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1 Introduction 

 

Vowel classification is a important task in speech processing with various applications such as 

speech recognition, speech synthesis, and speech analysis. Accurate classification of vowels is 

fundamental for the development of effective speech systems that can interpret and respond to 

human speech. In recent years, machine learning algorithms such as Support Vector Machines 

(SVMs) and Multi-layer perceptrons (MLPs) have been widely utilized for vowel classification. 

 

    This thesis compares the performance of SVMs and MLPs in vowel classification. The 

dataset used in the study includes sounds of different vowels and consonants, which were 

preprocessed and divided into training and testing sets. The SVM model was trained with a 

linear kernel, while the MLP model was trained using the default configuration. Both models' 

performance was evaluated using the f1 score and compared to determine the most appropriate 

algorithm for vowel classification. 

 

   The thesis also covers the fundamental concepts of machine learning and artificial 

intelligence, including support vector machine theory, kernel methods, and activation functions 

used in neural networks. Popular Python libraries such as sci-kit-learn, numpy, matplotlib, and 

pandas were utilized to evaluate the performance of various algorithms and parameters. The 

objective of this thesis is to provide a comprehensive comparison of SVMs and MLPs for vowel 

classification and to showcase the strengths and weaknesses of each method. 
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2 Support Vector Machine 

    The foundations of support vector machines were laid in 1963 by Vladimir Vapnik and 

Alexey Chernozemic. Although, it was published by Vladimir Vapnik, Bernhard Baser and 

Isabelle Guyan for the first time in 1992. The advantages include high accuracy, complex 

decision modelling, working with multiple independent variables, both being able to apply to 

non-linearly separable and non-separable data, and less overfitting compared to other methods. 

The disadvantages can be counted as failure to produce probability estimates. It is used in 

various fields such as object and handwriting recognition, time series prediction tests, and 

bioinformatics. 

        Support vector machines are used in many different areas today. For example, weather 

forecasts of meteorology, patients can be diagnosed according to similar patients, in face 

recognition systems, pattern recognition systems, security cameras, and in many different 

industries. Also, features such as working with multi and single data and transforming the 2D 

space into higher-dimensional problems are the most important features that distinguish the 

support vector machine from other classification methods. 

        In our study, I will explain the support vector machines in detail and examine how we can 

easily classify the given complex datasets using the kernel method. Next, we will examine the 

methods of implementing the information given in practice with the Python programming 

language. Finally, I will present two practical examples covering the topics that were examined. 

 

2.1 Machine learning 

       To understand machine learning, firstly we need to understand learning. Although Learning 

is a very large concept, in its most general meaning we can define it as a result of education and 

acquired knowledge of cognitive behaviour forms seen in our behaviour. Similarly, machine 

learning is the realization of this learning process by computers. The computer can learn about 

a situation and then make decisions about future events and find solutions to problems by 

learning. 

      Statistical learning is the basis of many machine learning algorithms. Although it is the basis 

of learning algorithms, it is used to obtain the necessary information from experimental data 

and obtain future problems. Machine learning algorithms are often categorized as supervised 

or unsupervised. The biggest difference between them is that if the information is given as 

labelled, it is called a supervise algorithm. Supervised datasets consist of one or more attribute 

groups. There are two types of supervised technique those are classification and regression. 

Classification is the process of predicting a class label from predefined attribute groups. 

Regression is the predicting continuous value from dependent on single or multi-labelled 

values. Unsupervised is the classification of unlabelled information according to various 

similarities and various analyses. The most important difference between them is that 

unsupervised algorithms are using unlabelled information. In unsupervised algorithms, 

clustering methods are generally used. 

    Support vector machines are one of the most popular machine learning algorithms. Support 

vector machines are used frequently in the industry, because it can solve linear and nonlinear 

complicated problems with high accuracy. Support vector machines are a supervised 

classification method based on mathematical statistical methods. It uses mapping to transform 
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the original training data into a higher dimension. Within this new dimension, it searches for 

the linear optimal separating hyperplane. 

 

2.2 Classification 

      As we mentioned in the previous section, classification is a tool for machine learning, and 

its basis is mathematical statistics. Along with the support vector machines, there are different 

methods such as artificial neural networks, k-neighbourhood  points, logistic regression etc. 

This is the process that assignment of objects of similar characteristics to designated subgroups. 

It is distributing various classes that defined on a data set. The classification algorithms learn 

the distribution pattern from the given training data and then try to classify it correctly. 

 

2.3 Hyperplane 

    For the support vector machine classification, we need to draw a line between two attribute 

tuples and it’s named a hyperplane. The location of line should be located at the farthest point 

from the two attributes tuple. 

 

Fig.  1  Separator dividing two attributes group [1] 

2.4 The Maximal Margin Classifier 

    A natural choice is the maximal margin hyperplane which is the separating hyperplane that 

is farthest from the training observations. That is, we can compute the distance from each 

training observation to a given separating hyperplane; the smallest such distance is the minimal 

distance from the observations to the hyperplane, and is known as the margin. The maximal 

margin hyperplane is the separating hyperplane for which the margin is largest that is, it is the 

hyperplane that has the farthest minimum distance to the training observations. We can then 

classify a test observation based on which side of the maximal margin hyperplane it lays. This 

is known as the maximal margin classifier 

        If β0, β1, . . ., βp are the coefficients of the maximal margin hyperplane, then the maximal 

margin classifier classifies the test observation x∗ based on the sign of  

 f(𝑥∗)  =  𝛽0 + 𝛽1𝑥∗
1 + 𝛽2𝑥∗

2 + ⋯ + 𝛽𝑝𝑥∗
𝑝 (1) 

. 

         We now consider the task of constructing the maximal margin hyperplane based on a set 

of n training observations x1, . . . , xn ∈ R
p
 and associated class labels y1, . . . , yn ∈ {-1, 1}. 

Briefly, the maximal margin hyperplane is the solution to the optimization problem. 
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Maximize M 

 𝛽0 + 𝛽1, … … , 𝛽𝑝 

Subject to ; ∑ 𝛽𝑗
2 = 1𝑃

𝐽=1  

 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀∀𝑖 = 1, … , 𝑛. (2) 

 

Fig.  2  Hyperplane maximizing two attributes group [2] 

2.5 Soft margin SVM 

        Soft-margin SVM is an improvement over hard-margin SVM, this improvement make the 

classifier able to classify data accurately even if there was a noisy data. In other words, there is 

an issue with the hard margin SVM because not every dataset can be separated linearly, due to 

the outlier points. The outlier points have two cases; one of them is the case that a data point is 

closer to the other class points than its class and this causes reducing in the margin, another 

case happens when a point is among the other class points and this case breaks the linear 

separability. 

 

Fig.  3  Showing outline point in the graph [3] 
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2.6 Kernel Methods 

2.6.1 Linear Kernel Method 

    The linear kernel is a simple and efficient kernel function that can be used with SVMs. It is 

often used when the data is linearly separable, which means that it can be separated into 

different classes by a linear decision boundary. The linear kernel is also relatively easy to 

compute, as it does not require any additional operations beyond the inner product. The 

disadvantage of the linear kernel is that it may not be able to separate more complex 

relationships in the data, such as non-linear patterns. In these cases, it may be necessary to use 

a more sophisticated kernel function, such as a polynomial kernel or an RBF kernel, to get better 

performance. 

