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Abstrakt

Tato bakalářská práce zkoumá použit́ı matematického modelu rozhodovaćıho stromu pro
předpověď selháńı ložisek v paṕırenských stroj́ıch pomoćı analýzy amplitudy vibraćı. Hlavńı
př́ınosy této práce zahrnuj́ı vývoj metodiky pro předpověď selháńı ložisek s ćılem zlepšit
přesnost a efektivitu prediktivńı údržby. To zahrnuje sběr a předzpracováńı dat, následně
implementaci a testováńı modelu rozhodovaćıho stromu. Práce také zkoumá praktičnost
nasazeńı takového modelu v pr̊umyslovém prostřed́ı, se zaměřeńım na ekonomické př́ınosy
vyplývaj́ıćı z úspory času a zlepšeńı plánováńı údržby.
Přestože disertace poskytuje cenné poznatky o předpovědi selháńı ložisek, uznává také, že je
třeba udělat v́ıce práce. Návrhy pro budoućı výzkum zahrnuj́ı zdokonaleńı procesu sběru dat,
úpravu citlivosti modelu pro zpracováńı v reálném čase a zkoumáńı implementace prediktoru
selháńı ložisek na základě frekvence.

Kĺıčová slova: Selháńı Ložiska, Prediktivńı Údržba, Analýza Vibraćı, Rozhodovaćı Strom,
Paṕırenský Stroj.
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Abstract

This Bachelor’s thesis examines the application of a mathematical decision tree model for pre-
dicting bearing failures in paper machines, using amplitude vibration analysis. The principal
contributions of this thesis include the development of a methodology for predicting bearing
failures, with a view to improving the accuracy and efficiency of predictive maintenance. This
involves the collection and preprocessing of data, followed by the implementation and testing
of a decision tree model. The thesis also explores the practicality of deploying such a model
in an industrial setting, focusing on the economic benefits stemming from time savings and
enhanced maintenance planning.
While the dissertation provides valuable insights into bearing failure prediction, it also ac-
knowledges that more work needs to be done. Suggestions for future research include refining
the data collection process, adjusting model sensitivity for real-time processing, and exploring
the implementation of a frequency failure bearing predictor.

Keywords: Bearing Failure, Predictive Maintenance, Vibration Analysis, Decision Tree,
Paper Machine.
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Chapter 1

Introduction

1.1 Motivation

Paper production is an essential sector with a substantial economic impact. The heart of this
industry, the paper machine, contains numerous rolls whose functionality can be comprom-
ised due to wear, friction, and mechanical faults, particularly bearing faults. Undetected,
these faults can induce costly downtime, reduced output, and potentially severe accidents.
Therefore, the early detection of bearing faults in paper machine rolls is vital for maintaining
operational efficiency and safety. The focus of this dissertation is the development of effective,
reliable techniques for detecting bearing faults in paper machine rolls, aimed at minimizing
the consequences of such faults on overall operation.
Roll bearings in paper machines are integral to maintaining streamlined production and pre-
venting expensive shutdowns. A bearing failure can cause downtime ranging from several
hours to multiple days, resulting in considerable production loss. This critical scenario un-
derlines the importance of advanced knowledge about the equipment’s condition, especially
the crucial components.
Historically, preventive maintenance has been the strategy to manage potential faults in paper
production machinery. However, this approach often incurs unnecessary maintenance activ-
ities leading to augmented costs and production disruptions. As a solution, machine learning
techniques have gained traction for fault prediction across industries, including paper pro-
duction, to overcome these challenges.
Machine learning-based fault prediction models use historical data, real-time monitoring, and
sophisticated algorithms to detect potential bearing faults before they trigger unexpected
breakdowns. Recognizing early signs of bearing faults allows for timely maintenance inter-
ventions, minimizing downtime, and optimizing production processes. Hence, bearing fault
detection research in paper production has gained importance with the aim of developing
effective techniques that enhance operational efficiency and productivity.
Bearing failures can have severe consequences, including expensive downtime, damage to other
machine components, and potential safety hazards for operators. Predicting these failures in
advance could avert these undesirable outcomes and potentially extend the machine’s lifespan
without the need for excessive maintenance.
The motivation for this research stems from the criticality of bearings in paper production, the
need to prevent costly shutdowns, and the potential benefits of using machine learning-based
fault detection techniques. By developing and applying advanced bearing fault detection
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1. Introduction

methods, this research aims to contribute to the body of knowledge in the field of paper
production, provide practical solutions for the industry, and advance the understanding of
how machine learning can be effectively applied for predictive maintenance in the context of
bearing faults in paper production machinery.

1.2 Problem Statement

The main aim of this study is to develop an effective method of detection and prediction of
bearing failures, specifically for rolling bearings, which are applied to paper machine rolls.
Bearing failures can lead to significant downtime and unexpected repair costs, so an effective
predictive model offers the potential for substantial operational improvements and cost sav-
ings.
The challenge lies in analyzing complex and often incomplete vibration data, using amplitude
vibration analysis techniques. This study focuses on the prediction of three primary types of
failures. The complexity of the industrial setting, along with the limitations and specificity
of available data, adds an additional layer of difficulty to the problem.

1.3 Structure of the Thesis

The thesis is organized into five chapters as follows:

1. Introduction: Describes the motivation for the research and presents the problem state-
ment. This sets the context and outlines the challenge of predicting bearing failures.

2. Background : Provides necessary technical, theoretical, and practical background in-
formation, focusing on existing methodologies and their applicability in an industrial
context.

3. Data: Introduces the data collection and pre-processing stages, which were performed
for this study.

4. Model : Explanation of the implementation and testing of the predictive model. This
chapter provides a detailed information of the model’s creation using a mathematical
decision tree algorithm and presents the outcomes of the model’s application to real-
world vibration data.

5. Conclusion: Summarizes the results of our research, suggests possible topics for further
research, and concludes the thesis.

2



Chapter 2

Background

2.1 Technical Background

2.1.1 Paper Machine

Humanity has learned how to produce paper since ancient times, but the process was time-
consuming and completely handcrafted. However, the history of paper machines starts just
in the late 17th century with the invention of the French engineer Louis-Nicolas Robert,
who developed and implemented the first continuous paper machine. But the fundamental
principles such as division into sections and the use of rolls and of the web originate from
another invention, Fourdrinier Machine. This machine can be seen as the precursor to modern
machines.
The Mondi paper mill in Štět́ı currently operates five distinct paper machines, with plans to
complete the construction of an additional machine in the coming year. Machines are complex
and expansive industrial equipment used for manufacturing paper and paper products.
Each paper machine is designed with configurations and structures specified for the production
of different paper types, as various paper types necessitate unique technological processes. As
a result, each machine is dedicated to manufacturing a specific paper type. In this research,
the focus will be primarily on two paper machines that have similarities in their structures
and types of rolls employed.
Machines are separated into a variety of parts, according to different processes. Here is the
description of the sections of both paper machines.

I.PM II.PM

1 Wire section Wire section

2 Press part Press part

3 Drying section Drying section

4 Clupak Calender section

5 Tambour section Rewinder section

6 Rewinder section Winder section

7 Winder section

Table 2.1: Paper machines sections

3



2. Background

Figure 2.1: Paper machine, Mondi Steti PM 1 [18]

Each process and its part is responsible for different stages of the papermaking process
and has specific conditions:

1. Wire section:

◦ The wire part is the initial section of the production process. The other name of
this stage is forming, because here the pulp slurry shapes a wet sheet. The pulp is
spread onto a moving wire or web. As the web moves along the section, the moisture
is progressively removed from the paper fiber.

