

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF TRANSPORTATION SCIENCES

Department of Air Transport

Assessment of hazards during and after the low operation regime at the airports

Bachelor thesis

Study program: Technology in Transportation and Telecommunications Study branch: Professional Pilot

Author of the bachelor thesis: Xinpei Rao

Supervisors of the bachelor thesis: Ing.Slobodan Stojic,Ph.D.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopravní děkan Konviktská 20, 110 00 Praha 1

K621Ústav letecké dopravy

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení studenta (včetně titulů): Xinpei Rao

Studijní program (obor/specializace) studenta: bakalářský – PIL – Profesionální pilot

Název tématu (česky):

Hodnocení nebezpečí během a po režimu sníženého provozu na letištích

Název tématu (anglicky): Assessment of Hazards during and after the Low Operation Regime at the Airports

Zásady pro vypracování

Při zpracování bakalářské práce se řiďte následujícími pokyny:

- Cíl práce: Identifikace a hodnocení nebezpečí během a po režimu sníženého provozu na letištích.
- Analyzujte provozní změny v oblasti letištního provozu během pandemické situace.
- Identifikujte nebezpečí a rizika během a po pandemické situaci v kontextu letištních procesů.
- Proveď te hodnocení identifikovaných rizik.
- Navrhněte nápravná opatření.
- Diskutujte výsledky a stanovte závěry práce.

Rozsah grafických prací:	dle pokynů vedoucího bakalářské práce	
Rozsah průvodní zprávy:	minimálně 35 stran textu (včetně obrázků, grafů a tabulek, které jsou součástí průvodní zprávy)	
Seznam odborné literatury	: ICAO Doc 9859, Safety Management Manual	
	Stolzer, J.A., Goglia, J.J., Safety Management Systems in Aviation, 2nd Edition	
	Halford, D.C., Implementing Safety Management System in Aviation, 1st Edition	

Vedoucí bakalářské práce:

Ing. Slobodan Stojić, Ph.D.

Datum zadání bakalářské práce:

9. října 2020

(datum prvního zadání této práce, které musí být nejpozději 10 měsíců před datem prvního předpokládaného odevzdání této práce vyplývajícího ze standardní doby studia)

7. srpna 2023

- Datum odevzdání bakalářské práce: 7. srpna 202:
 a) datum prvního předpokládaného odevzdání práce vyplývající ze standardní doby studia a z doporučeného časového plánu studia
 b) v případě odkladu odevzdání práce následující datum odevzdání práce vyplývající z doporučeného časového plánu studia

doc. Ing. Jakub Kraus, Ph.D. vedoucí Ústavu letecké dopravy

prof. Ing. Ondřej Přibyl, Ph.D. děkan fakulty

Potvrzuji převzetí zadání bakalářské práce.

Xinpei Rao jméno a podpis studenta

V Praze dne.....

CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Transportation Sciences Dean's office Konviktská 20, 110 00 Prague 1, Czech Republic

K621 Department of Air Transport

BACHELOR'S THESIS ASSIGNMENT

(PROJECT, WORK OF ART)

Student's name and surname (including degrees):

Xinpei Rao

Study programme (field/specialization) of the student: bachelor's degree - PIL - Professional Pilot

Theme title (in Czech):

Hodnocení nebezpečí během a po režimu sníženého provozu na letištích

Theme title (in English): Assessment of Hazards during and after the Low **Pperation Regime at the Airports**

Guidelines for elaboration

During the elaboration of the bachelor's thesis follow the outline below:

- · Thesis goal: Identification and assessment of the safety hazards during and after the regime of the low operations at the airports.
- · Perform the analysis of the operational changes in airport operations during the pandemic situation.
- Identify the safety hazards and related risks during and after the pandemic situation in context of airport processes.
- Evaluate the identified risks. .
- Propose the corrective measures.
- Discuss the results and define the conclusions.

Graphical work range: according to the instructions of thesis supervisor Accompanying report length: minimum of 35 text pages (including figures, graphs and sheets which are part of the main text) Bibliography: ICAO Doc 9859, Safety Management Manual Stolzer, J.A., Goglia, J.J., Safety Management Systems in Aviation, 2nd Edition Halford, D.C., Implementing Safety Management System in Aviation, 1st Edition Bachelor's thesis supervisor: Ing. Slobodan Stojić, Ph.D. Date of bachelor's thesis assignment: October 9, 2020 (date of the first assignment of this work, that has be minimum of 10 months before the deadline of the theses submission based on the standard duration of the study) Date of bachelor's thesis submission: August 7, 2023 a) date of first anticipated submission of the thesis based on the standard study duration and the recommended study time schedule
 b) in case of postponing the submission of the thesis, next submission date results from the recommended time schedule auc doc. Ing. Jakub Kraus, Ph.D. prof. Ing. Ondřej Přibyl, Ph.D. head of the Department dean of the faculty of Air Transport I confirm assumption of bachelor's thesis assignment. Xinpei Rao Student's name and signature

Prague January 23, 2023

Acknowledgements

I would like to thank all my lecturers, friends, family, and especially my supervisor Ing.Slobodan Stojic,Ph.D., for their valuable support and constructive advice during my development of this research. Your willingness to offer your time, finances and emotional support generously is very appreciated.

Declaration

I declare that I prepared the bachelor's thesis entitled Assessment of hazards during and after the low operation regime at the airports independently and for this I used the complete list of citations of the sources used, which I present in the list attached to the bachelor's thesis.

I do not have a compelling reason against the use of the thesis within the meaning of Section 60 of the Act No. 121/2000 Sb., on copyright, rights related to copyright and amending some laws.(Copyright Act).

的建地

In Prague on 07.August.2023

Xinpei Rao

Název bakalářské práce

Hodnocení nebezpečí během a po ukončení nízkého provozního režimu na letištích

Abstrakt

Výskyt kovidu-19 v roce 2020 vážně ovlivnil rozvoj leteckého průmyslu, což vedlo k období nízkého provozního režimu letiště. Od roku 2020 všechna letiště přijala řadu nových opatření pro rozvoj a zavedení nového provozu na letištích. Díky novým způsobům, metodám a nápadům, jak se přizpůsobit nízkému provoznímu režimu letiště, který přinesla pandemie, lze účinněji kontrolovat nebezpečí způsobená nízkým provozním režimem letiště.

Díky tomu, že je Covid-19 pod kontrolou, se provozní stav letiště postupně stabilizoval a vedení letiště si uvědomili a odhalili nebezpečí, která přináší nízký provozní režim letiště. Tato nebezpečí nejen snižují efektivitu provozu letiště, ale také přímo ovlivňují systém řízení bezpečnosti letiště.

Proto je hlavním cílem této práce identifikovat nebezpečí v nízkém provozním režimu letiště, vyhodnotit tato nebezpečí.

Klíčová slova: Bezpečnostní rizika, rizika, provoz letiště, letecká doprava, pandemie (COVID-19)

Bachelor Thesis Title

Assessment of hazards during and after the low operation regime at the airports

Abstract

The covid-19 outbreak in 2020 has severely affected the development of the aviation industry, resulting in a period of low operational regime of the airport. Since 2020, all airports have adopted a series of new policies to develop and implement new airport operations. With new ways, methods and ideas to adapt to the low airport operation mode brought about by the pandemic, the hazards caused by the low airport operation regime can be controlled more effectively.

With covid-19 under control, the airport's operating status has gradually stabilized, and airport managers have realized and discovered the hazards brought about by the airport's low operating regime. These hazards not only reduce the efficiency of airport operations, but also directly affect the airport's safety management system.

Therefore, the main research purpose of this thesis is to identify these hazards in the low operating regime of the airport and evaluate the hazards.

Keywords: Safety hazard, Risk, Airport operation, Air transport,

Pandemic (COVID-19)

Contents

Introduction	8
1. Analysis of the Impact of COVID-19 Pandemic on the Air Transport	10
1.1 Impact of Pandemic on Traffic Volumes	10
1.2 Impact of Pandemic on Passenger ground handling	12
1.3 Impact of Pandemic on Airport Staff	14
1.4 Current Situation	15
2. Current approach to COVID-19 related safety hazard and risk identification	17
3.Safety Analysis Approaches	18
3.1 STPA Method Overview	20
3.1.1 STAMP	20
3.1.2 STPA	21
3.1.3 Terminology and Characteristics	24
3.1.4 Risk Assessment	25
4. Safety analysis of the chosen processes at the airport during low	regime
operations	28
4.1 Defining the Purpose of the Analysis	29
4.2 Modeling the Control Structure	31
4.3 Identifying Unsafe Control Actions (UCA)	38
4.4 Identifying loss scenarios	41
5. Risk assessment based on loss scenario	43
6. Discussion	46
7. Conclusion	49
Reference	51

List of Abbreviation

A/C	Aircraft
A/P	Airport
ATS	Air Traffic Service
ATC	Air Traffic Control
CA	Control Actions
CAA	Civil Aviation Authority
FOD	Foreign Object Debris
GSE	Ground Service Equipment
GHD	Ground Handling
GPU	Ground Power Unit
IATA	International Air Transport Association
ICAO	International Civil Aviation Organization
SC	Safety Constraints
STPA	System-Theoretic Process Analysis
STAMP	System-Theoretic Accident Model and Processes
SMS	Safety Management System
SOPs	Standard Operating Procedure
UCA	Unsafe Control Actions

List of Figure

- Figure 1 Global passenger traffic projection (indexed, 2019 = 100)
- Figure 2 Global passenger traffic by type (in billion passengers)
- Figure 3 Change in airport departure procedures post-Covid-19
- Figure 4 Flight delay and cancellation
- Figure 5 Hierarchical Functional Control Structure (HFCS)
- Figure 6 Overview of the basic STPA Method
- Figure 7- Generic control loop
- Figure 8 Risk Matrix
- Figure 9 Airport control structure

List of Table

- Table 1- The sources of airport safety hazards
- Table 2 Distinction of hazard and accident
- Table 3 Meaning risk probability
- Table 4 Meaning of risk severity
- Table 5 Identified Losses related to the airport operations defined scope
- Table 6 List of Control Actions and Feedback
- Table 7 List of Unsafe control actions

ANNEX

Annex 1- List of UCA

Annex 2- List of Scenario

Introduction

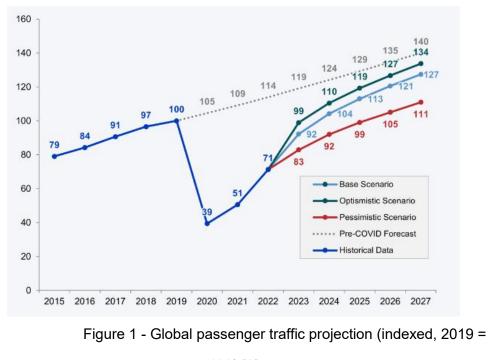
Airports are vital to the economic development of cities, regions and countries. They contribute directly to the economy by providing services to airlines, transporting passengers and moving goods. The movement of goods and people also benefits governments, consumers and industry. However, the COVID-19 outbreak has hit airports hard, which could hamper the development of the civil aviation market. In the context of COVID-19, how will it affect human lifestyles and airport operations? Obviously, COVID-19 has changed the way we travel, for international travelers, variable and broad border measures, and they need to consider not only the risk of disease spread, but also need to take into account the need for quarantine at their destination, on their return, or both. Travel restrictions and quarantine are often the first response against emerging infectious disease threats.[1] Epidemiological experts in different countries will gradually formulate travel bans according to their own national conditions, which makes it difficult for the number of international travelers to rise up in a short time. Domestic travel has been overall less restricted.

The outbreak of COVID-19 brought to the period of low operation of the world airports. According to past experiences, like long-term closure or limited operations, the airports may face various challenges during periods of low operations. Therefore, in order to adapt to this period more quickly, the airports have to reform the traditional operation mode, to innovate and introduce more efficient management practices, while considering the development after the low operation period. The process and extent of reform depends on the airport. In general, there are hazardous problems in every airport, such as the significant reduction of airport personnel, the reduction of personnel training cycle, the simplification of operating procedures and so on. These problems may be hazards and if not solved in time, it is likely to cause accidents. In order to bring the detailed view on the possible hazards caused by low regime operations, this thesis will focus on the identification of the potential weak spots and critical

processes and piece of airport infrastructure.

