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Abstract
This text contributes to the theory
of quantum logics (the algebraic theory
of the orthomodular posets).

Chapter 1 introduces basic notions
of quantum theories and their link with
quantum logics.

Chapter 2 rigorously recalls the basic
notions of the up-to-date quantum logics.

Chapter 3 studies the algebraic genera-
tion in the lattice QLs. As a main result,
we see how the fact of being locally finite
allows for an extension of states. Then
a Cartesian product of locally finite lat-
tice QLs is investigated in view of the per-
manence property.

In Chapter 4, we investigate the QLs
that are endowed with a symmetric dif-
ference. Main results obtained are find-
ing examples of an irregular compatibility,
proving the extension of Z2-valued states
and presenting a construction of an ex-
ample with a small state space and a big
degree of non-compatibility.

In Chapter 5, we endow the Abbott al-
gebras with a symmetric difference (a kind
of a XOR operation). We find that the Ab-
bott XOR algebras are categorically equiv-
alent to the class of lattice QLs with
a symmetric difference. Another result
is a description of compatibility. Also,
Boolean algebras are characterized among
the XOR Abbott algebras and an appro-
priate definition of a state is formulated
and applied.

Chapter 6 asks whether each set-
representable quantum logic can be made
point-distinguishing. We answer this ques-
tion in the positive by considering an ap-
propriate equivalence relation and, al-
ternatively, by relating the problem to
the Stone representation technique.

In Chapter 7 we summarize the results
and comment on the matters studied.

Keywords: quantum logic,
set-representable quantum logic, state on
quantum logic, compatibility relation,

lattice quantum logic, Boolean algebra,
generation in the lattice quantum logic,
quantum logic with a symmetric
difference, lattice quantum logic with a
symmetric difference, △-state, Z2-state,
Abbott algebra, Abbott XOR algebra,
categorical equivalence,
point-distinguishing quantum logic,
generalized Stone representation
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Abstrakt
Tento text přispívá k teorii kvantových
logik (algebraické teorii ortomodulárních
uspořádaných množin).

Kapitola 1 představuje základní pojmy
kvantových teorií a jejich vztah s kvanto-
vými logikami.

Kapitola 2 formálně zavádí základní po-
jmy teorie kvantových logik.

Kapitola 3 se zabývá algebraickým ge-
nerováním ve svazových kvantových lo-
gikách. Jedním z výsledků je zjištění, že
vlastnost lokální konečnosti umožňuje roz-
šiřování stavů. Poté je zkoumán kartézský
součin lokálně konečných svazových kvan-
tových logik.

V kapitole 4 zkoumáme kvantové logiky
dovolující zavedení pojmu symetrické di-
ference. Hlavními dosaženými výsledky
jsou nalezení příkladu neregulární kompa-
tibility v těchto strukturách, důkaz roz-
šiřování Z2-stavů a konstrukce příkladu
s malým stavovým prostorem a vysokým
stupněm nekompatibility.

V kapitole 5 opatříme Abbottovy alge-
bry symetrickou diferencí (lze ji chápat
jako operaci XOR). Ukazujeme, že Ab-
bottovy algebry s operací XOR jsou kate-
goriálně ekvivalentní se svazovými kvan-
tovými logikami se symetrickou diferencí.
Dalším výsledkem je popis kompatibility
a zavedení pojmu △-stav. Dále je podána
zajímavá charakterizace Booleovy algebry
v řeči symetrické diference.

V kapitole 6 se ptáme, zda lze kaž-
dou množinově reprezentovatelnou kvan-
tovou logiku učinit isomorfní s množi-
nově reprezentovatelnou kvantovou logi-
kou, která dovoluje oddělování bodů. Na
tuto otázku odpovídáme kladně pomocí
zavedení vhodné ekvivalence a spojení
s technikou Stoneovy reprezentace.

V kapitole 7 shrhujeme hlavní výsledky
práce.

Klíčová slova: kvantová logika,
množinově reprezentovatelná kvantová
logika, stav na kvantové logice, relace

kompatibility, svazová kvantová logika,
Booleova algebra, generování ve svazové
kvantové logice, kvantová logika se
symetrickou diferencí, △-stav, Z2-stav,
Abbottova algebra, Abbottova XOR
algebra, ekvivalence kategorií, bodově
rozlišitelné kvantové logiky, zobecněná
Stoneova reprezentace

Překlad názvu: Algebraické a stavové
vlastnosti kvantových logik
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Chapter 1
Introduction

The aim of this thesis is to contribute to the quantum logic theory. This theory
can be viewed as a part of mathematical physics, or, seen from the structural
angle, as a part of the theory of ordered structures.

Let us indicate how quantum logics came into existence and how they are
seen to be associated to quantum experiments. The way of this association
developed a long time and it is complicated as quantum physics itself, so we
have to simplify the matters in places. The subject is so complex that even
the monographs ([25, 39, 17, 36, 12, 11]) devoted to this subject do not cover
it completely. Hence let us only sketch the basic ideas and milestones that
led to the up-to-date notions and the directions of research.

A standard presentation begins with the name of J. von Neumann. The quan-
tum mechanics in the sense of J. von Neumann would become a type of proba-
bility theory. However, in contrast to the Kolmogorovian classical probability,
the laws of classical probability cannot be obeyed. This circumstance is
usually attributed to the so-called Heisenberg uncertainty principle that
states, roughly, that the measurement of the position and the momentum of
a particle cannot be performed accurately [13]. J. von Neumann suggested
to consider the projection operators as the representatives of the propositional
logic of a quantum experiment (this attitude is defended by many physicists
even today). If a proposition is verified by an experiment, one evaluates it
by 1, if it is false, one evaluates it by 0. This became the initial idea behind
the abstract “quantum logics” and “states”.

After several debates and critical essays of quantum physicists, the original
idea by J. von Neumann became less trustful. There occured a need for
a more natural and more verifiable axiomatics. Paradoxically, J. von Neumann
himself became an advocate of a generalized approach - in the famous paper
with G. Birkhoff [3] adopted the “logico-algebraic” approach. This was
a preliminary step to the notion of quantum logic studied in this text.

Let us step aside for a moment and recall basic notions of Boolean algebras
and lattices. If we consider the classical propositional logic, we speak of a struc-
ture closed under the formation of the negation, ⊥, the disjunction ∨ and
the conjunction ∧. The operations are supposed to satisfy some natural con-
ditions. We then obtain a Boolean algebra (the Lindenbaum-Tarski algebra).
A Boolean algebra obeys the distributivity law, a ∨ (b ∧ c) = (a ∧ b) ∨ (a ∧ c).

3



1. Introduction .....................................
If we go back to the concept of G. Birkhoff and J. von Neumann, they

in fact associate to any quantum experiment an algebraic generalization
L of a Boolean algebra - an ordered structure with an orthocomplement
operation - as a kind of a “logic” (a Boolean algebra is not appropriate because
of the Heisenberg uncertainty relation). The elements of L can be viewed as
representations of verifiable propositions on the experiment. The ordering
of L defines an implication, the orthocomplement operation defines a negation.
If the experiment is classical (Newtonian), then L is a Boolean algebra. If
the experiment is quantum, L is assumed to be modular. So L is generally
non-Boolean but it is easily seen that L consists of many Boolean subalgebras
that cover L. These Boolean subalgebras are associated to the arrangements
of the experiment and their elements can be verified. The notions then became
subject to the final revision. Since L(H) - the projectors in a Hilbert space H -
is modular only when dim(H) is finite, the appropriate conceptual “umbrella”
became orthomodular partially ordered sets. A partially ordered set is said
to be orthomodular if a ≤ b =⇒ b = a ∨ (b ∧ a⊥). By the discoveries
of today, the orthomodular law has much more abstract and general roots
than the projection logics [18].