◦ This all leads to the fact, that the critical condition of this process is high humidity,
which can cause premature corrosion and rust.

2. Press section:

◦ The press section includes various types of press rolls. Still, a wet sheet on the web
goes throw a series of rolls, which effectively remove water from the fiber, squeezing
the paper between. This increases the density and strength of the paper.

◦ The press section operates under high pressure and temperature conditions.

3. Drying section:

◦ The drying part consists of multiple groups of steam-heated cylinders, also known as
drying rolls. As the web moves along the drying section, applied at the cylinders heat
removes moisture from the paper.

◦ This part also performs under high temperatures and pressures.

4. Calender and Tambour sections:

◦ These sections are small parts, which are used to improve the smoothness, thickness,
and gloss of the paper surface.

◦ These sets of rolls operate under several conditions: temperature, pressure, and mois-
ture.

5. Rewinder section:

◦ In this section, dried paper is winded into a large roll.

◦ No specific conditions, except for the high-speed rotation of rolls, but this one is
applied to all the parts of the paper machine.

6. Winder section:

4



2.1. Technical Background

◦ In the winder part, huge paper rolls from the rewinder part are cut into smaller ones
of the desired width.

◦ The same operating conditions as in the rewinder.

Paper machine components that will be mentioned during this research:

◦ Drive system: The drive system of a paper machine typically includes electric motors,
gearboxes, and couplings that are used to provide power and control the speed of various
sections of the machine, such as the headbox, forming section, press section, and drying
section. These motors and drive components are responsible for powering the continuous
operation of the machine.

◦ Rolls: Rolls are used in various sections of the paper machine to perform different
functions. For example, the breast roll or headbox roll is used in the headbox section to
spread the pulp evenly onto the forming wire. The forming rolls, also known as couch
rolls or suction rolls, are used in the forming section to facilitate the dewatering of the
wet paper sheet. Press rolls are used in the press section to compress the paper sheet
and remove water, and dryer rolls are used in the drying section to remove remaining
moisture from the paper sheet. These rolls are typically driven by motors and supported
by bearings.

◦ Bearings: Bearings are critical components in a paper machine that support the rotating
rolls and other moving parts. They are used to reduce friction and ensure smooth
operation. Common types of bearings used in paper machines include ball bearings,
roller bearings, and spherical roller bearings. Proper lubrication and maintenance of
bearings are essential for reliable and efficient operation of the paper machine.

◦ Web: Also known as fabric or forming wire, is a continuous loop of woven mesh that
carries the wet paper sheet through the forming section. It is typically made of synthetic
materials, such as polyester, and plays a critical role in the formation of the paper sheet
by allowing water to drain through while retaining the fibers. The fabric or wire is
supported and guided by rolls and other components.

◦ Steam and condensate system: The steam and condensate system is used in the drying
section of the paper machine to supply heat for evaporating water from the paper sheet.
It typically includes steam supply pipes, steam showers, steam boxes, and condensate
removal systems, such as steam traps and condensate pumps.

◦ Control system: The control system of a paper machine consists of various sensors,
actuators, and automation equipment that are used to monitor and control the operation
of the machine. This includes controlling motor speeds, adjusting tension, monitoring
temperatures and pressures, and managing the overall process parameters to optimize
paper quality and machine performance.

Throughout the paper machine, various control systems and sensors monitor and adjust
parameters such as speed, temperature, and moisture content to ensure consistent and high-
quality paper production. Additionally, there are numerous auxiliary systems, such as steam
and water systems, vacuum systems, and air systems, that support the papermaking process
and maintain the proper conditions for paper production.

5



2. Background

A modern paper machine is a sophisticated piece of equipment that requires skilled op-
erators and engineers to operate and maintain. It is capable of producing a wide range of
paper grades, sizes, and finishes to meet diverse customer needs in industries such as printing,
packaging, and specialty applications.

2.1.2 Rolls

Rolls, in some parts of the machine, also referred to as cylinders, are essential and indis-
pensable components of paper machines. They are designed to withstand harsh operating
conditions, such as high pressure, temperatures, and speed. Consequently, they are typically
made of high-strength materials, such as cast iron, steel, or rubber.[33]

2.1.2.1 Parts of Rolls

◦ Shell: The shell is the cylindrical outer surface of the roll. It provides structural
integrity and acts as a support for the paper web. The shell is typically made of metal,
such as steel, and its surface may be coated or treated to enhance its durability and
surface characteristics.

◦ Core: The core, also known as the shaft or mandrel, is the central cylindrical structure
around which the roll is built. It provides stability and strength to the roll. The core is
usually made of metal and is designed to withstand the load and stress exerted during
the operation of the paper machine.

◦ Journals: Journals are the sections of the roll that extend beyond the bearings. They
provide additional support for the roll and help distribute the load evenly. Also, journals
act as a connection point for the bearing and transmit the rotational force from the
machine’s drive system to the roll.

◦ Surface Treatment: The surface of the roll may undergo various treatments depending
on its specific function. For example, a drying roll may have a heat-resistant coating to
withstand high temperatures, while a functional roll involved in pressing or sizing may
have a specialized surface texture to impart desired characteristics to the paper web.

◦ Bearings: Bearings are one of the most critical mechanisms, which can be found
throughout the paper machine. With nearly thousands of them dispersed all around the
paper machine, they play an indispensable role in smooth rotation and movement. By
minimizing friction, bearings ensure optimal alignment, reduce wear, and provide essen-
tial support for the rotation of rolls, motors, and other crucial mechanisms within the
paper machine. Their proper functioning is vital for maintaining operational efficiency
and preventing potential disruptions due to friction-related issues.

2.1.2.2 Rolls Classification

All types of rolls play significant roles in the overall process of paper-making but serve different
purposes and work in different conditions. Based on their variety of purposes, they can be
divided into three major groups: guiding rolls, functional rolls, and drying rolls.

6



2.1. Technical Background

Figure 2.2: Voith Guiding Roll [32]

◦ Guiding Rolls: Guiding rolls play a critical role in the paper machine by directing
and guiding the paper web throughout its journey from one section to another. Their
primary function is to maintain proper alignment and tension of the paper web. Al-
though guiding rolls may vary in weight and size, due to their similar functionality they
do not require further subgroup classification.

◦ Functional Rolls: Functional rolls have specific roles in the papermaking process and
directly influence the properties of the paper web. These rolls serve distinct purposes,
such as pressing, spreading, or sizing the paper web. To analyze bearing faults effect-
ively, it is necessary to categorize functional rolls into subgroups based on their specific
functions.

◦ Drying Cylinders(or Drying Rolls): Drying cylinders, also known as drying rolls,
are crucial components responsible for removing moisture from the paper web. They are
typically heated and work in conjunction with the dryer section of the paper machine to
achieve the desired moisture content in the paper. Similar to guiding rolls, drying rolls
may vary in weight and size, but they do not require further subgroup classification due
to their shared functionality.

