
1

CZECH TECHNICAL

UNIVERSITY

IN PRAGUE

FACULTY OF

MECHANICAL ENGINEERING

BACHELOR

THESIS

COMPARISON OF THE SVM AND THE MLP NN METHODS FOR A DATA CLASSIFICATION

BURAK

UNSAL

2

 BACHELOR‘S THESIS ASSIGNMENT

The student acknowledges that the bachelor ’ s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor ’ s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’ s signature

3

I confirm that the diploma (bachelor's) work was disposed by myself and independently, under

leading of my thesis supervisor. I stated all sources of the documents and literature.

In Prague ………………

 …………………

 Burak Unsal

4

Acknowledgment

I acknowledge the assistance of my thesis supervisor Vladimir Hlavac, in various aspect of the

research work.

5

Abbreviations

SVM Support vector machine

ANN Artificial Neural Networks

RBF Radial Basis Function

SUM Summation

RELU Rectified Linear Activation Unit

CNN Convolution Neural Networks

FFT Fast Fourier Transform

SKLEARN Scikit-Learn

CSV Coma-Separated Variables

6

Table of Contents

1 Introduction ... 8

2 Support Vector Machine ... 9

2.1 Machine learning . 9

2.2 Classification . 10

2.3 Hyperplane . 10

2.4 The Maximal Margin Classifier . 10

2.5 Soft margin SVM . 11

2.6 Kernel Methods . 12

2.6.1 Linear Kernel Method 12

2.6.2 Polynomial Kernel Method 13

2.6.3 RBF Kernel Method 14

2.7 Comparison of kernel methods . 15

2.7.1 Example 1) 16

2.7.2 Example 2) 17

2.7.3 Example 3) 18

2.7.4 Example 4) 19

2.8 Linear Kernel . 20

2.9 Polynomial Kernel . 20

2.10 RBF Kernel . 21

3 Artificial Neural Networks .. 22

3.1 Perceptron . 22

3.2 Single Layer perceptron . 23

3.3 Multi-layer perceptron . 23

3.4 Activation functions . 23

Sigmoid (logistic function): 24

Tanh (Hyperbolic tangent): 24

Leaky ReLU: 24

Softmax: 24

3.4.1 Sigmoid Function 24

3.4.2 Hyperbolic Tangent Function 25

3.4.3 Leaky ReLU Function 26

3.4.4 SoftMax Function 26

3.5 Backpropagation . 28

3.6 Cost Function . 28

3.6.1 Mean squared error loss 28

7

3.6.2 Cross entropy error loss. 29

3.7 Gradient Descent . 29

3.8 Convolution neural networks . 30

3.9 Convolution Operation. 31

3.9.1 Pooling 32

3.9.2 Flattening 32

3.9.3 Full connection 33

4 Sample Data Description... 34

4.1 Acquisition of data for recognition . 34

4.2 Frequency conversion and division into bands . 34

5 Appliance of the Methods in Python ... 35

5.1 Machine learning applications using Python . 35

Pandas: 35

NumPy 35

Matplot: 35

Scikit learns: 35

5.2 Support Vector Classifier by Using Python . 35

5.3 Kernel SVM . 37

5.3.1 Example 1) 38

5.3.2 Example 2) 39

5.4 Multi-layer perceptron using Python . 40

5.4.1 Example 1) 40

6 Evaluation of the Sample Data in Python ... 41

7 Conclusion .. 43

8 References ... 44

8

1 Introduction

Vowel classification is a important task in speech processing with various applications such as

speech recognition, speech synthesis, and speech analysis. Accurate classification of vowels is

fundamental for the development of effective speech systems that can interpret and respond to

human speech. In recent years, machine learning algorithms such as Support Vector Machines

(SVMs) and Multi-layer perceptrons (MLPs) have been widely utilized for vowel classification.

 This thesis compares the performance of SVMs and MLPs in vowel classification. The

dataset used in the study includes sounds of different vowels and consonants, which were

preprocessed and divided into training and testing sets. The SVM model was trained with a

linear kernel, while the MLP model was trained using the default configuration. Both models'

performance was evaluated using the f1 score and compared to determine the most appropriate

algorithm for vowel classification.

 The thesis also covers the fundamental concepts of machine learning and artificial

intelligence, including support vector machine theory, kernel methods, and activation functions

used in neural networks. Popular Python libraries such as sci-kit-learn, numpy, matplotlib, and

pandas were utilized to evaluate the performance of various algorithms and parameters. The

objective of this thesis is to provide a comprehensive comparison of SVMs and MLPs for vowel

classification and to showcase the strengths and weaknesses of each method.

9

2 Support Vector Machine

 The foundations of support vector machines were laid in 1963 by Vladimir Vapnik and

Alexey Chernozemic. Although, it was published by Vladimir Vapnik, Bernhard Baser and

Isabelle Guyan for the first time in 1992. The advantages include high accuracy, complex

decision modelling, working with multiple independent variables, both being able to apply to

non-linearly separable and non-separable data, and less overfitting compared to other methods.

The disadvantages can be counted as failure to produce probability estimates. It is used in

various fields such as object and handwriting recognition, time series prediction tests, and

bioinformatics.

 Support vector machines are used in many different areas today. For example, weather

forecasts of meteorology, patients can be diagnosed according to similar patients, in face

recognition systems, pattern recognition systems, security cameras, and in many different

industries. Also, features such as working with multi and single data and transforming the 2D

space into higher-dimensional problems are the most important features that distinguish the

support vector machine from other classification methods.

 In our study, I will explain the support vector machines in detail and examine how we can

easily classify the given complex datasets using the kernel method. Next, we will examine the

methods of implementing the information given in practice with the Python programming

language. Finally, I will present two practical examples covering the topics that were examined.

2.1 Machine learning

 To understand machine learning, firstly we need to understand learning. Although Learning

is a very large concept, in its most general meaning we can define it as a result of education and

acquired knowledge of cognitive behaviour forms seen in our behaviour. Similarly, machine

learning is the realization of this learning process by computers. The computer can learn about

a situation and then make decisions about future events and find solutions to problems by

learning.

 Statistical learning is the basis of many machine learning algorithms. Although it is the basis

of learning algorithms, it is used to obtain the necessary information from experimental data

and obtain future problems. Machine learning algorithms are often categorized as supervised

or unsupervised. The biggest difference between them is that if the information is given as

labelled, it is called a supervise algorithm. Supervised datasets consist of one or more attribute

groups. There are two types of supervised technique those are classification and regression.

Classification is the process of predicting a class label from predefined attribute groups.

Regression is the predicting continuous value from dependent on single or multi-labelled

values. Unsupervised is the classification of unlabelled information according to various

similarities and various analyses. The most important difference between them is that

unsupervised algorithms are using unlabelled information. In unsupervised algorithms,

clustering methods are generally used.

 Support vector machines are one of the most popular machine learning algorithms. Support

vector machines are used frequently in the industry, because it can solve linear and nonlinear

complicated problems with high accuracy. Support vector machines are a supervised

classification method based on mathematical statistical methods. It uses mapping to transform

10

the original training data into a higher dimension. Within this new dimension, it searches for

the linear optimal separating hyperplane.

2.2 Classification

 As we mentioned in the previous section, classification is a tool for machine learning, and

its basis is mathematical statistics. Along with the support vector machines, there are different

methods such as artificial neural networks, k-neighbourhood points, logistic regression etc.

This is the process that assignment of objects of similar characteristics to designated subgroups.

It is distributing various classes that defined on a data set. The classification algorithms learn

the distribution pattern from the given training data and then try to classify it correctly.

2.3 Hyperplane

 For the support vector machine classification, we need to draw a line between two attribute

tuples and it’s named a hyperplane. The location of line should be located at the farthest point

from the two attributes tuple.