The structure of this thesis indicates that the main purpose is to identify and assess the hazards of airports in the event of a pandemics. Firstly, the situation during pandemics at the airport will be analyzed and described. This include the description of the traffic volumes falls and overall operation regime and implemented measures. The next step is potential hazard identification and assessment of associated risks. Airport system covers wide area of the processes, entities and infrastructure, therefore this thesis is limited to the operations where several entities are involved, like aircraft taxiing and ground Performed method of the hazard identification and following risk handling. assessment is applicable to any process at the airport. In this approach the STPA hazard analysis method was applied. STPA (System-Theoretic Process Analysis) is a relatively new hazard analysis technique based on an extended model of accident causation. STAMP (System-Theoretic Accident Model and Processes) is the name of the accident causality model based on systems theory, which provides the theoretical foundation for STPA.[16] STAMP enables easy description of the system's control structure and supports the idea of the establishment of the functioning control mechanism.

In the next step, the risk assessment is used to assess various hazards consequences, which can further judge the risk degree of identified causal factors. Finally, the corresponding strategies are given according to outcomes.


1. Analysis of the Impact of COVID-19 Pandemic on the Air Transport

Since the outbreak of the pandemic in 2020, the aviation industry, as a pillar industry in the world, has also been greatly negatively affected. The airports the transportation hubs in the aviation industry. It not only brings great inconvenience to passengers, but also affects aircraft operation within the airport area in normally. During pandemic period, words such as airport closures, travel restrictions, and high-priced flight tickets have appeared frequently, and people have begun to attach great importance to their own means of transportation, especially the choice of planes. [2] However, the emergence of the pandemic has made every country to pay attention to the restrictions on travel. This restrictions have also implicated the normal operation of the airports. Some airports have been hit hard by the pandemic and are facing closures, while others are struggling. Relevant governments have also issued regulations to ease the operating pressure on airports. Overall, the impact of the pandemic on air transport is mainly reflected in passenger traffic volumes, passenger security procedure and airport stuff.

1.1 Impact of Pandemic on Traffic Volumes

The COVID-19 pandemic has had a huge impact on airports around the world, leading to massive restrictions on air travel and even 'lockdown' periods that prevented millions of traveler from travelling at all. According to report by Airports Council International (ACI), from 2019 to 2020, the period most affected by the pandemic, traffic volumes dropped by 61%. As shown in the figure 1, after 2021, the traffic volumes show a significant upward trend, which indicates that after the ease of restrictions, passenger demand is in a backlog, which is likely to recover in a short time. For the full-year 2022, global passenger traffic is expected to be 6.6 billion, which is 71.7% of 2019 levels, improved from the last year's traffic of

4.6 billion or 50.5% of 2019 levels. Global passenger traffic is forecast to reach 92% of 2019 levels in 2023.[3] According to the current situation, this expectation is in line with the actual situation. However, there is still a limited rebound situation, which is related to the regional war, riot and the complex international situation, causing a lot of anxiety for international traveler.

100) [3]

Due to travel restrictions, each country has stricter regulations on foreigners, which makes international tourism hard to believe during the pandemic, so each country does not expect international tourism to generate revenue for tourism. They are focusing on domestic travel and stimulating domestic tourism through new management models, as shown in the figure 2, domestic passenger traffic accounted for more than 70% after the COVID-19 outbreak, and it is also increasing year by year.

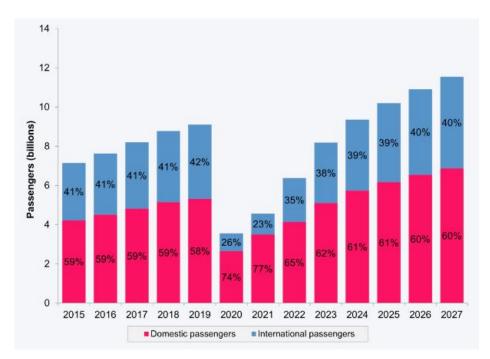


Figure 2 - Global passenger traffic by type (in billion passengers) [3]

The decline in traffic volume has led to a sharp decline in aviation revenue, which is directly related to traffic volume and includes levies from aircraft operators, related fees from passengers and related fees from aircraft. As traffic has declined, so has revenue. Non-aeronautical revenues, which include such streams as rental from stores, duty free, car parking, and food and beverage, are also very much linked to passenger traffic and throughput. As airports have little flexibility in operating expenditures but also have capital costs that are largely fixed, the crisis has represented an unprecedented challenge for the airport industry's financial viability [4].

1.2 Impact of Pandemic on Passenger ground handling

Due to the high infectivity of the virus, combined with the high traffic density, airports are undoubtedly the convenient place for the virus to spread. Once an infected passenger appears this can lead to repeated local outbreaks, and some passengers can be difficult to identify when they have no symptoms. That adds to uncertainty about travel restrictions or quarantines taken by local governments. The figure 3 illustrates the change in airport departure procedures during Covid-19. If symptomatic passengers are identified, the quarantine staff will trigger the quarantine procedure and try to isolate these passengers.

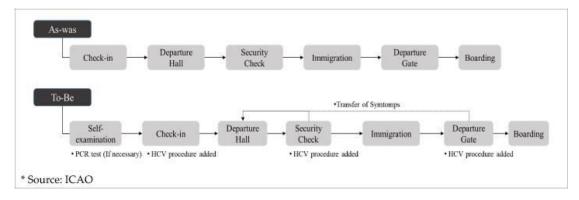


Figure 3 - Change in airport departure procedures post-Covid-19 [5]

Therefore, the focus is on implementing risk-based measures, which may include health screening of arriving and/or departing passengers, in addition to maintaining physical distancing and enhancing sanitation. During pandemic, certain additional procedures were implemented :[6]

Thermal temperature screening – it was implemented at several airports in the initial phase of the pandemic, but has been identified by EASA as a high-cos,t but low efficiency measure, because passengers without symptoms (up to 75%) were not easily detected.

PCR testing before departure – it could be done off-airport, before travelling or at the airport with results provided 2 to 3h after the test. Some countries have implemented requirements for recent negative PCR test (e.g. 48-72 hours before departure).

PCR testing on arrival – it was implemented, in particular for defined "risk areas". National authorities put rules into place but currently have difficulties with local testing capacities to ensure timely results.

Health self-declaration – is was requested by some governments as further measure. Airlines had to ask health questions related to COVID. That was initially performed during check-in by agents, but most airlines have now

integrated this to the online check-in. Some governments request this information online before travel.

Passenger locator cards / online health forms - it was established by some national authorities (e.g. Spain or Greece) in order to ask self-declaration health questions and to enable contact tracing in a more efficient way (requesting passengers to fill in online forms). With an online system, passengers had a generated QR code used during the check-in and eventually on arrival as a proof of registration.

1.3 Impact of Pandemic on Airport Staff

Referring to IATA data, 25 million jobs are created by air transport globally.[7] The pandemic deeply impact on the aviation industry by forcing airports efficiency layoffs. Suddenly, staff in different sections of the airport had to work longer hours and take on more responsibilities to cover for their laid-off colleagues. For example, airport security personnel are now required to cover a larger area with fewer resources, making it more difficult to identify and respond to potential security threats. This job requires a high alert mode, rapid response, a combination of different scenarios in an emergency, and many other responsibilities. This does not concern only security staff, almost all positions within the airport, air traffic control or airline are in the similar situation. Although this policy is reasonable and reduces costs for airports, it also brings some potential issues. High-intensity work patterns, for example, can make employees increasingly stressed because they now have more responsibilities, more areas to cover and sometimes longer shifts, leading to burnout, decreased satisfaction and, in some cases, a higher risk of absenteeism. On the other hand, after the lifting of restrictions and the increase in demand for air travel, the airport is faced with a shortage of staff, in order to fill the number of positions at the airport, it has to recruit new staff, including inexperienced staff, who also need to go

through professional training. In a short period of time, it is difficult for new employees to effectively perform their duties.

1.4 Current Situation

Airports still face many challenges in the aftermath of the pandemic and are desperate to return to their pre-pandemic operations, especially the airlines. At present, the aviation industry is in a recovery phase, and airports are also facing new problems post COVID-19.

In the first half of 2023, the World Health Organization declared COVID-19 to be considered a common disease. This means that industries that were previously affected by COVID-19 will slowly start to recover. However, for the airports many experts predict non-optimistic initial recovery scenario. In fact, since the summer of 2022, there has been chaos at many airports. For example, most of flights are delayed or cancelled, passengers have problems with their luggage and employees are on strike and so on. Such problems occur frequently at European airports. Similarly, long queues at immigration checkpoints in London, Amsterdam and elsewhere. And once they get through, there's no guarantee their bags will be waiting for them. Baggage handlers are also in short supply, meaning days-long delays in getting luggage to customers in some cases.[8]

In response to flight delays and cancellations, the problem is attributed to a shortage of airport personnel. As the figure 4 shows, this is the rate of flight delays and cancellations after the COVID-19 pandemic, flight delays at some airports are unexpectedly high

BY ORIGIN AIRPORT					
Cancelled		Delayed		AURDORT	
#	%	#	%	AIRPORT	
67	9%	330	47%	Guangzhou Baiyun Int'l (<u>CAN</u>)	
46	8%	139	25%	Jakarta-Soekarno-Hatta Int'l (<u>CGK</u>)	
33	16%	51	25%	Naha (<u>OKA</u>)	
31	3%	180	18%	Denver Intl (DEN)	
27	4%	262	45%	Beijing Capital Int'I (<u>PEK</u>)	
26	5%	306	66%	Beijing Daxing International Airport (<u>PKX</u>)	
23	6%	147	39%	Shanghai Hongqiao Int'I (<u>SHA</u>)	
20	3%	322	56%	Shenzhen Bao'an Int'l (SZX)	
17	2%	216	30%	Tokyo Int'I (Haneda) (<u>HND</u>)	
17	4%	190	45%	Hangzhou Xiaoshan Int'I (<u>HGH</u>)	
17	10%	49	29%	Sultan Hasanuddin Int'l (UPG)	

Figure 4 - Flight delay and cancellation[9]

The high frequency of flight delays, which is a bad experience for passengers, and the potential for other flights to be delayed again for overall airport operations, can lead to potentially unsafe actions. Problems with sudden traffic growth have been a real challenge for airports, especially for ground handlers. Ground handling services providers have been unable to scale up staff recruitment to cope up with increased passenger traffic.[10] As an example, the CEO of London Heathrow, John Holland-Kaye, says he warned ground handling services providers that they needed to recruit and train more staff. He said: "Airline ground handling shortage is now the constraint on Heathrow's capacity. The number of people employed in ground handling fell sharply over the last two years, as airlines cut costs during the pandemic." Heathrow estimates that airline ground handlers have had no more than 70% of pre-pandemic resources, and there has been no increase in numbers.[11] Although the pandemic has now been declared over and air traffic returned , the hazards left over from the pandemic period must be analysed, assessed and tracked in order to prevent potential deterioration of the operations.

2.Current approach to COVID-19 related safety hazard and risk identification

Safety Management System (SMS) is an important safety management approach introduced in the early 2000s with a view to improving safety in activities related to air transportation and to maintain such activities at acceptable risk levels.[11] The SMS manual sets out the recommended minimum standard that shall be applied throughout companies functioning in the aviation industry.[12] SMS is currently a safety tool used by the airport operators, implemented to ensure safety in the defined fields.

SMS includes four key elements:

- Safety policy
- Safety risk management
- Safety Assurance
- Safety promotion

Airports have some limitations and passivity in using SMS approach to identify safety hazards and risks in the context of COVID-19. An aerodrome SMS can only provide a means of controlling those hazards which originate within the aerodrome system, or in which some element of the aerodrome system could be a contributory factor.[12] For example, the aerodrome safety system cannot directly address the cause of the emergency landing caused by the failure of the aircraft system, it can only address the consequences of the emergency landing at aerodrome. The SMS approach is therefore limited in its ability to identify hazards for dynamic changes in pandemic events.

According to the sources of airport safety hazards[13], they are mainly reflected in the dangerous state of things, human's unsafe behavior and management deficiencies. The identification of airport safety hazards can be analyzed from three perspectives (Table 1):

Management system----This refers mainly to the basic aspects of the airport organization, management, processes and procedures.

Human performance and environment---This refers mainly to human factors, personal training systems, and environmental impacts on airport operations.

Technology---This refers mainly to the air navigation facilities within the airport, operation, maintenance etc.