2.1.3 Bearings

Bearings are mechanical components, which play one of the most critical roles in any equip-
ment, as well as in paper machines. They implement two major functions: reduction of
friction and supporting the correct position of the rotating shaft. Vehicles require hundreds

7



2. Background

of bearings.[14] But when we are talking about more sophisticated mechanisms like paper
machines count goes on thousand.
Bearings of different types and sizes are used in almost every part of the paper machine. They
allow to perform smooth rotation of rolls and motor shafts, which in return decreases energy
consumption. Due to that, it is crucial to choose a proper bearing, that will be suitable for
the specific load and operating requirements of the application.

2.1.3.1 Types of Bearings

There are hundreds of different types of bearings, which have unique designs and which are
applicable for diverse purposes. But they can be generally categorized into two main groups:
friction or plain, and antifriction or rolling bearings; each of these groups has subcategories.
However, it is important to note that all bearings, whether rolling or sliding, technically
manage friction, they just do it in different ways. The term ”friction bearings” is used to
distinguish plain bearings from ”antifriction bearings”, which reduce friction through rolling
contact.[15]
This way of classifying is necessary, due to the assumption that different types and subtypes
have different damage signals. Hypotheses of such kind are based on the fact, that bearings
have different structures and areas of contact.

Bearings

Friction Antifriction

Radial spherical plain bearing(RSP) GE Spherical roller bearing(SR) 2

Tapered roller bearing(TR) 3

Thrust Ball Bearing(TB) 5

Deep groove ball bearing(DGB) 6

Cylindrical roller bearing(CR) N

Table 2.2: Types and IDs

2.1.3.2 Friction bearings

This type is also known as plain or sliding bearings. They are called so because of the use of
a sliding motion between shells of it, and simple design in comparison with rolling bearings.
Plain bearings consist of a stationary outer ring and a rotating inner ring. Such a simple
structure makes them a cost-effective solution to adjust alignment movements between the
rolls shaft and housing, and applicable for heavy dynamic loads at low rotational speeds.[20]
Nevertheless, the design also has several disadvantages. One of them is the necessity of fre-
quent lubrication because the moving parts in a sliding bearing are in direct contact. Lack of
lubrication can cause severe problems including heightened wear and elevated heat produc-
tion. with a lubricating film in between to reduce friction.[19]
Due to the fact that friction bearings are suitable for low-speed rotation, it requires a
different(off-line) type of vibration monitoring process and this type will not be included
in further study.

Radial spherical plain bearing

RSP bearing is one of the types of sliding bearings. Same as all sliding bearings it consists
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just of two elements: inner and outer ring. But an inner ring of RSP bearings has a convex
outer surface and an outer ring has a concave inner area.[4, 8]
Based on the specifications of RSP bearings, which are used on the considered paper machines,
it is possible to notice that they have a steel/steel sliding contact area and that they are
suitable for radial and axial loads.

(a) 3D Model [27] (b) Top-View (c) Side-View

Figure 2.3: Radial spherical plain bearing, SKF GE 100 ES-2RS [4]

2.1.3.3 Antifriction bearings

Antifriction bearings, also called rolling, are used to reduce friction between moving parts
and facilitate smooth motion. Bearings of this type consist of an inner ring, an outer ring,
rolling elements, and a cage to hold the rolling elements in place. They are designed to
handle high load-carrying capacities and high speed, because of low friction. Hence, this
makes them suitable for high-speed rotating parts of paper machine rolls, which are rolls and
cylinders.[37, 34]

Spherical Roller Bearing

SR bearing consists of an inner ring with two raceways, an outer ring with spherical-shaped
inner raceways, barrel-shaped or spherical rolling elements, and a cage that keeps the rollers
evenly spaced around the raceways. SR bearing’s design allows them to accommodate mis-
alignment and shaft inclination, making them suitable for guiding rolls and drying cylinders.[1,
11] Therefore in paper machines, SR bearings are commonly used in wire, press, and drying
sections.

(a) 3D Model [24] (b) Top-View (c) Side-View

Figure 2.4: Spherical Roller Bearing, SKF 22234 CCK/W33 [1]

Tapered Roller Bearing

The unique feature of TR bearings is the tapered shape of rolling elements, which means that
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raceways of inner and outer rings are also conical. The conical shape allows TR bearings
effectively support forces in several directions.[2, 12] Handling both axial and radial loads
makes them applicable for supporting guiding and suction rolls of wire and press sections.

(a) 3D Model [25] (b) Top-View (c) Side-View

Figure 2.5: Tapered roller bearing, SKF 30208 [2]

Thrust Ball Bearing

In contrast to the previous bearings, the TB bearing is designed to handle only axial loads.
The reason for the disability to accommodate radial load lies in the location of raceways.
They are located on the side of rings. Therefore, it would not be correct to call rings outer
and inner, that is why they call them shaft and housing rings, based on the side of application.
TB bearing uses balls as rolling elements, which are also spread by a cage.[3] Due to such
distinctive characteristics, only one shoe press roll at the I. PM uses this type of bearing.

(a) 3D Model [26] (b) Top-View (c) Side-View

Figure 2.6: Thrust ball bearing, SKF 51108 [3]

Deep Groove Ball Bearing

Rolling elements of DGB bearings are also balls, but unlike the TB bearings, deep groove
raceways of DGB bearings are located on the outer diameter of the inner ring and the inner
side of the outer ring.[5] As well as SRB and TR bearings, they are developed to withstand
radial and axial loads; and are suitable for high-speed rotations. Thus, this bearings are
applied to guiding, spreading, and shoe press rolls.

Cylindrical Roller Bearing

CR bearings have the ability to handle high radial loads and moderate axial loads, as well
as high speeds. These bearings consist of cylindrical-shaped rollers, which give the rolling
element a larger contact area, consequently, a higher carrying capacity. enabling smooth

10



2.2. Theoretical Background

(a) 3D Model [28] (b) Top-View (c) Side-View

Figure 2.7: Deep groove ball bearing, SKF 61830 MA [5]

rolling motion.[6, 9] Due to the ability to operate at high-speed rotations, CR bearings are
mainly used on guiding rolls at the wire part.

(a) 3D Model [29] (b) Top-View (c) Side-View

Figure 2.8: Cylindrical roller bearing, SKF NU 2217 ECP [6]

The selection of the type of bearing is mostly based on the type and magnitude of load,
which will act on the bearing. Due to that, it is very important to select the appropriate type
that can handle the acting magnitude of the load.

2.2 Theoretical Background

2.2.1 Predictive Maintenance

Predictive maintenance represents a proactive approach that leverages data analysis and
predictive modeling to identify potential equipment failures before they occur. The aim of
predictive maintenance is to anticipate and prevent equipment failure to improve efficiency,
reduce downtime, and extend machinery lifespan.
Techniques used in predictive maintenance often include condition monitoring, statistical
process control, equipment performance modeling, and other predictive tools and techniques.
Many of these methods are increasingly being integrated with advanced technologies like
machine learning, improving their ability to predict and prevent potential equipment failure.
Predictive maintenance provides a multitude of benefits. It minimizes unplanned downtime,
enhances operational efficiency, reduces maintenance costs, and improves product quality and
overall safety. All these improvements contribute to increasing the overall profitability of the
enterprise.
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2.2.2 Vibration Analysis

Vibration is regarded as the most effective indicator for evaluating low-frequency dynamic
states. Due to the fact that issues of rotating parts of paper machines are mainly represented
as different forms of vibration, the condition monitoring data primarily comprises vibration
signals generated by accelerometers. Vibration analysis can be divided into two parts: fre-
quency and amplitude.[10]
Frequency describes the rate of vibration of the bearing. The frequencies, at which some
oscillations occur, allow to identify damages or faults because some of them appear at cer-
tain frequencies. For example, frequency analysis can help in determining rings and rolling
elements defects.[38]
At the same time, amplitude gives an understanding of vibration magnitudes and indicates
the degree of damage. This study is based on amplitude analysis.

