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Abstract

In this work, we investigate various kinds
of solvable models for onedimensional
Schrödinger and Dirac equation with
demonstration on explicit examples. For
that purpose, the Darboux transforma-
tion is widely used. Using the first quan-
tization tight-binding model, we show the
emergence of 2D Dirac equation in the
physics of graphene. Strain in graphene
nanoribbons and its effect on them is dis-
cussed. We reveal the solvability of a
certain type of staggered potential in the
2D Dirac equation. The influence of inho-
mogenous staggered potential on spectral
properties of Dirac fermions in the arm-
chair nanoribbons is analyzed.

Keywords: Solvable models, Dirac
equation, graphene, nanoribbons

Supervisor: Ing. Vít Jakubský, Ph.D.
Oddělení teoretické fyziky ÚJF AVČR,
Řež 25068

Abstrakt

V této práci prozkoumáme různé typy
řešitelných modelů pro jednodimenzio-
nální Schrödingerovu a Diracovu rovnici
s demonstrací na konkrétních příkladech.
Hojně k tomu budeme používat Darbou-
xovu transformaci. Pomocí tight-binding
modelu v prvním kvantování ukážeme,
jak se objeví Diracova rovnici ve fyzice
grafénu. Je diskutováno mechanického na-
pětí v grafénových nanoproužcích a jeho
efekt na ně. Odhalíme řešitelnost jistého
typu staggered potenciálu ve 2D Diracově
rovnici. Je analyzován vliv nehomogen-
ního staggered potenciálu na spektrální
vlastnosti Diracovských fermionů v arm-
chair nanoproužcích.

Klíčová slova: Řešitelné modely,
Diracova rovnice, grafén, nanoproužky

Překlad názvu: Řešitelné modely
popsané jednodimenzionální Diracovou
rovnicí a jejich aplikace ve fyzice grafénu
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Chapter 1

Introduction

Many fascinating properties of graphene can be described by the 2D Dirac equation, see
e.g. [1], [2]. The experimental isolation of graphene has opened the door to its technical
applications [3]. It is a promising material which could find attractive usage in many areas
of physics [4], [5], [6]. Exactly solvable models are important for the understanding of
physics of graphene. They simplify the physical reality, however, they preserve the physical
substance of the system and offer analytical solvability. The Dirac equation appears in the
low-energy description of quasi-particles in many systems. They are called Dirac materials.
The family of Dirac materials does not contain only graphene, but also topological insulators,
high-temperature cuprate superconductors or Weyl semimetals [7]. Therefore, solvable
models described by 2D or 1D Dirac equation can have broader applicability.

In the thesis, we focus on the construction of such exactly solvable models through the
concept of Darboux transformation (DT) related to the supersymmetric quantum mechanics
(SUSY QM) [8], [9]. Strength of DT lies in the fact that from the known quantum system
we can create the new one whose properties can be derived in a straightforward manner.

The work is organized as follows. In Chapter 2, we present the Darboux transformation
for Schrödinger’s operator as a mathematical tool for the construction of 1D solvable models.
Its application is illustrated on the examples of the models infinite (ISW) and finite square
wells (FSW). Chapter 3 is dedicated to the generalization of DT for the 1D Dirac operator
[10]. Explicit examples are discussed where the transformation is applied on the model
of 1D free Dirac particle. The connection between the physics of graphene and the Dirac
equation comes from the tight-binding model, which is presented in Chapter 4 [11], [12].
Here, we also outline the effective interactions in graphene [13], [14]. The main effort
has been concentrated to Chapter 5 that is dedicated to nanoribbons. It begins with the
description of zigzag (ZZ) and armchair (AC) edges [15], [16], [17]. Then we move on to
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1. Introduction .........................................
an extension of the 1D Dirac equation to two dimensions. Finally, two physically relevant
models of strained and staggered nanoribbons are the highlights of the chapter.
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Chapter 2

DT for Schrödinger operator

Supersymmetry, the symmetry between particles with integer and half-integer spin,
caused a stir in physics. SUSY is based on the idea that every fermion has a bosonic
superpartner and the other way round. In the beginning, it was used in the quantum field
theory. In particle physics, it was believed to explain the origin of dark matter or to unify
weak, strong and electromagnetic forces. Nevertheless, its experimental confirmation is
still to come. SUSY in the quantum field theory stems on the superalgebra of the involved
operators. In [18], [19], Nicolai and Witten introduced a toy model of supersymmetric
quantum system that preserved the superalgebraic structure of the operators. This way, the
supersymmetry found its way to QM. It founded an independent field of research named
supersymmetric quantum mechanics. It was based on the factorization of Schrödinger
Hamiltonians similar to the formalism of ladder operators. It is worth mentioning that
the same manipulation of differential equations was proposed by Darboux [20]. These
Darboux’s results were brushed up and they were further broadened [21]. The concepts of
SUSY QM are summarized in [8], [9].

Quantum system is supersymmetric whenever the operators Q1, Q2, . . . , QN , H, that
characterize the system, satisfy [9]

{Qi, Qj} = δijH. (2.1)

We are interested in N = 2 SUSY QM which means the existence of two self-adjoint
operators Q1, Q2, supercharges. We define the complex supercharges Q = 1√

2
(Q1 + iQ2),

Q† = 1√
2

(Q1 − iQ2). Together with H, they obey the superalgebra

H =
{
Q, Q†

}
, Q2 = 0,

(
Q†
)2

= 0. (2.2)

3 ctuthesis t1606152353



2. DT for Schrödinger operator ..................................
The energy of a quantum system with the Hamiltonian, which appears in the superalgebra,
is always ⟨ψ|H|ψ⟩ = ∥Qψ∥2 +

∥∥∥Q†ψ
∥∥∥2

≥ 0. Therefore, there must exist a state with the
minimal energy E0 alias the ground state |ψ0⟩. In the case of E0 = 0, both supercharges
Q, Q† annihilate |ψ0⟩, i.e. Q |ψ0⟩ = Q† |ψ0⟩ = 0. When E0 = 0 then SUSY is a good
symmetry, otherwise SUSY is a broken symmetry. Due to [H, Q] = [H, Q†] = 0, the action of
supercharges is closed in the subspaces for energy E. Indeed, HQ |ψ⟩ = QH |ψ⟩ = EQ |ψ⟩.
Relations (2.2) also imply Q2 |ψ⟩ =

(
Q†
)2

|ψ⟩ = 0. In the subspace of fixed E, we can
define the operators

b† = Q√
E
, b = Q†

√
E
,
{
b, b†

}
= 1, {b, b} =

{
b†, b†

}
= 0. (2.3)

We see that they satisfy fermionic anticommutation relations. As we know, there exist only
fermionic states |0⟩ , |1⟩. We can introduce the fermion number operator F ,

F = b†b, F |0⟩ = 0, F |1⟩ = |1⟩ . (2.4)

With this knowledge, we can construct the Witten parity operator Ŵ = 2F − 1 and
orthogonal projectors P± = 1

2(1±Ŵ ) = 1
2(1±2F∓1). Apparently, P− |0⟩ = |0⟩ , P+ |0⟩ = 0,

P+ |1⟩ = |1⟩ , P− |1⟩ = 0. They decompose the Hilbert space into

H = H+ ⊕ H−, P+H = H+, P−H = H−. (2.5)

If we represent ψ+(x) = ⟨x|1⟩ = (0, ϕ+(x))T ∈ H+, ψ−(x) = ⟨x|0⟩ = (ϕ−(x), 0)T ∈ H−,
we can write the operators Q, Q†, H, Ŵ in the matrix form. From Q2 = 0,

{
Q, Ŵ

}
= 0,

it follows that Q, Ŵ have the only possible form

Q =
(

0 Â
0 0

)
, Q† =

(
0 0
Â† 0

)
, Ŵ =

(
1 0
0 −1

)
. (2.6)

The Hamiltonian is given by (2.2). It is in the diagonal form

H =
{
Q, Q†

}
=
(
ÂÂ† 0

0 Â†Â

)
. (2.7)

Due to [Ŵ , H] = 0, the Hamiltonian H and the parity operator Ŵ have common eigenstates.
We denote them as ψE+ ≡ ψ+, ψE− ≡ ψ− where HψE± = EψE± and ŴψE± = ±ψE±.
Between H+ and H−, there is a mapping via b ∝ Q† and b† ∝ Q. In fact, Q† |1⟩ ∝
∝ b |1⟩ = |0⟩ ∈ H− and Q |0⟩ ∝ b† |0⟩ = |1⟩ ∈ H+. For a fixed positive energy, normalized
eigenfunctions can be rewritten as

ψE+(x) = QψE−(x)√
E

, ψE−(x) = Q†ψE+(x)√
E

,

ϕE+(x) = ÂϕE−(x)√
E

, ϕE−(x) = Â†ϕE+(x)√
E

.

(2.8)
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..............................2.1. Factorization of Schrödinger operator

The eigenstate ψE− of H implies that ϕE− is the eigenstate of Â†Â with the eigenvalue E.

Using Q, we construct the eigenstate ψE+(x) = QψE−(x)√
E

of H. Then ϕE+ = ÂψE−(x)√
E

is

the eigenstate of ÂÂ† with the eigenvalue E. Thus, the spectra of ÂÂ† and Â†Â coincide
for E > 0. The energy level E = 0 is an exception. It can be present in the spectrum of
Â†Â while missing in the spectrum of ÂÂ† and vice versa. In the Witten formulation of
N = 2 SUSY, there holds true

good SUSY : σ(Â†Â) \ {0} = σ(ÂÂ†)
broken SUSY : σ(Â†Â) = σ(ÂÂ†).

(2.9)

2.1 Factorization of Schrödinger operator

Let us assume a quantum system which is described by the one-dimensional time-
independent Hamiltonian H1

H1 = −∂2
x + V1, (2.10)

where V1 is required to be a real-valued function. We will assume that H1 is self-adjoint,
i.e. H1 = H†

1 . Our goal is to factorize H1 in terms of differential operators Â, Â†

H1 − E0 = Â†Â, (2.11)

where E0 ∈ R. The parameter E0 has to be real, since the right-hand side of (2.11) is a
Hermitian operator,

(
Â†Â

)†
= Â†Â. The Hamiltonian H1 is a second-order differential

operator. Thus, Â should be taken as a first-order differential operator (Â†Â is then
second-order). We make an ansatz

Â = f∂x
1
f

= ∂x +W, Â† = − 1
f
∂xf = −∂x +W, W = −f ′

f
. (2.12)

Âf = f∂x
f

f
= 0, so f ∈ ker(Â). The function f has to be fixed such that (2.11) is satisfied.

We have

Â†Â =
[
f−1(−∂x)f

] [
f∂xf

−1
]

=
(

−∂x − f ′

f

)(
∂x − f ′

f

)
= −∂2

x + f ′′

f
. (2.13)

Substituting (2.13) into (2.11), we get

H1 − E0 = −∂2
x + f ′′

f
. (2.14)

It implies that the function f must be a solution of

−f ′′ + V1f = E0f. (2.15)

5 ctuthesis t1606152353



2. DT for Schrödinger operator ..................................
It is obvious that it is the same as H1f = E0f . Thus, the factorization (2.11) of H1 can
be made in terms of operators (2.12), where f is an eigenstate of H1 corresponding to the
eigenvalue E0.

Now, let us define a new operator H2 as follows,

H2 − E0 ≡ ÂÂ† =
[
f∂xf

−1
] [
f−1(−∂x)f

]
= −∂2

x − f ′′

f
+ 2

(
f ′

f

)2
=

= −∂2
x + V1 − 2(ln(f))′′ − E0 = −∂2

x + V2 − E0.

(2.16)

The operator is Hermitian by construction. It has the structure of Schrödinger’s operator.
Therefore, H2 − E0 = −∂2

x + V2 − E0 = ÂÂ† can serve as a Hamiltonian for the new
quantum system. The factorization of H1 − E0 = Â†Â and H2 − E0 = ÂÂ† allows us to
write down the following relations

ÂH1 = H2Â, (2.17)
H1Â

† = Â†H2. (2.18)

We can see that H1 and H2 are intertwined by the operator Â. The eqs. (2.17) and (2.18)
are called the intertwining relations. The relations (2.12) and (2.16) tell us that for any
f satisfying (2.15), we can construct the new Hamiltonian H2 and the operator Â such
that (2.17) holds. The function f is named the seed solution. Witten also set the ansatz
Â = ∂x +W (x) in his study of N = 2 supersymmetric quantum systems [19], [9].

The factorization procedure has important consequences. Let us assume that H1ψ = Eψ
is solvable for any E ∈ R. The stationary equation H2ϕ = Eϕ can be easily solved. Indeed,
the intertwining relation (2.17) allow us to transform the known eigenstates ψ of H1 to the
eigenstates of H2 as follows

H2(Âψ) = ÂÂ†Âψ = ÂH1ψ = EÂψ. (2.19)

Therefore, Âψ is the eigenstate of H2 with the energy E. We emphasize that Âψ may or
may not be a physical state. It must be checked whether Âψ complies with the boundary
conditions (b.c.) prescribed for the eigenstates of H2. The transformation does not
guarantee their automatic fulfillment.

The other property of factorization is that we can create a new solvable potential V2. It
is obtained by the comparison of −∂2

x + V2 − E0 = H2 − E0 = ÂÂ†

V2 = V1 − 2 (ln f)′′ = W ′ +W 2 + E0. (2.20)

From the form of (2.20), we can see that real-valued f and V1 guarantee real-valued V2.
Furthermore, V2 can differ dramatically from V1. If f had zeros, the potential V2 would be
singular. In that case, the corresponding b.c. must be specified in the singularities of V2.

ctuthesis t1606152353 6



.......................... 2.2. The approach based on intertwining relations

2.2 The approach based on intertwining relations

Let us consider an alternative approach to the construction of H1 and H2 that is centred
on the intertwining relation (2.17) from the very beginning. Let us suppose that H1 is
known. We assume that H2 = -∂2

x + V2(x) where V2 is to be fixed. We make an ansatz for
the operator Â as

Â = C1(x)∂x + C2(x), C1, C2 : R 7→ C. (2.21)

We have chosen the first-order differential operator. We could have taken the second-, third-,
or higher-order differential operator. We substitute the operator Â into the intertwining
relation (2.17) and we get

(C1∂x + C2)
(

−∂2
x + V1

)
=
(

−∂2
x + V2

)
(C1∂x + C2) . (2.22)

By comparing coefficients at the derivatives, we come to

∂2
x : −2C ′

1 = 0
∂1
x : C1V1 = − C ′′

1 − 2C ′
2 + V2C1

∂0
x : C2V1 + C1V

′
1 = − C ′′

2 + V2C2.

(2.23)

From the first equation, we see C1 = const. It can be taken as C1 = 1 (otherwise, we divide
the equations by C1 and redefine C̃2 = C2

C1
). The equations (2.23) are reduced to

∂1
x : V1 = − 2C ′

2 + V2

∂0
x : C2V1 + V ′

1 = − C ′′
2 + V2C2.

