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Introduction

The problem of detecting and characterizing relations between data has been investigated by sci-
entists for decades. Plenty of methods to detect linear relations exist, be it using statistical methods,
machine learning or heuristics methods. However, discovering non-linear relations is a much harder
task. Kernel-based methods provide an efficient way to tackle this problem, since they are able to iden-
tify non-linear relations using the Hilbert spaces of an infinite dimension and the so-called kernel trick.
This trick, along with the basic properties of kernels and kernel matrices will be described in the first
chapter. One of the biggest advantages of kernel-based methods is their generality, meaning that the
input data can have a different form than vectorial. As a result, kernel methods are commonly used with
sound or image data. However, this particular property is not a subject of this work, as the input in all of
the chapters is assumed to have a vectorial form.

One of the sought-after relations between data is their similarity to each other. The goal is to divide
homogenous data into groups with members being more similar to each other than to members of the
other groups. This problem is called clustering and it is also one of the most widely used techniques in
exploratory data analysis [1]. The formal definition of the clustering problem together with the metrics
for evaluating the quality of the solution will be presented in Chapter 2.

The clustering task can be seen as an optimization task in Zn. One of the algorithms used for this
optimization is known as K-Means. The kernel version of this algorithm along with its properties will
be described in Chapter 3. Heuristics methods can also be used as an optimization tool for this problem.
Chapter 3 further introduces the random descent algorithm as another way to solve this optimization
task. Unfortunately, this algorithm suffers from getting trapped at the local minima. To address this
issue, mutations originating from the field of genetic algorithms and also described in Chapter 3, can be
used. Moreover, their behaviour and influence on the performace of the random descent will be examined
in Chapter 5.

To accompany this work, a Python library PyKern was created. It provides the neccessary tools for
manipulating kernels, kernel matrices, mutations and is able to perform both K-Means and the random
descent optimization for the clustering problem. The implementation details about the library and its
structure are described in Chapter 7. Afterwards, this library will be used to perform a series of tests
to determine the optimal parameter for one of the most widely used kernels, the Gaussian kernel. The
results of these tests and the details can be found in Chapter 4.
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Chapter 1

Kernel Methods

This chapter gives an introduction to the main principles of kernel methods and their benefits. Ker-
nel methods are very often used for detecting non-linear relations among data. Each kernel algorithm
consists of a given kernel function that transforms input data into a matrix form and of a pattern seeking
algorithm that uses this matrix as an input [12]. Thanks to this property, kernel algorithms are very flex-
ible and can work well with different data types, such as vectors, strings, trees etc. All the data that can
be transformed into a matrix form by a kernel function can be used as an input. The theory in this work
will be built using vectorial input data.

Definition 1 (Pattern set). Let a pattern be defined as any member of the input space x ∈ Rp, where p is
the number of features. Consider a set of n patterns denoted by S = {xk ∈ R

p : k = 1, . . . , n}. This set is
called a pattern set.

Definition 2 (Hilbert space). A Hilbert spaceH is an inner product space with the additional properties
of being separable and complete. Completeness means that every Cauchy sequence in H converges in
H and separability means thatH contains a countable, dense subset.

Definition 3 (Kernel function). Given a non-linear mapping ϕ from the input space Rp to the feature
space H , i.e ϕ : Rp → H , a kernel is a function κ defined for all x, z ∈ Rp as κ(x, z) = 〈ϕ(x), ϕ(z)〉 ∈ R
[12].

The feature space H is a real Hilbert space. Kernel functions are usually created in a way to repre-
sent similarity between data. They transform the finite-dimensional input data into a higher dimensional
space, possibly with infinite dimensions. Feature spaces with infinite dimensions are often used. In the
case of the infinite dimensions, and usually in kernel algorithms, we cannot calculate the exact coordi-
nates in this new feature space. However, it is still possible to calculate the between-point distances and
many useful properties, thanks to the so called ’kernel trick’(more information provided in the following
section). Thanks to this transformation, kernel algorithms are able to detect even non-linear relations, as
it should always be possible to obtain linearly separable groups in higher dimensions.

x1 ϕ1

ϕ2x2

Figure 1.1: Linear separability inH

9



Definition 4 (Kernel Matrix). Given the pattern set S = {x1, . . . , xn}, the associated kernel matrix is
defined as K =

(
κ(xi, x j)

)n

i, j=1
∈ Rn×n

The matrix K is the Gram matrix with a kernel function κ used to evaluate the inner product, therefore
K is symmetric, positive semidefinite and KT = K. This kernel matrix acts as an input data type in all
kernel-based algorithms. The number of useful properties of the input dataset in a kernel-defined feature
space can be obtained from it.

1.1 Properties in feature space

As mentioned earlier, due to the infinity of the feature space H , the exact coordinates of objects in
this space cannot be obtained. However, much useful information, such as the norm of a vector in the
feature space and the distances between vectors can be computed just with the knowledge of κ or K.
The norm of feature vectors can be computed as

‖ϕ(x)‖2 =

√
‖ϕ(x)‖2 =

√
〈ϕ(x), ϕ(x)〉 =

√
κ(x, x), (1.1)

and the distance between two vectors x and z in the feature space is

‖ϕ(x) − ϕ(z)‖2 = 〈ϕ(x) − ϕ(z), ϕ(x) − ϕ(z)〉 =

= 〈ϕ(x), ϕ(x)〉 − 2 〈ϕ(x), ϕ(z)〉 + 〈ϕ(z), ϕ(z)〉 =

= κ(x, x) − 2κ(x, z) + κ(z, z).

(1.2)

This property is very important for all kernel clustering algorithms, as it allows to measure distances
between objects in the feature space implicitly, without the knowledge of their coordinates. It is usu-
ally referred to as the ’kernel trick’. Given the pattern set S and its associated kernel matrix K, these
properties can also be rewritten using this matrix as

‖ϕ(xi)‖2 =
√
κ(xi, xi) =

√
kii, (1.3)

‖ϕ(xi) − ϕ(x j)‖2 = κ(xi, xi) − 2κ(xi, x j) + κ(x j, x j) = kii − 2ki j + k j j. (1.4)

1.2 Polynomial kernel functions

One of the standard kernel functions is a polynomial kernel function [4]. The polynomial kernel of
the degree d is defined for every x and z from the input space Rp as

κ(x, z) = (xTz + c)d. (1.5)

Both the degree d and the offset c ≥ 0 are user-defined parameters. If c = 0, the kernel is called
homogenous. The degree d controls the flexibility of the kernel. Low-degree mappings are usually used,
so d is often equal to 2 or 3. The dimension of the feature spaceH for polynomial kernel is [4]

dH =

(
n + d

d

)
.
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1.3 Gaussian kernel functions

Perhaps the most popular kernel functions that can be found in all literature([12], [2], [3]) and are
widely used are the Gaussian kernels defined as

κ(x, z) = exp
(
−
‖x − z‖2

2σ2

)
. (1.6)

The width parameter σ > 0 controls the flexibility of the kernel in the same way as d controls the
flexibility of the polynomial kernel. For too small σ, the kernel matrix becomes very close to the identity
matrix. Otherwise, when the σ value is too large, the kernel function is reduced to constant. Note that
κ(x, x) = 1, therefore the norm of all vectors in H is equal to one. It can also be seen that the distance
between two points using the Gaussian kernel is never higher than

√
2. All kernel algorithms using this

kernel are very dependent on the choice of the σ parameter. This kernel is also known as the radial basis
function (RBF) kernel. The corresponding Hilbert spaceH has the dimension dH = +∞ [12].
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Chapter 2

Clustering Problem

2.1 Clustering problem

Definition 5 (Labelled pattern set). Let S be a pattern set with n patterns. Let the label vector be y ∈ Nn
0.

