
Master Thesis

Czech
Technical
University
in Prague

F2 Faculty of Mechanical Engineering
Department of Mechanics, Biomechanics and Mechatronics

9 DOF Robot Motion Planning for Plastic
Tank Welding

Ján Pravda

Supervisor: Ing. Petr Beneš, PhD.
Supervisor–specialist: Ing. Vladimír Smutný, PhD.
Field of study: Applied Sciences in Mechanical Engineering
Subfield: Mechatronics
August 2023

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

475093 Osobní číslo:Ján Jméno:Pravda Příjmení:

Fakulta strojní Fakulta/ústav:

Zadávající katedra/ústav: Ústav mechaniky, biomechaniky a mechatroniky

Aplikované vědy ve strojním inženýrství Studijní program:

Mechatronika Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Plánování pohybu robotu s 9 stupni volnosti pro svařování plastových nádrží

Název diplomové práce anglicky:

9 DOF robot motion planning for plastic tank welding

Pokyny pro vypracování:
1) Seznamte se s úlohou svařování plastových nádrží. Seznamte se s metodami plánování pohybu průmyslového robotu.
Seznamte se se systémem ROS.
2) Implementujte kinematický, vizualizační a kolizní model robotu do prostředí ROS.
3) Navrhněte algoritmus pro plánování pohybu robotu s 9 stupni volnosti pro svařovací úlohu, která má 6 stupňů volnosti.
Úlohu formulujte jako optimalizační problém.
4) Implementujte navržený algoritmus do systému ROS.
5) Proveďte experimenty v simulátoru a výsledky zhodnoťte.

Seznam doporučené literatury:
[1] Stejskal, V., Valášek, M.: Kinematics and Dynamics of Machinery, Marcel Dekker, Inc., New York 1996.
[2] Beschi, M. et al.: Optimal Robot Motion Planning of Redundant Robots in Machining and Additive Manufacturing
Applications. Electronics 2019, Vol. 8, 1437.
[3] Erdős, G., Kovács, A., Váncza, J.: Optimized joint motion planning for redundant industrial robots, CIRP Annals, Vol.
65, No. 1, 2016, pp. 451-454
[4] https://www.ros.org/

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Petr Beneš, Ph.D. odbor mechaniky a mechatroniky FS

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Ing. Vladimír Smutný, Ph.D. robotické vnímání CIIRC

Termín odevzdání diplomové práce: 14.08.2023 Datum zadání diplomové práce: 24.04.2023

Platnost zadání diplomové práce: _____________

doc. Ing. Miroslav Španiel, CSc.

podpis děkana(ky)
prof. Ing. Michael Valášek, DrSc.

podpis vedoucí(ho) ústavu/katedry
Ing. Petr Beneš, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements
I want to thank my supervisor - specialist,
Ing. Vladimír Smutný, PhD. from CIIRC
CTU for providing me with a plenty of
guidance and advice.

Declaration
I hereby declare that all of the work done
on this thesis was my own and that I cited
all used sources.

In Prague, 14th of August 2023

iii

Abstract
This thesis deals with the development of
a motion planning software for automatic
welding of plastic tanks. Typically, such
tanks are welded by hand, which is a long
and arduous process, requiring years of
experience. To improve this situation, a
welding robot cell has been designed. The
cell has 9 Degrees of Freedom, consisting
of three external axes and an industrial
robot. A welding extruder is mounted on
the robot.

The motion planning problem can be
described as repeatedly solving inverse
kinematics of a robot for a given goal,
while avoiding collision and respecting
joint limits. The solved joint coordinates
have to be smooth and continuous over
the path.

The robot cell is redundant due to the 9
Degrees of Freedom. To get an unique so-
lution for the inverse kinematics, we have
to employ optimization, providing further
constraints, in the form of optimization
criteria, on the problem.

In the first chapters the welding prob-
lem is introduced, as well as the theoreti-
cal means to solve it (planning and opti-
mization algorithms). In further chapters,
the robot cell is described in detail and
it’s kinematic model is introduced. Robot
Operating System (ROS), which is used
for the planning, is discussed briefly.

The core of the work lies in defining
various optimization criteria and imple-
menting them in ROS. Results of planning
on selected welds are presented and dis-
cussed.

Keywords: optimization, motion
planning, robotic welding, OMPL, Ceres

Supervisor: Ing. Petr Beneš, PhD.
Ústav Mechaniky, Biomechaniky a
Mechatroniky,
Technická 6,
Praha 160 00

Abstrakt
Tato diplomová práce se zabývá vývojem
plánovacího software pro automatické sva-
řování plastových nádrží. Typicky jsou ty-
hle nádrže svařovány ručně, co je dlouhý
a náročný proces, vyžadující léta zkuše-
ností. Pro zlepšení stávajíci situace byla
navržená svařovací robotická buňka. Tato
buňka má devět stupňů volnosti a skládá
se ze tří externích os a průmyslového ro-
bota. Na robotu je nainstalován svářecí
extrudér.

Problém plánování pohybu můžeme po-
psat jako opakované řešení úlohy inverzní
kinematiky pro danou cílovou polohu, při
respektování kloubových limitů a vyhý-
bání se kolizím. Výsledný prúběh kloubo-
vých souřadnic musí být spojitý a hladký.

S devíti stupni volnosti je navrhovaná
buňka redundantní. Pro nalezení jednoho
řešení musíme využít optimalizace a za-
vedením optimalizačních kriterií vybrat
jedno optimální řešení.

V prvních kapitolách práce je předsta-
ven problém plánovaní pohybu, společně
s teoretickými poznatky užitými k jeho ře-
šení. V následujících kapitolách je detailně
popsána robotická buňka a její kinema-
tický model. Stručně je také shrnut Robot
Operating System (ROS), který je využit
pro samotné plánování.

Jádro práce spočíva v návrhu rúznych
optimalizačních kriterií a jejich implemen-
tace v ROS-u. Prezentovány a diskuto-
vány jsou výsledky plánovaní na několika
vybraných svárech.

Klíčová slova: optimalizace, plánování
pohybu, robotické svařování, OMPL,
Ceres

Překlad názvu: Plánování pohybu s 9
stupni volnosti pro svařování plastových
nádrží

iv

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Problem description 3
2 State of the art 5
2.1 Sampling-based motion planning . 5

2.1.1 Algorithm 6
2.2 Non-linear optimization problem . 7

2.2.1 Algorithm 8
2.3 Matrix description of a serial chain

robot . 9
2.4 Manipulator dexterity 10
3 System description 12

3.0.1 Data flow 12
3.1 Hardware . 15

3.1.1 Industrial robot 15
3.1.2 External axes 15
3.1.3 Extruder 15
3.1.4 Other equipment 19

3.2 Software . 20
3.2.1 ROS . 20
3.2.2 G-Code Parser 25
3.2.3 Robot kinematic model 26

3.3 Planner & Optimizer 27
3.3.1 Weld approach move 27
3.3.2 Weld move 28

3.4 Visualization & Data export . . . 30
3.4.1 RViz . 30
3.4.2 Graphs 30

4 Problem solution 31
4.1 Computing sixth rotation 31
4.2 Robot kinematic model 33

4.2.1 URDF . 33
4.2.2 Collision model 34

4.3 Optimization criteria and
constraints . 36
4.3.1 Collision criterion 37
4.3.2 Dexterity criterion 38
4.3.3 Joint limits criterion 39
4.3.4 Region I criterion 40
4.3.5 Velocity criterion 41
4.3.6 Previous point distance

criterion . 42
4.3.7 Distance to goal criterion . . . 42
4.3.8 No inverse kinematics solution

criterion . 42

4.3.9 Weighted sum 43
4.4 Inverse kinematics 43
5 Implementation 44
5.1 Workspace composition 44
5.2 Running the planner 44
5.3 Robot model description 45

5.3.1 URDF . 45
5.3.2 SRDF . 46

5.4 G-Code Parser 47
5.4.1 Usage and configuration 47
5.4.2 G-Code Parser Class 50

5.5 Planner . 51
5.5.1 Usage and configuration 51

5.6 Planning a weld 53
5.6.1 Optimization criteria and

constraints . 54
5.6.2 Weld approach move 55
5.6.3 Weld move 56
5.6.4 Visualizing and data export . 57

6 Experimental results 59
6.1 Bottom outer weld of a rectangular

tank . 59
6.1.1 Weights values 59
6.1.2 Path planning results 61
6.1.3 Single point planning result . 61

7 Conclusion and future outlook 70
7.1 Summary of the work 70
7.2 Critical evaluation 71
7.3 Future improvements 72
Bibliography 73

v

Figures
1.1 An example tank made at STP

Plast s.r.o. 2
1.2 Handheld extruder 2

2.1 RRT expansion 7

3.1 Data flow in the planning process 14
3.2 The robot cell 16
3.3 The robot cell (detail) 17
3.4 Yaskawa Motoman GP88 18
3.5 Leister Weldplast 610-i 20
3.6 Mounting of the extruder on the

robot flange . 21
3.7 Original welding shoe 22
3.8 Concentric hot air nozzle 22
3.9 Preheating station 23
3.10 ROS Structure 24
3.11 UML Activity Diagram for the

optimization problem. 29

4.1 Extruder matching the Pose of a
weld point . 32

4.2 Computing sixth rotation 32
4.3 Coordinate systems of the robot 33
4.4 Robot visualization model 36
4.5 Robot collision model 37
4.6 Logistic function 38
4.7 Configurations I, II and III 40

5.1 Visualizing the G-Code 47

6.1 Visualization of the G-Code used
for planning . 60

6.2 Results of an optimization (velocity
through Jacobi matrix) 62

6.3 Results of an optimization (velocity
through Jacobi matrix) (continued) 63

6.4 Results of an optimization (velocity
through time and distance) 64

6.5 Results of an optimization (velocity
through time and distance)
(continued) . 65

6.6 Optimization of the first point
(velocity through Jacobi matrix) . . 66

6.7 Optimization of the first point
(velocity through Jacobi matrix)
(continued) . 67

6.8 Optimization of the first point
(velocity through time and distance) 68

6.9 Optimization of the first
point(velocity through time and
distance) (continued) 69

vi

Tables
3.1 GP88 Specification 15
3.2 External axes specification 19
3.3 Extruder specification 19

4.1 Allowed Collision Matrix 35
4.2 Soft joint limits 39

vii

Chapter 1
Introduction

Even though industrial robots have become a common occurrence in various
fields and many factories are automated to a high degree, there are still areas,
where bulk of the work is done by hand. Reasons for this may vary greatly:
low production volumes won’t use the abilities of an automated production
line to it’s full extent and the investment most likely won’t pay off. Made-to-
order products demand a flexible manufacturing process, whose development
is rather complex. Luckily, developments in the areas of planning algorithms
and machine vision have enabled more sophisticated systems to be applied to
a wide variety of problems, supporting the inclusion of robots in processes
previously thought to be too complex to handle.

In this work we are describing a 9 Degrees pf freedom (DOFs) robot
cell system developed for welding of plastic tanks. We are focusing on the
development of a planning algorithm used to generate paths for the welding
robot. We will describe the problem in detail, starting from the physical
construction, but concentrating mainly on the software: the data flow, inputs
and outputs and algorithms used.

Central to the system is an optimization problem, as the mechanism is
redundant and no unique solution can be found using pure inverse kinematics.
The optimization criterion contains multiple weighted sub-criteria, that will
be explained in detail. The actual implementation in ROS (Robot Operating
System) will be thoroughly explained, providing a detailed manual for future
users of the software. Lastly, experimental results will be discussed and
critically assessed on whether the software is able to provide outputs applicable
in real world on a production machine.

1.1 Motivation

This thesis is a part of a larger project, whose goal is to introduce automatic
welding in an otherwise mostly manual manufacturing process of fabricating
tanks (Fig. 1.1) and other equipment from plastic sheets joined by welding.
The receiving company STP Plast s.r.o. [4] from Stráž pod Ralskem has a
long experience in building them, but does most of the work by hand, using
skilled labourers, whose training takes multiple years.

To correctly weld the boards together, such that they form a watertight

1

.. 1.1. Motivation

Figure 1.1: An example tank made at STP Plast s.r.o. [4]

seal that is structurally sound, the worker must guide the extruder (Fig. 1.2)
at a precise angle and maintain constant speed along the weld. In many
cases, the worker has to lie on their back, balance on a ladder or work in a
otherwise unergonomic and physically demanding position. The extruder is a
drill-shaped tool with a heat blower and a screw mechanism, feeding the hot
end. The supplied filament is melted and forced through an opening into the
weld. Especially difficult for execution are inside corner welds, where precise
manipulation of the extruder is required and it’s bulkiness can be a hindrance.
Another source of discomfort while welding is heightened temperature. The
air blown at the weld seam is heated to around 360◦ C, which the worker has
to endure for extended periods of time.

Figure 1.2: Handheld extruder [15]

2

...................................... 1.2. Problem description

To elevate the working conditions and possibly increase the effectiveness
and automation level of the whole manufacturing process, a project, supported
by the Technological Agency of the Czech Republic, was set up. As STP
Plast themselves don’t have any related experience in developing solutions
for automation, further partners were invited: Companies Alad CZ s.r.o. and
triotec s.r.o. provide expertise in developing the physical robot cell, control
software and integration, while CIIRC CTU (Czech Institute of Informatics,
Robotics and Cybernetics of the Czech Technical University) is responsible
for the development of the planning software itself. [5]

The goal is to develop a robot cell capable of welding various tanks. The
movement of the robot will be planned not according to fixed human-set
paths, but rather based on a 3D CAD model of the tank. The planning
software will consider technological parameters such as angle, speed, contact
force or temperature and will generate optimal collision-free paths.[5]

Two robot cells are to be installed, one slightly larger than the other, but
functionally identical. As a first step, simpler manual control software will be
developed, where robot trajectories are calculated using analytical geometry
based on preset weld paths. This however doesn’t allow the full use of the 9
DOF cell and doesn’t provide the flexibility in manufacturing various tank
shapes and sizes, that is wished for. Nonetheless, it serves as an important
test platform for learning about the welding process and testing out various
technological parameters.

This work builds up on the foundation laid by a previous Master Thesis by
Kamil Horný, who developed a basic version of a planning software for the
project. [25]

1.2 Problem description

In it’s core the problem centers around finding an optimal path for the robot
cell based on input weld positions. The robot has 9 DOFs. That makes the
whole mechanism redundant and brings a whole host of challenges with it.
But redundancy has also it’s advantages, such as extended working space.
We will try to use up their full potential.

This thesis concerns itself mainly with the software side of the project.
Here, the goal is to build a planning software that can use a 3D CAD model
of the tank and a description of the welds on it to generate a continuous
collision-free path.

The planner will be solving inverse kinematics of the robot cell: based
on a given goal position we want to know the joint coordinates. Because of
redundancy, there’s an infinite amount of possible solutions this problem. To
find a unique solution we need to impose further constaints: optimization
criteria and solve the optimization problem.