No.		Hazard scope	Type of unit or system
1.			Regulatory Oversight
2.			Customer Management
3.			Safety Management System
4.		Management Systems	Emergency System
5.			Operations Planning and Scheduling
6.			Documentation
7.			Finance Management
8.	oort		Human factor
9.	< </td <td>Human performance and environment</td> <td>Training system</td>	Human performance and environment	Training system
10.			Environment
11.			Ground Handling
12.			Airport Facilities
13.		Technology	Wildlife protection
18.			Air Traffic Service (ATS)
19.			Aircraft loading
20.			Flight Operations (within airport airspace)
21.			Maintenance

Table 1- The sources of airport safety hazards

3.Safety Analysis Approaches

By discussing the preliminary problems of the accident and the scenarios caused by various hazard sources, all possible hazard sources can be analyzed to reduce the threat of danger in time. In the context of the pandemic situation and its influence on the airport operations, safety is one of the central topics for national and international aviation bodies. The International Civil Aviation Organization defines safety as the "state in which the risk of injury to persons or damage to property is reduced or maintained at an acceptable level, or below it, by means of a continuous process of hazard identification and risk management".[14]

There are many different methods developed for safety analysis, such as Fault Tree Analysis (FTA), HAZOP, Failure mode and effect analysis (FMEA) and so on: These traditional methods are still applied in aviation industry. While aviation is further developing, and becomes more and more complex socio-technical system, safety analysis become more challenging to perform. These mentioned approaches are not always efficient in cases of the complex and integrated systems today, because the estimates they produce do not necessarily represent the actual safety issues that should be addressed.

As discussed by Vrijling, van Hengel and Houben (1998) and Braithwaite, Caves and Faulkner (1998), in order to guarantee adequate safety levels, system development and decisions should be based on acceptable risk assurance, that is, the product of probability and severity of an undesirable event to take place should be sufficiently low. Thus, to achieve safety levels and reduce occurrence rates, the risk must be quantified and balanced with appropriate mitigation measures.[15] Modern approaches in safety engineering, especially those focusing on the system-level approach supports the idea, that safety could be defined as the control issue. As an effective tool in this approach the model STAMP[16] emerges as an interesting solution.

Leveson (2004) proposed STAMP model (System Theoretic Accident Model and Process), Which describes the control structure of the system and supports the idea of establishing functional control mechanisms. This approach has been applied to different industries and by many entities. While airport with all defined process and

entities represents the example of a complex socio-technical system, STPA method will be applied in this thesis to identified the hazards in the airport environment during the low regime operations during pandemic situation.

3.1 STPA Method Overview

STPA or System Theoretic Process Analysis is based on the safety model STAMP and it is commonly used within the hazard analysis process during all phases of system/product life cycle. In order to better understand the practical application of this method, firstly the STAMP model will be briefly described.

3.1.1 STAMP

STAMP is an accident causality model, based on system theory. It was originally developed by Prof. Dr. Nancy Leveson at MIT [17]. The main goal of STAMP is to find out why accidents occur and how to use that understanding to create new and better ways to prevent accidents from happening. It is based on three main concepts: [18]

1. Safety Control Structure - a hierarchical representation of the system under analysis on which upper-level components impose constraints on lower-level components.

2. Process Model - a model of the process that is being controlled.

3. Safety Constraints – requirements for the system components that must be fulfilled to assure safety.

It is based on systems theory and control theory, which considers the safety of the system as the emergent nature of the problem, and the constraint of the interaction between the system components is a control method for this emergent nature, i.e. the behavior of each component of the system and the interaction of the components are constrained to achieve and maintain or enhance the purpose of the safety state of the system. In figure 5, a Hierarchical Functional Control Structure (HFCS) represents system components and interactions. Components (white boxes) interact through control actions (black arrow downwards) and feedbacks (orange arrows

upwards). In an inadequate enforcement of safety constraints on controlled processes behaviors, inadequate control actions are provided to controlled processes, leading to a hazardous system state where accidents or undesirable losses inevitably take place.[19]

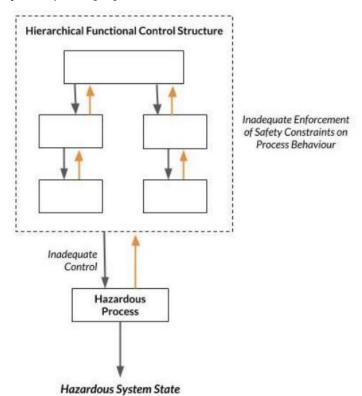


Figure 5 - Hierarchical Functional Control Structure (HFCS) [19]

3.1.2 STPA

The method STPA is divided into four steps. Step 1 defines the purpose of the analysis. Step 2 model the control structure. Step 3 identify Unsafe Control Actions (UCA). Lastly step 4 identify loss scenarios. The steps in basic STPA are shown in figure 6 along with a graphical representation of these steps.

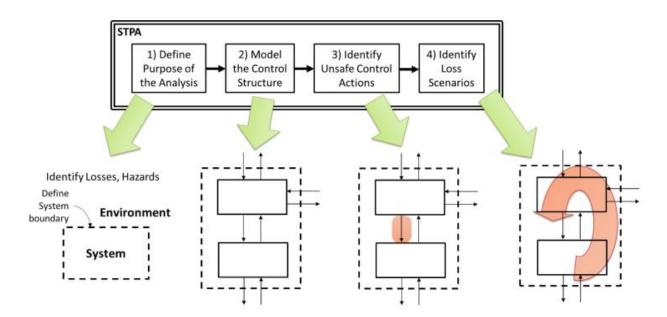


Figure 6 - Overview of the basic STPA Method [16]

A hierarchical control structure is a system model that is composed of feedback control loops. An effective control structure will enforce constraints on the behavior of the overall system, as figure 7. In general, a hierarchical control structure contains at least five types of elements: [16]

Controllers

Control Actions

Feedback

Other inputs to and outputs from components (neither control nor feedback)

Controlled processes

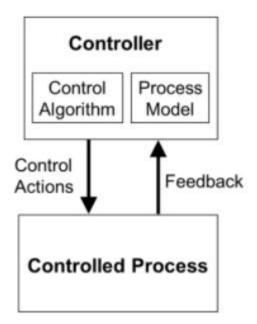


Figure 7- Generic control loop

The vertical axis in a hierarchical control structure is meaningful: it indicates control and authority within the system. The vertical placement represents the hierarchy of control from high-level controllers at the top to the lowest-level entities at the bottom. Each entity has control and authority over the entities immediately below it, and each entity is likewise subject to control and authority from the entities immediately above.[16]

Through identification of the unsafe control action (UCA) it is possible to create possible loss scenarios. CA (control action) is a command sent to a low-level component or controller. The analyst must identify provided control actions, and the environment in which the CA can be hazardous. There are generally four cases when CA can become unsafe:

- Providing CA causes hazard ;
- Not providing CA causes hazard;
- Providing CA too early, too late, or in wrong order causes hazard;
- Stopping CA too soon or applying CA too long causes hazards.

In order to clearly define the unsafe control action, the context must be well described. Contexts could represent the specific states or configuration of the analysed system/process.

3.1.3 Terminology and Characteristics

Terminology that appears in STAMP and STPA methods:

Accident -An unplanned and undesired event that results in a loss. Accidents can be caused by unsafe interactions among system components, that have not failed, and also satisfy all requirements[17].

Loss -A loss involves something of value to stakeholders. Losses may include a loss of human life or human injury, property damage, environmental pollution, loss of mission, loss of reputation, loss or leak of sensitive information, or any other loss that is unacceptable to the stakeholders.[16]

Hazard - A hazard is a system state or set of conditions that, together with a particular set of worst-case environmental conditions, will lead to a loss[20].

System-level constraints - A system-level constraint(safety constraints) specifies system conditions or behaviors that need to be satisfied to prevent hazards (and ultimately prevent losses) [17].

Unsafe Control Actions - Unsafe Control actions are used to create functional requirements and constraints for the system. [17].

As defined above, hazards can directly lead to accidents if prevention is not applied or prevention failed. This will further lead to corresponding losses. The following are examples of accidents and hazards(Table 2):

Accident	Hazard		
The aircraft collided with ground vehicle	Communication issues with ATC		
	during taxiing		
The aircraft moves on its own on the stand	The chokes are not properly places		
and collides with airport infrastructure	during ground handling.		
Aircraft engine parts damaged due to	The foreign objects on the ground		
inhalation of foreign objects	was not cleaned up in time		

Table 2 - Distinction of hazard and accident

Hazards manifest themselves in uncertain forms at the airports, depending on their characteristics. The main characteristics of the hazard:[21]

Complex Diversity

The complexity of the airport system determines the existence of safety hazards, which are complex and uncertain. Safety hazards can be manifested in the process of controlling passengers in the terminal, and can also be manifested in various forms such as the operation process of air traffic controllers and maintenance personnel, or defects in management systems and support facilities.

Latent

Safety hazards are potential conditions and therefore have the characteristic of being hidden and not easily detected. In a given situation or environment, safety hazards are in a stable state until they encounter an excitation state that leads to a manifest failure and then to the development of an accident. Some safety hazards can only be detected and solved by investing certain technical and financial resources, and this becomes part of the consequences of the safety hazard.

> Serendipity

There is also uncertainty in the existence of safety hazards, in the occurrence and development of hazards, in the kind of accidents that lead to them, and in the fact that the same hazard can lead to multiple accident consequences, but there is uncertainty about where, when and how they occur.

Controllability

Accidents can be prevented by identifying hazards and taking action to keep them within acceptable limits. However, safety hazards are constantly regenerating and new hazards can be created in the process of managing them.

3.1.4 Risk Assessment

The risk matrix is a generic risk evaluation method and due to its simplicity it is recommended by ICAO to be used by airports within their safety management system. [22] In this method, risk is evaluated qualitatively by rating the probability and severity of the possible worst case scenario. The resulting risk index represents the combination of these two values, indicating the different levels of risk. Both values, severity and probability are represented through 5 values scales (Table 3 and Table 4). In the ICAO Safety Management Manual, the likelihood of risk and the severity of risk are combined in a typical risk matrix.

Likelihood	Meaning	Value
Frequent	Likely to occur many times (has occurred	5
	frequently)	
Occasional	Likely to occur sometimes (has occurred	4
	infrequently)	
Remote	Unlikely to occur, but possible (has occurred	3
	rarely)	
Improbable	Very unlikely to occur (not known to have	2
	occurred)	
Extremely improbable	Almost inconceivable that the event will occur	1

Table 3 - Meaning risk probability [23]

Table 4 - Meaning of risk severity [23]

Severity	Meaning	Value
Catastrophic	Aircraft / equipment destroyed	A
	Multiple deaths	
Hazardous	• A large reduction in safety margins, physical distress or a	В
	workload such that operational personnel cannot be relied upon	
	to perform their tasks accurately or completely	
	Serious injury	
	Major equipment damage	

Major	• A significant reduction in safety margins, a reduction in the	С
	ability of operational personnel to cope with adverse operating	
	conditions as a result of an increase in workload or as a result of	
	conditions impairing their efficiency	
	Serious incident	
	Injury to persons	
Minor	Nuisance	D
	Operating limitations	
	•Use of emergency procedures	
	Minor incident	
Negligible	Few consequences	E

Safety Risk		Severity				
Probability		Catastrophic A	Hazardous B	Major C	Minor D	Neg <mark>ligible</mark> E
Frequent	5	5A	5B	5C	5D	5E
Occasional	4	4A	4B	4C	4D	4E
Remote	3	ЗА	3B	3C	3D	3E
Improbable	2	2A	2B	2C	2D	2E
Extremely improbable	1	1A	1B	1C	1D	1E.

Figure 8 - Risk Matrix [23]

According to the ICAO definition of the risk matrix, risk levels are divided into three main ranges, with different colour to indicate the level of risk.(Figure 8) Red indicates that the risk of the event is unacceptable and immediate action should be taken to stop the event, otherwise it could easily lead to a catastrophic event. Yellow indicates that the event can be tolerated under the safety risk mitigation, which also require appropriate decisions to reduce the risk. Green indicates that the event is acceptable and does not require risk mitigation.

4. Safety analysis of the chosen processes at the airport during low regime operations

This thesis will focus on the process of aircraft activity on the ground, analyzing ground handling and aircraft movement. Airport ground handling is an important part of the industry, and the aviation industry relies heavily on people who service aircraft on the ground, as their work directly impacts flight safety in airline and airport operations. The International Air Transport Association (IATA) definition is used: 'Ground Handling covers the complex series of processes required to separate an aircraft from its load (passengers, baggage, cargo and mail) on arrival and combine it with its load prior to departure'.