(2.24)

Eliminating V2 from the second equation, we obtain

C ′′
2 − 2C2C

′
2 + V ′

1 = 0. (2.25)

It can be expressed as [
C ′

2 − C2
2 + V1

]′
= 0. (2.26)

After the integration, we obtain the Riccati equation

C ′
2 − C2

2 + V1 = E0, E0 ∈ C. (2.27)

We can linearize the Riccati equation by C2 = −f ′

f
, f : R 7→ C

−f ′′

f
+ V1 = E0. (2.28)

The final form is
−f ′′

f
+ V1 = E0, E0 ∈ C. (2.29)

7 ctuthesis t1606152353



2. DT for Schrödinger operator ..................................
It says that f must be an eigenstate of H1 for the energy E0. With this knowledge, we are
able to assemble the intertwining operator Â

Â = ∂x − f ′

f
= ∂x +W. (2.30)

From the first equation of (2.24), we calculate

V2 = V1 − 2
(
f ′

f

)′
= V1 − 2(ln f)′′ = W ′ +W 2 + E0. (2.31)

In the previous section, we factorized H1 − E0 = Â†Â. The hermiticity of Â†Â was
implied by E0 ∈ R. On the contrary, E0 can be complex-valued now, see (2.29). The
advantages of this approach are multiple. First, it can be applied on H1, which is the

first-order operator, as we will see later. Second, Â† is not needed. Therefore, W = −f ′

f
can be complex-valued in general. When W is complex-valued, then V2 can become a
complex-valued potential. Schrödinger operators with complex-valued potentials appear in
the description of PT-symmetric optical systems [22].

2.3 DT of the free particle Hamiltonian

The free particle (FP) model can serve as a possible starting point for creating new
systems. The Schrödinger equation for the free particle reads as

−ψ′′ = Eψ. (2.32)

The general solution can be found in a straightforward manner as

ψ(x) = Aeikx +Be−ikx, A, B ∈ C, k = ±
√
E. (2.33)

We select an eigenstate ψ0 = C1eik0x +C2e−ik0x with the corresponding eigenvalue E0 = k2
0

and we construct
W = −ψ′

0
ψ0

= −ik0
C1eik0x − C2e−ik0x

C1eik0x + C2e−ik0x
. (2.34)

The new potential is given by (2.31)

V2 = W ′ +W 2 + E0. (2.35)

It has the following explicit form

V2 = 2k2
0

1 −
(
C1eik0x − C2e−ik0x

C1eik0x + C2e−ik0x

)2
 = 2k2

0

1 −
(
C1eik0x − C2e−ik0x

ψ0(x)

)2
 . (2.36)

ctuthesis t1606152353 8



.............................. 2.3. DT of the free particle Hamiltonian

Applying the operator Â = ∂x +W on a generic wavefunction (2.33), we get

Âψ = (∂x +W )ψ = ik(Aeikx −Be−ikx) − ik0
C1eik0x − C2e−ik0x

C1eik0x + C2e−ik0x
(Aeikx +Be−ikx). (2.37)

By construction, Âψ is the eigenstate of H2 = −∂2
x + V2. Below, we discuss the properties

of V2.

We want V2(x) ∈ R. Hermiticity of V2 will be granted provided that (see (2.36))

C1eik0x − C2e−ik0x

C1eik0x + C2e−ik0x
∈ R ∨ i

C1eik0x − C2e−ik0x

C1eik0x + C2e−ik0x
∈ R. (2.38)

It is equivalent to W ∈ R or W ∈ iR. Let us subtract the real and imaginary parts of
(2.38). We get

C1eik0x − C2e−ik0x

C1eik0x + C2e−ik0x
= |C1|2 − |C2|2 + C2C1e2ik0x − C1C2e−2ik0x

|C1|2 + |C2|2 + C2C1e2ik0x + C1C2e−2ik0x
. (2.39)

In this expression, the denominator is real. The complex part of the numerator is
C2C1e2ik0x − C1C2e−2ik0x. By choice

|C1| = |C2|, (2.40)

the numerator becomes purely imaginary. Thus, we satisfy (2.38). The cancellation of
imaginary part of (2.39) is the other option for keeping V2 real

Im
{
C2C1e2ik0x − C1C2e−2ik0x

}
= 2 Im

{
C2C1e2ik0x

}
= 0. (2.41)

The simple choice to satisfy (2.41) would be (C1 = 0 ∨ C2 = 0). But then the exponentials
in (2.36) cancel out and V2 reduces to a constant. Such a choice would bring us back to
the free particle. Thus, we look at the condition

C2C1e2ik0x ∈ R \ {0} (2.42)

which gives the restrictions on C1, C2. Coefficients C1 = a+ ib, C2 = c+ id (a, b, c, d ∈ R)
must satisfy

(c− id)(a+ ib)e2i
√
E0x ∈ R. (2.43)

The exponential can be real (E0 < 0) or complex-valued (E0 ≥ 0). For complex-valued
exponentials, one of the coefficients must be zero, precisely C1C2 = 0, which we have
already excluded. For the real-valued exponential we set C1C2 ∈ R.

We come to the conclusion that the potential V2 in (2.36) is real-valued only when..1. |C1| = |C2|, E0 ∈ R,..2. C1C2 ∈ R, E0 < 0.

9 ctuthesis t1606152353



2. DT for Schrödinger operator ..................................
From (2.36), it is evident that V2 has singularities in the points ξ, where ψ0(ξ) = 0

ψ0(ξ) = C1eik0ξ + C2e−ik0ξ = 0. (2.44)

The fact will be useful further in the text.

2.4 DT of infinite square well

The particle in an infinite potential square well (ISW) problem is well known. Its
spectrum and eigenfunctions are

ψ0 = C1cos (kx) , k =
(n+ 1

2)π
L

, n = 0, 1, 2 . . .

ψ0 = C2sin (kx) , k = nπ

L
, n = 1, 2, 3 . . . ,

(2.45)

for x ∈ [−L, L], k =
√
E, E > 0, L > 0. The boundary conditions (b.c.) are ψ0(±L) = 0.

We will analyze the DT of a free particle model. From the beginning, we will require the
eigenstates of a transformed system to be compatible with the Dirichlet b.c. in ±L. We
start with a seed solution ψ0 given by (2.33) which solves the FP problem. The seed solution
generates Â and W given by (2.12). It vanishes in a set of points ξ ∈ {xi, ± L} ⊂ [−L, L],
i.e. ψ0(ξ) = 0. It follows from (2.36) that ξ are singular points of V2.

The function to be transformed is again the FP eigenstate, we denote it ψ, ψ ̸= ψ0.
Transformed functions are Âψ. For them, we prescribe Dirichlet b.c. in ±L and in the
singular points xi of V2. So, they have to satisfy

lim
x→ξ

(Âψ)(x) = 0, ξ ∈ {xi, ± L} . (2.46)

Afterwards, we would like to specify how to select such ψ that matches the b.c. For that, it
is necessary to

0 = lim
x→ξ

Âψ(x) = lim
x→ξ

[
ψ′(x) −

ψ′
0(x)

ψ0(x)ψ(x)
]
, ∀ξ ∈ {xi, ± L} . (2.47)

If we take a look at the form of ψ0 in (2.33) then when ψ0(ξ) = 0 subsequently ψ′
0(ξ) ̸= 0.

Inevitably, the function ψ must compensate zeros of ψ0. Otherwise, Âψ(x) diverges in ξ. It
implies the following condition for ψ(x)

ψ0(x) x→ξ−−−→ 0 =⇒ ψ(x) x→ξ−−−→ 0. (2.48)

If we choose ψ that fits the above implication, it is the best of both worlds. The limit (2.47)
is always equal to zero. It can be shown from the explicit forms of ψ, ψ0, ψ0(ξ) = ψ(ξ) = 0
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................................... 2.4. DT of infinite square well

and with L’Hospital’s rule. We come to the conclusion that when (2.48) is valid, then (2.47)
is automatically fulfilled. It also provides an instruction on how to find ψ, such that Âψ
satisfies all b.c. in (2.46). The zeros of ψ0 must be a subset of the zeros of ψ. Thanks to
the oscillation theorem1, ψ must be a state with a higher energy than the seed solution, i.e.
k2 = E > E0 = k2

0.

Now, let us suppose that (∀x ∈ [−L, L]) (ψ0(x) ̸= 0). Transformed solutions must still
obey (Âψ)(±L) = 0. Substituting the general solution for the free particle (2.37) to
Âψ(±L) = 0, we have two equations

0 = Âψ(L) = ik(AeikL −Be−ikL) − ik0
C1eik0L − C2e−ik0L

C1eik0L + C2e−ik0L
(AeikL +Be−ikL)

0 = Âψ(−L) = ik(Ae−ikL −BeikL) − ik0
C1e−ik0L − C2eik0L

C1e−ik0L + C2eik0L
(Ae−ikL +BeikL)

(2.49)

for the unknowns A, B, k. It can be rewritten to the form

AeikL
(
k − k0

C1eik0L − C2e−ik0L

C1eik0L + C2e−ik0L

)
−Be−ikL

(
k + k0

C1eik0L − C2e−ik0L

C1eik0L + C2e−ik0L

)
= 0

Ae−ikL
(
k − k0

C1e−ik0L − C2eik0L

C1e−ik0L + C2eik0L

)
−BeikL

(
k + k0

C1e−ik0L − C2eik0L

C1e−ik0L + C2eik0L

)
= 0.

(2.50)

We look for a non-trivial solution, i.e. (A, B) ̸= (0, 0). We have to set the determinant
equal to zero. The simplification of the determinant is strictly algebraic. The result is the
following equation for k =

√
E

0 = 4C1C2kk0cos (2kL) sin (2k0L) +

+
[
k2(C2

1 + C2
2 + 2C1C2cos (2k0L)) − k2

0(C2
1 + C2

2 − 2C1C2cos (2k0L))
]

sin (2kL) .
(2.51)

There are mixed imaginary and real parts, because C1, C2, k can be complex-valued. The
parameter k appears in sine, cosine and out of them. In the worst case, we would obtain
two (for the real and imaginary parts) transcendental equations. Both must be solved
numerically, which is a demanding task. Bypassing this horror, one solution of (2.51) is
immediately visible, it is

sin (2k0L) = 0 ∧ sin (2kL) = 0. (2.52)

By choice k = nπ

2L, k0 = n0π

2L ; n, n0 ∈ N we satisfy sin (2k0L) = sin (2kL) = 0. Compared

to (2.45), we see that k0 =
√
E0 = n0π

2L and k =
√
E = n0π

2L are energies of the infinite

1The Schrödinger operator −∂2
x is also the Sturm-Liouville (S-L) operator. For the eigenvalue equation

−ψ′′ = λψ with b.c. ψ(a) = ψ(b) = 0, the S-L theory implies [23]:..1. When λ ≤ 0 then all solutions are ψ ≡ 0...2. The spectrum of −∂2
x is discrete. Lambdas can be labeled such that λ0 < λ1 < . . . ...3. The eigenfunctions of −∂2

x form an orthogonal set in L2([a, b]). They can be labeled {ψn}+∞
n=0 in such

a way that ψ0 has the eigenvalue λ0 and so on...4. The eigenfunction ψn has n zeros in (a, b)...5. At least one zero of ψm is between two zeros of ψn (m > n) in [a, b].
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2. DT for Schrödinger operator ..................................
square well. However, the ISW eigenstates always vanish in ±L. In the very beginning,
we assumed ψ0(±L) ̸= 0. So, we cannot set sin (k0L) = sin (kL) = 0 and we have to find
another solution of (2.51). Nevertheless, it is complicated and we abandon it.

The output is observation (2.48) that if ψ0 has zero points ξ ∈ {xi, ± L} ⊂ [−L, L] then
Âψ(ξ) = 0 provided that ψ(ξ) = 0. This is possible by choosing ψ0, ψ as solutions of the
ISW, see (2.45).

2.4.1 Example

First, we begin with the seed solution

ψ0(x) = sin (k0L) = sin
(
n0π

L
x

)
, n0 ∈ N. (2.53)

The superpotential W and the intertwining operator Â have the form

W (x) = −ψ′
0(x)

ψ0(x) = −k0cotg (k0x) , Â = ∂x +W. (2.54)

The new potential V2 is given by (2.20). Its explicit form is

V2(x) = 2k2
0

sin2 (k0x)
. (2.55)

The singularities of V2 are the zeros of sin (k0x) in the interval [−L, L]. That is, points
ξ ∈ M ≡

{
−n0
n0
L, − n0 − 1

n0
L, . . . ,

n0 − 1
n0

L,
n0
n0
L

}
. We want to find the eigenstates of

H2ϕ = Eϕ that comply with b.c. in (2.46). From the DT we can set ϕ = Âψ, where

Âψ = k [−Asin (kx) +Bcos (kx)] − k0cotg (k0x) [Acos (kx) +Bsin (kx)] ,
ψ = Acos (kx) +Bsin (kx) , A, B ∈ R.

(2.56)

According to (2.48), there must equivalently hold ψ(ξ) = 0, ∀ξ ∈ M . Due to 0 ∈ M ,
we fix A = 0 in (2.56). After that, ψ is reduced to ψ(x) = Bsin (kx). We have to solve
∀ξ ∈ M, ψ(ξ) = 0, which can be rewritten as

(∀m ∈ {−n0, − n0 + 1, . . . , n0})
(
ψ

(
m

n0
L

)
= Bsin

(
k
m

n0
L

)
= 0
)
. (2.57)

It implies that the zeros of ψ have to be in the same positions as the zeros of ψ0. Of course,
ψ can have more zeros than ψ0, but not less. Thus, ψ is a higher excitation than the seed
solution ψ0 (k > k0). One can check that

k = n0sπ

L
, s ∈ N (2.58)
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....................................2.5. DT of finite square well

satisfies ψ(ξ) = Bsin (kξ) = 0, ∀ξ ∈ M . We can skip s = 1, because then k = k0 is the seed
solution state, which is annihilated by Â.

Owing to E = k2, we obtain the energy spectrum and eigenfunctions of the Hamiltonian
H2 = −∂2

x + V2 as

E = k2 =
(
n0sπ

L

)2
; n0 ∈ N, s ∈ {2, 3, 4, . . . } ,

Âψ = n0sπ

L
Bcos

(
n0sπ

L
x

)
−B

n0π

L
cotg

(
n0π

L
x

)
sin
(
n0sπ

L
x

)
.

(2.59)

Always
√
E = k > k0 =

√
E0, therefore energies smaller than E0 are missing in the

transformed system. The higher excited state ψ0 (higher n0) implies that the gaps between
two energy levels in the transformed system are larger. For n0 = 2, the wavefunctions
(2.59) are shown in Fig. 2.1.

0 L
2

L
2 L-L

x

0

E

0

[-]

V2
ground st.

1. excited st. 2. excited st.

(a) : L = 2

0 L
2

L
2 L-L

x

0

E

0

[-]

V2
ground st.

1. excited st. 2. excited st.

(b) : L = 22

Figure 2.1: The potential V2(x) given by (2.55) with different L. We denote the ground state
as ψ2, the 1st excited state as ψ3 and the 2nd excited state as ψ4. The eigenfunctions are

then ψn = knBcos (knx) − 2π
L

cotg
(

2π
L
x

)
Bsin (knx) with kn = n

2π
L

for n = 2, 3, 4. The

wavefunctions can vanish in three wells and be non-zero in one well. These states are orthogonal,
they are still the eigenstates of H2 with the eigenvalue En and we speak about the fourfold
degeneracy.

2.5 DT of finite square well

We will apply the Darboux transformation to the model of a finite square well (FSW).
We start with the step potential for the FSW

V1(x) =


V0, x < −L
0, |x| ≤ L

V0, x > L

(2.60)
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2. DT for Schrödinger operator ..................................
where V0 > 0, L > 0. We can solve H1ψ0 = E0ψ0, E0 ∈ R separately for x < −L, for
|x| ≤ L and for x > L. We obtain ψ0, which will play the role of a seed solution. We fix
the following seed solution

ψ0(x) =


A1eK0x, x < −L
B1cos (k0x) +B2sin (k0x) , |x| < L

C1e−K0x, x > L,

(2.61)

where we have defined K0 =
√
V0 − E0, k0 =

√
E0. We can calculate W given by (2.12).

The seed solution f ≡ ψ0 is defined on intervals, the same is true for W . The formula for
W is

W (x) =



−K0, x < −L

− k0

(−B1sin (k0x) +B2cos (k0x)
B1cos (k0x) +B2sin (k0x)

)
, |x| < L

K0, x > L.