Another important change coming with this project will be in the area of
manufacture planning and workflow. Until now, the designers only design the
tank and provide the drawings to the workers. The workers together with
the workshop leader must have enough experience to assess how the weld

3

...................................... 1.2. Problem description

should be made, i.e. what speeds, temperatures, materials and manufacturing
processes are to be used. The technological knowledge of the welding process
is therefore carried mainly by the workers, not by the designers.

This will change though, as the planning process will be tightly integrated
with the design and will occur in the designer’s offices. It will place additional
requirements on the designers, who will need to learn all the knowledge around
the welding process, because the designers will be the ones determining the
welding parameters.

Because of this integration initiative, the software will not only contain
the planning algorithm. It needs to fit in the entire manufacturing workflow.
That means defining interface points and data types for communicating with
other software.

Based on the preceding problem description, following goals of this thesis
were defined:. Familiarize yourself with topic of welding plastic tanks. Familiarize

yourself with planning methods for industrial robots. Familiarize yourself
with ROS.. Implement kinematic, visualization and collision robot model into ROS. Propose a planning algorithm for a robot with 9 DOFs for a problem
of welding plastic tanks that has 6 DOFs. Formulate the problem as an
optimization problem.. Implement the proposed algorithm in ROS.. Perform experiments in a simulator and evaluate the results.

4

Chapter 2
State of the art

2.1 Sampling-based motion planning

The problem in this project corresponds to a classical motion planning
problem: Find a collision-free path between the start and end while respecting
all of the robot constraints. While seemingly easy and intuitive for a human,
these problems pose a significant challenge to a computer, increasing with
the number of DOFs [32].

There are various approaches to solving this problem, with one of the
most common being sampling-based motion planning. Instead of trying to
find a solution in the continuous state space (space of all possible robot
configurations), this method depends on a finite amount of random uniformly-
sampled states (robot configurations), which it tries to connect these with a
collision-free path. Most of these methods offer probabilistic completeness,
i.e. the probability of finding a solution converges to one as the number of
samples tends to infinity. However, these methods can’t recognize a problem
with no solution [32].

From the myriad of available libraries and software, we’re focusing on
OMPL (Open Motion Planning Library). It is a popular, well-tested library,
which implements many state-of-art planning algorithms.

The goal of OMPL is to be as flexible as possible. That’s why it doesn’t
implement problem-specific functionalities, such as collision-checking or the
robot model. It’s API provides all of the core components required to solving
a planning problem:

ProblemDefinition Defines a start and a goal state and an optimization
objective (if given).

StateSampler Provides methods for uniform and Gaussian sampling of the
state space.

StateValidityChecker A framework for checking the state validity, i.e. that
it’s collision-free and fulfills all of the constraints. The user has to provide
the implementation.

MotionValidator Tasked with determining if the path between two states
consists of only valid states. OMPL uses interpolation between two

5

................................ 2.1. Sampling-based motion planning

states to determine the motion. Only a subset of states on this path are
checked for validity.

OMPL provides classes wrapping the most common used routines (e.g. Sim-
pleSetup) and predefined methods for common state spaces. It is also capable
of optimal planning, but it depends on the planner used [32].

2.1.1 Algorithm

OMPL implements a whole host of planners, many of them a variation of
the two most common ones: PRM (Probabilistic Roadmaps) and RRT
(Rapidly-exploring Random Trees) [32]. Because PRM is suited primarily for
multi-query applications (a map of the space is constructed and then it can
be queried for paths with various start and end states) [26], we’ve decided to
use RRT.

As the name suggest, RRT attempts to build a tree by sampling random
configurations and attempting to join them to the existing tree [26]. Algorithm
1 and Fig. 2.1 show the basic principle.

Algorithm 1 RRT [26]
1: V ← {xinit};E ← ∅
2: for i = 1, . . . , n do
3: xrand ← SampleFreei;
4: xnearest ← Nearest(G = (V,E), xrand);
5: xnew ← Steer(xnearest, xrand);
6: if ObstacleFree(xnearest, xnew) then
7: V ← V ∪ {xnew};E ← E ∪ {(xnearest, xnew)};
8: end if
9: end for

10: return G = (V,E);

The algorithm starts with an initial configuration xinit, which is represented
by a vertex in the graph. Then, for n iterations, or until a point in the goal
region is found, a simple procedure is repeated: Firstly, a random configuration
xrand is sampled. It is then checked, whether it belongs to the free state
space, i.e. the configuration is not in collision. Then a nearest vertex already
in the graph to the new configuration is found and an attempt to connect
them is made. If successful, the algorithm makes a step xnew towards the new
random configuration (Steer) [26]. There are three possible outcomes: the
step reaches the configuration, the step doesn’t reach xrand but is successful
or the step is rejected, because it doesn’t lie in the free state space anymore
(also called Trapped) [27].

There are various modifications to the original RRT algorithm. RRT*
doesn’t simply take the nearest vertex and connects it with the new vertex, it
first searches in a region around xnew for other possible vertexes to connect
to. From these vertices, the algorithm picks that vertex, whose connection
to xnew gives a path with minimal cost according to some criterion. The

6

.................................2.2. Non-linear optimization problem

Figure 2.1: RRT expansion

algorithm is also able to rewire the tree, i.e. change the connection of existing
vertices, if the path through the new vertex would have a lower cost [26].

An approach with two expanding trees, one from the start and one from
the goal is used in the RRT-Connect algorithm. The trees are expanding
simultaneously while attempting to connect to each other. The disadvantage
here is that the goal state has to be known, instead of needing only the
workspace coordinates of the end-effector [27].

2.2 Non-linear optimization problem

While finding a minimum of a function can often be very simple, in many
practical applications the complexity of the problem doesn’t allow the use of
classical analytical methods. This happens mainly if the function is strongly
non-linear, not smooth or continuous or impossible to write in a closed
form. One way to solve such problem is using an optimization algorithm.
Optimization has also uses in curve-fitting, kinematic synthesis and many
more. Described here are the workings of a optimization solver.

Ceres is a multi-purpose non-linear least-squares solver, which can solve
problems in the form [23]

min
x

1
2

∑
i

ρi

(
||fi(xi1 , . . . , xik

)||2
)

s.t. lj ≤ xj ≤ uj

(2.1)

where fi is the cost function depending on the Parameter Blocks (groups of
parameters) xi1 , . . . xik

. The function ρi is the Loss Function used to reduce
the influence of outlier data. This function is not applicable to our problem

7

.................................2.2. Non-linear optimization problem

and is shown only for completion. Finally, lj and uj are the lower and upper
bounds on the parameter block xj [23].

2.2.1 Algorithm

For the purposes of optimization, the problem in 2.1 can be simplified to [23]

arg min
x

1
2 ||F (x)||2

s.t. L ≤ x ≤ U
(2.2)

where x ∈ Rk, F (x) = [f1(x), . . . , fm(x)]T and L and U are the lower and
upper bounds on x. Next, we’ll define the Jacobian as a m × n matrix with
the elements Jij(x) = ∂fi

∂xj
and the gradient as a vector g(x) = J(x)TF (x)

[23].
As is common with numerical methods, the idea behind the solution to

non-linear optimization problems lies in repeatedly solving an approxima-
tion to the original problem and iteratively improving x by the means of
a correction vector ∆x. The approximation can be a simple linearization:
F (x+ δx) = F (x) +J(x)∆x, which transforms the Problem 2.2 to a sequence
of minimizations of [23]

min
∆x

1
2 ||F (x) + J(x)∆x||2 (2.3)

This however, doesn’t always lead to a convergence, because the step size
depends on the steepness of the function in x and it can easily overstep
the local minimum. Thus we want to control the size of the step (Line
Search methods) or the area, where the approximation can still be considered
reliable (Trust Region methods). Currently, Ceres can only handle Line
Search methods without constraints, leaving Trust Region the only option.
The Algorithm 2 shows how Trust region algorithm works. [23]

In Algorithm 2, µ is the trust region radius, D(x) defines a metric on
the domain of F (x) and ρ determines how well does the approximation
represent the change in value of F (x). Depending on ρ (i.e. the quality of the
approximation) the radius of the trust region gets increased or decreased [23].

Trust Region methods differ in how they approach the Solve step of the
algorithm. A very common algorithm, is called Levenberg-Marquardt [28, 30].
It transforms the constrained optimization problem 2.2 to an unconstrained
one using Lagrange multipliers. The problem then takes the form [23]

arg min
∆x

1
2 ||F (x) + J(x)δx||2 + λ||D(x)∆x||2 (2.4)

where λ is the Lagrange multiplier, that is inverse to µ. Typically, D(x) is
the square root of the diagonal of J(x)TJ(x). Solving the problem is tackled
by a linear equations solver, with Ceres offering a variety of them suited for
various problem sizes (dense, sparse) or specific problem structures [23].

8

............................. 2.3. Matrix description of a serial chain robot

Algorithm 2 Trust region algorithm [23]
Given xinit, µ

1: repeat
2: Solve

arg min
∆x

1
2 ||F (x) + J(x)δx||2

such that ||D(x∆x||2 ≤ µ
L ≤ x+ ∆x ≤ U

3: ρ = ||F (x+∆x)||2+||F (x)||2
||F (x)+J(x)∆x||2−||F (x)||2

4: if ρ > ϵ then
5: x = x+ ∆x
6: end if
7: if ρ > η1 then
8: µ = 2µ
9: else if ρ < η2 then

10: µ = µ
2

11: end if
12: until a convergence criterion is met
13: return x

2.3 Matrix description of a serial chain robot

The movement of a robot in 3D space can be complex and it’s sensible to use
an unified, compact and algorithmizable notation to describe transformation
between coordinate systems. Probably the most used system is based on
transformation matrices. Let’s assume two coordinate systems, a and b. We’re
interested in describing the movement of point M in coordinate system b,
relative to a. This can formally be written as [31]:

raM = TabrbM (2.5)
xaM

yaM

zaM

1

 =

a11 a12 a13 a1
a21 a22 a23 a2
a31 a32 a33 a3
0 0 0 1

xbM

ybM

zbM

1

 , (2.6)

where rbM is the radius vector of point M in coordinate system b, raM is the
radius vector of point M in coordinate system a and Tab is the transformation
matrix between a and b. The 3x3 submatrix is a rotation matrix, whose
columns correspond to the unit vectors of b in a. The last column is the
translation between origins of a and b. The last row represents identity and
is included to get a square matrix [31].

A transformation matrix can describe an arbitrary translation and rotation,
but commonly used are matrices describing rotation about or translation in

9

..................................... 2.4. Manipulator dexterity

only one axis. Due to the fact that any spatial motion can be composed of
basic motions, these matrices can be multiplied to get an arbitrary motion.
Herein lies a big strength of this description system: matrices for basic motions
are readily available, intuitive to understand and easily algorithmizable. Their
use also convenes with the engineering praxis, where joints with single DOF
are the most common [31].

Let’s take a serial chain robot with n links and assign each link a coordinate
system. The transformation between two neighboring links is described by
the matrix Ti−1,i. We’re interested in the motion of the point M , located on
the last link. By chaining the transformation matrices we obtain [31]:

r1M = T12T23 . . .Tn−1,nrnM = T1nrnM . (2.7)

By handily choosing positions and orientations of coordinate systems (in the
joints or other prominent points), we can define the individual matrices using
only basic motions. In the end we get one transformation matrix [31]:

T1n =
n−1∏
i=1

Ti,i+1 . (2.8)

In a serial chain robot, this matrix depends on the joint coordinates q. If
rnM is constant, then by setting q we can find out the position of the end
effector of the robot. This is known as the forward kinematics problem [29].

If we instead take a transformation matrix Tg and set it equal to T1n(q)
we can compute the required joint coordinates q to reach the desired position.
This is called the inverse kinematics problem [29].

2.4 Manipulator dexterity

Even without in-depth knowledge of robots, it’s easy to see, that some
configurations are inherently better than other. Akin to a human arm, a fully
stretched out robot is not able to perform tasks very well. In other cases,
if joints align in an unfortunate position a loss of DOF occurs. To describe
which configurations are better than others we use dexterity, defined as the
inverse of the condition number of Jacobi matrix [34]:

D = 1
cond(J) . (2.9)

The higher the dexterity, the better [34].
A condition number of a matrix is a ratio of the largest and the smallest

singular number of a matrix [34]:

cond(J) = σmax

σmin
. (2.10)

Singular numbers of a Matrix can be obtained using the SVD decomposition
[34]:

J = USVT , (2.11)

10

..................................... 2.4. Manipulator dexterity

where matrix S is a diagional matrix with singular numbers of matrix J [34].
Jacobi matrix is a matrix of partial derivatives of the constraint functions

with respect to the coordinates and also serves as a operator between the
input (joint) and output (end effector) velocities [34]:

v̇ = J(q) q̇ (2.12)

ẋ
ẏ
ż

ψ̇

ϑ̇

ϕ̇

=

∂f1
∂q1

∂f1
∂q2

. . . ∂f1
∂qn

∂f2
∂q1

.
... . . .

∂fm

∂q1
. ∂fm

∂qn

q̇1
q̇2
q̇3
q̇4
q̇5
q̇6
q̇7
q̇8
q̇9

. (2.13)

11

Chapter 3
System description

The final goal of the project is having functional robot cells capable of
production deployment, which makes the complexity of the whole system
fairly high. The hardware has to be reliable and simple to use, with all the
necessary safety measures included. Serviceability is another priority: the
extruder might need adjustment and the consumed filament resupplied. Ease
of loading and unloading the cell has to be considered as well.

The accompanying software is no less complex: it needs to guarantee, that
the planned paths are continuous, collision-free and feasible to execute. Safety
and reliability are of highest importance here as well. The software needs
to provide enough fallbacks and safety checks to prevent any possibility of
damage by an incompetent user. For that, a verification of the planned path
has to be possible, e.g. in the form of a visualization. The whole system
can be divided into a hardware and software section, with each containing
multiple components:. Hardware:. Industrial robot. External axes. Extruder.Other equipment. Software:.G-Code Parser. Robot model. Planner & Optimizer.Visualization & Data export

3.0.1 Data flow

The whole manufacturing process begins with a contract. Here, during
negotiations, at least one sketch of the tank will be drawn. In the end, the
sketch needs to depict all of the customer’s requirements and contain all
important components and features of the final product. This sketch will

12

....................................... 3. System description

then serve as a base for a 3D model of the tank. The job of the designer is to
model it in scale and include all features. The model also has to be detailed
enough to depict manufacturing features, such as chamfers. This is because
the 3D model will be used during planning as a collision model and any
missing parts could cause the robot to crash. In the manual manufacturing
process, the drawings didn’t need to be so detailed, because an experienced
welder can recognize problematic areas and adjust themselves. The robot has
no perception in this sense though and will blindly follow any given path,
regardless whether it will cause it to crash or result in a unsuccessful welding
operation.

