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Abstract. The state-of-the-artmethod to reduceCNCmachine tool thermal errors
is real-time error compensation based on the thermal error estimation models.
However, it is difficult to establish a thermal error compensation model with good
versatility, high accuracy, and strong robustness due to variousmanufacturing con-
ditions and a thermally varying surrounding environment. It causes that thermal
behaviour of themachine tools is nonlinear and varying in real time. Consequently,
the pre-trained and non-adaptive model may not be accurate and robust enough
for long-term application. The presented research shows a systematic adapta-
tion technique to update the thermal error compensation model of a horizontal
machining centre under varying conditions, which differ from the calibration test.
System identification theory is applied to build a dynamic thermal error model for
a horizontal machining centre based on calibration test. Linear parametric mod-
els of autoregressive with external input (ARX) present an established dynamic
method, and its modelling and calculation speed are suitable for real-time appli-
cations. Additionally, process-intermittent probing and thermal error model are
integrated into the machine management software of the horizontal machining
centre to monitor and compensate for thermal errors at the tool centre point (TCP)
in real time using C#/C++ programming language. The results show that the pre-
diction accuracy measured as peak-to-peak values and the normalized root mean
squared error of the thermal error compensation models are improved by up to
33% and 51%, respectively, when adaptive compensation model is applied.
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1 Introduction

One of themost challenging issues in themanufacturing industry is continuous part qual-
ity maintenance by reducing machine tool thermal errors. The state-of-the-art method
for minimizing thermal errors in CNC machine tools is real-time error compensation
based on thermal error estimation models [1].

Numerous error compensation models have been proven to be effective of mitigating
thermally induced errors using temperature sensor measurements. A thorough review
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of the thermal error modelling methods that have been investigated and applied is pre-
sented in [2]. The predicted accuracy and robustness of the thermal error model is a key
factor here. Robustness reflects the holding capacity of predicted accuracy under various
external conditions. It is an important indicator of the thermal error compensation effect
on machine tools [3].

However, the low prediction accuracy and poor robustness of these models under
varying manufacturing conditions and the thermally varying surrounding environment
have also been recognised [4, 5]. The cause is that thermal error compensation models
strongly depend on the characteristics of the training data. However, model training con-
ditions cannot typically cover all of the machine working conditions that are necessary
to derive an accurate and robust model due to limited resources and limited availability
of machine time for testing. Furthermore, potential users of thermal error compensa-
tion technique (typically machine tool manufacturers) shy away because of the lengthy
period of time required to characterize the thermal behavior of a machine tool. It takes
many hours for a machine structure to reach its thermal steady state and then to cool
to its original state. As a result, thermal error compensation models represent physics
incompletely and the robustness in the prediction performance of thermal behaviour
that differs from training phase may be poor. Therefore, various model adaptations have
been developed to refine the prediction accuracy and robustness of the model accord-
ing to continuous changes in machine operation status. This is especially essential in
small-batch production, where the manufacturing processes change frequently and the
pre-trained thermal error model is typically not robust enough.