(2.62)

The new potential V2 can be obtained from (2.20) where we set V1 as (2.60). The potential
V2 is

V2(x) =



V0, x < −L

2k2
0

[
1 +

(−B1sin (k0x) +B2cos (k0x)
B1cos (k0x) +B2sin (k0x)

)2]
, |x| < L

V0, x > L.

(2.63)

We focus on the calculation of square-integrable eigenstates of H2 = −∂2
x + V2. We will

obtain them by action of the operator Â (see (2.12)) on a solution of H1ψ = Eψ. We fix ψ
in this form

ψ(x) =


DeKx, x < −L
Acos (kx) +Bsin (kx) , |x| < L

F e−Kx, x > L.

(2.64)

Again, K =
√
V0 − E, k =

√
E. The intertwinning relation (2.17) and the resultant

equation (2.19) give candidates on the eigenstates of H2. They are functions Âψ. We act
with the operator Â = ∂x +W on ψ,

(Âψ)(x) =


D(K −K0)eKx, x < −L
k [−Asin (kx) +Bcos (kx)] +W [Acos (kx) +Bsin (kx)] , |x| < L

−F (K −K0)e−Kx, x > L.

(2.65)

We see that the function Âψ is square-integrable only when K =
√
V0 − E > 0. That is

the reason why we fixed ψ as the real exponential with the corresponding sign on each
interval. We shall fix the coefficients such that the boundary conditions are satisfied. We
require the continuity of Âψ and its derivation in ±L,

lim
x→±L+

Âψ(x) = lim
x→±L−

Âψ(x),

lim
x→±L+

(Âψ)′(x) = lim
x→±L−

(Âψ)′(x).
(2.66)
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....................................2.5. DT of finite square well

Substitution of (2.65) to (2.66) gives

(K0 −K)e−KLF = dψ
dx

∣∣∣∣
x=L

+W (L)ψ(L)

−(K0 −K)e−KLD = dψ
dx

∣∣∣∣
x=−L

+W (−L)ψ(−L)

−K(K0 −K)e−KLF = −k2ψ(L) + [W (x)ψ(x)]′
∣∣∣∣
x=L

−K(K0 −K)e−KLD = −k2ψ(−L) − [W (x)ψ(x)]′
∣∣∣∣
x=−L

.

(2.67)

These are four equations for the unknown A, B, D, F , which determine the eigenstate
(2.65). The determinant equal zero gives us the dispersion relation E = E(k). Being the
determinant of 4 × 4 matrix, it is hardly analytically solvable in general.

We shall discuss two special cases in which we can easily find solutions. In the first
example, we set B1 = 0. The formulas (2.65), (2.62) become much simpler. Later, we do
the same with B2 = 0. We will discuss these two special cases separately in the following
two subsections.

2.5.1 Regularized sec2(k0x)

With B2 = 0 the potential V2 and W , see (2.63) and (2.62), respectively, are

V2(x) =


V0, x < −L

2k2
0

1
cos2(k0x) , |x| < L

V0, x > L

, W (x) =


−K0, x < −L

k0tg (k0x) , |x| < L

K0, x > L.

(2.68)

In general, the potential (2.68) can be singular. It will be regular only when k0x ∈ (−π

2 ,
π

2 )
for all x ∈ [−L, L]. It can happen when

k0L ∈ (0, π2 ). (2.69)

In this case, the singularities of sec(k0x) in the interval [−L, L] are avoided. We choose
only those k0 = E2

0 , which fulfill (2.69).

The other problem is that the potential (2.68) is generally not continuous. For the
continuity of (2.68) in the point ±L, there must hold lim

x→±L+
V2(x) = lim

x→±L−
V2(x) which is

explicitly

lim
x→±L∓

V2(x) = lim
x→±L∓

2k2
0

cos2(k0x) = V0. (2.70)
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2. DT for Schrödinger operator ..................................
The adjustment process of k0 to meet (2.70) is shown in Fig. 2.2. As we assumed that

0
x

E
V2(x)

L
x

E

finding E0

V2(x)
new V2(x)
seeked V2(x)

Figure 2.2: The potential (2.68) for x > 0 (left). In the detailed picture (right) is shown the
process of regularization. We find E0 = k2

0 which makes the potential continuous.

(2.69) is valid, the potential V2 has no singularities in ±L. Therefore, we just put L into
the limit, so

2k2
0

V0
= cos2(k0L). (2.71)

From the equation, we will calculate k0 > 0 numerically. It always has at least one solution
k0, because we have k2

0 and cos2(k0L) as functions of k0. One increases from k0 = 0 to
infinity, the latter decreases from 1 to 0.

We want to satisfy b.c. in (2.66). For that, we need the eigenfunctions Âψ. The potential
V2 is even. We can find the solution as the even and odd parts of Âψ. Here, Âψ is simply
acquired from (2.65) where we set B2 = 0

(Âψ)(x) =


D(K −K0)eKx, x < −L
k [−Asin (kx) +Bcos (kx)] + k0tg (k0x) (Acos (kx) +Bsin (kx)) , |x| < L

−F (K −K0)e−Kx, x > L.

(2.72)

Firstly, we extract the even part of Âψ as

(Âψ)even(x) =


D(K −K0)eKx, x < −L
kBcos (kx) + k0tg (k0x)Bsin (kx) , |x| < L

D(K −K0)e−Kx, x > L.

(2.73)
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....................................2.5. DT of finite square well

B.c. (2.66) are reduced to two equations for the point L, namely

lim
x→L+

Âψ(x) = lim
x→L−

Âψ(x)

lim
x→L+

(Âψ)′(x) = lim
x→L−

(Âψ)′(x).
(2.74)

Substituting (2.73) to (2.74), we come to

D(K −K0)e−KL = Bkcos (kL) +Bk0tg (k0L) sin (kL)

−DK(K −K0)e−KL = −Bk2sin (kL) +
Bk2

0
cos2(k0L)

sin (kL) +Bk0ktg (k0L) cos (kL) .
(2.75)

There is D(K −K0)e−KL in both equations. For this expression, we substitute the first
equation to the second one and we get[

−k2 +
k2

0
cos2(k0L)

+Kk0tg (k0L)
]

sin (kL) = − [kK + kk0tg (k0L)] cos (kL) . (2.76)

After that, we use (2.71) and two more identities

cos (k0L) =
√

2k0√
V0

, tg (k0L) =
√

1 − cos2(k0L)
cos2(k0L) , K2 + k2 = V0. (2.77)

Then, (2.76) simplifies toV0
2 − k2 +K

√
V0
2 − k2

0

 sin (kL) = −k

K +

√
V0
2 − k2

0

 cos (kL) . (2.78)

This equation for k2 = E must be solved numerically. The relationship between constants
D, B is obvious from the first equation of (2.75). Eventually, one optional constant is left.
It is fully determined by the normalization of (Âψ)even.

We proceed in the same way for the odd part of Âψ

(Âψ)odd(x) =


D(K −K0)eKx, x < −L
−kAsin (kx) + k0tg (k0x)Acos (kx) , |x| < L

−D(K −K0)e−Kx, x > L.

(2.79)

The secular equation for the odd solution isV0
2 − k2 +K

√
V0
2 − k2

0

 cos (kL) = k

K +

√
V0
2 − k2

0

 sin (kL) . (2.80)

Likewise in the even case, the equation does not support a solution for E < 0. The reason
is simple. When E < 0 then k =

√
E = i

√
−E = iκ is purely imaginary. Substituting

k = iκ,K =
√
V0 + κ2 to (2.80), we obtainV0

2 + κ2 +
√
V0 + κ2

√
V0
2 − k2

0

 = −κ

√V0 + κ2 +

√
V0
2 − k2

0

 tgh (κL) . (2.81)
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2. DT for Schrödinger operator ..................................
Assuming κ > 0, the left-hand side is always positive and the right-hand side is always
negative. Therefore, there does not exist a solution κ > 0. Both sides of the equation are
even functions of κ. Thus, the solution κ < 0 is also not possible. Overall, k =

√
E ∈ R

and must be found numerically.

From the form of eigenfunctions (2.73), (2.79) we see that E are limited above by V0.
Otherwise, the eigenstates are not square-integrable (K =

√
V0 − E). As was shown, the

energies E = k2 are limited from below by 0. It turns out that the system has a finite
number of bound states. This is because oscillating and polynomial functions occur in the
energy dispersion and the domain of energies is bounded, E ∈ (0, V0). The factorization
energy E0 must satisfy 2E0

V0
< 1, because (2.71) has a solution when 2E0

V0
< 1. Only

then, the potential can be continuous. When E0 −→ V0
2 , we can find less energies (less

bound states), because we push the lower limit closer to V0. When we did not insist on
the continuous potential, the bound states could be found too. The benefit of continuous
potential is also simplification of the dispersion relation, compare (2.76) with (2.78). The
particular system is shown in Fig. 2.3.

3 2 1 0 1 2 3
x

2.5

0.0

2.5

5.0

7.5

10.0

12.5

E

V2(x)
E = 0
L=1.5

2.5

0.0

2.5

5.0

7.5

10.0

12.5

[-]
1. excited st.
ground st.
2. excited st.

Figure 2.3: The regularized potential V2(x) (2.68) with the eigenfunctions (2.73), (2.79). The
energy of the seed solution is k2

0 = E0 = 0.6719. The parameters of the well are V0 = 12, L = 1.5.
The energy for the ground state is Egr = 2.6525, for the first excited state is E1 = 5.8103 and
for the second excited state is E2 = 9.7792.
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2.5.2 Regularized csc2(kx)

Now, let us discuss the second specific case where B1 = 0 in (2.63). V2 and W are given
by

V2(x) =


V0, x < −L

2k2
0

1
sin2(k0x)

, |x| < L

V0, x > L

, W (x) =


−K0, x < −L

− k0cotg (k0x) , |x| < L

K0, x > L.

(2.82)

At first glance, the potential V2 has the singular point in x = 0. It can have more singular
points {xi|i ∈ n̂, n ∈ N} which are solutions of sin (k0xi) = 0. We will require that V2 has
the only singular point x = 0. With respect to this requirement, we have to select the
factorization energy E0 such that√

E0L ∈ (0, π) =⇒ sin (k0L) ̸= 0. (2.83)

In general, the potential V2 is not continuous. We would like to fix k0 such that V2 is
continuous in x = ±L. Such k0 has to satisfy

2k2
0

sin2(k0L)
= V0. (2.84)

The process of making V2 continuous will be the same as in 2.5.1. We just find the energy
E0, which enables

2k2
0

V0
= sin2(k0L). (2.85)

This is an equation for an unknown k0. It always has a solution. Maximal k0 is limited

by the condition 1 ≥ 2k2
0

V0
. Both functions k2

0, sin2(k0L) are zero for k0 = 0. sin2(k0L)

is a concave function and k2
0 is a convex function. The function k2

0 increases faster than
sin2(k0L). Therefore, they have to intersect each other.

Again, (2.82) is an even function, so we will extract the even and odd parts of Âψ. In
addition, we shall not forget b.c. (Âψ)(0) = 0 which follows from the singularity of V2 in
x = 0 . Function Âψ is given by (2.65), where we set B1 = 0

(Âψ)(x) =


D(K −K0)eKx, x < −L
k [−Asin (kx) +Bcos (kx)] − k0cotg (k0x) [Acos (kx) +Bsin (kx)] , |x| < L

−F (K −K0)e−Kx, x > L.

(2.86)

We start with the odd part of Âψ

(Âψ)odd(x) =


D(K −K0)eKx, x < −L
−kAsin (kx) − k0Acotg (k0x) cos (kx) , |x| < L

−D(K −K0)e−Kx, x > L.

(2.87)
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2. DT for Schrödinger operator ..................................
It is clear that it cannot be a solution. The problem is cotg (k0x) cos (kx), which always
diverges in x = 0 (k0 ̸= 0) due to lim

x→0
|cotg (k0x) cos (kx)| = +∞. As was mentioned, it

must hold (Âψ)odd(0) = 0. Let us move on to the even part of Âψ

(Âψ)even(x) =


D(K −K0)eKx, x < −L
kBcos (kx) − k0Bcotg (k0x) sin (kx) , |x| < L

D(K −K0)e−Kx, x > L.

(2.88)

It satisfies (Âψ)even(0) = 0 and we substitute (Âψ)even(x) = 0 to (2.66)

D(K −K0)e−KL = Akcos (kL) −Ak0cotg (k0L) sin (kL)

−DK(K −K0)e−KL = −Ak2sin (kL) +
Ak2

0
sin2(k0L)

sin (kL) −Ak0kcotg (k0L) cos (kL) .
(2.89)

Substituting the first equation to the second one, we come to[
k2 −

k2
0

sin2(k0L)
+Kk0cotg (k0L)

]
tg (kL) = [kK − kk0cotg (k0L)] . (2.90)

It is an equation for possible energies E = k2, which must be found numerically. Even
without the explicit knowledge of E, E < V0 must be valid to have (2.88) square-integrable.
The particular system is shown in Fig. 2.4.
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ground st.
1. excited st.
2. excited st.

Figure 2.4: The regularized potential V2(x) of a type (2.82) with the eigenfunctions (2.88). The
energy of the seed solution is k2

0 = E0 = 1.23 (given by (2.85)). The parameters of the well are
V0 = 20, L = 2.5 . The energies are for the ground state Egr = 4.9144, the first excited state
E1 = 10.8703 and the second excited state E2 = 18.4483.
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....................................2.5. DT of finite square well

2.5.3 Spectra of FSW and its regularized versions

The spectra of systems with potentials (2.60), (2.68), (2.82) are in Fig. 2.5. The compar-
ison of spectra revealed that FSW has more energy levels than both regularized wells. The
lowest energy for FSW is missing in both sec2, csc2. In the spectrum of sec2 it corresponds
to the factorization energy. The factorization energy of csc2 corresponds to the second
energy level of FSW. Between two energy levels in the spectrum of csc2, it always misses
one energy level of FSW. This is because the wavefunctions of csc2 must satisfy b.c. in
x = 0. The wavefunctions, which would theoretically have the missing energy similar to the
FSW energy, do not fulfill it. Potentials sec2, csc2 has energy levels slightly below those for
FSW. Potential wells, which we approximate by FSW or sec2, will have different ground
states. In all mentioned potentials, the continuous spectrum is formed by energies E ≥ V0
(blue-filled rectangles). The thing, which is not evident from Fig. 2.5, is that the higher the
energy E0 (higher V0 and well) is, the wider the energy gaps are.