   The linear kernel is a type of kernel function that is defined as the inner product of the input 

vectors. Mathematically, it can be written as: 

  k(x, y)  = < x, y > (3) 

                   

where x and y are the input vectors and <,> represents the inner product. The inner product of 

two vectors is a scalar value that represents the dot product of the vectors, which is defined as 

the sum of the products of the corresponding elements. For example, if x and y are vectors of 

length n, the inner product can be calculated as: 

 < x, y > ≡    x1  ∙  y1  +  x2  ∙  𝑦2 + . . . + x𝑛  ∙  y𝑛 (4) 

Let’s give an easy example to using linear kernel method; 

def linear_kernel(x, y): 
    return sum(x[i] * y[i] for i in range(len(x))) 
 

 This function takes two input vectors x and y as arguments and returns their inner product, 

which is calculated as the sum of the products of the corresponding elements. 

X = [[1, 2], [3, 4], [5, 6]] 
y = [1, -1, 1] 
 

This code will generate a synthetic dataset with 3 samples and 2 features and use the linear 

kernel function to compute the kernel values for all pairs of samples in the dataset. The kernel 

values are stored in a 3x3 matrix. 

kernel_values = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 

 

This variable means that each element of the matrix is initially set to 0. The matrix has 3 rows 

and 3 columns, corresponding to the 3 samples in the synthetic dataset. The purpose of this 

initialization is to create a matrix that can store the kernel values for all pairs of samples in the 

dataset. 
for i in range(3): 
    for j in range(3): 
        kernel_values[i][j] = linear_kernel(X[i], X[j]) 

 

 The kernel values are computed using the linear_kernel function, which takes two input vectors 

x and y, and returns their inner product. 
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print(kernel_values) 
[[5, 11, 17], [11, 25, 39], [17, 39, 61]] 

 

Obtained the result from the given dataset. 

 
def linear_kernel(x, y): 
    return sum(x[i] * y[i] for i in range(len(x))) 
X = [[1, 2], [3, 4], [5, 6]] 
y = [1, -1, 1] 
 
# Compute the kernel values 
kernel_values = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 
for i in range(3): 
    for j in range(3): 
        kernel_values[i][j] = linear_kernel(X[i], X[j]) 
 
print(kernel_values)   
 [[5, 11, 17], [11, 25, 39], [17, 39, 61]] 

 
 

2.6.2 Polynomial Kernel Method 

    The polynomial kernel is a more flexible kernel function than the linear kernel, as it can 

capture more complex relationships in the data. It is often used when the data is not linearly 

separable and can be particularly effective when the data has a non-linear structure. The 

disadvantage of the polynomial kernel is that it can be computationally expensive, as it requires 

raising the dot product to power. In addition, the choice of the degree d can have a significant 

impact on the performance of the model, and finding the optimal value for d can be challenging. 

    The polynomial kernel is a type of kernel function that is defined as the dot product of the 

input vectors raised to a specific power. Mathematically, it can be written as: 

 (x, y)  =  (< x, y >  + c)𝑑 (5) 

where x and y are the input vectors, c is a constant parameter, and d is the degree of the 

polynomial. The inner product <x, y> is a scalar value that represents the dot product of the 

vectors, which is defined as the sum of the products of the corresponding elements. For 

example, if x and y are vectors of length n, the inner product can be calculated as: 

 < x, y > ≡    x1  ∙  y1  +  x2  ∙  𝑦2 + . . . + x𝑛  ∙  y𝑛 (6) 

Let’s give an easy example to using polynomial kernel method; 

def polynomial_kernel(x, y, c, d): 
    return (sum(x[i] * y[i] for i in range(len(x))) + c) ** d 

 

  This function takes two input vectors x and y as arguments, as well as the constant parameter 

c and the degree d of the polynomial. It returns the dot product of the vectors raised to the power 

d, which is calculated as the sum of the products of the corresponding elements plus the constant 

c. 

X = [[1, 2], [3, 4], [5, 6]] 
y = [1, -1, 1] 
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   This code will generate a synthetic dataset with 3 samples and 2 features and use the linear 

kernel function to compute the kernel values for all pairs of samples in the dataset. The kernel 

values are stored in a 3x3 matrix. 

c = 1 
d = 3 
kernel_values = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 

 

This variable means that each element of the matrix is initially set to 0. The matrix has 3 rows 

and 3 columns, corresponding to the 3 samples in the synthetic dataset. The purpose of this 

initialization is to create a matrix that can store the kernel values for all pairs of samples in the 

dataset. c variable is representing the constant value and the d value is representing the number 

of degrees of the polynomial. 

for i in range(3): 
    for j in range(3): 
        kernel_values[i][j] = polynomial_kernel(X[i], X[j], c, d) 
 
 
 
print(kernel_values) 
 
[[1331, 103889, 5764801], [103889, 823543, 27462529], [5764801, 27462529, 
1073741825]] 

 

The kernel values were computed using the polynomial kernel function 

2.6.3 RBF Kernel Method 

    RBF kernel is a widely used kernel function that can capture complex relationships in the 

data. It is particularly effective when the data is not linearly separable and has been used 

successfully in a variety of applications, including image classification, speech recognition, and 

natural language processing. A disadvantage of the RBF kernel is that it can handle high-

dimensional data efficiently, as it only depends on the distance between the vectors. However, 

the choice of the hyperparameter sigma (σ) can have a significant impact on the performance 

of the model, and finding the optimal value for sigma can be challenging. The radial basis 

function (RBF) kernel, also known as the Gaussian kernel, is a type of kernel function that is 

defined as the exponential of the negative Euclidean distance between the input vectors. 

Mathematically, it can be written as: 

 𝑘(𝑥, 𝑦) = 𝑒
−‖𝑥−𝑦‖2

2𝜎2  (7) 

where x and y are the input vectors, ||x - y|| is the Euclidean distance between the vectors, and 

sigma is a hyperparameter that controls the width of the kernel. The Euclidean distance between 

the vectors is defined as the square root of the sum of the squared differences between the 

corresponding elements. 

Let’s give an easy example of using the RBF kernel method; 

def rbf_kernel(x, y, sigma): 
    distance = sum((x[i] - y[i]) ** 2 for i in range(len(x))) 
    return math.exp(-distance / (2 * sigma ** 2)) 
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This function takes two input vectors x and y as arguments, as well as the hyperparameter sigma 

that controls the width of the kernel. It returns the RBF kernel value for the vectors, which is 

calculated as the exponential of the negative Euclidean distance between the vectors divided by 

2 σ2. 