As it usually happens, the theory of quantum logics started to live its own
life within the realm of ordered structures. The results obtained may then in
turn have a bearing on theoretical physics.

According to the state of the art, quantum logics are supposed to be
orthomodular posets and states are supposed to be probability measures on
them. They should relatively well model some problems of quantum systems.
A purpose of this thesis is bringing a solution of some natural questions that
occur therein.

4



Chapter 2
Basic notions

2.0.1 Definition (quantum logic)

Let P = (S, ≤,⊥ , 0, 1), where ≤ is a partial ordering on S with a least and
a greatest elements 0, 1, and where ⊥ : S → S is an orthocomplementation
mapping (a ≤ b =⇒ b⊥ ≥ a⊥, (a⊥)⊥ = a, a ∨ a⊥ = 1 and a ∧ a⊥ = 0). If P
satisfies the orthomodular law, a ≤ b =⇒ b = a ∨ (b ∧ a⊥), then P is said
to be a quantum logic (QL).

In the algebraic language QLs are called orthomodular posets. The typical
example of a QL is a horizontal sum of Boolean algebras (a disjoint union
of Boolean algebras with 0 and 1 identified in all Boolean algebras). Another
fundamental example is a so-called Greechie diagram. Both constructions
are demonstrated by the figures below.

u u u u
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u���
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QQ�
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Q
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QQ
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u
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a b

A B

Figure 2.1: Hasse (left) and Greechie (right) diagrams of a horizontal sum of
two 4-element Boolean algebras, usually denoted by MO2 [31]

2.0.2 Definition (lattice quantum logic)

If a QL, P , is a lattice with respect to ≤, then P is said to be a lattice QL.
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2. Basic notions.....................................
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Figure 2.2: Greechie diagram of R. Mayet’s example of a QL without states [31]

In the algebraic language the lattice QLs are called orthomodular lattices.
Typical example is a Boolean algebra or the horizontal sum of Boolean
algebras, and the lattice of projectors in a Hilbert space. We shall deal
with many others.

2.0.3 Definition (set-representable QL and set-representable
lattice QL)

Let S be a set and let ∆ be a collection of subsets of S (∆ ⊆ expS). Suppose
that ∆ is subject to the following requirements:..1. S ∈ ∆,..2. if A ∈ ∆, then A⊥ ∈ ∆ (A⊥ = S \ A),..3. if A, B ∈ ∆ and A ∩ B = ∅, then A ∪ B ∈ ∆.

Then (S, ∆) is said to be a set-representable QL (SR-QL).
If ∆ is a lattice with respect to the inclusion ordering, the couple (S, ∆) is

said to be a set-representable lattice QL (lattice SR-QL).

A typical example of SR-QLs are the Gudder logics (for instance, if
the number of elements of a set is divisible by k, one takes for ∆ the subsets
whose number of elements is a multiple of k).
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..................................... 2. Basic notions

A typical example of a lattice SR-QL is a Boolean algebra (the Stone
theorem) or the Gudder QL on the set of 4 elements and its Cartesian
products.

2.0.4 Definition (quantum logics closed under the formation
of a symmetric difference)

Let P = (S, ≤,⊥ , 0, 1, △), where P = (S, ≤,⊥ , 0, 1) is a QL and △ : S2 → S
is a binary operation. Then P is said to be a quantum logic with a sym-
metric difference (QLS) if P satisfies the following conditions (x, y, z ∈ S):..1. x△(y△z) = (x△y)△z,..2. x△1 = x⊥, 1△x = x⊥,..3. x ≤ z, y ≤ z =⇒ x△y ≤ z.

If a QLS is a lattice with respect to ≤ then it is called a lattice QLS.

A typical example of both of these structures is a Boolean algebra. An easy
example of a QLS is the even-number-subsets of a set with an even number
of elements. The latter example on the 4-point set is a lattice QLS and so is
also any Cartesian product of this example with a Boolean algebra. The class
of lattice QLSs forms a variety of algebras that, in a sense, lies in between
Boolean algebras and lattice QLs.

Regarding the interpretation of QLSs in quantum axiomatics, it may
be debatable as other matters in quantum theories. It seems to assume that
(at least some) quantum experiments may be associated with QLSs.

A prominent position of QLSs take the set-representable ones. We will
define them in the next definition.

2.0.5 Definition (set-representable QLS)

Let (S, ∆) be a SR-QL. If ∆ is closed under the formation of the set-theoretic
difference, i.e. if A, B ∈ ∆ then A△B = (A \ B) ∪ (B \ A) ∈ ∆, then (S, ∆)
is said to be a set-representable QLS (SR-QLS).

Obviously, a SR-QLS is a QLS with ≤ being the inclusion relation and ⊥

being the set complement operation.
Let us take up another important notion in QL. Again, it is supposed to

model well what we could call a state in a quantum experiment.

2.0.6 Definition (state)

Let P = (S, ≤,⊥ , 0, 1) be a quantum logic.Let s : P → [0, 1] be a mapping
that satisfies the following conditions:..1. s(1) = 1 (Completeness),

7



2. Basic notions.......................................2. s(a ∨ b) = s(a) + s(b), provided a ≤ b⊥ (Exclusivity).

Then s is called a state on P .

2.0.7 Definition (pure state)

A state s is said to be a pure state if it cannot be expressed as a con-
vex combination of other states. Formally, s is pure if the state equality
s = αt + (1 − α)u implies that α = 0 or α = 1.

Let us remark the importance of pure states - by the classical Krein-
Milman theorem each state can be “reached” by the topological closure
of the convex hull of pure states.

2.0.8 Definition (two-valued state, alias hidden variable)

The state s : P → {0, 1} is said to be a two-valued state. Following a con-
cept of the philosophy of physics, a two-valued state is sometimes called
a hidden variable, see [17, 42].

Let us only note that the absence of hidden variables in the projector logics
is a matter of long lasting dispute of physicists.

2.0.9 Definition (△-state)

Let P be a QLS, P = (S, ≤,⊥ , 0, 1, △). Let s : P → [0, 1] be a state such
that for any a, b ∈ P we require s(a△b) ≤ s(a) + s(b).
Then s is called a △-state on P .

2.0.10 Definition (Z2-state)

Let P be a QLS, P = (S, ≤,⊥ , 0, 1, △). A mapping s : P → Z2 (where Z2 is
the two-element group with the group operation ⊕) is said to be a Z2-state
on P , if the following conditions are satisfied (a, b ∈ P ):..1. s(1) = 1,..2. s(a ∨ b) = s(a) ⊕ s(b), a, b ∈ P .

2.0.11 Definition (state space)

Let us denote by S(P ) the set of all states on a QL, P . Obviously, S(P ) can
be naturally understood with its affine and topological (compact) structure.
Thus, S(P ) can be called the state space of P .

