the prediction f̂(x) = ŷ should be as close to the true
value f(x) = y as possible [31]. Supervised learning approaches are extensively

Figure 4.1: Supervised learning illustration

applied in computer vision techniques. Among these, methodologies rooted in
deep learning, a subset of supervised learning, have consistently demonstrated
superior outcomes in diverse tasks such as recognizing objects, classifying
images, and performing semantic segmentation [32].
It is crucial to start with the differences between Linear and logistic regression,
two widely used algorithms in machine learning through a supervised manner.. Linear regression: used for predicting continuous numerical values [33].. logistic regression: used for predicting the probability or likelihood of a

binary outcome [34].
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...................................... 4.1. Supervised Learning

These algorithms have distinct equations and objectives, making it crucial to
comprehend their differences to select the appropriate approach for end-to-end
learning of a self-driving car.

4.1.1 Linear Regression

The training process involves presenting the algorithm with a set of input
features and their corresponding known output labels, allowing the model
to learn the underlying patterns and relationships between the inputs and
outputs. Once trained, the model can make predictions or classifications on
new, unseen data by generalizing from the learned patterns. The model takes
the form of a linear regression equation of this type [35]:

y = w0 + w1x (4.1)

Where:. y : Output/target variable. x : Input/feature variable. w0 : Bias term or y-axis intercept. w1 : Regression coefficient or scale factor

The input variables are also known as independent, which signifies that they
are not affected by other variables in the model and are assumed to impact
the output variable directly [33]. We must consider the linear model and loss
function to know the linear regression’s representation.

Linear Model

In steering control, linear regression assumes a linear relationship between
the input features (i.e., vehicle speed, heading angle, road conditions) and
the predicted steering angle. For example, in the context of steering control,
The linear model using a neural network can be expressed like this [33]:

ŷi = w0 + w1 · Speed + w2 · Heading Angle + . . . + ϵ

The predicted steering angle ŷi is the dependent variable, and the input
features (speed, heading angle, etc.) are the independent variables. The
coefficients w0, w1, w2, . . . represent the impact of each feature on the steering
angle, and ϵ is the error term, which tells us if our model is doing well or not.

Loss Function - Mean Squared Error

Linear regression aims to find the best-fit line that minimizes the difference
between predicted and actual values, such as the mean squared error (MSE)

13



...................................... 4.1. Supervised Learning

that quantifies the discrepancy between the predicted and actual steering
angles [36].

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (4.2)

where:. n is the dataset’s total number of data points.. yi represents the actual steering angle for the i-th data point.. ŷi represents the predicted steering angle for the i-th data point.

The linear model is used to make predictions, and the MSE is used to evaluate
how good those predictions are or how well the model fits the data. The
smaller the MSE, the better the fit, which means the model’s predictions are
closer to the actual values. During the training process, the objective is to
minimize the MSE by adjusting the model’s parameters. This is typically
done using optimization algorithms such as gradient descent, which iteratively
updates the parameters to minimize the MSE and improve the model’s
predictive performance [37].

4.1.2 Logistic Regression

In logistic regression, the objective is to predict the probability of an event
or the likelihood of a binary outcome, typically represented as 0 or 1. Mathe-
matically can be expressed as [34]:

ln
(

y

1 − y

)
= w0 + w1x1 + w2x2 + w3x3 + . . . + wkxk (4.3)

This is achieved using a threshold value, which determines the probability
of an outcome being classified as 1 or 0. To model this relationship, logistic
regression utilizes a Sigmoid function σ(x) taking S-shape as shown in figure
5.2, also known as the logistic function [34].

σ(x) = 1
1 + e−x

(4.4)

The sigmoid function transforms any real-valued input into a range between
0 and 1, suitable for representing probabilities [38]. However, accurately
measuring these probabilities requires calculating the difference between them
and the actual labels. The cross-entropy loss function is a useful tool for
accomplishing this task.

Cross Entropy

Cross entropy is a mathematical function commonly used as a loss function in
logistic regression and other classification models. It measures the dissimilarity
between the predicted probabilities and the actual labels, measuring how
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...................................... 4.1. Supervised Learning

well the model fits the observed data [39]. The cross-entropy function can be
expressed mathematically as [40] [41]:

C = L(y, ŷ) = − 1
N

∑
i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi) (4.5)

where y is the true label, and ŷ is the predicted probability. Understanding
the mathematical foundations of linear and logistic regression provides a
solid basis for developing accurate and reliable steering control systems.
By utilizing linear/logistic regression techniques, autonomous vehicles can
effectively learn and predict the appropriate steering angles based on various
input features, enabling them to navigate the road with precision and safety
[42].

Gradient Descent

Gradient descent is a fundamental optimization algorithm that is used to
find the optimal parameters (weights) for either linear or logistic regression
models. The general update rule for the weights in linear regression using
gradient descent is given by iterations like this [43]:

θj := θj − α
1
m

m∑
i=1

(hθ(x(i)) − y(i)) · x
(i)
j (4.6)

Where:. θj : the j-th weight parameter.. α: learning rate, which controls how large the steps are during the
descent..m: number of training samples.. hθ

(
x(i)

)
: hypothesis function representing the predicted value for the

i-th training sample. For example:. For linear regression, hθ

(
x(i)

)
would be a linear combination of the

features [44]:

hθ

(
x(i)

)
= θ0 + θ1x

(i)
1 + . . . + θnx(i)

n. For Logistic regression, hθ

(
x(i)

)
is the sigmoid of the linear combi-

nation of the features:

hθ

(
x(i)

)
= 1

1 + e−(θ0+θ1x
(i)
1 +...+θnx

(i)
n )

(4.7)

. y(i): actual output for the i-th training example.. x
(i)
j : the j-th feature value for the i-th training example.

This iterative process continues until convergence is achieved, where the
model reaches a state of minimal loss and optimal parameter values. More
Types of gradient descent will be discussed in chapter 6.2.3.
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Chapter 5
Perceptron

The Perceptron, introduced by Rosenblatt in 1957, is a binary classification
algorithm that mimics the functioning of a biological neuron. Acting as a
single-layer feed-forward neural network, the Perceptron’s significance extends
to being the foundation of modern neural networks [45].
The basic operation of a perceptron involves summing weighted inputs and a
bias, then applying an activation function (like the Step function as shown in
5.1), and ultimately making a binary classification decision. While powerful
for linearly separable problems, its limitations and inability to solve problems
like XOR (a non-linearly separable function), led to the development of Multi-
Layer Perceptron (MLP). This evolution marked the transition from simple
to complex neural models capable of handling non-linear patterns [46] [47].

Figure 5.1: Perceptron Model ([3])
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............................ 5.1. Mathematical Formulation of a Perceptron

5.1 Mathematical Formulation of a Perceptron

The perceptron is a binary classifier that maps its input x (a real-valued
vector) to an output value f(x) (a single binary value) by passing it through
a linear predictor function combined with a thresholding activation function.
Formally, given an input vector x and a weight vector w, the perceptron’s
output f(x) is defined as [46]:

f(x) =
{

1 if w · x + b > 0
0 otherwise

(5.1)

Where:.w: a vector of real-valued weights.. x: the input vector.. b is the bias..w · x denotes the dot product of the vectors w.x =
∑n

i=1 wixi.