- 1) Taxiway
- 2) Aircraft stand
- 3) Aircraft stand marking
- 4) Aircraft stand clearance line
- 5) Aircraft clearance line
- 6) Movement area Jetway
- 7) Fuel hydrant pit
- 8) Parking space ground handling equipment with height restriction
- 9) Parking space ground handling equipment
- 10) Access/exit
- 11) Jetway

However, in contrast to our long-held perception of the aviation industry as being highly safe, for those working in ground handling, the profession is known to be exceptionally hazardous. A 2017 study conducted in the United States revealed that the frequency of non-fatal accidents in the ground handling sector was four times higher than the accident frequency of the industry as a whole. [24]

Therefore, aircraft ground handling is also related to the aircraft taxiing, which involves from pushing back to before takeoff or arriving at the apron.

4.1 Defining the Purpose of the Analysis

At the beginning of the use of STPA, it is first necessary to determine the general system-level hazards in the relevant processes defined by the scope of the analysis. In order to do this, the possible loss events should be determined. As defined above, this includes loss of life or injury, damage to property, environmental pollution, mission loss, economic loss, etc. In this context the following losses were defined within the performed analysis(Table 5):

Table 5 - Identified Losses related to the airport operations – defined scope

Level	Loss
L1	Loss of life or injury to people
L2	Loss of or damage to aircraft
L3	Loss of or damage to ground infrastructure
L4	Delay or loss of flight slot

The next step is to define the system-level hazards by identifying system states or conditions that will lead to a loss in worst-case environmental conditions. The following list provides identified system-level hazards within the scope of the performed analysis:

H-1 Distance between aircraft and other object on the ground decreasing more then allowed. {L1,L2,L3}

H-2 Procedures (GHD) applied for different aircraft type {L4}

H-3 Airport or GHD personnel missing training or knowledge {L1}

H-4 Handling capacity exceeded {L2,L3,L4}

H-4.1 Personnel number during GHD/operations less than required during the process

H-4.2 Applied GSE less than required or inadequate during the process H-5 Airport surface used for taxiing inadequate or with degraded state {L4} H-6 Foreign object around aircraft during taxiing and ground handling. {L2} In general, a hazard may result in one or more losses, each of which should be traced back to the resulting loss. This traceability is usually recorded in parentheses after the hazard description. At the same time Hazards (H-n) and Safety Constraints (SC-n) derived from these losses are enumerated:

H-1 Distance between aircraft and other object on the ground decreasing more then allowed. {L1,L2,L3}

SC-1 Aircraft must satisfy standard separation from other aircraft or objects during operations on the ground

SC-2 If aircraft violates standard separation from other aircraft or objects, then the violation must be detected and measures taken to prevent collision

H-2 Procedures (GHD) applied for different aircraft type {L4}

SC-3 Aircraft type should be verified and GHD process prepared according to the actual traffic situation.

SC-4 If change of the aircraft type is not detected before start of the processes, immediate change of procedure after detection should be triggered.

H-3 Airport or GHD personnel missing training or knowledge {L1}

SC-5 Personnel training and knowledge shall be carried out according to the set requirements.

SC-6 If any personnel missing training or knowledge, this fact should be detected and acted immediately

H-4 Handling capacity exceeded {L2,L3,L4}

H-4.1 Personnel number during GHD/operations less than required during the process

SC-7 The minimum number of personnel should meet the requirements

SC-8 If personnel missing or changing, process performance standard should not be deteriorated.

H-4.2 Applied GSE less than required or inadequate during the process

SC-9 The minimum number of GSE should meet the requirements

SC-10 If GSE less than requirement, process performance standard should not be deteriorated..

H-5 Airport surface used for taxiing inadequate or with degraded state {L4}

SC-11 Airport operator should continuously provide adequate surface for taxiing, GHD and other operations.

SC-12 If pavement surface less than requirement, detection must be ensured before operation on this infrastructure.

H-6 Foreign object around aircraft during taxiing and ground handling. {L2}

SC-13 Keep ground clean when the aircraft is operating on the ground or according to the set plan(No foreign objects).

SC-14 If foreign objects is occur on the ground, detection must be ensured before operation on this infrastructure.

4.2 Modeling the Control Structure

The scope of the analysis includes the processes where identified entities are the following:

- Civil aviation authority(CAA)
- Air Traffic Control (ATC)
- GHD Company
- Airline
- Airport Operator

Defined control structure is defined in the following graph (Figure 9)

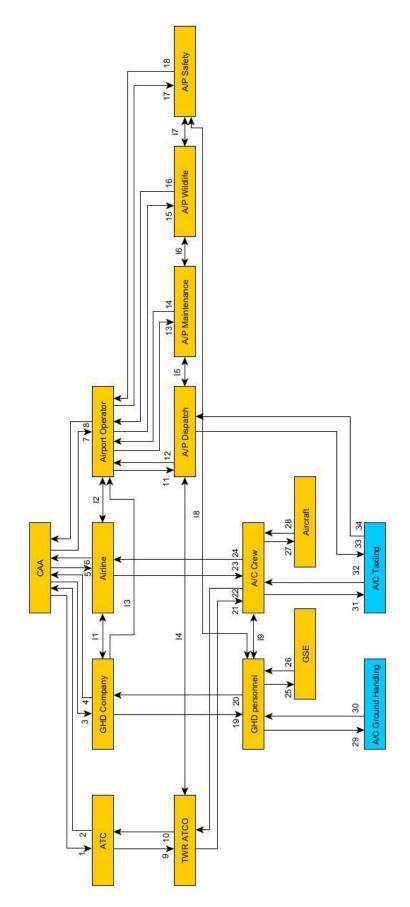


Figure 9 - Airport control structure

While control structure represents the relevant control loops and controllers, the problems in form of UCA can occur at any point within the defined structure. For example, a process model that is inconsistent with the real situation, which can lead to control actions that are unsafe. The structural design may lack necessary feedback, or it may provide delayed feedback, resulting in incomplete process models and unsafe behavior. However, STPA provides a way to systematically identify these and other scenarios that could lead to loss or disaster. The following table 6 is a list of responsibilities, control actions and feedback in the processes that are the subject of this analysis.

Table 6 - List of Control Actions (white background) and Feedbacks (gray

background)

CA/Fee-	CA/Feedback
dback	
(n.)	
1	Perform audit/inspection of the relevant processes
	Requires implementation of the set regulations
2	Audit/Inspection response and reports
	Process/regulation implementation
3	Audit/inspection of the relevant processes
	Issuing request for implementation of the set regulations
	Verifies the requirements for licensing
	Assigning licenses to the corresponding subject
4	Audit/Inspection response and reports
	Process/regulation implementation
5	Audit/inspection of the relevant processes
	Issuing request for implementation of the set regulations
	Verifies the requirements for licesing
	Assigning licenses to the corresponding subject
6	Audit/Inspection response and reports
	Process/regulation implementation
7	Audit/inspection of the relevant processes
	Issuing request for implementation of regulations
	Verifies the requirements for licesing

	Assigning licenses to the corresponding subject
8	Audit/Inspection response and reports
	Process/regulation implementation
9	Train and exam personnel
	Assigns the personnel to the task within shift
	Sets the procedure and verifies its integrity Prescribes daily working
	plan
	Opens or interrupts the work shift for the given positions according to
	the given limits
10	Training completion and exam fulfillment
	Confirms the post engagements according to the shift settings
	Applies the procedure at the given position
	Start or stop working at the designated position according to the work
	limits
	Confirms the coordination with other ATC units
11	Sets aircraft dispatch procedure
	Engage required personnel to the working posts
	Train and exam personnel
	Monitors and verifies dispatch systems provision
	Delegates the funds for the initiatives and processes
12	Aircraft dispatch procedure implementation
	Training completion and exam fulfillment
	Confirms the post engagement according to the shift settings
	Applies the procedures at the given position
	Indicates the dispatch systems functionality and provision
	Confirms the coordination with other airport units
13	Sets the implementation of airport infrastructure maintenance
	procedure
	Assigns the airport infrastructure maintenance equipment
	Assigns personnel for the maintenance positions
	Trains and exams personnel
	Delegates the funds for the initiatives and processes
14	Performs the infrastructure maintenance and changes
	Training completion and exam fulfillment
	Performs FOD check and elimination
	Performs inspection of the infrastructure changes

	Infrastructure maintenance procedure implementation
	Confirms the post engagement according to the shift setting
	Indicates the maintenance system functionality and provision
	Reports the Airport infrastructure state
	Confirms the coordination with other airport units
15	Sets the implementation of airport Wildlife control procedures
	Assigns airport Wildlife control equipment
	Assigns personnel for the Wildlife control posts
	Trains and exams personnel
	Delegates the funds for the initiatives and processes
16	Performs the wildlife control
	Training completion and exam fulfillment
	Implements preventive wildlife control procedures
	Wildlife control equipment implementation
	Confirms the post engagement according to the shift setting
	Indicates the wildlife control system functionality and provision
	Reports the Wildlife control state
	Confirms the coordination with other airport units
17	Sets the implementation of airport safety procedures
	Assigns airport safety equipment
	Assigns personnel for the safety management
	Assigns the Safety Manager
	Sets the safety priorities and processes through safety groups
	Priorities the safety mitigation measures and initiatives
	Trains and exams personnel for the safety management posts
	Delegates the funds for the initiatives and processes
18	Performs safety management procedures
	Training completion and exam fulfillment
	Identifies hazards and assess the risks
	Confirms or prohibits the procedures which do not fulfil safety
	standards
	Reports safety events and statistics
	Starts and leads safety mitigation measures
	Performs safety audits and inspections
	Confirms the post engagement
	Indicates the safety management system functionality and provision

	Leads the safety initiatives and programs
	Confirms the coordination with other airport units
	Reports to the state of safety management systems of the third parties
19	Sets the implementation of GHD procedures
	Assigns the GHD personnel
	Assigns the functional GHD equipment
	Trains and exams personnel
	Sets the daily shift and engagement plans
	Corrects and manages GHD performance
	Performs the on-site inspections and audits
	Delegates the funds for the initiatives and processes
20	Implements the GHD procedures
	Performance of the GHD services
	Training completion and exam fulfillment
	Reports safety events or irregularities
	Confirms the post engagement
	Indicates the GHD system functionality and provision
	Confirms the coordination with other GHD units
21	Issues clearance for taxiing from parking position
	Issues clearance for aircraft taxiing to or from the stand
	Issues corrects during movement
	Issues clearance for aircraft pushback
22	Confirms clearances and readback
	Requesting clearances and instructions
	Reporting states
	Reporting safety or other relevant events
23	Sets the implementation of crew procedures
	Assigns the crew
	Assigns the aircraft and other relevant equipment
	Trains and exams personnel
	Sets the daily shift and engagement plans
	Monitors and assess crew performance
	Performs the on-site inspections and audits
	Delegates the funds
24	Implements the crew procedures
	Performs flights

	Training completion and exam fulfillment	
	Reports safety events or irregularities	
	Confirms the post engagement	
	Indicates the airline system functionality and provision	
	Confirms the coordination with other airline units	
25	Manipulates the GSE before, during and after ground handling	
	Sets the GSE into or out of service	
26	Equipment reported in or out of service	
27	Flying and maneuvering of the aircraft	
28	Aircraft movement	
	Status indication	
29	Aircraft ground handling:	
	Aircraft refueling (grounding, fuel amount setting, hose	
	connection/disconnection, dead-man switch setting, fueling trigger	
	turning on/off)	
	Aircraft catering (catering truck connecting, galley trolley insertion,	
	equipment temperature regulation)	
	Passenger services (passengers stairs/bridge	
	connection/disconnection. Passenger disembarkation/embarkation	
	directing)	
	Aircraft water services and cleaning (Truck connection/disconnecti	
	Refilling initiation)	
	GPU services (connects/disconnects the electricity cable)	
30	Fueling indication	
	Catering completion report	
	Passenger stairs/bridge positioning indication	
	Passenger boarding/deboarding completion report	
	Liquid filling indication	
	GPU connection/disconnection indication	
31	Maneuvering of the aircraft	
32	Status indication	
33	Parking stand allocation	
	Parking stand closure and opening	
34	Stand allocation confirmation	
	Stand closure/opening confirmation	