Fig. 1 Separator dividing two attributes group [1]

2.4 The Maximal Margin Classifier

 A natural choice is the maximal margin hyperplane which is the separating hyperplane that

is farthest from the training observations. That is, we can compute the distance from each

training observation to a given separating hyperplane; the smallest such distance is the minimal

distance from the observations to the hyperplane, and is known as the margin. The maximal

margin hyperplane is the separating hyperplane for which the margin is largest that is, it is the

hyperplane that has the farthest minimum distance to the training observations. We can then

classify a test observation based on which side of the maximal margin hyperplane it lays. This

is known as the maximal margin classifier

 If β0, β1, . . ., βp are the coefficients of the maximal margin hyperplane, then the maximal

margin classifier classifies the test observation x∗ based on the sign of

 f(𝑥∗) = 𝛽0 + 𝛽1𝑥∗
1 + 𝛽2𝑥∗

2 + ⋯ + 𝛽𝑝𝑥∗
𝑝 (1)

.

 We now consider the task of constructing the maximal margin hyperplane based on a set

of n training observations x1, . . . , xn ∈ R
p
 and associated class labels y1, . . . , yn ∈ {-1, 1}.

Briefly, the maximal margin hyperplane is the solution to the optimization problem.

11

Maximize M

 𝛽0 + 𝛽1, … … , 𝛽𝑝

Subject to ; ∑ 𝛽𝑗
2 = 1𝑃

𝐽=1

 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀∀𝑖 = 1, … , 𝑛. (2)

Fig. 2 Hyperplane maximizing two attributes group [2]

2.5 Soft margin SVM

 Soft-margin SVM is an improvement over hard-margin SVM, this improvement make the

classifier able to classify data accurately even if there was a noisy data. In other words, there is

an issue with the hard margin SVM because not every dataset can be separated linearly, due to

the outlier points. The outlier points have two cases; one of them is the case that a data point is

closer to the other class points than its class and this causes reducing in the margin, another

case happens when a point is among the other class points and this case breaks the linear

separability.

Fig. 3 Showing outline point in the graph [3]

12

2.6 Kernel Methods

2.6.1 Linear Kernel Method

 The linear kernel is a simple and efficient kernel function that can be used with SVMs. It is

often used when the data is linearly separable, which means that it can be separated into

different classes by a linear decision boundary. The linear kernel is also relatively easy to

compute, as it does not require any additional operations beyond the inner product. The

disadvantage of the linear kernel is that it may not be able to separate more complex

relationships in the data, such as non-linear patterns. In these cases, it may be necessary to use

a more sophisticated kernel function, such as a polynomial kernel or an RBF kernel, to get better

performance.

 The linear kernel is a type of kernel function that is defined as the inner product of the input

vectors. Mathematically, it can be written as:

 k(x, y) = < x, y > (3)

where x and y are the input vectors and <,> represents the inner product. The inner product of

two vectors is a scalar value that represents the dot product of the vectors, which is defined as

the sum of the products of the corresponding elements. For example, if x and y are vectors of

length n, the inner product can be calculated as:

 < x, y > ≡ x1 ∙ y1 + x2 ∙ 𝑦2 + . . . + x𝑛 ∙ y𝑛 (4)

Let’s give an easy example to using linear kernel method;

def linear_kernel(x, y):
 return sum(x[i] * y[i] for i in range(len(x)))

 This function takes two input vectors x and y as arguments and returns their inner product,

which is calculated as the sum of the products of the corresponding elements.

X = [[1, 2], [3, 4], [5, 6]]
y = [1, -1, 1]

This code will generate a synthetic dataset with 3 samples and 2 features and use the linear

kernel function to compute the kernel values for all pairs of samples in the dataset. The kernel

values are stored in a 3x3 matrix.

kernel_values = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

This variable means that each element of the matrix is initially set to 0. The matrix has 3 rows

and 3 columns, corresponding to the 3 samples in the synthetic dataset. The purpose of this

initialization is to create a matrix that can store the kernel values for all pairs of samples in the

dataset.
for i in range(3):
 for j in range(3):
 kernel_values[i][j] = linear_kernel(X[i], X[j])

 The kernel values are computed using the linear_kernel function, which takes two input vectors

x and y, and returns their inner product.

13

print(kernel_values)
[[5, 11, 17], [11, 25, 39], [17, 39, 61]]

Obtained the result from the given dataset.

def linear_kernel(x, y):
 return sum(x[i] * y[i] for i in range(len(x)))
X = [[1, 2], [3, 4], [5, 6]]
y = [1, -1, 1]

Compute the kernel values
kernel_values = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
for i in range(3):
 for j in range(3):
 kernel_values[i][j] = linear_kernel(X[i], X[j])

print(kernel_values)
 [[5, 11, 17], [11, 25, 39], [17, 39, 61]]

2.6.2 Polynomial Kernel Method

 The polynomial kernel is a more flexible kernel function than the linear kernel, as it can

capture more complex relationships in the data. It is often used when the data is not linearly

separable and can be particularly effective when the data has a non-linear structure. The

disadvantage of the polynomial kernel is that it can be computationally expensive, as it requires

raising the dot product to power. In addition, the choice of the degree d can have a significant

impact on the performance of the model, and finding the optimal value for d can be challenging.

 The polynomial kernel is a type of kernel function that is defined as the dot product of the

input vectors raised to a specific power. Mathematically, it can be written as:

 (x, y) = (< x, y > + c)𝑑 (5)

where x and y are the input vectors, c is a constant parameter, and d is the degree of the

polynomial. The inner product <x, y> is a scalar value that represents the dot product of the

vectors, which is defined as the sum of the products of the corresponding elements. For

example, if x and y are vectors of length n, the inner product can be calculated as:

 < x, y > ≡ x1 ∙ y1 + x2 ∙ 𝑦2 + . . . + x𝑛 ∙ y𝑛 (6)

Let’s give an easy example to using polynomial kernel method;

def polynomial_kernel(x, y, c, d):
 return (sum(x[i] * y[i] for i in range(len(x))) + c) ** d

 This function takes two input vectors x and y as arguments, as well as the constant parameter

c and the degree d of the polynomial. It returns the dot product of the vectors raised to the power

d, which is calculated as the sum of the products of the corresponding elements plus the constant

c.

X = [[1, 2], [3, 4], [5, 6]]
y = [1, -1, 1]

14

 This code will generate a synthetic dataset with 3 samples and 2 features and use the linear

kernel function to compute the kernel values for all pairs of samples in the dataset. The kernel

values are stored in a 3x3 matrix.

c = 1
d = 3
kernel_values = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

This variable means that each element of the matrix is initially set to 0. The matrix has 3 rows

and 3 columns, corresponding to the 3 samples in the synthetic dataset. The purpose of this

initialization is to create a matrix that can store the kernel values for all pairs of samples in the

dataset. c variable is representing the constant value and the d value is representing the number

of degrees of the polynomial.

for i in range(3):
 for j in range(3):
 kernel_values[i][j] = polynomial_kernel(X[i], X[j], c, d)

print(kernel_values)

[[1331, 103889, 5764801], [103889, 823543, 27462529], [5764801, 27462529,
1073741825]]

The kernel values were computed using the polynomial kernel function

2.6.3 RBF Kernel Method

 RBF kernel is a widely used kernel function that can capture complex relationships in the

data. It is particularly effective when the data is not linearly separable and has been used

successfully in a variety of applications, including image classification, speech recognition, and

natural language processing. A disadvantage of the RBF kernel is that it can handle high-

dimensional data efficiently, as it only depends on the distance between the vectors. However,

the choice of the hyperparameter sigma (σ) can have a significant impact on the performance

of the model, and finding the optimal value for sigma can be challenging. The radial basis

function (RBF) kernel, also known as the Gaussian kernel, is a type of kernel function that is

defined as the exponential of the negative Euclidean distance between the input vectors.

Mathematically, it can be written as:

 𝑘(𝑥, 𝑦) = 𝑒
−‖𝑥−𝑦‖2

2𝜎2 (7)

where x and y are the input vectors, ||x - y|| is the Euclidean distance between the vectors, and

sigma is a hyperparameter that controls the width of the kernel. The Euclidean distance between

the vectors is defined as the square root of the sum of the squared differences between the

corresponding elements.

Let’s give an easy example of using the RBF kernel method;

def rbf_kernel(x, y, sigma):
 distance = sum((x[i] - y[i]) ** 2 for i in range(len(x)))
 return math.exp(-distance / (2 * sigma ** 2))

15

This function takes two input vectors x and y as arguments, as well as the hyperparameter sigma

that controls the width of the kernel. It returns the RBF kernel value for the vectors, which is

calculated as the exponential of the negative Euclidean distance between the vectors divided by

2 σ2.