2.0.12 Definition (space of two-valued states)

Let us denote by S2(P ) the set of all two-valued states on a QL, P . Obviously,
S2(P ) can be naturally understood with its topological (compact) structure.

8



..................................... 2. Basic notions

2.0.13 Definition (△-state space)

Let us denote by S△(P ) the set of all △-states on a QLS, P . Obviously, S△(P )
can also be naturally understood with its affine and topological (compact)
structure. Thus, S△(P ) can be called the △-state space of P .

9



10



Chapter 3
Locally finite lattice quantum logics

This chapter contributes to some questions on the generation of lattice
quantum logics by their subsets. Let us present a few results apparently not
dealt with in the relevant literature.

This chapter is composed upon the published paper in an IF journal
co-authored by the author of this text [8].

3.1 Basic notions of this chapter

It is the lattice QLs that are the subject of this chapter.
We will address the question on the generation of a lattice QL by its subset.

There are still several open questions in this area (for instance, there is no
characterization of the free lattice QL over 3 generators). We would like
to contribute to some open questions. Let us say that a lattice QL, P , is
locally finite if each finite subset of P generates in P a finite lattice subQL.
So, in the generation we take into account both the QL structure and the
lattice structure.

Let us denote the class of locally finite lattice QLs by LF .

3.2 Results

A first result gives us basic information on LF .

3.2.1 Theorem (locally finite lattice QL)..1. Each finite lattice QL and each Boolean algebra belongs to LF ,..2. LF is closed under finite products,..3. LF is closed under epimorphic images,..4. There are infinite non-Boolean set-representable lattice QLs that belong
to LF ,..5. There are lattice QLs of LF with preassigned centers.

11



3. Locally finite lattice quantum logics ...........................
Proof. Statements 1 and 2 are obvious, a finitely generated Boolean algebra
possesses finitely many atoms.

As for 3, recall (see [25]) that if Lα, α ∈ I, is a collection of lattice QLs,
then by the horizontal sum Hor(Lα, α ∈ I) one means the lattice QL obtained
by identifying zeros and ones of the disjoint union of all Lα, α ∈ I. Obviously,
if Lα ∈ LF for any α ∈ I, then Hor(Lα, α ∈ I) ∈ LF , too.

Further, verifying 4, let K ∈ LF and e : K → L be an epimorphism
in lattice QLs. Let {ai, i ≤ n} ⊆ L. Take bi ∈ K with e(bi) = ai. Then
{bi, i ≤ n} generates a finite lattice subQL of K, some K̃, and so e(K̃) is
a finite lattice subQL of L. Since e(K̃) contains {ai, i ≤ n}, property 4
follows.

Finally, approaching property 5, recall that the centre C(K) means the set
of all “absolutely compatible” elements of K (see [25]). Let us first take
the horizontal sum Hor(L, MO2), where MO2 = {0, 1, a, a⊥, b, b⊥}. Then
the centre C(Hor(L, MO2)) is trivial, C(Hor(L, MO2)) = {0, 1}, and, obvi-
ously, L can be embedded in Hor(L, MO2). To complete the argument, let us
form the so-called Boolean sum of Hor(L, MO2) and B (see e.g. [35]). Recall
the construction of a Boolean sum, the rest is then easily seen. Let us view B
as a collection B of subsets of a set, B = (D, B) (the Stone Theorem). Let P
be the collection of all partitions of B (by a partition of B we mean a family
Q = {Ai | Ai ∈ B, i ≤ n} of disjoint non-empty sets Ai with

⋃
i≤n

Ai = D). If

L is a lattice QL and B = (D, B) is a Boolean algebra, a Boolean sum of L
and B is the set of all functions f : D → L with the property that there
is a partition {Ai | i ≤ n} of B such that f is constant on every Ai, i ≤ n
(the “B step functions” on D with values in L). Obviously, a Boolean sum
of Hor(L, MO2) and B satisfies property 5.

The next result points out the interesting state property of the lattice QLs
of LF . Let us “en passant” note that the state space of a QL may be very
complicated or even somewhat bizarre (see e.g. [15, 32] and [38]).

3.2.2 Theorem (state extension)

Suppose that P ∈ LF . If S(K) ̸= ∅ for any finite lattice subQL K of P , then
S(P ) ̸= ∅.

Proof. By a standard application of Tychonoff’s theorem on the product
of compact topological spaces, the set [0, 1]P of all functions f : P → [0, 1]
is compact in the topology of pointwise convergence. Let us consider, for
each finite lattice subQL K of P , the set of all functions g : P → [0, 1]
that are states on K when restricted to K. Denote this set of functions
by T (K). Obviously, each T (K) is compact, too. Since the family of all
finite lattice subQL of P is directed when ordered by inclusion, we see that
{T (K), K finite lattice subQL of P} is a centered family of closed subsets
of [0, 1]P . By our assumption, each T (K) is non-void. If K denotes the set
of all finite lattice subQL of P , then the intersection

⋂
K∈K

T (K) is non-void

12
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(the compactness of [0, 1]P applies). Let s ∈
⋂

K∈K
T (K). Then s ∈ S(P ) and

this completes the proof.

When restricted to the two-valued states in the interpretation of [17], if
P ∈ LF , then P does not have a hidden variable provided there is a locally
finite lattice subQL of P that does not have a hidden variable either. Of course,
in general this does not hold (consider the projection logic L(R3), each finite
lattice subQL K of L(R3) is set-representable and therefore S2(K) ̸= ∅ but
S2(L(R3)) = ∅, see [26]).

We saw in Theorem 3.2.1 2 that LF is closed under finite products. It
is conjecturable that this is not true for infinite products. This is indeed
the case even in the class of set-representable lattice QLs. Let us present
the required construction that seems to be a novelty in lattice QLs and might
be valuable in its own right.

3.2.3 Constructions with set-representable lattice QLs
(Cartesian product, Kalmbach embedding, etc.)

Let us ask if LF contains all set-representable lattice QLs. Of course, the free
lattice QL over three generators is not set-representable. In [20] the author
shows that this lattice QL contains the free lattice QL over countably many
generators and if the latter lattice QL was set-representable, then so would
be all “small” lattice QLs. This is obviously not the case (see [15]).

However, we can answer the above formulated question in the negative in
other ways contributing thus to our theme and adding to Theorem 3.2.1 2.
The first way utilizes the so-called Kalmbach embedding of lattices. Recall
that by [25] each lattice L can be lattice-theoretically embedded into a lattice
QL. Let us denote it by K(L). It can be shown (see [21]) that K(L) is always
set-representable. Hence if L is not locally finite as a lattice, and such a lattice
is easy to find, then K(L) is a set-representable lattice QL that is not locally
finite.