The perceptron algorithm learns the appropriate weight coefficients from
the training data so that the instances of one class are separated from the
instances of the other class by a hyperplane.

5.1.1 Activation Functions

The activation function in the perceptron model in figure 5.1 plays a crucial
role in determining the model’s output. Specifically, the perceptron uses a step
function as its activation function, introducing a thresholding non-linearity.
This allows the perceptron to make binary decisions by separating the input
space with a hyperplane.

However, this particular non-linearity is quite simple, and it can limit
the model’s ability to learn more complex patterns. In the context of more
advanced neural network models, different activation functions, such as
sigmoid or ReLU, are used to introduce more flexible non-linearities, enabling
the network to capture more complex relationships in the data. Table 5.1
summarizes the frequently used activation functions in Deep Neural Networks
(DNN) with their graphical representation in figure 5.2 [48] [49].
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............................ 5.1. Mathematical Formulation of a Perceptron

Activation Function Equation and Description

Step function f(z) =
{

1 if z ≥ 0
0 otherwise

Here z = wT · x + b, the dot product of the
weight and input vectors plus the bias term,
is the input to the activation function.

Sigmoid function f(x) = 1
1+e−x

The sigmoid function squashes real num-
bers between 0 and 1.

Hyperbolic Tangent (Tanh) function f(x) = 2
1+e−2x − 1

The tanh function squashes real numbers
in the range of -1 to 1.

ReLU (Rectified Linear Unit) function f(x) =
{

x if x ≥ 0
0 if x < 0

ReLU outputs the input directly if it’s pos-
itive; otherwise, it outputs zero.

ELU (Exponential Linear Units) function f(x) =
{

x if x ≥ 0
α(ex − 1) if x < 0

ELU tends to converge cost to zero faster
and produces more accurate results.

Softmax function f(xi) = exi∑N

j=1 exj

The softmax function calculates the prob-
abilities of each class in a multiclass classi-
fication problem.

Table 5.1: Common Activation Functions

Figure 5.2: Common Activation Functions18



Chapter 6
Deep Neural Network (DNN)

Deep Neural Networks (DNNs) extend the single-layer perceptron by in-
troducing the concept of hidden layers. This added complexity enables
the modeling of nonlinear and hierarchical features. Marking DNNs a ver-
satile tool in numerous applications such as image recognition [50], speech
processing [51], and natural language processing [52].

Figure 6.1: DNN Layers [4]

Deep Neural Networks comprise multi-layers of perceptron, each serving a
distinct purpose in the overall network. It starts with the input, hidden, and
output layer [53]:. Input Layer: accepts the raw input data, each neuron representing an

individual feature in the data set.. Hidden Layers: perform transformations on the inputs received from
the preceding layers. The "depth" of a network refers to its number of
hidden layers.. Output Layer: provides the network’s final output, which is the prediction
or classification made by the network.
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.................................. 6.1. Feed-forward Neural Network

6.1 Feed-forward Neural Network

Each layer in a DNN typically consists of multiple neurons (or nodes) as
shown in figure 6.1. These neurons perform linear transformations on their
inputs, followed by a non-linear activation function. The output of one layer
serves as the input for the next layer. This hierarchical structure allows DNNs
to model complex patterns in the input data by combining simpler patterns
learned in the lower/previous layers [53].
Mathematically, the computation performed by a layer in a DNN is almost
similar to the perceptron in equation 5.1. Considering MLP, the equation
can be represented in the form below [54]:

a = ϕ

∑
j

wjxj + b

 (6.1)

Where:. a: Activation/output of the layer.. ϕ: Activation function applied to the weighted sum of inputs.. wj : Weights applied to the inputs.. xj : Inputs to the layer.. b: Bias term.

The equation describes the computation performed by a neuron/layer in a
DNN. The weighted sum of the inputs (i.e.,

∑
j wjxj) is first computed, and

the bias b is added. This total is then passed through the activation function
ϕ, resulting in the activation a of the neuron. The process is repeated across
all neurons and layers in the network to compute the final output y.
To express y using a fully connected network, we must include the cal-
culations for all the layers that lead up to the output layer. For example,
assuming DNN with L layers, activation function ϕl of layer l, weights Wl,
and the biases bl, we can represent the computations as [54]:

a(1) = ϕ1(W1x + b1) (6.2)
a(2) = ϕ2(W2a(1) + b2) (6.3)

... (6.4)
a(L−1) = ϕL−1(WL−1a(L−2) + bL−1) (6.5)

y = a(L) = ϕL(WLa(L−1) + bL) (6.6)

Here:. x is the input vector..Wl is the weight matrix for layer l.
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................................. 6.2. Training Deep Neural Network

. bl is the bias vector for layer l.. ϕl is the activation function for layer l.. a(l) is the activation vector for layer l.. y = a(L) is the final output of the network.

These equations describe a feed-forward pass through the network, where the
output of each layer serves as the input to the next layer, culminating in the
final output y.
After applying activation functions to each layer in the feedforward process of
a DNN, the network has completed its computation of the input response. The
subsequent step typically involves a loss or objective function that measures
how well the network’s output matches the desired target. This process is
essential for training the network [54].

6.2 Training Deep Neural Network

Once the activation functions have been applied to each layer in the feed-
forward process of a DNN and the network has fully computed its response
to the input. The next step usually involves a loss function that quantifies
how well the network’s output aligns with the expected target. This is crucial
for training the network. Furthermore, an essential mechanism for proper
training of the network is backpropagation, as it utilizes the chain rule to
compute gradients, facilitating weight updates to minimize the loss function.

6.2.1 Loss Function

A loss (also called cost or objective) function is used to measure the precision
of the network outcome. This function determines how much the prediction
deviates from the anticipated result. The result of this function is a numerical
value, also known as the penalty or cost. For instance, the cross-entropy
loss, MSE functions explained in chapter 4.1.2 is frequently used in visual
classification tasks where probabilities are computed [53].

6.2.2 Back-propagation

For supervised learning, target classes are essential for error calculation. The
error is afterward backpropagated to every node in previous layers. This
error is obtained as a gradient of the cost/loss function C with respect to
each layer’s weights wij , given input of the node x and activation function ϕ.
The method for calculating the error term differs depending on whether it is
for the output layer or a hidden layer [41].
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Output Layer Error:

For the output layer (L), the error term is often computed as [41]:

δL = ∇aC ⊙ ϕ′(zL) (6.7)

Here, ∇aC is the gradient of the cost function C with respect to the activation
neuron ( ∇aC = ∂C

∂a
[L]
j

), ϕ′ is the derivative of the activation function, ⊙

- Hadamard product denotes element-wise multiplication, and z[l] is the
weighted input vector for layer l, computed as z[l] = w[l]a[l−1] + b[l].