A labelled pattern set is the pair (S, y) . A pattern set without y is called an unlabelled pattern set.

Given the unlabelled pattern set S = {x1, x2, ...xn} and a given number of clusters k ∈ Z, k ≥ 2,
the ideal partition of data into dissimilar groups (clusters) {C1, . . . ,Ck} is sought. Sometimes, k is not
specified beforehand, in which case the optimal k must first be determined. The partition of the data
can be represented by the partition vector p = {1, . . . , k}n, where p j is the cluster index of x j. For
measuring the quality of the clustering, the total heterogeneity of a given partition is calculated as the
sum of heterogeneity in each class

J =

k∑
i=1

n∑
j=1
p j=i

‖x j − µi‖
2, (2.1)

where µi is the centre of mass (centroid) of the i-th class. The goal of clustering algorithms is to minimize
this criterion. In this work, the elements of the real label vector y will be called classes and the groups
obtained from clustering algorithms will be called clusters or hidden clusters.

2.2 Comparing clustering quality

Many different metrics exist for comparing clustering quality. Throughout this work, three main
metrics will be used. Those are contingency tables, accuracy and Adjusted Rand Index.

Definition 6 (Contingency table). Let n be the number of patterns, N the number of output classes and
H ≥ N the number of hidden clusters obtained from a clustering algorithm. The matrix C ∈ NN×H

0 is
called the contingency table (confusion matrix) when

ci j =

n∑
k=1

I(xk ∈ Ci, xk ∈ H j), (2.2)

where I denotes the indicator function.
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class H1 H2 ... HH sum
C1 c11 c12 ... c1H c1•
C2 c21 c22 c2H c2•
. . . . . .
. . . . . .
CN cN1 cN2 ... cNH cN•

sum c•1 c•2 ... c•H n

Table 2.1: Contingency table

Definition 7 (Reduced contingency table). Reduced contingency table is a contingency table T ∈ NN×N
0 ,

which satisfies tii ≥ ti j for every i, j ∈ {0, . . . ,N}

Definition 8 (Accuracy). Let T ∈ NN×N
0 be a reduced contingency table and n the sum of all its elements.

The accuracy is defined as

acc =
1
n

N∑
i=1

tii. (2.3)

Any contingency table C ∈ NN×H
0 can be converted to T ∈ NN×N

0 using the relationship between the
output classes and the hidden clusters which maximizes the accuracy. The hidden clusterH j belongs to
the output class Ci if ci j ≥ ck j for all k = 1, . . . ,N. The union of all the hidden clusters belonging to Ci

then forms the final cluster Fi. The relationship between the output classes and final clusters then forms
the reduced table T as

ti j =

m∑
k=1

I(xk ∈ Ci, xk ∈ F j). (2.4)

The accuracy is maximized when the row maximas ci j are unique. This process is illustrated in Figure
2.1.

H1 H2 H3 H4

C1 1 100 20 5
C2 10 3 13 10
C3 1 10 8 11

→

H2 H1 ∪H3 H4

C1 100 21 5
C2 3 23 10
C3 10 9 11

→

F1 F2 F3

C1 100 21 5
C2 3 23 10
C3 10 9 11

Figure 2.1: The transformation of a contingency table into a reduced contingency table

This process can be used even for N = H, where it serves to permute rows so that the accuracy is
maximized. It allows accuracy to be used not only for classification, but also for clustering problems.

Another clustering evaluation metric, Rand Index, was defined in [9]. It is based on combinatorial
approach, as it examines the number of pairs of patterns that are clustered similarly in the output classes
and calculated clusters. The Rand index can be interpreted as the probability of a pair of points being
clustered similarly (together or separately) in two clusterings C and D. The Rand index lies between 0
and 1. When the two clusterings agree perfectly, the value is 1 [10].

Definition 9 (Rand Index). Let C and D be two different clusterings of the same pattern set. The Rand
index is defined as

RI =
S 11 + S 00

S 11 + S 00 + S 01 + S 01
=

S 11 + S 00(
n
2

) , (2.5)
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where S 11 is the number of pairs clustered together in both C andD, S 00 is the number of pairs clustered
separately in C and D, S 01 is the number of pairs clustered together in C, but not in D and S 01 is the
number of pairs clustered together inD, but not in C.

The main problem of the Rand index is the fact that its expected value for two random clusterings
does not take a constant value (for example zero). The adjusted Rand index, that was published in [7],
fixes this issue.

Definition 10 (Adjusted Rand Index). The general form of the Adjusted Rand Index is

ARI =
RI − E[RI]

max(RI) − E[RI]
(2.6)

Its expected value for two random clusterings is equal to zero. After calculating E[RI] and max(RI)
([7][14]), the exact calculation for obtaining ARI using the contingency table is

ARI =

∑
i, j

(
ci j
2

)
−

[∑
i

(
ci•
2

)∑
j

(
c• j
2

)]
/
(

n
2

)
1
2

[∑
i

(
ci•
2

)
+

∑
j

(
c• j
2

)]
−

∑
i

(
ci•
2

)∑
j

(
c• j
2

)
/
(

n
2

) . (2.7)
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Chapter 3

Clustering as Optimization Task

The clustering problem can be interpreted as an optimization problem with the goal of minimizing
J in (2.1). Many heuristic approaches can be used to achieve this. The two approaches that will be
discussed in this chapter are random descent with mutations and a greedy algorithm called K-Means.