Another example related to Theorem 3.2.1 could be obtained by showing
that the class LF is not closed under the formation of the product of countably
many (finite set-representable) lattice QLs. Indeed, it suffices to find finite
set-representable lattice QLs Ln, n ∈ N, such that Ln is generated by three
elements an

1 , an
2 and an

3 and, moreover, the cardinality of Ln is finite and greater
than or equal to n (one can for instance use the Kalmbach embedding again
or consult [16]). Let us take the Cartesian product

∏
n∈N

Ln. Then the triple

bi ∈
∏

n∈N
Ln, i ≤ 3, defined by b1 = (an

1 ), b2 = (an
2 ), b3 = (an

3 ), n ∈ N,

generates an infinite subset of
∏

n∈N
Ln (the n-th coordinate “supplies” at least

n elements). Since the product of set-representable lattice QLs is again
set-representable (see e.g. [30]), we see that the product

∏
n∈N

Ln is the example

we looked for.
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Chapter 4
Quantum logics enriched with a symmetric
difference.

In this chapter we address some questions on QLSs and SR-QLSs.
We first disprove a naturally looking conjecture on the important relation

of compatibility in SR-QLSs (the notion of compatibility captures, in theoret-
ical form, the common measurability question of quantum events [17, 36]).
Then we contribute to the △-state extension problem and the Z2-state exten-
sion problem, where the latter problem is answered in the positive. We then
construct an example motivated by the independence question of the com-
patibility and the state space in quantum theories - we construct a SR-QLS
with a small △-state space and a big degree of non-compatibility.

This chapter is composed upon the published paper in an IF journal co-
authored by the author of this text [7] and the conference contribution of
the author of this text [6].

4.1 Basic notions of this chapter

Let us assume that (S, ∆) is a SR-QLS. Recall that a subset M of (S, ∆) is
said to be compatible if there is a Boolean subalgebra B of ∆ such that
M ⊆ B.

Let us say that (S, ∆) is compatibility regular (compreg) if the follow-
ing implication holds true. If A = {A1, A2, . . . , An} ⊆ ∆, and if any subset
of A with strictly less than n elements is compatible, then so is A. It is
known that (S, ∆) is compreg provided ∆ is a lattice (see e.g. [36]). But
there are several compreg non-lattice QLs, too. For instance such are several
finite set-representable quantum logics (see e.g. [19]) and logics of splitting
subspaces of prehilbert spaces ([37]). Since QLSs are richer than general QLs,
it is conceivable that QLSs are compreg.

4.2 Results

4.2.1 Theorem (irregular compatibility)

Let S = {1, 2, . . . , 2n − 1, 2n}, n ≥ 3. Then there is such a QLS (S, ∆) that
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4. Quantum logics enriched with a symmetric difference. ...................
is not compreg.
Proof. Let ∆ be the collection of all subsets of S that have an even number
of elements. Then (S, ∆) is a QLS. Let f : {0, 1}n → S be an isomorphism
and let Ãi, i ≤ n, be the subsets of {0, 1}n of all elements whose i-th
coordinate is 1. Let Ai = f(Ãi), i ≤ n. The collection {Ai | i ≤ n} = A is
not compatible in (S, ∆). Indeed,

⋂
i≤n Ai is a singleton, {p}, and {p} ̸∈ ∆.

However, each subset C, C ⊆ A, with less than n elements is compatible
in ∆. This is easy to see since the atoms of the Boolean algebra of subsets of
S generated by C consist of the intersections of the elements of C or their
complements. Because the number of sets of C is strictly less than n, all
these atoms belong to ∆.

4.2.2 Theorem (extension of △-states and Z2-states)

There is a SR-QLS, P = (S, ∆′) and a two-valued mapping s : ∆′ → {0, 1}
such that s is both a △-state and a Z2-state and, moreover, if ∆ = expS,
then s cannot be extended over ∆ as a △-state but can be extended over
∆ as a Z2-state. In fact, for each (S, ∆′) and each △-state s on this (S, ∆′)
the △-state s can always be extended over a bigger SR-QLS.
Proof. Let S = {1, 2, . . . , 9, 10}. Let

A = {2, 3, 4, 5},

B = {4, 6, 8, 9},

C = {1, 2, 4, 8},

D = {4, 5, 6, 7}.

Let (S, ∆′) be generated by A, B, C and D. Then there is a two-valued
△-state s on ∆′ that is also a Z2-state and, moreover, s cannot be extended
as a two-valued △-state over expS while s can be extended over expS as
a Z2-state.

Indeed, set

s(S) = 1,

s(A) = 0,

s(B) = 1,

s(C) = 1,

s(D) = 1,

s(A△B) = 1,

s(A△C) = 1,

s(A△D) = 1,

s(B△C) = 0,

s(B△D) = 0,

s(C△D) = 0,

16
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s(A△B△C) = 0,

s(A△B△D) = 0,

s(A△C△D) = 0,

s(B△C△D) = 1,

s(A△B△C△D) = 1.

The values of s on the complements are determined by the additivity of s.
It can be easily checked that (S, ∆) is correctly defined (it is a lattice and it
has 32 elements) and that s is a state as well as a Z2-state. Let us first show
that s cannot be extended over expS. Let us argue by contradiction.

If t is such an extension, t must be given by a partition of unity f : S → [0, 1]
such that for each X, X ⊆ S we have t(X) =

∑
x∈X f(x). This means that

t(B△C) = t
(
{1, 2, 6, 9}

)
= 0 and, also, t

(
{1, 2, 5, 6, 8, 9}

)
= 1. It follows that

t
(
{5, 9}

)
= f(5) + f(9) = 1. But f(5) = t({5}) = t

(
{2, 3, 4, 5}

)
= 0 and

therefore f(9) = t
(
{9}

)
= 1. But t({1, 2, 6, 9}) = 0. This is a contradiction.

Let us take up the case of Z2-state. Since s is also a △-state, we know that
it must be given by a partition of unity, g. We set

g
(
{4}

)
= g

(
{5}

)
= g

(
{6}

)
= g

(
{9}

)
= 1

and

g
(
{1}

)
= g

(
{2}

)
= g

(
{3}

)
= g

(
{7}

)
= g

(
{8}

)
= g

(
{10}

)
= 0,

we see that g extends s as a Z2-state on exp S.

Let us consider the second part of Theorem 4.2.2. Suppose that (S, ∆′) is
a subSR-QLS of some (S, ∆). Observe that (S, ∆) (and (S, ∆′) as well) can
be viewed as a linear space (and a linear subspace) over the field Z2 (this has
been observed in [33] in connection with the game Nim). Indeed, if we view
the sets of ∆ as their characteristic functions with values is Z2, then the sets
of ∆ can be identified with a linear space—if χ1, χ2 are characteristic functions
of A1, A2 then χ1 ⊕χ2 is a characteristic function of A1△A2. Moreover, let us
observe in this interpretation that a Z2-state on (S, ∆′) is a linear form. This
form can be extended over (S, ∆) by a standard method of linear algebra
(the infinite case argues by the application of Zorn’s lemma). The extension
then becomes the Z2-state extension over ∆.

The first result is found purely “out of curiosity” and out of the effort
to strengthen the intuition on the SR-QLSs. Also, there is a link with
the “hidden variable” hypothesis in the interpretation of [17]. The second
result on the extension of the Z2-states was supposed to prepare the stage for
(generalized) propositional logics in the class of QLSs. Another fact is that
a SR-QLS can be viewed as a kind of a code and therefore there is a relation
with the coding theory. This is still under investigation.

The next result concerns QLSs that are not set-representable. Such QLSs
do exist as we show in the following observation. As a little surprise, such
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4. Quantum logics enriched with a symmetric difference. ...................
a QLS is easy to construct in comparison with an analogous construction
in QLs (this phenomenon would deserve more attention as indicated in the
presentation of the author of this thesis [6]).