As previously mentioned, the definition of welding parameters will move
from the workers in the workshop to the design office. This will be the
responsibility of the manufacturing engineer, but in reality it might be the
same person as the designer. They will define the weld positions, order of
welding, temperatures, speeds and materials used. Only with this information
complete can the input data for the planner be generated. This data will most
likely take on the form of modified G-Code generated by a CAM software.

This generated data and the 3D model will serve as an input for the
planning software itself. Here all the optimization takes place. It will plan
a welding path and visualize it, which the engineer has to verify. If the
path fulfills all the criteria and the engineer is satisfied, the data can be
exported. They will contain joint coordinates for each weld point and all
required technological commands. This exported data can then be input
in the robot’s control unit, which controls both the movement as well as
the technological systems (heaters, extrusion etc.). The whole dataflow is
depicted in Fig. 3.1.

13

Figure 3.1: Data flow in the planning process - Bulk of the work done on a welding project is done in the design office. Here, after receiving a
contract, the designer will model the tank in a CAD software. The 3D model is transferred to the CAM software and, with the help of the
manufacturing engineer, the G-Code is generated. This G-Code along with the 3D model is sent to the planner. The planned movement is then
executed by the robot cell.

...3.1. Hardware

Specification GP88
Axes Maximum motion range [◦] Maximum speed [◦/s]
S ±180 170
L +155/-90 140
U +90/-80 160
R ±360 230
B ±125 230
T ±360 350
Max. payload [kg] 88
Repeatability [mm] ±0.03
Max. working range [mm] 2236

Table 3.1: GP88 Specification [22]

3.1 Hardware

The cell (Fig. 3.2, 3.3) consists of a standard 6-axis industrial robot, mounted
upside-down on a beam. This beam is attached to a column and can move
vertically, meanwhile the robot base can move horizontally along the beam’s
longitudinal axis. The third external DOF is supplied by a rotating platform,
on which the to-be-welded tank rests. The external DOFs extend the working
space considerably and allow for a continuous weld around the tank. The
entire robot cell has been designed at triotec s.r.o.

3.1.1 Industrial robot

The robot chosen is YASKAWA GP88 (Fig. 3.4). It is a universal high speed
robot with 6 rotational axes [22]. Table 3.1 summarizes all of it’s important
parameters and features.

3.1.2 External axes

The two linear axes are part of the cell. The vertical axis moves the whole
beam, which itself is a truss frame. The vertical axis is moved by a ball screw.
The horizontal axis, moving the robot base, is moved by a rack and pinion
mechanism. Both axes are guided by linear rails. The third, rotational axis
rests on the bottom of the frame and rotates a sizable platform on which the
tank sits. To fixate the tank during welding, plenty of mounting points are
provided on the platform. The table rotation is limitless, thus allowing infinite
rotations in either direction. Table 3.2 shows all of the axes’ parameters.

3.1.3 Extruder

The robot can’t use a standard handheld extruder, but needs a variation
suitable for remote control and automatic operation. A Swiss company,

15

...3.1. Hardware

Figure 3.2: The robot cell - Depicted is the entire built robot cell. Wire mesh
fence with loading doors separates the cell from the rest of the workshop. Most of
the space is taken up by the rotating table, on which a cuboid tank is placed and
clamped. The standing column and the moving beam are both truss frames. The
robot itself is folded in a parking position in the furthest and highest position of
the cell.

16

...3.1. Hardware

Figure 3.3: The robot cell (detail) - A closeup of the robot cell during welding.
The extruder tip is in contact with the tank and the rotation of the extruder is
clearly visible. It is also visible, that the tank has been rotated on the table. On
the first robot link, a black spool is mounted, containing the welding filament.
The filament is brought to the extruder through a flexible tube hanging from
the spool.

17

...3.1. Hardware

Figure 3.4: Yaskawa Motoman GP88 [22] - GP88 is a standard industrial robot
with 6 rotational axes. The last three axes (4, 5 and 6) intersect in one point
(wrist). IKT of this joint configuration is solvable analytically.

Leister, offers a model, Weldplast 610-i (Fig. 3.5), which is be used. Table
3.3 shows the most important parameters of the extruder.

The extruder itself can be mounted on the robot’s flange, but on it’s own,
this, due to dimension deviations between the 3D model and a real tank,
wouldn’t provide the constant force required to keep the extruder tip pushing
onto the weld seam. Thus, a mechanism (Fig. 3.6) allowing movement along
the extruder’s main axis is placed in between the robot and extruder mounting
flanges. The constant force is realized using a pneumatic cylinder. This DOF
is not considered in the planning problem.

The extruder has been subject to further modifications, to better suit the
automated welding process. Normally, the extruders are equipped with a
wedge-shaped welding shoe (Fig. 3.7). It helps guide the extruder in the weld
and maintain constant angle. This has however shown to be a limiting factor
during testing and the shoe has been replaced by a conical one. This helps
the extruder to better navigate corners. With it, the extruder can be angled
as it approaches a corner, such that it sits at 45◦ when exactly in the corner.

Another drawback of the original construction is the heater nozzle. The
blower opening is next to the extruder tip on one side. This limits, how the

18

...3.1. Hardware

Specification external axes
Axis Distance be-

tween end-
stops

Maximum
motion
range

Maximum
speed

Time to
accelerate
from 0 to
100% [s]

Table ±∞ ±∞ 3.088◦/s 3
Vertical 0 - 2475 mm 5 - 2470 mm 50 mm/s 0.5
Horizontal 0 - 1320 mm 1 - 1278 mm 412 mm/s 0.5
Max. table
payload

2000 kg

Table 3.2: External axes specification

Specification Weldplast 610-i
Power [W] 1600
Filament diameter [mm] �4 - 5
Material output at �4 mm [kg/h] 0.1 - 4.0
Material output at �5 mm [kg/h] 0.1 - 8.4
Weight [kg] 22
Length [mm] 876.0
Width [mm] 191.0
Height [mm] 21.0
Welding materials HDPE, LDPE, LLDPE, PP

Table 3.3: Extruder specification [15]

extruder can move: During welding, the hot air nozzle has to always blow hot
on the weld, just before the plastic will be extruded there. The exruder can’t
therefore be rotated arbitrarily, but the weld seam has to lie in the plane
defined by the extruder tip axis and the heater nozzle axis. One rotation
DOF of the extruder is constrained by this requirement, which complicates
the planning and movement execution, especially in corners, tight areas and
inside welds. To overcome this limitation, the nozzle has been modified and
now blows hot air concentric all around the hot end (Fig. 3.8). The extruder
is thus able to weld in any position rotated around it’s longitudinal axis.

3.1.4 Other equipment

The robot cell also contains auxiliary equipment, necessary for safe and
continuous operation. One of them is a preheating station (Fig. 3.9). Here
the robot will spend time until the extruder reaches operating temperature.
A small amount of filament is also extruded here, to normalize the welding
conditions.

Important part of the equipment are safety fences and barriers all around
the robot cell. Access to the working area is controlled, as no persons should
be present during operation.

19

... 3.2. Software

Figure 3.5: Leister Weldplast 610-i [15] - The extruder body (black cover) has
two protrusions: the thicker, straight one, with white tip is the extruder nozzle
and the slightly curved one is the heater nozzle. The nozzle blows hot air on the
weld.

3.2 Software

The development of the planning software is a complex and time-consuming
process, due to the software’s complexity. The software needs to be able to
process the input data, order and save them in a suitable data structure.
Then it has to apply planning and optimization algorithms. The created path
has to be verified by the designer and only after that it can be exported for use
in a control unit. Ideally, the software will also be universal enough to be able
to generate paths for a wide array of tank shapes. That requires adjustability
of a wide array of parameters, starting from the welding process itself, the
tank model and position and going all the way to modifying optimization
criteria.

3.2.1 ROS

At the start of the project it was decided to develop the planning part of
the software using ROS (Robot Operating System). ROS is a open-source
software development environment (sometimes also called a middleware) used
for robotic applications. It is used widely in teaching and research, but also
in industry. With a strong community support, there’s a wide availability of
tools and libraries. Many of them contain modern, state-of-art algorithms
and help reducing overhead when starting a new project [2].

Over time, ROS has come through various versions, the last being named

20

... 3.2. Software

Figure 3.6: Mounting of the extruder on the robot flange - The robot mounting
flange is the brass-colored piece at the end of the robot arm (blue). The
mechanism pushing the extruder into the weld is clamped between the robot and
the extruder mounting flanges: Two linear rails, as well as the carriages (with
green and red caps), are visible. The pneumatic cylinder (white) is mounted
facing the rear of the extruder.

21

... 3.2. Software

Figure 3.7: Original welding shoe [14] - The original wedge-shaped welding shoe
is useful for guiding the extruder during hand welding, but has shown to be
problematic during robotic welding. Due to it’s size and rigidity, the robot is
generally less flexible in manouvering and the new spherical welding shoe helps
with that.

Figure 3.8: Concentric hot air nozzle - A detail of the extruder tip: the straight
cylinder is the extruding nozzle itself, capped of by a white welding shoe. This
is the modified, spherical welding shoe. The curved tube is supplying hot air
from the blower. The hot air nozzle is mounted concetrically and blows air all
around the extruder tip.

22

... 3.2. Software

Figure 3.9: Preheating station - During preheating, the extruder is positioned
above the preheating station, with the extruder tip facing downward into a catch
bowl (triangular prism). After preheating the extruder will, as a test, extrude a
small amount of filament in the rectangular box. The hanging extruder plastic
will be cut off flush with the small cutting tab on the side of the rectangular
box.

23

... 3.2. Software

Noetic. However, the core has remained the same. To improve ROS further,
the development team has decided to create a completely new version, called
ROS 2 [6]. The system has been rebuilt from the ground up and has some
excellent new features. Most importantly, it is much more suitable for real-
time compared to the older ROS 1. While you could control a robot directly
from ROS, it often wasn’t the first choice and conventional control units were
used, with ROS being relegated to offline planning tasks [10].

This project has started with ROS 1. Mr. Horný used version Melodic
in his Master Thesis. We have updated the project to the latest ROS 1
version, Noetic. But one of the goals of this project is to use ROS not only
for planning, but also for execution. This prompted the switch to ROS 2,
which didn’t happen during this Master Thesis, but it is planned in the near
future.

A basic structure of a ROS project is formed from nodes. Each node
corresponds to a executable that can run independently from other nodes.
The management of nodes and communication between them is facilitated by
ROS Core. It registers and monitors all running nodes and tracks publishers
and subscribers. They are nodes, that have been set-up with communication
interface. Communication itself in ROS occurs using topics and services (Fig.
3.10). A topic is a channel, where any amount of publishers can publish (send)
data and any amount of subscribers can receive them. It is a many-to-many
system that doesn’t require any request calls. The subscribers simply receive
any and all published data. On the other hand, services are a request-and-
reply communication system and function one-to-one. The data is published
on topics and services in the form of messages. Their structure ranges from
primitive data types to complex data structures and can be created to suit
the application [8].

Figure 3.10: ROS Structure [8]

Another important component handled by ROS Core is the Parameter
Server. Instead of using a separate configuration file for each node, the
Parameter Server centralizes all of the configuration data. The data can
be accessed and edited by the nodes during the run of the application. For
editing, parameters are stored and edited in YAML files [8].

One of the most used libraries within ROS is the tf library. Tf stands for
transformation, because this library handles all of the coordinate systems
present within the environment. It tracks transformations between the
coordinate systems and can return the actual transformation matrix on a
request. [3] This is a very powerful feature, which simplifies the handling

24

... 3.2. Software

of coordinate systems in time. We don’t have to write out complex matrix
transformations, which is not only a time consuming process, but also a one
prone to errors.

On topics of coordinate system, we should mention that internally, ROS
uses quaternions for handling of rotations. Conversions to different rotation
descriptions, such as Euler angles, are provided [9].

For simpler applications, it might be manageable to build and control
the robot model manually, but for anything more complex, this approach is
unsuitable. That’s why another of the most used libraries in ROS is MoveIt!.
This library provides a simple, high-level control of the robot with intuitive
setup. With MoveIt!, the entire robot can be moved using single commands.
MoveIt! also implements some planning algorithms and collision checking
[24].

3.2.2 G-Code Parser

The input data format needs to provide all of the information required about
the welding process: the positions of the welds, welding speeds, dwelling,
preheat and cooldown times, temperatures, tools and materials used. It also
needs to distinguish between moves in free space, happening while the robot
moves between welds and work moves, where actual welding takes place,
as they have different restrictions placed on them. One possible format for
this could be G-Code, widely used in the programming of CNC (Computer
Numerically Controlled) machines and 3D printers. This code could be
generated by a CAM (Computer Aided Manufacturing) software, that can
simulate milling operations on a 3D model [11]. G-Code is a human-readable,
extendable programming language. Originally developed for CNC machines,
it is now widely used in 3D printing as well. Manufacturers of CNC machines
have developed their own versions of G-Code, but the core remains the same.
A G-Code file consists of commands, usually defined with a letter+number
combination, such as G01 X10 Y20 Z30 F500, G90, M06, etc. The control
unit reads them into a buffer and executes sequentially. The most important
commands for this project are [11, 12]:

G00 X111.1 Y222.2 Z333.3 I444.4 J555.5 K666.6

and [12]

G01 X111.1 Y222.2 Z333.3 I444.4 J555.5 K666.6 F777.7

They both describe a move to the position given by the coordinates X, Y, Z
and rotation around the axes given by the coordinates I, J, K. The main
difference is that G00 is a non-work move and G01 is a work move. That’s
why there’s an additional parameter, F, describing the feed rate, i.e. the
velocity. It has to be mentioned, that the form of these commands can differ
slightly, depending on the G-Code specification. Also, it is rare to see all
three rotations being given, as CNC machines usually have 5 axes at the
most.

25

... 3.2. Software

STP Plast has some experience using CAM software, but only with 3-axis
milling machines. This is not enough for welding, as all six DOFs are needed
to move the extruder along the weld. The CAM software, AlphaCAM, used in
the company, can be extended with a plugin for 5-axis milling machines. With
this extension, only the rotation of the extruder about it’s longitudinal axis
has to be calculated additionally. More so, this might not even be required
in the future, as the spherical welding shoe and concentric heat nozzle allow
welding regardless of this orientation. A few simple G-Code examples have
been generated and used for the duration of this master thesis. They describe
the required movement of the extruder in a simplified manner, but this was
considered to be sufficient.

As the work on the project progressed, it became evident, that a much
more detailed G-Code will be needed: due to preheating and the flow of the
melted plastic, the robot has to pause in specific points and wait for a few
seconds. Also, the handling of the movement in corners was found to be
insufficient. Due to this issues, it was decided, that a new version of G-Code
will be needed. Ing. Malý, a programmer and engineer from the company
Alad has developed a G-Code generator with all of the features required. The
only significant disadvantage of this generator is that it’s command-line only.
Because of the very limited experience with G-Code and robotics, this could
pose a complication for the engineers at STP Plast, who will be preparing
the whole welding process. Talks have begun with the supplier of AlphaCAM,
asking if they would be able to extend their software to fulfill all of the
requirements of this project. The decision has not been made yet, as to which
path will be taken.