3.1 Clustering problem in the feature space

In the feature space, (2.1) can be written in the form

Jf =

k∑
i=1

n∑
j=1
p j=i

‖ϕ(xk) − ϕ(µi)‖
2 (3.1)

Both ϕ(xk) and ϕ(µi) have infinite length, so they cannot be used in computations directly. Moreover, the
input variable of ϕ(µi), µi, does not even have to exist in the original space. Given the pattern set S with
n elements, its centroid (mass) in the feature space is defined as

µs =
1
n

n∑
i=1

ϕ(xi) (3.2)

Its norm can be computed using kernels in the original space[12] as

‖µs‖
2
2 =

〈
1
n

n∑
i=1

ϕ(xi),
1
n

n∑
j=1

ϕ(x j)
〉

=
1
n2

n∑
i=1

n∑
j=1

〈
ϕ(xi), ϕ(x j)

〉
=

1
n2

n∑
i, j=1

κ(xi, x j) (3.3)

with the result being equal to the average of all kernel matrix elements.
Using equations (3.2) and (1.1), the distance of any vector from a given centroid can be expressed as

‖ϕ(xl) − ϕ(µi)‖
2 =

= 〈ϕ(xl), ϕ(xl)〉 +
〈
ϕ(µi), ϕ(µi)

〉
− 2

〈
ϕ(xl), ϕ(µi)

〉
=

= κ(xl, xl) +
1
n2

n∑
i, j=1

κ(xi, x j) −
2
n

n∑
i=1

κ(xl, xi) =

= kll +
1
n2

n∑
i, j=1

ki j −
2
n

n∑
i=1

kli.

(3.4)
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It can be seen that all the necessary information to compute Jf can be obtained using only the kernel
matrix. This is why the kernel matrix plays an important role as the central data structure in the imple-
mentation of kernel algorithms.

3.2 Kernel K-Means

K-Means is a widely used method for clustering data [12]. It can be used on pattern sets in both the
original and the feature space. It is a simple algorithm with the idea to minimize the sum of distances
between vectors and their associated cluster centroids. In the beginning, partition vector p ∈ Nn is
initialized randomly. Afterwards, two steps are repeated until convergence - representation step and
allocation step [3]. In the representation step, the distances of every pattern to all cluster centroids are
computed. The K-Means in original space directly computes the coordinates of all centroids and then
computes the distances. In the feature space, the kernel trick (1.2) is used and the distances are obtained
directly using (3.4). In the allocation step, the partition vector is updated so that each pattern belongs to
the its closest centroid from previous step:

pnew
i = argmin

j∈1,...,k
‖ϕ(xi) − ϕ(µ j)‖ (3.5)

The algorithm ends when the partition vector no longer changes. A convergence to global minima is not
guaranteed [12]. As it usually takes only a few iterations to converge, the common practice is to run the
clustering multiple times and the best result is then chosen by comparing the respective values of Jf .

3.3 Optimization in Zn

The problem of assigning a cluster to each pattern from a pattern vector of length n can be interpreted
as an optimization problem in Zn. In general, the search space of the optimization problem in Zn is
defined as D = {x ∈ Zn : a ≤ x ≤ b}. In this case ai = 1 and bi = H for each i ∈ {1, . . . , n}, where H is
the desired number of clusters. The criterion (3.1) can be looked upon as function f : D → R. The goal
is to find x ∈ D, so that f (x) = minx∈D f (x).

Definition 11 (Ring neighbourhood inD). Ring neighbourhood of point x ∈ D is defined as

R(x, r, p) = {y ∈ D : 0 < ‖x − y‖p ≤ r},

where r is the neighbourhood size and p signifies the type of the norm used.

3.4 Random Descent Heuristics

Random descent is a heuristic method for minimizing (3.1) that works iteratively. It starts with an
initial solution and then tries to improve it by making random changes. For each solution, it evaluates
(3.1) and if its value is lower than before, this solution is considered the new best solution. This heuristic
stops when no further improvement can be made.
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Its implementation in Python can look like:

def r e p e a t e d _ r a n d o m _ d e s c e n t ( max_ i t e r , n )
# m a x _ i t e r . . . maximum i t e r a t i o n s o f RD, n . . . l e n g t h o f s o l u t i o n

x _ b e s t = np . random . r a n d i n t ( 0 , max_value , n ) # f i r s t random v e c t o r
f _ b e s t = o b j e c t i v e _ f u n c t i o n ( x _ b e s t )
f o r _ in range ( m a x _ i t e r ) :

x_new = x _ b e s t . copy ( )
n e w _ s o l u t i o n ( x_new ) # any f u n c t i o n which g e n e r a t e s d i f f e r e n t x
f_new = o b j e c t i v e _ f u n c t i o n ( x_new )
i f f_new < f _ b e s t : # compare new v a l u e a g a i n s t o l d

x _ b e s t = x_new # s e t new x _ b e s t and f _ b e s t
f _ b e s t = f_new

# e l s e g e n e r a t e d i f f e r e n t x
re turn x_bes t , f _ b e s t

The main problem of this method is that it often gets trapped at the local minima. To limit this, certain
methods, known as mutations, are used for generating the new solutions.

Algorithm: Random Descent

x0 ∼ U(D), k = 0 ;
while neccessary do

xtrial = MUT AT ION(x) ;
if f (xtrial) < f (xk) then

xk+1 = xtrial;
else

xk+1 = xk;
end

end

3.5 Mutation Operator

Mutation operators are often used in the field of genetic algorithms. Mutations are random changes
that are made to a solution to generate a new solution. They help the algorithms tackle the problem of
the local minima and also in the exploration of the whole search space. Mutations can take many forms,
such as swapping two elements, moving all elements or permutating a part of the vector[8]. The three
mutations used in this work are the Hamming mutation, the wild mutation and the Pareto mutation.

3.5.1 Hamming mutation

The Hamming mutation is a mutation operator that is commonly used in problems involving binary
strings. It has one parameter nmut, which represents the number of positions of the vector which values
should be changed. The new solution is generated as

xtrial ∼ U(R(xk, r,H)), (3.6)
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where U is the uniform distribution and

‖x − y‖H =

n∑
i=1

I(xi , yi) (3.7)

is the number of positions where vectors x and y differ, also known as the Hamming distance.
Example Python code:

def mut_hamming ( n_mut , x ) : # nmut . . . number o f changes t o be made
n = l e n ( x )
f o r _ in range ( 0 , nmut ) :

i = random . r a n d i n t ( 0 , n−1) # random i n d e x t o mu t a t e
o l d _ v a l u e = x [ i ]
new_value = o l d _ v a l u e
whi le new_value == o l d _ v a l u e :

# choose a new v a l u e t h a t i s d i f f e r e n t from t h e o l d v a l u e
new_value = ( o l d _ v a l u e + random . r a n d i n t ( 0 , b ) ) % b

x [ i ] = new_value # m od i f y e l e m e n t on t h e chosen i n d e x

3.5.2 Wild mutation

Another type of mutation is the wild mutation. It has a certain probability pwild of mutating the
vector x wildly, that is shuffling all its elements randomly. In others cases, it just changes one element by
substracting or adding 1 to it. That process itself is called the r-star mutation. New solution is generated
as

xtrial

∼ U(R(xk, 1, 1)) with probability 1 − pwild

∼ U(D) with probability pwild
(3.8)