X = [[1, 2], [3, 4], [5, 6]] 
y = [1, -1, 1] 
 
# Compute the kernel values 
sigma = 1 
kernel_values = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 
for i in range(3): 
    for j in range(3): 
        kernel_values[i][j] = rbf_kernel(X[i], X[j], sigma) 
 
print(kernel_values) 

 

This is the result of the Kernel RBF: 

 
[[1.0, 0.6065306597126334, 0.1353352832366127], [0.6065306597126334, 1.0, 
0.6065306597126334], [0.1353352832366127, 0.6065306597126334, 1.0]] 

 

 

2.7 Comparison of kernel methods  

Kernel 

Type 
Advantages Disadvantages 

Polynomial 
Can model non-linear relationships 

between input vectors 

Can be computationally expensive to 

evaluate and may produce unstable results 

when the degree is set too high 

Linear 
Fast to compute and scales well with 

large datasets 

Only able to model linear relationships 

between input vectors 

RBF 

Can model non-linear relationships 

between input vectors and can handle 

high-dimensional data well 

Sensitive to the choice of the kernel width 

parameter, which can be difficult to fit 
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2.7.1 Example 1)  

The dataset consists of 150 samples of three different species of iris flowers: Iris setosa, Iris 

versicolor, and Iris virginica. Each sample consists of four features: sepal length, sepal width, 

petal length, and petal width, all measured in centimeters. The goal is to be able to predict the 

species of an iris flower based on these four features. [4] 

 

# Load the iris dataset as an example 
iris = datasets.load_iris() 
X = iris.data 
y = iris.target 
 
# Split the data into training and test sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) 
 
# Train an SVM model with a linear kernel 
linear_svm = svm.SVC(kernel='linear') 
linear_svm.fit(X_train, y_train) 
 
# Train an SVM model with a polynomial kernel 
poly_svm = svm.SVC(kernel='poly', degree=3) 
poly_svm.fit(X_train, y_train) 
 
# Train an SVM model with an RBF kernel 
rbf_svm = svm.SVC(kernel='rbf') 
rbf_svm.fit(X_train, y_train) 
 
# Evaluate the accuracy of each model 
linear_accuracy = linear_svm.score(X_test, y_test) 
poly_accuracy = poly_svm.score(X_test, y_test) 
rbf_accuracy = rbf_svm.score(X_test, y_test) 
 
# Compare the accuracy results 
print("Linear kernel accuracy: ", linear_accuracy) 
print("Polynomial kernel accuracy: ", poly_accuracy) 
print("RBF kernel accuracy: ", rbf_accuracy) 
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2.7.2 Example 2) 

The Digits dataset consists of 1797 8x8 grayscale images of handwritten digits (0-9). Each 

image is represented as a 64-dimensional vector, with each dimension corresponding to the 

pixel intensity at a particular location in the image. The goal is to be able to classify each image 

as one of the 10 digits based on the pixel intensities. [4] 

from sklearn import datasets 
from sklearn.model_selection import train_test_split 
from sklearn import svm 
from sklearn import metrics 
 
# Load the dataset 
X, y = datasets.load_digits(return_X_y=True) 
 
# Split the data into training and test sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) 
 
# Train an SVM model with a linear kernel 
linear_svm = svm.SVC(kernel='linear') 
linear_svm.fit(X_train, y_train) 
 
# Train an SVM model with a polynomial kernel 
poly_svm = svm.SVC(kernel='poly', degree=3) 
poly_svm.fit(X_train, y_train) 
 
# Train an SVM model with an RBF kernel 
rbf_svm = svm.SVC(kernel='rbf') 
rbf_svm.fit(X_train, y_train) 
 
# Evaluate the accuracy of each model 
linear_accuracy = linear_svm.score(X_test, y_test) 
poly_accuracy = poly_svm.score(X_test, y_test) 
rbf_accuracy = rbf_svm.score(X_test, y_test) 
 
# Compare the accuracy results 
print("Linear kernel accuracy: ", linear_accuracy) 
print("Polynomial kernel accuracy: ", poly_accuracy) 
print("RBF kernel accuracy: ", rbf_accuracy) 



18 

 

2.7.3 Example 3)     

The breast cancer dataset consists of 569 samples of breast cancer tumors, each with 30 features 

representing characteristics of the tumor. The goal is to classify each tumor as either benign 

(not cancerous) or malignant (cancerous). [5] 

from sklearn import datasets 
from sklearn.model_selection import train_test_split 
from sklearn import svm 
from sklearn import metrics 
 
# Load the dataset 
X, y = datasets.load_breast_cancer(return_X_y=True) 
 
# Split the data into training and test sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 
 
# Train an SVM model with a linear kernel 
linear_svm = svm.SVC(kernel='linear') 
linear_svm.fit(X_train, y_train) 
 
# Train an SVM model with a polynomial kernel 
poly_svm = svm.SVC(kernel='poly', degree=3) 
poly_svm.fit(X_train, y_train) 
 
# Train an SVM model with an RBF kernel 
rbf_svm = svm.SVC(kernel='rbf') 
rbf_svm.fit(X_train, y_train) 
 
# Evaluate the accuracy of each model 
linear_accuracy = linear_svm.score(X_test, y_test) 
poly_accuracy = poly_svm.score(X_test, y_test) 
rbf_accuracy = rbf_svm.score(X_test, y_test) 
 
# Compare the accuracy results 
print("Linear kernel accuracy: ", linear_accuracy) 
print("Polynomial kernel accuracy: ", poly_accuracy) 
print("RBF kernel accuracy: ", rbf_accuracy) 
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2.7.4 Example 4) 

The wine dataset consists of 178 samples of wine, each with 13 features representing the 

chemical characteristics of the wine. The goal is to classify each wine as one of three types of 

wine based on these chemical characteristics. [4] 

from sklearn import datasets 
from sklearn.model_selection import train_test_split 
from sklearn import svm 
from sklearn import metrics 
 
# Load the dataset 
X, y = datasets.load_wine(return_X_y=True) 
 
# Split the data into training and test sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 
 
# Train an SVM model with a linear kernel 
linear_svm = svm.SVC(kernel='linear') 
linear_svm.fit(X_train, y_train) 
 
# Train an SVM model with a polynomial kernel 
poly_svm = svm.SVC(kernel='poly', degree=3) 
poly_svm.fit(X_train, y_train) 
 
# Train an SVM model with an RBF kernel 
rbf_svm = svm.SVC(kernel='rbf') 
rbf_svm.fit(X_train, y_train) 
 
# Evaluate the accuracy of each model 
linear_accuracy = linear_svm.score(X_test, y_test) 
poly_accuracy = poly_svm.score(X_test, y_test) 
rbf_accuracy = rbf_svm.score(X_test, y_test) 
 
# Compare the accuracy results 
print("Linear kernel accuracy: ", linear_accuracy) 
print("Polynomial kernel accuracy: ", poly_accuracy) 
print("RBF kernel accuracy: ", rbf_accuracy) 
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2.8 Linear Kernel 

Name of Dataset 
Number of 

Iterations 

Max 

Accuracy 

Min 

Accuracy 

Average 

Accuracy 

Breast Cancer Dataset 10 0.98 0.96 0.97 

Digits Dataset 10 0.97 0.97 0.97 

Iris Dataset 10 0.96 0.92 0.94 

Wine Dataset 10 0.97 0.91 0.93 

 

 

2.9 Polynomial Kernel 

Name of Dataset 
Number of 

Iterations 

Max 

Accuracy 

Min 

Accuracy 

Average 

Accuracy 

Breast Cancer 

Dataset 
10 0.95 0.88 0.92 

Digits Dataset 10 0.99 0.98 0.99 

Iris Dataset 10 0.98 0.97 0.97 

Wine Dataset 10 0.72 0.63 0.68 
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2.10 RBF Kernel 

Name of Dataset 
Number of 

Iterations 

Max 

Accuracy 

Min 

Accuracy 

Average 

Accuracy 

Breast Cancer Dataset 10 0.92 0.88 0.90 

Digits Dataset 10 0.93 0.88 0.90 

Iris Dataset 10 0.96 0.92 0.94 

Wine Dataset 10 0.96 0.92 0.94 
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3 Artificial Neural Networks 

Artificial neural networks originated with the idea of creating a mathematical artificial 

intelligence inspired by the human brain. Neurons in the human brain consist of axons, 

dendrites, synapses, and nuclei. The axon is the electrically active body where the output pulses 

are generated and the conduction on the body is unidirectional. It is system output. Dendrites 

are electrically passive arms that pick up signals from other cells. It is system input. Synapse 

provides the connection of axons of the cell with other dendrites. The Nucleus provides periodic 

reproduction of signals along the Axon. Artificial neural networks are created by imitating 

biological neurons in the human brain using mathematical formulas. Neurons connect and form 

neural networks. 