4.2.3 Observation (non-set-representable QLS)

Take the horizontal sum of all 4-element Boolean subalgebras of exp{1, 2, 3}.
Then it is easily seen that this horizontal sum can be made a QLS and this
QLS is not set-representable [27].

The final result of this chapter has an explicit bearing on quantum theories.
It shows that though QLSs are “almost-Boolean”, they allow for a construction
of a QLS that has an arbitrarily high degree of non-compatibility and a “small”
△-state space. This shows that state spaces and compatibility relations are
independent in contrast to some other models of quantum theories (for
instance, in contrast with the projector approach in von Neumann algebras).

4.2.4 Theorem (big QLS with a small △-state space)

Let K be a simplex in Rn, n ∈ N. Let k be a cardinal number. Then
there is a QLS, P , such that P contains at least k non-compatible pairs and
the △-state space S△(P ) of P is affinely homeomorphic to K.
Proof. There is a QLS, Q, such that S△(Q) = ∅ (see [43] and [41]). Then
the Cartesian product Qk obviously has at least k non-compatible pairs
(The class of QLSs forms a quasivariety [28] and therefore they are closed
under the formation of Cartesian products). Moreover, S△(Qk) = ∅. Indeed,
Q can be naturally embedded in Qk and if there is no △-state on Q, there
is obviously no △-state on Qk. Further, Qk × {0, 1}, where {0, 1} is viewed
as a QLS, possesses exactly one △-state—it suffices to set s(a, 0) = 0 and
s(a, 1) = 1, a ∈ Qk. Write V = Qk × {0, 1} and consider P = V n+1, where
n + 1 is the number of the extreme points of K. Then P has precisely n + 1
pure △-states and therefore S△(P ) = K.

This result (based on an advanced combinatorics of QLSs) is founded on
the construction of Q with S△(Q) = ∅ (see [33, 41] and [43]). The final result
in this direction that is hoped for is a construction of QLS with a given state
space and a given degree of non-compatibility but it seems to be a matter
of a long research.
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Chapter 5
The categorical equivalence of the XOR

Abbott algebras with the quantum logics
enriched with a symmetric difference.

The content of this chapter is formulated by the title above. It extends
the investigation of quantum logics that have a symmetric difference (compare
with Chapter 4). The chapter is written upon the accepted publication
of the author of this thesis [5] in an IF journal.

Though there were a few clerical mistakes in the paper, these overlookings
did not affect the validity of the results.

5.1 Basic notions of this chapter.

Considering the inference rules in generalized logics, J.C. Abbott (see [1, 2])
introduced an algebra that was found appropriate for an application in
mathematical logic. His definition reads as follows.

5.1.1 Definition (Abbott algebra)

Let (A, ·) be an algebra with a binary operation, ·. Then (A, ·) is said to be
an Abbott algebra if for any a, b, c ∈ A, the following identities hold:..1. (ab)a = a,..2. (ab)b = (ba)a,..3. a

(
(ba)c

)
= ac.

Prior to proving a main result, let us recall the identities valid in the calculus
of Abbott algebras ([1] and [2]).

5.1.2 Proposition (Abbott’s lemma)

Let (A, ·) be an Abbott algebra. Then the following statements hold true
(a, b, c ∈ A):..1. aa = bb; let us denote the element aa by the symbol 1,
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5. The categorical equivalence of the XOR Abbott algebras with the quantum logics enriched with a symmetric difference...2. 1a = a,..3. a1 = 1,..4. ab = ba =⇒ a = b,..5. a(ba) = 1,..6. ab = 1 =⇒ a(bc) = ac,..7. ab = 1 =⇒ (ba)(ac) = 1.

A main result of J.C. Abbott was to show that these algebras allow for
a partial ordering with maximal element 1 in which the upper segments
are orthomodular. With the intention to make the Abbott algebras “nearly
Boolean” (meaning to add a natural symmetric difference), we apply the fol-
lowing definition.

5.1.3 Definition (Abbott XOR algebra)

Let (A, 0, ·, △) be an algebra, where 0 is a nullary operation, △ is a binary
operation and · is a binary operation. We say that (A, 0, ·, △) is an Abbott
XOR algebra if for any a, b, c ∈ A we have the following identities:..1. (ab)a = a,..2. (ab)b = (ba)a,..3. a

(
(ba)c

)
= ac,..4. 0a = bb,..5. (a△b)△c = a△(b△c),..6. a△bb = a0,..7. bb△a = a0,..8. (a△b)

(
(ab)b

)
= aa.

5.2 Results

We are ready to formulate the main result of this chapter.

5.2.1 Theorem (equivalence of lattice QLSs and Abbott XOR
algebras)

The category of lattice QLSs is categorically equivalent to the category
of the Abbott XOR algebras.
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Proof. Let us denote by D the category of lattice QLSs and by A the category
of the Abbott XOR algebras. Let A ∈ A and let us see how we can view A as
an object of D. Let us first endow A with a partial ordering. Let us introduce
the partial ordering in A by requiring a ≤ b if ab = 1. Then 0 ≤ a ≤ 1 for all
a ∈ A because 0a = 1 and a1 = 1. Let us show that ≤ is a partial ordering
with a least (resp. greatest) element 0 (resp. 1). Indeed, a ≤ a since aa = 1,
and if a ≤ b and b ≤ a, then ab = 1 = ba and therefore a = b. Further, if
a ≤ b and b ≤ c then ab = 1 and bc = 1. It follows from Proposition 5.1.2 7
that (ba)(ac) = 1. Then bc ≤ ac but bc = 1 and therefore 1 ≤ ac. So ac = 1
and therefore a ≤ c.

Let us see that A is a lattice with respect to ≤. We claim that a∨b = (ab)b.
To see that, we have a

(
(ab)b

)
= a

(
(ba)a

)
= 1 and therefore a ≤ (ab)b which

means that a ≤ a ∨ b. Analogously, b ≤ a ∨ b. Moreover, if a ≤ c and b ≤ c
then ac = 1 and bc = 1. Considering ac = 1 (and correcting [1]), we infer that
(cb)(ab) = 1 . This implies that

(
(ab)b

)(
(cb)b

)
= 1 and therefore (ab)b ≤ (cb)b.

So a ∨ b = (ab)b ≤ (cb)b = (bc)c = 1c = c and hence a ∨ b ≤ c. This shows
that A is a lattice.

With the intention to restructure A to make it an orthocomplemented
lattice, let us set a⊥ = a0. We are to verify that (a⊥)⊥ = a, a ≤ b =⇒ b ≤ a
and that both equalities a ∨ a⊥ = 1, a ∧ a⊥ = 0 are valid. Obviously, (a⊥)⊥ =
(a0)0 = a ∨ 0 = a. Further, if a ≤ b then b⊥ = b0 ≤ a0 = a⊥. Let us also see
that a∨a⊥ = 1 and a∧a⊥ = 0. We have a∨a⊥ = a⊥ ∨a =

(
a0)a

)
a = aa = 1.