To process the G-Code into a format usable by the planner a parser
software has been developed. It reads the G-Code line by line and takes out
the important information: position and rotation values as well as the type
of move. The data is then saved in a data structure, which uses standard
ROS data types for position and rotation. These can be accessed and read
by the planner. The parser has been based on the first version of the G-Code
created by AlphaCAM, but it will be extended to be able to parse the more
advanced G-Code developed by Alad

3.2.3 Robot kinematic model

To be able to simulate and plan the welding paths a mathematical model of
the robot is needed. This model defines coordinate systems and the relations
between them. Each robot link has a coordinate system assigned and the
relationship is defined through joints and constraints. In this project we are
working with a kinematic only model. That means, the links are defined only
through their geometry, as are the joints. Mass and inertia are not considered
here.

The most primitive way to build a robot model would be directly using
transformation matrices. You can then update the individual transformations
using the tf library [3]. This, however gets complicated very quickly. That’s
why robots in ROS are defined using URDF (Unified Robot Description

26

......................................3.3. Planner & Optimizer

Format). It is a XML format with it’s elements representing links and joints.
By assigning attributes we can model an arbitrary robot. A link can be
assigned a body, either made from primitives (cube, cylinder, sphere, etc.) or
from a STL file [20]. This model is then loaded by a robot_state_publisher
node. This node subscribes to a topic where joint states (coordinates) are being
published. It then takes those values and updates all of the transformations.
[7]

An ever higher level of abstraction is provided by MoveIt!. With it you
create a Robot Model (the description of all links and joints) and a Plan-
ning Scene (the environment containing the robot). With simple, one-line
commands, you can move the robot (forward kinematics), set a position
and orientation (often called together a pose) of the end effector (inverse
kinematics) or check for collision [17].

To aid MoveIt!, another file needs to be defined. It uses the SRDF (Semantic
Robot Description Format) and specifies various additional information about
the robot. The most important are Groups (also called JointGroups). They
are a collection of joints and links on which MoveIt! acts. It will plan for
or move an entire group at once: the joints outside the group will be left
stationary. Another important use of the SRDF file is disabling collision
checking between specific links. This helps to reduce computing time, as
usually there are multiple links, that can’t be in collision with each other and
checking for it would be wasteful [21].

3.3 Planner & Optimizer

The planning software needs to distinguish between the two different move-
ment types and apply an appropriate planning algorithm on them. A re-
dundant mechanism has infinite solutions for the inverse kinematic problem,
forcing the inclusion of an optimization procedure to find an unique solution.
We define a cost function, which we try to minimize. We place various re-
quirements on the movement and configuration of the robot, especially during
welding. Each requirement is represented in the form of criterion. Then the
overall cost function is a weighted sum of all criteria. The criteria to be
considered vary greatly, with the most important being a collision free and
a „good” resulting configuration of the robot. „Good” meant in a sense of
having high dexterity and avoiding singular or near-singular positions, which
lead to high joint velocities or discontinuities in the movement as the robot
switches between configurations. They also limit the force applicable on the
end effector.

3.3.1 Weld approach move

The weld approach move is occurring when the robot moves in free space,
either from it’s parking position or between two welds (e.g. from outside to
inside of the tank). The extruder is inactive and no welding occurs during
this move. This means less restrictions are placed on the path and robot

27

......................................3.3. Planner & Optimizer

configuration. Most importantly, the robot has to avoid collision and has to
end up in a configuration, from which welding itself can begin and continue.
That means no additional rotations or changes of configuration should be
necessary, only a simple linear move to the point of contact of the extruder tip
with the tank. Welding itself is a very slow process, with the maximal welding
velocity being around 11 mm/s. In this regard, the time spent executing the
approach move is negligible and we’re not focusing on finding the shortest or
fastest path.

For the weld approach planning we’re using OMPL with a RRT -type
algorithm.

3.3.2 Weld move

The part of planning that warrants much more attention is welding itself.
Here, the requirements placed on the robot are much higher. The extruder
tip has to move exactly along a prescribed path, otherwise the weld will fail.
Any discontinuities or sharp changes in the movement will negatively affect
the weld as well. The robot also shouldn’t switch between configurations
and we need to pay attention to the joint limits. If one of the joints hits
a limit during a continuous weld, the solver will have a tendency to switch
to a different configuration to continue. This we can’t allow and need to
implement checks to avoid this situation. Other than the already mentioned
dexterity and collision avoidance, we also want to limit abrupt acceleration
of any of the joints.

Since the robot has to follow an exact path, we need a different approach
for the weld move than for the approach move. We need a planner that
will solve an inverse kinematic problem for each point of the path, while
minimizing the cost function. The Solver we’ve decided to use is Ceres.

The way we decided to approach the optimization problem is as follows:
The parameters to optimize are the joint coordinates of the three external
axes, while the coordinates of the remaining six axes of GP88 will be solved
using analytical inverse kinematics (IKT). While we could optimize any three
of the 9 DOFs, it’s sensible to pick the three external axes, because analytical
kinematics are available for the industrial robot. Another advantage in using
analytical IKT is that we can compute all of the possible configurations and
pick the most desired one, instead of relying on numerics and risking a sudden
switch between configurations over which we have little to no control. Figure
3.11 shows an UML Activity Diagram for the planning phase, with the weld
move algorithm written out in detail.

28

Figure 3.11: UML Activity Diagram for the optimization problem - Simple, black arrows show the control flow, while the thick arrows show
the data flow. Rectangles with round corners are processes, rectangles with sharp corners are data storages. Control flow is split or joined in
diamonds.

.................................. 3.4. Visualization & Data export

IKT solver

The inverse kinematics library used has been developed by Ing. Libor Wagner
at CIIRC CTU in Prague. It’s a fast standalone C++ library, which can be
configured for a variety of 6-axis industrial robots. The analytical kinematics
equations have been derived by hand and then implemented. The library is
thus able to compute all of the possible solutions for a given inverse kinematic
problem.

3.4 Visualization & Data export

The result of the planning should be a continuous collision-free path in robot
joint coordinates extended with markers describing technological operations.
This will be the input for the real-time robot control system. However, to get
to a fully usable product, a wide array of additional functionalities has to be
considered, such as input and output data formats, visualization and tests.

3.4.1 RViz

ROS standardly ships with a visualization software called RViz. It features a
3D environment, where various objects can be inserted. These objects then
listen on specific topics and change their state according to the messages
received. I this way can a movement of a robot be visualized. Figures 4.4
and 4.5 have been generated using RViz.

3.4.2 Graphs

A good data visualization is key to a successful optimization. Displaying the
evolution of the cost of the criteria provides a helpful insight on how the
solver is working. These graphs are very useful for detecting problems with
the solution (i.e. with the planned path), that would be otherwise hard to
recognize from the visualization only. Being able to publish any data to a
topic, which can be later analysed and plotted, is thus a huge boon of ROS.

30

Chapter 4
Problem solution

4.1 Computing sixth rotation

An important part of the parser is the computation of the sixth rotation, that
is usually missing from G-Code. The unknown rotation is that around the
extruder’s longitudinal axis. For the solution we have to consider how the
extruder is positioned during welding: The preheating nozzle has to always
lead before the extruder, in the direction of movement. In other words, the
line representing the weld has to lie in the plane defined by the axes of the
extruder and the preheating nozzle (Fig. 4.1).

To begin, we’ll need the current rotation matrix, with it’s columns repre-
senting the unit vectors of the coordinate system.

Sn
1 =

[
in1 jn

1 kn
1

]
=

i11
i12
i13

n j11

j12
j13

n k11

k12
k13

n (4.1)

Normal vector of the plane can be computed as

jn
2 = kn

1 × s (4.2)

where s is the vector between two neighboring points (n and n− 1). Then
the unit vector lying in this plane, which determines the orientation of the
nozzle (the axis x leading out from the extruder tip towards the preheating
nozzle) is

in2 = −kn
1 × jn

2 (4.3)

Since we want to keep the z axis, k2 = k1. With that, we get a new rotation
matrix:

Sn
2 =

[
in2 jn

2 kn
2

]
(4.4)

which can be converted to a quaternion and replace the original rotation of
the pose (Fig. 4.2). Because the path vector s can’t be determined for the
last point, the rotation from the second-to-last point is repeated.

31

....................................4.1. Computing sixth rotation

Figure 4.1: Extruder matching the Pose of a weld point - Axes x,y and z are
colored red, green and blue respectively. The small coordinate systems represent
the individual weld points, while the large coordinate system is the extruder
tip (tool0e, positive z points into the extruder nozzle). It is visible, that the
extruder tip coordinate system matches the weld point coordinate system. The
extruder is also correctly aligned, with the preheating nozzle leading the extruder
tip (welding direction is from left to right).

in−1
1

jn−1
1

kn−1
1

s

in1

jn
1

kn
1 = kn

2

jn
2

in2

Figure 4.2: Computing sixth rotation - in−1
1 , jn−1

1 and kn−1
1 are unit vectors of

a previous weld point. in1 , jn
1 and kn

1 are unit vectors of the current weld point,
uncorrected for the 6th rotation. s is the translation vector between these two
points. in2 , jn

2 and kn
2 are unit vectors of the current weld point, corrected to

account for the 6th rotation.

32

.................................... 4.2. Robot kinematic model

4.2 Robot kinematic model

The robot kinematic model consists of two distinct components: the URDF
description, defining the relationships between robot links and joints and the
collision model, crucial for a correct evaluation of a collision.

4.2.1 URDF

The URDF model for the robot contains all of the major links and all moving
joints of the cell. The code for the external axes and the extruder have
been written by us, while the GP88 robot body has been taken from the
ROS-Industrial project [13]. ROS is able to export the URDF file as a graph,
which clearly shows the relationships between all of the links. Due to it’s size,
the graph is included as an appendix. Figure 4.3 depicts the most important
coordinate systems overlaid over the robot model.

Figure 4.3: Coordinate systems of the robot - Axes x,y and z are colored red,
green and blure respectively. The world coordinate system tool1 is located
in the middle of the table. From there a serial chain follows (depicted by the
arrows) through the external axes, the robot itself all the way to the extruder
tip (tool0e). Each robot link has it’s own coordinate system.

33

.................................... 4.2. Robot kinematic model

Matrix description

Using transformation matrices (Eq. 2.8), the kinematic model can be de-
scribed by the matrix chain:

Tt1,t0e = Tt1,cTc,bbTbb,bTb,sTs,rblTrbl,1sT1s,2l

T2l,3uT3u,4rT4r,5bT5b,6tT6t,t0Tt0,t0e , (4.5)

where:

Tt1,c = Tϕz(q1)Tz(−l1)Tx(−l2) T2l,3u = Tz(l9)Tϕy(q6)
Tc,bb = Tz(q2)Tx(l3) T3u,4r = Tz(l10)Tϕx(q7)
Tbb,b = Tx(l4) T4r,5b = Tx(l11)Tϕy(q8)
Tb,s = Tϕx(π)Tx(q3)Tz(l5) T5b,6t = Tx(l12)Tϕx(q9)
Ts,rbl = Tz(l6)Tϕz(π

2) T6t,t0 = Tϕx(π)Tϕy(π
2)

Trbl,1s = Tz(l7)Tϕz(q4) Tt0,t0e = Tz(l13)Tx(l14)Tϕy(−π
2)

T1s,2l = Tx(l8)Tϕy(q5) .

The parameters li are the distances between coordinate systems and can be
find out from the robot geometry and construction.

It has to be mentioned, that the model built might seem non-intuitive. An
obvious approach would be to fix the base of the cell and make it correspond
with the world coordinate system. Then you’d have two branches: one
leading to the rotating table and the other to the extruder through all
of the remaining links. This configuration is unfortunately not possible,
because MoveIt! supports only simple serial chains, or branches that move
independently from each other. Our robot unfortunately doesn’t fulfill this
criterion, but by fixing the table and letting the whole cell rotate we can work
around it. For practical application we’ll simply reverse the rotation of the
table calculated during planning.

4.2.2 Collision model

As already mentioned, MoveIt! is capable of checking collision. To facilitate
this, the links in the URDF file must be assigned a collision body. It can
be the same shape as the visual body, but usually it’s slightly larger and
simplified. This is because collision checking is a time-consuming process
which greatly increases with the amount of triangles in the mesh. Also, by
making the body larger, we are creating a small safety margin around the
robot. This is important especially when there are cables and hoses attached
to the robot body. Figure 4.4 depicts the visual model used, while 4.5 shows
the collision model. We can see that some of the links remain the same,
but the robot body has been simplified and wrapped in a coarse mesh with
reduced number of triangles.

34

.................................... 4.2. Robot kinematic model

tank

table

table_
leg

fram
e_

base

colum
n

beam
_

base

beam

stand

robot_
base_

link

robot_
link_

1_
s

robot_
link_

2_
l

robot_
link_

3_
u

robot_
link_

4_
r

robot_
link_

5_
b

robot_
link_

6_
t

extruder_
body

extruder_
tip

botka

tank
table

table_leg
frame_base

column
beam_base

beam
stand

robot_base_link
robot_link_1_s
robot_link_2_l
robot_link_3_u
robot_link_4_r
robot_link_5_b
robot_link_6_t
extruder_body
extruder_tip

botka

Table 4.1: Allowed Collision Matrix - Orange entries mark that a collision is
not possible, because the links are neighbouring each other. Red entries mark
link pairs that can’t possibly collide, due to geometrical constraints of the robot.
Black marks identity and white entries are all of the link pairs, where collision is
possible and, therefore need to be included in collision checking.

Overall, the model is relatively crude and not very faithful to the real
construction. This is because at the beginning of the project, no detailed
model was available. Nowadays, the model exists, but replacing the current
simple meshes with a complex realistic model is a very time-consuming process,
which has actually very little impact on the workings of the planning software.
The model has been taken from Mr. Horný’s thesis [25], but, even though
it looks mostly the same, the URDF and SRDF files have been completely
reworked for more clarity and ease of modification.

Table 4.1 shows the Allowed Collision Matrix, i.e. the pairs of links, between
which collision won’t be checked. This matrix has been implemented in the
SRDF file. Orange cells correspond to adjacent links and red to pairs of links,
whose collision is not possible, due to geometric constraints. The diagonal is
blacked out, because a collision of a link with itself is not possible (all of the
links are rigid). White cells signify that no assumption can be made about
that pair of links and they have to be checked for collision.

35

...............................4.3. Optimization criteria and constraints

Figure 4.4: Robot visualization model - The robot visualization model depicts
the real robot cell, albeit in a slightly simplified manner. The flat grey block is
the base, the tall one is the column. The tank (pink) rests on the table. The
yellow block is the moving column. The robot body is colored dark blue and is
detailed, showing cables and hoses installed on the robot. The extruder (dark
green) has a welding shoe (light green) mounted. Both are depicted, again, in
detail.