X = [[1, 2], [3, 4], [5, 6]]
y = [1, -1, 1]

Compute the kernel values
sigma = 1
kernel_values = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
for i in range(3):
 for j in range(3):
 kernel_values[i][j] = rbf_kernel(X[i], X[j], sigma)

print(kernel_values)

This is the result of the Kernel RBF:

[[1.0, 0.6065306597126334, 0.1353352832366127], [0.6065306597126334, 1.0,
0.6065306597126334], [0.1353352832366127, 0.6065306597126334, 1.0]]

2.7 Comparison of kernel methods

Kernel

Type
Advantages Disadvantages

Polynomial
Can model non-linear relationships

between input vectors

Can be computationally expensive to

evaluate and may produce unstable results

when the degree is set too high

Linear
Fast to compute and scales well with

large datasets

Only able to model linear relationships

between input vectors

RBF

Can model non-linear relationships

between input vectors and can handle

high-dimensional data well

Sensitive to the choice of the kernel width

parameter, which can be difficult to fit

16

2.7.1 Example 1)

The dataset consists of 150 samples of three different species of iris flowers: Iris setosa, Iris

versicolor, and Iris virginica. Each sample consists of four features: sepal length, sepal width,

petal length, and petal width, all measured in centimeters. The goal is to be able to predict the

species of an iris flower based on these four features. [4]

Load the iris dataset as an example
iris = datasets.load_iris()
X = iris.data
y = iris.target

Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

Train an SVM model with a linear kernel
linear_svm = svm.SVC(kernel='linear')
linear_svm.fit(X_train, y_train)

Train an SVM model with a polynomial kernel
poly_svm = svm.SVC(kernel='poly', degree=3)
poly_svm.fit(X_train, y_train)

Train an SVM model with an RBF kernel
rbf_svm = svm.SVC(kernel='rbf')
rbf_svm.fit(X_train, y_train)

Evaluate the accuracy of each model
linear_accuracy = linear_svm.score(X_test, y_test)
poly_accuracy = poly_svm.score(X_test, y_test)
rbf_accuracy = rbf_svm.score(X_test, y_test)

Compare the accuracy results
print("Linear kernel accuracy: ", linear_accuracy)
print("Polynomial kernel accuracy: ", poly_accuracy)
print("RBF kernel accuracy: ", rbf_accuracy)

17

2.7.2 Example 2)

The Digits dataset consists of 1797 8x8 grayscale images of handwritten digits (0-9). Each

image is represented as a 64-dimensional vector, with each dimension corresponding to the

pixel intensity at a particular location in the image. The goal is to be able to classify each image

as one of the 10 digits based on the pixel intensities. [4]

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics

Load the dataset
X, y = datasets.load_digits(return_X_y=True)

Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

Train an SVM model with a linear kernel
linear_svm = svm.SVC(kernel='linear')
linear_svm.fit(X_train, y_train)

Train an SVM model with a polynomial kernel
poly_svm = svm.SVC(kernel='poly', degree=3)
poly_svm.fit(X_train, y_train)

Train an SVM model with an RBF kernel
rbf_svm = svm.SVC(kernel='rbf')
rbf_svm.fit(X_train, y_train)

Evaluate the accuracy of each model
linear_accuracy = linear_svm.score(X_test, y_test)
poly_accuracy = poly_svm.score(X_test, y_test)
rbf_accuracy = rbf_svm.score(X_test, y_test)

Compare the accuracy results
print("Linear kernel accuracy: ", linear_accuracy)
print("Polynomial kernel accuracy: ", poly_accuracy)
print("RBF kernel accuracy: ", rbf_accuracy)

18

2.7.3 Example 3)

The breast cancer dataset consists of 569 samples of breast cancer tumors, each with 30 features

representing characteristics of the tumor. The goal is to classify each tumor as either benign

(not cancerous) or malignant (cancerous). [5]

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics

Load the dataset
X, y = datasets.load_breast_cancer(return_X_y=True)

Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Train an SVM model with a linear kernel
linear_svm = svm.SVC(kernel='linear')
linear_svm.fit(X_train, y_train)

Train an SVM model with a polynomial kernel
poly_svm = svm.SVC(kernel='poly', degree=3)
poly_svm.fit(X_train, y_train)

Train an SVM model with an RBF kernel
rbf_svm = svm.SVC(kernel='rbf')
rbf_svm.fit(X_train, y_train)

Evaluate the accuracy of each model
linear_accuracy = linear_svm.score(X_test, y_test)
poly_accuracy = poly_svm.score(X_test, y_test)
rbf_accuracy = rbf_svm.score(X_test, y_test)

Compare the accuracy results
print("Linear kernel accuracy: ", linear_accuracy)
print("Polynomial kernel accuracy: ", poly_accuracy)
print("RBF kernel accuracy: ", rbf_accuracy)

19

2.7.4 Example 4)

The wine dataset consists of 178 samples of wine, each with 13 features representing the

chemical characteristics of the wine. The goal is to classify each wine as one of three types of

wine based on these chemical characteristics. [4]

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics

Load the dataset
X, y = datasets.load_wine(return_X_y=True)

Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Train an SVM model with a linear kernel
linear_svm = svm.SVC(kernel='linear')
linear_svm.fit(X_train, y_train)

Train an SVM model with a polynomial kernel
poly_svm = svm.SVC(kernel='poly', degree=3)
poly_svm.fit(X_train, y_train)

Train an SVM model with an RBF kernel
rbf_svm = svm.SVC(kernel='rbf')
rbf_svm.fit(X_train, y_train)

Evaluate the accuracy of each model
linear_accuracy = linear_svm.score(X_test, y_test)
poly_accuracy = poly_svm.score(X_test, y_test)
rbf_accuracy = rbf_svm.score(X_test, y_test)

Compare the accuracy results
print("Linear kernel accuracy: ", linear_accuracy)
print("Polynomial kernel accuracy: ", poly_accuracy)
print("RBF kernel accuracy: ", rbf_accuracy)

20

2.8 Linear Kernel

Name of Dataset
Number of

Iterations

Max

Accuracy

Min

Accuracy

Average

Accuracy

Breast Cancer Dataset 10 0.98 0.96 0.97

Digits Dataset 10 0.97 0.97 0.97

Iris Dataset 10 0.96 0.92 0.94

Wine Dataset 10 0.97 0.91 0.93

2.9 Polynomial Kernel

Name of Dataset
Number of

Iterations

Max

Accuracy

Min

Accuracy

Average

Accuracy

Breast Cancer

Dataset
10 0.95 0.88 0.92

Digits Dataset 10 0.99 0.98 0.99

Iris Dataset 10 0.98 0.97 0.97

Wine Dataset 10 0.72 0.63 0.68

21

2.10 RBF Kernel

Name of Dataset
Number of

Iterations

Max

Accuracy

Min

Accuracy

Average

Accuracy

Breast Cancer Dataset 10 0.92 0.88 0.90

Digits Dataset 10 0.93 0.88 0.90

Iris Dataset 10 0.96 0.92 0.94

Wine Dataset 10 0.96 0.92 0.94

22

3 Artificial Neural Networks

Artificial neural networks originated with the idea of creating a mathematical artificial

intelligence inspired by the human brain. Neurons in the human brain consist of axons,

dendrites, synapses, and nuclei. The axon is the electrically active body where the output pulses

are generated and the conduction on the body is unidirectional. It is system output. Dendrites

are electrically passive arms that pick up signals from other cells. It is system input. Synapse

provides the connection of axons of the cell with other dendrites. The Nucleus provides periodic

reproduction of signals along the Axon. Artificial neural networks are created by imitating

biological neurons in the human brain using mathematical formulas. Neurons connect and form

neural networks.

 Artificial neural networks were first created by Warren McCulloch and Walter Pitts using

mathematical logic-created threshold logic units. The concept of perceptron originated with F.

Rosenblatt in 1950. The first calculators were used by Farley and Wesley A Clark to simulate

Hebbian networks. By 1970, multi-layered neural networks emerged, inspired by the xor

problems. Artificial neural networks are widely used today in areas such as face recognition,

speech recognition, self-driving cars, the security industry and the health industry. Face

recognition technology is used in smartphones, cameras, security cameras, etc. Voice

recognition allows us to save time in phone banking. The Deep Learning method offers great

comfort in autopilot applications in cars that park themselves.