The common choice is to set pwild = c for some constant c.
The example of wild mutation in Python:

def mu ta t e ( pwild , x ) : # p w i l d . . . p r o b a b i l i t y o f w i l d m u t a t i o n
i f random . un i fo rm ( 0 , 1 )<pwi ld : # g e n e r a t e random number

# m u t a t e w i l d l y
x = np . random . r a n d i n t ( a , b , l e n ( x ) )

e l s e :
# m od i f y one e l e m e n t o f x by add ing / s u b s t r a c t i n g
x = m u t _ r s t a r ( x , a , b )

3.5.3 Pareto mutation

The central principle of the Pareto mutation is to modify a candidate solution by adding a random
vector to it. The Pareto mutation takes two parameters, temperature T > 0 and shape α ∈ (0, 2) from the
Pareto distribution.
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Figure 3.1: Probability density function
of Pareto distribution

Definition 12 (Pareto distibution). Pareto distribution with
shape parameter α can be defined by its cumulative density
function

F(d) =

1 − d−α for d ≥ 1
0 for d < 1.

(3.9)

or by its probability density function as

f(d) =

αd−(α+1) for d ≥ 1
0 for d < 1.

(3.10)

The random variable from Pareto distribution is generated using a formula:

1 − F(d) = rnd,where rnd ∼ U([0, 1]), (3.11)

meaning that d = rnd−1/α − 1.

Algorithm: Obtaining new solution using Pareto mutation with α and T

Generate rnd ∼ U([0, 1]) ;
d = rnd−1/α -1;
Generate η ∼ N(0, I);
Get random direction ξ ∈ Rn, ‖ξ‖ = 1 as ξ = η/‖η‖;
y = x + Tdξ ;
xtrial = P(y), where P is a perturbation function.

Example implementation in Python can look like this:

def m u t _ p a r e t o ( x , t_mut , a l p h a ) : # t_mut m u t a t i o n s t e p s i z e
# a lpha c o n t r o l s t h e shape o f Par e t o d i s t r i b u t i o n
n = l e n ( x )
#random v e c t o r o f l e n g t h n from N( 0 , 1 ) d i s t r i b u t i o n :
e t a = np . random . normal ( 0 , 1 , n )
#random number from U( 0 , 1 ) r a i s e d t o −1 / a lpha
d e l t a = random . un i fo rm ( 0 , 1 ) ^( −1 / a l p h a )
# c r e a t e random v e c t o r x i from Par e t o d i s t r i b u t i o n
x i = e t a / np . norm ( e t a ) * d e l t a
# c r e a t e new x by add ing t_mut * x i , add 1 / 2 f o r good r o un d i n g
x t r i a l = np . f l o o r ( x + t_mut * x i + 1 / 2 )
# p e r t u r b a t e t h e s o l u t i o n
xnew = p e r t u r b a t i o n ( x t r i a l )
i f xnew == x : # i f t h e v e c t o r d i d n t change
# randomly add or s u b s t r a c t 1 t o one o f i t s e l e m e n t s

xnew = m u t _ r s t a r ( x )
re turn xnew

19



Chapter 4

Optimal Width Parameter in Gaussian
Kernel

This chapter aims to answer the question of the optimal choice of a width parameter for clustering
using the Gaussian kernel. All the clustering results using this kernel are highly dependent on the choice
of the width parameter σ. Currently, no method for determining its optimal value exists. Because of this,
the optimal σ value usually has to be obtained empirically. In this chapter, the optimal σ will be obtained
empirically for 21 aritificial pattern sets and compared to σref obtained by method from [2].

4.1 Dataset Description

For the purpose of this chapter, a group of 21 pattern sets, called Clustering excercises, was used. It is
a public, artificially created dataset and can be found online. Popular python library scikit-learn uses this
type of pattern sets for comparing their different clustering algorithms [11]. Each of these pattern sets
contains 2D vectorial patterns with various lengths. Only the first thousand patterns of each set were used,
as more patterns did not prove to have a significant effect on the results and just raised the computational
complexity. All of these pattern sets were standardized to zero expected value and standard deviation
equal to one. The number of classes ranged from two to five. The original Clustering excercises contains
30 different pattern sets. Homogenous pattern sets, pattern sets with only one class and pattern sets with
more than ten classes were omitted.

4.2 Optimization of Width Parameter

All the clusterings were performed using kernel K-Means from Section 3.2 with the Gaussian kernel
and a known number of classes. All the tests were run using the Python kernel library PyKern, which
was created as a part of this work. Because all of the pattern sets were standardized, the optimal σ was
expected to have a lower value, close to one. All the clusterings were tested for 15 different values of σ,
ranging from 0.1 to 2.512. with higher resolution in lower values. K-Means was run for each σ value
25 times and the best result was selected. The best parameter σopt was then chosen by comparing the
respective values of the Adjusted Rand Index of all the different σ values.

Based on experimental evidence, ref. [2] suggests the use of values between 0.1 and 0.9 quantiles of
‖xl − xk‖

2, k , l as the optimal value of the width parameter in the Gaussian kernel. The mean of 0.1 and
0.9 quantiles was used as σ2

ref and in the end, the results obtained using σref and σopt were compared.
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This work had two main goals. The first one was to find out how close on average the referential
sigma parameter σref would be to the best sigma value σopt found in the experiments. Another investi-
gated aspect was whether any global trends could be identified for all the pattern sets, or if the choice of
the optimal width parameter is pattern set dependent.

4.3 Results

The dataset can be visually divided into three smaller datasets, based on the clustering difficulty.
Pattern sets that are linearly separable in two dimensions can be considered easy and those that cannot
can be further divided into medium and hard, depending on the complexity of their clusters:

Easy - basic1, basic2, basic3, basic4, basic5, lines, network, sparse, triangle
Medium - chrome, dart, spiral2, network, outliers, spirals, lines2
Hard - dart2, face, isolation, un, un2, wave

The overall results for all pattern sets can be seen in the Appendix section. The results obtained
from Figure 4.1 show that the best average Adjusted Rand Index (ARI) score of 0.81 was obtained for a
value of σ = 0.501. The best σ values were 0.501, 0.631 and 0.398, for easy, medium and hard pattern
sets, respectively. Additionally, Figure 4.2 shows that the highest ARI scores were achieved for the easy
dataset and the lowest for the hard one, as expected.