4.3 Optimization criteria and constraints

To construct a cost function we need to define all of the individual criteria,
that form the cost function. Main goal when choosing the criteria was to get
a collision-free, smooth movement of the robot, that wouldn’t switch between
configurations, get in positions with low dexterity or close to singular positions
and with no sharp changes in the joint velocities, as a result. If possible, we
attempted to construct all of the criteria using smooth, continuous functions,
with the hope that this would make the numerical derivations simpler and
more reliable to calculate. All of them are used during weld planning, but
only a subset during weld approach.

36

...............................4.3. Optimization criteria and constraints

Figure 4.5: Robot collision model - The robot collision model is not nearly as
detailed as the visualization model. While the tank, frame, column and beam
look the same, the robot body is made up of a coarse mesh, wrapping the detailed
visualization model. The extruder as well as the welding shoe are also wrapped
in primitives, that are slightly larger, giving us a collision safety margin.

4.3.1 Collision criterion

Even if the robot is not in collision during simulation, it can’t be guaranteed
that this same will apply during real movements. If the distance to collision
is let too small, imperfections in positioning or hanging cables and other
appliance could cause a collision. That’s why we want to create a safety
margin around the robot. Using MoveIt!, it’s simple to calculate the closest
distance to collision, which we can input into a penalization function. This
function can have various shapes, but needs to fulfill two requirements: it
needs to be continuous and smooth (to avoid problems with non-existing
derivations) and it’s value has to decrease rapidly the further the robot is
from collision.

For this use we’ve applied two functions. They can be used not only with
the collision criterion, but in other criteria as well. The first function is a

37

...............................4.3. Optimization criteria and constraints

simple decadic logarithm with additional parameters:

cc(x) =
{
a log10(b+x)

c , if not in collision,
wcollision, if in collision.

(4.6)

where a, b and c are configurable parameters, wcollision is the penalization
value in case of collision and x is the collision distance. The second function
is a logistic function (Fig. 4.7) [16]:

cc(x) = Ll

1 + exp(kl(x−mu)) + Lu

1 + exp(−ku(x−mu)) , (4.7)

where Ll and Lu are the saturation values, ml and mu the center points of
the transition curves and kl and ku the slopes of the transition curves.

Figure 4.6: Logistic function (Eq. 4.7) - Here, Ll = Lu = 100, ml = −1, mu = 1
and kl = ku = 20. The function doesn’t have be symmetrical, but it’s the variant
that we used the most.

4.3.2 Dexterity criterion

The importance of a good dexterity has been explained in Section 2.4. That’s
why we’ve included a dexterity criterion in the optimization problem. In our
case, the Jacobi matrix is a 6 × 9 matrix. While the SVD decomposition
doesn’t require a square matrix, we need to consider the different units mixed
together in the matrix: depending on the type of input and output velocities,
m
m , m

rad , rad
rad and rad

m occur, with the matrix composition being:

m
s
m
s
m
s

rad
s

rad
s

rad
s

=

[

m
rad

]
3×1

[
m
m

]
3×2

[
m

rad

]
3×6[

rad
rad

]
3×1

[
rad
m

]
3×2

[
rad
rad

]
3×6

rad
s
m
s
m
s

rad
s

rad
s

rad
s

rad
s

rad
s

rad
s

. (4.8)

38

...............................4.3. Optimization criteria and constraints

Soft joint limits
Joint q1 q2 q3 q4 q5 q6 q7 q8 q9

[◦] [m] [m] [◦] [◦] [◦] [◦] [◦] [◦]
Lower limit −∞ −0.75 −0.75 −90 −90 0 −90 −125 −180
Upper limit ∞ 0 1.5 90 155 90 90 0 180

Table 4.2: Soft joint limits

For convenience, the first three columns are shifted to the back, resulting
in:

J =

[

m
rad

]
3×7

[
m
m

]
3×2[

rad
rad

]
3×7

[
rad
m

]
3×2

 =
[

[JT] [JP]
[JR] [∅]

]
. (4.9)

Entries with rad
m have been omitted, because the movement of the trans-

lational external axes has no effect on the rotation of the end effector. The
remaining have been concatenated to matrices JT,JP and JR.

Using SVD decomposition we compute the three condition numbers, corre-
sponding to JT,JP and JR. Using an inverse logarithm, we can penalize very
low dexterity values, while the influence of higher values will be negligible.
The criterion is included three times (for each of the matrices), in the form:

cdex(q) = − log
(1

cond(J)

)
= log(cond(J)) . (4.10)

This criterion has been introduced already in [25] and has remained largely
unchanged.

4.3.3 Joint limits criterion

All of the axes of the robot, except for the turntable, have physical limits
(Tab. 3.1 and 3.2). These limits are present in the optimization problem (Eq.
2.2) as bounds on the parameters. But during planning, we want to maintain
the joint coordinates within smaller bounds, to discourage the planner from
choosing awkward robot configurations and change between them. The change
between configurations usually leads through a singularity, which we, too,
want to avoid. Therefore, we’ve defined reduced joint limits, called soft joint
limits and applied a penalization cost function on them. This is the criterion,
where we originally used the Logistic function 4.7. The penalization is soft,
meaning the robot is allowed to overstep these limits, if necessary, but we
discourage it using this criterion.

The cost function is a sum of all the penalization functions

cj(q) = wj

9∑
i=1

Ll

1 + exp(kl(qi −mu)) + Lu

1 + exp(−ku(qi −mu)) . (4.11)

The meaning of the parameters is the same as in Eq. 4.7, only here, qi are the
joint coordinates. This criterion is not present in the weld approach planning
using OMPL.

39

...............................4.3. Optimization criteria and constraints

4.3.4 Region I criterion

When the robot is welding, it could position itself in two configurations,
as visible on Figure 4.7: the „default” depicted configuration (region I) or
with its arm „behind its back” (region II). Again, we want to discourage
the awkward configuration II, thus we implemented a criterion (crI), that
„pushes” the robot away from the dividing line between regions I and II.

The distance d is calculated using MoveIt! functions. If d > 0, we consider
the robot to be in configuration I. The distance is then input in the logistical
function 4.7, to increase the cost of configurations close to the dividing line.

crI(d) = Ll

1 + exp(kl(d−mu)) , (4.12)

with the parameters meaning equal to Eq. 4.7.

Figure 4.7: Configurations I, II and III (original picture from [22]) - Region I is
colored in red, region II in green and region III in grey. The thick dividing line
goes through the axis of the first joint and separates the three regions.

This criterion is not present in the weld approach planning using OMPL.

40

...............................4.3. Optimization criteria and constraints

4.3.5 Velocity criterion

As of now, the planning doesn’t consider time at all. The path is just a
sequence of positions without any time stamps. We know, how fast is the
extruder tip supposed to be moving, but we lack any frame of reference
regarding the joint velocities. This could pose problems during welding, if any
of the joints are supposed (based on the planning results) to move faster than
their maximal allowed velocity. Therefore we need to implement a criterion,
that will keep the joint velocities in check. A simple formulation has been
devised in the form:

cv(qi,qi−1) = w0

9∑
j=1

wj
|q̇j |
q̇jmax

, (4.13)

where q̇j are joint velocities, wj the weights and q̇jmax the maximal joint
velocities. Joint velocities are computed as:

q̇j = qj,i − qj,i−1 , (4.14)

where qji and qj,i−1 are joint coordinates in the current (i) and previous (i−1)
point.

After further experimenting we formulated two alternative versions, how to
(approximately) compute the joint velocities. One is based on the knowledge of
distance between two weld points and the prescribed velocity of the extruder
tip (given in G-Code). With these two, we can calculate the time spent
moving between two points as:

t = l

v
, (4.15)

where l is the distance between two points and v is the velocity. From there
we can compute the joint velocities as

q̇ = qi − qi−1
t

(4.16)

and proceed as before with Eq. 4.13.
The second alternative involves using the Jacobi matrix. We know from

Eq. 2.12 that the Jacobi matrix serves as a operator between joint velocities
and the end effector velocities. Because we don’t have any information about
the angular velocities (yet), we’ll use only the translational part of the matrix.
Using a pseudoinverse we obtain

q̇ = J+v̇ , (4.17)

where v̇ is the translational velocity vector between the points i and i− 1.
We again proceed further with Eq. 4.13.

This criterion is not present in the weld approach planning using OMPL.

41

...............................4.3. Optimization criteria and constraints

4.3.6 Previous point distance criterion

In order to eliminate sudden, fast moves, we’ve included another criterion,
similar to the velocity criterion. This one tries to minimize the difference
between the current and previous configuration and takes the form

cpp(qi,qi−1) = w||qi − qi−1|| . (4.18)

where qi,qi−1 are joint coordinates in the current and previous step. This
criterion is not present in the weld approach planning using OMPL.

4.3.7 Distance to goal criterion

One of the criteria established in [25] was a distance to goal criterion. It
seeks to minimize the translational and rotational error between the extruder
and the goal coordinate systems. It consists of two parts: the translational
criterion [25]:

cd =
√

(rex − rgx)2 + (rey − rgy)2 + (rez − rgz)2 , (4.19)

where rex , rey and rez are the extruder tip coordinates, rgx , rgy and rgz are
the goal pose coordinates. The second is the rotational criterion, which is
calculated from the quaternion of relative rotation between the extruder (qe)
and the goal (qg) [25]:

q̂rel = q̂gq̂−1
e . (4.20)

Using Eigen, the quaternion is transformed to an Angle-Axis rotation descrip-
tion and the angle is extracted.

While this criterion might seem sensible at first, it actually doesn’t provide
anything useful. Due to the analytical inverse kinematics for the robot arm,
if a solution exists, it’ll be returned exactly and the extruder and goal Poses
will match. That’s why we ended up disabling this criterion in weld planning.
In weld approach planning, the criterion is still present, but it’s debatable,
how relevant it is.

4.3.8 No inverse kinematics solution criterion

Looking at the algorithm in Fig. 3.11, the optimizer will choose a set of
parameters (positions of the external axes) and then the IKT solver will
attempt to solve the for the remaining six joints, to reach the goal Pose. It is
therefore possible, that the optimizer might input such positions, that the IKT
problem won’t have any solutions. In that case, we need to penalize the cost
function, as to indicate that such combination of parameters is unacceptable.
In the case that no IKT solution is found, we will return a large cost value
(wno ikt) and all other criteria won’t be computed.

cikt =
{

0, if IKT solution found,
wno ikt, if no IKT solution found. (4.21)

42

.......................................4.4. Inverse kinematics

4.3.9 Weighted sum

Before returning the cost value, all of the criteria (ci) are summed in a weighted
sum. The weights (wi) allow us to find a balance of importance between the
criteria, to scale them to the same magnitude and solve discrepancies in units:

c =
∑

i

wici . (4.22)

4.4 Inverse kinematics

The implementation of the IKT solver considers only solutions in the interval
< −π, π > for the joints r4 and r6. But in reality, the joints are able to
rotate full 360◦ (see Tab. 3.1). This expands the solution set, as we can
modify each solution by

rII
4 = rI

4 + π

rII
5 = −rI

5

rII
6 = rI

6 + π

(4.23)

and double the amount of available solutions. The idea to extend the solution
set comes from a discussion with Matěj Vetchý, whose Bachelor Thesis also
concerned itself with optimal planning of a redundant robot [33].

43

Chapter 5
Implementation

Until now, we’ve tried to explain the principles and methods used in this
project. Here, we’ll focus on the implementation aspect, going over the entire
source code, explaining the thought process and the internal workings of the
software.

5.1 Workspace composition

Projects in ROS are generally contained in a workspace, which is created by
the ROS build system, catkin. Here, packages are being created by the user
and catkin is responsible for handling the source code, libraries, compilers
and all other dependencies. A package can contain multiple nodes, libraries,
configuration files, message definitions and more. Catkin integrates tightly
with CMake and each package needs a CMakeLists.txt file, declaring all the
compilation targets, libraries, etc [1].

Our project consists of four packages: cell and cell_description contain
the robot model description. gcode_parser handles the G-Code parsing,
visualizing and publishing. It also contains launch files that are used to
run the software. The source code for the planner is located in the package
planner. It also contains the plotting nodes used for graphing the progress
and result of the optimization.

5.2 Running the planner

In an ideal case, the engineer operating the software shouldn’t need to do
any major changes before running the planner. It might be only necessary
to correctly set the path to the input file containing the G-Code and the 3D
model of the tank. After that, the user only has to navigate to the root folder
of the workspace and run

Listing 5.1: Run static part of the planner
source devel/setup.bash
roslaunch gcode_parser no_debug.launch

in one terminal and

44

.................................... 5.3. Robot model description

Listing 5.2: Run dynamic part of the planner
source devel/setup.bash
roslaunch gcode_parser debug.launch

in another. The first command is common and is used to load the ROS-
specific commands to be recognized by the shell. The second command runs
all the commands in the respective launch files. The difference is that the
command in 5.1 runs those nodes and loads that configuration, which is
static, i.e. doesn’t depend on the configuration nor the status of the planner
and can therefore remain running during any number of runs of the planner
itself. In contrast, the command in 5.2 runs the nodes that need to be re-run
every time for the planning and loads the configuration that can change with
every run of the planner. This rule of two separate launch files applies for
debugging as well, which is symbolized in the filenames.

5.3 Robot model description

Most of the files contained in cell and cell_description have been generated by
MoveIt! Setup Assisstant at the beginning of the project during Ing. Horný’s
Master Thesis [25]. In cell_description we’ll find the URDF files fo the robot
model and the STL meshes. cell contains the SRDF file and a lot of YAML
configuration and launch files. Some of the files were used in older versions of
the project, such as kinematics.yaml, which was used with an older version
of the inverse kinematics solver. Other files remained unchanged as they were
generated by MoveIt!. Relevant launch files are being called during startup
to run all of the nodes and load all the parameters required by MoveIt!

5.3.1 URDF

Originally, in [25], the entire model was contained in one file, but for clarity, the
it has now been split into multiple parts. The main file, cell.urdf.xacro con-
tains the external axes and the extruder and links to the file gp88_macro.xacro
containing the model of GP88. This file has been taken from the ROS-
Industrial project [13], to provide a degree of unification in the description.

A supplemental file, links_joints.urdf.xacro exists as well. It contains
macros written in the Xacro language. The macros written in this language
allow for reusability and configuration of URDF components. It also helps to
reduce duplicity and improve readability [20]. In this project the macros are
of little relevance and could possibly be removed to streamline the code.

The main URDF file is split into four distinct parts: Table, Frame, GP88
and Tools. Each part starts with the links and the relevant joints follow.
Joints can be either fixed or movable (continuous, revolute, prismatic). Here,
the joint limits have to be set properly, otherwise MoveIt! could be unable
to execute the desired movement. Joints always have a parent and a child
link, i.e. the model has to begin and end with a link. Here they are tool1
and tool0e respectively. The joint naming convention, for clarity, follows the

45

.................................... 5.3. Robot model description

scheme of <parent link name>_<child link name>. All of the links have
a visual and collision geometry. The external axes and frame are constructed
from primitives (box, cylinder), just the GP88 and the extruder have detailed
STL meshes. In the future, the primitives will be replaced by meshes of the
real robot cell frame as well, but this hasn’t been a priority, since this change
only affects the visual part and does little do further the progress on the
planner itself.