 If we summarize the working principle in general, each input has a weight value. Each input

value entered by the system is multiplied by its weight and collected in the input function, and

if it reaches a certain threshold value, the signal is transmitted to the activation function. Then

the output function is obtained. This algorithm is called the perceptron and is used in machine

learning for supervised learning. There are two types of perceptron networks, single-layer, and

multi-layer. Multilayer perceptrons are used for problems that cannot be separated linearly.

3.1 Perceptron

 Perceptron is a supervised algorithm based on binary. It is used to classify datasets that can

be linearly separable. Perceptron algorithm also has one or several inputs. Each input is

aggregated by multiplying with the weight functions, and the output data is obtained by using

the activation function when reaching a certain threshold value. Then the group of attributes to

which it belongs can be predicted. Then the data can be classified into attribute groups. There

are two types of perceptron, divided into single-layer and multi-layer.

Fig. 4 Perceptron [6]

23

3.2 Single Layer perceptron

Single-layer perceptron is used for solving linearly separable problems. It is consisting of inputs

and output. Layers can have one or more neurons. The computation of a single layer

perceptron is performed over the calculation of the sum of the input vector each value

multiplied by the corresponding element of a vector of the weights.

 𝑦(𝑥) = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1) (8)

All weight values (w) are multiplied by the input values(x) which are connected by themselves

then all the values summed each other f(x). Then the total input value f(x) is used with the

activation function and the output value y(x) is obtained.

3.3 Multi-layer perceptron

 It is developed due to single-layer perceptron failure to solve nonlinear problems. Multi-layer

perceptron consists of input layers where information is entered, an output layer, and one or

more hidden layers. There are several layers which are located between the input and output

layers which are named hidden layers. Having more hidden layers in a neural network provides

increased hierarchical feature learning, enhanced feature extraction, better modeling of

complex decision boundaries, and improved generalization abilities. These advantages allow

the network to handle more complex tasks and achieve higher performance on a wide range of

problems. The disadvantage of adding more hidden layers is that it may increase the complexity

of the problem and increase the risk of overfitting.

Fig. 5 Multi-layer perceptron [7]

3.4 Activation functions

An activation function in a neural network is a non-linear function that is applied to the output

of each neuron before passing the result to the next layer. The purpose of an activation function

is to introduce non-linearity into the output of each neuron, which allows neural networks to

model complex relationships and non-linear data distributions.

Activation functions play a crucial role in determining the output of a neural network, as well

as its ability to learn and generalize to unseen data. Some of the most commonly used activation

functions in neural networks are:

24

Sigmoid (logistic function): maps any input value to a value between 0 and 1, which can be

interpreted as a probability. This activation function is often used for binary classification

problems. [8]

Tanh (Hyperbolic tangent): maps input values to the range of -1 and 1. This activation

function is similar to the sigmoid function but outputs values that are centred around zero, which

can be useful in certain architectures. [9]

Leaky ReLU: similar to ReLU but with a small slope for negative inputs. This activation

function addresses the problem of "dying ReLU," where neurons in the network never activate

if the inputs are negative. [10]

Softmax: used for multiclass classification problems, maps a vector of real numbers to a

probability distribution over classes. The softmax function is often used in the final layer of a

neural network to make predictions. [11]

Choosing the right activation function depends on the specific problem being solved and the

requirements of the neural network architecture. For example, the sigmoid function may work

well for binary classification problems.

3.4.1 Sigmoid Function

The sigmoid function is a mathematical function that maps any input value to the range of 0

and 1. It has the characteristic "S" shaped curve and is defined as:

 𝑆(𝑥) =
1

1+𝑒−𝑥
=

𝑒𝑥

𝑒𝑥+1
 (9)

where e is the base of the natural logarithm.

In artificial neural networks, the sigmoid activation function is often used for binary

classification problems, where the goal is to predict one of two classes. The output of the

sigmoid function can be interpreted as a probability and a threshold can be applied to determine

the final binary prediction.

 It's important to note that the sigmoid function can suffer from saturation when the input is

large, leading to slow convergence during training.

Example)

Let's say have an input value x = 2. The sigmoid function can be calculated as follows:

𝑆(𝑥) =
1

1 + 𝑒−𝑥
 = 𝑆(𝑥) =

1

1 + 0.135
= 𝑆(𝑥) =

1

1.135
≈ 0.87

Here is the graph for the sigmoid function.

25

Fig. 6 Basic Sigmoid Function graph [12]

3.4.2 Hyperbolic Tangent Function

 The hyperbolic tangent (tanh) is a commonly used activation function in artificial neural

networks. It is a non-linear function that maps any real-valued number to the range [-1, 1]. The

hyperbolic tangent function has a similar shape to the sigmoid function, with the main

difference being that the tanh outputs values in the range [-1, 1], while the sigmoid outputs

values in the range [0, 1].

The formula for the hyperbolic tangent function is:

 tanh𝑥 =
sinh𝑥

cosh𝑥
=

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
=

𝑒2𝑥−1

𝑒2𝑥+1
 (10)

Let's say have an input value x = 3. The hyperbolic tangent function can be calculated as

follows:

𝑒2𝑥 − 1

𝑒2𝑥 + 1
=

𝑒6 − 1

𝑒6 + 1
=

403.42879 − 1

403.42879 + 1
= 0.99505

The graph for the hyperbolic tangent function is on Fig. 7.

Fig. 7 Hyperbolic tangent graph [13]

26

3.4.3 Leaky ReLU Function

 Leaky ReLU is an activation function used in artificial neural networks. It is a modification

of the standard ReLU function, which returns 0 for all negative input values and returns the

input value for all positive input values. Leaky ReLU solves the issue of the standard ReLU

"dying" (i.e., always outputting 0) for negative input values by adding a small positive slope

for negative inputs, instead of returning 0.

A leaky ReLU activation function can be expressed mathematically as follows:

 𝑓(𝑥) = 𝑚𝑎𝑥(𝛼𝑥, 𝑥) (11)

Here is a simple mathematical example of the leaky ReLU activation function:

Let’s assume α is set to 0.01.

 If the input x is 5 functions will return 5

 f(x) = max(α ∗ 5, 5)

If the input x is -5, the leaky ReLU function will return -0.05

The max function returns the maximum value between the two inputs, so in the first case, the

function returns 5 because it's the larger value, and in the second case, the function returns -

0.05 because it's the larger value between 0.01 * -5 and -5. [14]

The graph for the leaky ReLU function is on Fig. 8.

Fig. 8 Leakly ReLU function [15]

3.4.4 SoftMax Function

The softmax function is a commonly used activation function in the output layer of neural

networks when the task involves multi-class classification. Given a vector of k real numbers,

the softmax function computes the probability distribution over k classes, where the elements

of the output vector sum to 1.

27

The mathematical formula for the softmax function is as follows:

 𝑆(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1 … 𝑘 (12)

where j is the i-th element of the input vector z, e is the exponential function, and k is the number

of classes. The softmax function transforms each input into a non-negative number that can be

interpreted as a probability, and the sum of all the elements in the output vector is equal to 1.

Here's an example of the softmax function;

Consider an input vector z = [2, 1, 0]. The softmax function will calculate the probability

distribution over 3 classes as follows:

𝑒2

𝑒2 + 𝑒 + 𝑒^0
=

7.389

11099
= 0.7109

𝑒1

𝑒2 + 𝑒 + 𝑒^0
=

2.718

11099
= 0.2447

𝑒0

𝑒2 + 𝑒 + 𝑒^0
=

1

11099
= 0.0444

So, the output of the softmax function applied to z is [0.7109, 0.2447, 0.0444], which represents

a probability distribution over 3 classes where class 1 has the highest probability (0.7109), class

2 has the second highest probability (0.2447), and class 3 has the lowest probability (0.0444).