A feasible strategy for improving robustness has been updating the model parame-
ters periodically using process-intermittent probing to identify any changes in thermal
errors at the tool centre point (TCP). Numerous on-machine measurement methods can
be applied to provide thermally induced displacements as feedbacks for compensation
model. Gao et al. [6] present state-of-the-art in-process and on-machine measurement
systems and sensor technologies. As touch probe systems have become common acces-
sories in a wide variety of precision machine tools, their application seems a promising
solution for the adaptation of thermal error models. On-machine measurement (typically
by touch probe) represents the common practice of using a machine tool to measure the
workpiece while it is still on the machine rather than moving the workpiece to the
metrology room. It significantly corrects geometric errors on the part before the part is
removed from the machine tool. Consequently, it decreases the scrap parts. In principle,
on-machine probing can be used for direct compensation of thermal error at the TCP
thanks to intermittently measured resulting displacements at the machine tool TCP (e.g.,
a test mandrel clamped in the spindle with noncontact displacement sensors placed on
the working table as shown in Sect. 2 or a touch probe in combination with a datum
sphere mounted on the working table). Subsequently, the measured displacements can
be superposed to the desired position of the particular axis. The significant benefit of the
on-machine probing approach is that the thermal displacements that have to be compen-
sated are directly available. Nevertheless, a sufficient sampling rate of the on-machine
measurement has to be selected, as interruptions to the process lead to lower machine
tool productivity.
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An issue related to the updating the compensation model parameters periodically
using on-machine measurements is the reduction in machine productivity, since the
machining cycle may be unnecessarily interrupted during probing. Early methods used
process-intermittent probing to constantly update the model. Mou [7] presented an adap-
tive error correction method using feature-based analysis techniques for machine tool
error correction. Process-intermittent gauging and state observation techniques were
integrated to track the thermal effect in real time and fine tune the error model coeffi-
cients as the cutting process proceeds. A multiple linear regression model was derived
to identify the time-varying thermally induced errors and form the state observer model.
However, these techniques were based on the conventional static thermal errormodel. As
a result, the thermal error model thus developed may not accurately reveal the dynamic
nature of the thermoelastic system.

Yang and Ni [8] proposed an adaptive model estimation of thermal errors based on
a recursive dynamic modeling strategy. This approach significantly improved the accu-
racy and robustness of the thermal error model by considering the dynamic effects of
machine thermo-elastic systems. Intermittent probing was carried out periodically using
a sampling time of 3.5 min. Thus, the probing may occur when not required. Conse-
quently, it decreases the machine productivity. Blaser et al. [9] developed a thermal error
compensation of 5-axis machine tools that is extended by on-machine measurements.
The compensation model predicts the thermally induced errors caused by the rotary axis
C, environmental temperature change and cutting fluid. The information gained by the
process intermittent probing is used to adaptively update the model parameters. During
the compensation phase, periodic measurements are essential to control the required
precision of the compensation model. Measurement interval times only from 5 to 60
min were tested in 5 min steps. It was proposed that the measurement cycle should be
performed every 25 min or less to ensure stable compensation by the model. However,
such periodic on-machine measurements significantly reduce the obtainable productiv-
ity of the machine tools. Furthermore, Zimmermann et al. [10] replaced periodically
performed on-machine measurements with adaptive on-machine measurements which
are triggered based on temperature measurements when unknown thermal conditions
occur to optimize the trade-off between the precision and productivity of the proposed
compensation model.

This paper presents a new insight into the adaptation of thermal error compensation
models using on-machine measurements to improve the prediction performance of the
compensation algorithm. In contrast to the previous research, this study is focused on
wider range of the on-machine sampling interval from 30 to 180 min. The goal is to
increase the sampling interval to minimize interruption of the machining process by
intermittent probing. The relationship between compensation model accuracy, the sam-
pling interval length, the size of the tolerance band and required number ofmodel updates
is investigated in detail. The rest of this paper is organized as follows. In Sect. 2, the
machine tool and experimental setup are described. Section 3 deals with the modelling
approach, thermal error model structure, and approximation quality expression. Further-
more, Sect. 3 involves the calibration of the model parameters and identification proce-
dures. In Sect. 4, the adaptive compensation model is derived using process-intermittent
probing. A brief summary is discussed in Sect. 5.
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2 Thermal Error Experiments

The tested machine tool is a large horizontal machining centre with table dimensions
of 1250 × 1250 mm, and a retractable spindle with a diameter of 112 mm was used
to demonstrate the method. The machine tool has a spindle with 31 kW power and the
maximal spindle speed is 6000 rpm. Basic heavy machine parts (table, palettes, longi-
tudinal and transverse beds) are casted from grey iron, see [11]. The machine column
is designed as a twin shell casting also made of grey iron with an optimized structure.
The tested machining centre is placed in a machine tool producer’s shop floor, which is
a non-air-conditioned room. The machining centre is equipped with a standard Siemens
SINUMERIK 840D sl CNC controller and a unique programming environment (TOS
Control management software). The thermal error model (see Sect. 3) is implemented
in the TOS Control programming environment as an independent application developed
in C#/C++ programming language.