What’s more relevant though is to update the old extruder model with
unidirectional heater nozzle to the new model with concentric model. This
would be a significant change for the planning process, but unfortunately,
hasn’t been completed in time for this Thesis. Another improvement that
would be beneficial is to remove the tank from the URDF. As of right now,
the tank is a link in the robot model, which doesn’t represent the reality
well. More so, to change the tank, the URDF has to be edited to load the
desired mesh, which is also not desirable from the perspective of the end user,
who shouldn’t edit any files not explicitly allowed. Instead, the tank should
be loaded directly from the code as a collision model in the environment.
This has the added benefit that the mesh can be changed without needing to
shutdown and rerun the whole software.

5.3.2 SRDF

Correctly setting up the SRDF file is of high importance, as without it,
MoveIt! won’t be able to correctly identify joints and links belonging to a
group and move them. While this file (cell.srdf) too, has been initially
generated by MoveIt!, it has since then been completely rewritten. The first
part of the file contains JointGroup definitions. We’re using two groups: all,
containing all of the robot cell joints and robot_arm, containing only the
GP88 joints. This distinction has been made due to the two different methods
used during planning of weld approach and weld moves. This way, we can
separately move the GP88, whose configuration is being calculated using the
IKT solver. A third group, end_effector is present as well, but it’s existence
is mostly formal: It groups together the links belonging to the extruder and
is not in any way used during planning.

The SRDF file also defines the end effector. Here it is the tool0e frame,
positioned at the tip of the extruder.

Another important part is the disabling of collision checking between links.
This part corresponds to the Table 4.1, only in written form.

Lastly, the SRDF file defines home positions of the robot (a set of joint
coordinates for a particluar group) and virtual joints, connecting the robot
to the global, world coordinate frame. These settings are mentioned only for
completeness and their relevance in this project is marginal.

46

.. 5.4. G-Code Parser

5.4 G-Code Parser

The idea and reasons behind the G-Code parser have already been explained
in section 3.2.2. Outside of the parser itself, the package also contains launch
files for the whole project. After parsing, the G-Code can be visualized in
RViz, where every pose will be displayed as a small coordinate system and a
simplified extruder model will move along the path. This has proven to be
very useful when verifying that the G-Code has been parsed correctly. We’ve
also added the option of exporting the G-Code to a CSV file An example of
a parsed G-Code is shown in Fig. 5.1.

Figure 5.1: Visualizing the G-Code - The two joined parallel cylinders form the
simplified extruder. The thinner cylinder is the preheat nozzle, the thicker the
extruder nozzle. The weld points, parsed from the G-Code are shown as small
coordinate systems (x, y and z axes colored in red, green and blue respectively).
The partially opaque pink block is the tank, with the large axes depicting the
world coordinate system. Yellow arrows point in the direction of welding.

5.4.1 Usage and configuration

We tried to separate the parser node (gcode_parser.cpp) from the parser
class (libgcode_parser.cpp) itself, which is instantiated and its members
and methods are called. This leaves us with a fairly simple code for the node,
which consists mostly of evaluating various configuration parameters and the
calling the relevant methods or setting variables. The parameters are loaded
from the gcode_parser.yaml file:
world_coord_system Coordinate system used for visualization of the G-

Code.

47

.. 5.4. G-Code Parser

visual_markers_topic Name of the ROS topic, where the G-Code visual-
ization will be published.

interpolate_step If set to greater than one, the line between two points
from the G-Code will be linearly interpolated with the amount of points
given.

interpolate_g00_select If set to yes, also the lines between G01 points
will be interpolated.

sixth_rot_select Sets if the computation of the sixth rotation will be
performed on the interpolated or original data.

end_effector_coord_system Name of the coordinate system representing
the simplified extruder.

end_effector_topic_rate The frequency at which is the simplified extruder
moved along the parsed G-Code path.

visualize_welding_traj Takes true or false to enable or disable the
visualization of parsed G-Code.

save_select Selects, which parsed data will be saved to the CSV file. The
possible options are: original_no_rot, original_6th_rot, interpolated_no_rot
and interpolated_6th_rot.

csv_export_file_path Path, where the CSV file should be created.

Another YAML file is present, libgcode_parser.yaml, concerned with the
configuration of the parser class itself:

angle_units Sets, if the angle units in the G-Code should be interpreted as
radians (rad) or degrees (deg).

rotation_description Sets, which type of rotation description should be
used when interpreting the G-Code rotations. Currently, only Roll-Pitch-
Yaw (rpy) is implemented.

rotation_axes_labels Takes an array of characters representing the rota-
tions in G-Code. Most common variations are either A B C or I J K for
the three angles. Lowercase variants need to be specified as well.

Other configuration files in the package bear little significance and are
mostly remnants of older, abandoned or reworked functions. The parser node
could be run independently, provided that the relevant YAML files are loaded
to the parameter server. This, however serves little purpose.

After loading all of the parameters, the parser node will create an instance
of the GCodeParser class, calling the method load() with the argument
being the path to the G-Code file to be parsed. Following is a call to the
search() method, which will perform the parsing itself. With the parsing
complete, it’s possible to compute the missing sixth rotation (Section 4.1),

48

.. 5.4. G-Code Parser

using add6thRotation() and interpolate the data with interpolate(). The
order of these two methods depends on the setting of the sixth_rot_select
parameter.

With these methods, the parsing is finished. What follows are calls to
export the parsed data to a CSV file (saveToCSV()) and a ROS service,
named weld_data is advertised. When a request arrives to this service, the
response will contain a structure with the parsed data.

Lastly, the parsed G-Code is visualized: all of the poses as small coordinate
systems, with arrows between them showing the direction of movement. Then
the movement is visualized, with the simplified extruder moving from one
point to the next. This is done by repeatedly transforming the coordinate
system of the simplified extruder to the pose of the next parsed point with a
frequency set by the end_effector_topic_rate parameter.

Launch files

The parser node contains two critical launch files, used in running the whole
planning software. The reasoning and their function have been explained in
Section 5.2.

The short no_debug.launch mainly calls other launch files, created by
MoveIt!, that set up all of the required nodes and parameters required. The
URDF robot description is also loaded through them. The URDF robot model
for the simplified extruder is also loaded here. The only relevant parameter,
that could be meaningfully changed, is use_gui. Setting it to true opens a
window with sliders for each robot joint, allowing manual control over the
joint position, while the changes are displayed in RViz. This setting is useful
to verify that the URDF model is correct (e.g. after a change) and all joints
are moving as supposed. In normal operation it remains set to false.

Before the graph plotter nodes have been created, this launch file also ran
a oscilloscope-style plotting node, called PlotJuggler. It subscribed to topics
with the values of the optimization criteria and displayed their evolution. It
has proved to be quite unwieldy, but if a need to use it arises, a PlotJuggler
configuration has to be loaded after the debug.launch has been launched,
but before the planning itself started. Otherwise all of the topics need to be
resubscribed to.

The more relevant launch file is debug.launch. It launches the parser,
planner and plotter nodes themselves, as well as loads all of the YAML
configuration files. In case the user doesn’t want to run the planner, it’s
possible to set the argument only_parse to true. A node, that’s currently
not in use, but could possibly be useful, is rosbag. It records and saves all of
the messages published on selected topics and allows them to be replayed at
a later time. The issue with using rosbag is that the files rapidly gain in size
(up to lower GBs) and easily fill up the hard drive.

49

.. 5.4. G-Code Parser

5.4.2 G-Code Parser Class

The development of the GCodeParser class was done while attempting to ad-
here to OOP(Object-oriented programming) principles. If this has succeeded
is up for discussion.

Definition of the class and it’s members is contained in the file libgcode_parser.hpp.
Outside of the methods called in the parser node itself, exposed to external use
are enums for various configuration parameters (these are mostly superfluous
and could be removed to streamline the class) and a data structure definition
for the parsed data. This struct consists of three vectors, one for poses, one
for velocity and one for the weld movement type (named command). Elements
with the same index in the vectors correspond to the same line in the G-Code.

Under the private keyword we will find all of the remaining methods,
as well as other member variables. Noteworthy is parsing_data_buffer, a
vector of strings, where each element (string) contains one line of the unparsed
G-Code file. The member variable global_coordinates_iterator keeps
track of the last line number parsed. Since G-Code is usually written using
millimeters as units, but ROS uses meters, the constant SI_conversion
provides the unit conversion.

When instantiated, the class will load all of the configuration parameters
from the parameter server and is ready to use. With the method load(),
the file is read and line after line assigned to parsing_data_buffer. Calling
search() will begin the parsing process. In a for cycle, the line is first pro-
cessed by the method findGCommand and after that by findPointCoordinates.

All of the parsing in the Class is based on Regular expressions (Regex).
Used by search-and-replace algorithm, a string is searched for sequences
matching a given pattern [18]. For the G-Code, separated patterns have been
created for parsing the G-Code command, the coordinates and the velocity.

In findGCommand a pattern is applied to recognize the G-Code command.
The string is stripped of the letter G and converted to an integer. For each
recognized command, a method has been created, which is selected by a
switch-case block, based on the integer. There are multiple recognized
G-Code commands, but the only ones currently relevant are G01 and G00.
Other commands, such as G68.2 have been used in a specific, older G-Code
version, which is not used anymore.

The structure of the methods G00() and G01 is almost identical and very
similar to the method findPointCoordinates, so they’ll be explained to-
gether. The latter method parses lines, where no G-Code command is present,
only the coordinates. In that case it is assumed, that the command re-
mains the same as on the previous line. The match pattern in all three
cases is similar, with six capture groups, which allow us to reference the
found coordinates later on. A separate pattern is used for finding the ve-
locity as well. The found coordinates, still in string form, are passed to
the coordinatesFromRegexMatches() method, to be transformed to a Pose
data type. The same applies for the velocity as well, but only for the G01
command. For now, it is assumed, that the movement during weld approach
(G00) is not limited by a maximal velocity.

50

... 5.5. Planner

The method coordinatesFromRegexMatches() simply goes through all of
the strings with coordinates and extracts the value based on the first character.
Translation is directly assigned to a variable of the type geometry_msgs::Pose,
but the rotation first needs to be converted from RPY description to a quater-
nion. This entire Pose variable, containing the position and rotation of
the coordinate system at a given path point is then returned. In case any
coordinate is missing, it is assumed, that it’s value is the same as on the
previous line.

By arriving at the last line, the parsing is complete and the parsed data
can be received by calling getParsedData().

Additionally, with the method interpolate(), interpolation can be applied
on the data. Translation is interpolated linearly and rotation using Slerp
(Spherical linear interpolation). The difference is that quaterion rotations are
interpolated on an arc, instead of a line, giving more accurate results [19].

5.5 Planner

Central to the planning software is the planner package. It consists of a
complete_weld node, multiple libraries (ikt6.h) and C++ classes (OmplPlanner.hpp,
CeresOpt.hpp), various configuration files (YAML files with optimization
parameters, IKT configuration, etc.) as well as of two plotting nodes
(optim_plotter.py and joints_plotter.py).

5.5.1 Usage and configuration

The complete_weld node is run from the common launch file, debug.launch,
as it’s closely connected to the other nodes, particularly th G-Code parser.

After startup, the node will send a request on the weld_data service and
wait for the response, containing the parsed data. If the response has been
successful, MoveIt! objects will be initialized, the most important being:
RobotStatePtr (named kinematic_state, contains information about the cur-
rent state of the robot), two JointGroups (robot_arm_joint_model_group
and all_joint_model_group) and a PlanningSceneMonitor (responsible for
managing the planning environment, handling collisions, etc. named psm).

Because we want to publish the progress of the planing (the evolution of
the value of the cost function), we need to advertise various topics. There
are various topics, separate ones for each weld approach and for weld move
planning, usually one for each optimization criterion. These are mostly for
legacy reasons (PlotJuggler compatibility) and a single topic (optim/compact)
has been created, which accumulates all of the criteria values and publishes
them at once. A separate topic also publishes the resulting joint positions,
i.e. the result of the planning. The initialization of the topics is done here,
because a named node is needed to publish topics. The planning libraries
themselves don’t have node status (they are only called from the planner
node, not run separately), thus they can’t advertise topics. A user prompt

51

... 5.5. Planner

has been setup here to allow PlotJuggler to subscribe to all of the advertised
topics before planning starts.

Last set-up needed before planning can begin, is the instantiation of the
classes themselves (CeresOpt and OmplPlanner) with all of the necessary ar-
guments (kinematic_state, both JointGroups and PlanningSceneMonitor).
Then, the starting position is set, from the parameter start_position and
planning can begin by calling the pointByPointPlanning() function.

All of the configuration parameters are contained in YAML files common_setup.yaml,
optim_config.yaml, Ceres_optim_config.yaml, OMPL_optim_config.yaml
and robot_ikt_config.ikt.

The file containing the most used parameters is common_setup.yaml

gcode_file_path Absolute path to the G-Code file to be loaded and parsed

display_select Takes the same arguments as save_select in gcode_paser.yaml
selecting which parsed data will be displayed in RViz.

export_select Takes the same arguments as save_select in gcode_paser.yaml
selecting which parsed data will be sent to the planner.

start_position A vector of initial joint coordinates.

Configuration parameters relevant to both weld approach move and weld
move planning are contained in optim_config.yaml

joint_limits_lower A vector of lower joint limits.

joint_limits_upper A vector of upper joint limits.

soft_joint_limits_lower A vector of lower soft joint limits.

soft_joint_limits_lower A vector of upper soft joint limits.

v_limits A vector of joint velocity limits.

Parameters pertaining to weld move planning (Ceres) are gathered in
Ceres_optim_config.yaml

Ceres_opt_w A dictionary of {key:value} pairs containing optimization
criteria weights.

trans_dex Weight for the JT part of the dexterity criterion.
rot_dex Weight for the JR part of the dexterity criterion.
prism_dex Weight for the JP part of the dexterity criterion.
region_I_boundary Weight for the region I criterion.
velocity Weight w0for the velocity criterion.
prev_p_dist Weight for the previous point distance criterion.
joint_limits Weight for the soft joint limits criterion.
collision_k Parameter k in the logistic function (Eq. 4.7) for the

collision distance criterion.

52

..5.6. Planning a weld

collision_dist_margin Parameter m and b in the logistic function (Eq.
4.7) and the logarithm function (Eq. 4.6) for the collision distance
criterion respectively.

collision_dist_div Parameter c in the logarithm function (Eq. 4.6)
for the collision distance criterion.

in_collision Penalization value to be returned for when the robot is
in collision.

no_ik_solution Penalization value to be returned for when no IKT
solution has been found.