As regards the condition on the infimum, one uses the de Morgan law to obtain

a∧a⊥ = a⊥∧a = (a∨a⊥)⊥ = (a∨a⊥)0 =
((

a(a0)
)
(a0)

)
0 = (a∨a⊥)0 = 10 = 0.

It remains to verify the orthomodular law. Suppose that a ≤ b. So we have
b0 ≤ a0 and we see by Definition 5.1.1 3 that

b = b ∨ 0 = (b0)0 = (b0)
(
(a0)0

)
= (b0)(a ∨ 0) = (b0)a.

Since a(ba) = 1 by Proposition 5.1.2 5, then a ≤ ba and therefore we have
ba =

(
(ba)0

)
a. In order to verify the orthomodular law, we are to prove that

b = a ∨ (a⊥ ∧ b). Let us consider the right-hand side of this equality. We
obtain

a ∨ (a⊥ ∧ b) = a ∨
(
(a0) ∧ b

)
= a ∨

((
a ∨ (b0)

)
0
)

= a ∨
((

(b0) ∨ a
)
0
)

= a ∨
((

(b0)a
)
a
)
0 = a ∨

(
(ba)0

)
=
((

(ba)0
)
a
)
a = (ba)a = b ∨ a = b.

Finally, let us check the conditions of the operation △. The opera-
tion △ is associative by definition. Further, a△(bb) = a△1 = (a0) = a⊥

and (bb)△a = (1△a) = a0 = a⊥. To end up the verification, we obtain
aa = 1 = (a△b)

(
(ab)b

)
. This means that a△b ≤ (ab)b. But (ab)b = a ∨ b

Therefore we see that a△b ≤ a ∨ b.

In the considerations above, we have defined an assignment F : A → D as
a potential functor on the objects of A (the assignment F preserves the underly-
ing set). Let us see that this assignment is functorial. Suppose that f : A → B
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is a morphism in A. So f(ab) = f(a)f(b), f(0) = 0 and f(a△b) = f(a)△f(b).
We have to check that f is a morphism in D. For that, suppose that a ∨ b = c
in A. So it means that c = (ab)b. Thus f(c) =

(
f(a)f(b)

)
f(b). This implies

that f(c) = f(a) ∨ f(b). Further, we have to check that f(a⊥) = f(a)⊥.
But a⊥ = (a0) and therefore f(a⊥) = f(a0) = f(a)f(0) = f(a)0, and hence
f(a)⊥ = f(a⊥). Thus we have checked that F is indeed a functor from A to D.

We shall now construct a functor, G, G : D → A. Let us take D ∈ D.
Then G(D) remains with the same underlying set. We define the object
G(D) as follows: If a ∈ G(D) and b ∈ G(D), then ab = (a ∨ b)⊥ ∨ b, and
a△b is copied from D. Let us check that G(D) sends a morphism of D into
a morphism of A. We first have to check that the axioms of G(D) make it
an Abbott XOR algebra...1. (ab)a = a; we have((

(a ∨ b)⊥ ∨ b
)

∨ a
)⊥

∨ a =
(
(a ∨ b) ∧ b⊥ ∧ a⊥) ∨ a

=
(
(a ∨ b) ∧ (a ∨ b)⊥) ∨ a = 0 ∨ a = a...2. (ab)b = (ba)a; we have (ab)b =

(
(a∨b)⊥∨b

)⊥∨b =
(
(a∨b)∧b⊥)∨b. Since

the triple b, b⊥, a ∨ b is compatible in D, we can use distributivity (see
e.g. [25]). Hence, the latter formula gives us (a ∨ b ∨ b) ∧ (b⊥ ∨ b) = a ∨ b.
Analogously,

(
(b ∨ a)⊥ ∨ a

)⊥ ∨ a = b ∨ a and so the equality is valid...3. a
(
(ba)c

)
= ac. Prior to verifying this condition, let us make a preliminary

observation. Consider elements x and y⊥ ∧ x. Then x ≥ y⊥ ∧ x. So
the orthomodular law gives us

x = (y⊥ ∧ x) ∨
(
(y⊥ ∧ x)⊥ ∧ x

)
= (y⊥ ∧ x) ∨

(
(y ∨ x⊥) ∧ x

)
.

Let us verify the axiom proper. We have

a
(
(ba)c

)
= a

((
(b ∨ a)⊥ ∨ a

)
c
)

= a
((

(b⊥ ∧ a⊥) ∨ a
)
c
)
.

For the sake of transparency, let us write y = b⊥ ∧ a⊥.

Hence we have a
(
(ba)c

)
= a

(
(y ∨ a)c

)
= a

((
(y ∨ a) ∨ c

)⊥ ∨ c
)

=
(

a∨
(
(y ∨ a)⊥ ∧ c⊥

)
∨ c

)⊥
∨
((

(y ∨ a)⊥ ∧ c⊥
)

∨ c

)
=
(

a⊥ ∧
((

(y ∨ a)⊥ ∧ c⊥) ∨ c
)⊥)

∨
((

(y ∨ a)⊥ ∧ c⊥) ∨ c
)

=
(
(a⊥ ∧ c⊥) ∧

(
(y ∨ a)⊥ ∧ c⊥)⊥) ∨

(
(y⊥ ∧ a⊥ ∧ c⊥) ∨ c

)
=
(
(a⊥ ∧ c⊥) ∧ (y ∨ a ∨ c) ∨ (y⊥ ∧ a⊥ ∧ c⊥)

)
∨ c.
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So we have

a
(
(ba)c

)
=
(

(a⊥∧c⊥)∧
((

(b⊥∧a⊥)∨a
)
∨c)

))
∨
((

(b⊥∧a⊥)⊥∧a⊥)∧c⊥
)

∨c.

Let us set

u = (a⊥ ∧ c⊥) ∧
(
(b⊥ ∧ a⊥) ∨ a ∨ c)

)
∨
(
(b⊥ ∧ a⊥)⊥ ∧ a⊥ ∧ c⊥).

Writing x = a⊥ ∧ c⊥ and y = b⊥ ∧ a⊥, let us use the orthomodular law
formula derived at the beginning of this proof.
We obtain

a⊥ ∧ c⊥ = x = (y⊥ ∨ x) ∨
(
(y⊥ ∧ x)⊥ ∧ x

)
= u.

As a result, we have a
(
(ba)c

)
= (a⊥ ∧ c⊥) ∨ c = ac, which we wanted

to prove...4. 0a = bb; we have

0a = (0 ∨ a)⊥ ∨ a = (1 ∧ a⊥) ∨ a = a⊥ ∨ a = 1 = (1 ∧ b⊥) ∨ b = bb...5. (a△b)△c = a△(b△c), the operation △ is associative in A as well as in
the corresponding orthomodular lattice...6. a△bb = a0; we have a0 = (a ∨ 0)⊥ ∨ 0 = a⊥ = a△1 = a△bb...7. bb△a = a0; we have a0 = 1△a = bb△a...8. (a△b)

(
(ab)b

)
= aa; we have (ab)b = a ∨ b and therefore (a△b) ≤ a ∨ b.

And, also, (a△b)(a ∨ b) = 1 = aa and we have derived the required
equality.