         Artificial neural networks were first created by Warren McCulloch and Walter Pitts using 

mathematical logic-created threshold logic units. The concept of perceptron originated with F. 

Rosenblatt in 1950. The first calculators were used by Farley and Wesley A Clark to simulate 

Hebbian networks. By 1970, multi-layered neural networks emerged, inspired by the xor 

problems. Artificial neural networks are widely used today in areas such as face recognition, 

speech recognition, self-driving cars, the security industry and the health industry. Face 

recognition technology is used in smartphones, cameras, security cameras, etc. Voice 

recognition allows us to save time in phone banking. The Deep Learning method offers great 

comfort in autopilot applications in cars that park themselves. 

    If we summarize the working principle in general, each input has a weight value. Each input 

value entered by the system is multiplied by its weight and collected in the input function, and 

if it reaches a certain threshold value, the signal is transmitted to the activation function. Then 

the output function is obtained. This algorithm is called the perceptron and is used in machine 

learning for supervised learning. There are two types of perceptron networks, single-layer, and 

multi-layer. Multilayer perceptrons are used for problems that cannot be separated linearly. 

3.1 Perceptron 

    Perceptron is a supervised algorithm based on binary. It is used to classify datasets that can 

be linearly separable. Perceptron algorithm also has one or several inputs. Each input is 

aggregated by multiplying with the weight functions, and the output data is obtained by using 

the activation function when reaching a certain threshold value. Then the group of attributes to 

which it belongs can be predicted. Then the data can be classified into attribute groups. There 

are two types of perceptron, divided into single-layer and multi-layer.  

 

 

Fig.  4  Perceptron [6] 



23 

 

3.2 Single Layer perceptron 

Single-layer perceptron is used for solving linearly separable problems. It is consisting of inputs 

and output. Layers can have one or more neurons. The computation of a single layer 

perceptron is performed over the calculation of the sum of the input vector each value 

multiplied by the corresponding element of a vector of the weights. 

 

 𝑦(𝑥) = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ) (8) 

 

All weight values (w) are multiplied by the input values(x) which are connected by themselves 

then all the values summed each other f(x). Then the total input value f(x) is used with the 

activation function and the output value y(x) is obtained. 

3.3 Multi-layer perceptron 

    It is developed due to single-layer perceptron failure to solve nonlinear problems. Multi-layer 

perceptron consists of input layers where information is entered, an output layer, and one or 

more hidden layers. There are several layers which are located between the input and output 

layers which are named hidden layers. Having more hidden layers in a neural network provides 

increased hierarchical feature learning, enhanced feature extraction, better modeling of 

complex decision boundaries, and improved generalization abilities. These advantages allow 

the network to handle more complex tasks and achieve higher performance on a wide range of 

problems. The disadvantage of adding more hidden layers is that it may increase the complexity 

of the problem and increase the risk of overfitting. 

 

Fig.  5  Multi-layer perceptron [7] 

3.4 Activation functions 

An activation function in a neural network is a non-linear function that is applied to the output 

of each neuron before passing the result to the next layer. The purpose of an activation function 

is to introduce non-linearity into the output of each neuron, which allows neural networks to 

model complex relationships and non-linear data distributions. 

Activation functions play a crucial role in determining the output of a neural network, as well 

as its ability to learn and generalize to unseen data. Some of the most commonly used activation 

functions in neural networks are: 
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Sigmoid (logistic function): maps any input value to a value between 0 and 1, which can be 

interpreted as a probability. This activation function is often used for binary classification 

problems. [8] 

Tanh (Hyperbolic tangent): maps input values to the range of -1 and 1. This activation 

function is similar to the sigmoid function but outputs values that are centred around zero, which 

can be useful in certain architectures. [9] 

Leaky ReLU: similar to ReLU but with a small slope for negative inputs. This activation 

function addresses the problem of "dying ReLU," where neurons in the network never activate 

if the inputs are negative. [10] 

Softmax: used for multiclass classification problems, maps a vector of real numbers to a 

probability distribution over classes. The softmax function is often used in the final layer of a 

neural network to make predictions. [11] 

Choosing the right activation function depends on the specific problem being solved and the 

requirements of the neural network architecture. For example, the sigmoid function may work 

well for binary classification problems. 

3.4.1 Sigmoid Function 

The sigmoid function is a mathematical function that maps any input value to the range of 0 

and 1. It has the characteristic "S" shaped curve and is defined as: 

 𝑆(𝑥) =
1

1+𝑒−𝑥
=

𝑒𝑥

𝑒𝑥+1
 (9) 

where e is the base of the natural logarithm. 

In artificial neural networks, the sigmoid activation function is often used for binary 

classification problems, where the goal is to predict one of two classes. The output of the 

sigmoid function can be interpreted as a probability and a threshold can be applied to determine 

the final binary prediction. 

   It's important to note that the sigmoid function can suffer from saturation when the input is 

large, leading to slow convergence during training. 

Example) 

Let's say have an input value x = 2. The sigmoid function can be calculated as follows: 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
 =  𝑆(𝑥) =

1

1 + 0.135
= 𝑆(𝑥) =

1

1.135
≈  0.87 

Here is the graph for the sigmoid function. 
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Fig.  6  Basic Sigmoid Function graph [12] 

   

 

3.4.2 Hyperbolic Tangent Function 

 The hyperbolic tangent (tanh) is a commonly used activation function in artificial neural 

networks. It is a non-linear function that maps any real-valued number to the range [-1, 1]. The 

hyperbolic tangent function has a similar shape to the sigmoid function, with the main 

difference being that the tanh outputs values in the range [-1, 1], while the sigmoid outputs 

values in the range [0, 1]. 

The formula for the hyperbolic tangent function is: 

 tanh𝑥 =
sinh𝑥

cosh𝑥
=

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
=

𝑒2𝑥−1

𝑒2𝑥+1
 (10) 

Let's say have an input value x = 3. The hyperbolic tangent function can be calculated as 

follows: 

𝑒2𝑥 − 1

𝑒2𝑥 + 1
=

𝑒6 − 1

𝑒6 + 1
=

403.42879 − 1

403.42879 + 1
= 0.99505 

The graph for the hyperbolic tangent function is on Fig. 7. 

 

Fig.  7  Hyperbolic tangent graph [13] 
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3.4.3 Leaky ReLU Function 

   Leaky ReLU is an activation function used in artificial neural networks. It is a modification 

of the standard ReLU function, which returns 0 for all negative input values and returns the 

input value for all positive input values. Leaky ReLU solves the issue of the standard ReLU 

"dying" (i.e., always outputting 0) for negative input values by adding a small positive slope 

for negative inputs, instead of returning 0. 

A leaky ReLU activation function can be expressed mathematically as follows: 

 𝑓(𝑥)  =  𝑚𝑎𝑥(𝛼𝑥, 𝑥) (11) 

 

Here is a simple mathematical example of the leaky ReLU activation function: 

Let’s assume α is set to 0.01. 

 If the input x is 5 functions will return 5 

 f(x)  =  max(α ∗  5, 5) 

If the input x is -5, the leaky ReLU function will return -0.05 

The max function returns the maximum value between the two inputs, so in the first case, the 

function returns 5 because it's the larger value, and in the second case, the function returns -

0.05 because it's the larger value between 0.01 * -5 and -5. [14] 

The graph for the leaky ReLU function is on Fig. 8. 