Hidden Layer Error:

For the hidden layers, the error term can be computed using the error term
of the next layer [41]:

δl = ((wl+1)T δl+1) ⊙ σ′(zl) (6.8)

Here, wl+1 is the weight matrix for layer l + 1, δl+1 is the error term for layer
l + 1, and T denotes the transpose.

The rate of change of the cost with respect to the weights and biases in the
network is vital for the parameter update process. These gradients are given
by :

∂C

∂wl
ij

= al−1
j · δl

i (6.9)

∂C

∂bl
j

= δl
j (6.10)

Gradient computation demands the application of the chain rule in order to
compute partial derivatives of the loss function C with respect to particular
weight wij . Using this error, weights are updated by an optimization algorithm
such as gradient descent [41].

6.2.3 Gradient Descent Types

During backpropagation, the weights and biases in the network are updated
using gradient descent. Recalling the theory obtained from chapter 4.1.2. The
main objective is to minimize the cost function C, by adjusting the weights
wl

ij and biases bl
j in the direction that reduces the gradient of the cost function.

The adjustments are controlled by the learning rate η, and the gradients ∂C
∂wl

ij

and ∂C
∂bl

j

are calculated during back-propagation from equations 6.9 and 6.10 .
Then the update formulas for weights and biases can be formulated as [41]:

wl
ij = wl

ij − η
∂C

∂wl
ij

(6.11)
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bl
j = bl

j − η
∂C

∂bl
j

(6.12)

Gradient descent comes in three variants Batch Gradient Descent, Stochastic
Gradient Descent (SGD), and Mini-Batch Gradient Descent [55]. A small
comparison of these algorithms, illustrating their updated equations, is pre-
sented in Table 6.1, where θ is the parameters of the model being optimized
[55].

Algorithm Equation

Batch Gradient Descent θ = θ − η · ∇J(θ, X, y)
Stochastic Gradient Descent (SGD) θ = θ − η · ∇J(θ, xi, yi)
Mini-Batch Gradient Descent θ = θ − η · ∇J(θ, xi : i +

n, yi : i + n)

Table 6.1: Comparison of Gradient Descent Optimization Algorithms

The differences between these variants primarily revolve around the number
of training examples used to compute the gradient at each step. In Batch
gradient descent, which computes the gradient of the loss function using
the entire training set X before updating the model parameters. However,
this method is usually slow and requires the full training set to be kept in
memory, which can be challenging for deep learning. The second variant SGD
updates the weights after each training sample xi. Although this method
is faster, it can produce a lot of fluctuation. On the other hand, The most
commonly used type is mini-batch gradient descent, which computes the
gradient for a batch of training samples xi:i+n. This method strikes a balance
between computational efficiency and stability in the learning process, as it
only requires a smaller subset of the training data to be in memory at any
given time.
Furthermore, Finding the optimal learning rate η in DNN is tricky. It needs
to be fast enough for efficient convergence but not so fast that it causes
fluctuation. Gradient descent can lead to sub-optimal states, but optimizers
like RMSprop and Adam address this issue [55]. For example, RMSprop works
well with RNNs, while Adam performs better with CNNs and is generally
faster than traditional gradient descent [56].
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6.3 Types of Deep Neural Networks

Having explored the fundamental building blocks of training Deep Neural
Networks (DNNs), from the definition of layers, and loss function to the
details of back-propagation and gradient descent algorithms, we are now
equipped with the essential understanding of how DNNs learn.

Neural Networks (NNs) come in different types, such as Perceptrons, Shal-
low Neural Networks (SNNs), Convolutional Neural Networks (CNNs), and
Recurrent Neural Networks (RNNs). Although they share the same funda-
mental concept of interconnected nodes or "neurons," their architectures and
mechanisms differ. For example, Perceptrons and SNNs typically have only
one or a few layers, while DNNs have multiple hidden layers. CNNs are ideal
for image processing because they use convolutional layers to capture spatial
hierarchies. RNNs have internal memory to handle sequential data. Despite
these differences, all NNs types rely on weighted connections, activation
functions, and the ability to learn from data. A comparison between types of
neural networks and their application represented in table 6.2

Type Layers Key Features Typical Applications

Percep-
trons Single layer Simplest form of neural

network, linear classifier
Binary classification

SNNs One or few Simplicity, limited hidden
layers

Simple pattern recognition

DNNs Multiple
hidden

Multiple hidden layers,
complex representations

Image, text, and speech
analysis

CNNs Multiple Convolutional layers, pooling,
spatial hierarchies

Image and video
processing

RNNs Multiple Sequential processing,
internal memory

Time series, speech
recognition

Table 6.2: Comparison of different types of neural networks

Recurrent Neural Network - RNN

Recurrent neural networks are a class of deep neural networks that form
connections between units over time, enabling them to process sequential
data and maintain information about previous steps in a sequence [57]. The
first development in RNNs was in the 1980s by John Hopfield [58]. In this
network, the state of the nodes is activated depending on the input it receives
from every other node. In 1989, the Elman network introduced the idea of
inputs from previous time steps fed forwards ((passing previous outputs as
inputs to the next layer)) [59]. Since then, RNNs have been demonstrated to
be successful in speech recognition [57], natural language processing [60], and
time-series prediction [61].
The basic algorithm of RNN is similar to a feed-forward neural network layer
but includes a separate set of weights to evaluate the results of previous time
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step elements. The following equation can describe this [57]:

ht = f(Whhht−1 + Wxhxt + b) (6.13)
yt = Whyht + by (6.14)

Where f is an activation function, ht represents the current hidden state,
ht−1 is the previous hidden state, xt is the current input, Whh and Wxh are
the weight matrices, and b is the bias.

While this architecture allows RNNs to model sequential data effectively, it
also makes them susceptible to challenges such as vanishing and exploding
gradients, especially when dealing with long sequences. Various modifications,
such as Long Short-Term Memory (LSTM - gradient-based method [62])
units, proposed to mitigate these issues [57].

Convolution Neural Networks - CNN

In 2010, the ImageNet Project exhibited the full potential of Deep CNNs.
It has held an annual competition challenging teams to classify a large
visual database with over 14 million annotated images [63]. While in 2010 a
reasonable error rate was considered to be 25% [63], a deep CNN achieved an
error rate below 5% in 2017 [64]. This significant advancement attracted both
industry and research attention, leading to a surge in deep neural networks.
This surge inspired NVIDIA to explore the use of deep CNNs in self-driving
cars [7].