4.3 Identifying Unsafe Control Actions (UCA)

Once the control structure has been modeled and Cas defines, the next step is to identify Unsafe Control Actions(UCA). UCA is a control action, which will lead to a hazard in a particular context and worst environment. According to the control actions analyzed above, the corresponding UCA can be defined – presented in the following table (Table 7). Unsafe control actions are defined for the relevant processes defined within the controllers process model. These are commonly stated in the UCAs as "process". (full list of defined UCA is presented in the Annex 1)

n.	Not providing causes hazards	Providing causes hazards	Provided too early, too late	Stopped too soon, applied too long
1	Audit/inspection not performed	Regulation implementation brings the degradation of the process performance	Audit/Inspection performed before process change/modificatio n implemented	
3	Personnel licensing not performed before process initiation	Personnel licence issued for inadequate personnel position	Personnel licence issued before confirmation of the requirements	
5	New regulation implementation not required before process initiation	Regulation implementation brings the degradation of the process performance	Audit/Inspection performed before process change/modificatio n implemented	
7	Audit/inspection not performed before long-term work	Regulation implementation brings the degradation of the	Audit/Inspection performed before process change/modificatio	

	interruptions	process	n implemented	
		performance		
	Training and			
9	examination not performed before engagement to the given position	Assigned personnel less then set limit during intensive workload	Training and examination finished too early before process initiation	Training and examination not finished before process initiation
11	Personnel not engaged and assigned for the dispatch post	Assigned personnel trained for inadequate procedure	Engage required personnel to the working post too early,too late	Assignment and engagement f the personnel not finished before process initiation
13	Funding not secured before processes initiation	Funds is insufficient when processes initiation	Funding not secured after processes initiation	
15	Wildlife control procedure not set before traffic initiation	Wildlife control procedure not in line with the infrastructure, existing processes and traffic	Reports the wildlife control state before setting	
17	Safety management procedure not set before traffic initiation	Safety management procedure not in line with the infrastructure, existing processes and traffic	New safety management procedures sets after traffic initiation	
19	Ground handling procedure not set before traffic initiation	Ground handling procedure not in line with the infrastructure, existing processes	Ground handling procedure set after traffic initiation	

		and traffic	
		Clearance for	Clearance for
21		taxiing/pushback/	taxiing/pushback/
		to parking position	to parking
21		issued for	position issued
		inadequate	with the long
		parking position	delay
	Crew procedure	Crew procedure	
	for the given	not in line with the	
23	airport not set	infrastructure,	
	before traffic	existing processes	
	initiation	and traffic	
		GSE manipulated	
		differently then	
25	GSE not used	stated by producer	
		during the ground	
		handling	
		Aircraft maneuver	
27		crosses aircraft or	
21		infrastructure	
		limits	
		Particular ground	
	Particular	handling	
	ground handling	procedures	
29	procedures not	performed during	
	performed	traffic with aircraft,	
	during traffic	equipment and	
		personnel limits	
		crossing	
		Aircraft maneuver	
31		crosses aircraft or	
		infrastructure	
		limits	
	Allocated stand		
33	before official	Allocated stand	
	activation of the	inadequate for	

stand	expected aircraft	
	type	

4.4 Identifying loss scenarios

Once unsafe control actions have been identified, the next step is to identify loss scenarios. As definition of STPA, a loss scenario describes the causal factors that can lead to the unsafe control actions and to hazards.[16]

The scenarios for the analyzed processed and identified UCAs were defined in a context of the low-regime operation at the airport. This practically means that all scenarios takes into consideration the existence of the potential influence of the traffic changes all other effect that such change brings. Low-regime operations factor is explained in the context of the particular scenarios and could be described with the following states:

- Process routine
- Process experience and knowledge
- Lack of capacity (number of required personnel for the given task)
- Inadequate planning (GHD capacities, parking stand capacity, stand allocation priorities, GSE allocation, Passenger bus/airbridge operator planning, etc.)
- Unexpected procedural changes (changes of the standardized or previous procedures)
- Unexpected traffic changes (delays, aircraft type changes, flight times changes, etc.)
- Increased time limits for the operations

In this context the following scenarios were defined (examples – full list of defined scenarios is presented in the Annex 2)

n.	Scenario	Recommended mitigation
	Aircraft damaged during the GHD	Recurrent check of skills and
S-1	procedure (relevant procedures	knowledge after defined time period

	defined in CA) as GHD personnel	service interruption.
	crossed the manipulation abilities of	
	the GSE due to lack of knowledge	
	or experience	
	Aircraft damaged during the GHD	Improved safety campaign in the basic
	procedure (relevant procedures	
	defined in CA) before GHD	brief increasing awareness of the
	personnel disrespect aircraft safety	
	zone by GSE due to lack of	
S-2	knowledge or experience	safety initiatives.
	Aircraft damaged during GHD	
	procedure (relevant procedures	Interruption of the vehicle operation if
	defined in CA) with the GSE, due to	the sign list not present, controlled
	contact with the vehicle/equipment	
	caused by insufficient visual contact	
S-3	or sign list missing	sensors and cameras.
	Aircraft damaged during the GHD	Check placement standardization for all
	procedure (relevant procedures	Chock placement standardization for all
	defined in CA) due to unexpected movement of the aircraft caused by	customers at the given airport. Pre-GHD briefing initiation for the inexperienced
	insufficient chock positioning	personnel targeting variable
	performed by misinformed	requirements processes - coning,
S-4	personnel	chokes, etc.
		Confirmation of the aircraft type in the
		link between airline-atc-airport dispatch-
	Aircraft damaged with the	GHD. Implementation of the sensors
	stairs/airbridge due to provision of	within VDGS detecting irregularities in
	the services to the inadequate	reported aircraft type. Interruption of the
	aircraft type, whose change was not	GHD operations before adequate GHD
S-5	reported	equipment Insurance
	Aircraft damaged with the	Adverse weather condition prediction
	unsecured FOD or movable object	involved in intensive infrastructure
	unsecured during the adverse	check plan. Insurance of the addition
	weather conditions, due to lack of	monitoring shift in case of storm
	procedure for the responsible	prediction at least 30 minutes before it.
S-6	personnel	Safety campaign targeting GHD

		personnel processes before adverse
		weather conditions.
	Personnel member injured during	
	the handling procedure due to	
	decreased distance between	
	running engine and before anti-	On-stand marking for anti-collision lights
	collision lights off. Personnel	on zone. Intensive monitoring of the
	misinformed or lacking basic safety	compliance after the traffic recovery for
S-7	knowledge.	three months.
	Personnel member injured during	
	GSE manipulation due to not	Several steps training process and
	respecting vehicle/equipment	validation of the knowledge and skills
	operational limits and lacking	for the all operating aircraft types at the
S-8	skill/experience at the given position	given airport.
	Personnel member injured due to	
	collision with the FOD or moveable	
	object not secured or eliminated by	
	infrastructure maintenance unit	
	(snow, ice, loose objects or	Daily surface check during the days of
S-9	pavements)	decreased temperature.
	Personnel member injured due to	Improved safety campaign in the basic
	entering jet engine protective zone	safety training, and issuing of safety
	behind the engine during engine	brief increasing awareness of the
	start, during the procedure	aircraft safety zones, for the new
S-	performed with the personnel	employees and within the existing
10	number less then required	safety initiatives.

5. Risk assessment based on loss scenario

As stated in the methodology, risk assessment is performed using the standard ICAO risk matrix. The assessment process starts with the definition of the subject of the assessment, in case of this matrix, a worst-case scenario.

This scenario represents the safety accident/incident, which is assessed on probability/frequency of the occurrences, and severity.

This assessment is focused on the main defined scenarios within the STPA analysis. There are approaches for risk assessment recommended by STAMP authors, however, scope of this thesis is limited to the basic estimation of the risk indexes, not strictly focusing on the potential effectiveness of the mitigation measures.

As defined in the previous chapter, according to the STPA analysis outcomes, lowregime operation is defined through several states. These states are used to properly define potential loss scenarios, and while many scenarios are common in its sense among all identified controllers, the selection of the loss scenarios, representing the subject of the risk assessment is the following:

S-1: Aircraft damaged during the GHD procedure (relevant procedures defined in CA) as GHD personnel crossed the manipulation abilities of the GSE due to lack of knowledge or experience

The probability of the risk is evaluated with the value 2 while GDH company involves the standard training with the GSE equipment. Number of the occurrences related to the issue are evaluated as low or moderate. Severity is assessed with index C.

S-5: Aircraft damaged with the stairs/airbridge due to provision of the services to the inadequate aircraft type, whose change was not reported

Change of the aircraft type is common situation. In the period of traffic recovery it happens more often, bringing a need for improvement of communication and reporting. Probability is evaluated with 2 and severity with index D

S-9: Personnel member injured due to collision with the FOD or moveable object not secured or eliminated by infrastructure maintenance unit (snow, ice, loose objects or pavements)

Having in mind the size of maintained surface by the delegated airport unit,

occurrences of the FOD originating from the airport infrastructure is expected to be frequent. In winter conditions, surface contamination is quite common particularly in the zones with the presence of the equipment or devices producing condensation. Probability in this case is evaluated with the index 3 and severity with the index D.

S-13: Passenger injured due to entrance to the aircraft protective zone during the GHD operations. Corridor not monitored due to absence of the personnel or lack of experience.

With the trend of high employee fluctuation in the sector of aircraft ground handling, training becomes more challenging process. Insufficient awareness of the personnel in the high-risk areas like engine protection zone could be considered as common. Probability is evaluated with the index 3 and severity with the index C.

S-31: Aircraft damaged due to contact with the damaged pavement on the taxiway during taxiing. Pavement check and control performed before infrastructure damage occurred or not detected

Commonly as in the case of S-9, ensuring FOD-free zone on the airport surface is time-consuming and challenging task. Presence and following suction of the FOD into the engine for instance is considered to be probable case, therefore index 3, while severity with index B.

S-40: GHD personnel injury during the GHD process due to not obeying on-stand traffic rules, due to negative attitude to job position. Lack of experience in aviation sector and unknown working environment.

Incorporating human factor into safety analysis is in the socio-technical systems a common thing. Reluctance or demotivation caused by many internal or external factors could lead to serious process violation. Having in mind that lack of personnel in the current years becomes more and more serious issue, probability is evaluated as high 4, and severity as minor, D.

S-44: GSE equipment damaged due to existing previous technical difficulties while exploited in high traffic volume. Maintenance check not performed due to

inadequately set procedures

State of GSE equipment is a well known problem, which became bigger with the lowoperation regime during last years and decreased investments in such kind of equipment. Increased number of the technically inadequate GSE raise the attention and therefore a probability of the issue to a level marked with the index 3, however severity remains at the level of C, bearing in mind that such kind of equipment operates at lower speed and extensive damages are not expected.

Assessment of the risk could be performed for all defined hazard consequences. It is important to be noted that, classic risk assessment is common in aviation industry, mainly to the recommendations and request placed on entities in this industry to implement Safety Management System. It still remains a question, mainly in academic circles, whether such kind of evaluation bring a useful information, that can serve for active management, or it is valuable only for statistic evaluation and comparison.

6.Discussion

Low-regime periods of operations, brought a new view on the aviation industry and become a challenging state of the global aviation system. The focus of the performed analysis is on the processes that are taking place at the airport. While performed hazard analysis takes into consideration certain set of airport operation processes, results will be discussed within this scope.

Analysis was performed for the processes mutually interconnecting several entities. These processes are aircraft taxiing process, and ground handling process. According to such scope limitation, firstly the losses were defined. Losses in the case of this analysis do not differ from the standard losses that could be find within the analyses in the aviation domain. Define loss represent the consequence, worst case scenario event, caused by identified factors within the context of the low-regime operations. It cannot be concluded that airport operation within low-regime state

creates specific loss events, not common in other system settings or states. Such conclusion confirms the appropriateness of the applied methodology.

Set of the identified controllers, relevant for the scope of the analysis covers the fundamental activities, necessary for process to be performed. While analysis is focused on the airport operations, it is important to distinguish the responsibilities and competencies. Proposed control structure defines the strictly airport-related controllers, hierarchically presented below airport operator. It can be concluded that analyzed processes could be assessed on the systemic level only if all relevant entities are defined in the control structure, due to wide interconnection and cooperation between them. Defined system level hazards were defined and then defined at the conclusion of the analysis.

Defined control actions were derived from the responsibility, accountability and authority of the defined controllers. All CA are the actions derived from the standardized setting of the particular work positions. This means that all relevant activities, set to change the current state of the process/system were considered.

Based on the defined control actions, the third step of the analysis brings the set of the defined Unsafe Control Actions. Definition of the UCAs was done in accordance to the proposed methodology. UCAs serve as the core of the loss event creation. Results show that many of the defined UCAs highlight the common issues that are related to the low-regime operations. These aspects were stated in order to practically define such kind of operational regime. All of the aspects were successfully used for the loss scenarios definition. This implies that low-regime operation state is represented in the loss scenarios through a defined context that respects these aspects.