FP FSW sec2 csc2
0

5

10

15

20

25

E

Figure 2.5: The comparison of spectra for the free particle V (x) ≡ 0 (FP), the finite square
well (2.60) (FSW), the secant potential (2.68) (sec2) and the cosecant potential (2.82) (csc2).
The parameters are V0 = 20, L = 2.5 for all wells. The proper regularization of sec2 resp. csc2

wells is ensured by the factorization energy E0 = 0.31 resp. E0 = 1.23.
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Chapter 3

DT for 1D Dirac operator

In this chapter, we will present the Darboux transformation for one-dimensional quantum
systems described by the following dynamical equation

i∂tψ = (−iσ1∂x + V1)ψ = H1ψ, (3.1)

where V1 = V1(x) is a potential matrix, σ1,2 are the Pauli matrices1 and ψ = (ψ1, ψ2)T is a
spinor. The time-independent 1D Dirac equation is

H1ψ = (−iσ1∂x + V1)ψ = Eψ. (3.3)

3.1 Matrix approach of DT

In this section, the results of [10] are summarized. We will work with c = 1, ℏ = 1. Let
us assume that the Hamiltonians H1, H2 are intertwined by the operator Â

ÂH1 = H2Â (3.4)

and our purpose is to find Â and H2 which satisfy the relation. We would like to have
intertwined two 1D Dirac Hamiltonians, so

H2 = −iσ1∂x + V2. (3.5)
1Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.2)
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3. DT for 1D Dirac operator ...................................
The Hamiltonian H1 is the first-order operator, so its factorization is impossible. However,
we can use the method to find Â analogous to 2.1. We make the following ansatz for the
operator Â,

Â = U∂xU
−1 = ∂x − UxU

−1, (3.6)
where Ux = ∂xU . We substitute Â and H2 into (3.4) and compare the matrix coefficients
at the derivatives. There emerge two matrix equations for U and V2 and we figure out how
to find U and V2. We begin with U . The matrix U has to satisfy

H1U = Uλ. (3.7)

λ has the property λ = diag(λ1, λ2), λ1,2 ∈ R. We see that U is the eigenmatrix of H1. If
we compose U of spinors u1, u2

U = (u1, u2) , (3.8)
they are acquired from

H1u1,2 = λ1,2u1,2. (3.9)
Overall, spinors u1, u2 form the columns of U and they are the eigenstates of H1 for the
eigenvalues λ1, λ2. It remains to determine V2. The newly created potential is

V2 = V1 − i
[
σ1, UxU

−1
]
. (3.10)

The commutation relation of Pauli’s matrices impose that newly created parts are only
σ2, σ3 types and we cannot obtain σ0, σ1. Compared to the DT for Schrödinger’s operator,
where we choose one factorization energy, the DT for the Dirac operator opens the way to
various possibilities of V2 thanks to two factorization energies λ1,2.

Intertwining relations (3.4) help us to find a solution of H2φ = Eφ as follows

H2Âψ = ÂH1ψ = EÂψ. (3.11)

Here we use the fact that ψ is the eigenfunction of H1 with the eigenvalue E. Specialty of
the DT for the Dirac operator are missing states. They are energy levels λ1, λ2 which can
or do not have to appear in the new transformed system. Path of their search begins with

V =
(
U †
)−1

= (v1, v2) . (3.12)

The matrix V satisfy
H2V = Vλ ⇐⇒ H2v1,2 = λ1,2v1,2. (3.13)

Spinors v1,2 are the eigenstates of H2 for the eigenvalues λ1,2. Whether the energy levels
λ1,2 appear in the new system depends on what we require from v1,2 (square-integrable, b.c.
and so on). There always exist second linearly-independent solutions ṽ1,2 to v1,2 which also
satisfy H2ṽ1,2 = λ1,2ṽ1,2. For the Hamiltonian H2 = −iσ1∂x +A(x)σ2 +M(x)σ3, the spinor
ṽ1 = (ṽ11, ṽ12)T is the second-linearly independent solution to v1 = (v11, v12)T , v11 ̸≡ 0
and can be calculated via

ṽ11 = −iv11

∫ x λ1 +M(t)
v2

11(t)
dt

ṽ12 = −iv12

∫ x λ1 +M(t)
v2

11(t)
dt− 1

v11
.

(3.14)
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................................... 3.2. DT of free Dirac particle

When v11 ≡ 0, we simultaneously interchange v11 ↔ v12, ṽ11 ↔ ṽ12 in the formulas.

The benefit of the Darboux transformation is that it produces the new solvable 1D Dirac
systems. The eigenvalue equation of the new Dirac Hamiltonian H2φ = Eφ, as a differential
equation, could be hardly solvable without the knowledge of intertwined Hamiltonians.
Apparently, the Darboux transformation in 1D does not enable construction of V = V (x, y),
but it only enables V = V (x). Higher-order Darboux transformations can be introduced.
We apply the DT on a system number 1 and get a system number 2. Application of another
DT on the system 2 gives us a system number 3. It can be repeated over and over again
and reach the desired order of the transformation.

3.2 DT of free Dirac particle

Likewise with the Schrödinger operator, we can get off the mark from the DT of the
free Dirac particle Hamiltonian to create non-trivial potentials. Let us solve the stationary
eq. (3.3) for the free particle Hamiltonian H1 = −iσ1∂x +mσ2. Here, m ∈ R is the mass of
the particle. The eq. (3.3) can be rewritten into the following system of coupled equations
for the spinor components

H1ψ = (−iσ1∂x +mσ2)ψ = Eψ,
−iψ′

2 − imψ2 = Eψ1

−iψ′
1 + imψ1 = Eψ2.

(3.15)

We have to discuss two cases E2 = m2, E2 ̸= m2. Starting with E2 ≠ m2 the general
solution is(

ψ1
ψ2

)
= C1eikx

(
m+ ik

iE

)
+ C2e−ikx

(
m− ik

iE

)
, C1, C2 ∈ C, k =

√
E2 −m2. (3.16)

Notice that k is real for E2 > m2 and purely imaginary for E2 < m2. In the second case
E2 = m2, the solution is degenerated. For E = m we have(

ψ1
ψ2

)
= C3

(
mx

imx− i

)
+ C4

(
1
i

)
, C3, C4 ∈ C. (3.17)

The solution for E = −m is(
ψ1
ψ2

)
= C5

(
mx

−imx+ i

)
+ C6

(
1

−i

)
, C5, C6 ∈ C. (3.18)

Due to the fact σ3H1σ3 = −H1, if we have a solution H1ψ = Eψ, it is granted that σ3ψ
solves H1σ3ψ = −Eσ3ψ. In [24], it states that it is chiral symmetry.
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3. DT for 1D Dirac operator ...................................
Let us discuss the DT of free particle systems. In the construction, fixing factorization

energies plays a fundamental role. In dependence on their choice, we can expect exponentially
decaying/increasing, sine/cosine or polynomial potentials. We define spinors

u1(x) = ψ(x, E)
∣∣∣∣
E=λ1

u2(x) = ψ(x, E)
∣∣∣∣
E=λ2

, (3.19)

where ψ(x, E) is the solution of differential equations (3.15), i.e. one of (3.16)-(3.18). We
will present two explicit examples.

3.2.1 DT of free Dirac particle - example 1

We fix λ1 = m, λ2 = ε ∈ (−m, m). Let us denote Pε = ε + m, Kε =
√
m2 − ε2. The

appropriate selection of constants Ci enables us to write u1, u2 in the following form,

u1(x) = ψ(x, E)
∣∣∣∣
E=λ1

= I + iσ1√
2

(
1
0

)
=
(

1
i

)
,

u2(x) = ψ(x, E)
∣∣∣∣
E=λ2

= I + iσ1√
2

− sh (Kεx)
Kε

i

Pε
ch (Kεx)

 .

(3.20)

Finally, we create the matrix UxU−1 as defined in (3.8)

UxU
−1 = (u1, u2)x(u1, u2)−1 = I + iσ1√

2

(
0 iPε
0 Kεtgh (Kεx)

)
I − iσ1√

2
. (3.21)

The operator Â is with the use of (3.6)

Â = ∂x − I + iσ1√
2

(
0 iPε
0 Kεtgh (Kεx)

)
I − iσ1√

2
=

= ∂x −
(
Kεtgh (Kεx) + Pε i(Pε +Kεtgh (Kεx))
i(Pε −Kεtgh (Kεx)) Kεtgh (Kεx) − Pε

)
.

(3.22)

The action of Â on an eigenfunction ψ = (ψ1, ψ2)T leads to

ϕ = Âψ =

ψ′
1 − 1

2(Kεtgh (Kεx) + Pε)(ψ1 + iψ2)

ψ′
2 + i

2(Kεtgh (Kεx) − Pε)(ψ1 + iψ2)

 . (3.23)

The Hamiltonian H2 for the new system is (see (3.10))

H2 = −iσ1∂x + V2 = −iσ1∂x − εσ2 −
√
m2 − ε2tgh

(
x
√
m2 − ε2

)
σ3. (3.24)

The inhomogenous part of V2 is represented by a parity odd function.
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................................... 3.2. DT of free Dirac particle

Notice that H̃1 = −iσ1∂x + mσ3 can be transformed into H1 = −iσ1∂x + mσ2 by the
unitary transformation U, that is, UH̃1U† = H1. It is represented in the matrix form as

U = ei
π
4 σ1 = 1√

2
(I + iσ1) . (3.25)

That is why most of the formulas above contain 1√
2

(I + iσ1). For the need of other chapters,

we also present (3.24), (3.23), (3.16) and (3.12) in their unitarily transformed form

H̃2 = U†H2U = −iσ1∂x + UV2U† = −iσ1∂x − εσ3 +Kεtgh (Kεx)σ2,

Âψ̃ =
(

ψ′
1 − iPεψ2

ψ′
2 −Kεtgh (Kεx)ψ2

)
,

ψ̃ = C1eikx
 1

k

E +m

+ C2e−ikx

 1

− k

E +m



V =
(
U †
)−1

=


Pε
Kε

0

i
Pε
Kε

tgh (kεx) iPε
ch (Kεx)

 .

(3.26)

3.2.2 DT of free Dirac particle - example 2

In the second presented example, we begin with a slightly changed free particle Hamilto-
nian H1 = −iσ1∂x +mσ3. Its eigenfunctions H1ϕ = Eϕ are

ϕ = C1eikx
 1

k

E +m

+ C2e−ikx

 1

− k

E +m
.

 , k2 = E2 −m2, C1,2 ∈ C. (3.27)

In this section, we take λ1 = −ε ∈ (−m, 0), λ2 = ε ∈ (0, m), m > 0. The generating
matrix U can be chosen as

U =


i

Kε
sh (Kεx) i

Kε
ch (Kεx)

1
P−

ch (Kεx) 1
P+

sh (Kεx)

 . (3.28)

The missing states v1, v2 are the columns of

V = (v1, v2) =
(
U †
)−1

= iK3
ε

m+ εch (2Kεx)

− i

P+
sh (Kεx) i

P−
ch (Kεx)

1
Kε

ch (Kεx) 1
Kε

sh (Kεx)

 . (3.29)

We have defined P± = m± ε. The new Hamiltonian H2 intertwined with H1 is (see (3.10))

H2 = −iσ1∂x + V2 = −iσ1∂x +
(
m− K2

ε

m+ εch (2Kεx)

)
σ3. (3.30)

27 ctuthesis t1606152353



3. DT for 1D Dirac operator ...................................
The potential is given in terms of an even function this time. The eigenfunctions ψ of the
problem H2ψ = Eψ are

ψ = (∂x − UxU
−1)ϕ =

=
(
ϕ′

1
ϕ′

2

)
− 1
m+ εch (2Kεx)

(
εKεsh (2Kεx) iK2

ε

−iK2
ε εKεsh (2Kεx)

)(
ϕ1
ϕ2

)
.

(3.31)
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Chapter 4

Dirac equation in graphene

4.1 Description of crystals

Under the term crystal we can imagine a periodic arrangement of atoms. Crystals in
nature are real crystals. On the other hand, we can work with a simplified crystal model,
called the ideal crystal. Real crystals grow to a finite size. Their atom periodicity can be
disturbed by crystal disorders, e.g. vacancy, where some atoms are missing in the expected
positions. To make things easier, we will work with the ideal crystals. We take the ideal
crystals as infinitely large objects. An ideal 3D crystal has translation symmetry along three
independent directions t⃗1, t⃗2, t⃗3. In two dimensions, we consider only two directions t⃗1, t⃗2.
We are heading to describe graphene, thus we will be interested mainly in 2D crystals.

4.2 Bravais lattice and crystal structure

We would like to give a detailed mathematical description of an infinitely large array
of atoms. For that, we introduce the term of the Bravais lattice. It is defined as a set of
points, whose position vector R⃗ is

R⃗ = n1t⃗1 + n2t⃗2 ≡ nit⃗i, ∀ni ∈ Z. (4.1)

Vector R⃗ does not have to correspond to the positions of the atoms. The part ∀ni ∈ Z is
also important, we cannot skip any index. In addition, it silently says that the set of points
is infinitely large. The designation for t⃗1, t⃗2 is primitive vectors. The same Bravais lattice
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4. Dirac equation in graphene...................................
can be generated by a different choice of primitive vectors. We find out that ⃗̃t1 = 2t⃗1 + t⃗2,
⃗̃t2 = t⃗2 also create R⃗ = ñi

⃗̃ti. We can produce different types of Bravais lattice just by
changing the size of vectors and angles between them.

One of the types of Bravais lattice in 2D is the triangular Bravais lattice depicted in
Fig. 4.1. The size of primitive vectors t⃗1, t⃗2 is the same, i.e.

∣∣∣⃗t1∣∣∣ =
∣∣∣⃗t2∣∣∣. These two

vectors are, in a certain sense, natural ones. They connect the nearest neighbors and
minimize

∣∣∣⃗t1 × t⃗2
∣∣∣ (area of the parallelogram). The vectors t⃗1, t⃗2 and t⃗1,

⃗̃t2 generate the
same Bravais lattice. It is similar to the case mentioned above, now the new vectors are
⃗̃t1 = t⃗1, ⃗̃t2 = 2t⃗1 + t⃗2.

Figure 4.1: The triangular Bravais lattice.

The Bravais lattice reflects the periodicity of a crystal, not the position of atoms. Basis{
d⃗j | j = 1, 2, . . . , n ∈ N

}
is necessary to determine their positions. The Bravais lattice

puts periodicity into play and vectors of the basis d⃗j specify the position of atoms. The
crystal structure is then a set of points

R⃗j = nit⃗i + d⃗j , ∀ni ∈ Z, j = 1, 2, . . . , n ∈ N. (4.2)

The points R⃗j now coincide with the positions of the atoms. Graphene has a honeycomb
lattice, see Fig. 4.2. The position of white circles (atoms A) is

R⃗A = nit⃗i + d⃗1 = nit⃗i + 0⃗ = nit⃗i. (4.3)

The position of black circles (atoms B) is

R⃗B = nit⃗i + d⃗2 = R⃗A + d⃗2. (4.4)

The explicit form of the primitive and basis vectors of the honeycomb lattice in Fig. 4.2 is

t⃗1 = a

2(3,
√

3), t⃗2 = a

2(3,−
√

3), d⃗1 = 0⃗, d⃗2 = (a, 0). (4.5)

4.2.1 Wigner-Seitz cell

For other purposes, we present an idea of the Wigner-Seitz cell. Its construction is
illustrated in Fig. 4.3. The general steps are following. We choose an arbitrary point of the
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Figure 4.2: The honeycomb lattice.

Figure 4.3: The Wigner-Seitz cell for the triangular lattice.

Bravais lattice. We take one of his nearest neighbors and draw a line halfway through them.
It is perpendicular to their connecting line. We continue with the other nearest neighbors.
The Wigner-Seitz cell is the smallest area delimitted by the lines. Moving the Wigner-Seitz
cell by nit⃗i, we cover the whole space without overlap. Every point in the space can be
described as

R⃗ = w⃗ + nit⃗i. (4.6)

The vector w⃗ gives the position of a point in the Wigner-Seitz cell.