CNNs specifically designed to process data with grid-like topology, such as
images organized in a 2D or 3D grid of pixels, making them a vital tool for
computer vision tasks [53]. Inspired by biological visual perception, CNNs
were first introduced by Fukushima in the 1980s [65]. They comprise multiple
convolutional layers that apply filters to the input data, capturing local
features and preserving spatial relationships [66]. Since their inception, CNNs
have been a cornerstone in various applications such as image classification
[50], vehicles & lane detection [67], and even medical imaging [68].
The basic architecture of a CNN is represented in figure 7.1 consists of
a sequence of layers. This combination of layer types enables CNNs to
automatically and adaptively learn spatial hierarchies from the input data.
The next chapter will delve deeper into the architectures, mechanisms, and
innovative applications of CNNs to apply it in our simulator to build a
self-driving car being driven autonomously.
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Chapter 7
Convolutional Neural Network (CNN)

CNN is commonly used in visual feature extraction tasks since they have the
ability to capture edges or common characteristics in the image. For example,
a CNN can be trained to recognize signs, detect pedestrians, and analyze
traffic patterns [69]. Additionally, CNN analyzes visual data captured by the
vehicle’s cameras to enable the self-driving system to make real-time decisions
and safely navigate through the environment. [7].

7.1 CNN Architecture

Convolutional Neural Networks consist of a series of layers designed to auto-
matically and adaptively learn spatial hierarchies from data. The architecture
of a typical CNN is composed of several types of layers as illustrated in figure
7.1: Convolutional layers, Pooling (subsampling) layers, Flatten layer, and
Fully connected layers.

LeNet Architecture [66]

Figure 7.1: CNN Architecture

CNN takes image pixels as input. The information of an image can be
represented as a 2D array for grayscaled images or a 3D matrix for RGB
images with dimensions of (H x W x C), where H represents height, W
represents width, and C represents channel (or depth). Each value of this
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matrix can be a color value in [0, 255] or a scaled version in [0, 1] for the
corresponding color channel. A computer then processes this image data
through a process called image processing [6].

7.1.1 Convolution Operation

The following equation can describe a typical convolutional operation [53]:

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(i − m, j − n)K(m, n) (7.1)

Where:. S(i, j): the output of the convolution operation at spatial location (i, j).. I: The input image..K: The 3D kernel or filter..∑
m

∑
n

∑
c: Denotes a summation over m, n, and c. m and n define the

kernel size, and c is the channel depth.

The convolution operation involves sliding a filter or kernel across the input
image (or input feature map) and performing element-wise multiplication
between the kernel values and the corresponding values in the input. This
is then summed to produce a single value in the output feature map. The
process is repeated for every location the filter can reach on the input, thereby
producing the entire output feature map [6]. This operation is visualized in
figure 7.2.

Figure 7.2: Convolution Operation with 3x3 filter and stride = 1 [5]
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7.1.2 Pooling

This layer sub-samples feature maps to reduce variance within local regions
of the image [6]. It splits the image into rectangular regions and takes out
the value determined by the type of pooling layer. The most popular type of
pooling layer in CNNs is the max-pooling layer, which extracts the maximum
value of the sub-regions of the feature map, other pooling functions can be
shown in figure 7.3.

Figure 7.3: Pooling Operation with 2x2 filter and stride = 2 [6]

In the pooling operation, no parameters are learned; rather, it’s a fixed op-
eration designed to expedite the computation and promote feature invariance.
However, the choice of pooling window size, stride, and type of pooling (max
or average) can be considered hyper-parameters of the model and adjusted
during the model tuning process [6] [53].

7.1.3 Fully Connected Layer

Towards the end of the network, there are one or more fully connected layers,
also known as dense layers. These layers function like those in a standard
MLP network. Their purpose is to perform high-level reasoning and make
the final decision based on the features extracted by the convolutional layers.

Before passing the output from the last pooling or convolutional layer to
the fully connected layer, the data is flattened (i.e., transformed from a 2D
matrix to a 1D vector). The last fully connected layer produces the output
of the network. This layer typically uses the softmax activation function for
classification tasks, which outputs a probability distribution over the classes.
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Chapter 8
Design & Implementation of Model

8.1 Overview

This project focuses on developing a machine-learning algorithm to predict
a self-driving car’s steering wheel angle. To achieve this, we collect and
download relevant data, balance it, and divide it into training and validation
sets. We then preprocess the images and establish a connection using Flask
and Socket.io to create a bidirectional communication between the model
and the Udacity simulator to test the car being driven autonomously without
human intervention in real time.

End to End Self-Driving

End-to-End Self-Driving represents a pivotal advancement in autonomous
driving, where neural networks directly process inputs like camera streams
and vehicle parameters to perform complex tasks such as object detection
and pathfinding [7]. The final output consists of a controlled direction
for steering, accelerating, and braking of the car. The pioneering work by
NVIDIA, which utilized a deep CNN to predict steering angles directly from
raw pixels, has served as the foundation for this concept. The experimental
section of this thesis aims to explore further and implement this integrated
approach, reflecting the continuing evolution of end-to-end systems in the
field of autonomous driving

Car Simulator - Udacity

This research used Udacity to create virtual training tracks and scenarios
closely mimicking real-world conditions. This enabled the effective training
and validation of the neural network, reinforcing the overall robustness of the
autonomous driving system.

Keras

Keras is a high-level neural networks API written in Python and capable of
running on top of TensorFlow [70]. It simplifies the process of building, train-
ing, and deploying neural networks, making it particularly useful for rapid
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prototyping and experimentation. In the context of this research, Keras was
employed to construct and train the CNN responsible for predicting steering
angles. Its streamlined interface and flexibility greatly facilitated the itera-
tive design and optimization process, leading to more efficient and effective
model development by offering layers such as Convolution2D, MaxPooling2D,
Dropout, Flatten, and Dense. Additionally, the Keras API provides a variety
of popular activation functions, including Relu among others as mentioned
before in chapter 5.1.1

With these tools, the possibilities of self-driving techniques can be fully
explored, from start to finish, in a unified and integrated development en-
vironment. The combination of Udacity’s realistic simulation capabilities,
Keras’s user-friendly neural network interface, and Python’s general-purpose
programming flexibility provided a robust platform for the experimental
design and validation of this research towards developing an autonomous
driving model.

8.2 Data Collection

Manual Control and Data Documentation

To begin collecting data for training the end-to-end DNN model, we must
manually operate the vehicle in the simulator by completing 2-3 training laps
through the training mode. The data acquired during this process includes
images that display the features and corresponding steering angle, speed,
throttle, and reverse values as labels. This information is vital as it forms the
features and labels that will be used to train a supervised machine-learning
model. Additionally, it enables the neural network to understand the intricate
relationships necessary for self-driving cars, ensuring that the model can
interpret visual inputs and generate appropriate steering commands.

Figure 8.1: Udacity Self-Driving car environment

Data Preprocessing

Once the data has been collected, it must be organized and formatted to
be suitable for training the neural network. This involves a series of steps
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executed through a Python script, leveraging the Pandas library for data
manipulation.

The steering angle data is initially analyzed and represented in figure 8.2,
revealing a significant bias value towards 0 angles, indicative of straight
driving (as the car is usually driven in a straight line). Training the model
based on the data provided creates a problem for the neural network, which
could bias the model toward predicting a zero angle. Thus the car becomes
biased towards driving straight all the time. To mitigate this issue, we rejected
all the samples above a certain threshold of 200 samples per bin to ensure
that the data is more uniform and not biased towards a specific steering
angle.