Figure 4.1: Average ARI for all pattern sets Figure 4.2: Average ARI by datasets

Both easy and medium datasets achieved very good clustering results. The development of ARI
score for all the easy and medium pattern sets can be seen in Figures 4.3 and 4.4. It can be seen that ARI
values did not change as much for different values of σ. For the easy dataset, the results suggest that the
optimization of the width parameter is not that important, perhaps because the pattern sets are linearly
separable in the original space. However, the optimization still managed to improve the results. The less
linear the clusters are, the more tuning of σ is necessary. For example the dart pattern set showed a great
jump from ARI equal to zero to ARI equal to one for a well-chosen σ. It shows that kernel K-means has
no problem with clustering linearly separable pattern sets, but that it can also generalize and find even
non-linear patterns when the width parameter is chosen carefully. The best resulting clusterings of the
easy and medium pattern sets are shown in Figures 4.5 and 4.6. The average ARI of those clusterings is
0.91 for the easy dataset and 0.98 for the medium one.
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Figure 4.3: ARI scores for easy pattern sets Figure 4.4: ARI scores for medium pattern sets

(a) basic1(0.970) (b) basic2(0.519) (c) basic3(1.000) (d) basic4(1.000)

(e) basic5(1.000) (f) lines(0.720) (g) sparse(1.000) (h) network(0.991) (i) triangle(1.000)

Figure 4.5: Best results for easy pattern sets with given ARI score
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(a) chrome(0.985) (b) dart(1.000) (c) lines2(0.911)

(d) outliers(0.996) (e) spiral2(0.996) (f) spirals(1.000)

Figure 4.6: Best results for medium pattern sets with given ARI score

The results for the hard dataset were not as good as for the medium and easy ones. The development
of the ARI scores is depicted in Figure 4.7. The average ARI for the best clusterings is 0.68, which
is approximately 0.2 less than for the easy and medium. Compared to the previous two datasets, the
importance of choosing the right σ can be clearly seen in this case. The best clusterings can be seen in
Figure 4.8.

Figure 4.7: ARI scores for hard pattern sets

(a) dart2(0.450) (b) face(0.919) (c) isolation(0.721)

(d) un(0.614) (e) un2(0.725) (f) wave(0.661)

Figure 4.8: Best results for hard pattern sets with
given ARI score

23



Table 4.1: Table with best ARI results for σopt and σref

Pattern set N σopt ARIopt σref ARIref

basic1 4 0.501 0.970 2.169 0.785
basic2 5 0.794 0.519 2.159 0.390
basic3 3 0.501 1.000 2.139 0.460
basic4 3 0.398 1.000 2.272 0.987
basic5 3 0.251 1.000 2.040 1.000
chrome 4 0.398 0.985 2.246 0.904
dart 2 0.631 1.000 2.195 0.007
dart2 4 0.251 0.450 2.185 0.202
face 4 0.316 0.919 2.181 0.162
isolation 3 0.794 0.721 2.263 0.505
lines 5 0.501 0.720 2.101 0.644
lines2 5 0.398 0.911 2.139 0.635
network 5 0.631 0.991 2.141 0.991
outliers 3 1.995 0.996 2.196 0.996
sparse 3 0.398 1.000 2.106 1.000
spiral2 2 0.316 0.996 2.147 0.854
spirals 3 0.398 1.000 2.183 0.751
triangle 3 1.000 1.000 2.079 1.000
un 2 0.501 0.614 2.185 0.440
un2 3 0.631 0.725 2.172 0.709
wave 4 0.398 0.661 2.160 0.428

4.4 Optimal Union of Hidden Classes

The optimal union of hidden classes is a clustering-based technique used for solving classification
problems with multiple classes. A general classification task distributes n patterns into N classes, but
the optimal union method is based on preprocessing, which places them into H hidden classes [6]. To
construct these hidden classes, various clustering techniques can be used. In this case, the output of the
kernel K-Means is used to construct them. The main idea is that the hidden classes can capture more
subtle differences between the data points. Afterwards, the H hidden classes are merged into N classes.
This merging process can be constructed in a way that maximizes the clustering/classification accuracy.
It has been described in Section 2.2 in more detail.

The optimal union was performed on all datasets with ARI score lower than 0.9. Those pattern sets
were basic2, dart2, isolation, lines, un, un2 and wave, most of them from the hard dataset. All of them
were clustered into 2N, 3N, . . . classes, until either ARI equal to one was achieved or until it was not
possible to obtain that many clusters from K-Means. In some cases, none of 100 K-Means iterations was
able to create the clustering into a higher number of clusters. That was caused by one of the problems
of the K-Means algorithm from section 3.2. The problem being that it can unintentionally merge two
or more clusters together while assigning the patterns to their closest centroid. This happens more often
with higher number of clusters. Possible fixes could involve adding more patterns or introducing a
normalization constraint.
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Table 4.2: Table with the best ARI results for different number of hidden classes

Pattern set N
H

N 2N 3N 4N 5N 6N 7N

basic2 5 0.519 0.55 0.758 - - - -
dart2 4 0.450 0.413 0.471 0.806 0.674 0.855 0.837
isolation 3 0.721 0.966 0.978 0.985 0.978 - -
lines 5 0.720 0.812 0.819 - - - -
un 2 0.614 0.617 0.689 1.000 1.000 - -
un2 3 0.725 0.668 0.728 0.863 0.960 - -
wave 4 0.661 0.827 0.990 - - - -

X means that it was not possible to divide this pattern set into that many clusters.

H = 6 (ARI 0.668) H = 9 (ARI 0.728) H = 12 (ARI 0.863) H = 15 (ARI 0.960)

Figure 4.9: Pattern set un2 before and after optimal union
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Chapter 5

Influence of Mutations on the Performance
of Random Descent

The goal of this chapter is to compare the performance of the random descent with different mutations
from Section 3.5, and compare it with the performance of the standard K-Means from Section 3.2.

5.1 Pattern Set Description

Three pattern sets from [5] were chosen for this test. The first was the wine pattern set with 178
patterns and 13 different features, such as alcohol content, magnesium content and hue. There were three
output classes. The second was the breast cancer pattern set with 683 patterns, 9 features and 2 output
classes (malignant and benign). It has features such as cell nucleus radius, perimeter and texture. The
third was the iris pattern set, which has 150 patterns, 4 features and 3 possible classes. All three pattern
sets were standardized before the tests and optimal sigma was chosen empirically. All of this information
is depicted in the following table.

Table 5.1: Pattern set properties

pattern set patterns features classes σ

wine 178 13 3 5.17
breast 683 9 2 4.71

iris 150 4 3 4.80

5.2 Testing Strategy

All of the three mutations defined in Section 3.5 were tested, each of them with a few different
settings of parameters. Each configuration was run for 100 attempts and each attempt was capped at
100000 iterations of the Descent algorithm from Section 3.4. The optimal number of clusters Nopt was
chosen by comparing the results obtained for different values and choosing the best accuracy accopt.
The optimal union from Section 2.2 was performed afterwards. The convergence accuracy accthresh
was defined for each pattern set by lowering the accopt accordingly. The measured metrics were the
percentage of convergence cases and the average number of iterations in these cases.
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Table 5.2: Clustering tasks

Task Nopt accopt acckmeans accthresh

wine 3 0.994 0.971 0.95
breast 4 0.980 0.972 0.95

iris 6 0.966 0.933 0.90

5.3 Testing Results

5.3.1 Wine pattern set

The results for the wine pattern set can be seen in Table 5.3.