Loss scenarios showed the quite easily detectable relation between common hazards related to the defined processes and new factors represented as the aspects of the low-regime operations. This relation confirms that such factors in a certain case could boost the UCAs and practically speed up the occurrence of the unwanted scenarios.

While applied method takes into consideration the interactions between several

UCAs it is quite practical for setting of the corrective measures. In this context, Corrective measure is understood as the measure created to ensure the required safety constraints. All mitigation measures were defined in the sense of the practically applicable solutions that leads to a better ensuring of the required safety constraints or eliminating the potential for UCAs creation.

Risk assessment was performed for the certain set of the identified hazard consequences, that includes defined low-regime operation factors. Risk assessment as such bring the general view on the risk in form of the probability and severity. Practical application of such conclusion depends on the needs of their user and further analytical intentions.

7. Conclusion

Airport safety is currently a major concern and the urgent resolution of safety hazards is the vision of all airports. This thesis describes the impact on airports during the pandemic. For example, traffic trends at airports, changes in passenger boarding procedures, airports facing labor shortages and currently airports facing postpandemic impacts. In briefly, the airport is under a low operating regime and there are many safety hazards. If the relevant personnel at the airport do not identify and solve these hazards in advance, it may increase the rate of accident. Therefore, this paper adopts STPA method to identify airport hazards, which is mainly divided into four steps: 1) Define the purpose of analysis; 2) Establish the model of airport control structure; 3) Identify unsafe control actions through the control loops; 4) Identify how the hazard is formed in combination with the scenarios. Each hazard does not exit alone, when multiple hazards exist and interact with each other, there is the potential to reduce safety margins and lead to unimaginable consequences. Therefore, the hazards in the scenario are assessed with the ICAO risk assessment tool, which quickly retrieves the level of risk and understands the threat that each hazard poses to the safe operation of the airport.

By analyzing unsafe actions and major scenarios at airports, it is concluded that airport hazards mainly exist in the management system, GHD personnel's control of GSE and the functionality of airport equipment. The management system is mainly manifested in the training and examination of personnel, the issuance of licenses, shift system, personnel allocation and related supervision units; The operational changes of GHD personnel are mainly manifested in knowledge and experience, GHD procedure operation and the usage of GSE; The infrastructure of the airport is mainly manifested in the maintenance of equipment, the functions of equipment and the number of equipment.

Airport safety hazards are widely distributed and each individual affects the other. Other parts of the airport can be further analyzed, such as the influence of airlines on airport procedures and so on. The current global situation is tense and the low

operational status of airports could fall into another negative state at any time. In order to ensure safe airport operations, airport operations need to consider airport safety in the planning and construction of airports in the post-pandemic era, and to reduce or eliminate safety hazards wherever possible. Adjustments should be made according to the actual situation and strategies need to be continuously improved to ensure the safety quality of the airport and to achieve sustainable development.

Reference

[1] Worsnop C.Z. Domestic politics and the WHO's International Health Regulations: explaining the use of trade and travel barriers during disease outbreaks. *The Review of International Organizations*. 2017;12:365–395. [Google Scholar]

[2] ZHANG, Yuan, LinChuang ZHU and Feng HAO, 1AD. The impact of the COVID 19 pandemic on China's airline industryFrontiers [online] [accessed. 29. November
 2022]. Retrieved z:

https://www.frontiersin.org/articles/10.3389/fpubh.2022.865463/full

[3] Airports Council International (ACI), 2023a. The impact of covid-19 on airportsand the path to recovery. ACI World [online] [vid. 7. srpen 2023]. Získáno z: https://aci.aero/2023/02/22/the-impact-of-covid-19-on-airportsand-the-path-torecovery-industry-outlook-for-2023/

[4] Airports Council International. The Impact of COVID-19 on the Airport Business— And the Path to Recovery. 2022. Available online: <u>https://aci.aero/2022/02/24/the-impact-of-covid-19-on-the-airport-business-and-the-path-to-recovery-4/.</u>

[5] V., Bilotkach and Martini G., no date. Journal of Air Transport ManagementJournal of Air Transport Management | ScienceDirect.com by Elsevier [online] [accessed. 29. November 2022]. Retrieved z: <u>http://www.elsevier.com/locate/jairtraman</u>

[6] Eurocontrol, 2020a. Impact assessment of covid-19 measures on airport capacity. ARC [online] [vid. 7. srpen 2023]. Získáno z: https://arc.de/portfolio_page/impact-assessment-of-covid-19-measures-on-airportcapacity/

[7] IATA [online] [vid. 7. srpen 2023 b]. Získáno z: https://www.iata.org/

[8] BIKALES, James, 2022. Chaos at European airports strands travelers. here's why.The Washington Post [online] [accessed. 29. November 2022]. Retrieved z: https://www.washingtonpost.com/travel/2022/06/13/europe-airport-cancellations-explainer/

[9] Live airline flight cancellations info & statistics. FlightAware [online] [vid. 7. srpen 2023 c]. Získáno z: https://flightaware.com/live/cancelled/

[10] KAZDA, Antonin, Benedikt BADANIK a Francisco SERRANO, 2022. Pandemic vs. post-pandemic airport operations: Hard impact, slow recovery. MDPI [online] [vid.
7. srpen 2023]. Získáno z: https://www.mdpi.com/2226-4310/9/12/810#B21-aerospace-09-00810

[11] Yesim KURT,Ender GEREDE, nedatováno. Evaluation of safety management systems in the Turkish ... - dergipark [online] [vid. 7. srpen 2023 a]. Získáno z: https://dergipark.org.tr/tr/download/article-file/292070

[12] ICAO. Doc 9859 Safety Management Manual. International Civil Aviation Organization, Montreal, Quebec, 2018. ISBN 978-92-9258-552-5.

[13] CAREEN, Nick, 2022. IATA safety reportIATA [online] [accessed. 29. November 2022]. Retrieved z: https://www.iata.org/en/publications/safety-report/

[14] INTERNATIONAL CIVIL AVIATION ORGANIZATION. Annex 19 to the convention on international civil aviation: safety management. Montreal, 2013a.

[15] BRAITHWAITE, G. R.; CAVES, R. E.; FAULKNER, J. P. E. Australian aviation safety: observations from the "Lucky" country. Journal of Air Transport Management, v. 4, p. 55- 62, Jan. 1998.

[16] Nancy Leveson. Engineering a safer world : systems thinking applied to safety. The MIT Press, Cambridge, Mass, 2012. ISBN 9780262016629.

[17] G.LEVESON, Nangy. CAST HANDBOOK: How to Learn More from Incidents and Accidents. 2019. Available also from: http://sunnyday.mit.edu/CASTHandbook.pdf.

[18] What is stamp/STPA? Reykjavik University [online] [vid. 7. srpen 2023 e]. Získáno z: https://en.ru.is/stamp/what-is-stamp/

[19] Idoaldo Lima, Cláudio Jorge, Carlos Lahoz. (PDF) abordagem stamp aplicada a análise de segurança operacional na ... [online] [vid. 7. srpen 2023 e]. Získáno z:https://www.researchgate.net/profile/Idoaldo

Lima/publication/325157765_Abordagem_STAMP_Aplicada_a_Analise_de_Seguran ca_Operacional_na_Infraestrutura_Aeroportuaria_Brasileira/links/5b8e9649299bf114 b7f4118e/Abordagem-STAMP-Aplicada-a-Analise-de-Seguranca-Operacional-na-Infraestrutura-Aeroportuaria-Brasileira.pdf

[20] KLETZ, Trevor. HAZOP and HAZAN: Identifying and Assessing Process Industry

Hazards. Rugby, Warwickshire: Institution of Chemical Engineers, 2001.

[21] ZHAO, Qiong, 2015. Research on Civil Aviation Safety Hazard Evaluation Method - Mobile Knowledge Network [online] [accessed. 29. November 2022].

Retrieved z: <u>https://wap.cnki.net/touch/web/Dissertation/Article/10059-</u>

1016776728.nh.html

[22] NISULA, Jari M., 2019. A risk management framework for a complex adaptive transport systemTEL [online] [accessed. 29. November 2022]. Retrieved z: https://tel.archives-ouvertes.fr/tel-02078295/document

[23] SKYbrary [online] [accessed. 29. November 2022]. Retrieved z:

https://skybrary.aero/sites/default/files/bookshelf/5863.pdf

Annex 1- List of UCA

n	Not providing	Providing	Provided too	Stopped to soon,
	causes hazards	causes hazards	early, too late	applied to long
	UCA 1 -			
	Audit/inspection			
	not performed			
	before long-term			
	work interruptions			
	UCA 2 -			
	Audit/inspection			
	not performed after			
	irregularity/safety			
1	event occurrence			
	UCA 3 -			
	Regulations			
	implementation not			
	verified before	UCA 5 -		
	process initiation	Regulation	UCA 6 -	
	UCA 4 - New	implementation	Audit/Inspection	
	regulation	brings the	performed before	
	implementation not	degradation of	process	
	required before	the process	change/modificat	
	process initiation	performance	ion implemented	
	UCA 1 -	UCA 5 -		
	Audit/inspection	Regulation	UCA 6 -	
	not performed	implementation	Audit/Inspection	
	before long-term	brings the	performed before	
	work interruptions	degradation of	process	
	UCA 2 -	the process	change/modificat	
3	Audit/inspection	performance	ion implemented	
	not performed after	UCA 8 -	UCA 9 -	
	irregularity/safety	Personnel	Personnel	
	event occurrence	licence issued	licence issued	
	UCA 3 -	for inadequate	before	
	Regulations	personnel	confirmation of	
	implementation not	position	the requirements	

	verified before			
	process initiation			
	UCA 4 - New			
	regulation			
	implementation not			
	required before			
	process initiation			
	UCA 7 - Personnel			
	licensing not			
	performed before			
	process initiation			
	UCA 1 -			
	Audit/inspection			
	not performed			
	before long-term			
	work interruptions			
	UCA 2 -			
	Audit/inspection			
	not performed after			
	irregularity/safety			
	event occurrence			
	UCA 3 -			
_	Regulations	UCA 5 -		
5	implementation not	Regulation	UCA 6 -	
	verified before	implementation	Audit/Inspection	
	process initiation	brings the	performed before	
	UCA 4 - New	degradation of	process	
	regulation	the process	change/modificat	
	implementation not	performance	ion implemented	
	required before	UCA 8 -	UCA 9 -	
	process initiation	Personnel	Personnel	
	UCA 7 - Personnel	licence issued	licence issued	
	licensing not	for inadequate	before	
	performed before	personnel	confirmation of	
	process initiation	position	the requirements	

	UCA 1 -			
	Audit/inspection			
	not performed			
	before long-term			
	work interruptions			
	UCA 2 -			
	Audit/inspection			
	not performed after			
	irregularity/safety			
	event occurrence			
	UCA 3 -			
7	Regulations	UCA 5 -		
′	implementation not	Regulation	UCA 6 -	
	verified before	implementation	Audit/Inspection	
	process initiation	brings the	performed before	
	UCA 4 - New	degradation of	process	
	regulation	the process	change/modificat	
	implementation not	performance	ion implemented	
	required before	UCA 8 -	UCA 9 -	
	process initiation	Personnel	Personnel	
	UCA 7 - Personnel	licence issued	licence issued	
	licensing not	for inadequate	before	
	performed before	personnel	confirmation of	
	process initiation	position	the requirements	
	UCA 10 - Training	UCA 16 -		
	and examination	Assigned		
	not performed	personnel less		
	before	then set limit		
	engagement to the	during intensive		
9	given position	workload		
	UCA 11 - Required	UCA 17 -		
	personnel not	Integrity verified		UCA 19 - Shift
	assigned to the	only for certain		closed before
	respective post	processes even		another opened
	UCA 12 - Integrity	though all of		during high intensity
	of the process not	them initiated		traffic

	verified before	UCA 18 - Shift		
	initiation	closed before		
	UCA 13 - Daily	another opened		
	work plan not	during high		
	provided before	intensity traffic		
	process initiation			
	UCA 14 - Work			
	shift for the given			
	position not			
	opened in case of			
	overload			
	UCA 15 - Work			
	shift for the given			
	position not closed			
	in case of time limit			
	crossed and			
	fatigue of the			
	personnel			
	UCA 20 - Aircraft	UCA 25 -		
	dispatch procedure	Aircraft dispatch		
	not set before	procedure not in		
	traffic initiation	line with the		
	UCA 21 -	infrastructure,		
	Personnel not	existing		
	engaged and	processes and		
	assigned for the	traffic		
1	dispatch post	UCA 26 -		UCA 29 -
1	UCA 22 - Training	Assigned		Assignment and
	and examination	personnel		engagement f the
	not performed	trained for		personnel not
	before	inadequate		finished before
	engagement to the	procedure	UCA 28 -	process initiation
	given position	UCA 27 -	Funding not	UCA 30 - Training
	UCA 23 - Dispatch	Dispatch system	secured after	and examination not
	system not	provided not in	processes	finished before
	provided before	line with the	initiation	process initiation

	and during the	infrastructure,		
	traffic operations	existing		
	UCA 24 - Funding	processes and		
	not secured before	traffic		
	processes initiation			
	UCA 31 - Airport			
	infrastructure			
	procedure not set	UCA 36 - Airport		
	before traffic	maintenance		
	initiation	procedure not in		
	UCA 32 -	line with the		
	Personnel not	infrastructure,		
	engaged and	existing		
	assigned for the	processes and		
	infrastructure	traffic		
	maintenance post	UCA 37 -		
	UCA 33 - Training	Assigned		
1	and examination	personnel		
3	not performed	trained for		
	before	inadequate		
	engagement to the	procedure		
	given position	UCA 38 - Airport		UCA 40 -
	UCA 34 - Airport	infrastructure		Assignment and
	infrastructure	maintenance		engagement of the
	equipment not	equipment		personnel not
	provided before	provided not in		finished before
	and during the	line with the	UCA 39 -	process initiation
	traffic operations	infrastructure,	Funding not	UCA 41 - Training
	UCA 35 - Funding	existing	secured after	and examination not
	not secured before	processes and	processes	finished before
	processes initiation	traffic	initiation	process initiation