Velocity

The velocity describes the rate of change in displacement of the vibration signal. It is obtained
by integrating the accelerometer measurements, and it is measured in mm/s.
Velocity serves as an effective metric for medium-range frequency vibrations and is used for
examining defects related to fatigue.

Acceleration

The acceleration is the rate of change in velocity, which is measured with the accelerometer.
The acceleration unit is g-force, where 1g is gravitational acceleration on the planet Earth.
Continuous monitoring of vibration accelerations of bearings allows to indicate mechanical
defects such as disbalance, wear of bearing, and misalignment. By analyzing the hourly values
of acceleration over time, gradual increases in vibration levels can be associated with potential
bearing faults.

Enveloped Acceleration

The enveloped acceleration trend is derived from the vibration acceleration. Implementation
of enveloping algorithm consists of two steps.
First, it is necessary to apply at the acceleration signal band-pass filter, which filters out
low-range frequencies.
Second, the filtered vibration signal passes to the enveloper. The enveloper is an electric
circuit, which captures high frequencies of low-amplitude vibration spikes and enlarges them
based on the repetition rate.
Then, values of enveloped acceleration are plotted over time, allowing for the detection of
changes that may indicate developing bearing defects and even breakdowns.

Bias Voltage

The bias voltage is the characteristic, which describes DC voltage applied to an accelerometer.
The stability of this characteristic allows to verify the quality of vibration trends values. This
means that if the bias voltage trend is stable over time, then points of vibration trends are
actual. Otherwise, there is some fault, which is probably caused by the condition of the
accelerometer, wires, or their connection, and they have to be checked and exchanged to
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obtain proper values.

2.2.3 Standards

Standards serve as a fundamental reference point in industrial contexts, providing guidelines
and best practices that ensure quality, reliability, and safety. A critical standard in the field
of vibration analysis and predictive maintenance is ISO 10816-1:1995.
ISO 10816-1:1995 is a standard set forth by the International Organization for Standardization
(ISO). It provides specific guidelines for evaluating the severity of mechanical vibration in non-
reciprocating machines (rotating machines). The standard primarily applies to measurements
taken on rotating machinery, coupled to its foundation or structure through bearings, observed
under normal steady-state operating conditions.
According to ISO 10816-1:1995, the vibration values are divided into four zones:

1. Zone A (Vibration of the machine is normally considered satisfactory)

2. Zone B (The machine is acceptable for unrestricted long-term operation)

3. Zone C (The machine may require attention)

4. Zone D (The machine is unsatisfactory for long-term continued operation)

The standard helps in quantifying the ’severity’ of a vibration, which is an important aspect
of conducting a vibration analysis. By defining severity levels and providing clear guidelines,
ISO 10816-1:1995 aids in making informed decisions regarding machinery maintenance and
operation. This standard forms the foundation for the effective implementation of predictive
maintenance strategies, ensuring the efficiency, longevity, and safety of machinery.

2.3 Practical Background

2.3.1 Paper Mill Overview

Mondi Štět́ı a.s. is a paper mill located in the town Štět́ı, which lies on the border of the
region Úst́ı nad Labem, which is about 38 km north of Prague. This location was chosen
because this town lies on the right bank of the river Labe(Elbe), and the water source is
essential for the papermaking process. Mill in Štět́ı employs around 1000 workers and the
approximate area is 1.2 km2. Mondi Štět́ı a.s. is a part of the multinational packaging and
paper Mondi plc., but this factory specializes in producing mostly packaging paper standards.
The mill handles the entire process of producing paper, from raw materials to finished
products, which means it is a full-cycle production.

A paper mill typically consists of several key components:

1. Woodyard: The woodyard is a component that handles the processing and storage of wood
as the primary raw material. It serves as the entry point for logs brought to the mill. In
the woodyard, logs are sorted based on their size and quality. The woodyard processes
logs by cutting off the bark and chipping the logs into wood chips. Wood chips are then
transported to the pulp mill for further processing.
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(a) Photo (b) Plan

Figure 2.9: Mondi Štět́ı a.s. [16]

2. Pulp Mill: The pulp mill is responsible for converting raw materials, such as wood chips
or recycled paper, into pulp. It typically includes various stages and processes to break
down the raw materials and separate the fibers. The pulp produced in the pulp mill is
then transported to the paper machines for paper production.

3. Water Management: Water management is an important aspect of paper mill operations.
Paper mills consume significant amounts of water for various processes, such as pulping,
papermaking, and cooling. Effective water management systems are put in place to minim-
ize water usage, recycle and treat wastewater, and ensure compliance with environmental
regulations. Water treatment plants are used to treat and purify the wastewater generated
during the papermaking process before it is discharged. Water conservation measures,
such as reusing water and implementing efficient water technologies, are also implemented
to minimize water consumption.

4. Energy Area: The energy area in a paper mill is responsible for generating and supplying
the necessary energy to power the mill’s operations, including the woodyard, paper ma-
chines, pulp mill, and other auxiliary equipment. In this case, the energy area goes a step
further and produces enough power not only for the mill but also for the nearby town.
The energy area typically consists of power generation units such as boilers, turbines, and
cogeneration systems. These systems can utilize various fuel sources, including biomass,
natural gas, or renewable energy sources, to produce electricity and thermal energy. The
generated power is distributed throughout the mill, and the excess power is supplied to
the local power grid to meet the energy needs of the surrounding community.

5. Paper Machines: Paper machines are the heart of the paper mill, responsible for trans-
forming pulp into paper. These machines are typically large and complex. They receive
the pulp from the pulp mill and initiate the papermaking process.

The whole production process can be expressed in the simplified scheme:
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Figure 2.10: Simplified scheme of production process [16]

2.3.2 Bearing Failure Modes

2.3.3 Condition Monitoring in Paper Mill

As previously mentioned, each paper machine holds approximately a thousand bearings, and
the condition of each has to be controlled. Hypothetically, it is possible to implement the
system, which will be capable of collecting such a vast amount of data. But real-life solutions
have resource limitations. In these circumstances, such limitation is the number of wires and
their length. Therefore, companies separate bearing condition monitoring into two groups:
on-line and off-line. The decision is done based on how critical is the breakdown of the bearing
for production and whether can it cause a chain reaction of breakdowns or damage some other
equipment.

2.3.3.1 Types of Monitoring systems

Off-line monitoring

Off-line monitoring involves periodic tests of equipment health by collecting data while the
PM is running. The data collection process occurs in the way, that a collector or measurer
goes throw all the sections of PM and makes two minutes length measurements. In case of
inaccessibility or possible danger to the life of the measurer, a thermographic camera is used.
Data collection is done by the portable analyzer to which the sensor is connected. The
analyzer takes a vibration signal and immediately plots graphs, which allows to conclude the
condition of the equipment.
Analyzer is capable of saving the measurements and transferring them to the PC, but the
short-term measurements from an unknown axis can not be used for the model training and
testing.