[16]

Here is the graph of the probability for the softmax function for a given example using python;

import numpy as np
import matplotlib.pyplot as plt

z = [2, 1, 0]
softmax = np.exp(z) / np.sum(np.exp(z))

plt.bar([1, 2, 3], softmax)
plt.xlabel('Class')
plt.ylabel('Probability')
plt.title('Softmax Function Output')
plt.show()

Fig. 9 Softmax function [17]

28

3.5 Backpropagation

 If we examine the training of multi-layered artificial neural networks in three simple stages,

the first step is feed-forward evaluation, the second step is the activation function as explained

in the previous section, and the last step is the back-propagation phase. It is not possible to use

a back-propagation algorithm for classifications that can be separated linearly. There are

connections between layers in a neural network that connect the neuron in each layer to the

neurons in the next layer, and each connection has a numerical value. These values are called

weights. The backpropagation algorithm helps to find the best weight values that fits our neural

networks using the backpropagation method to obtain the optimum cost function (loss

function).

Fig. 10 Backpropagation [18]

3.6 Cost Function

A cost function is a mathematical model that helps us measure the performance of an artificial

intelligence algorithm. A cost function is a value calculated by taking the differences between

expected and calculated values. There are many different types of activation. The choice should

be made according to the type of data given in artificial neural networks and the function of the

activation function used. Some of the most commonly used types of activation functions are

mean squared error and cross-entropy.

Fig. 11 Cost function graph [*]

3.6.1 Mean squared error loss

Mean square error is the average error between predicted values and actual values. Mean square

error is used as a cost function for linearly separable and ReLU activation functions.

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑛

𝑖=1 𝑌𝑖 − Ý𝑖)2. (13)

29

Mean square error loss is the difference between the actual value (Y) and the estimated value

(Ý) in a measurement

3.6.2 Cross entropy error loss.

Cross entropy information technology originated, and it is used to solve the probability

difference between 2 different groups of attributes. Cross entropy is used in machine learning

methods such as logistic regression and artificial neural networks. It is used in sigmoid and

softmax activation functions in an artificial neural network. Low-probability events contain large

amounts of information while High probability events contain little information. To find the

amount of information an event contains, we need to find its probability, and we can find the

probability by the given formula.

 ℎ(𝑥) = −log (𝑃(𝑥)) (14)

In the given formula h (x) represents the information as the event (x) and P (x) the probability.

The cross-entropy between two probability distributions p and q is defined as

 𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔𝑞(𝑥) (15)

3.7 Gradient Descent

A gradient is a mathematical expression that helps to find the slope on the line by calculating

the rate of change of a function. It is used to find the optimum cost function in artificial neural

network applications. As will be seen in the graph, we need to calculate the slope of specific

points. If the value we obtained is positive it moves in an upward direction if it is a negative

value it moves in a downward direction.

Fig. 12 Gradient descent [19]

We can obtain the slope by calculating the partial derivative of each point. We can calculate

those points with the help of the chain rule.

Fig. 13 Perceptron [6]

30

In the given figure x values represent input values,w weights, z is the net input function, σ

represents the activation function, p weighted input and a value represents output. The partial

derivative of the cost function calculates concerning first weight with the given formula.

∂E

∂w1
=

∂E

∂a
∗

∂a

∂z
∗

∂z

∂p1
∗

∂p1

∂w1
 (16)

After calculating the partial derivative of the cost function concerning the net input function

following result is obtained.

∂E

∂a
=

𝜕

𝜕𝑎
(𝑦 − 𝑎)2 = −(𝑦 − 𝑎) = 𝑎 − 𝑦 (17)

The following result is obtained after the partial derivative of the net input function concerning

the sigmoid activation function with the given formula.

𝜕𝑎

𝜕𝑧
=

𝜕𝑎

𝜕𝑧
∗

1

1+𝑒−𝑧
= (1 − 𝑎) ∗ 𝑎 (18)

The following result is obtained after calculating the partial derivative of the total input function

multiplied by the weight values concerning weighted input with the given formula.

∂z

∂p1
=

∂

∂p1
∑ pi = 1n

i=0 (19)

The following result is obtained after calculating the partial derivative of weighted input

concerning weight with the given formula.

∂p1

∂w1
=

∂

∂w1
𝑥1𝑤1 = 𝑥1 (20)

Finally, the following result is obtained by applying the chain rule.

∂E

∂w1
=

∂E

∂a
∗

∂a

∂z
∗

∂z

∂p1
∗

∂p1

∂w1
= (𝑎 − 𝑦) ∗ (1 − 𝑎) ∗ 𝑎 ∗ 𝑥1 (21)

The formula will allow us to obtain the most suitable weight values for the neurons.

3.8 Convolution neural networks

The main purpose of the Convolutional neural network is to preserve the main feature of the

given data and to make highly accurate and computational speed predictions and classifications.

Image recognition is used in many areas. Some of these areas such as self-driving cars, object

and person identification in social media platforms such as Facebook and Instagram, face

recognition in security cameras, and person identification in mobile phone cameras, and is

becoming more and more important every day. There are few useful software to perform

convolution neural networks from a computer. Some of this software is the matvconvnet tool

for MATLAB, caffe for c ++, PyTorch, TensorFlow, and theano libraries for python. Also,

there are few architectures commonly used in the field of Convolutional neural networks. Some

of those popular architectures are lenet, Alexnet, zfnet, vggnet, and resnet.

31

Fig. 14 Architecture of neural networks [20]

Convolution neural networks consist of 4 stages. The first step is the convolution operation and

the relu layer. This step explains what a convolution network is and how it works. The second

step is pooling. In this step, it will be explained how the algorithm is made more efficient and

faster with the concepts of max and average pooling. The third step is flattening. In this step, it

is explained how it converts the matrix operations and simplified with the average pooling step

to vector operations. Finally, our last step full connection is the last stage before making

predictions and classifications with artificial neural networks.

Fig. 15 Convolution structure [21]

3.9 Convolution Operation

An image consists of a large number of pixels. It is possible to classify or make predictions by

connecting each pixel that is numbered by the computer to a neuron. If one image consists of

too many same pixels algorithm says that it is the same image. Instead of connecting every

input pixel to one neuron, it can connect single patches to neurons and it will determine the

same feature this will be more efficient than connecting every pixel to one neuron. These

patches are called a filter. Also, useful features may be found in more than one place in an image

So, so it makes sense to slide a filter all over the image in the hope of extracting that feature in

different parts of the image using the same filter. For example, an image 5 * 5 matrices sized

with 25 pixels overlap a 2 * 2 filter and the filter with the pixel is sliding in the x and y directions,

and the feature map is created by adding the values which are multiplied by each pixel. Feature

maps consist of 16 elements and it is a 4x4 matrix.

32

Fig. 16 Filter [22]

After the convolution pooling flatten and full connection processes are performed, the process

continues as in artificial neural networks and the filter values are updated with the

backpropagation algorithm for the best result. Also, special filters are used to detect lines and

edges in the images provided.

3.9.1 Pooling

It is a method used to predict and classify a given input value with maximum computational

speed without losing main features. The most commonly used method is max pooling. Max

pooling is the method to make smaller matrix operations by taking the maximum value after

the convolution process. Another pooling method is average pooling. In the average pooling

method, it is performed by taking a mean value instead of the maximum value in the given

matrix.

Fig. 17 Max pooling with 2x2 filters and stride 2 [23]

3.9.2 Flattening

Flattening is the easiest step for convolutional neural networks. Basically, the pooled matrix is

transformed into only one row as in the figure below.

33

Fig. 18 Flattening of a 3x3 image matrix into a 9x1 vector [24]

3.9.3 Full connection

The full connection step is the phase of connecting flattened pixels to neurons for classification

and prediction. Connecting flattened pixels to neurons using the artificial neural network and

performing classification and prediction as explained in the previous sections of this project. The

activation function and the cost function should be selected according to the type of images we

have and the desired output values. For example, if the output value expected from the images

imported to the environment is based on two different predictions value then a binary-based

activation function can be selected. The selected cost function plays a critical role in making

high-precision predictions due to it allows the selection of appropriate filters with a

backpropagation algorithm.