	UCA 42 - Wildlife			
	control procedure	UCA 47 -		
	not set before	Wildlife control		
	traffic initiation	procedure not in		
	UCA 43 -	line with the		
	Personnel not	infrastructure,		
	engaged and	existing		
	assigned for the	processes and		
	wildlife control post	traffic		
	UCA 44 - Training	UCA 48 -		
	and examination	Assigned		
1	not performed	personnel		
5	before	trained for		
	engagement to the	inadequate		
	given position	procedure		UCA 51 -
	UCA 45 - Wildlife	UCA 49 -		Assignment and
	control equipment	Wildlife control		engagement of the
	not provided	equipment		personnel not
	before and during	provided not in		finished before
	the traffic	line with the	UCA 50 -	process initiation
	operations	infrastructure,	Funding not	UCA 52 - Training
	UCA 46 - Funding	existing	secured after	and examination not
	not secured before	processes and	processes	finished before
	processes initiation	traffic	initiation	process initiation

	UCA 53 - Safety			
	management			
	-			
	procedure not set before traffic			
	initiation			
	UCA 54 -			
	Personnel not			
	engaged and			
	assigned for the			
	safety			
	management posts			
	UCA 55 - Training			
	and examination			
	not performed	UCA 60 - Safety		
	before	management		
	engagement to the	procedure not in		
	given position	line with the		
1	UCA 56 - Safety	infrastructure,		
7	management	existing		
	equipment not	processes and		
	provided before	traffic		
	and during the	UCA 61 -		
	traffic operations	Assigned		
	UCA 57 - Funding	personnel		
	not secured before	trained for		
	processes initiation	inadequate		
	UCA 58 - High risk	procedure		UCA 64 -
	safety issues not	UCA 62 - Safety		Assignment and
	mitigated or	management		engagement of the
	prioritized	equipment		personnel not
	UCA 59 - Safety	provided not in		finished before
	training not	line with the	UCA 63 -	process initiation
	performed for the	infrastructure,	Funding not	UCA 65 - Training
	airport posts	existing	secured after	and examination not
	before airport	processes and	processes	finished before
	operations	traffic	initiation	process initiation

	UCA 66 - Ground			
	handling procedure			
	not set before			
	traffic initiation			
	UCA 67 -			
	Personnel not			
	engaged and			
	assigned for the			
	ground handling			
	posts			
	UCA 68 - Training			
	and examination			
	not performed			
	before			
	engagement to the			
	given position	UCA 74 -		
	UCA 69 - GSE not	Ground handling		
1	provided before	procedure not in		
9	and during the	line with the		
	traffic operations	infrastructure,		
	UCA 70 - Funding	existing		
	not secured before	processes and		
	processes initiation	traffic		
	UCA 71 - High risk	UCA 75 -		
	safety issues not	Assigned		
	mitigated or	personnel		
	prioritized before	trained for		UCA 78 -
	operations	inadequate		Assignment and
	UCA 72 - Safety	procedure		engagement of the
	training not	UCA 76 - GSE		personnel not
	performed for the	provided not in		finished before
	ground handling	line with the	UCA 77 -	process initiation
	posts before	infrastructure,	Funding not	UCA 79 - Training
	initiation of the	existing	secured after	and examination not
	processes	processes and	processes	finished before
	UCA 73 -	traffic	initiation	process initiation

	Audits/inspections			
	not performed after			
	irregularity/safety			
	event occur			
		UCA 80 -		
		Clearance for		
		taxiing/pushback		
		/to parking		
		position issued		
		for inadequate		
2		parking position		
1		UCA 81 -		
		Clearance for		UCA 80 - Clearance
		taxiing/pushback		for
		/to parking		taxiing/pushback/to
		position issued		parking position
		for inadequate		issued with the long
		aircraft type		delay

	UCA 81 - Crew			
	procedure for the			
	given airport not			
	set before traffic			
	initiation			
	UCA 82 -			
	Personnel not			
	engaged and			
	assigned for the			
	crew posts			
	UCA 83 - Training			
	and examination			
	not performed			
	before			
	engagement to the			
	given position			
	UCA 84 - Funding			
2	not secured before			
3	processes initiation			
	UCA 85 - High risk			
	safety issues not			
	mitigated or			
	prioritized before	UCA 88 - Crew		
	operations	procedure not in		
	UCA 86 - Safety	line with the		
	training not	infrastructure,		UCA 92 -
	performed for the	existing		Assignment and
	crew posts before	processes and		engagement of the
	initiation of the	traffic		personnel not
	processes	UCA 89 -		finished before
	UCA 87 -	Assigned	UCA 91 -	process initiation
	Audits/inspections	personnel	Funding not	UCA 92 - Training
	not performed after	trained for	secured after	and examination not
	irregularity/safety	inadequate	processes	finished before
	event occur	procedure	initiation	process initiation

		UCA 94 - GSE	
		manipulated	
		-	
		against set traffic rules	
2		UCA 95 - GSE	
5		manipulated	
		differently then	
		stated by	
		producer during	
	UCA 93 - GSE not	the ground	
	used	handling	
		UCA 96 -	
		Aircraft	
		manipulated	
		against traffic	
2		rules	
7		UCA 97 -	
(Aircraft	
		maneuver	
		crosses aircraft	
		or infrastructure	
		limits	
	UCA 98 -		
	Particular ground	UCA 100 -	
	handling	Particular	
	procedures not	ground handling	
	performed during	procedures	
2	traffic	performed	
9	UCA 99 - High risk	during traffic	
	safety issues not	with aircraft,	
	mitigated or	equipment and	
	prioritized before	personnel limits	
	operations	crossing	
		UCA 96 -	
3		Aircraft	
1		manipulated	

		against traffic	
		rules	
		UCA 97 -	
		Aircraft	
		maneuver	
		crosses aircraft	
		or infrastructure	
		limits	
	UCA 101 -		
	Allocated stand		
	before official		
3	activation of the		
3	stand	UCA 103 -	
	UCA 102 - Parking	Allocated stand	
	closure information	inadequate for	
	sharing not	expected aircraft	
	performed	type	

Annex 2- List of Scenarios

n.	Scenario	Recommended mitigation
	Aircraft damaged during the GHD procedure	
	(relevant procedures defined in CA) as GHD	
	personnel crossed the manipulation abilities	Recurrent check of skills and
	of the GSE due to lack of knowledge or	knowledge after 1 month
S-1	experience	service interruption.
		Improved safety campaign in
		the basic safety training, and
	Aircraft damaged during the GHD procedure	issuing of safety brief
	(relevant procedures defined in CA) before	increasing awareness of the
	GHD personnel disrespect aircraft safety	aircraft safety zones, for the
	zone by GSE due to lack of knowledge or	new employees and within the
S-2	experience	existing safety initiatives.
		Interruption of the vehicle
		operation if the sign list not
	Aircraft damaged during GHD procedure	present, controlled during the
	(relevant procedures defined in CA) with the	first 3 months after traffic
	GSE, due to contact with the	recovery. Installation of the
	vehicle/equipment caused by insufficient	distance sensors and
S-3	visual contact or sign list missing	cameras.
		Chock placement
		standardization for all
		customers at the given airport.
	Aircraft damaged during the GHD procedure	Pre-GHD briefing initiation for
	(relevant procedures defined in CA) due to	the inexperienced personnel
	unexpected movement of the aircraft caused	targeting variable
	by insufficient chock positioning performed by	requirements processes -
S-4	misinformed personnel	coning, chokes, etc.
		Confirmation of the aircraft
		type in the link between
		airline-atc-airport dispatch-
		GHD. Implementation of the
	Aircraft damaged with the stairs/airbridge due	sensors within VDGS
	to provision of the services to the inadequate	detecting irregularities in
S-5	aircraft type, whose change was not reported	reported aircraft type.

		Interruption of the GHD
		operations before adequate
		GHD equipment insurance
		Adverse weather condition
		prediction involved in
		intensive infrastructure check
		plan. Insurance of the addition
		monitoring shift in case of
		storm prediction at least 30
	Aircraft damaged with the unsecured FOD or	minutes before it. Safety
	movable object unsecured during the	campaign targeting GHD
	adverse weather conditions, due to lack of	personnel processes before
S-6	procedure for the responsible personnel	adverse weather conditions.
	Personnel member injured during the	
	handling procedure due to decreased	On-stand marking for anti-
	distance between running engine and before	collision lights on zone.
	anti-collision lights off. Personnel	Intensive monitoring of the
	misinformed or lacking basic safety	campaign after the traffic
S-7	knowledge.	recovery for three months.
		Several steps training process
	Personnel member injured during GSE	and validation of the
	manipulation due to not respecting	knowledge and skills for the
	vehicle/equipment operational limits and	all operating aircraft types at
S-8	lacking skill/experience at the given position	the given airport.
	Personnel member injured due to collision	
	with the FOD or moveable object not secured	Daily surface check during the
	or eliminated by infrastructure maintenance	days of decreased
S-9	unit (snow, ice, loose objects or pavements)	temperature.
		Improved safety complain in
		the basic safety training, and
	Personnel member injured due to entering jet	issuing of safety brief
	engine protective zone behind the engine	increasing awareness of the
	during engine start, during the procedure	aircraft safety zones, for the
S-	performed with the personnel number less	new employees and within the
10	then required	existing safety initiatives.

		Safety campaign with training
		process, escalating the issue
	Personnel member injured during the	with the visual connect
	manipulation with the GSE due to lack of	describing consequences of
S-	protective equipment during high intensity	not wearing protective
11	operations	equipment
	Passenger injured during	
	embarkation/disembarkation due to presence	
	of the ice/show, or other slippery contaminant	
	on the passengers corridor. Corridor not	Daily surface check during the
S-	monitored due to absence of the personnel or	days of decreased
12	lack of experience.	temperature.
	Passenger injured due to entrance to the	
	aircraft protective zone during the GHD	
	operations. Corridor not monitored due to	Procedure set to open/close
S-	absence of the personnel or lack of	passenger corridor only by the
13	experience.	monitoring personnel member
	Passenger injured while passing on stairs,	Obligatory re-check of the
	not stabilized adequately due lack of	stairs stability by ramp agent
S-	experienced personnel during high-intensity	after walk-around procedure
14	traffic	for set time frame
		Two-step surface check
	Passenger injured while stepping on the	performed with two teams
	loose pavement or unstable surface on the	after long/short-terms
	passengers corridor, due to inadequate	operations interruptions and
S-	maintenance provided within given time	after adverse weather
15	frame	conditions.
		Improved safety complain in
		the basic safety training, and
		issuing of safety brief
		increasing awareness of the
	Aircraft safety zone corrupted by GSE	aircraft safety zones, for the
S-	equipment before or during the GHD	new employees and within the
16	procedure due to GHD personnel lack.	existing safety initiatives.