On-line monitoring

On-line monitoring is a real-time approach that involves continuous monitoring of equipment
health during the operation of PM. Data collection is slightly similar to the off-line process,
but the implementation is much more complex, for the reason that it has to handle continuous
vibration signals from hundreds of bearings simultaneously.
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Vibration sensor

Signal cables

SKF Microlog analyzer

Figure 2.11: Off-line monitoring connection diagram

In the on-line monitoring system, sensors are strategically placed on the bearing housing
in a horizontal-traverse direction. Such location is grounded by the International Standard
ISO 10816-1:1995, which allows to measure axial vibrations. The standard provides different
sensors positions These sensors constantly monitor the vibrations produced by the equipment.
The sensor signals are then transmitted through wires to the processing unit.
The processing unit receives and processes the signals. Then the processed signal from dif-
ferent channels goes to the server. The communication between the processing unit and the
server is established through a Modbus TCP/IP protocol.
Such system serves as a valuable tool in assessing the health status of bearings. It allows
to detect developing faults or anomalies at an early stage, enabling timely intervention and
proactive maintenance.
But as any system, this one also has some disadvantages, and one of them is the amount of
human labor. Because each value that is above the set threshold requires to be checked and
verified.

Vibration sensor

Signal cables

SKF Multilog On-line System

Server with SKF @ptitude Observer

Figure 2.12: On-line monitoring connection diagram

2.3.3.2 Monitoring equipment

Vibration Sensor

Both types of monitoring use the same sensor. Basically, this is due to hardware compatibility.
Vibration sensors are commonly used to measure the vibration levels of rotating machinery.
One widely used vibration sensor is the Industrial accelerometer SKF CMSS 2200. This ac-
celerometer is designed to withstand harsh operating conditions and can be easily installed
on various types of equipment, including bearing housings. Due to manufacturing calibration,
these sensors are able to provide accurate and reliable measurements of vibration parameters,
including velocity and acceleration.[7] That is why, the vibration signal can not be collected
by simple microphones.
Accelerometers usually consist of one or several piezoelectric crystal elements. The vibration
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of the bearing stresses the mass, inside of the sensor; and the mass acts on piezo elements.
Subsequently, crystals produce an electric output proportional to acceleration.
The number of piezo elements in the accelerometer SKF CMSS 2200 is unknown, due to the
fact that this is not a piece of open-source information.
This accelerometer is a broadband vibration sensor because it covers a wide range of per-
forming frequencies, including both low and high frequencies. The high-frequency range is
significant for monitoring rolling bearings because it allows to detect early signs of bearing
degradation.[38]

(a) Photo [30] (b) Scheme [38]

Figure 2.13: Industrial accelerometer, SKF CMSS 2200

Signal Cables

Signal cables are integral components of monitoring systems, connecting and transmitting the
electrical signals generated by sensors to the processing equipment. The SKF CMSS 932-68
series of signal cables are specifically designed for reliable and high-quality signal transmission
in industrial environments. These cables provide excellent noise immunity, ensuring accur-
ate connection. The CMSS 932-68 series signal cables are designed with an IP68 standard,
making them highly resistant to dust and water contacts. This rating ensures their reliable
performance even in challenging environmental conditions, providing further protection and
reliability for on-line monitoring systems.[13]

(a) IP68 sensor/connector/cable assembly (b) Photo

Figure 2.14: Cable SKF CMSS 942 [13]

SKF Microlog analyzer

The SKF Microlog Analyzer AX is a portable data collector and analyzer, which allows to
check of the condition of rotating PM components during the performance. This device is an
advanced vibration-monitoring tool with multiple useful features such as the collection and
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viewing of spectral and time domain data, and FFT analysis. These features allow to identify
the root cause of any abnormal conditions or faults in the short term.[21, 35]

Figure 2.15: SKF Microlog analyzer AX [31]

SKF Multilog On-line System

The Multilog on-line system, also known as the IMx process unit, is designed to monitor the
condition of rotating machinery in real-time. This unit digitizes and processes the signals,
using advanced signal processing techniques, to extract meaningful information about the
machine’s condition.
The IMx process unit acts as an interface between the sensors and the server. It can receive
up to sixteen analog signals, which means that it can process data from sixteen sensors
simultaneously. The communication between the process unit and the server is established
by the Ethernet cable and the Modbus TCP/IP protocol, which allows Modbus messages to
be wrapped within TCP/IP packets. This feature greatly reduces the amount of wires and
other expensive hardware.[17]

(a) Process Unit [22] (b) Process Unit Box [23]

Figure 2.16: Process Unit IMx-16Plus

Server with SKF @ptitude Observer

The processed data from the SKF IMx unit is then transmitted to a server equipped with
the SKF @ptitude Observer software. This software provides further analysis capabilities,
including trending, alarm management, and diagnostic tools. It can generate various trends
such as acceleration, velocity, and enveloped acceleration, providing valuable insights into the
condition of the bearings.[36]
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(a) Logo

Figure 2.17: SKF @ptitude Observer [36]
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Chapter 3

Data

3.1 Collection and Description

Precise data collection, storage, and analysis are necessary for effective condition monitoring.
All the data, used for the model implementation, was provided by the Mondi paper mill. The
data in the paper mill is organized and partitioned based on departments. This structured
approach ensures that each department can access relevant data.
The research depends not just on vibration signals but also on rolls and bearings maintenance
data, which is necessary for the implementation of cost functions. Together, these datasets
from Condition Monitoring and Mechanical Maintenance departments provide a comprehens-
ive picture of the operational history and current conditions of the PMs.

3.1.1 Mechanical Maintenance Data

An essential element of our analysis involved the construction of cost functions. For that,
it was necessary to find a meaningful metric for quantifying the effectiveness of the machine
learning algorithm. Out of all possible factors such as the cost of spare parts, labor, or equip-
ment, which is required for the replacement, the replacement time became the crucial variable
of functions.
Replacement time, in this context, refers to the time interval required to replace a faulty bear-
ing once it has been identified. This period is crucial as it directly affects the overall downtime
of the production line. The interval itself is based on the information from Standard Oper-
ating Procedures (SOPs), which were provided by the Mechanical Maintenance Department,
and depends on the location of the roll in the PM. An example of SOP can be found in
Appendix.
There are three different scenarios of the replacement, which affect these intervals. The first
one is a planned bearing replacement, which means that this happened in a predictive manner
and there was no breakdown. The second scenario is an unplanned failure of the bearing,
which did not cause any damage to other parts. The last one is the worst-case scenario,
unexpected breakdown of bearing damaged housing or journal. All the intervals of these
scenarios for different types of rolls and sections of PMs can be found in Table 3.1. But it is
necessary to mention, that function rolls intervals have the same duration in all of the cases
because they are replaced fully even if just one of the bearings is damaged. This is due to the
preinstallation of bearing on rolls by the manufacturer.
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Besides the replacement time intervals, data from the Mechanical Maintenance Department
contains essential information about rolls, including the precise locations within the paper
machine, specifications, and bearing models, which are mounted on these rolls. Thus, all the
provided maintenance data allowed to generate the tables for both PMs, which became the
base of the model structure.

Section Group Subgroup RT 1.scenario RT 2.scenario RT 3.scenario

Wire guiding 4-6 h. 8-10 h. 16-20 h.
functional suction 3-5 h. 3-5 h. 3-5 h.