Table 5.3: Mutation Comparison on Wine Dataset

mutation parameters reliability[%] ne (mean ± sd)

Hamming
1 100 1347 ± 214
2 100 9156 ± 3277
3 100 26917 ± 12413

Pareto

0.1,0.5 12 1328 ± 130
0.1,1 12 1002 ± 123
0.1,1.5 8 1168 ± 211
0.3,0.5 26 2087 ± 740
0.3,1 25 1452 ± 248
0.3,1.5 12 1317 ± 520
0.5,0.5 19 1984 ± 381
0.5,1 15 1496 ± 347
0.5,1.5 15 1356 ± 384

wild

0.02 14 1297 ± 520
0.05 11 1451 ± 563
0.1 19 1546 ± 465
0.2 14 2004 ± 918

The only mutation that achieved 100% reliability was the Hamming mutation. It successfully con-
verged for all three parameters, with the number of iterations increasing as the parameter value increased.
This convergence behavior can be seen in Figure 5.1(a). This figure shows accuracy development for all
the Hamming mutations. The development is calculated as the average across all 100 runs. By contrast,
both the Pareto and wild mutations converged only in 10 to 25% cases. However, the number of iterations
needed to converge remained low, averaging around 1000 to 2000 iterations.
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(a) Average development of accuracy for different
Hamming mutations

(b) Average development of accuracy for one candidate
of every mutation

Figure 5.1: Development of accuracy for Wine pattern set

Figure 5.1(b) depicts the accuracy for all the successful runs for one candidate of each mutation. The
accuracy is averaged by all the successful runs for each mutation. The accuracy development is very
similar, with the Pareto mutation having the lowest values in general. Besides the Hamming mutation,
the second most successful mutation was the Pareto mutation with parameters [0.1, 1]. It converged in
26 out of 100 cases. Figure 5.2 shows the development of accuracy for 6 random runs of the Pareto
mutation that failed to converge. It can be observed that the accuracy stops improving as it nears 5000 to
10000 iterations, meaning that the lack of iterations is not the reason for failing to converge.

Figure 5.2: Six random unsucessful runs of Pareto(0.1, 1) mutation
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5.3.2 Breast pattern set

All the methods achieved a 100% convergency rate on this pattern set. The maximal accuracy was
98% for the Hamming mutation with parameter 3. However, the difference in accuracies between dif-
ferent mutations was not very significant. The mutation with the least iterations to achieve convergency
was the wild mutation with parameters equal to 0.02. The results can be seen in Table 5.4.

Table 5.4: Mutation Comparison on the Breast Dataset

mutation parameters reliability[%] ne (mean ± sd)

Hamming
1 100 1283 ± 85
2 100 3003 ± 347
3 100 2826 ± 344

Pareto

0.1,0.5 100 1524 ± 135
0.1,1 100 1326 ± 47
0.1,1.5 100 1310 ± 57
0.3,0.5 100 1724 ± 173
0.3,1 100 1329 ± 69
0.3,1.5 100 1336 ± 76
0.5,0.5 100 1871 ± 122
0.5,1 100 1428 ± 67
0.5,1.5 100 1351 ± 109

wild

0.02 100 1033 ± 93
0.05 100 1333 ± 90
0.1 100 1422 ± 99
0.2 100 1596 ± 117

The optimization criterion for the random descent with mutation is the criterion Jf defined using
Equation (3.1) . Figure 5.3 shows the development of Jf and accuracy for one run of the Hamming
mutation with parameter 1. It shows that the accuracy consistently improves as Jf decreases its value.

Figure 5.3: Development of accuracy and J f for one run of wild(0.02) mutation
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5.3.3 Iris pattern set

There were problems with achieving convergency for this pattern set as the only mutation that was
able to achieve convergency was the Hamming mutation. Its results can be seen in Table 5.5.

Table 5.5: Hamming mutation Comparison on the Iris Dataset

mutation parameters reliability[%] ne (mean ± sd)

Hamming
1 23 2121 ± 814
2 23 9925 ± 7972
3 31 28481 ± 17204

To further analyze the behaviour of different mutations and the resons of failure, the density plots
and accuracy development plots can be used. The goal is to determine whether the lack of convergence
was due to an insufficient number of iterations or if the accuracy reached its limit before achieving
convergency. Analyzing the density estimates of maximum accuracy for each mutation will help identify
any distinct patterns or trends. Additionally, plotting the accuracy development of random samples will
provide a closer look at the progression of the accuracy over iterations.

(a) wild mutations (b) Pareto mutations

Figure 5.4: Density estimates of maximum accuracy

Figure 5.4 displays the kernel density estimates of maximum accuracy for all wild and Pareto muta-
tions.

To produce smooth probability density estimates, kernel density estimation was used. Its basic prin-
ciple is explained in [13]. The estimated densities were obtained using Python library sklearn. All the
wild mutations show very similar trends, usually achieving accuracy between 70 and 85%. In contrast,
the Pareto mutations show different behaviours according to different parameters used. Specifically, the
Pareto mutation with parameters [0.1, 0.5] stands out as having the biggest peaks in the highest accuracy
values. However, it can be seen that the probability of overcoming 90% accuracy is very low for both of
the mutations.
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(a) wild (0.2) mutation (b) Pareto (0.1, 0.5) mutation

Figure 5.5: Accuracy development of 10 random samples

To see whether the lack of iterations was the reason of failing to converge, accuracy development of
random samples from each mutation can be used. Figure 5.5 depicts 10 random samples from the wild
[0.2] mutation and the Pareto [0.1, 0.5] mutation. This figure shows that both the mutations follow a
similar trend of rapid attainment of peak accuracy, at approximately 1500 iterations. It can also be seen
that the wild mutation produces lower values of accuracy in general.