Finally, we have to show that G is a functor. Indeed, suppose that f :
L1 → L2 is a morphism in D. We have to check that it is a morphism in A.
It means that we have to verify that f(ab) = f(a)f(b). So we have to see that
f
(
(a ∨ b)⊥ ∨ b

)
=
(
f(a) ∨ f(b)

)⊥ ∨ f(b). But this is obvious since f preserves
the suprema and the operation ⊥.

This result links the structure of an Abbott algebra (an object of the math-
ematical logic) to a lattice QLS (an object of mathematical physics).

The proof technique uses the Abbott basic lemma ([1] corrected at a place).
The explicit contribution of the author is finding the axioms to obtain
the equivalence, the verification of the equivalence of the respective mor-
phisms and the proof technique of the way “from QLSs to Abbott XOR
algebras”. In the latter reasoning, one uses the operation a · b = (a ∨ b)⊥ ∨ b
that is bringing about a specific calculus in orthomodular lattices. Further,
the notion of compatibility is introduced in Abbott algebras that implies
the following characterization of Boolean subalgebras in terms of the opera-
tion △.
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5.2.2 Theorem (compatibility in the Abbott XOR algebras)

Let A be an Abbott XOR algebra and let a, b ∈ A. Then a, b are compatible
in A if either of the following two conditions is satisfied:..1. a =

((((
(a0)(b0)

)
(b0)

)
0
)(((

(a0)b
)
b
)
0
))(((

(a0)b
)
b
)
0
)

,..2. a△b =
((((

(a0)b
)
b
)
0
)(((

a(b0)
)
(b0)

)
0
))(((

a(b0)
)
(b0)

)
0
)

.

A corollary: A is a Boolean algebra if and only if either of the above
equalities is valid for any a, b ∈ A.

Proof. If we rewrite the equality 1 in the corresponding lattice QLS, we
obtain

a = (a⊥ ∨ b⊥)⊥ ∨ (a⊥ ∨ b)⊥ = (a ∧ b) ∨ (a ∧ b⊥).

Analogously, we can derive that a△b = (a∧b⊥)∨(b∧a⊥). Either of the above
formulas for a and a△b guarantees that a, b are compatible (see e.g. [27]).

In the further considerations we introduce the notion of a △-state in an Ab-
bott algebra. This makes Abbott algebras closer to the realm of quantum
theories. Using then the properties of △-states, we obtain some other struc-
tural properties of Abbott algebras (the set representation of Abbott algebras,
a characterization of free Abbott algebras over 2 generators, etc.).

5.2.3 Definition (△-state in the Abbott XOR algebra)

Let A be an Abbott XOR algebra. Let s : A → [0, 1] be a mapping that
satisfies the following conditions (a, b, c ∈ A):..1. s(aa) = 1,..2. if a(b0) = bb, then s

(
(ab)b

)
= s(a) + s(b),..3. s(a△b) ≤ s(a) + s(b).

Then s is said to be a △-state in A.

5.2.4 Theorem (equivalence of △-states)

Let A be equivalent to D in the sense of Theorem 5.2.1. If A ∈ A and s
is a △-state of A then s can be viewed as a QL △-state of F (A), and vice
versa.

Proof. It is easy to see that the △-state space of A is isomorphic (via the iso-
morphism of Theorem 5.2.1) with the △-state space of D = F (A).
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Let us summarize main results of this chapter. The category A of the Abbott
XOR algebras is equivalent to the category D of the QLSs, and the respective
△-state spaces are isomorphic. So the knowledge we have acquired on D and
on its △-state space can be translated into the corresponding category A. For
instance, since we know the characterization of the set-representable objects
of D, and these are precisely those that have an “abundance” of two-valued
△-states (see [27]), we easily derive the set-representability characterization
of the Abbott XOR algebras. In a similar vein, we can find Abbott XOR
algebras without any △-state or with a precisely one △-state (see [15] and [43]).
Also, we find that the free Abbott XOR algebra over 2 generators contains
precisely 128 elements and the free algebra over 3 generators is infinite
(see [29]).
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Chapter 6
Point-distinguishing quantum logics

In this chapter we shall exclusively deal with SR-QLs.
We ask whether each SR-QL allows for an isomorphic copy with the follow-

ing property (the point-distinguishing representation): If x, y ∈ S and x ̸= y,
then there is a set A, A ∈ ∆ such that x ∈ A and y ∈ S \ A. We answer
the question in the affirmative. This may simplify technical tasks in dealing
with algebraic and state conditions of SR-QLs. We then see how the two-
valued states may serve to enable us the construction of point-distinguishing
representations. We consider the generalized form of the Stone representation
technique borrowed from the theory of Boolean algebras. We obtain several
point-distinguishing representations in this way, the extreme one guarantees
all two-valued states being Dirac states.

This study is upon a paper submitted for publication coauthored by the au-
thor of this text [9].

6.1 Basic notions of this chapter

We intend to show that each SR-QL is isomorphic to the point-distinguishing
SR-QL. We will employ the following definition.

6.1.1 Definition (point-distinguishing QL)

Let (S, ∆) be an SR-QL. Let us call (S, ∆) point-distinguishing provided
for each couple of distinct elements x, y ∈ S there is a set A, A ∈ ∆ such that
x ∈ A and y ∈ S \ A = A⊥.

6.2 Results

6.2.1 Theorem (natural equivalence relation)

Let (S, ∆) be a SR-QL. Then the relation R on S defined in Definition 6.1.1
is an equivalence relation. Moreover, if {Rα | α ∈ I} is the decomposition
of S by the classes of the equivalence R, then the following implication holds
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true:
If A ∈ ∆ and Rα is a class of R, then either Rα ⊆ A or Rα ⊆ A⊥.

Proof. The relation R is obviously reflexive and symmetric. As regards the
transitivity, let us suppose that xRy and yRz (x, y, z ∈ S). Then xRz.
Indeed, if there is a set A ∈ ∆ such that x ∈ A and z ∈ A⊥, then either
y ∈ A⊥ in which case x(non R)y, or y ∈ A in which case y(non R)z. Further,
if A ∈ ∆, then Rα cannot intersect both A and A⊥ since Rα would not be
a class of R.

In order to formulate our results, let us recall that a both injective and
surjective SR-QL-morphism is said to be an SR-QL-isomorphism if f−1 is
an SR-QL-morphism, too.

The following definition simplifies the formulation of our results:

6.2.2 Definition (natural point-distinguishing representation)

Let (S, ∆) be a SR-QL. Let R be the equivalence introduced in Theorem 6.2.1
and let {Rα | α ∈ I} be the decomposition of P given by the classes of R.
Consider the following couple (S̃, ∆̃), where S̃ = {Rα | α ∈ I} and ∆̃ is
the following collection of subsets of S̃ : Ã ∈ ∆̃ if there is a set A ∈ ∆
such that Ã = {Rα | Rα ⊆ A}. Let us call (S̃, ∆̃) the natural point-
distinguishing representation of (S, ∆).

The summary of that we have completed so far can be formulated in
the following result.

6.2.3 Theorem (point distinguishing representation)

Let (S, ∆) be a SR-QL and let (S̃, ∆̃) be the natural point-distinguishing
representation of (S, ∆)...1. If f : ∆ → ∆̃ assigns to any A ∈ ∆ the set f(A) = {Rα | Rα ⊆ A} ∈ ∆̃,

then f is a SR-QL-isomorphism,..2. If ∆ is a lattice SR-QL, then f : ∆ → ∆̃ defined above is a lattice
SR-QL-isomorphism,..3. If (S, ∆) is closed under the formation of symmetric difference, then so is
(S̃, ∆̃) and both f and f−1 preserve the respective symmetric differences,..4. If (S, ∆) is a Boolean algebra then so is (S̃, ∆̃) and f is a Boolean
isomorphism.