Press guiding 4-6 h. 6-8 h. 3-10 h.
functional press 8-10 h. 8-10 h. 8-10 h.

suction 10-12 h. 10-12 h. 10-12 h.
spreader 4-6 h. 4-6 h. 4-6 h.
shoe press 12-14 h. 12-14 h. 12-14 h.

Drying guiding 4-7 h. 6-10 h. 6-12 h.
drying 6-8 h. 8-10 h. 10-12 h.

Tambour functional reel spool 0 h. 0 h. 0 h.

Calender guiding 4-8 h. 6-10 h. 4-14 h.
functional press 8-10 h. 8-10 h. 8-10 h.

spreader 8-12 h. 8-12 h. 8-12 h.
shoe press 12-14 h. 12-14 h. 12-14 h.

Rewinder guiding 3-5 h. 4-6 h. 4-6 h.
functional reel drum 24-30 h. 24-30 h. 24-30 h.

spreader 8-12 h. 8-12 h. 8-12 h.

Winder guiding 4-6 h. 8-10 h. 16-20 h.
functional reel drum 8-10 h. 8-10 h. 8-10 h.

spreader 8-70 h. 8-70 h. 8-70 h.
reel spool 0 h. 0 h. 0 h.

Table 3.1: Types of Rolls and Time for Replacement Scenarios

3.1.2 Condition Monitoring Data

The Condition Monitoring Department deals with different types of operation status analyses
across the entire paper mill. In the case of PMs, vibration analysis is used as the method
for assessing the performance condition. By monitoring and analyzing various trends derived
from vibration signals, potential faults can be detected and addressed in a proactive manner.
Three types of vibration trends are used for validation. These trends represent hourly mean or
sometimes peak values of vibration parameters such as acceleration, velocity, and enveloped
acceleration. The peak value is stored in case of crossing the preset threshold. If this happens
several times in one hour, then all the values, which exceeded the boundary, are stored. If it
happens that none of the magnitudes overstepped the limit, the hourly average is taken.
The primary tool, which is used for analysis and holds monitoring data, is the SKF @ptitude
Observer. This application holds all vibration trends with additional information. The ad-
ditional information notes, which were done by monitoring department specialists, contain
descriptions of decisions and actions taken based on abnormal bearing behavior. The content
of notes is not exportable with trends but in Observer it is visible and the information about
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replacements is recorded. Therefore, it was required to download these trends and tables
with replacements. With replacements, there were no complications but unfortunately, the
Observer does not give direct access to the whole database, which means that it does not al-
low the exportation of trends simultaneously. This is most likely done for security purposes.
However, in the case of obtaining the data, this meant that it was necessary to download
trends manually. In addition to the fact that this is a time-consuming process, it also poses
the risk of confounding an indefinite number of trends.
Trends from the Observer are exported as Excel files(.xls) but initially, they are stored as
XML files(.xml). This mismatch raises the warning of Excel, leading to additional steps
during data pre-processing. Raw trend files consist of eighty columns but for the research,
just six are used. These columns hold the date and time, when the values were stored, the
magnitude of the vibration parameter, middle and upper boundaries of the threshold, cycles
per minute, and bias voltage. Therefore, each bearing is represented by three files, one for
each of the vibration parameters.
Due to the fact, that this study uses trends from two distinct paper machines, a decision
was made to partition the data into training and testing sets based on the paper machines.
Consequently, the data from the first paper machine forms the training set, while the data
from the second paper machine comprises the testing set.
Alongside the datasets, the Condition Monitoring Department also supplied additional in-
formation regarding the distribution of failures, which could be used as ground truths. These
ground truths, which are approximate distributions expressed in percentages, are based on
years of experience of the department’s specialists. It is important to note that these distribu-
tions were not derived from statistical analysis but are rooted just from practical experience.
This distribution is illustrated in Figure 3.1.
Tables 3.3 are examples of the content of files in the dataset.

Failure Abb. in %

Signal Failure A 45%
Noise B 50%

Bearing Failure C 5%

A

40%

B

55% C
5%

Figure 3.1: Failures Distribution
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Date/Time Value(mm/s)
MID

Threshold
MAX

Threshold
CPMs Bias(V)

2020-02-12
20:00:02

0.9 4.0 3.0 507.026 13.328

2020-02-13
01:00:00

0.93 4.0 3.0 507.022 13.459

2020-02-14
01:00:03

0.84 4.0 3.0 507.027 13.358

2021-02-17
06:00:00

0.63 4.0 3.0 536.608 12.967

2021-02-17
07:00:00

0.71 4.0 3.0 505.059 12.976

2021-02-17
08:00:00

0.69 4.0 3.0 505.035 12.983

(a) Velocity

Date/Time Value(g) MID Thr MAX Thr CPMs Bias(V)

2020-02-12
20:00:00

0.19 3.0 2.0 570.414 13.323

2020-02-13
01:00:01

0.19 3.0 2.0 507.026 13.459

2020-02-14
01:00:01

0.14 3.0 2.0 507.028 13.358

2021-02-27
00:00:01

0.21 1.5 1.0 454.542 13.339

2021-02-27
01:00:01

0.21 1.5 1.0 454.528 13.342

2021-02-27
02:00:00

0.21 1.5 1.0 505.037 13.331

(b) Acceleration

Date/Time Value(gE) MID Thr MAX Thr CPMs Bias(V)

2020-02-12
20:00:03

0.16 3.0 2.0 507.023 13.328

2020-02-13
01:00:03

0.12 3.0 2.0 538.717 13.327

2020-02-14
01:00:00

0.11 3.0 2.0 507.019 13.358

2021-02-06
02:00:01

0.16 1.5 1.0 505.042 12.99

2021-02-06
03:00:00

0.18 1.5 1.0 505.037 12.989

2021-02-06
04:00:03

0.16 1.5 1.0 454.531 12.987

(c) Enveloped Acceleration

Table 3.2: Files Content, MC 1 Operational Side
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3.2 Pre-processing

As well as the collection process, the pre-processing of data was separated into two major
stages.
The first one was to pre-process maintenance data, which consisted just of merging 3 tables
into one, to have information regarding rolls and bearings in one file.
The second stage was a pre-processing of vibration trends. This part is done in several steps.
As it is previously mentioned, files with trends are exported as .xls files but because of the
original format, Excel raises a warning. Due to the same reason, it was not possible to open
and process the file. So, I decided to resave all the files as text files(.txt) and to work with the
content as with text. XML is a markup language, which is used to store and transport data.
This means, that columns and rows are divided by tags. Counting the right number of tags
allowed me to find the necessary columns in each file, which were after stored in the Comma
Separated Values file(.csv). After performing the previous steps, I had the same three files
but already of much lower weight. To finalize pre-processing of trends it was also necessary
to merge them, to have all the points aligned by the date and time. For hourly points, it was
relatively easy but the main issue was with peak values. I made an assumption that taking
the mean of these values will affect the shape of the trend more rather than taking just the
highest out of them. Consequently, every time there was more than one value, I was taking
the highest, and this rule worked not just for magnitudes of vibration parameters but also for
cycles per minute and bias voltage. But there were also cases when the vibration parameters
at the same hour had less than three values. In such circumstances, I had to neglect such
points.
Therefore, after performing these steps I managed to decrease the number of vibration trend
files three times, and the total weight twenty-five times. From almost 53 gigabytes to a bit
more than 2 gigabytes.
Table 3.3 holds the example of a merged vibration trends file but shows just the primary
columns. As you can notice, the values of the second columns in Tables 3.2 (a-c) are the same
values as the magnitudes of the first three rows in Table 3.3, and CPMs and bias voltage
columns have the max values.