 

 

Fig.  8  Leakly ReLU function [15] 

 

3.4.4 SoftMax Function 

The softmax function is a commonly used activation function in the output layer of neural 

networks when the task involves multi-class classification. Given a vector of k real numbers, 

the softmax function computes the probability distribution over k classes, where the elements 

of the output vector sum to 1. 
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The mathematical formula for the softmax function is as follows: 

 𝑆(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1 … 𝑘 (12) 

 

where j is the i-th element of the input vector z, e is the exponential function, and k is the number 

of classes. The softmax function transforms each input into a non-negative number that can be 

interpreted as a probability, and the sum of all the elements in the output vector is equal to 1. 

Here's an example of the softmax function; 

Consider an input vector z = [2, 1, 0]. The softmax function will calculate the probability 

distribution over 3 classes as follows: 

𝑒2

𝑒2 + 𝑒 + 𝑒^0
=

7.389

11099
= 0.7109 

𝑒1

𝑒2 + 𝑒 + 𝑒^0
=

2.718

11099
= 0.2447 

𝑒0

𝑒2 + 𝑒 + 𝑒^0
=

1

11099
= 0.0444 

So, the output of the softmax function applied to z is [0.7109, 0.2447, 0.0444], which represents 

a probability distribution over 3 classes where class 1 has the highest probability (0.7109), class 

2 has the second highest probability (0.2447), and class 3 has the lowest probability (0.0444).    

[16] 

Here is the graph of the probability for the softmax function for a given example using python; 

import numpy as np 
import matplotlib.pyplot as plt 
 
z = [2, 1, 0] 
softmax = np.exp(z) / np.sum(np.exp(z)) 
 
plt.bar([1, 2, 3], softmax) 
plt.xlabel('Class') 
plt.ylabel('Probability') 
plt.title('Softmax Function Output') 
plt.show() 

 

 

Fig.  9  Softmax function [17] 
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3.5 Backpropagation 

    If we examine the training of multi-layered artificial neural networks in three simple stages, 

the first step is feed-forward evaluation, the second step is the activation function as explained 

in the previous section, and the last step is the back-propagation phase. It is not possible to use 

a back-propagation algorithm for classifications that can be separated linearly. There are 

connections between layers in a neural network that connect the neuron in each layer to the 

neurons in the next layer, and each connection has a numerical value. These values are called 

weights. The backpropagation algorithm helps to find the best weight values that fits our neural 

networks using the backpropagation method to obtain the optimum cost function (loss 

function). 

 

Fig.  10  Backpropagation  [18] 

3.6 Cost Function 

A cost function is a mathematical model that helps us measure the performance of an artificial 

intelligence algorithm. A cost function is a value calculated by taking the differences between 

expected and calculated values. There are many different types of activation. The choice should 

be made according to the type of data given in artificial neural networks and the function of the 

activation function used. Some of the most commonly used types of activation functions are 

mean squared error and cross-entropy. 

 

Fig.  11  Cost function graph [*] 

3.6.1 Mean squared error loss                   

Mean square error is the average error between predicted values and actual values. Mean square 

error is used as a cost function for linearly separable and ReLU activation functions. 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑛

𝑖=1 𝑌𝑖 − Ý𝑖)2. (13) 
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Mean square error loss is the difference between the actual value (Y) and the estimated value 

(Ý) in a measurement 

3.6.2 Cross entropy error loss. 

Cross entropy information technology originated, and it is used to solve the probability 

difference between 2 different groups of attributes. Cross entropy is used in machine learning 

methods such as logistic regression and artificial neural networks. It is used in sigmoid and 

softmax activation functions in an artificial neural network. Low-probability events contain large 

amounts of information while High probability events contain little information. To find the 

amount of information an event contains, we need to find its probability, and we can find the 

probability by the given formula. 

 ℎ(𝑥) = −log (𝑃(𝑥)) (14) 

In the given formula h (x) represents the information as the event (x) and P (x) the probability. 

The cross-entropy between two probability distributions p and q is defined as 

 𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔𝑞(𝑥) (15) 

 

3.7 Gradient Descent 

A gradient is a mathematical expression that helps to find the slope on the line by calculating 

the rate of change of a function. It is used to find the optimum cost function in artificial neural 

network applications. As will be seen in the graph, we need to calculate the slope of specific 

points. If the value we obtained is positive it moves in an upward direction if it is a negative 

value it moves in a downward direction. 

 

Fig.  12  Gradient descent  [19] 

We can obtain the slope by calculating the partial derivative of each point. We can calculate 

those points with the help of the chain rule. 

 

Fig.  13  Perceptron [6] 



30 

 

In the given figure x values represent input values,w weights, z is the net input function, σ 

represents the activation function, p weighted input and a value represents output. The partial 

derivative of the cost function calculates concerning first weight with the given formula. 

 
∂E

∂w1
=

∂E

∂a
∗

∂a

∂z
∗

∂z

∂p1
∗

∂p1

∂w1
 (16) 

After calculating the partial derivative of the cost function concerning the net input function 

following result is obtained. 

 
∂E

∂a
=

𝜕

𝜕𝑎
(𝑦 − 𝑎)2 = −(𝑦 − 𝑎) = 𝑎 − 𝑦 (17) 

The following result is obtained after the partial derivative of the net input function concerning 

the sigmoid activation function with the given formula. 

 
𝜕𝑎

𝜕𝑧
=

𝜕𝑎

𝜕𝑧
∗

1

1+𝑒−𝑧
= (1 − 𝑎) ∗ 𝑎 (18) 

The following result is obtained after calculating the partial derivative of the total input function 

multiplied by the weight values concerning weighted input with the given formula. 

 
∂z

∂p1
=

∂

∂p1
∑   pi = 1n

i=0  (19) 

The following result is obtained after calculating the partial derivative of weighted input 

concerning weight with the given formula. 

 
∂p1

∂w1
=

∂

∂w1
𝑥1𝑤1 = 𝑥1 (20) 

Finally, the following result is obtained by applying the chain rule. 

 
∂E

∂w1
=

∂E

∂a
∗

∂a

∂z
∗

∂z

∂p1
∗

∂p1

∂w1
= (𝑎 − 𝑦) ∗ (1 − 𝑎) ∗ 𝑎 ∗ 𝑥1 (21) 

The formula will allow us to obtain the most suitable weight values for the neurons. 

 

3.8 Convolution neural networks 

The main purpose of the Convolutional neural network is to preserve the main feature of the 

given data and to make highly accurate and computational speed predictions and classifications. 

Image recognition is used in many areas. Some of these areas such as self-driving cars, object 

and person identification in social media platforms such as Facebook and Instagram, face 

recognition in security cameras, and person identification in mobile phone cameras, and is 

becoming more and more important every day. There are few useful software to perform 

convolution neural networks from a computer. Some of this software is the matvconvnet tool 

for MATLAB, caffe for c ++, PyTorch, TensorFlow, and theano libraries for python. Also, 

there are few architectures commonly used in the field of Convolutional neural networks. Some 

of those popular architectures are lenet, Alexnet, zfnet, vggnet, and resnet. 
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Fig.  14  Architecture of neural networks [20] 

Convolution neural networks consist of 4 stages. The first step is the convolution operation and 

the relu layer. This step explains what a convolution network is and how it works. The second 

step is pooling. In this step, it will be explained how the algorithm is made more efficient and 

faster with the concepts of max and average pooling. The third step is flattening. In this step, it 

is explained how it converts the matrix operations and simplified with the average pooling step 

to vector operations. Finally, our last step full connection is the last stage before making 

predictions and classifications with artificial neural networks. 