Figure 8.2: The histogram on the left visualizes the raw data of 4053 samples,
after rejecting some of the biased values, there were only 1263 samples left for
training

This preprocessing sequence prepares the data to be divided into training
and validation sets, which will then be used to train the end-to-end self-driving
car model using a deep neural network.

8.2.1 Training & Validation Split

A crucial phase in building a self-driving car utilizing computer vision and
machine learning algorithms involves preparing and partitioning the data
set into training and validation subsets. Image paths and corresponding
steering angles were loaded into arrays, representing the steering controls
for left, center, and right camera views. This is a standard practice in
machine learning to evaluate the model’s performance and to ensure that it
can generalize well to unseen data.

X_train, X_valid, y_train, y_valid =
train_test_split(image_paths, steering, test_size=0.2,
random_state=6)

↪→

↪→

Figure 8.3: train_test_split function to split the data into training and
validation subsets
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Leveraging the train_test_split function from Scikit-learn, the data was
randomly split into training (80%) and validation 20% (test_size = 0.2)
sets.

—- Training Validation Total
Number of samples 1010 253 1263
Percentage of total dataset 80% 20% 100%

Figure 8.4: Training & Validation Set Histogram Representation

This ensured a well-balanced distribution of steering angles, aiding in model
generalization. Histograms were utilized to visually confirm the consistent
distribution between training and validation sets, facilitating an honest eval-
uation of the model’s performance on unseen data as represented in figure
8.3.
From figure 8.3. It’s clear that the data isn’t exactly identical, but both
follow a general trend such that both right and left steering angles between
the training & validation sets are very similarly distributed, and the data is
still biased towards 0 angle as required, since most of the time the car follows
a straight line unless it needs to take a turn.

Subsequently, this collected dataset will be utilized later to train our DNN
based on the training data to learn the appropriate steering angles according
to which part of the track it’s in extracting the necessary features in the
image and then test it on the validation set to determine whether our neural
model is under-fitting or over-fitting based on the steering angles predicted
by the neural network in comparison to the actual steering angles.

8.2.2 Image Pre-processing

In the image preprocessing stage of the autonomous driving project, a sequence
of critical transformations is applied to prepare the data for neural network
training. this sequence is represented in the code snippet below.
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def img_preprocess(img):
img = mpimg.imread(img)
img = img[60:135,:,:]
img = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
img = cv2.GaussianBlur(img, (3,3), 0)
img = cv2.resize(img, (200, 66))
img = img/255
return img

X_train = np.array(list(map(img_preprocess, X_train,)))
X_valid = np.array(list(map(img_preprocess, X_valid,)))

Figure 8.5: Code for preprocessing the image.

Initially, the images are cropped to extract our region of interest, thereby
eliminating irrelevant features such as the sky & trees. The color space is
then converted from RGB to YUV, which separates brightness from color,
enhancing the model’s sensitivity to structural patterns over mere color
variations. Also, Gaussian blur is applied to remove high-frequency noise
and accentuate significant structures. Then images are resized to a uniform
dimension (200x66) to meet the neural network’s input size requirement,
followed by normalization of pixel values to fall within the range of 0 to 1.

Figure 8.6: Original Vs Preprocessed Image

Lastly, we apply the necessary preprocessing to the entire training and
validation datasets, preparing them to train and evaluate the neural network
model for autonomous driving. This step ensures uniformity in the input data
and optimizes the conditions for efficient and stable convergence during the
training of the CNN, thus preparing the images to be fed into the machine
learning algorithm for steering wheel angle prediction.

8.2.3 Model Selection

The project employed NVIDIA’s end-to-end CNN as a reference, which takes
input images in YUV space (66x200x3) to map pixels from a front-facing
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camera to steering commands [7]. This architecture represented in figure 8.9
consists of 5 convolutional layers and 4 fully connected/ Dense layers, with
Exponential Linear Unit (ELU) activation function to introduce non-linearity
as shown in the code snippet of the model in figure 8.7 below.

def nvidia_model():
model = Sequential()
model.add(Convolution2D(24, kernel_size=(5,5), strides=(2,2),

input_shape=(66,200,3), activation='elu'))↪→

model.add(Convolution2D(36, kernel_size=(5,5), strides=(2,2),
activation='elu'))↪→

model.add(Convolution2D(48, kernel_size=(5,5), strides=(2,2),
activation='elu'))↪→

model.add(Convolution2D(64, kernel_size=(3,3),
activation='elu'))↪→

model.add(Convolution2D(64, kernel_size=(3,3),
activation='elu'))↪→

model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(100, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(50, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation ='elu'))
model.add(Dropout(0.5))
model.add(Dense(1))
optimizer = Adam(lr=1e-3)
model.compile(loss='mse', optimizer=optimizer)
return model

Figure 8.7: NVIDIA model Implementation.

The first 3 convolutional layers, using 5 × 5 kernel size and 2 × 2 stride,
efficiently reduce spatial dimensions and emphasize key features. The next 2
layers employ nonstrided convolutions & 3 × 3 kernel size to retain spatial
information, followed by a flattening process and 4 dense layers with dropout
to avoid over-fitting. The final dense layer predicts the steering angle.

In addition, the model is compiled using Adam optimizer instead of Batch
Gradient Descent since this intrinsically implements learning-rate decay as
well as momentum and is very useful for better convergence and preventing
overshooting [56]. Furthermore, since we are addressing a regression problem
requiring precise continuous predictions of steering angles, the model was
compiled using MSE as the loss function. As a result, the model has a total
of 252,219 trained parameters, as shown in table 8.1. This encapsulates the
model’s complexity and its ability to extract intricate features from the input
data.
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8.2.4 Model Evaluation

In table 8.1, the sequential decrease in spatial dimensions through the convo-
lutional layers, followed by the expansion and subsequent condensation in the
dense layers, illustrates the model’s process of distilling the vital information
needed to make the steering predictions.

Layer (type) Output Shape Param #

conv2d_5 (Conv2D) (None, 31, 98, 24) 1824
conv2d_6 (Conv2D) (None, 14, 47, 36) 21636
conv2d_7 (Conv2D) (None, 5, 22, 48) 43248
conv2d_8 (Conv2D) (None, 3, 20, 64) 27712
conv2d_9 (Conv2D) (None, 1, 18, 64) 36928
dropout_2 (Dropout) (None, 1, 18, 64) 0
flatten_1 (Flatten) (None, 1152) 0
dense_4 (Dense) (None, 100) 115300
dropout_3 (Dropout) (None, 100) 0
dense_5 (Dense) (None, 50) 5050
dropout_4 (Dropout) (None, 50) 0
dense_6 (Dense) (None, 10) 510
dropout_5 (Dropout) (None, 10) 0
dense_7 (Dense) (None, 1) 11
Total params: 252,219
Trainable params: 252,219
Non-trainable params: 0