(a) Density estimates of maximum accuracy for different
Hamming mutations

(b) Accuracy development of 6 random samples from
wild (3) mutation

Figure 5.6: Behaviour of Hamming mutation for Iris pattern set

Figures 5.6(a) and 5.6(b) both suggest very different qualities for the Hamming mutation. Notably,
the density estimates have peaks in higher values, approaching 90%. The peak value gradually increases
with an increasing parameter of the Hamming mutation. Contrary to the wild and Pareto mutations, the
Hamming mutation also exhibits a contrasting behavior in terms of achieving the peak accuracy. As
observed in Figure 5.6(b), the accuracy of the Hamming mutation experiences a rapid increase, reaching
the value of 70%. However, unlike the previous mutations, the Hamming mutation continues to gradually
improve its accuracy over the next 20,000 iterations and beyond.
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Figure 5.7: Density estimates for candidates from each mutation

In conclusion, Figure 5.7 provides a comparison of the best candidates from each mutation type.
It is apparent that the Hamming mutation outperforms the other mutations for this pattern set. The
comparison also shows that the Pareto mutation performed better that the wild one. The Hamming
mutation demonstrates the highest consistency among the three, indicating that the optimization process
avoids local minima, and all the runs yield similar results, as indicated by Figure 5.7. Additionally, it
also achieves the highest average maximum accuracy. The only disadvantage of the Hamming mutation
is that the number of iterations required to obtain these results is slightly higher, averaging at 28481
iterations for the Hamming mutation with parameter 3.
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Chapter 6

Implementation of Kernel Library in
Python

As a part of this work, a Python library for working with kernel algorithms, called KernPy, was
created. It can be found online: https://github.com/xdxdhh/kernel_lib. It serves as a base library that
provides different kernel functions, kernel matrices and kernel versions of standard machine learning
algorithms for classification and clustering tasks. The whole library was written using Python 3.9 and it
currently consists of four modules.

Modules kernel.py and kernel_matrix.py are the building blocks of all, seeing as they cover ba-
sic utilities for working with kernel algorithms, such as different kernels and kernel matrix class. The
third module is cluster.py, which should serve as the main envelope for kernel clustering algorithms. It
currently supports two clustering methods, the first one being Kernel K-Means from Section 3.2 and
the second one being Random Descent with optimization criterion in the feature space, as described in
Section 3.4. In the future, the KernPy library could be expanded to have more clustering methods. A
classification module could also be added easily. The last module, mutation.py, implements different
mutation operators, which are used in Random Descent optimization and other heuristics algorithms. All
of the modules will be described in more detail in the following sections.

Figure 6.1: The structure of KernPy library
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6.1 Kernel module

This module should contain implementations of different kernel functions for different data types.
Currently supported kernels are the Gaussian (RBF) kernel and the polynomial kernel, as defined in
1.3 and 1.2. Each kernel has an eval() function, which evaluates its value for any two given vectors.
Parameters for each kernel should be passed as an array, even if the kernel only has one parameter. The
main reason for this is the unified callability of all the kernels. All kernel classes should inherit from the
kernel_base class, which defines the required methods.

class kernel_base()
The base kernel class which defines all kernel classes.

Parameters:

None

Methods:

kernel.eval(x, y)
Evaluate kernel function on two given vectors x and y.
kernel.optimal_params(X)
Estimate optimal kernel parameters for given data from data matrix X.

class gauss_kernel(params)
Class which implements the gaussian kernel defined as κ(x, y) = exp

(
−
‖x−y‖2

2σ2

)
.

Parameters:

params : array containing σ parameter

Methods:

gauss_kernel.eval(x, y)
Evaluate Gaussian kernel function on vectors x and y.
gauss_kernel.optimal_params(X)
Estimate optimal σ parameter from data matrix X.
The optimal σ2 is estimated as an average of 0.1 and 0.9 quantiles of ‖xl − xk‖

2, k , l.

class polynom_kernel(params)
Class which implements the polynomial kernel defined as κ(x, y) = (xTy + c)d.

Parameters:

params : array containing degree parameter d and shift parameter c
If only the degree is given, c is assumed as zero.

Methods:

polynom_kernel.eval(x, y)
Evaluate polynomial kernel function on vectors x and y.
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6.2 Kernel Matrix module

class Kernel_matrix(X, kernel, params)
This class should serve as an input for all kernel algorithms from KernLib. It implements basic utilities
such as access operators and string representiation.

Attributes:

n : dimension of kernel matrix
shape : 2-dimensional array [n,n]
K : contents of kernel matrix, stored as numpy 2-dimensional array

Parameters:

X : array-like, matrix of input data, with one record stored in one row
kernel : name of kernel from kernel module that will be used to create the matrix

{"gauss", "polynomial", "identity"}
"identity" kernel can be used to create kernel matrix from already existing square matrix

params : array of parameters for the given kernel(e.g σ for Gaussian)
value "auto" can be used to estimate the parameters using kernel.optimal_params() method

Methods:

Kernel_matrix.submatrix(index_list)
Obtain submatrix while leaving only rows and columns from index list.
Resulting matrix is a kernel matrix for those rows from input data X that are on those indexes.

35



6.3 Mutation module

This module contains different mutations that can be used in heuristic methods in clustering tasks.
Currently, there are three available mutations: Pareto, Hamming and Wild. Each specialized mutation
class must inherit from the base mutation class and thus implement the mutate method.

class Mutation()
The base mutation class which defines all mutation classes. It also implements a perturbation function
and the random_point() function which can be shared by all the mutations. This class should not be used
itself, its child classes should be used instead.

Parameters:

None

Methods:

mutation.mutate(x):
Change the value of vector x by applying mutation to it.
Note that this function creates the new x inplace.
mutation.perturbation(x, a, b)
Change the value of vector x by applying perturbation to it.
The boundaries of the perturbation are defined using a for lower bound, b for upper bound.
mutation.random_point(a, b)
Generate random point between a and b.
mutation.mut_rstar()
Small helper mutation that can be used by other mutations.
Changes one element by adding 1 to it or substracting 1 from it.

class Hamming_mutation(a, b, params)
This class implements the Hamming mutation, which creates new solution by changing nmut elements of
a given vector.

Parameters:

a : lower bound for the Hamming mutation
b : upper bound for the Hamming mutation
params : array containing nmut parameter that defines the number of positions to be changed when

mutating

Methods:

Hamming_mutation.mutate(x)
Change the value of x using the Hamming mutation.

class Wild_mutation(a, b, params)
This class implements the wild mutation, which has certain probability pwild of shuffling all the elements
of x randomly. In other cases, it just changes one element by adding 1 to it or substracting 1 from it.

Parameters:
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a : lower bound for the wild mutation
b : upper bound for the wild mutation
params : array containing pwild parameter that defines the probability of random shuffle

Methods:

mutation.mutate()
Change the value of x using Wild mutation.

class Pareto_mutation(a, b, params)
This class implements the Pareto mutation, which modifies the input vector by adding a random vector
to it. For obtaining the random vector, the Pareto distribution is used. This mutation has two arguments,
the temperature T > 0 and the shape of the Pareto distribution α ∈ (0, 2).