Ceres_v_limits_joints_w A vector of weights wi in the velocity criterion.

Ceres_mul The mul constant used for scaling the optimization parameters.

Ceres_soft_joint_limits_function By choosing either sig or log we set
the logistic function (Eq. 4.7) or the logarithm function (Eq. 4.6) to be
used in the soft joint limist criterion.

Ceres_joint_vel_comp_method By choosing either jac, dist_t or dist
we choose which method for computing joint velocities will be used.

Ceres_planner_float_options A dictionary with settings for the optimizer

max_iter Maximal number of iterations allowed for the solver.
step_size Initial step size used in the Trust region algorithm (Alg. 2).
initial_trust_region_radius Initial size of µ in the Trust region

algorithm (Alg. 2).

Ceres_soft_joint_limits_param A dictionary of the parameters Ll, Lu,
kl and ku for the soft joint limis criterion.

5.6 Planning a weld

As already mentioned, two distinct types of moves occur during planning
(weld approach and weld move) with the chosen planning methods being
applied. The function pointByPointPlanning() iterates through all of the
weld points in a for cycle and based on the G-Code command calls a
corresponding planning method (OmplPlanner for G00 and CeresOpt for
G01). After finishing, the results (joint coordinates) are retreived and stored
in a common RobotTrajectory structure and the starting joint coordinates
are updated. This provides the planner with a initial position, that should
ideally be close to the one being solved.

It needs to be said, that much more effort has been put in the weld move
planning with Ceres, compared to the weld approach move. This resulted in
not all functionalities and criteria being implemented within weld approach
planning. Some parts of the code also remained as they were written in [25].

53

..5.6. Planning a weld

5.6.1 Optimization criteria and constraints

There’s a slight difference between the approach used during weld approach
move planning and weld move. With OMPL (using RRT), each state is
checked for validity. If a collision occurs, the state is not admitted at all.
Meanwhile, planning with Ceres doesn’t have this functionality, so we have to
use different means, such as returning an extremely high cost (penalization).

It also has to to be differentiated between checking for constraints, i.e.
collision and between a criterion (applicable only when not in collision), that
tries to push the robot away from collision.

During weld move planning (Ceres), we are using all of the criteria (Section
4.3), except for the Distance to goal criterion. Meanwhile, during weld
approach planning (OMPL), we’re using only the Collision criterion, Dexterity
criterion, Soft joint limits criterion and the Distance to goal criterion. It is
also possible to plan the weld approach move completely without any criteria,
using bare RRT.

Collision criterion

For weld move planning, the criterion was tried in both variants. With
the logarithm (Eq. 4.6), the parameters b, c correspond to the parameters
Ceres_opt_w.collision_dist_margin and Ceres_opt_w.collision_dist_div
respectively. The parameter a (in code named collision_coeff) is calcu-
lated as

a=-in_collision / (log10(collision_dist_margin) /
collision_dist_div);

with the idea being following: We want the function to return the same value
as if the robot was already in collision (Ceres_opt_w.in_collision) when
the distance drops under a set safety margin (Ceres_opt_w.collision_dist_margin).
This will give us if not smooth, but at least continuous function.

With the logistic function, we used only the descending half of Eq. 4.7, with
the parameters Ll, kl, ml corresponding to Ceres_opt_w.in_collision,
Ceres_opt_w.collision_k and Ceres_opt_w.collision_dist_margin re-
spectively.

For weld approach move, an older, simpler version of Eq. 4.6 was used, with
only the parameter a being equal to negative of OMPL_opt_w.collision_dist_mult
and b, c equal to zero and one respectively.

Region I distance criterion

The distance to the Region I/II dividing line is computed using MoveIt!. We
set the robot to the position given by the joint coordinates and query for two
transformations: one from the world coordinate system tool1 to the first link
robot_link_1_s (Tt1,1s) and the second one again from the world coordinate
system tool1 to the fifth link robot_link_5_b (Tt1,5b). Using inversion we

54

..5.6. Planning a weld

find the transformation between robot_link_1_s and robot_link_5_b:

T1s,5b = Tt1,1s
−1Tt1,5b (5.1)

and take the x value as the distance d.

No inverse kinematics solution criterion

As mentioned in Section 4.3.8, it is possible that no IKT solution will be
found for a given goal pose and a triplet of optimization parameters. We
want the optimization solver to avoid stepping into this region altogether. In
optimization, penalizing unwanted parameter values is a common approach,
especially since Ceres doesn’t support equality constraints, which would
offer a much more elegant approach to this problem. One half-way solution,
proposed by Ceres developers, is to return false from the function evaluating
the criteria. Optimizer interprets this as a evaluation failure and assigns
infinite cost to it [23]. In our experience, both approaches have been about
equally successful.

5.6.2 Weld approach move

Weld approach planning with OMPL follows the outline presented in Sec-
tion 2.1. The method plan() is called with the goal pose and initial joint
coordinates as arguments. First, we create a state space (R9). To the state
space we assign a StateValidityChecker, which we implemented in the class
ValidityChecker. Further, we initialize a ProblemDefinition and assign it
a optimization objective. The objective is, again, a separate class, named
PathObjective, where the criteria will be evaluated and returns the cost
value. Lastly, we define a start state and a goal state. The goal is a class as
well (PathGoalRegion), containing a metric defining the distance to the goal.

If we’re using RRT*, we can start planning. Even though the planner might
find a solution path very quickly, it’s advisable to let the search continue for
longer and let the planner explore the state space, because a more optimal
path might be found.

For RRTConnect, the setup remains mostly the same, with one important
difference: because we’re building a tree from the goal as well, we need to
find a state that corresponds to the goal, i.e. we need to find a IKT solution
for the goal Pose. This is accomplished by the means of a sampling function
(findGoalState()). This function samples the state space in a specific way
to find the goal state. In our case we are simply calling the weld move planner
(Ceres) with only one point in the path: the goal. With the goal state known,
RRTConnect can plan a path.

Regarding the aforementioned classes, ValidityChecker implements only
one method, isValid(), which takes a state as an argument and, using
MoveIt! and the planningSceneMonitor returns true or false based on
whether the state is valid (not in collision) or not (in collision).

The class PathGoalRegion also implements only one method, distanceGoal().
It takes a state as an argument and, using RobotState calculates the pose of

55

..5.6. Planning a weld

the extruder tip. Using the equations 4.19 and 4.20 it calculates the distance
and angle error. Since we need the extruder tip to match not only the goal
position, but also rotation, we need a way to combine these two values, which
have different units. The metric proposed in [25] is

dg = w1cd + w2cr

4 , (5.2)

where cr is the angle from the Angle-Axis rotation description and w1 and
w2 are weights.

Lastly, the class PathObjective implements a method, computeStateCostParts,
where the optimization criteria are calculated. We’re using the dexterity
criterion, distance criterion, the collision criterion and the soft joint limits
criterion, all calculated as explained in Section 4.3. All of the criteria values
are published on their respective topics and a weighted sum is returned as
the cost.

5.6.3 Weld move

In the weld move planning, the core method is named planCeresPath2().
Here a Ceres Problem is initialized and a CostFunction assigned to it. Even
though Ceres strongly suggests using Automatic Differentiation, we’re forced
to use Numeric Differentiation, as the cost function (or function that it calls)
are not templateable [23]. A vector of optimization parameters, named x is
also assigned to the Problem. The vector contains initial joint coordinates for
the three external axes, scaled by a constant mul. This is done to precondition
the problem, as the parameters have different units. A value that has worked
well for us is 10 000.

After setting the parameter bounds and the optimizer options, we run the
solver. The optimizer will call the cost function to evaluate the criteria, which
is done in the CostFunctor2 struct by calling the overloaded operator()().
Here, the criteria are evaluated, similarly as in weld approach planning.
Firstly, the input parameters are scaled by w

mul and with them, an attempt
is made to solve the inverse kinematics. If it’s successful, all of the criteria
are evaluated and summed. Otherwise the criteria are assigned a NAN value
(except for the no inverse kinematics solution criterion) and false is returned
by the function.

The criteria used here are the dexterity criterion, velocity criterion, soft
joint limits criterion, region I distance criterion, previous point distance
criterion and the collision criterion. All of the criteria then are saved and
published to their respective topics.

Inverse kinematics

The Inverse kinematics solver plays a crucial role during the weld planning.
After initialization we pass to it the robot link dimensions, joint zero coordi-
nates offsets, the directions of positive joint rotations and joint limits. This
is done to adjust the coordinate systems of the universal internal kinematic

56

..5.6. Planning a weld

robot model of the IKT solver to the robot model used in our problem.
Because the IKT kinematic robot model doesn’t contain any end effector and
solves the IKT simply between the robot base and the mounting flange, we
need to pass to the solver the transformation matrix between the extruder
tip and the flange. With it, the solver can transform the goal pose to the
flange coordinate system and solve the IKT.

Before attempting to solve the IKT, we need to transform the goal pose
from the global coordinate system of the entire robot cell to the coordinate
system of the robot arm base.

TgT = Tt1−rb
−1Tg0 (5.3)

Where Tt1−rb is a transformation matrix between the global coordinate
system tool1 and the robot_base_link coordinate system. Tg0 is the
untransformed goal pose.

The solver will return a 6× n matrix, where n is the amount of solutions
found. If at least one of them is non-NAN, we continue further. Otherwise a
false is returned.

If there are any non-NAN solutions, we’ll first expand the solution set by
computing the solutions outside of the < −π, π interval for joints r4 and r6
as described in Section 4.4.

In Section 4.3.4 we’ve established that we prefer the configuration of region
I. To avoid the possibility of entering the other regions, we check if d > 0 in
the Region I distance criterion for each solution and leave out those, which
don’t meet this condition. From the remaining solutions we want to pick that
one, which is closest to the solutions of the previous point solved. This is
done by finding the minimum of the norm

||qij − qi−1|| (5.4)

for all j solutions. qi−1 are the joint coordinates of the previous point. The
solution with the smallest norm will be returned as the chosen one.

5.6.4 Visualizing and data export

When the planning of the entire weld path is finished, the complete_weld node
extracts the sequence of joint coordinates and publishes it on two topics: one
visualizes the path of the tip of the end effector in RViz and the other publishes
the joint coordinates sequentially for each point with a given frequency. The
second topic is subscribed to by an MoveIt! object in RViz, which sets the
joints of the visualization model to give the impression of an moving robot.
The whole movement can be replayed, paused and stepped by using the
TrajectorySlider.

The joints_plotter.py node will also subscribe to the first topic and plot a
graph with the joint coordinates over the weld points as well as a text file
with the values and save them to a file.

After each planned weld point a message is published, containing the
evolution of all the criteria and the joint coordinates during a single point

57

..5.6. Planning a weld

optimization. This mesage is read by the optim_plotter.py node, which plots
a graph for each criterion and saves it as an image. It also saves the criteria
values in a text file for possible future use or detailed analysis.

58

Chapter 6
Experimental results

6.1 Bottom outer weld of a rectangular tank

The planning and optimization were tested on a G-Code for welding the floor
to the walls of a rectangular tank (Fig. 6.1). The weld is an outside weld.
During the development of the software we preformed tests with various
settings, modifications and criteria weights. Here we’re presenting only two
select variants, differing by the used method for computing the joint velocities.
Unfortunately, due to the modifications in code, the weld approach planning,
which previously was functional, has stopped working and we were unable
to fix this issue until the thesis’ deadline. But it also needs to be said that
the importance of the weld approach move planning is small compared to
the weld move planning. The weld approach planning could possibly be done
even without any optimization, using just bare RRT and the results would
still be acceptable.

6.1.1 Weights values

The sensitivity of the optimization to the various weights varies widely. While
some can be changed in a wide spectrum of values, in others even a small
change results in a completely unsuccessful planning. These are the weights
we used for the final results:

trans_dex = 20

rot_dex = 20

prism_dex = 20

region_I_boundary = 2

velocity = 0.1

prev_p_dist = 2

joint_limits = 1

collision_k = 20

59

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.1: Visualization of the G-Code used for planning - The tank is a
rectangle tank with a floor. The weld runs around the bottom circumference of
the tank and joins the floor panel to the four walls.

collision_dist_margin = 0.05

collision_dist_div = 10

in_collision = 250

no_ik_solution = 1000

Ceres_v_limits_joints_W = 1 for all joints

Ceres_mul = 10 000

Ceres_soft_joint_limits_function = sig (logistic function, Eq. 4.7)

Ceres_joint_vel_comp_method = jac or dist_t

max_iter = 1000

step_size = 0.01

initial_trust_region_radius = 100

Ceres_soft_joint_limits_param :

Ll = 10
Lu = 10
kl = 2
ku = 2

60

............................. 6.1. Bottom outer weld of a rectangular tank

6.1.2 Path planning results

Figures 6.2 and 6.3 show the graphs produced by the planner. A video of the
result is available as an appendix. The first thing we notice, that the joint
coordinates are continuous, but not smooth. There are jumps occurring in
them and they mainly correspond to the corners the robot has to maneuver
around. If we look just at the optimized parameters, we see that the table
(q1) has on a few occasions rotated slightly backwards. While this is not
necessarily bad, we’d prefer a monotonous trajectory with as little sharp
changes as possible.

Looking further at the joint velocities, they are well under the maximal
joint velocity limits, but the three sharp changes due to corners are visible
here as well.

The pattern with sharp jumps and spikes is visible on most of the criteria
as well. A big role here plays the collision checking. We’re able to get only
the closest collision distance from MoveIt! and that’s usually between the
extruder and the tank. Only when the robot comes very close to the tank,
the distance abruptly changes and this leads to „stuttering” of the robot,
which moves back and forth as the minimal collision distance changes.

We want to present the results, when we used „time and distance” to
calculate the joint velocities as well (Fig. 6.4 and 6.5). Overall, the trend
with jumps is similar to the first results, but what’s strikingly different are
the joint velocities. There are multiple noticeable spikes, where they overstep
the maximum allowed velocity. We consider this to be much more faithful to
the reality, because some of the jumps in joint coordinates are simply too big
to stay within the velocity limits.

6.1.3 Single point planning result

In Figures 6.6 and 6.7 we’re presenting the evolution of the costs, parameters
and joint coordinates during the optimization of a single point. In this case
it’s the first point of the weld. The stair-like appearance of the graphs has to
do with the way how the optimizer evaluates the gradient of the cost function.
We can see discontinuities where no IKT solution was found. Overall, we
don’t see large improvements in the criteria or big changes in the parameters
at the end. That’s due to the fact that the points are spaced very closely and
only a small change in the coordinates is necessary to reach it.

As with the results of the entire planning, we want to present the results
when we used „time and distance” to calculate the joint velocitiesas well (Fig.
6.6 and 6.7). Again, the main difference lies in the joint velocities, but it can
be seen, that in this case, the optimizer was able to minimize the criterion
and the velocities remained under the limits at the end of the optimization.
This, unfortunately wasn’t the case for all points.