Hour
ID

Date/Time Acceleration(g)
Enveloped Ac-
celeration(gE)

Velocity(mm/s) Bias(V) CPMs

0
2020-02-12
20:00:00

0.19 0.16 0.9 13.328 570.414

5
2020-02-13
01:00:00

0.19 0.12 0.93 13.459 538.717

29
2020-02-14
01:00:00

0.14 0.11 0.84 13.358 507.028

9124
2021-02-27
00:00:00

0.21 0.48 0.8 13.339 454.543

9125
2021-02-27
01:00:00

0.21 0.44 0.72 13.342 454.542

9126
2021-02-27
02:00:00

0.21 0.43 0.62 13.331 505.044

Table 3.3: Pre-processed file, MC 1 Operational Side
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Chapter 4

Model

4.1 Implementation

Having just a few actual examples of breakdown or pre-breakdown states of bearings for both
paper machines, the decision was made in favor of a mathematical model rather than a prob-
abilistic one. Due to the assumption, that such a low-probability outcome will be considered
very unlikely. While in reality there always is a possibility of such an event, just monthly
maintenance and preventive replacements allow to avoid this.
The initial step of the implementation of any model is the development of the structure. The
design of the structure has to describe the production process in a detailed and comprehensive
way. Due to this, I choose the top-down approach, starting with macro objects of the mill and
delving into smaller objects. Such a systematic methodology ensures that no crucial details
were overlooked.

Each class within the model plays a specific role:

◦ Machine: Serves as a fundamental node, this class represents the entirety of paper
machines, further containing a list of Roll class objects within it.

◦ Roll: This class is responsible for tracking the various rolls within the machines. Each
instance of the Roll class is exactly two instances of the Bearing class.

◦ Bearing: This class symbolizes the individual bearings present in each side of the roll.
It retains information about the bearing and the roll to which it has been applied.
Furthermore, it accommodates lists of all segments.

◦ Segments: This class subdivides a list of bearing points into segments for a more
detailed monitoring process. Segmentation of bearings enables the identification of
specific problem areas within each bearing. For research purposes, the duration of each
segment has been set to one calendar month. This timespan does not interfere with the
computation of coefficients.

◦ Points: This class represents the specific point in time where all the values of the
vibration trends and their related calculations are recorded.
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4. Model

Figure 4.1: Classes Structure

With the implemented structure I started to apply various algorithms to these trends to
study magnitude changes. At first, I considered trends as noisy due to the swift fluctuations
between adjacent points. To address this, I experimented with different data smoothing tech-
niques such as moving average and exponential smoothing. However, as I delved deeper into
the study of trends and vibration analysis techniques, I was starting to realize the crucial
importance of preserving magnitudes. Smoothing algorithms were suppressing actual noise
and modifying the shape of the trend in the signal, complicating the differentiation between
noise and actual damage in the bearing.
Instead of smoothing the data, I made an assumption that implementing a polynomial fit
could be a solution because in the case of fitting every magnitude would influence the polyno-
mial. However, before fitting it is necessary to ensure that the segment does not contain any
anomalous data, such as enormous velocity values and an unstable bias trend. The presence
of such data would indicate signal failure. To verify the stability of bias voltage and eliminate
impossible velocity magnitudes, I performed a check on the signal using k-means clustering
with two centroids. By analyzing the comparative magnitude between the two centroids, we
are able to verify the stability of a bias voltage and impossible magnitudes of velocity.
After checking the signal, I started testing various polynomial degrees, from which I made
several conclusions. The first one was, that polynomials of higher degrees have a better fit-
ting but the number of coefficients, that such polynomials generate, is not very convenient
for making any decision. This led to a choice between the simplicity of the model using
lower-degree polynomials and its capacity to accurately fit the data with higher-degree poly-

28



4.2. Testing

nomials. For this reason, I decided to use polynomials of low degrees. Due to the study of
the growth of trends, quadratic polynomials were also not suitable. Consequently, for further
implementation, I utilized polynomials of first and third degrees.
Already having coefficients and both discrete polynomial fits, I performed several additional
computations before the implementation of the decision tree. Using the coefficient of the first-
degree polynomial I estimated the angle of the polynomial, to generate a descriptive variable
that would allow to verify the degree of inclination. Due to the high number of points in
each segment, the angle in degrees was represented by extremely small decimal fractions, so
for convenience, it was necessary to convert them to seconds. To have a more comprehensive
representation of the third-degree polynomial rather than just coefficients, I chose to calculate
the area of the space between the polynomial and a straight line, drawn from the polynomial’s
first and last values. This area is used to calculate the second coefficient. Consequently, this
gives us two meaningful coefficients for each type of vibration signal. With the help of these
coefficients, it is possible to design the decision tree.

Figure 4.2: Decision Tree

4.2 Testing

Due to the lack of statistically proven ground truths I decided to perform verification of the
correctness of the choice of decision model using several methods. Initially, a comparison was
made between the obtained statistics of each machine and the provided approximations. The
outcomes of this comparison are shown in Table 4.1 and Figure 4.3.
Statistics of PMs demonstrated comparable outcomes, both close to approximate ground
truths. However, the comparison of failure distributions of machines provides just a broad
understanding and could not be seen as a definitive validation. But making some compar-
isons between sections and some other groups could provide additional confirmations. The
statistics supporting this observation can be found in Table 4.2.
The study of condition distributions across paper machine sections provides several conclu-
sions. Primarily, Signal Failures accrue in the Wire Section more frequently rather than in
others. The logical explanation for this can be the high humidity levels prevalent in this part
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of the PM that can affect electronic circuits and devices. Secondly, Noise accrues more often
in the Drying Section, this situation can be explained, that this happens due to one specific
type of noise, which is quite common for the drying section. This noise is called steam head
noise, it accrues due to the high-temperature steam inside of the drying rolls, which goes
throw them and sometimes produces a high-pitched buzzing sound.
Comparisons between types of bearings were also done. But unfortunately, just one of the
types of bearings, Spherical Roller Bearings(SR), is represented by the high number of ex-
amples in these datasets. Therefore, it is not possible to draw any conclusions on the types
of bearings and find confirmation or refutation of the hypothesis. After statistical validation,
it is necessary to visually inspect trends and decisions regarding them, comparing them with
the conclusions of specialists from the Condition Monitoring Department. Examples of the
bearing of failures are provided in Figures 4.4 and 4.5.