Parameters:

a : lower bound for the Pareto mutation
b : upper bound for the Pareto mutation
params : array containing T parameter and α parameter

Methods:

mutation.mutate()
Change the value of x using the Pareto mutation.
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6.4 Clustering module

This module should encompass different kernel clustering methods. Currently, there are two imple-
mented ways to obtain clustering of the given data. The first one uses standard K-means algorithm as
described in 3.2. The second one uses the Random Descent from 3.4 together with mutations.

class KMeans(n_clusters, max_iter, verbose)
K Means clustering class.

Parameters:

n_clusters : number of desired clusters
max_iter : maximal number of k-means iterations

Methods:

kmeans.fit_one(K)
Perform one run of k-means algortihm.
kmeans.fit(K, n)
Perform n runs of k-means algortihm and choose the best one.

The best one is chosen as the one with the smallest value of the objective function.
kmeans.obj_function(K, partition)
Return the value of the objective function for a given partition of the data.

class Heuristics(n_clusters, max_iter, verbose)
Class which implements the random descent heuristic method in order to obtain the best solution.

Attributes:

mutation_dict : dictionary of all the possible mutations to be used from mutation.py module

Parameters:

n_clusters : number of desired clusters
max_iter : maximal number of random descent iterations

Methods:

heuristics.fit(K, mutation, params = "default")
Perform Random descent with a given mutation.
Params should be the parameters of the mutation.
If "default" is used, the default mutation params will be used.
Default parameters are [0.1, 1] for Pareto, 0.1 for wild and 1 for Hamming mutation.

heuristics.obj_function(K, partition)
Return the value of the objective function for a given partition of the data.
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Conclusion

This work explained the underlying principles of kernel clustering methods and the basic properties
in the feature space, all using vectorial input data. It presented kernel matrices and introduced two widely
used kernels, polynomial kernel and Gaussian kernel.

The clustering problem in the feature space was defined, along with metrics for comparing clustering
results, namely the Rand index, Adjusted Rand index and accuracy. Two possible ways of performing
clustering in the feature space were explained. The first one was the kernel version of a popular clus-
tering algorithm K-Means. This algorithm was afterwards used to perform series of tests with the goal
of determining the optimal σ parameter for the Gaussian kernel. The tests involved 21 different two-
dimensional pattern sets. The optimal σ values found were later compared to σref values obtained using
formula from [2], showing that it is possible to obtain better results by further optimizing the parameter.
In the end, the optimal union of hidden classes from [6] was used to fine-tune the results even more.

The second approach for solving the clustering problem involved heuristic methods, specifically ran-
dom descent. Three different mutations were used to tackle the issue of local minima - Pareto, Hamming
and wild mutation. Their performance was compared in the last chapter, using three known pattern sets
from [5] - iris, wine and breast. The results showed that even such a simple mutation as the Hamming
mutation can produce very good results.

Concise Python library PyKern was created and used to conduct all the experiments. This library
provides tools for working with kernels, kernel matrices and can perform both the kernel K-Means and
random descent algorithms.
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Appendix

Table 6.1: Table showing values of Adjusted Rand Index for different σ values

Pattern set N
σ

0.100 0.126 0.158 0.200 0.251 0.316 0.398 0.501

basic1 4 0.173 0.293 0.322 0.411 0.495 0.804 0.804 0.970
basic2 5 0.177 0.234 0.234 0.308 0.367 0.513 0.490 0.505
basic3 3 0.191 0.34 0.281 0.47 0.478 0.596 0.831 1.000
basic4 3 0.154 0.273 0.374 0.556 0.782 0.997 1.000 0.997
basic5 3 0.263 0.332 0.716 1.000 1.000 1.000 1.000 1.000
chrome 4 0.118 0.236 0.301 0.375 0.496 0.761 0.985 0.977
dart 2 0.460 0.410 0.382 0.402 0.576 0.500 0.384 0.709
dart2 4 0.256 0.291 0.396 0.356 0.450 0.357 0.422 0.346
face 4 0.800 0.848 0.815 0.879 0.881 0.919 0.893 0.752
isolation 3 0.296 0.348 0.511 0.519 0.517 0.515 0.555 0.545
lines 5 0.178 0.234 0.280 0.368 0.416 0.488 0.718 0.720
lines2 5 0.206 0.262 0.359 0.462 0.604 0.740 0.911 0.869
network 5 0.226 0.337 0.804 0.837 0.955 0.983 0.985 0.991
outliers 3 0.137 0.199 0.447 0.569 0.639 0.633 0.816 0.818
sparse 3 0.181 0.354 0.419 0.676 0.958 0.958 1.000 1.000
spiral2 2 0.082 0.122 0.302 0.476 0.980 0.996 0.980 0.964
spirals 3 0.225 0.324 0.547 0.430 0.604 0.834 1.000 1.000
triangle 3 0.135 0.290 0.414 0.500 0.541 0.587 0.755 0.994
un 2 0.175 0.504 0.608 0.608 0.611 0.611 0.611 0.614
un2 3 0.195 0.273 0.343 0.469 0.489 0.519 0.562 0.622
wave 4 0.251 0.289 0.259 0.426 0.555 0.575 0.661 0.644
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Pattern set N
σ

0.631 0.794 1.000 1.259 1.585 1.995 2.512

basic1 4 0.950 0.913 0.897 0.798 0.781 0.745 0.723
basic2 5 0.489 0.519 0.509 0.395 0.380 0.358 0.358
basic3 3 0.912 0.584 0.558 0.49 0.469 0.459 0.459
basic4 3 0.994 0.994 0.994 0.991 0.987 0.987 0.987
basic5 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000
chrome 4 0.957 0.954 0.951 0.942 0.926 0.904 0.904
dart 2 1.000 0.764 0.008 0.008 0.007 0.007 0.007
dart2 4 0.274 0.255 0.244 0.237 0.222 0.211 0.206
face 4 0.608 0.304 0.265 0.256 0.205 0.162 0.162
isolation 3 0.599 0.721 0.690 0.646 0.605 0.526 0.510
lines 5 0.583 0.684 0.688 0.685 0.643 0.644 0.635
lines2 5 0.78 0.774 0.732 0.707 0.702 0.699 0.656
network 5 0.991 0.991 0.991 0.991 0.991 0.991 0.991
outliers 3 0.823 0.822 0.825 0.825 0.825 0.996 0.996
sparse 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000
spiral2 2 0.929 0.895 0.887 0.872 0.865 0.857 0.850
spirals 3 1.000 1.000 0.916 0.777 0.771 0.753 0.751
triangle 3 0.994 0.994 1.000 1.000 1.000 1.000 0.995
un 2 0.478 0.448 0.432 0.438 0.440 0.440 0.440
un2 3 0.725 0.711 0.708 0.709 0.709 0.709 0.709
wave 4 0.639 0.553 0.498 0.429 0.44 0.415 0.399
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