Table 8.1: Summary of the Sequential Model

The graphical representation of training and validation losses over 30 epochs
represented in figure 8.8 is an insightful gauge of the model’s performance
and the architecture’s suitability for learning steering patterns in autonomous
driving. Starting with a higher value, both losses decrease sharply as the
network begins to learn, eventually slowing down and converging to a minimal
and similar value. The training loss demonstrates the model’s capability to
fit the data, while the validation loss provides an unbiased evaluation of how
well the model generalizes to unseen data. The resulting validation loss of
0.045 is not only a testament to the model’s accuracy but also indicative
of its robustness. This convergence of loss values is particularly significant,
as it reflects a balance between learning the complex underlying patterns
(avoiding underfitting) and not over-adapting to the training data (avoiding
overfitting). Such a balanced model is essential for reliable and safe steering
predictions, as it implies that the model is likely to perform well not only on
the data it was trained on but also on new, unseen road conditions.
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Figure 8.8: Validation Vs Training Data loss

Figure 8.9: CNN Architecture [7]
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Chapter 9
Integration & Deployment of Model in the
Simulation

9.1 Model Integration

The trained model from the previous chapter 8.2.4 is integrated into the sim-
ulator environment using a Python script. Consistency between the training
and prediction phases is maintained by employing the same preprocessing
techniques in figure 8.5, thereby ensuring that the model receives the data in
the expected format.

9.2 Real-time Communication

Real-time bi-directional communication between the simulator (client) and
the Python script hosting the trained model (server) is established using
Socket.IO. This technology allows the model and simulator to exchange
real-time data such as images, speed, steering angles, and throttle values.

Figure 9.1: Validation Vs Training Data loss

Client-Server Communication:
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Client (Simulator): The simulator acts as the client, continuously sending
telemetry data to the server. This data includes the current speed of the car
and images from the front-facing camera. The simulator also receives and acts
upon control commands from the server, such as steering angle adjustments
and throttle changes.
Server Side (Trained Model): The server running the trained model,
receives the telemetry data from the client. It preprocesses the images to
match the input shape and format used during the training, then predicts
the appropriate steering angle using the loaded CNN model. The throttle is
also calculated to control the speed, and both the steering angle and throttle
are sent back to the simulator.

The code snippet below demonstrates the establishment of this communi-
cation:

@sio.on('telemetry')
def telemetry(sid, data):

speed = float(data['speed'])
image =

Image.open(BytesIO(base64.b64decode(data['image'])))↪→

image = np.asarray(image)
image = img_preprocess(image)
image = np.array([image])
steering_angle = float(model.predict(image))
throttle = 1.0 - speed/speed_limit
print('{} {} {}'.format(steering_angle, throttle, speed))
send_control(steering_angle, throttle)

Figure 9.2: Here, the server listens for a ’telemetry’ event and responds by
processing the data and sending back control commands.

9.3 Control System

Throttle calculation is done to regulate the speed of the car based on the
current speed and a predefined speed limit. A simple proportional control
is implemented to maintain the speed within desired limits as illustrated in
figure 9.2

The predicted steering angle and the calculated throttle are then packaged
into a control command and sent back to the simulator. This communication
is handled by the send_control function in our script, which emits the
control data to the client:
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def send_control(steering_angle, throttle):
sio.emit('steer', data = {

'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()

})

Figure 9.3: Function to send control commands to the simulator (client)

This efficient and responsive control system will enable the model to
navigate the car through the simulation in real-time autonomously. Making
it ready for testing.

9.4 Testing in the simulation

In our experimental validation of the model, we deployed a range of carefully
chosen methodologies based on their relevance and efficacy in image classi-
fication tasks. First and foremost, the validation loss of our model stood
at an impressive value of 0.045. This low value underscores the model’s
strong ability to generalize to unseen data, thus minimizing the error between
the predicted outputs and the actual steering angles collected. The model
employed Adam optimizer for efficient learning and (MSE) loss function for
its regression problem of predicting the appropriate steering angles for a
self-driving car based on the input image data.

In our experimental deployment of the model within the simulator, the
bidirectional communication is established, and the autonomous vehicle model
successfully navigated Track 1, exhibiting proficient driving capabilities and
reinforcing the efficacy of our end-to-end learning approach in real time.
However, certain steering inefficiencies were observed when challenged with
the complexities of Track 2, particularly with its sharper turns. To counteract
these challenges, targeted model optimizations were undertaken by optimizing
the speed limit using a proportional controller applied to the car’s speed
inside the simulator to handle sharper turns more smoothly, resulting in
enhanced decision-making latency and improved handling.
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Chapter 10
Conclusion

To conclude, our exploration began by surveying the autonomy-level def-
initions and the current landscape of feasible applications and simulators
for self-driving cars. Tools like CARLA, Airsim, CarSim, and Udacity offer
platforms that mimic real-world scenarios, enabling us to test our autonomous
driving systems in simulated environments. These tools are indispensable, en-
suring that systems have undergone rigorous trials in controlled, reproducible
conditions before any real-world testing.

We then delved into the various approaches to autonomous driving. The
non-AI methods, represented by strategies like PID and MPC Control, pro-
vided a glimpse into the historical methods that laid the foundation for
modern control systems. While robust in certain conditions, these methods
do not scale well with the increasing complexity of real-world scenarios. On
the other hand, the AI approach has been emerging as a dominant strategy,
given its ability to learn from data, adapt to new situations, and handle the
intricate complexities of driving.

The heart of this thesis lies in the Machine Learning segment, where the
basics of algorithms we developed are covered through the theoretical concepts
of supervised learning with linear and logistic regression, which paved the
way for more advanced techniques like DNN introducing concepts like feed-
forward neural mechanisms, back-propagation, and various gradient descent
techniques. These networks, with their deep architectures, have the capability
to capture intricate patterns in vast volumes of data. Then, CNN stood
out as the best candidate for image data, which is crucial for autonomous
driving. With specialized operations like convolution and pooling, CNNs
have been instrumental in pushing the boundaries of what’s possible in visual
recognition tasks.

Our thesis concluded with our model’s design, implementation, and testing.
From collecting data and ensuring it’s in the right format with image pro-
cessing techniques to choosing the appropriate model and finally evaluating
its performance, we ensured each step was undertaken with diligence and
precision. The integration of this model into a simulation environment then
became the final testament to its efficacy. With real-time communication
and an integrated control system, we successfully enabled the car to navigate
autonomously.

40



Bibliography

[1] Başargan, H. Driver and pedestrian trust analysis on integration of
autonomous vehicles to infrastructure of turkey. Alphanumeric Journal,
volume 7, 2019: pp. 25–36.

[2] Ynergy, P. PID Controller. Year. Available from: https://plcynergy.
com/pid-controller/

[3] Perceptron: A Basic Neural Network Model
for Deep Learning. https://towardsai.net/p/l/
perceptron-a-basic-neural-network-model-for-deep-learning.

[4] Lin, C.; Chang, Q.; et al. A deep learning approach for MIMO-NOMA
downlink signal detection. Sensors, volume 19, no. 11, 2019: p. 2526.

[5] Ng, D.; Feng, M. Medical Image Recognition: An Explanation and
Hands-On Example of Convolutional Networks. Leveraging Data Science
for Global Health, 2020: pp. 263–284.