 

Fig.  15  Convolution structure [21] 

3.9 Convolution Operation 

An image consists of a large number of pixels. It is possible to classify or make predictions by 

connecting each pixel that is numbered by the computer to a neuron. If one image consists of 

too many same pixels algorithm says that it is the same image. Instead of connecting every 

input pixel to one neuron, it can connect single patches to neurons and it will determine the 

same feature this will be more efficient than connecting every pixel to one neuron. These 

patches are called a filter. Also, useful features may be found in more than one place in an image 

So, so it makes sense to slide a filter  all over the image in the hope of extracting that feature in 

different parts of the image using the same filter. For example, an image 5 * 5 matrices sized  

with 25 pixels overlap a 2 * 2 filter and the filter with the pixel is sliding in the x and y directions, 

and the feature map is created by adding the values which are multiplied by each pixel. Feature 

maps consist of 16 elements and it is a 4x4 matrix. 
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Fig.  16  Filter [22] 

 

After the convolution pooling flatten and full connection processes are performed, the process 

continues as in artificial neural networks and the filter values are updated with the 

backpropagation algorithm for the best result. Also, special filters are used to detect lines and 

edges in the images provided. 

3.9.1 Pooling 

It is a method used to predict and classify a given input value with maximum computational 

speed without losing main features. The most commonly used method is max pooling. Max 

pooling is the method to make smaller matrix operations by taking the maximum value after 

the convolution process. Another pooling method is average pooling. In the average pooling 

method, it is performed by taking a mean value instead of the maximum value in the given 

matrix. 

 

Fig.  17  Max pooling with 2x2 filters and stride 2 [23] 

3.9.2 Flattening 

Flattening is the easiest step for convolutional neural networks. Basically, the pooled matrix is 

transformed into only one row as in the figure below. 
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Fig.  18  Flattening of a 3x3 image matrix into a 9x1 vector [24] 

3.9.3 Full connection 

The full connection step is the phase of connecting flattened pixels to neurons for classification 

and prediction. Connecting flattened pixels to neurons using the artificial neural network and 

performing classification and prediction as explained in the previous sections of this project. The 

activation function and the cost function should be selected according to the type of images we 

have and the desired output values. For example, if the output value expected from the images 

imported to the environment is based on two different predictions value then a binary-based 

activation function can be selected. The selected cost function plays a critical role in making 

high-precision predictions due to it allows the selection of appropriate filters with a 

backpropagation algorithm. 

 

Fig.  19  Full connection [25] 
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4 Sample Data Description 

   Speech recognition using spectrum analysis has been studied since before the spread of 

computers in the 1970s. The use of computational methods is already described by Professor 

Josef Psutka in 1995. One of the basics is the use of a fast Fourier transform and a non-uniform 

(logarithmic) distribution band when the sum of the amplitudes in these bands creates a vector 

that is characteristic of the voice. In this way, at least spoken vowels can be distinguished with 

minimal error under the conditions of a speaker. This sample data will use a comparison of both 

methods support vector machine and artificial neural networks. This section will describe how 

to obtain these vectors for the sample data to use in both methods.  

4.1 Acquisition of data for recognition 

The data comes from [26], where it has been obtained using the sound card and the sound 

recorder application that is included in the Windows operation system. The data was recorded 

in a wav format that is not packaged. Voices that can be pronounced in length have been 

selected for the recording seconds after certain subjective consideration of the vowels a, e, i, o, 

u, and the consonant s.  

4.2 Frequency conversion and division into bands 

The application for data preparation [26] was written in Pascal, where the powerful RAD 

environment Lazarus is available. A sample FFT solution for Delphi is possibly found on the 

Internet but was used from the author's archives. 

The program allows you to load directly wav files in mono or stereo version for 16-bit samples. 

After loading it you need to set whether it is a mono or stereo recording and in the latter case 

which channel to read. All analyses were performed for stereo recording and left channel. 

Afterward, 4096 vowels were taken for each letter. This process was repeated for each letter 

vowel. The sample obtained was output as an Excel file. 

 

Fig.  20  Voice signal in the time domain [26] 
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5 Appliance of the Methods in Python 

5.1 Machine learning applications using Python 

We do not need to implement complex mathematical formulas to use machine learning 

applications in practice. We can apply quickly mathematical statistics models to the data given 

by using such libraries; sci-kit learn, pandas, numpy, matplot, and scipy and we can also make 

data visualization for simple machine learning applications. 

Pandas: This library is one of the most preferred library and it allows us to import the data set 

in CSV format for machine learning applications. Also, it converts to dictionary, list, and arrays 

to a data frame in Python. [27] 

NumPy: NumPy name is combined from the first three letters of NumPy and the first two letters 

of python. NumPy library is one of the useful libraries that are frequently used in machine 

learning applications. The main purpose of the Numpy library is to work with multidimensional 

arrays. A one-dimensional array is called a vector and multidimensional arrays occur in 

matrices. [17] 

 

Matplot: Matplot library is one of the most known libraries of python, it allows us to easily 

create complex graphs with only a few lines of code and it is frequently used in machine 

learning applications. [28] 

Scikit learns: sci-kit learn is necessarily using the machine learning library including 

supervised and unsupervised learning methods. The scikit learn library works compatible with 

numpy, pandas, matplot, and it is easily implemented with pre-defined phyton codes using such 

as classification, regression, clustering, etc. scikit learn library plays an important role in the 

svm classifier, which is the field of our article. The data given with the codes pre-defined from 

the library can be easily analyzed, classified and also data visualities can be done with the help 

of the mat plot library. [29] 

 

     We extracted the Fourier transform values given with the excel file to the phyton 

environment and defined each sound to the environment then we normalized the given values. 

We chose the linear core method because of its high accuracy rate, and then we completed the 

classification process with the help of support vector machines. Finally, we realize the f1 score 

test to measure our accuracy rate and printed the result. 

 

5.2 Support Vector Classifier by Using Python 

Python has a very important role in supervised support vector classifications. Support vector 

classifications are frequently used libraries; numpy, matplot, and sci-kit learn. We will talk 

about how to implement given data using support vector machines via python. 

   Firstly, it starts the process by implanting the given libraries into our Python environment. 
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1. %matplotlib inline   
2. import numpy as np   
3. import matplotlib.pyplot as plt   
4. from scipy import stats   

 

We import the sample data sets that we will use in the classification process in the environment 

of Python using the Scikit-learn library. We can also extract the CSV files and edit the data 

using panda's libraries for classification applications. After that the using Python code below 

we are setting the number of samples, the density of samples, the color of the samples, and the 

position of the sample on the graph 

1. %matplotlib inline   
2. import numpy as np   
3. import matplotlib.pyplot as plt   
4. from scipy import stats   
5. from sklearn.datasets.samples_generator import make_blobs   
6. X, y = make_blobs(n_samples=50, centers=2,   
7. random_state=0, cluster_std=0.60)   
8. plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');   

we import the support vector classifier class from the sklearn library in the following section. 

Then, we specify the type of the kernel function and C parameter to our environment. Since we 

do a linear separable classification, we choose a linear kernel and determine our parameter. 