Fig. 19 Full connection [25]

34

4 Sample Data Description

 Speech recognition using spectrum analysis has been studied since before the spread of

computers in the 1970s. The use of computational methods is already described by Professor

Josef Psutka in 1995. One of the basics is the use of a fast Fourier transform and a non-uniform

(logarithmic) distribution band when the sum of the amplitudes in these bands creates a vector

that is characteristic of the voice. In this way, at least spoken vowels can be distinguished with

minimal error under the conditions of a speaker. This sample data will use a comparison of both

methods support vector machine and artificial neural networks. This section will describe how

to obtain these vectors for the sample data to use in both methods.

4.1 Acquisition of data for recognition

The data comes from [26], where it has been obtained using the sound card and the sound

recorder application that is included in the Windows operation system. The data was recorded

in a wav format that is not packaged. Voices that can be pronounced in length have been

selected for the recording seconds after certain subjective consideration of the vowels a, e, i, o,

u, and the consonant s.

4.2 Frequency conversion and division into bands

The application for data preparation [26] was written in Pascal, where the powerful RAD

environment Lazarus is available. A sample FFT solution for Delphi is possibly found on the

Internet but was used from the author's archives.

The program allows you to load directly wav files in mono or stereo version for 16-bit samples.

After loading it you need to set whether it is a mono or stereo recording and in the latter case

which channel to read. All analyses were performed for stereo recording and left channel.

Afterward, 4096 vowels were taken for each letter. This process was repeated for each letter

vowel. The sample obtained was output as an Excel file.

Fig. 20 Voice signal in the time domain [26]

35

5 Appliance of the Methods in Python

5.1 Machine learning applications using Python

We do not need to implement complex mathematical formulas to use machine learning

applications in practice. We can apply quickly mathematical statistics models to the data given

by using such libraries; sci-kit learn, pandas, numpy, matplot, and scipy and we can also make

data visualization for simple machine learning applications.

Pandas: This library is one of the most preferred library and it allows us to import the data set

in CSV format for machine learning applications. Also, it converts to dictionary, list, and arrays

to a data frame in Python. [27]

NumPy: NumPy name is combined from the first three letters of NumPy and the first two letters

of python. NumPy library is one of the useful libraries that are frequently used in machine

learning applications. The main purpose of the Numpy library is to work with multidimensional

arrays. A one-dimensional array is called a vector and multidimensional arrays occur in

matrices. [17]

Matplot: Matplot library is one of the most known libraries of python, it allows us to easily

create complex graphs with only a few lines of code and it is frequently used in machine

learning applications. [28]

Scikit learns: sci-kit learn is necessarily using the machine learning library including

supervised and unsupervised learning methods. The scikit learn library works compatible with

numpy, pandas, matplot, and it is easily implemented with pre-defined phyton codes using such

as classification, regression, clustering, etc. scikit learn library plays an important role in the

svm classifier, which is the field of our article. The data given with the codes pre-defined from

the library can be easily analyzed, classified and also data visualities can be done with the help

of the mat plot library. [29]

 We extracted the Fourier transform values given with the excel file to the phyton

environment and defined each sound to the environment then we normalized the given values.

We chose the linear core method because of its high accuracy rate, and then we completed the

classification process with the help of support vector machines. Finally, we realize the f1 score

test to measure our accuracy rate and printed the result.

5.2 Support Vector Classifier by Using Python

Python has a very important role in supervised support vector classifications. Support vector

classifications are frequently used libraries; numpy, matplot, and sci-kit learn. We will talk

about how to implement given data using support vector machines via python.

 Firstly, it starts the process by implanting the given libraries into our Python environment.

36

1. %matplotlib inline
2. import numpy as np
3. import matplotlib.pyplot as plt
4. from scipy import stats

We import the sample data sets that we will use in the classification process in the environment

of Python using the Scikit-learn library. We can also extract the CSV files and edit the data

using panda's libraries for classification applications. After that the using Python code below

we are setting the number of samples, the density of samples, the color of the samples, and the

position of the sample on the graph

1. %matplotlib inline
2. import numpy as np
3. import matplotlib.pyplot as plt
4. from scipy import stats
5. from sklearn.datasets.samples_generator import make_blobs
6. X, y = make_blobs(n_samples=50, centers=2,
7. random_state=0, cluster_std=0.60)
8. plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');

we import the support vector classifier class from the sklearn library in the following section.

Then, we specify the type of the kernel function and C parameter to our environment. Since we

do a linear separable classification, we choose a linear kernel and determine our parameter.

Selecting the parameter selection in high numbers will help us avoid misclassification. Finally,

we fit the clf value we set to X, y.

1. %matplotlib inline
2. import numpy as np
3. import matplotlib.pyplot as plt
4. from scipy import stats
5. from sklearn.svm import SVC
6. from sklearn.datasets.samples_generator import make_blobs
7. X, y = make_blobs(n_samples=50, centers=2,
8. random_state=0, cluster_std=0.60)
9. plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');
10. clf = SVC(kernel='linear', C=1000)
11. clf.fit(X, y)

To maximize hyperplane in linear classification, we need to use two decision boundaries and

the code we wrote below will help us determine decision boundaries for the x and y axis.

1. ax = plt.gca()
2. xlim = ax.get_xlim()
3. ylim = ax.get_ylim()

The code found in Syntax allows us to define a linear space between the x and y axis and create

square meshes and define a decision function with our clf value, which we have previously

defined using the svc linear kernel function.

1. xx = np.linspace(xlim[0], xlim[1], 30)
2. yy = np.linspace(ylim[0], ylim[1], 30)
3. YY, XX = np.meshgrid(yy, xx)
4. xy = np.vstack([XX.ravel(), YY.ravel()]).T

37

5. Z = clf.decision_function(xy).reshape(X.shape)

We draw the XX, YY, and Z decision boundaries that we have already determined, and the

code above allows us to adjust the color type and thickness of our decision line. Finally, we

draw our hyperplane with the boundaries we have determined. This is the dividing line that

maximizes the margin between the two sets of points.

1. ax.contour(XX, YY, Z, colors='k',
2. levels=[-1, 0, 1], alpha=0.5,
3. linestyles=['--', '-', '--'])
4. ax.scatter(clf.support_vectors_[:, 0],
5. clf.support_vectors_[:, 1],
6. s=100, linewidth=1, facecolors='none');

As a result, we created a linearly separable classification group consisting of two different

classification groups and fifty samples in each of the two classification groups. Using the sci-

kit learn library, we separated the two groups and maximized the margin separating the

hyperplane, and obtained the output as shown in the picture below.

Fig. 21 Hyperplane maximizing two attributes group

5.3 Kernel SVM

 I work on the case that is linearly separable in the previous section. In non-linear

classifications, similar to linear separable situations, the kernel method selection which is

included in the sci-kit learns library will be applied. Depending on the given data, the sigmoid,

the polynomial or gaussian kernel can be used. First, we start by importing the libraries we will

use.

1. %matplotlib inline
2. import numpy as np
3. import matplotlib.pyplot as plt
4. from scipy import stats
5. from sklearn.svm import SVC
6. import pandas as pd

We can import the data we want to classify using our pandas library into our environment. We

can display the first 5 lines in our data with the head command.

38

1. df = pd.read_csv("samples.csv")
2. df.head()

After that data preprocessing will be done depending on our data. We will import our test and

separation class from scit learn model selection library and we will test and split the given data.

1. X = samplesdata.drop('Class', axis=1)
2. y = samplesdata['Class']
3. from sklearn.model_selection import train_test_split
4. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)

For choosing appropriate kernel model depending on the given data we use svc class from our

scikit learn library then we specify one of the rbf , Gaussian or polynomial kernel methods.

1. clf = SVC(kernel='sigmoid')
2. clf.fit(X, y)

Finally, we perform the classification using the kernel method with the command given below.

3. y_pred = clc.predict(X_test)

5.3.1 Example 1)

Fig. 22 Example Table

 (a) given n = 7 observations in p = 2 dimensions. For each observation, there is an associated

class label.

(b) Sketch the optimal separating hyperplane, and provide the equation for this hyperplane

(c) On your sketch, indicate the margin for the maximal margin hyperplane.