Proof. It easily follows from Theorem 6.2.1.
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It could be observed that the natural point-distingishing representation
of (S, ∆) can be considered “to live on a subset of S”. Indeed, we can
choose a point in each Rα (Axiom of Choice) and “copy” ∆̃ on the set
of the points chosen. It is worthwhile realizing that the state-space of (S, ∆)
allows us to construct several point-distinguishing representations. We use
the appropriate modification of the Stone technique.

Prior to that let us recall that if (S, ∆) is a SR-QL, then we denote
by S2(S, ∆) the set of all two-valued states on (S, ∆).

6.2.4 Definition (Dirac state)

A two-valued state s on (S, ∆) is said to be a Dirac state if there is a point
p ∈ S such that s(A) = 1 exactly when p ∈ A.

The following result generalizes the Boolean Stone representation theorem.
We style it for our purpose.

6.2.5 Theorem (constructing point-distinguishing
representation by the Stone technique)

Let (S, ∆) be a SR-QL. Let P ⊆ S2(S, ∆) and let P have the following
property:

If A, B ∈ ∆ and A ⊈ B, then there is s ∈ P with s(A) = 1 and s(B) = 0.
Let U be the collection of the subsets U of P determined as follows:

U ∈ U exactly when there is a set V ∈ ∆ such that U = {s ∈ P | s(V ) = 1}.
Then (P, U) ∈ SR-QL and (P, U) is point-distinguishing. Moreover, (P, U) is
SR-QL-isomorphic to (S, ∆). If P consists of all Dirac states, then (P, U) is
SR-QL-isomorphic to the natural point-distinguishing representation (S̃, ∆̃)
of (S, ∆). If P = S2(S, ∆) then each two-valued state on (P, U) is a Dirac
state.
Proof. If we define a mapping e : ∆ → U by setting
e(D) = {s ∈ P | s(D) = 1}, D ∈ ∆, we can easily prove verbatim the Stone
representation theorem that e is a SR-QL isomorphism (see also [40] for related
considerations). Moreover, if s1 ̸= s2 then there is a set A, A ∈ ∆ such that
s1(A) = 1 and s2(A) = 0. If we take U1 = {s ∈ P | s(A) = 1}, then U1 ∈ U
and s1 ∈ U1 whereas s2 /∈ U1. Further, suppose that P = {s ∈ S2(S, ∆) | s is
a Dirac state}. Then if s1 ∈ P and s2 ∈ P with s1 and s2 given by p1 ∈ S and
p2 ∈ S, we see that s1 = s2 precisely when p1Rp2 in the equivalence R defined
in Definition 6.2.2. Hence in this case the SR-QL (P, U) is SR-QL-isomorphic
to the natural point-distinguishing representation (S̃, ∆̃) of (S, ∆). Finally,
suppose that P = S2(S, ∆). Let t be a two-valued state on (P, U). Applying
the SR-QL-isomorphism e : ∆ → U , let us consider the two-valued state,
s, on (S, ∆) such that s = te. So s ∈ S2(S, ∆) and we conclude that t is
a Dirac state given by s. Indeed, suppose that t(U) = 1 for some U ∈ U .
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6. Point-distinguishing quantum logics ...........................
Write U = {t | t ∈ S2(S, ∆) such that t(S) = 1 for some T ∈ ∆}. Then
te(T ) = 1 and we conclude that t is a Dirac state given by s. The proof is
complete.

Let us shortly comment on the results obtained. First, for the property
of having all two-valued states Dirac states one has to pay the price of having
to lift up the cardinality of the underlying set. In principal, the cardinality
of S2(S, ∆) might be 22cardS . In the case of S being finite, the set S2(S, ∆)
is finite, too, and this can be used in the analysis of states of finite SR-QLs
(see e.g. [4]).

Another question concerns the algebraic structure of those elements of SR-
QL on which all two-valued states are Dirac states. This class is closed
under finite products. On the other hand, this class is not closed under
substructures. Indeed, if we e.g. take for (S, ∆) the SR-QL 6even of all
subsets of {1, 2, 3, 4, 5, 6} with an even cardinality, then each two-valued state
on 6even is a Dirac state (see [10]). The SR-QL 4even defined analogously on
{1, 2, 3, 4} can be viewed as a substructure of 6even (the atoms {1, 2}, {3, 4}
and {1, 3} could be mapped to {1, 2}, {3, 4, 5, 6} and {1, 3}) but 4even has
a two-valued state that is not a Dirac state (it suffices to set s({1, 2}) =
s({1, 3}) = s({1, 4}) = 0).

In the last remark, let us observe that even for the elements of SR-QL
that are closed under symmetric difference there can be established a link
of Theorem 6.2.3 3 with a generalized Stone representation. This can be done
in the analogy to the link of Theorem 6.2.3 1 to Theorem 6.2.5. It suffices
to consider the two-valued △-states instead of the mere two-valued states (see
also [10]; the state is said to be a △-state if s(A△B) ≤ s(A)+s(B), A, B ∈ ∆).
We thus among others obtain the class of the elements of SR-QL that are
closed under symmetric difference isomorphic with the class of the point-
distinguishing elements of SR-QL on which all two-valued △-states are Dirac
states.
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Chapter 7
Conclusion

The thesis addresses some open questions of the quantum logic theory (the the-
ory of orthomodular partially ordered sets). Obviously, the questions are
motivated by quantum theory. It is supposed that quantum logics are associ-
ated with quantum experiments and, in turn, the theoretical results obtained
may help in understanding the quantum experiments better.

The main results of the thesis are highlights of four research papers of the au-
thor - one paper as the only author and three with a co-author. Here is
the review of the results contained in the thesis.

The first type of results concerns the generation in the lattice QLs by their
subsets (in particular, the so-called local finiteness is studied - the property
that finite subsets generate finite substructures). The consideration is moti-
vated by the classical result of projective geometry - 3 vectors in the lattice
quantum logic L(R3) of projections in R3 may generate an infinite substruc-
ture [22]. The situation in the lattice QL is analysed and it is shown how
infinite set-representable lattice QLs can be generated by 3 elements.

Chapters 3 and 4 are devoted to the QLs that allow for a natural kind
of a XOR operation. The main results therein are as follows:
The absence of regular compatibility, the results on the extensions of states
and Z2-states and the construction of a rather instructive example, from
the angle of quantum theories, of a QL with a small state space and a big
degree of non-compatibility. Chapter 4 studies the Abbott algebras enriched
with a XOR operation. Several results on the intrinsic properties of these
algebras are proved, for instance a characterization of Boolean subalgebras is
found. The principal result obtained is that there is an equivalence (including
the morphisms) of the Abbott XOR algebras with the lattice QLSs. This
situates the Abbott algebras close to quantum theories.

In Chapter 5 one shows that set-representable QLs can be made isomorphic
with the ones that distinguish points and make all two-valued states Dirac
states.
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