61

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.2: Results of an optimization (velocity through Jacobi matrix)

62

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.3: Results of an optimization (velocity through Jacobi matrix) (contin-
ued)

63

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.4: Results of an optimization (velocity through time and distance)

64

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.5: Results of an optimization (velocity through time and distance)
(continued)

65

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.6: Optimization of the first point (velocity through Jacobi matrix)

66

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.7: Optimization of the first point (velocity through Jacobi matrix)
(continued)

67

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.8: Optimization of the first point (velocity through time and distance)

68

............................. 6.1. Bottom outer weld of a rectangular tank

Figure 6.9: Optimization of the first point(velocity through time and distance)
(continued)

69

Chapter 7
Conclusion and future outlook

7.1 Summary of the work

This thesis has concerned itself with the development of a planning software
for a 9 DOF robot for welding of plastic tanks. Currently, such tanks are
welded mostly by hand, which is an long and arduous process requiring
multiple years of training. The proposed robot cell aims to improve this
situation and make automatized welding of a subset of tank shapes possible.

The robot cell consists of three external axes and an industrial robot. The
tank is mounted on a rotating table and an extruder is attached to the robot’s
mounting flange.

The robot movement is based on welding trajectories, which will be pre-
scribed by a design/manufacturing engineer. They form the input for the
planning software. The software solves the inverse kinematics problem to find
the joint coordinates required to reach the desired pose. Due to redundancy
in the DOFs, infinite solutions exist for the IKT problem. We’re employing
optimization algorithms to find an unique solution, based on a set of prede-
fined optimization criteria. These criteria are chosen in a such way as to find
a robot configuration that suits the welding requirements the best.

In Chapter 1 we’ve introduced the problem and presented the motivation
behind it. Chapter 2 focused on the theoretical foundations of motion planning
and optimization used in this thesis. The hardware and software of the robot
cell was described in detail in Chapter 3. We’ve also talked briefly about
Robot Operating System, where the planning software was developed.

Core of the work lies in Chapters 4 and 5. We’ve presented the optimization
criteria, the reasonings behind them as well as a mathematical formulation
for them. Here, we’ve recognized the importance of collision avoidance and
high dexterity on a successful planning result.

Because the G-Code used for the definition of the weld points lacked one
of the spatial rotations, we had to devise a way, how to calculate this sixth
missing rotation. This, along with improvements to the inverse kinematics
solutions are presented in Chapter 4 as well.

The real implementation in ROS, written in C++ was explained in Chapter
5. We focused on describing all of the configuration parameters that can
be adjusted in the software. We also provided a brief explanation of all of

70

....................................... 7.2. Critical evaluation

the Classes, Methods and Functions written, giving an introspect in how the
planning software works.

Lastly, in Chapter 6 we’ve presented results of the optimization on a outside
bottom weld of a rectangular tank, while giving an explanation of the output
graphs.

Taking a look at the goals set at the beginning in Section 1.2, we believe
that we fulfilled all of them, but we recognize the issues and deficiencies found
in the work.

7.2 Critical evaluation

While the planner has been able to plan a welding path that’s continuous,
there are some glaring issues, that show, that the planner is not yet ready for
testing on a real machine.

Firstly, the joint coordinates aren’t smooth and sudden changes (or changes
in configuration) occur, which the real robot wouldn’t be able to handle. Also
the occasional stuttering is not welcome, especially for an application such
as welding, where smooth movements with small accelerations are desired.
This walks in hand with the joint velocities overstepping the velocity limits.
If such situation occurs, the robot simply won’t be able to perform the move
with all of the joints in the required time. This might negatively affect the
positioning of the extruder and thus the weld quality.

Further issues have to do with collision checking, where the robot gets
very close to collision, before being forced to react and change configuration.
This is not only dangerous in real applications, where imperfections due to
mounting, tolerances and additional equipment (cables, hoses) affect the real
collision distance, but also, again, due to the stuttering and backward rotation
of the table it produces.

Lastly, this is noticeable only on the video, but the optimizer tends to
prefer moving the external axes as little as possible. This then has to be
compensated by the robot, who has to stretch to reach the weld point. Such
stretching negatively affects the dexterity of the robot, as it’s near singular
configuration. In the moment that the robot can’t reach the point anymore,
the optimizer is forced to take a big step with the external axes, which leads
to spikes in velocity. We’d rather prefer the table to move more each step, to
keep the robot arm close, in an ideal configuration with high dexterity.

There’s certainly the possibility that an ideal set of criteria weights can
improve the results greatly. Unfortunately, the optimizer seems to be very
sensitive to some of them. Velocity criterion, Previous point distance criterion
and Region I criterion are those, who are the most problematic. Even a small
change in the weights often leads to a completely failed planning.

The planning of the tested weld takes about 3 minutes on an average laptop.
Considering the welding itself can take tens of minutes, if not a few hours, this
time is negligible. But if the user has to re-run the planner multiple times,
the time quickly adds up. Especially, if various settings and weights want to
be tested, the whole process (with the necessary start-ups and shutdowns of

71

..................................... 7.3. Future improvements

the executables) gets quite time-consuming.
Overall, we believe that we have improved the planner a great deal and it

shows promising results, but it’s still far from a fully usable version. We’d be
more pleased with the results, if we were able to implement more features
and improve remaining issues.

7.3 Future improvements

The project has come a long way since it’s inception, but there’s still a lot to do.
Here we want to mention unresolved issues and suggest future improvements,
that will, hopefully, lead to a better performance of the planner:

Working weld approach planning The weld approach planning doesn’t
have to fulfill as strict requirements as the weld move planner, but it’s
still a vital part of the planning. The most important function of the
weld approach planning is to plan a path that will lead to a good starting
configuration, from where the welding can begin. This configuration has
to already fulfill all of the criteria placed on the weld move.

More detailed G-Code A lot of the issues in current results arise due to
the insufficient description of movement in corners. They are described
only as a single point, where an abrupt 90◦ change of direction happens.
Ing. Malý from Alad has been developing an improved G-Code generator
specifically for this project. The new G-Code should improve the path
planning by a great margin and also unlock the possibility of testing on
different welds and tanks.

Multi-step optimization Currently, we optimize the parameters for each
point in isolation, with only relationship to the previous point through
the Previous point distance criterion. Ideally, we’d include parameters
for multiple steps in the future and optimize them together. That way
the optimizer can „see the future” and better react to sudden changes.
E.g. if the optimizer knows that a corner is approaching, it can start
to turn the table in advance. Currently, the optimizer has only one
step to react to a change, which also leads to sharp changes in joint
coordinates and spikes in velocities. The optimizer could also better
predict an upcoming collision and adjust the robot position in advance.

Path verification With the current setup, it can’t be guaranteed that no
changes between robot configurations will occur. They might happen
because one of them gives a better cost value, or because one of the
joints has reached it’s limit and can’t move further. Both situations are
unacceptable on a real robot. It’s therefore necessary to verify the path
after planning and make sure that no such changes in joint coordinates
occur. If that’s the case, a different starting configuration can be used
and the path has to be planned again.

72

Bibliography

[1] catkin. https://wiki.ros.org/catkin, 2017. Accessed on July 31,
2023.

[2] ROS introduction. https://wiki.ros.org/ROS/Introduction, 2018.
Accessed on July 23, 2023.

[3] tf2 package summary. https://wiki.ros.org/tf2, 2019. Accessed on
July 24, 2023.

[4] STP Plast s.r.o. http://stpplast.cz, 2020. Accessed on July 12, 2023.

[5] TAČR: Automatické svařování různorodých plastových nádrží. https:
//old.starfos.tacr.cz/cs/project/FW02020095, 2020. Accessed on
July 12, 2023.

[6] ROS. https://www.ros.org/, 2021. Accessed on July 23, 2023.

[7] Using urdf with robot state publisher. https://wiki.ros.org/urdf/
Tutorials/Using%20urdf%20with%20robot_state_publisher, 2021.
Accessed on July 24, 2023.

[8] ROS concepts. https://wiki.ros.org/ROS/Concepts, 2022. Accessed
on July 23, 2023.

[9] tf2 - quaternion basics. http://wiki.ros.org/tf2/Tutorials/
Quaternions, 2022. Accessed on July 24, 2023.

[10] Why ROS 2? http://design.ros2.org/articles/why_ros2.html,
2022. Accessed on July 24, 2023.

[11] G-code. https://en.wikipedia.org/wiki/G-code, 2023. Accessed on
July 24, 2023.

[12] G-Code Index. https://marlinfw.org/meta/gcode/, 2023. Accessed
on July 24, 2023.

[13] GitHub: ros-industrial/motoman. https://github.com/
ros-industrial/motoman/, 2023. Accessed on July 24, 2023.

73

https://wiki.ros.org/catkin
https://wiki.ros.org/ROS/Introduction
https://wiki.ros.org/tf2
http://stpplast.cz
https://old.starfos.tacr.cz/cs/project/FW02020095
https://old.starfos.tacr.cz/cs/project/FW02020095
https://www.ros.org/
https://wiki.ros.org/urdf/Tutorials/Using%20urdf%20with%20robot_state_publisher
https://wiki.ros.org/urdf/Tutorials/Using%20urdf%20with%20robot_state_publisher
https://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/tf2/Tutorials/Quaternions
http://wiki.ros.org/tf2/Tutorials/Quaternions
http://design.ros2.org/articles/why_ros2.html
https://en.wikipedia.org/wiki/G-code
https://marlinfw.org/meta/gcode/
https://github.com/ros-industrial/motoman/
https://github.com/ros-industrial/motoman/

..................................... 7.3. Future improvements

[14] LEISTER. https://www.leister.com/en, 2023. Accessed on July 19,
2023.

[15] LEISTER weldplast 610-i. https://www.leister.com/en/product/
Weldplast-610-i/172-580, 2023. Accessed on July 19, 2023.

[16] Logistic function. https://en.wikipedia.org/wiki/Logistic_
function, 2023. Accessed on August 2, 2023.

[17] MoveIt! Tutorials. https://ros-planning.github.io/moveit_
tutorials/index.html, 2023. Accessed on July 24, 2023.

[18] regular expressions 101. https://regex101.com/, 2023. Accessed on
August 2, 2023.

[19] Spherical linear interpolation (slerp). https://splines.readthedocs.
io/en/latest/rotation/slerp.html, 2023. Accessed on August 2,
2023.

[20] urdf. https://wiki.ros.org/urdf, 2023. Accessed on July 24, 2023.

[21] URDF and SRDF. https://ros-planning.github.io/moveit_
tutorials/doc/urdf_srdf/urdf_srdf_tutorial.html, 2023. Ac-
cessed on July 24, 2023.

[22] YASKAWA motoman GP88. https://www.yaskawa.eu.com/
products/robots/handling-mounting/productdetail/product/
gp88_702, 2023. Accessed on July 19, 2023.

[23] Sameer Agarwal, Keir Mierle, and The Ceres Solver Team. Ceres Solver,
3 2022.

[24] David Coleman, Ioan A. S, ucan, Sachin Chitta, and Nikolaus Correll.
Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt!
Case Study. Journal of Software Engineering for Robotics, 5(1):3–16,
May 2014.

[25] Kamil Horný. Automatic Trajectory Planning for Robot Welding. Mas-
ter’s thesis, Czech Technical University, Faculty of Electrical Engineering,
Department of Control Engineering, 2021.

[26] Sertac Karaman and Emilio Frazzoli. Sampling-based Algorithms for
Optimal M]otion Planning, journal = The International Journal of
Robotics Research, volume = 30, year = 2011, number = 4, pages =
846–894.

[27] J.J. Kuffner and S.M. LaValle. RRT-Connect: An efficient approach
to single-query path planning. In Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), volume 2, pages 995–1001
vol.2, 2000.

74

https://www.leister.com/en
https://www.leister.com/en/product/Weldplast-610-i/172-580
https://www.leister.com/en/product/Weldplast-610-i/172-580
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://ros-planning.github.io/moveit_tutorials/index.html
https://ros-planning.github.io/moveit_tutorials/index.html
https://regex101.com/
https://splines.readthedocs.io/en/latest/rotation/slerp.html
https://splines.readthedocs.io/en/latest/rotation/slerp.html
https://wiki.ros.org/urdf
https://ros-planning.github.io/moveit_tutorials/doc/urdf_srdf/urdf_srdf_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/urdf_srdf/urdf_srdf_tutorial.html
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp88_702
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp88_702
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp88_702

..................................... 7.3. Future improvements

[28] Kenneth Levenberg. A method for the solution of certain nonlinear
problems in least squares. Quarterly of Applied Mathematics, 2(2):164–
168, 1944.

[29] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics,
Planning, and Control. Cambridge University Press, 2017.

[30] Donald W. Marquardt. An algorithm for least squares estimation of
nonlinear parameters. Journal of Society for Industrial and Applied
Mathematics, 11(2):431–441, 1963.

[31] Vladimír Stejskal and Michael Valášek. Kinematics and Dynamics of
Machinery. Marcel Dekker Inc., New York, 1996.

[32] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine, 19(4):72–82,
December 2012. https://ompl.kavrakilab.org.

[33] Matěj Vetchý. Kinematic Calibration and Motion Optimization of Indus-
trial Manipulator. Master’s thesis, Czech Technical University, Faculty
of Electrical Engineering, Department of Cybernetics, 2023.

[34] Jan Zavřel, Martin Jílek, Zbyněk Šika, and Petr Beneš. Dexterity
Optimization for Tensegrity Structures Using Local Linear Model Trees.
In 2021 9th International Conference on Control, Mechatronics and
Automation (ICCMA), pages 46–49, 2021.

75

https://ompl.kavrakilab.org

	Introduction
	Motivation
	Problem description

	State of the art
	Sampling-based motion planning
	Algorithm

	Non-linear optimization problem
	Algorithm

	Matrix description of a serial chain robot
	Manipulator dexterity

	System description
	Data flow
	Hardware
	Industrial robot
	External axes
	Extruder
	Other equipment

	Software
	ROS
	G-Code Parser
	Robot kinematic model

	Planner & Optimizer
	Weld approach move
	Weld move

	Visualization & Data export
	RViz
	Graphs

	Problem solution
	Computing sixth rotation
	Robot kinematic model
	URDF
	Collision model

	Optimization criteria and constraints
	Collision criterion
	Dexterity criterion
	Joint limits criterion
	Region I criterion
	Velocity criterion
	Previous point distance criterion
	Distance to goal criterion
	No inverse kinematics solution criterion
	Weighted sum

	Inverse kinematics

	Implementation
	Workspace composition
	Running the planner
	Robot model description
	URDF
	SRDF

	G-Code Parser
	Usage and configuration
	G-Code Parser Class

	Planner
	Usage and configuration

	Planning a weld
	Optimization criteria and constraints
	Weld approach move
	Weld move
	Visualizing and data export

	Experimental results
	Bottom outer weld of a rectangular tank
	Weights values
	Path planning results
	Single point planning result

	Conclusion and future outlook
	Summary of the work
	Critical evaluation
	Future improvements

	Bibliography