Selecting the parameter selection in high numbers will help us avoid misclassification. Finally, 

we fit the clf value we set to X, y. 

1. %matplotlib inline   
2. import numpy as np   
3. import matplotlib.pyplot as plt   
4. from scipy import stats    
5. from sklearn.svm import SVC    
6. from sklearn.datasets.samples_generator import make_blobs   
7. X, y = make_blobs(n_samples=50, centers=2,   
8. random_state=0, cluster_std=0.60)   
9. plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');   
10. clf = SVC(kernel='linear', C=1000)   
11. clf.fit(X, y)     

To maximize hyperplane in linear classification, we need to use two decision boundaries and 

the code we wrote below will help us determine decision boundaries for the x and y axis. 

1. ax = plt.gca()   
2. xlim = ax.get_xlim()   
3. ylim = ax.get_ylim()  

The code found in Syntax allows us to define a linear space between the x and y axis and create 

square meshes and define a decision function with our clf value, which we have previously 

defined using the svc linear kernel function. 

1. xx = np.linspace(xlim[0], xlim[1], 30)   
2. yy = np.linspace(ylim[0], ylim[1], 30)   
3. YY, XX = np.meshgrid(yy, xx)   
4. xy = np.vstack([XX.ravel(), YY.ravel()]).T   
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5. Z = clf.decision_function(xy).reshape(X.shape)  

We draw the XX, YY, and Z decision boundaries that we have already determined, and the 

code above allows us to adjust the color type and thickness of our decision line. Finally, we 

draw our hyperplane with the boundaries we have determined. This is the dividing line that 

maximizes the margin between the two sets of points. 

1. ax.contour(XX, YY, Z, colors='k',     
2. levels=[-1, 0, 1], alpha=0.5,     
3. linestyles=['--', '-', '--'])     
4. ax.scatter(clf.support_vectors_[:, 0],     
5. clf.support_vectors_[:, 1],     
6. s=100, linewidth=1, facecolors='none');    

As a result, we created a linearly separable classification group consisting of two different 

classification groups and fifty samples in each of the two classification groups. Using the sci-

kit learn library, we separated the two groups and maximized the margin separating the 

hyperplane, and obtained the output as shown in the picture below. 

 

 

Fig.  21  Hyperplane maximizing two attributes group  

 

5.3 Kernel SVM 

      I work on the case that is linearly separable in the previous section. In non-linear 

classifications, similar to linear separable situations, the kernel method selection which is 

included in the sci-kit learns library will be applied. Depending on the given data, the sigmoid, 

the polynomial or gaussian kernel can be used. First, we start by importing the libraries we will 

use. 

1. %matplotlib inline   
2. import numpy as np   
3. import matplotlib.pyplot as plt   
4. from scipy import stats    
5. from sklearn.svm import SVC    
6. import pandas as pd 

We can import the data we want to classify using our pandas library into our environment. We 

can display the first 5 lines in our data with the head command. 
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1. df = pd.read_csv("samples.csv")   
2. df.head()   

After that data preprocessing will be done depending on our data. We will import our test and 

separation class from scit learn model selection library and we will test and split the given data. 

1. X = samplesdata.drop('Class', axis=1)   
2.  y = samplesdata['Class']   
3. from sklearn.model_selection import train_test_split   
4. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20) 

For choosing appropriate kernel model depending on the given data we use svc class from our 

scikit learn library then we specify one of the rbf , Gaussian or polynomial kernel methods. 

1. clf = SVC(kernel='sigmoid')   
2. clf.fit(X, y)     

Finally, we perform the classification using the kernel method with the command given below. 

3. y_pred = clc.predict(X_test)  

5.3.1 Example 1) 

 

Fig.  22  Example Table 

 (a)  given n = 7 observations in p = 2 dimensions. For each observation, there is an associated 

class label. 

(b) Sketch the optimal separating hyperplane, and provide the equation for this hyperplane 

(c) On your sketch, indicate the margin for the maximal margin hyperplane.  

1. import numpy as np   
2. import matplotlib.pyplot as plt   
3. from matplotlib import style   
4. from sklearn import svm   
5. import numpy as np   
6. import matplotlib.pyplot as plt   
7.    
8. X = np.array([[3,4],[2,2],[4,4],[1,4],[2,1],[4,3],[4,1]])   
9. y = [1,1,1,1,0,0,0]   
10. clf = svm.SVC(kernel='linear', C = 2)   
11. clf.fit(X,y)   
12. plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)   
13. ax = plt.gca()   
14. xlim = ax.get_xlim()   
15. ylim = ax.get_ylim()   
16. xx = np.linspace(xlim[0], xlim[1], 30)   
17. yy = np.linspace(ylim[0], ylim[1], 30)   
18. YY, XX = np.meshgrid(yy, xx)   
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19. xy = np.vstack([XX.ravel(), YY.ravel()]).T   
20. Z = clf.decision_function(xy).reshape(XX.shape)   
21. ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,   
22.            linestyles=['--', '-', '--'])   
23. ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,   
24.            linewidth=1, facecolors='none', edgecolors='k')   
25. plt.show()   

 

Fig.  23  Graph shows the exercise output value (own work). 

5.3.2 Example 2 ) 

Cancer types obtained from patients in the given dataset are given in 10 different parameters. 

By examining these data, we will create a new class and classify using the kernel method. 

1. import pandas as pd   
2. import pylab as pl   
3. import numpy as np   
4. from sklearn import preprocessing   
5. from sklearn.model_selection import train_test_split   
6. from sklearn import svm   
7. cell_df = pd.read(r"C:\Users\burak\Downloads\cell_sample.csv')   
8. cell_df.head(10) # printing the first 10 row   
9. cell_df.head(10)   
10. cell_df.dtypes # we are checking if the all values are numerical   
11. cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnul

l()]  #we are converting the Barenuc row all values numerical   
12. cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')   
13. cell_df.dtypes   
14. feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpi

Size', 'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]   
15. X = np.asarray(feature_df) #  defining the X values for 9 cancer cell types

 in the numpy array    
16. cell_df['Class'] = cell_df['Class'].astype('int')   
17. y = np.asarray(cell_df['Class']) #  defining the Class values for y variabl

e which includes 2(benign cells ),4(malignant cells)   
18. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, r

andom_state=4)   
19. print ('Train set:', X_train.shape,  y_train.shape)   
20. print ('Test set:', X_test.shape,  y_test.shape)  # creating the test and t

raning set for predefined X and y and printing   
21. clf = svm.SVC(kernel='rbf') #choosing the our kernel method   
22. clf.fit(X_train, y_train)    
23. predicted = clf.predict(X_test)   
24. predicted [0:20]  # printing the first 20 predicted value 

This is the our printed first 10 column for the imported training data set ; 



40 

 

 

Fig.  24  Output value from the 9th column from the syntax 

This is the predicted first 20 values ; 

Classification Result : Array([2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2]) 

5.4 Multi-layer perceptron using Python 

5.4.1 Example 1) 

 Cancer types obtained from patients in the given dataset are given in 10 different parameters. 

By examining these data, we will create a new class and classify using artificial neural 

networks. 