1. import numpy as np
2. import matplotlib.pyplot as plt
3. from matplotlib import style
4. from sklearn import svm
5. import numpy as np
6. import matplotlib.pyplot as plt
7.
8. X = np.array([[3,4],[2,2],[4,4],[1,4],[2,1],[4,3],[4,1]])
9. y = [1,1,1,1,0,0,0]
10. clf = svm.SVC(kernel='linear', C = 2)
11. clf.fit(X,y)
12. plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
13. ax = plt.gca()
14. xlim = ax.get_xlim()
15. ylim = ax.get_ylim()
16. xx = np.linspace(xlim[0], xlim[1], 30)
17. yy = np.linspace(ylim[0], ylim[1], 30)
18. YY, XX = np.meshgrid(yy, xx)

39

19. xy = np.vstack([XX.ravel(), YY.ravel()]).T
20. Z = clf.decision_function(xy).reshape(XX.shape)
21. ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
22. linestyles=['--', '-', '--'])
23. ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
24. linewidth=1, facecolors='none', edgecolors='k')
25. plt.show()

Fig. 23 Graph shows the exercise output value (own work).

5.3.2 Example 2)

Cancer types obtained from patients in the given dataset are given in 10 different parameters.

By examining these data, we will create a new class and classify using the kernel method.

1. import pandas as pd
2. import pylab as pl
3. import numpy as np
4. from sklearn import preprocessing
5. from sklearn.model_selection import train_test_split
6. from sklearn import svm
7. cell_df = pd.read(r"C:\Users\burak\Downloads\cell_sample.csv')
8. cell_df.head(10) # printing the first 10 row
9. cell_df.head(10)
10. cell_df.dtypes # we are checking if the all values are numerical
11. cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnul

l()] #we are converting the Barenuc row all values numerical
12. cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')
13. cell_df.dtypes
14. feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpi

Size', 'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]
15. X = np.asarray(feature_df) # defining the X values for 9 cancer cell types

 in the numpy array
16. cell_df['Class'] = cell_df['Class'].astype('int')
17. y = np.asarray(cell_df['Class']) # defining the Class values for y variabl

e which includes 2(benign cells),4(malignant cells)
18. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, r

andom_state=4)
19. print ('Train set:', X_train.shape, y_train.shape)
20. print ('Test set:', X_test.shape, y_test.shape) # creating the test and t

raning set for predefined X and y and printing
21. clf = svm.SVC(kernel='rbf') #choosing the our kernel method
22. clf.fit(X_train, y_train)
23. predicted = clf.predict(X_test)
24. predicted [0:20] # printing the first 20 predicted value

This is the our printed first 10 column for the imported training data set ;

40

Fig. 24 Output value from the 9th column from the syntax

This is the predicted first 20 values ;

Classification Result : Array([2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2])

5.4 Multi-layer perceptron using Python

5.4.1 Example 1)

 Cancer types obtained from patients in the given dataset are given in 10 different parameters.

By examining these data, we will create a new class and classify using artificial neural

networks.

1. cell_df = pd.read_csv('cell_samples.csv')
2. cell_df.dtypes # we are checking if the all values are numerical
3. cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnul

l()] #we are converting the Barenuc row all values numerical
4. cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')
5. feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpi

Size', 'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]
6. X = np.asarray(feature_df) # defining the X values for 9 cancer cell types

 in the numpy array
7. cell_df['Class'] = cell_df['Class'].astype('int')
8. y = np.asarray(cell_df['Class']) # defining the Class values for y variabl

e which includes 2(benign cells),4(malignant cells)
9. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, r

andom_state=4) # test size 20 percent and the train size 80 percent choos
en

10. model=MLPClassifier(hidden_layer_sizes=(150,100,50), random_state=1,) # 3
hidden layer choosen

11. model.fit(X_train,y_train)
12. model.predict(X_test)
13. model.predict(X_train)
14. #using the f1 score test to know our accuracy of classifier and printing th

e report for each attribute group
15. report = classification_report(model.predict(X_test),y_test)
16. print(report)

Fig. 25 The f1 score

41

6 Evaluation of the Sample Data in Python

The file has been processed by a fast Fourier transform (FFT), with 4096 points (to 4096

frequencies). Then the frequency domain has been aggregated, not evenly, ranges of

frequencies are in the heads of the columns (as 34 - 99). Each row represents one sample. The

last frequency range is nonsense, because the FFT of real number series is symmetrical. So the

first six numbers in each of the rows can be used for a supervised learning. Each of the vowels

is on a separate sheet. On the first sheet, some normalization is done, with a demand of the

overall sum being 10000. This normalized value would be better, because the sound intensity

should be ignored while using the FFT.

1 import pandas as pd
2 import numpy as np
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import classification_report, accuracy_score
5 from sklearn.svm import SVC
6 from sklearn.neural_network import MLPClassifier
7 from sklearn.metrics import f1_score
8 df = pd.read_excel("fft.xlsx",sheet_name=None)

9 # defining the each sound from importing file
10 a=df["a"]
11 e = df["e"]
12 i =df["i"]
13 o=df["o"]
14 u=df["u"]
15 s=df["s"]

16 # we normalized data by dividing sum of all columns and multiply by 10000

each value
17 ss= (s.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000
18 us = (u.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000
19 os = (o.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000
20 iss = (i.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000
21 es = (e.apply(lambda x: x/x.sum(axis=0), axis=1))* 10000

22 # we take first 50 columns of normalized data for each sound
23 ssound = ss.iloc[:50,:]
24 usound = us.iloc[:50,:]
25 osound = os.iloc[:50,:]
26 isound = iss.iloc[:50,:]
27 asound = a.iloc[:56,10:17]
28 esound = es.iloc[:50,:]

29 # specifying class number for each attribute groups
30 ssound["class"]=5
31 usound["class"]=4
32 osound["class"]=3
33 isound["class"]=2
34 esound["class"]=1
35 asound["class"]=0

36 # equalizing the all sounds columns and then merging the whole sounds using

concat function
37 asound.columns= esound.columns
38 isound.columns=asound.columns
39 osound.columns=esound.columns
40 usound.columns=asound.columns

42

41 ssound.columns=asound.columns
42 combine = pd.concat([asound,esound,isound,osound,usound,ssound])
43 # SVM Classifier
44 svm_accuracies = []
45 for i in range(10):
46 X_train,X_test,y_train,y_test = train_test_split(combine.iloc[:,:-

1],combine.iloc[:,-1],test_size=0.8)
47 model = SVC(kernel = 'poly',C = 10000, gamma = 'auto')
48 model.fit(X_train,y_train)
49 svm_predictions = model.predict(X_test)
50 svm_report = classification_report(svm_predictions, y_test,

output_dict=True)
51 svm_accuracies.append(svm_report['weighted avg']['f1-score'])

52 svm_avg_accuracy = np.mean(svm_accuracies)
53 print("SVM Classifier Average Accuracy: ", svm_avg_accuracy)

54 # MLP Classifier
55 mlp_accuracies = []
56 for i in range(10):
57 X_train,X_test,y_train,y_test = train_test_split(combine.iloc[:,:-

1],combine.iloc[:,-1],test_size=0.8)
58 mlp =

MLPClassifier(hidden_layer_sizes=(150,100,50),activation="tanh",random_state
=1)

59 mlp.fit(X_train, y_train)
60 mlp_predictions = mlp.predict(X_test)
61 mlp_report = classification_report(mlp_predictions, y_test,

output_dict=True)
62 mlp_accuracies.append(mlp_report['weighted avg']['f1-score'])

63 mlp_avg_accuracy = np.mean(mlp_accuracies)
64 print("MLP Classifier Average Accuracy: ", mlp_avg_accuracy)

 The results of the SVM and MLP classifiers show that the SVM classifier performs better

in terms of accuracy with an average accuracy of approximately 0.93 compared to the MLP

classifier which has an average accuracy of approximately 0.86. This indicates that the SVM

classifier is better suited for this problem as it can correctly classify the data with a higher

degree of accuracy. The SVM classifier uses a polynomial kernel and has a high value of

regularization parameter "C" which helps in avoiding overfitting, and a value of 'auto' for

gamma. This helps in finding a balance between underfitting and overfitting and results in high

accuracy. On the other hand, the MLP classifier uses multiple hidden layers of 150,100,50

nodes each. Increasing the number of hidden layers and increasing the number of iterations may

result in higher accuracy for the MLP classifier. However, this may also increase the

computational cost and result in overfitting.