[6] Alzubaidi, L.; Zhang, J.; et al. Review of deep learning: Concepts, CNN
architectures, challenges, applications, future directions. Journal of big
Data, volume 8, 2021: pp. 1–74.

[7] Bojarski, M.; Del Testa, D.; et al. End to end learning for self-driving
cars. arXiv 2016. arXiv preprint arXiv:1604.07316, volume 103, 2016.

[8] Bentley, J. Autopia: The Future of Cars. Atlantic Books, 2019.

[9] Wikipedia. Tesla Autopilot — Wikipedia, The Free Encyclopedia. 2023.
Available from: https://en.wikipedia.org/wiki/Tesla_Autopilot#
cite_note-1

[10] Audi. Audi AI: Traffic jam pilot. https://magazine.audi.com.au/
article/audi-ai-traffic-jam-pilot.

[11] Singh, S.; Saini, B. S. Autonomous cars: Recent developments, challenges,
and possible solutions. In IOP Conference Series: Materials Science and
Engineering, volume 1022, IOP Publishing, 2021, p. 012028.

41

https://plcynergy.com/pid-controller/
https://plcynergy.com/pid-controller/
https://towardsai.net/p/l/perceptron-a-basic-neural-network-model-for-deep-learning
https://towardsai.net/p/l/perceptron-a-basic-neural-network-model-for-deep-learning
https://en.wikipedia.org/wiki/Tesla_Autopilot##cite_note-1
https://en.wikipedia.org/wiki/Tesla_Autopilot##cite_note-1
https://magazine.audi.com.au/article/audi-ai-traffic-jam-pilot
https://magazine.audi.com.au/article/audi-ai-traffic-jam-pilot


.......................................... 10. Conclusion

[12] Talebpour, A.; Mahmassani, H. S. Influence of connected and autonomous
vehicles on traffic flow stability and throughput. Transportation research
part C: emerging technologies, volume 71, 2016: pp. 143–163.

[13] Dosovitskiy, A.; Ros, G.; et al. CARLA: An open urban driving simulator.
In Conference on robot learning, PMLR, 2017, pp. 1–16.

[14] Pretschner, A.; Broy, M.; et al. Software engineering for automotive
systems: A roadmap. In Future of Software Engineering (FOSE’07),
IEEE, 2007, pp. 55–71.

[15] Mnih, V.; Badia, A. P.; et al. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, PMLR,
2016, pp. 1928–1937.

[16] Shah, S.; Dey, D.; et al. Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. In Field and Service Robotics: Results of
the 11th International Conference, Springer, 2018, pp. 621–635.

[17] Kendall, A.; Hawke, J.; et al. Learning to drive in a day. In 2019
International Conference on Robotics and Automation (ICRA), IEEE,
2019, pp. 8248–8254.

[18] Doe, J. CarSim: Vehicle Dynamics Simulation Software. 2023. Available
from: https://www.carsim.com/products/carsim/index.php

[19] Gelbal, Ş. Y.; Tamilarasan, S.; et al. A connected and autonomous
vehicle hardware-in-the-loop simulator for developing automated driving
algorithms. In 2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), IEEE, 2017, pp. 3397–3402.

[20] Joshi, A. Real-Time Implementation and Validation for Automated Path
Following Lateral Control Using Hardware-in-the-Loop (HIL) Simulation.
Technical report, SAE Technical Paper, 2017.

[21] Doe, J. Using Deep Learning to Predict Steering An-
gles. 2023. Available from: https://medium.com/udacity/
challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3

[22] Smolyakov, M.; Frolov, A.; et al. Self-driving car steering angle prediction
based on deep neural network an example of CarND udacity simulator. In
2018 IEEE 12th international conference on application of information
and communication technologies (AICT), IEEE, 2018, pp. 1–5.

[23] Vilas Samak, C.; Vilas Samak, T.; et al. Control Strategies for Au-
tonomous Vehicles. arXiv e-prints, 2020: pp. arXiv–2011.

[24] Russell, S. J. Artificial intelligence a modern approach. Pearson Educa-
tion, Inc., 2010.

42

https://www.carsim.com/products/carsim/index.php
https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3
https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3


.......................................... 10. Conclusion

[25] Grigorescu, S.; Trasnea, B.; et al. A survey of deep learning techniques
for autonomous driving. Journal of Field Robotics, volume 37, no. 3,
2020: pp. 362–386.

[26] Hofmann, M.; Neukart, F.; et al. Artificial intelligence and data science
in the automotive industry. arXiv preprint arXiv:1709.01989, 2017.

[27] MarketsandMarkets. Automotive Artificial Intelligence Market by
Offering, Technology, Process, Drive Type, Application, Vehi-
cle Type, and Region - Global Forecast to 2025. Year. Avail-
able from: https://www.marketsandmarkets.com/PressReleases/
automotive-artificial-intelligence.asp

[28] Mehrotra, S.; Wang, M.; et al. Human-Machine Interfaces and Vehicle
Automation: A Review of the Literature and Recommendations for
System Design, Feedback, and Alerts. 2022.

[29] Debernard, S.; Chauvin, C.; et al. Designing human-machine interface
for autonomous vehicles. IFAC-PapersOnLine, volume 49, no. 19, 2016:
pp. 609–614.

[30] Chen, Z. Computer vision and machine learning for autonomous vehicles.
View at, 2017.

[31] Russell, S.; Norvig, P. Artificial Intelligence A Modern Approach Third
Edition, 2016.

[32] LeCun, Y.; Bengio, Y.; et al. Deep learning. nature, volume 521, no.
7553, 2015: pp. 436–444.

[33] What is Linear Regression? https://www.spiceworks.
com/tech/artificial-intelligence/articles/
what-is-linear-regression/.

[34] Logistic Regression in Machine Learning. https://www.javatpoint.
com/logistic-regression-in-machine-learning.

[35] Vohwinkel, N. Linear models of regression. 2020.

[36] Science, T. D. How are Logistic Regression & Or-
dinary Least Squares Regression related? 2021.
Available from: https://towardsdatascience.com/
how-are-logistic-regression-ordinary-least-squares-regression-related-1deab32d79f5

[37] Vidhya, A. Understanding Gradient Descent Algorithm. 2021.
Available from: https://www.analyticsvidhya.com/blog/2021/03/
understanding-gradient-descent-algorithm/

[38] Wikipedia. Sigmoid function. 2023. Available from: https://en.
wikipedia.org/wiki/Sigmoid_function

43

https://www.marketsandmarkets.com/PressReleases/automotive-artificial-intelligence.asp
https://www.marketsandmarkets.com/PressReleases/automotive-artificial-intelligence.asp
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-linear-regression/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-linear-regression/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-linear-regression/
https://www.javatpoint.com/logistic-regression-in-machine-learning
https://www.javatpoint.com/logistic-regression-in-machine-learning
https://towardsdatascience.com/how-are-logistic-regression-ordinary-least-squares-regression-related-1deab32d79f5
https://towardsdatascience.com/how-are-logistic-regression-ordinary-least-squares-regression-related-1deab32d79f5
https://www.analyticsvidhya.com/blog/2021/03/understanding-gradient-descent-algorithm/
https://www.analyticsvidhya.com/blog/2021/03/understanding-gradient-descent-algorithm/
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function


.......................................... 10. Conclusion

[39] Labs, V. A Guide to Cross-Entropy Loss. 2021. Available from: https:
//www.v7labs.com/blog/cross-entropy-loss-guide

[40] Cross entropy. https://en.wikipedia.org/wiki/Cross_entropy.