4.3 Reciprocal lattice

Primitive translation vectors of a reciprocal lattice g⃗1, g⃗2, g⃗3 are defined by the condition

g⃗i · t⃗j = 2πδij . (4.7)
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4. Dirac equation in graphene...................................
The Wigner-Seitz cell in the reciprocal space is called the first Brillouine zone (1BZ). Every
vector g⃗ of the reciprocal space can be decomposed to

g⃗ = G⃗+ k⃗, k⃗ ∈ 1BZ, G⃗ = mig⃗i. (4.8)

This relation points to the fact that 1BZ is exceptional. Knowledge of the 1BZ gives us the
opportunity to express the whole reciprocal space. With use of (4.5) and (4.7), g⃗1, g⃗2 in
the case of honeycomb lattice are

g⃗1 = 2π
3a (1,

√
3), g⃗2 = 2π

3a (1,−
√

3). (4.9)

4.4 Bloch’s theorem

Finding a solution to the Schrödinger equation is not usually simple. Especially in a
situation with complicated potential. The Bloch theorem says what form the wavefunctions
have to have in a periodical potential

ψ(x⃗− a⃗) = e−ik⃗·⃗aψ(x⃗). (4.10)

We will prove this statement. Let us assume a periodical potential with a period a⃗

V (x⃗) = V (x⃗+ a⃗). (4.11)

The single particle Hamiltonian is

H = P⃗ 2

2M + V (x⃗), (4.12)

where P⃗ is a momentum operator. In the following steps, we would like to apply the
translation invariance of the crystal. More precisely, we will be interested in the translation
invariance of the Bravais lattice. It seems useful to introduce a translational operator by
relation

Ta⃗ψ(x⃗) = ψ(x⃗− a⃗). (4.13)

It shifts the argument of the wave function by a constant vector a⃗. Operator Ta⃗ can be
equivalently written as an exponential

Ta⃗ = e− i
ℏ a⃗·P⃗ . (4.14)

Operators H, Ta⃗ commutes, we can find their common eigenfunctions ψ

Hψ = Eψ

Ta⃗ψ = λa⃗ψ.
(4.15)
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The normalization of |ψ⟩ and the unitary operator Ta⃗ imply

1 = ⟨Ta⃗ψ|Ta⃗ψ⟩ = |λa⃗|2 ⟨ψ|ψ⟩ = |λa⃗|2. (4.16)

The eigenvalue λa⃗ must lie on the unit circle

λa⃗ = eif(a⃗). (4.17)

Here, f (⃗a) is an unknown function for now. Translation operators can be composed. It can
be viewed (see (4.14) or (4.13)) that

Ta⃗Ta⃗ = T2a⃗, T0⃗ = 1̂. (4.18)

The application of the above mentioned expressions on eigenvectors ψ gives

f(2a⃗) = f (⃗a) + f (⃗a), f (⃗0) = 0. (4.19)

The function f is linear in a⃗. Because it appears in the exponent, it must be a scalar
function. Simultaneously f (⃗0) = 0, so a good formula is

f (⃗a) = −k⃗ · a⃗, where − k⃗ = −−−→const. (4.20)

The relation [H, Ta⃗] = 0 and (4.15) say that when Hψ = Eψ then HTa⃗ψ = ETa⃗ψ, where

ψ(x⃗− a⃗) = Ta⃗ψ(x⃗) = λa⃗ψ(x⃗) = e−ik⃗·⃗aψ(x⃗). (4.21)

The Bloch theorem claims that in a periodical potential the eigenfunctions must obey

ψ(x⃗− a⃗) = e−ik⃗·⃗aψ(x⃗). (4.22)

The Bloch theorem can be equivalently formulated in the speech of a periodic function
u
k⃗
(x⃗) = u

k⃗
(x⃗+ a⃗) [25],

ψ(x⃗) = eik⃗·x⃗u
k⃗
(x⃗). (4.23)

This is the form of all wavefunctions in the periodic potential. The energy dispersion
relation E = E(k⃗), also the band structure, arises from the Schrödinger equation. Crys-
tals have the period a⃗ = nit⃗i. Thanks to the properties of reciprocal vectors (4.7), it
holds true (k⃗ +mj g⃗j) · nit⃗i = k⃗ · nit⃗i + mjni2πδij . Then, the exponential in (4.22) is
exp

(
i(k⃗ +mj g⃗j) · nit⃗i

)
= exp

(
k⃗ · nit⃗i

)
. We do not have to calculate E(k⃗) for all k⃗, but

only for those k⃗ from 1BZ.

4.5 Tight-binding model graphene

The exact solution of many-body problems is, with exceptions, impossible to find. That
is why we have to accept approximate methods. Neglecting the electron-electron interaction
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4. Dirac equation in graphene...................................
allows us to separate the total Hamiltonian Htot to the sum of single electron Hamiltonians
H, Htot =

∑
H. It suffices to focus on an electron in the potential of atom nuclei. In

graphene, carbon has four valence electrons. Three participate in the C-C bond. The fourth
is free and can move through the graphene layer. Thus, it is responsible for the electronic
properties of graphene. The position of carbon atoms in the graphene layer was discussed
in 4.2.

Imagine a single atom with only one free electron. The electron is described by a single

particle Hamiltonian H0 = P 2

2M + V0(x⃗). Let us suppose that we can solve this problem.
That means that we know H0ψA,B = EA,BψA,B . Indices A, B distinguish atoms in different
sublattices (different d⃗A or d⃗B), see 4.2. We would like to move on to the crystal, where
more atoms are arranged. They are located at the positions R⃗A,B = d⃗A,B +mit⃗i. All atoms
in graphene are identical carbon atoms. Therefore, they generate a potential V0 all alone.
But the center of V0 is shifted to R⃗A,B, that is V0(x⃗ − R⃗A,B). We know from the first
paragraph that we may investigate only one electron. Its position is x⃗ and its Hamiltonian

H = H0 + ∆V. (4.24)

We denoted the potential contribution from other nuclei as ∆V . Our intention is to solve
HΦ = EΦ using ψA,B, EA,B. We write the wavefunction of an electron Φ as a linear
combination of all atomic orbitals ψA, ψB centred at the position of nuclei, namely

Φ(x⃗) = 1√
2
CA
∑
R⃗A

a
R⃗A

ψA(x⃗− R⃗A) + 1√
2
CB

∑
R⃗B

b
R⃗B

ψB(x⃗− R⃗B) =

= CA
N1√

2

∑
R⃗A

eik⃗·R⃗AψA(x⃗− R⃗A) + CB
N1√

2

∑
R⃗B

eik⃗·R⃗BψB(x⃗− R⃗B) =

= CAϕA + CBϕB√
2

.

(4.25)

The reason why we have written aR⃗A
= N1eik⃗·R⃗A , bR⃗B

= N1eik⃗·R⃗B , lies in the Bloch theorem
4.4. Due to the translation symmetry in the crystal, ϕA must satisfy the Bloch theorem.
We can certainly rewrite the coefficient aR⃗A

as NR⃗A
eik⃗·R⃗A . The Bloch theorem implies

ϕA(x⃗−mit⃗i) =
∑
R⃗A

N
R⃗A

eik⃗·R⃗AψA(x⃗− R⃗A −mit⃗i) =

=
∑
R⃗A

N
R⃗A

eik⃗·R⃗AψA(x⃗− (R⃗A +mit⃗i))e−imi t⃗i ·⃗keimi t⃗i ·⃗k =

= e−imi t⃗i ·⃗k∑
r⃗A

Nr⃗A−mi t⃗i
ψA(x⃗− r⃗A) != e−imi t⃗i ·⃗kϕA(x⃗) =

= e−imi t⃗i ·⃗k∑
r⃗A

Nr⃗A
eik⃗·r⃗AψA(x⃗− r⃗A).

(4.26)

Where we just renamed the summation parameter r⃗A = R⃗A + nit⃗i, when passing from the
second line to the third one. On the other hand, the last line must hold due to the Bloch
theorem. Taking into account

〈
ψA(x⃗−mit⃗i)

∣∣∣ψA(x⃗− nit⃗i)
〉

≈ 0, nit⃗i ≠ mit⃗i, we obtain the
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orthonormality of {ψA(x⃗ − nit⃗i)}. This approximation is feasible when ψA reaches zero
quickly enough as the distance from nit⃗i increases. Comparing the coefficients term by
term we get N1 ≡ Nr⃗A

= Nr⃗A−ni t⃗i
, ∀n1,2,3 ∈ Z. All the constants Nr⃗A

are the same and we
denote them N1. Then ϕA is simplified to

ϕA(x) = N1
∑
R⃗A

eik⃗·R⃗AψA(x⃗− R⃗A). (4.27)

The constant N1 also plays another role, it is a normalization constant. We proceed likewise
for ϕB. Keep in mind that R⃗B = R⃗A + d⃗2, see 4.2. Thus, the normalization constant for
the B part is again N1.

The energy of the electron in the state Φ is

⟨Φ|H|Φ⟩
⟨Φ|Φ⟩

= E. (4.28)

We have to determine E and CA, CB defined in (4.25). This can be done by finding the
minimum of E(CA, CB). Substituting (4.25) to (4.28) and differentiation with respect to
CA, CB, we get ∑

j=A,B
⟨ϕl|H|ϕj⟩Cj = E

∑
j=A,B

⟨ϕl|ϕj⟩Cj , ∀l ∈ {A, B}

∑
j=A,B

HljCj = E
∑

j=A,B
SljCj ,

(4.29)

where we have defined matrix elements Hlj = ⟨ϕl|H|ϕj⟩ , Slj = ⟨ϕl|ϕj⟩. The equation can
be rewritten to a matrix form (H − ES)C⃗ = 0. The non-trivial solution can be found only
when

det(H − ES) = 0. (4.30)
We obtain energy E from this condition and then calculate Cj . It looks very simple,
unfortunately, every rose has its thorn. The hard thing is to determine matrix elements of
H, resp. S. Once again, we shall accept some approximations. Let us look at the matrix
element

⟨ϕA|H|ϕA⟩ = N 2
1
∑
R⃗′

A

∑
R⃗A

e−ik⃗·R⃗Aeik⃗·R⃗′
A

〈
ψA(x⃗− R⃗A)

∣∣∣H0 + ∆V
∣∣∣ψA(x⃗− R⃗′

A)
〉
. (4.31)

We know that ψA are the eigenfunctions of H0 with the eigenvalue EA, i.e. H0ψA = EAψA.
In addition, we make the following assumptions/approximations:..1.

〈
ψA(x⃗− R⃗A)

∣∣∣ψA(x⃗− R⃗′
A)
〉

= δR⃗A,R⃗
′
A

,..2.
〈
ψB(x⃗− R⃗B)

∣∣∣ψB(x⃗− R⃗′
B)
〉

= δR⃗B ,R⃗
′
B

,..3.
〈
ψB(x⃗− R⃗B)

∣∣∣ψA(x⃗− R⃗′
A)
〉

= 0,
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〈
ψA(x⃗− R⃗A)

∣∣∣∆V ∣∣∣ψA(x⃗− R⃗′
A)
〉

≈ 0 (will be commented later),..5. 1 = |ϕA|2 = N 2
1
∑
R⃗′

A

∑
R⃗A

e−ik⃗·R⃗Aeik⃗·R⃗′
A

〈
ψA(x⃗− R⃗A)

∣∣∣ψA(x⃗− R⃗′
A)
〉

We can set
〈
ψA(x⃗− R⃗A)

∣∣∣∆V ∣∣∣ψA(x⃗− R⃗′
A)
〉

≈ 0, because we expect the potential V0(x⃗−R⃗A)
and the wavefunction ψA(x⃗− R⃗A) localized at the position R⃗A. The overlap of ψA(x⃗− R⃗A′)
with ψA(x⃗ − R⃗A) is for R⃗A′ ̸= R⃗A approximately zero. When R⃗A′ = R⃗A, then nuclei
localized at some other positions than R⃗A have not significant influence in R⃗A, so ∆V ≈ 0
and

〈
ψA(x⃗− R⃗A)

∣∣∣∆V ∣∣∣ψA(x⃗− R⃗′
A)
〉

≈ 0. Then the matrix element HAA = ⟨ϕA|H|ϕA⟩ has
a fine form

HAA = EA. (4.32)
The matrix element HBB is obtained by exchanging A with B

HBB = EB = EA. (4.33)

The energies EA, EB cannot be diverse, because both sublattices A, B are made of the
same carbon atoms, thus EA = EB.

Because of HBA = HAB, it remains to calculate the off-diagonal element HAB which is

⟨ϕA|H|ϕB⟩ = N 2
1
∑
R⃗A

∑
R⃗B

e−ik⃗·R⃗Aeik⃗·R⃗B

〈
ψA(x⃗− R⃗A)

∣∣∣H0 + ∆V
∣∣∣ψB(x⃗− R⃗B)

〉
. (4.34)

ψB are eigenfunctions of H0 with the energy EB = EA. For graphene, it holds R⃗B = R⃗′
A+d⃗2.

We denoted the second summation index as R⃗′
A, otherwise there would be a mess in the

sums. The element HAB becomes

HAB = N 2
1
∑
R⃗A

∑
R⃗′

A

e−ik⃗·R⃗Aeik⃗·(R⃗′
A

+d⃗2)
〈
ψA(x⃗− R⃗A)

∣∣∣H∣∣∣ψB(x⃗− R⃗′
A − d⃗2)

〉
=

= N 2
1
∑
R⃗A

∑
R⃗′

A

e−ik⃗·R⃗Aeik⃗·(R⃗′
A

+d⃗2)
〈
ψA(x⃗− R⃗A)

∣∣∣EA + ∆V
∣∣∣ψB(x⃗− R⃗′

A − d⃗2)
〉

=

= N 2
1
∑
R⃗A

∑
R⃗′

A

e−ik⃗·R⃗Aeik⃗·(R⃗′
A

+d⃗2)
〈
ψA(x⃗− R⃗A)

∣∣∣∆V ∣∣∣ψB(x⃗− R⃗′
A − d⃗2)

〉
.

(4.35)

The problematic part is with ∆V . We cannot neglect it, because the atoms A and B are
closer to each other than the atoms A and A. Also, if we ignored it, we would get rid of
any interaction in the system and H = EAI. We choose one atom in the lattice. The most
significant interaction is with the nearest atoms. In the nearest neighbor approximation
(NN approximation), we assume that only the interaction with the nearest neighbors is
non-vanishing. When we look at Fig. 4.2, we see that every black point has three white
NNs and reversely. By fixing R⃗A, then R⃗′

A = R⃗A, R⃗′
A = R⃗A − t⃗1, R⃗′

A = R⃗A − t⃗2 are relevant
in the sum (4.35). For the NNs, we define

t =
〈
ψA(x⃗− R⃗A)

∣∣∣∆V ∣∣∣ψB(x⃗− R⃗′
A − d⃗2)

〉
∈ R, (4.36)
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so called hopping parameter t. Therefore, we get

HAB = N 2
1
∑
R⃗A

∑
R⃗′

A=NN

e−ik⃗·R⃗Aeik⃗·(R⃗′
A+d⃗2)t = eik⃗·d⃗2(1 + e−ik⃗·⃗t1 + e−ik⃗·⃗t2)t. (4.37)

Equipped with the matrix elements (4.32), (4.33) and (4.37), we can write H in the
following form

H =

 EA teik⃗·d⃗2(1 + e−ik⃗·⃗t1 + e−ik⃗·⃗t2)
te−ik⃗·d⃗2

(
1 + eik⃗·⃗t1 + eik⃗·⃗t2

)
EA

 . (4.38)

In (4.30), the overlapping matrix S is unknown yet

S =
(

⟨ϕA|ϕA⟩ ⟨ϕA|ϕB⟩
⟨ϕB|ϕA⟩ ⟨ϕB|ϕB⟩

)
. (4.39)

Analogously as for the matrix H, we rewrite R⃗′
A as R⃗′

A = R⃗A, R⃗′
A = R⃗A − t⃗1, R⃗′

A = R⃗A − t⃗2.
We impose 4.5,

0 =
〈
ψA(x⃗− R⃗A)

∣∣∣ψB(x⃗− R⃗′
A − d⃗2)

〉
. (4.40)

The overlapping matrix is

S =
(

1 0
0 1

)
. (4.41)

After exhausting evaluation of two matrices, we can finally solve (4.30)

0 = det

 EA − E teik⃗·d⃗2
[
1 + e−ik⃗·⃗t1 + e−ik⃗·⃗t2

]
te−ik⃗·d⃗2

[
1 + eik⃗·⃗t1 + eik⃗·⃗t2

]
EA − E

 . (4.42)

We remark that t⃗1 = a

2(3,
√

3) and t⃗2 = a

2(3,−
√

3). The constant a is the distance between
carbon atoms. We apply it to the determinant condition and we get

(EA − E)2 = t2
[
3 + 4cos

(3
2kxa

)
cos

(√
3

2 kya

)
+ 2cos

(√
3kya

)]
︸ ︷︷ ︸

f(k⃗)

. (4.43)

As can be seen from Fig. 4.4, the function f(k⃗) vanishes in six points k⃗1, . . . , k⃗6. When we
construct the 1BZ for the honeycomb lattice oriented as in Fig. 4.2, the vectors k⃗1, . . . , k⃗6
coincide with six corners of the 1BZ. They are called the Dirac points. Their property
is f(k⃗i) = 0, i ∈ 6̂, which means E = EA for (4.43). The function f(k⃗) is maximized
(all cosines equal 1), when k⃗ = 0⃗. Only the two out of six Dirac points in the 1BZ are
inequivalent. We denote them K, K ′ or K⃗, K⃗ ′. The remaining four points are equal to
K, K ′ up to a shift with reciprocal lattice vectors.
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kx
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Figure 4.4: The functions ±
√
f(k⃗) defined in (4.43), which are significant for the energy

dispersion E(k⃗).