		Improved safety complain in
		the basic safety training, and
		issuing of safety brief
	Aircraft safety zone corrupted by GSE	increasing awareness of the
	equipment before or during the GHD	aircraft safety zones, for the
S-	procedure due to GHD personnel procedure	new employees and within the
17	violation	existing safety initiatives.
		Improved safety campaign in
		the basic safety training, and
		issuing of safety brief
		increasing awareness of the
		aircraft safety zones, for the
		new employees and within the
		existing safety
	Aircraft safety zone corrupted by GSE	initiatives.Extensive safety
	equipment before or during the GHD	study on the situation
	procedure due to GHD personnel omission or	awareness of the new
S-	loss of situational awareness. Issue not	employees with the aircraft
18	assessed on risk.	ground handling environment.
	Aircraft parking stand contains FOD due to	
	lack of stand check before GHD procedure	
	and aircraft get in collision with the FOD.	Implementation of the stand
S-	FOD check not performed due to lack of	CCTV FOD sensors and
19	personnel and earlier arrival of the aircraft.	monitors.
	Aircraft parking stand contains FOD due to	Confirmation for the FOD
	lack of stand check before GHD procedure	check within the VDGS, and
	and aircraft get in collision with the FOD.	interruption of the parking
S-	FOD check not performed due to lack	procedure if FOD check not
20	functionality of the scanning systems	detected.
		Adverse weather condition
		prediction involved in
		intensive infrastructure check
1		plan. Insurance of the addition
	Loose FOD collides with the GSE during	
	adverse weather, causing damaged to the	monitoring shift in case of
S-		

		campaign targeting GHD
		personnel processes before
		adverse weather conditions.
	Aircraft parking stand contains FOD or other	
	obstacles during the aircraft parking	Double stand availability
	procedure, causing collision. Aircraft stand	check and confirmation
S-	allocated was not opened and information	between dispatch and
22	was misinterrupted by airport dispatch	maintenance unit.
		Confirmation of the aircraft
		type in the link between
		airline-atc-airport dispatch-
		GHD. Implementation of the
		sensors within VDGS
	Aircraft in collision with the object or building	detecting irregularities in
	at the aircraft stand during parking procedure	reported aircraft type.
	due to inadequacy of the stand with the	Interruption of the GHD
S-	aircraft type. Dispatch stand allocation not	operations before adequate
23	taking into consideration aircraft type change	GHD equipment Insurance
		Double stand availability
	Aircraft in collision with the object or building	check and confirmation
	at the aircraft stand during parking procedure	between dispatch and
	due to inadequacy of the knowledge and	maintenance unit.Addition
	experience. Flight crews did not takes into	notice to the crew entering
S-	consideration changes of airport procedure	reopened stand after long and
24	change	wide changes
		Perform wide-range marking
	Aircraft in collision with the object or building	adequacy check after the
S-	at the aircraft stand during parking procedure	long/short-term operations
25	due to inadequacy of the marking or sign.	interruptions.
	Aircraft in collision with the object during	Perform wide-range lighting
	taxiing procedure due to inadequacy of the	adequacy check after the
S-	lighting. Maintenance crew not check the	long/short-term operations
26	availability of lighting system.	interruptions.
20		

		In order to improve the
	Aircraft in collision with the object or building	effectiveness of
	at the aircraft stand during parking procedure	communication, standard
	due to use of incorrect of communication.	aviation terminology must be
S-	Incorrect communication used due to lack of	used between
27	knowledge	communicators.
		Double stand availability
		check and confirmation
		between dispatch and
	Aircraft in collision with the object or building	maintenance unit. Addition
	at the aircraft stand during parking due to	notice to the crew entering
S-	misinformation provided to the crew	reopened stand after long and
28	regarding the infrastructural changes	wide changes
	Aircraft in collision with the object or building	
	at the airport stand during parking due to low	Hot-spot or infrastructure
S-	experience of the engaged crew with the	changes bulletins distribution
29	given airport	and dialog.
	Aircraft in collision with the object during	
	taxiing procedure due to violation of the	Before taxiing, the flight crew
S-	aircraft SOPs . Flight crew did not finished	shall check and complete in
30	SOPs before taxiing	accordance with SOPs.
		Two-step surface check
	Aircraft damaged due to contact with the	performed with two teams
	damaged pavement on the taxiway during	after long/short-terms
	taxiing. Pavement check and control	operations interruptions and
S-	performed before infrastructure damage	after adverse weather
31	occurred or not detected	conditions.
	Aircraft in collision with the birds during	Wildlife control performs
	taxiing procedure due to the non-functional of	double check of the
	bird repeller. Maintenance crews did not	functionality of the bird
S-	taking into consideration the available of bird	repeller in the months of the
32	repeller	increased flock appearance
	Collision of the aircraft with the wildlife on the	Wildlife control performs
	taxiway surface due to facing system	double check of the
S-	corruption. Fencing control not performed	functionality of the fencing in
33	due to lack of procedure, experience or	the months of the increased

	funding.	animal activity
	Aircraft damaged during GHD	Unexpected changes to
	procedure(relevant procedures defined in	procedures should be
	CA)before the GHD personnel not comply	updated and notified to GHD
S-	with unexpected procedure changes due to	personnel to comply with the
34	limit of information	new procedures.
	Aircraft damaged during GHD	
	procedure(relevant procedures defined in	Standard personnel number
	CA),ground personnel operate procedure in	monitoring for the given time
S-	urgently due to increase time limits for	frame after long/short term
35	operations	operation interruption
		Confirmation of the aircraft
		type in the link between
		airline-atc-airport dispatch-
		GHD. Implementation of the
		sensors within VDGS
		detecting irregularities in
		reported aircraft type.
	Aircraft damaged due to inadequate	Interruption of the GHD
	GSE/equipment usage for the given aircraft	operations before adequate
	type. Change of the type not reported	GHD equipment Insurance.
S-	through required channels. Low experience	Safety complain on increasing
36	of the personnel in aviation environment.	aviation knowledge.
		Improved safety complain in
		the basic safety training, and
		issuing of safety brief
		increasing awareness of the
		aircraft safety zones, for the
		new employees and within the
		existing safety
	GHD personnel injured during the GHD	initiatives.Extensive safety
	process due to misinformation of the given	study on the new employees
S-	signal. Lack of procedure interpretation and	awareness in the GHD
37	safety assessment	environment.

		Improved safety complain in
		the basic safety training, and
		issuing of safety brief
		increasing awareness of the
	GHD personnel injured during the GHD	aircraft safety zones, for the
S-	process due to missing information on	new employees and within the
38	procedural change.	existing safety initiatives.
		Extensive safety study on the
		new employees awareness in
		the GHD environment.
	GHD personnel injured during the GHD	Improved safety complain in
	process while not respecting traffic rules	the basic safety training, and
	during high intensity operations. Lack of	issuing of safety brief
	situational awareness due to lack of	increasing awareness of the
	experience. Safety assessment not	aircraft safety zones, for the
S-	performed for the new, inexperienced	new employees and within the
39	personnel members	existing safety initiatives.
	GHD personnel injury during the GHD	
	process due to not obeying on-stand traffic	Personnel attitude survey
	rules, due to negative attitude to job position.	focused on the task routine
S-	Lack of experience in aviation sector and	potential and satisfaction with
40	unknown working environment	the working environment.
	GHD personnel injury during GHD process	Personnel attitude survey
	caused by low attention during high-risk	focused on the task routine
S-	operation. Dwell-time chat with the personnel	potential and satisfaction with
41	decreasing attention to the given task	the working environment.
		Extensive safety study on
	GHD personnel injury during GHD process	working environment changes
	due to applied routine actions, not	in GHD at the given airport.
	appropriate for the process after the	Personnel attitude survey
	system/process changes. Risk assessment	focused on the task routine
S-	on new working environment or condition not	potential and satisfaction with
42	performed	the working environment.
	GSE equipment damaged due to existing	GSE extensive monitoring
S-	previous technical difficulties while exploited	and tracking. Implementation
43	in high traffic volume. Maintenance check not	of the GSE database,

	performed in the given time frame	validated on daily basis.
		Information available for all
		interested entities.
		GSE extensive monitoring
	GSE equipment damaged due to existing	and tracking. Implementation
	previous technical difficulties while exploited	of the GSE database,
	in high traffic volume. Maintenance check not	validated on daily basis.
S-	performed due to inadequately set	Information available for all
44	procedures	interested entities.
		GSE extensive monitoring
	GSE equipment damaged due to existing	and tracking. Implementation
	previous technical difficulties while exploited	of the GSE database,
	in high traffic volume. Maintenance check not	validated on daily basis.
S-	performed due to inadequate knowledge of	Information available for all
45	responsible personnel	interested entities.
		GSE extensive monitoring
		and tracking. Implementation
	GSE equipment damaged due to existing	of the GSE database,
	previous technical difficulties while exploited	validated on daily basis.
S-	in high traffic volume. Maintenance check not	Information available for all
46	performed due to lack of funding	interested entities.
		GSE extensive monitoring
		and tracking. Implementation
	GSE in collision damaged aircraft due to	of the GSE database,
	structural defects. GSE not removed from	validated on daily basis.
S-	operation after detection of technical	Information available for all
47	insufficience. GSE technical control not set.	interested entities.
		GSE extensive monitoring
	GSE in collision damaged aircraft due to	and tracking. Implementation
	structural defects. GSE not removed from	of the GSE database,
	operation after detection of technical	validated on daily basis.
S-	insufficience. GSE technical control not	Information available for all
48	performed through regular safety inspection.	interested entities.
	GSE in collision damaged aircraft due to	GSE extensive monitoring
S-	structural defects. GSE exploited by operator	and tracking. Implementation
49	due to insufficient number of available GSE.	of the GSE database,

		validated on daily basis.
		Information available for all
		interested entities.
	GSE in collision damaged aircraft due to	
	structural defects. GSE left unbraked on the	Certification of the GSE
	surfaced, causing the self and uncontrolled	maintenance unit, responsible
S-	movement. Lack of technical experience of	for GSE state monitoring and
50	the engaged personnel	GSE database update
	Collision of the GSE with the aircraft or other	
	object caused by improper manipulation with	Regular ad-hose GSE
	the equipment due to absence of the	manipulation skill within the
	procedure or guidance. GHD operator not	given time frame after the the
S-	providing procedure description or training to	long/short term operation
51	the respective personnel	interruptions
	Damage of the aircraft during the push-back	Regular ad-hose GSE
	procedure due to crossing the maneuvering	manipulation skill within the
	limits of the used equipment. Training not	given time frame after the the
S-	performed or lacking experience for the	long/short term operation
52	particular aircraft type.	interruptions
	Damage to the aircraft or airport	
	infrastructure by GSE manipulated by	
	inexperienced personnel member, due to	
	insufficience in the procedure description.	Wide-scope authority audit of
	Authority body not confirming inexperienced	the main functional aspect of
S-	personnel member hazards during oversight	the airport after long/short
53	activities	term operation interruptions
53	activities Damage to the aircraft or airport	
53		term operation interruptions
53	Damage to the aircraft or airport	term operation interruptions Wide-scope authority audit of
53	Damage to the aircraft or airport infrastructure by GSE manipulated by	term operation interruptions Wide-scope authority audit of the main functional aspect of
53	Damage to the aircraft or airport infrastructure by GSE manipulated by inexperienced personnel member, due to	term operation interruptions Wide-scope authority audit of the main functional aspect of the airport after long/short
53 S-	Damage to the aircraft or airport infrastructure by GSE manipulated by inexperienced personnel member, due to insufficience in the procedure description.	term operation interruptions Wide-scope authority audit of the main functional aspect of the airport after long/short term operation interruptions.
	Damage to the aircraft or airport infrastructure by GSE manipulated by inexperienced personnel member, due to insufficience in the procedure description. Responsible safety manager not confirming	term operation interruptions Wide-scope authority audit of the main functional aspect of the airport after long/short term operation interruptions. Integrated activities with the
S-	Damage to the aircraft or airport infrastructure by GSE manipulated by inexperienced personnel member, due to insufficience in the procedure description. Responsible safety manager not confirming inexperienced personnel member hazards	term operation interruptions Wide-scope authority audit of the main functional aspect of the airport after long/short term operation interruptions. Integrated activities with the responsible safety
S-	Damage to the aircraft or airport infrastructure by GSE manipulated by inexperienced personnel member, due to insufficience in the procedure description. Responsible safety manager not confirming inexperienced personnel member hazards during oversight activities	term operation interruptions Wide-scope authority audit of the main functional aspect of the airport after long/short term operation interruptions. Integrated activities with the responsible safety management.

or injuries caused by unawareness of the	functionality. Frequent update
existing risks.	and operability check
	implementation.