[41] Nielsen, M. A. Neural networks and deep learning, volume 25. Determi-
nation press San Francisco, CA, USA, 2015.

[42] Kumar, K. H. Computer vision and Machine Learning in Autonomous
Vehicle. Computing Department, Bournemouth University.

[43] Geeks, G. D. Gradient Descent in Linear Regression.
2023. Available from: https://www.geeksforgeeks.org/
gradient-descent-in-linear-regression/

[44] in Linear Regression, G. D. Gradient Descent in Linear Re-
gression. 2023. Available from: https://copyassignment.com/
gradient-descent-linear-regression/

[45] Rosenblatt, F. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, volume 65,
no. 6, 1958: p. 386.

[46] Wikipedia contributors. Perceptron — Wikipedia, The Free Encyclopedia.
2023, [Online; accessed 2-August-2023]. Available from: https://en.
wikipedia.org/wiki/Perceptron

[47] Du, K.-L.; Leung, C.-S.; et al. Perceptron: Learning, generalization,
model selection, fault tolerance, and role in the deep learning era. Math-
ematics, volume 10, no. 24, 2022: p. 4730.

[48] Szandała, T. Review and comparison of commonly used activation
functions for deep neural networks. Bio-inspired neurocomputing, 2021:
pp. 203–224.

[49] Anon. When to Use Softmax Activation. http://www.mplsvpn.info/
2017/12/when-to-use-softmax-activation.html, 2017.

[50] Krizhevsky, A.; Sutskever, I.; et al. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, volume 60,
no. 6, 2017: pp. 84–90.

[51] Hinton, G.; Deng, L.; et al. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, volume 29, no. 6, 2012: pp. 82–97.

[52] Khodadadi, A.; Ghandiparsi, S.; et al. A natural language processing
and deep learning based model for automated vehicle diagnostics using
free-text customer service reports. Machine Learning with Applications,
volume 10, 2022: p. 100424.

44

https://www.v7labs.com/blog/cross-entropy-loss-guide
https://www.v7labs.com/blog/cross-entropy-loss-guide
https://en.wikipedia.org/wiki/Cross_entropy
https://www.geeksforgeeks.org/gradient-descent-in-linear-regression/
https://www.geeksforgeeks.org/gradient-descent-in-linear-regression/
https://copyassignment.com/gradient-descent-linear-regression/
https://copyassignment.com/gradient-descent-linear-regression/
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Perceptron
http://www.mplsvpn.info/2017/12/when-to-use-softmax-activation.html
http://www.mplsvpn.info/2017/12/when-to-use-softmax-activation.html


.......................................... 10. Conclusion

[53] Goodfellow, I.; Bengio, Y.; et al. Deep feedforward networks. Deep
learning, , no. 1, 2016.

[54] Grosse, R. Lecture 5: Multilayer Perceptrons. inf. téc, 2019.

[55] Ruder, S. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[56] Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[57] Graves, A.; Mohamed, A.-r.; et al. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics,
speech and signal processing, Ieee, 2013, pp. 6645–6649.

[58] Hopfield, J. J. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy
of sciences, volume 79, no. 8, 1982: pp. 2554–2558.

[59] Elman, J. L. Finding structure in time. Cognitive science, volume 14,
no. 2, 1990: pp. 179–211.

[60] Sutskever, I.; Vinyals, O.; et al. Sequence to sequence learning with
neural networks. Advances in neural information processing systems,
volume 27, 2014.

[61] Lipton, Z. C.; Berkowitz, J.; et al. A critical review of recurrent neural
networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[62] Staudemeyer, R. C.; Morris, E. R. Understanding LSTM–a tutorial
into long short-term memory recurrent neural networks. arXiv preprint
arXiv:1909.09586, 2019.

[63] Wikipedia. ImageNet. 2023. Available from: https://en.wikipedia.
org/wiki/ImageNet

[64] Worldwide Large Scale Visual Recognition Challenge Error Rates. 2023.
Available from: https://www.statista.com/statistics/808190/
worldwide-large-scale-visual-recognition-challenge-error-rates/

[65] Fukushima, K. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological cybernetics, volume 36, no. 4, 1980: pp. 193–202.

[66] LeCun, Y.; Bottou, L.; et al. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, volume 86, no. 11, 1998: pp.
2278–2324.

[67] Shanagoda, S. Vehicle detection using faster regional convolutional neu-
ral network. International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering, volume 8, no. 12, 2019:
pp. 2701–2704.

45

https://en.wikipedia.org/wiki/ImageNet
https://en.wikipedia.org/wiki/ImageNet
https://www.statista.com/statistics/808190/worldwide-large-scale-visual-recognition-challenge-error-rates/
https://www.statista.com/statistics/808190/worldwide-large-scale-visual-recognition-challenge-error-rates/


.......................................... 10. Conclusion

[68] Yu, H.; Yang, L. T.; et al. Convolutional neural networks for med-
ical image analysis: state-of-the-art, comparisons, improvement and
perspectives. Neurocomputing, volume 444, 2021: pp. 92–110.

[69] Öztürk, G.; Köker, R.; et al. Recognition of vehicles, pedestrians and traf-
fic signs using convolutional neural networks. In 2020 4th International
Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT), IEEE, 2020, pp. 1–8.

[70] Keras: The Python Deep Learning API. Available from: https://keras.
io/

Chapter

46

https://keras.io/
https://keras.io/

	List of Abbreviations
	Introduction
	Background and Related Work

	Feasible applications of self-driving Cars
	CARLA
	Airsim
	CarSim
	Udacity

	Approaches to Autonomous Driving
	Non-AI Approach
	PID Control

	AI-Approach

	Machine Learning
	Supervised Learning
	Linear Regression
	Logistic Regression


	Perceptron
	Mathematical Formulation of a Perceptron
	Activation Functions


	Deep Neural Network (DNN)
	Feed-forward Neural Network
	Training Deep Neural Network
	Loss Function
	Back-propagation
	Gradient Descent Types

	Types of Deep Neural Networks

	Convolutional Neural Network (CNN)
	CNN Architecture
	Convolution Operation
	Pooling
	Fully Connected Layer


	Design & Implementation of Model
	Overview
	Data Collection
	Training & Validation Split 
	Image Pre-processing 
	 Model Selection 
	 Model Evaluation 


	Integration & Deployment of Model in the Simulation
	Model Integration
	Real-time Communication
	Control System
	Testing in the simulation

	Conclusion
	Bibliography