1. cell_df  = pd.read_csv('cell_samples.csv')   
2. cell_df.dtypes # we are checking if the all values are numerical     
3. cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnul

l()]  #we are converting the Barenuc row all values numerical     
4. cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')      
5. feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpi

Size', 'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]   
6. X = np.asarray(feature_df) #  defining the X values for 9 cancer cell types

 in the numpy array      
7. cell_df['Class'] = cell_df['Class'].astype('int')     
8. y = np.asarray(cell_df['Class']) #  defining the Class values for y variabl

e which includes 2(benign cells ),4(malignant cells)     
9. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, r

andom_state=4)  #  test size 20 percent and the train size 80 percent choos
en   

10. model=MLPClassifier( hidden_layer_sizes=(150,100,50), random_state=1,) # 3 
hidden layer choosen   

11. model.fit(X_train,y_train)   
12. model.predict(X_test)   
13. model.predict(X_train)   
14. #using the f1 score test to know our accuracy of classifier and printing th

e report for each attribute group   
15. report = classification_report(model.predict(X_test),y_test)   
16. print(report)  

 

Fig.  25  The f1 score 
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6 Evaluation of the Sample Data in Python 

The file has been processed by a fast Fourier transform (FFT), with 4096 points (to 4096 

frequencies). Then the frequency domain has been aggregated, not  evenly, ranges of 

frequencies are in the heads of the columns (as 34 -  99 ). Each row represents one sample. The 

last frequency range is  nonsense, because the FFT of real number series is symmetrical. So  the 

first six numbers in each of the rows can be used for a supervised  learning. Each of the vowels 

is on a separate sheet. On the first sheet, some normalization is done, with a demand of the 

overall sum being 10000. This normalized value would be better,  because the sound intensity 

should be ignored while using the FFT. 

1  import pandas as pd   
2  import numpy as np   
3  from sklearn.model_selection import train_test_split   
4  from sklearn.metrics import classification_report, accuracy_score 
5  from sklearn.svm import SVC   
6  from sklearn.neural_network import MLPClassifier 
7  from sklearn.metrics import f1_score 
8  df = pd.read_excel("fft.xlsx",sheet_name=None)   
 
9  # defining the each sound from importing file   
10  a=df["a"]         
11  e = df["e"]   
12  i =df["i"]   
13  o=df["o"]   
14  u=df["u"]   
15  s=df["s"]   
 
16  # we normalized data by dividing sum of all columns and multiply by 10000 

each value   
17  ss= (s.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000   
18  us = (u.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000   
19  os = (o.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000   
20  iss = (i.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000   
21  es = (e.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000   
 
22  # we take first 50 columns of normalized data for each sound     
23  ssound = ss.iloc[:50,:]   
24  usound = us.iloc[:50,:]   
25  osound = os.iloc[:50,:]   
26  isound = iss.iloc[:50,:]   
27  asound = a.iloc[:56,10:17]   
28  esound = es.iloc[:50,:]   
 
29  # specifying class number for each attribute groups   
30  ssound["class"]=5   
31  usound["class"]=4   
32  osound["class"]=3   
33  isound["class"]=2   
34  esound["class"]=1   
35  asound["class"]=0   
 
36  # equalizing the all sounds columns and then merging the whole sounds using 

concat function   
37  asound.columns= esound.columns   
38  isound.columns=asound.columns   
39  osound.columns=esound.columns   
40  usound.columns=asound.columns   
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41  ssound.columns=asound.columns   
42  combine = pd.concat([asound,esound,isound,osound,usound,ssound])   
43  # SVM Classifier 
44  svm_accuracies = [] 
45  for i in range(10): 
46  X_train,X_test,y_train,y_test = train_test_split(combine.iloc[:,:-

1],combine.iloc[:,-1],test_size=0.8) 
47  model = SVC(kernel = 'poly',C = 10000, gamma = 'auto') 
48  model.fit(X_train,y_train) 
49  svm_predictions = model.predict(X_test) 
50  svm_report = classification_report(svm_predictions, y_test, 

output_dict=True) 
51  svm_accuracies.append(svm_report['weighted avg']['f1-score']) 
 
52  svm_avg_accuracy = np.mean(svm_accuracies) 
53  print("SVM Classifier Average Accuracy: ", svm_avg_accuracy) 
 
 
54  # MLP Classifier 
55  mlp_accuracies = [] 
56  for i in range(10): 
57  X_train,X_test,y_train,y_test = train_test_split(combine.iloc[:,:-

1],combine.iloc[:,-1],test_size=0.8) 
58  mlp = 

MLPClassifier(hidden_layer_sizes=(150,100,50),activation="tanh",random_state
=1) 

59  mlp.fit(X_train, y_train) 
60  mlp_predictions = mlp.predict(X_test) 
61  mlp_report = classification_report(mlp_predictions, y_test, 

output_dict=True) 
62  mlp_accuracies.append(mlp_report['weighted avg']['f1-score']) 
 
63  mlp_avg_accuracy = np.mean(mlp_accuracies) 
64  print("MLP Classifier Average Accuracy: ", mlp_avg_accuracy) 

 

     The results of the SVM and MLP classifiers show that the SVM classifier performs better 

in terms of accuracy with an average accuracy of approximately 0.93 compared to the MLP 

classifier which has an average accuracy of approximately 0.86. This indicates that the SVM 

classifier is better suited for this problem as it can correctly classify the data with a higher 

degree of accuracy. The SVM classifier uses a polynomial kernel and has a high value of 

regularization parameter "C" which helps in avoiding overfitting, and a value of 'auto' for 

gamma. This helps in finding a balance between underfitting and overfitting and results in high 

accuracy. On the other hand, the MLP classifier uses multiple hidden layers of 150,100,50 

nodes each. Increasing the number of hidden layers and increasing the number of iterations may 

result in higher accuracy for the MLP classifier. However, this may also increase the 

computational cost and result in overfitting. 
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7 Conclusion 

     The concepts of machine learning and artificial intelligence were introduced and their 

application in vowel classification was discussed in this thesis. The theory of support vector 

machines (SVM), including kernel methods, and the different activation functions used in 

neural networks were covered. The SVM model was trained using three different kernel 

methods, while the MLP model was trained using different activation functions. Python 

libraries such as sci-kit-learn, NumPy, matplotlib, and pandas were utilized with toy datasets to 

compare the performance of support vector machines and neural networks. Different datasets 

were used to evaluate the accuracy of different kernel methods for SVM and different activation 

functions for neural networks. 

     This thesis highlights the importance of selecting the appropriate machine-learning 

algorithm for vowel classification tasks. Both SVM and MLP have their strengths and 

weaknesses, and the choice between the two depends on the specific requirements and 

limitations of the project. SVM is computationally efficient and can handle large datasets, 

making it suitable for classification systems. Neural networks, on the other hand, can learn 

complex non-linear relationships in data and are well-suited for classification tasks. Two 

different machine learning models, Support Vector Machine (SVM) and Multi-layer Perceptron 

(MLP) were trained on a dataset consisting of sounds of different vowels. Data has 

been processed by a fast Fourier transform (FFT), with 4096 points (to 4096 frequencies). Then 

the frequency domain has been aggregated, not evenly, ranges of frequencies are in the heads 

of the columns (as 34 - 99). Each row represents one sample. The data was normalized and split 

into training and testing sets, with 80% used for testing and 20% for training. Different Kernel 

methods and activation functions are trialed for better accuracy for both methods. 

     The results of this experiment suggest that SVM can be more effective than neural networks 

in vowel classification tasks. However, it's important to note that the difference in performance 

could vary based on the specific dataset and parameters used. Best accuracy results were 

obtained using polynomial kernel for SVM and tanh activation function for the artificial neural 

networks. The results showed that the SVM model had a higher average accuracy compared to 

the MLP model, with an average accuracy of 93.01% compared to 86.15%. 
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