43

7 Conclusion

 The concepts of machine learning and artificial intelligence were introduced and their

application in vowel classification was discussed in this thesis. The theory of support vector

machines (SVM), including kernel methods, and the different activation functions used in

neural networks were covered. The SVM model was trained using three different kernel

methods, while the MLP model was trained using different activation functions. Python

libraries such as sci-kit-learn, NumPy, matplotlib, and pandas were utilized with toy datasets to

compare the performance of support vector machines and neural networks. Different datasets

were used to evaluate the accuracy of different kernel methods for SVM and different activation

functions for neural networks.

 This thesis highlights the importance of selecting the appropriate machine-learning

algorithm for vowel classification tasks. Both SVM and MLP have their strengths and

weaknesses, and the choice between the two depends on the specific requirements and

limitations of the project. SVM is computationally efficient and can handle large datasets,

making it suitable for classification systems. Neural networks, on the other hand, can learn

complex non-linear relationships in data and are well-suited for classification tasks. Two

different machine learning models, Support Vector Machine (SVM) and Multi-layer Perceptron

(MLP) were trained on a dataset consisting of sounds of different vowels. Data has

been processed by a fast Fourier transform (FFT), with 4096 points (to 4096 frequencies). Then

the frequency domain has been aggregated, not evenly, ranges of frequencies are in the heads

of the columns (as 34 - 99). Each row represents one sample. The data was normalized and split

into training and testing sets, with 80% used for testing and 20% for training. Different Kernel

methods and activation functions are trialed for better accuracy for both methods.

 The results of this experiment suggest that SVM can be more effective than neural networks

in vowel classification tasks. However, it's important to note that the difference in performance

could vary based on the specific dataset and parameters used. Best accuracy results were

obtained using polynomial kernel for SVM and tanh activation function for the artificial neural

networks. The results showed that the SVM model had a higher average accuracy compared to

the MLP model, with an average accuracy of 93.01% compared to 86.15%.

44

8 References

[1] R. Raj, “https://www.enjoyalgorithms.com,” [Online]. Available:

https://www.enjoyalgorithms.com/blog/support-vector-machine-in-ml.

[2] P. Bhapkar, "medium," 5 3 2018. [Online]. Available:

https://medium.com/@prashantbhpkr/demystifying-support-vector-machines-

35fca3ecac17.

[3] L. Chen, "Medium.com," 17 11 2018. [Online]. Available: https://medium.com/bite-

sized-machine-learning/support-vector-machine-explained-soft-margin-kernel-tricks-

3728dfb92cee.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel and E.

Duchesnay, "scikit-learn," 10 12 2011. [Online]. Available: https://scikit-

learn.org/stable/datasets/toy_dataset.html.

[5] W. Wolberg, W. Street and O. Mangasarian, "Machine learning techniques to diagnose

breast cancer from image-processed nuclear features of fine needle aspirates.," Cancer

Letters, pp. 77(2-3):163-71, 15 3 1994.

[6] A. Dalal, "medium.com," 15 8 2020. [Online]. Available:

https://medium.com/analytics-vidhya/basic-of-neural-network-956b8f190f3a.

[7] C. Bento, "Towards Data Science," 21 9 2021. [Online]. Available:

https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-

example-and-python-code-sentiment-analysis-cb408ee93141.

[8] T. LEIBOVICH-RAVEH, D. LEWIS, S. AL-RUBAIEY, K. AL-RUBAIEY and D.

ANSARI, "A new method for calculating individual subitizing ranges," 2018. [Online].

Available: https://www.researchgate.net/publication/325868989.

[9] A. Jacobs, R. Pfitscher, R. Santos, M. Franco, E. John Scheid and L. Granville,

"Artificial neural network model to predict affinity for virtual network functions.,"

2018.

[10] A. L. Maas, A. Y. Hannun and A. Y. N. (2014), 2014. [Online]. Available:

https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf.

[11] Y. Sako, 2018. [Online]. Available: https://medium.com/@u39kun/is-the-term-

softmax-driving-you-nuts-ee232ab4f6bd.

[12] T. Leibovich-Raveh, D. Lewis, S. Al-Rubaiey, Kadhim and D. Ansari, "A new method

for calculating individual subitizing ranges.," 2018.

[13] A. Jacobs, R. Pfitscher, R. Santos, M. Franco, E. Scheid and L. Granville,

"Researchgate," 2018. [Online]. Available:

https://www.researchgate.net/publication/326279910_Artificial_neural_network_mode

l_to_predict_affinity_for_virtual_network_functions.

45

[14] Greatlearningteam, "mygreatlearning," 22 3 2022. [Online]. Available:

https://www.mygreatlearning.com/blog/relu-activation-

function/#:~:text=ReLU%20activation%20function%20formula&text=ReLU%20functi

on%20is%20its%20derivative,range%20from%200%20to%20infinity..

[15] S. Singh, "deeplearninguniversity," [Online]. Available:

https://deeplearninguniversity.com/leaky-relu-as-an-activation-function-in-neural-

networks/.

[16] V. Zhou, "victorzhou," 22 7 2019. [Online]. Available:

https://victorzhou.com/blog/softmax/.

[17] S. V. D. Walt, S. C. Colbert and G. Varoquaux, "numpy," 2011. [Online]. Available:

https://numpy.org/.

[18] "Indiantechwarriors," [Online]. Available:

https://indiantechwarrior.com/backpropagation-in-neural-networks/.

[19] D. Das, "http://dhrubajitdas44.blogspot.com/," [Online]. Available:

http://dhrubajitdas44.blogspot.com/2018/01/how-to-minimize-cost-function-in-

neural.html.

[20] E. Culurciello, "https://towardsdatascience.com/," [Online]. Available:

https://towardsdatascience.com/neural-network-architectures-156e5bad51ba.

[21] "bs.org.tr," [Online]. Available: https://www.bs.org.tr/blog/yapay-zeka-kapsul-

aglari/96.

[22] R. Hachilif, "researchgate," [Online]. Available:

https://www.researchgate.net/figure/2D-convolution-with-filter-size-3x3-

49_fig4_334974839.

[23] Ş. İ. Serengil, "https://bilisim.io/," [Online]. Available:

https://bilisim.io/2018/01/07/konvolusyonel-noral-aglara-kisa-bir-giris/.

[24] S. Team, "https://www.superdatascience.com/," [Online]. Available:

https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-3-

flattening.

[25] S. Team, "https://www.superdatascience.com/," [Online]. Available:

https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-4-

full-connection.

[26] V. Hlaváč, "Ukázka rozpoznávání řeči s využitím klasifikace neuronovou sítí," in Nové

metody a postupy v oblasti přístrojové techniky, automatického řízení a informatiky

2020, Zámek Lobeč, 2020.

[27] W. McKinney, "pandas," 2010. [Online]. Available: https://pandas.pydata.org/.

[28] J. D. Hunter, "matplotlib," 2007. [Online]. Available: https://matplotlib.org/.

46

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel and E.

Duchesnay, "Scikit-learn," 12 10 2011. [Online]. Available: https://scikit-

learn.org/stable/.

[30] A. Jacobs, R. Pfitscher, R. Santos, M. J. Franco, E. Scheid and L. Granville, "Artificial

neural network model to predict affinity for virtual network functions," 2018/04/01.

[31] T. Leibovich-Raveh, D. Lewis, S. K. Al-Rubaiey and D. Ansari, "A new method for

calculating individual subitizing ranges," 2018/06/20.

[32] T. Hastie, R. Tishirani and J. Friedman, The element of Statistical Learning, 2009.

[33] M. Stewart, "“Simple Introduction to Convolutional Neural Networks”, Towards Data

Science, February 2019.," [Online]. Available: https://towardsdatascience.com/simple-

introduction-to-convolutional-neural-networks-cdf8d3077bac.

[34] M. Sardogan, A. Tuncer, Y. Ozen and P. Leaf, "Disease Detection and Classification

used on CNN with LVQ Algorithm," in Institute of Science and Engineering,

Department of Computer Engineering, 3rd international conference on computer

science and engineering, 2018.

[35] S. Saha, "A Comprehensive Guide to Convolutional Neural Networks — the ELI5

way," [Online]. Available: https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