Electrons with the energy E = EA have k⃗ near the Dirac point K⃗. Let us take k⃗ = K⃗+ q⃗,
where |q⃗| ≪

∣∣∣K⃗∣∣∣, and substitute it to (4.38)

H =

(
EA tei(K⃗+q⃗)·d⃗2 (1 + e−i(K⃗+q⃗)·⃗t1 + e−i(K⃗+q⃗)·⃗t2 )

te−i(K⃗+q⃗)·d⃗2 (1 + ei(K⃗+q⃗)·⃗t1 + ei(K⃗+q⃗)·⃗t2 ) EA

)
. (4.44)

We Taylor-expand the elements of Hamiltonian matrix. It will be performed in the vicinity
of K⃗ = 2π

3
√

3a
(
√

3, 1) in the variable q⃗. We keep only the first order in q⃗, then

H ≈

 EA −3at
2 ei

5π
6
(
qx − iqy

)
−3at

2 e−i 5π
6
(
qx + iqy

)
EA

 =

= EAI − 3at
2

(
0 ei

5π
6
(
qx − iqy

)
e−i 5π

6
(
qx + iqy

)
0

)
.

(4.45)

The qx,y is related to the momentum px,y as ℏqx,y = px,y. We work with ℏ = 1, so qx,y = px,y.
The principle of correspondence postulates px −→ −i∂x, py −→ −i∂y, so

H ≈ EAI − 3at
2

(
0 ei

5π
6 (−i∂x − ∂y)

e−i 5π
6 (−i∂x + ∂y) 0

)
. (4.46)

For simplicity, we fix vf = 3at
2 = 1. Index f denotes Fermi velocity - group velocity at

k⃗ = K⃗. We almost see the Dirac Hamiltonian in 2D HK = −i(σ1∂x + σ2∂y). The constant
term EAI only shifts the spectrum and will not affect the physics of electrons. The phase
factor ei

5π
6 can be removed by the unitary transformation U = e−i 5π

12 σ3 .
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After the corrections, the Hamiltonian for K in the TB approximation reads as

HK = −i (σ1∂x + σ2∂y) . (4.47)

If we started with K⃗ ′ = 2π
3
√

3a
(
√

3, − 1), the Hamiltonian would become

HK′ = −i (σ1∂x − σ2∂y) . (4.48)

The Hamiltonian, which takes into account both Dirac points is

H =
(
HK 0
0 HK′

)
. (4.49)

The eigenfunctions of H are (ΨAK , ΨBK , ΨAK′ ,ΨBK′)T . Sometimes it is more convenient to
consider different order of components as (ΨAK , ΨBK , ΨBK′ ,ΨAK′)T and the Hamiltonian

H =
(
HK 0
0 HK

)
=
(
HK 0
0 σ1HK′σ1

)
= −iσ0 ⊗ σ1∂x − iσ0 ⊗ σ2∂y. (4.50)

We will work with H and the order of components belonging to it.

4.6 Interaction in graphene

Until here, we considered only free electrons. We introduce interaction potentials. We
assume the potentials of one variable x. Later, it would be much more complicated to solve
the potentials of two variables x, y. The interaction will be mediated by 2 × 2 matrices
VK(x), VK′(x). Universally, they can be different for different Dirac points. We assume
only potentials preserving the block-diagonal form of Hamiltonians. Then, we generalize
the free particle Hamiltonian (4.50), so we construct

H =
(
HK + VK 0

0 HK + VK′

)
. (4.51)

The Hamiltonian diag(HK , HK) commutes with the time-reversal operator T̂ [15],

T̂ = −σ2 ⊗ σ2Ĉ, T̂ 2 = I, (4.52)

where Ĉ represents conjugation. We start with the potentials V (x)σ2 = VK(x) = VK′(x)
or V (x)σ2 = VK(x) = −VK′(x) where V (x) is real-valued. In a compact form as 4 × 4
matrices, they are

Ay(x) = V (x)σ0 ⊗ σ2, Ãy(x) = V (x)σ3 ⊗ σ2. (4.53)

It holds true T̂ Ay(x)T̂ † = −Ay(x), where T̂ is the time-reversal operator defined in (4.52).
Thus, it truly represents the vector potential Ay(x), which determines the magnetic field
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Bz(x) = ∂xAy(x). The matrix Ãy(x) does not change the sign, i.e. T̂ Ãy(x)T̂ † = Ãy(x) and
it represents a pseudo-vector (pseudo-magnetic) field. Let us define two more potentials

M(x) = V (x)σ3 ⊗ σ3, M̃(x) = V (x)σ0 ⊗ σ3. (4.54)

Only M(x) commutes with the time-reversal operator defined in (4.52). We consider it as
a physically realizable mass. On the other hand, M̃(x) has no physical meaning.

4.6.1 Pseudo-magnetic field

When we mechanically stretch a piece of graphene, we can change its electronic properties.
Devices created by strain engineering are based on this idea. For example, we could open the
gap or induce an effective pseudo-magnetic field inside the sample. Material deformations
are described by 3 × 3 symmetrical matrix uij = uji so called deformation tensor [14],

uij = 1
2 [∂iuj + ∂jui + (∂ih)(∂jh)] . (4.55)

There occur horizontal displacement u⃗ = (u1(x, y), u2(x, y)) and vertical displacement
h(x, y). For the perfect 2D plane geometry of graphene, h(x, y) = 0. Small deformations
in horizontal directions arise when little stress is applied to the material. Stress tensor σij
is related to uij for small deformations,

σij = λTr(u)δij + 2µuij . (4.56)

Lamé coefficients λ, µ are material constants. The diagonal elements of σij are normal stress
and the off-diagonal represents shear stress. The strain field uij creates a pseudo-vector
potential ⃗̃A(x, y) =

(
Ãx(x, y), Ãy(x, y)

)
and a scalar potential V (x, y) [5], [13],

Ãx = β

a
(u11 − u22), Ãy = −2β

a
u12, V = (u11 + u22)g. (4.57)

The distance between relaxed atoms in the lattice is a ≈ 0.142 nm. Factors β, g range
between β ≈ 2 − 3, g ≈ 0 − 20 eV [14]. The Hamiltonian for valley K is

HK = −i(σ1∂x + σ2∂y) + Ãxσ1 + Ãyσ2 + V σ0. (4.58)

Taking into account that deformations commute with the time-reversal operator, we can
write the Hamiltonian for both Dirac points as follows

H = −iσ0 ⊗ (σ1∂x + σ2∂y) + σ3 ⊗ (Ãxσ1 + Ãyσ2) + V σ0 ⊗ σ0. (4.59)

4.6.2 Staggered potential

Let us clarify the meaning of a mass term

M(x) = V (x)σ3 ⊗ σ3. (4.60)
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Considering bispinors Ψ = (ΨAK , ΨBK , ΨBK′ , ΨAK′)T , the potential V (x) interacts
oppositely in sublattices A and B. Until now, we have pursued only graphene. It consists
only of carbon atoms. Therefore, it is unusual for M(x) to act differently in sublattices
A, B. However, there exist materials which have a honeycomb lattice and each sublattice
is composed of chemically diverse atoms. In addition, their charge carriers obey the Dirac
equation, for example boron nitride from the group two-dimensional transition metal
dichalcogenides [26]. Combining an external field and chemically dissimilar atoms results
in a diverse potential in the sublattices - staggered potential. Its presence gives rise to the
opening of a band gap. Manipulation of the band gap is essential for electronics.
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Chapter 5

Nanoribbons

A long graphene strip with parallel edges is understood under the term nanoribbon. It
can be produced by cutting the sheet of graphene. We assume the ideal case where the
nanoribbon is infinitely long in one direction. There are various orientations of edges. As
can be seen in Fig. 5.1, there exist two basic types of edges. One of them is the armchair
(AC) edge. The other is called the zigzag (ZZ) edge.

Figure 5.1: The most significant edges in nanoribbons - zigzag and armchair.
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5.1 Armchair and zigzag boundary

The Hamiltonian H, which describes electrones in nanoribbons, is (4.50). The letters
A, B distinguish sublattices (see 4.2) and K, K ′ Dirac points. H for the free Dirac fermion
in the nanoribbon is

H = −iσ0 ⊗ (σ1∂x + σ2∂y), Ω =
{

(x, y) ∈ R2|x ∈ [0, L], y ∈ R
}

Ψ = (ΨK , ΨK′)T ≡ (ΨAK , ΨBK , ΨBK′ ,ΨAK′)T .
(5.1)

The nanoribbon has a finite length L in x direction. Due to [H, P̂y] = 0, ky is preserved
and the bispinor Ψ is also the eigenstate of P̂y = −i∂y. We have P̂yΨ = kyΨ. Separability
of (5.1) enables us to factorize variables x, y of Ψ(x,y) as

Ψ(x,y) = eikyyψ(x) = eikyy(ψAK(x), ψBK(x), ψBK′(x),ψAK′(x))T . (5.2)

After the separation of variables, the equation HΨ = EΨ converts to

Hkyψ =
(

−iσ1∂x + kyσ2 0
0 −iσ1∂x + kyσ2

)(
ψK
ψK′

)
= E

(
ψK
ψK′

)
. (5.3)

Thus, HΨ(x, y) = EΨ(x, y) is reduced to the one-dimensional (only variable x) Dirac
equation Hkyψ(x) = Eψ(x). A similar problem has already been solved in 3.2 where we
interchange m ↔ ky.

One edge of the nanoribbon is located at x = 0, the latter at x = L. We would like to
describe the boundary. On the boundary, there must hold

ψ(x)
∣∣∣∣
x=0

= M1 ψ(x)
∣∣∣∣
x=0

, ψ(x)
∣∣∣∣
x=L

= M2 ψ(x)
∣∣∣∣
x=L

. (5.4)

The matrices M1,2 are unitary and M2
1,2 = I. They should be chosen such that the normal

component to the boundary of the flux j⃗(ψ)(x) = ψ(x)†σ0 ⊗ σ⃗ψ(x) vanishes. For x = 0,
resp. x = L, the normal vector to the boundary is n⃗ = (−1,0,0), resp. n⃗ = (1,0,0). For
the normal component j(ψ)

x , it must hold ∀ψ, j(ψ)
x (0) = j(ψ)

x (L) = 0. It can be rewritten
as {M1,2, σ0 ⊗ σ1} = 0. The analysis of general b.c. was done in [15]. AC and ZZ are the
most frequent ones. The most general are zigzag. AC boundary conditions are equivalent
to the choice

M
(AC)
1 = σ1 ⊗ σ2, M

(AC)
2 = σ1eiφσ3 ⊗ σ2. (5.5)

The explicit expressions for matrices are

M
(AC)
1 = σ1 ⊗ σ2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ,

M
(AC)
2 = σ1eiφσ3 ⊗ σ2 =


0 0 0 −ie−iφ

0 0 ie−iφ 0
0 −ieiφ 0 0
ieiφ 0 0 0

 .
(5.6)

ctuthesis t1606152353 44



...................................... 5.2. Projector method

When an angle φ ∈
{

0, ± 2π
3

}
, it expresses the width of nanoribbon. As we can find in

[15], [16], φ = 0 ⇐⇒ L = 3pa0, φ = ±2π
3 ⇐⇒ L = (3p± 1)a0, where a0 is the primitive

vector length and p ∈ N. The phase π can simulate some additional effects at the boundary.
The ZZ edges have an interesting property. At the edge, the atoms of different sublattices
do not mix, see Fig. 5.1. One border is made up of only white/black circles. Naturally, we
would prescribe that the bispinor componets for a specific sublattice vanish at the boundary.
Mathematically, it can be expressed as [15]

M
(ZZ)
1 = −σ3 ⊗ σ3, M

(ZZ)
2 = σ3 ⊗ σ3. (5.7)

It is worth mentioning that
[
M

(AC)
1,2 , T̂

]
=
[
M

(ZZ)
1,2 , T̂

]
= 0.

5.2 Projector method

In [17], the authors discuss a method how to effectively find functions that satisfy a
specific b.c. We start with the observation that

[Hky , I + P̂xM1] = 0, M1 = M
(AC)
1 , M2 = M

(AC)
2 , (5.8)

see (5.3), where P̂x is the parity operator. Let us say that we know an arbitrary eigenstate
ψ(x) of Hky . We construct

ϕ(x) = (I + P̂xM1)ψ(x), Hkyψ(x) = Eψ(x). (5.9)

Thanks to (5.8), ϕ(x) is the eigenfunction of Hky . The operator I + P̂xM1 works as a
projector to the states that satisfy b.c. at x = 0. It can be shown in the following
way. We look at (I −M1)ϕ(x) = (I −M1)(Iψ(x) +M1ψ(−x)) = (I −M1)(ψ(x) − ψ(−x)).
When we evaluate the expression at x = 0, we come to (I −M1)ϕ(x)

∣∣∣∣
x=0

= 0. It implies

that the first equation in (5.4) is satisfied. Thus, we obtain the solution candidate ϕ(x).
However, ϕ(x) must also satisfy b.c. in the point L. After some manipulation, we get
0 = (I −M2)ϕ(x)

∣∣∣∣
x=L

= (1 −M2) [ψ(L) −M2M1ψ(−L)]. It tells us that whenever ψ has

the property M2ψ(L) = M1ψ(−L), then ϕ automatically satisfies b.c. We come to the
following implication[

Hkyψ(x) = Eψ(x) ∧
[
Hky , P̂xM1

]
= 0 ∧M2ψ(L) = M1ψ(−L)

]
=⇒[

ϕ(x) = (I + P̂xM1)ψ(x), Hkyϕ(x) = Eϕ(x) ∧ (I −M1)ϕ(0) = (I −M2)ϕ(L) = 0
]
.

(5.10)

For the eigenfunctions of Hky , we prescribe armchair b.c. M (AC)
1 = M1, M (AC)

2 = M2,
see (5.5). The projector method can be straightforwardly extended to H in (4.51). The
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prerequisite is [H, P̂xM (AC)

1 ] = 0. The part Hky = σ0 ⊗HK of H commutes trivially, see
(5.8). Additionally, there must be satisfied[(

VK(x) 0
0 VK′(x)

)
, P̂xM (AC)

1

]
= 0. (5.11)

We investigate the interactions (4.53), (4.54). One can check that the commutator (5.11)
is zero if and only if Ay(x) is an even function,[

Ay(x), P̂xM (AC)
1

]
= 0 ⇐⇒ Ay(x) = Ay(−x). (5.12)

When we do the same with Ã(x), we come to

[Ãy(x), P̂xM (AC)
1 ] = 0 ⇐⇒ Ãy(x) = −Ãy(−x). (5.13)

And the mass term must be even too,[
M(x), P̂xM (AC)

1

]
= 0 ⇐⇒ M(x) = M(−x). (5.14)

When Ay(x), Ãy(x) or M(x) satisfy (5.12), (5.13) or (5.14), respectively, the projector
method can be applied. It effectively transforms the task of satisfying b.c. at x = 0 and
x = L to the condition M2ψ(L) = M1ψ(−L), see (5.10).