Paper Machine I. segments Paper Machine II. segments
Condition Abb. number in % number in %

Normal 2819 42.49% 1648 48.80%
Signal Failure A 1375 20.73% 725 21.47%

Noise B 2306 34.76% 978 28.96%
Bearing Failure C 134 2.02% 26 0.77%

Overall 6634 100% 3377 100%

Table 4.1: Conditions Distribution for Training and Testing Datasets

A

36.04%

B

60.44% C
3.52%

(a) I.PM

A

41.94%

B

56.56%
C

1.5%

(b) II.PM

Figure 4.3: Failures Distribution;
A - Signal Failures, B - Noise, C - Bearing Failures
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Paper Machine I. segments Paper Machine II. segments
Section Condition Abb. number in % number in %

Normal 114 27.67% 480 58.11%
Signal Failure A 206 50.0% 184 22.28%

MC Noise B 77 18.69% 159 19.25%
Bearing Failure C 15 3.64% 3 0.36%

Overall 412 100% 826 100%

Normal 190 82.60% 267 60.14%
Signal Failure A 21 9.13% 77 17.34%

LC Noise B 16 6.96% 90 20.27%
Bearing Failure C 3 1.30% 10 2.25%

Overall 230 100% 444 100%

Normal 2515 41.97% 901 42.76%
Signal Failure A 1148 19.16% 464 22.02%

SS Noise B 2213 36.93% 729 34.60%
Bearing Failure C 116 1.94% 13 0.62%

Overall 5992 100% 2107 100%

Table 4.2: Conditions Distribution for Sections of Paper Machines, MC - Mokrá část/Wire
section, LC - Lisova část/Press section, SS - Suš́ıćı sekce/Drying section

(a) Plot of the Model (b) Plot of Observer and Note

Figure 4.4: First Example of Bearing Failure
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(a) Plot of the Model (b) Plot of Observer and Note

Figure 4.5: Second Example of Bearing Failure
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Chapter 5

Conclusion

5.1 Summary

Given the comprehensive exploration conducted in this study and the various observations
derived, the research concludes that the mathematical decision tree algorithm offers a prom-
ising approach for the detection and prediction of bearing failures. The implemented model
exhibits reliable performance, and the failure prediction task has been effectively formalized,
taking into account the costs of prediction failures and false alarms.
However, the decision tree model is not without its limitations and areas for improvement.
Specifically, there remains the critical task of setting the sensitivity of the coefficients. The
analysis revealed that both overfitting and underfitting can significantly impact the quality of
predictions, and thus, the model’s overall performance. Thus, further research should focus
on tuning the model to better manage these challenges.
While the initial goal of the study was to implement a failure prediction method using a
neural network, the course of the study steered towards the use of a mathematical decision
tree. This decision was based on the specific characteristics of the data set and the need for
a more flexible model that can accommodate complex non-linear relationships in the data.
In terms of the prepared training and test sets, these were appropriately separated and util-
ized, enabling an accurate evaluation of the model’s performance. However, a limitation
here lies in the imbalance of the bearing types represented in the data sets. Only one type,
Spherical Roller Bearings (SR), is significantly represented, which inhibits the possibility of
drawing any definitive conclusions about different types of bearings.
Finally, while the research has not specifically quantified the potential economic benefits of
this decision tree model, it’s clear that an effective prediction and detection system for bear-
ing failures could lead to considerable cost savings. By enabling early detection and alerting,
the system could potentially minimize unplanned downtime, avoid catastrophic failures, and
optimize maintenance scheduling. Moreover, the time saved from manually sorting failures
can be better utilized, resulting in greater operational efficiency.
Therefore, as a next step, it would be beneficial to focus on further refining the model and
possibly expanding the types of bearings included in the data sets. Additionally, a thorough
cost-benefit analysis could be conducted to more concretely quantify the economic benefits of
deploying such a model. Ultimately, with these improvements, the research offers a promising
step forward in the realm of predictive maintenance for bearing failures.
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5. Conclusion

5.2 Contributions of the Dissertation Thesis

This dissertation thesis contributes to the existing body of knowledge in several significant
ways:

◦ Formalization of Bearing Failure Prediction Task: The research formalized the
bearing failure prediction task, offering a practical framework for future studies. It em-
phasized the importance of establishing the cost of prediction failures and false alarms,
crucial for industrial implementation.

◦ Development of a Mathematical Decision Tree: The study introduces the innov-
ative use of a mathematical decision tree for bearing failure prediction, as opposed to
conventional methods like neural networks. This novel approach offers a simpler, yet
effective, method to handle complex non-linear data.

◦ Real-world Application and Evaluation: The research applied the model to real-
world datasets from two different paper machines. This practical application provides
valuable insights and demonstrates the potential usability of the model in industrial
settings.

◦ Sensitivity Analysis of Coefficients: The study presents insightful findings on the
influence of coefficient sensitivity on prediction quality. It underscores the careful bal-
ance needed between underfitting and overfitting in predictive models, which is partic-
ularly crucial in bearing failure prediction.

◦ Novel Data Segmentation Approach: The dissertation introduces an innovative
approach to data segmentation, dividing bearing data into time-limited segments, high-
lighting that the optimal segmentation should be between maintenance periods rather
than arbitrary calendar months. This method enhances failure prediction by enabling
specific problem area identification within each bearing.

◦ Exploration of Different Real-Life Implementation Approaches: The thesis
demonstrates that various real-life implementation approaches are feasible based on
magnitude (amplitude) vibration analysis. This flexibility is vital for industries with
diverse operational needs and constraints.

◦ Operational Efficiency Improvement: The research suggests that automated bear-
ing failure detection and prediction can significantly enhance operational efficiency. This
contribution has broad implications for machinery-dependent industries, where timely
detection and preventive action can lead to considerable cost and time savings.

The collective impact of these contributions is a significant advancement in our under-
standing and capabilities in predictive maintenance, particularly bearing failure prediction.
The dissertation also highlights the need for further research and model refinement to optimize
these contributions and realize their potential benefits fully.

5.3 Future Work

Future research directions and potential improvements suggested by this dissertation are:

34



5.3. Future Work

◦ Data Collection Improvement: The data collection process could be optimized to
ensure that vibration parameter values are recorded simultaneously. This enhancement
will help eliminate gaps and missed data, thereby improving the quality and reliability
of the input for the prediction models.

◦ Sensitivity Correction for Real-Time Operation: Future work should focus on
fine-tuning the sensitivity of the prediction model for real-time operation. The objective
would be to enable the model to work effectively for segments between maintenance
periods, rather than calendar months, thereby enhancing its relevance and applicability
in a real-world industrial setting.

◦ Real-time Model Implementation: Once the model’s sensitivity is optimally ad-
justed for real-time operations, its implementation and testing in a live environment
will be the next step. This implementation would allow for more robust testing and
verification of the model’s performance.

◦ Development of Prediction Models: In line with the ultimate goal of predictive
maintenance, future studies could focus on the development of advanced prediction
models. Collecting more examples of bearing failures can drive this. These models
could provide early warning of potential failures, facilitating preventative maintenance
and avoiding costly machine downtimes.

◦ Frequency-Based Bearing Failure Prediction: There’s a potential to broaden the
research scope by considering frequency-based bearing failure predictors. Given the wide
range of failures that frequency analysis can detect compared to amplitude analysis, this
could open up new avenues for enhancing the effectiveness of bearing failure prediction.

In conclusion, while this dissertation makes significant strides toward effective bearing
failure prediction, these future research directions suggest there is still substantial potential for
further exploration and improvement in this crucial area of industrial machinery maintenance.
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5. Conclusion

.1 Appendix

Figure .1: Roll Exchange Protocol
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.2. Appendix

.2 Appendix

Figure .2: Standard Operating Procedures (SOP)
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5. Conclusion

.3 Appendix

Figure .3: Bearing Exchange Protocol
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