5.3 Additional constant mass term in Dirac Hamiltonians

We begin with two Dirac Hamiltonians H0 = −iσ1∂x + V0(x)σ2, H = H0 +mσ3, m ∈ R.
As was shown in [27], H0 and H are from the spectral point of view in a close relationship.
They are spectrally isomorphic. The spectral isomorphism means that there exists a
real-valued function f such that λ ∈ σ(H0) ⇐⇒ E = f(λ) ∈ σ(H). Let us define two
component wavefunctions Ψ0 = (ψ0, ξ0)T , Ψ = (ψ, ξ)T . The spectral isomorphism of H0, H
can be seen from the decoupling of H0Ψ0 = λΨ0, λ ̸= 0,

(−∂2
x + V ′

0 + V 2
0 )ψ0 = λ2ψ0, ξ0 = i

−ψ′
0 + V0ψ0
λ

(5.15)

and HΨ = EΨ, E2 ̸= m2,

(−∂2
x + V ′

0 + V 2
0 )ψ = (E2 −m2)ψ, ξ = i

−ψ′ + V0ψ

E +m
. (5.16)

The functions ψ, ψ0 are the eigenfunctions for different eigenvalues of the Schrödinger
operator H2

0 = −∂2
x + V ′

0 + V 2
0 . By choice E2 = λ2 +m2, we can identify Ψ0 ≡ Ψ because

they have to solve the same equation. Afterwards, we rescale ξ0 and come to

λ

±|E| +m
ξ0 = ±i −ψ′

0 + V0ψ0√
λ2 +m2 ±m

, ξ = ±i −ψ′ + V0ψ√
λ2 +m2 ±m

. (5.17)
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The plus-minus sign stands for E ≷ 0. The eigenfunctions of H have changed the relative
coefficients of the components compared to those of H0. Supplementing H0 with a constant
mass term mσ3 does not spoil its solvability. Summarizing all the substantial formulas for
λ ̸= 0, we have

H0Ψ0 = λΨ0, HΨ = EΨ, Ψ =

1 0

0 |λ|
|E| ±m

Ψ0, E = ±
√
λ2 +m2. (5.18)

Zero modes (λ = 0) for H0 can be found in [27] as follows

Ψ0+ =
(

e
∫ x

0 V0(t) dt

0

)
, Ψ0− =

(
0

e−
∫ x

0 V0(t) dt

)
. (5.19)

The zero modes for H0 (λ = 0) are connected with E = ±m for H. With the aid of [27],
the eigenstates are

E = m : Ψ+ =

2C1mie
∫ x

0 V0(t) dt
∫ x

0
e−2

∫ s

0 V0(t) dt
ds+ C2e

∫ x

0 V0(t) dt

C1e−
∫ x

0 V0(t) dt



E = −m : Ψ− =

 C1e
∫ x

0 V0(t) dt

−2C1Mie−
∫ x

0 V0(t) dt
∫ x

0
e2
∫ s

0 V0(t) dt
ds+ C2e−

∫ x

0 V0(t) dt


(5.20)

Mapping between σ(H0) and f(σ(H0)) = σ(H) is provided by

f : ±|λ| 7→
{

±
√
λ2 +m2, λ ̸= 0

−m or m, λ = 0.
(5.21)

5.4 Strained nanoribbons

In 4.6.1 we show that a pseudo-magnetic field in the nanoribbon can be caused by the
strain field. It is defined in (4.57). Let us take the pseudo-vector potential Ãy(x) as follows

Ãy(x) = −2β
a
u12(x) = − β

aµ
σ12(x) = K0tgh (K0x) , x ∈ [0, L], (5.22)

where we used (4.56). Shear stress is a monotonous function with σ12(0) = 0. Returning
back to (4.55), we have to solve the differential equation for the unknown displacement
u⃗ = (u1(x), u2(x)). Assumption u1 ≈ 0 gives

−aK0
2β tgh (K0x) = 1

2∂xu2(x). (5.23)
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The displacement of carbon atoms on the y axis is

u2(x) = −a

β
ln(ch (K0x)) + C, C ∈ R. (5.24)

At (x, y) = (0, y), the nanoribbon is not affected by shear. Atoms with the coordinate
x = 0 remain at their original positions. Therefore, u2(0) = 0 ⇒ C ≡ 0. The result is that
the atoms are displaced from their original location x0, y0 to

x = x0 + u1 ≈ x0

y = y0 + u2 ≈ y0 − a

β
ln(ch (K0x0)). (5.25)

The strained nanoribbon is depicted in Fig. 5.2. In this way deformed nanoribbons, it is
induced an effective pseudo-magnetic field

Bz(x) = ∂xÃy(x) = K2
0

ch2(K0x)
. (5.26)

Several remarks are in order:

. Generally, the sign of the pseudo-magnetic field depends on the sign of −∂xu12(x), see
(5.22). In our case, the sign of the pseudo-magnetic field depends on the direction of
displacement. Moving atoms in the opposite direction than in Fig. 5.2, we can control
the sign of Bz(x)..The pseudo-magnetic field has an extreme value for x = 0. We considered the location
of the nanoribbon x ∈ [0, L]. The situation can be generalized to [−L, L], when we
obtain a pseudo-magnetic field focused in the center of the nanoribbon..The strength of the pseudo-magnetic field is impressive. For different a configuration
of the graphene sheet, authors of [5] state Bz ≈ 10 T. It could be expected that our
generated field would have similar strength.

5.5 Formal model of strained nanoribbons

The model of a strained nanoribbon will be described by the 2D Hamiltonian

Hky = −iσ0 ⊗ σ1∂x + kyσ0 ⊗ σ2 + σ3 ⊗ σ2K0tgh (K0x) . (5.27)

If we fix ky = 0, we obtain

H =
(
H2 0
0 σ1H2σ1

)
= −iσ0 ⊗ σ1∂x + σ3 ⊗ σ2K0tgh (K0x) , K0 = |m| > 0. (5.28)
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Figure 5.2: The AC nanoribbon under the influence of strain field (5.22). The width of
nanoribbon is 3a0

.= 0.737 nm. The arrows represent shear stress. Parameters are β = 3,
K0 = 6.708. The shaded region indicates translation symmetry in y.

H contains solvable H2 for ε = 0, which was discussed in (3.26). We look at the eigenvalue
equation Hψ = Eψ. This has been the content of 3.2.1, especially the formulas in (3.26).
The wavefunctions of H are

ψ =


ψ′
AK − imψBK

ψ′
BK −K0tgh (K0x)ψBK

ψ′
AK′ −K0tgh (K0x)ψAK′

ψ′
BK′ − imψAK′

 . (5.29)

Here, ψAK,AK′ and ψBK,BK′ are(
ψAK

ψBK

)
= C1Keikx

( 1
k

E +m

)
+ C2Ke−ikx

( 1

− k

E +m

)
, k =

√
E2 −m2 ∈ C,

(
ψBK′

ψAK′

)
= C1K′ eikx

( 1
k

E +m

)
+ C2K′ e−ikx

( 1

− k

E +m

)
, C1K(′) , C2K(′) ∈ C.

(5.30)

The missing states v2, ṽ2 for E = ε = 0 are (see (3.26) and (3.14))

v2 =
(

0, 1
ch (K0x) ,

1
ch (K0x) , 0

)T
, ṽ2 = (ch (K0x) , 0, 0, ch (K0x))T . (5.31)

The missing states for E = m are

v1 =


1

itgh (K0x)
itgh (K0x)

1

 , ṽ1 =


−imx

mxtgh (K0x) − 1
mxtgh (K0x) − 1

−imx

 . (5.32)

49 ctuthesis t1606152353



5. Nanoribbons .........................................
5.5.1 Strained armchair nanoribbon

Our purpose is to find a solution of (5.28), which will be compatible with the AC b.c.
given by M1 = M

(AC)
1 = σ1 ⊗σ2, M2 = M

(AC)
2 = σ1eiφσ3 ⊗σ2. The Hamiltonian H satisfies[

H, P̂xM1
]

= 0, because of (5.13). We can utilize the projector method 5.2. It converts
the boundary condition at x = 0 and x = L into the following single auxiliary condition

M1ψ(−L) = σ1 ⊗ σ2ψ(−L) = σ1eiφσ3 ⊗ σ2ψ(L) = M2ψ(L). (5.33)

This is a system of linear equations, the unknowns are C1K , C2K , C2K′ , C1K′ and E. We
remind that M1,2 are anti-diagonal. Thus, the components of ψ in (5.33) do not mix together.
For example, one equation of the system is ieiφ(1, 0, 0, 0)ψ(L) = i(1, 0, 0, 0)ψ(−L). In each
equation, there are either coefficients C1K , C2K or C2K′ , C1K′ but not all four together.
Thus the system of linear equations (5.33) takes the form

0 0B(φ) 0 0
0 0
0 0 B(−φ)



C1K
C2K
C1K′

C2K′

 = 0⃗. (5.34)

The block B(φ) has the form

B(φ) =

 Esin
(
kL+

φ

2

)
−Esin

(
kL−

φ

2

)
ksin

(
kL+

φ

2

)
+K0tgh (K0L) cos

(
kL+

φ

2

)
ksin

(
kL−

φ

2

)
+K0tgh (K0L) cos

(
kL−

φ

2

) .

(5.35)

The variables are k =
√
E2 −m2, K0 = |m|. The spectrum of (5.28) is obtained by

calculating the values of k where the determinant equals zero, which is the product
det{B(φ)} det{B(−φ)} = 0. Apparently, we seek for solutions of the following equation

det(B(±φ)) = E [k (cos (φ) − cos (2kL)) +K0tgh (K0L) sin (2kL)] != 0. (5.36)

We immediately see the solution E = 0 or E = ±m. Unfortunately, these are the missing
and degenerated states and they should be treated in a different way. Let us them leave
until later. Expression in (5.36) gives rise to energy levels that have to be found numerically.
Generally, we expect countable infinite solutions k ∈ R. This is due to two oscillating
functions, where one of them has a modulated amplitude by k. The coefficients CjK(′) can
be obtained from (5.35) and (5.34).

The states with E = ε = 0 are given by (5.31). It holds M1v2(L) = M2v2(−L) ⇐⇒
φ = 0 and M1ṽ2(L) = M2ṽ2(−L) ⇐⇒ φ = 0. Thus, E = 0 appears in the spectrum only
for φ = 0. The eigenstates for the missing energy E = m can be found in (5.32). From the
condition

M1 [C1v1(L) + C2ṽ1(L)] = M2 [C1v1(−L) + C2ṽ1(−L)] , C1,2 ∈ C, (5.37)

we get the relation between φ and parameters m, L

0 < mLtgh (K0L) = mLtgh (mL) = sin2
(
φ

2

)
. (5.38)
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The energy E = m appears for special setup of parameters m, L, φ when mLtgh (mL) ≤ 1,
φ ̸= 0. The chiral symmetry S = σ3 ⊗ σ3 of H = −SHS and [M1,2, S] = 0 dictate that
E = −m can be obtained via S(C1v1 + C2ṽ1). With this knowledge, we can determine ψ
that satisfies (5.33). The real eigenstates of H are (I + P̂xM1)ψ(x), see (5.9). The density
probability functions for different widths of AC nanoribbons are illustrated in Fig. 5.3. The
majority of the density probability for both A, B components is pushed closer to x = L or
x = 0 for low energies.
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| BK|2 = | BK ′|2; E = 4.198
| AK|2 = | AK ′|2; E = 9.408
| BK|2 = | BK ′|2; E = 9.408

(a) : φ = 0, L = 6a0, m = 4

L = 6a0x
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0.8
| AK|2 = | AK ′|2; E = 4.139
| BK|2 = | BK ′|2; E = 4.139
| AK|2 = | AK ′|2; E = 8.457
| BK|2 = | BK ′|2; E = 8.457

(b) : φ = π, L = 6a0, m = 4
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| AK|2 = | AK ′|2; E = 9.306
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(c) : φ = 2π
3 , L = 7a0, m = 4
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(d) : φ = −2π
3 , L = 5a0, m = 4

Figure 5.3: Density probability functions for metallic (a), semiconducting (c), (d) and phase
π (b) strained AC nanoribbons with the Hamiltonian (5.27) for ky = 0. The functions
ϕAK , ϕAK′ , ϕBK , ϕBK′ are components of Φ = (I+M1P̂x)ψ(x), where ψ(x) is given by (5.29).
The parameter a0 = 0.142

√
3 is the length of primitive translation vector.

5.5.2 Strained zigzag nanoribbon

We take again (5.28) and prescribe ZZ b.c. given by (5.7). They imply

ψAK(0) = 0, ψAK′(0) = 0, ψBK(L) = 0, ψBK′(L) = 0. (5.39)

We begin with zero modes given by (5.31). It is evident that they do not satisfy ZZ b.c.
and E = 0 does not appear in the spectrum. For states with E = m in (5.32), it is relevant
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only ṽ1 due to αv1AK(0) + ṽ1AK(0) = αv1AK(0) = 0 ⇐⇒ α = 0. Thus, energy E = ±m is
present in the spectrum when

ṽ1BK = ṽ1BK′ = 0 ⇐⇒ mLtgh (K0L) = 1. (5.40)

It always has only one solution, which is the intersection of 1
mL

= tgh (mL) , mL > 0.
So for a special setup of m, L, the energies ±m appear in σ(H). The bispinor ψ =
(ψAK , ψBK , ψBK′ , ψAK′)T can be found in (5.29). Substituting ψ to ZZ b.c. (5.39) gives
us

ik

(
1 − m

P

) (
C1K(′) + C2K(′)

)
= 0

ik2

P

(
C1K(′)eikL − C2K(′)e−ikL

)
− K0k

P
tgh (K0L)

(
C1K(′)eikL + C2K(′)e−ikL

)
= 0

(5.41)

From the first equation C1K = −C2K , C1K′ = −C2K′ . Substituting the constants to the
latter equation, we obtain a condition

k

K0
= tgh (K0L) tg (kL) , k2 = E2 −m2, K0 = m. (5.42)

The exact value of k must be calculated numerically. We have found the relation between
C1K(′) , C2K(′) below (5.41). The energy spectrum of H is based on (5.42). Rewriting the
complex exponentials to sines and cosines, the eigenfunctions ψ of Hψ = Eψ satisfying ZZ
b.c. are

ψ = N



−Esin (kx)

ikcos (kx) − iK0tgh (K0x) sin (kx)

ikcos (kx) − iK0tgh (K0x) sin (kx)

−Esin (kx)


. (5.43)

N is a normalization constant. The density probability for the components of ψ is shown
in Fig. 5.4. In contrast with Fig. 5.3, the density probability is centered more in the middle
of nanoribbons.

5.6 2D Dirac operator hidden in 1D Dirac operator

Let us suppose that we apply DT on the effective 1D operator Hk0y = −iσ1∂x+ σ2k0y
and create H. Generally, the interaction in the new transformed system will depend on
k0y, that is H = −iσ1∂x + σ2k0y + V (x, k0y). If we fix different value of the momentum ky
then Hky = −iσ1∂x + σ2ky + V (x, k0y). But it can be hard to find the eigenstates of Hky .
The knowledge of the eigenstates of Hk0y is not helpful in general.

Let us consider the 1D Dirac Hamiltonian H0 with an arbitrary mass term M(x)

H0 = −iσ0 ⊗ σ1∂x +M(x)σ3 ⊗ σ3. (5.44)
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Figure 5.4: Density probability functions for strained ZZ nanoribbons. The components
ψA, ψB , ψB′ , ψA′ belong to ψ given by (5.43). Parameter a0 = 0.142

√
3.

We show that the solvability of H0 gives the opportunity to explicitly find eigenstates of
the two-dimensional H,

H = −iσ0 ⊗ σ1∂x + kyσ0 ⊗ σ2 +M(x)σ3 ⊗ σ3. (5.45)

We assume that H0 is solvable. First, H0 can be converted to

U1H0U
†
1 =

(
σ0 0
0 σ1

)
H0

(
σ0 0
0 σ1

)
= −iσ0 ⊗ σ1∂x +M(x)σ0 ⊗ σ3. (5.46)

Another unitary transformation U2 = σ0 ⊗ e−iπ
4 σ1 brings U1H0U

†
1 to

H̃0 = U2U1H0U
†
1U

†
2 = −iσ0 ⊗ σ1∂x −M(x)σ0 ⊗ σ2. (5.47)

We add the additional term kyσ3 ⊗ σ3 to H̃0. So we construct

H̃ = H̃0 + kyσ3 ⊗ σ3 (5.48)

and use the fact that the addition of kyσ3 ⊗ σ3 does not spoil the solvability, see 5.3, for
arbitrary ky. In other words, we can find the eigenstates of H̃ from the eigenstates of H̃0.
In the last step, we return back to H0 in the following way

H = U †
1U

†
2H̃U2U1 = U †

1U
†
2H̃0U2U1 + kyU

†
1U

†
2σ3 ⊗ σ3U2U1 = H0 + kyσ0 ⊗ σ2. (5.49)

H0 can be transformed to H by a chain of unitary transformations and by addition of the
term kyσ3 ⊗ σ3. The eigenstates Ψ of H can be obtained from the eigenstates Ψ0 of H0 by
the operator U such that

Ψ = UΨ0, U = U†
1U

†
2DU2U1, D =



1 0 0 0

0 |λ|√
λ2 + k2

y ± ky
0 0

0 0 1 0

0 0 0 |λ|√
λ2 + k2

y ∓ ky


. (5.50)
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The most important thing is that we move from a 1D on to a 2D problem,

H = −iσ0 ⊗ (σ1∂x + σ2∂y) +M(x)σ3 ⊗ σ3,

H
(
eikyyΦ(x)

)
= EeikyyΦ(x).

(5.51)

By construction, the momentum ky is arbitrary. We realize that the final potential remains
the same for all ky.

5.7 AC nanoribbon in staggered field

Using the results of 5.6, we choose M(x) and construct H0 as

H0 =
(
H2 0
0 σ1H2σ1

)
= −iσ0 ⊗ σ1∂x +

(
m− K2

ε

m+ εch (2Kεx)

)
σ3 ⊗ σ3. (5.52)

The parameter m > 0 is arbitrary, ε ∈ (0, m) and x is from the finite interval x ∈ [0, L].
The solvability of H2 discussed in 3.2.2 is inherited by H0. So, we know the eigenstates Ψ0
of H0 and λ ∈ σ(H0). Extension of H0 to 2D is

H = −iσ0 ⊗ (σ1∂x + σ2∂y) +
(
m− K2

ε

m+ εch (2Kεx)

)
σ3 ⊗ σ3. (5.53)

The eigenfunctions of H are considered in a form eikyyΨ(x). The Hamiltonian describes a
model of nanoribbon in a staggered field, which is visualized in Fig. 5.5.

We will focus on the AC b.c. given by (5.5). We shall find the spectrum and the
eigenfunctions of H, i.e. we shall solve HeikyyΨ = EeikyyΨ. The potential M(x) is
an even function. It fits like a glove on (5.14). So, we can find σ(H) and Ψ through
the projector method mentioned in 5.2. The calculation is based on the fulfillment of
M1eikyyΨ(−L) = M2eikyyΨ(L), see (5.10). On both sides, the exponentials eikyy cancel
out. We do not have to forget that Ψ is transformed Ψ0. The relation between them is
(λ ∈ R \ {±ε, 0})

Ψ = UΨ0 = U †
1U

†
2DU2U1Ψ0. (5.54)

The matrix U can be found in (5.50). The matrix D brings dependence on ky of the
wavefunctions Ψ. Initially simple M1Ψ(−L) = M2Ψ(L) gets complicated a lot. It can be
driven to the following secular equation where the explicit dependence on ky cancels out,
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[
ξ1sin

(
kL− φ

2

)
+ ξ2cos

(
kL− φ

2

)] [
ξ3sin

(
kL+ φ

2

)
− ξcos

(
kL+ φ

2

)]
+

+
[
ξ3sin

(
kL− φ

2

)
− ξcos

(
kL− φ

2

)] [
ξ1sin

(
kL+ φ

2

)
+ ξ2cos

(
kL+ φ

2

)]
= 0, where

ξ = εKεsh (2KεL)
m+ εch (2KεL) , ξ1 = λ−m+ K2

ε

m+ εch (2KεL) ,

ξ2 = ξ
k

λ+m
, ξ3 = −k + kK2

ε

(λ+m)(m+ εch (2KεL)) .

(5.55)

Let us remind that k =
√
λ2 −m2, Kε =

√
m2 − ε2. Auxiliary energy λ is determined

by zeros of the secular equation. The energy spectrum of H is the set of energies
σ(H) =

{
E ∈ R|E2 = λ2 + k2

y, ky ∈ R
}

, where lambdas are solutions (5.55). For high

energies (λ ≫ m), λ is determined by sin
(
kL± φ

2

)
= 0. It can be seen from (5.55) where

we leave terms of dominant order λ.

Energies λ2 < m2 are not solutions of the secular equation (5.55), except λ = ±ε. This
fact is not evident from the first look at the secular equation. When we use the sine and
cosine formula for the sum of arguments and rewrite sin (kL) , cos (kL) , k =

√
λ2 −m2 as

ish (KL) , ch (KL) , k = i
√
m2 − λ2 = iK, the numerical solution of the secular equation

are only the missing energies λ = ±ε. However, λ = ±ε are not relevant, because the
missing states must be treated differently and we assumed λ ≠ ±ε. The missing states v1, v2
from (3.29) do not satisfy M1Uv1,2(−L) = M2Uv1,2(L). Finding of the second linearly
independent solutions ṽ1, ṽ2 through (3.14) is extremely complicated. So, we have not
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(a) : Nanoribbon
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(b) : The staggered potential (5.53)

Figure 5.5: Nanoribbon in staggered potential M(x) given by (5.53) for L = 1.5, m = 3, ε = 1.
The length in y is infinite and in x finite.
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archived the conclusive result whether ±ε is in σ(H). We took out also λ = 0. The
zero modes with λ = 0 of H0 are related to E = ±ky for H. We take the zero modes
Ψ± of (5.48) which have the form (5.20). We transform them by U †

1U
†
2 and we look at

M1U
†
1U

†
2Ψ±(−L) = M2U

†
1U

†
2Ψ±(L). The AC b.c. matrices (5.5) enforce that U †

1U
†
2Ψ± = 0⃗

for all angles φ. Thus, the energy E = ±ky cannot appear in σ(H).

Let us denote Φ(x) = (ΦA(x), ΦB(x), ΦB′(x), ΦA′(x)). The eigenfunctions eikyyΦ(x) of
H, which satisfy b.c., are constructed by the projection of eikyyΨ(x), see (5.10). They
are obtained from eikyyΦ = eikyy(I + P̂xM1)Ψ = eikyy(I + P̂xM1)UΨ0. Density probability
functions

∣∣ΦA(′)
∣∣2, ∣∣ΦB(′)

∣∣2 in high and low energy modes for different φ are plotted in
Fig. 5.7. We see that the differences between |ΦA|2 and |ΦB|2 almost disappear for high
energies. It can be said about K ′ valley components too. The reason is in (5.50) where
the B components are rescaled, but for high λ is D ∼ I. Also, the |ΦA|2 and |ΦA′ |2 are not
the same which is due to the opposite sign of ky in (5.50). Further, when densities for A
components have local minima, densities for B components reach local maxima.

Remarkably, the behavior of density probability functions strongly depends on the angle
φ. This is caused by the value of constants C1K(′) , C2K(′) . For angles φ ± 2π

3 , it is
C1K′ ≈ 0, C2K ≈ 0 and C2K′ ≫ C1K′ , C1K ≫ C2K . On the contrary, when φ ∈ {0, π}
then all CiK(′) ≫ 0. If we look at ψ in (3.27), only term eikx resp. e−ikx remains when
we set C2 = 0 resp. C1 = 0. From the construction of Ψ, it follows that Ψ has the form
Ψ = (f1(x)eikx, f2(x)eikx, f3(x)e−ikx, f4(x)e−ikx). Functions fi can be exactly defined,
nevertheless they do not contain oscillating functions eikx or e−ikx. The projector I+ PxM1
does

Φ = (I + PxM1)Ψ =


(f1(x) − if4(−x))eikx
(f2(x) + if3(−x))eikx

(f3(x) − if2(−x))e−ikx

(f4(x) + if1(−x))e−ikx

 . (5.56)

Now, it is evident that
∣∣ΦA(′)

∣∣2, ∣∣ΦB(′)
∣∣2 do not oscillate. This is the case of φ = ±2π

3 . In
contrast, when all the constants do not vanish, the complex exponentials set up sines and
cosines right in (3.27) and

∣∣ΦA(′)
∣∣2, ∣∣ΦB(′)

∣∣2 are oscillating functions. As was mentioned,
oscillations holds for φ ∈ {0, π}.

The model (5.53) and band structures are visualized in Fig. 5.5 and Fig. 5.6. From the
picture it is evident that ε ∈ (0, m) controls the inhomogeneity of potential. The band gaps
∆E are bigger for larger m. It is because of λ2 ≥ m2 =⇒ E2 = λ2 + k2

y ≥ m2 + k2
y ≥ m2.

So, the the lower limit of the conductive band is always greater than m and the upper
limit of the valence band is smaller than −m. The minimal band gap can be ∆E = 2m.
The width of the band gap is (∆E)met = 2m for metallic AC nanoribbons. It is due to
φ = 0 =⇒ E = ±

√
m2 + k2

y ∈ σ(H) =⇒ E = ±m ∈ σ(H). Semi-conducting nanoribbons

have the gap (∆E)semi > (∆E)met = 2m because φ = ±2π
3 =⇒ E = ±

√
m2 + k2

y /∈ σ(H)
=⇒ E = ±m /∈ σ(H). Analogical consideration holds true for φ = π. The increasing width
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of semi-conducting nanoribbons leads to decrease of ∆E and to higher number of lines in
band structure.

The domain of x was taken as x ∈ [0, L]. Supposing the x-domain as x ∈ [−L, L], we
can get the potential as an even function of x. It might be presumed that the electrons (or
their wavefunctions) would be localized in the area of smaller potential magnitude. Model
would resemble a graphene waveguide. Because of the high velocity of electrons in graphene,
plasmons can travel further distances than in standard mediums such as metal-dielectric.
Also, it is possible to design graphene optical fibers [28]. Recently, we became aware of
the experiment [29] where the authors shined with a laser on graphene sheet in staggered
potential. The laser emitted light at the angular frequency ω0. Lit graphene then radiated
at angular frequency 2ω0 (the second harmonic frequency), which could find application in
non-linear optics. It is worth mentioning that the experiment was carried out under drastic
conditions when the sample was cooled by liquid helium.
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Figure 5.6: Band structures for metallic (a), (b) and semiconducting (c), (d) AC nanoribbons
placed in staggered potential (5.53). The band gap in (c), (d) is wider than in (a), (b). For all
figures, parameters are a0 = 0.142

√
3, m = 4, ε = 2.
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Figure 5.7: The comparison of density probability functions |ΦA|2, |ΦB |2, |ΦA′ |2, |ΦB′ |2 for
different angles φ in low (left) and high (right) energy modes. The function Φ is the solution
of HeikyyΦ(x) =

√
λ2 + k2

yeikyyΦ(x) where H is given by (5.53). In the figures, we change λ
which is the solution of (5.55) Parameters a0 = 0.142

√
3, ky = 3, m = 4, ε = 2 are the same for

all figures.
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Chapter 6

Conclusions

Last of all, let us summarize the results and outline the possible future improvement. In
the first part of the thesis, we reviewed the DT for Schrödinger operators and its connection
with SUSY QM. The transformation was formally applied to the models of infinite and
finite square wells. We were able to find the spectrum in dependence on prescribed b.c.
Special attention was paid to the bound states. In section 2.4 we derive general condition
(2.48) for solutions of ISW, such that their DT complies with prescribed b.c. Further, the
results of 2.5, 2.5.1, 2.5.2 indicate that both regular and singular potentials can be obtained
via DT from the finite square well (FSW) model. The comparison of spectra in Fig. 2.5
revealed that FSW has more energy levels than both regularized wells. The potential sec2

in Fig. 2.3 could be employed as a better approximation of FSW with the relatively simple
form of eigenfunctions, see (2.73), (2.79). The potential csc2 in Fig. 2.4 can be restricted
to r = x ∈ [0,+ ∞) and used in spherical symmetric problems for the s states. Its form is
similar to the potentials used in a chemical bonding, see [30]. With the proper setup of
parameters, csc2 can approximate the chemical bonding potentials.

The second part of the thesis started with the review of DT for 1D Dirac operator. We
applied it to the model of 1D Dirac free particle which provides us with two examples
(3.26) and (3.30). In the first, an inhomogeneous parity-odd vector potential was presented,
while in the latter occurred inhomogeneous parity-even mass term. Next, we summarized
basic definition and terms for the description of crystals. We reviewed the tight-binding
model of graphene. We observed that the electrons in graphene with momentum near the
Dirac points are effectively described by 2D Dirac equation, see (4.50). In section 4.6 we
presented some of the effective interactions which can have impact on the Dirac fermions
in graphene.

In the last part, we turned our sight to graphene nanoribbons. We took the Hamiltonian
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6. Conclusions .........................................
(5.27) and interpreted it as a model of Dirac fermions in strained nanoribbon. We utilized
the pre-prepared model from the section 3.2.1, especially the part (3.26). We figured out
the energies of bound states for prescribed AC and ZZ b.c. We observed that strain had
had different effects on AC and ZZ nanoribbons. Interestingly, the electrons in AC strained
nanoribbons could be found with higher probability at the edges of nanoribbons, see Fig. 5.3.
On the contrary, electrons in ZZ strained nanoribbons are located more in the middle of
the nanoribbons, see Fig. 5.4. We identified the vector potential with the pseudo-magnetic
field (5.26). The discussed 1D model can be understood as a subsystem of 2D setting
with translation invariance. Our model has fixed value of longitudial momentum ky = 0.
Since the momentum Py is coupled with Ãy and thus with ky too, the DT will not help us
in searching for the solution with arbitrary ky. Extension of the results to genuinely 2D
system is to be addressed in the future.

For the specific class of interactions, it is possible to assemble the 2D Dirac Hamiltonian
from the 1D Dirac operator, see 5.6. It describes electrons in graphene without restrictions
on ky. We built a model of AC nanoribbon in the staggered field 5.7 which was based on
the 1D solvable example 3.2.2. The band structures E = E(ky) of the model are depicted
in Fig. 5.6. The results show that the application of an inhomogeneous staggered potential
opens the band gap. Its width is smaller for the metallic AC nanoribbons than for the
semiconducting ones. We revealed completely different behavior of density probability
functions of electrons in various kinds of AC staggered nanoribbons, see Fig. 5.7 . The model
might find application in graphene electronics where the gap manipulations are important.
But for that purpose the current available results on the topic should be analyzed carefully.
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