The large horizontal machining centre is equipped with temperature sensors (Pt100,
Class A, 3850 ppm/K) placed close to the main heat sources by the machine tool man-
ufacturer. Today, almost every spindle is equipped with sensors to monitor the bearing
temperature, including the tested machine centre. Of all heat sources that lead to thermal
distortion, the spindle is a dominant contributor to total thermal errors due to the large
amount of heat generated by its high-speed revolutions and quick response inducing ther-
mal errors at the TCP. Therefore, the thermal error compensation model will focus on
the heat source represented by the spindle. The key input of the model is the temperature
measured close to the spindle front bearing (ΔT in). Tests for thermal distortion caused
by rotating spindles were carried out according to the ISO 230-3 international standard
[12]. To measure relative displacements in the X, Y and Z directions between the TCP
represented by a test mandrel (length, 125 mm; diameter, 40 mm) and the working table
of the horizontal machining centre, non-contact eddy current displacement sensors with
a resolution ratio of 0.1 μm were installed (sensor type PR6423, produced by Emerson
[13]). Eddy current sensors are supported by a magnetic stand and the measurement
point is placed at the side of the table to sense thermally induced displacements at the
zero position of the retractable spindle position (W = 0 mm). The experimental setup
on the horizontal machining centre per ISO 230-3 including the machine tool structure
with the indicated kinematics is shown in Fig. 1.

Data were acquired using a cRIO 9024 programmable automation controller (PAC)
[14] with LabVIEW software (the sampling rate was 1 s). Temperature sensors installed
by the machine tool manufacturer and other NC data such as effective power, electric
current, torque, feed rate, and motor temperatures were logged using OPC UA (Open
Platform Communications United Architecture) communication between the machine
controller and the PAC cRIO 9024.

A one-dimensional network of spindle excitation points was proposed for the Y-axis
(the vertical position of the spindle stock on the column) with a constant W-axis position
(retractable spindle positionW= 0mm). Spindle excitation was performed in 3 different
linear Y-axis positions in total (Fig. 1). Tests with a constant spindle speed, along with a
spindle speed spectrum test, were designed to validate the thermal error model and the
adaptive compensation model using on-machine measurement (Table 1).
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Fig. 1. Experimental setup.

Table 1. Spindle speed and vertical Y-axis position of the spindle stock on the column during
tests.

Test no. Rotation speed [rpm] Vertical Y-axis position [mm]

1 4000 0

2 2000 600

3 4000 1200

4 4000 600

5 4000 0–1200

Each test in Table 1 was followed by a cooling phase until the machine tool was close
to a steady state with the surrounding environment, which took several hours. As a result,
one test was conducted per day. Data acquisition was only realized during the heating
phase (working cycles according to Table 1). It is supposed that the compensation model
is always updated by the first on-machine measurement at the beginning of each work
shift when the machine tool is cooled down (in the morning). Thus, the initial error is
removed and it is not necessary to measure during the cooling phase.

The heating phase of test no. 1 was chosen to identify a thermal error compensation
model (see Sect. 3). Verification tests (tests no. 2 to no. 5) were carried out under different
conditions than the calibration test. The spindle speed and the position of the heat source
(the vertical position of the spindle stock on the column) varied during the verification
tests; see Table 1.
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3 Thermal Error Model for a Horizontal Machining Centre

A discrete transfer function (TF) is used to describe the link between the excitation and
its response

y(t) = u(t) · ε + e(t). (1)

The vector u(t) in Eq. (1) is the TF input vector in the time domain, y(t) is the
output vector in the time domain, ε represents general TF in the time domain, e(t) is the
disturbance value (further neglected). The difference form of a discrete TF (generally
suitable for programming languages like Python or C#/C++) in the time domain is
introduced in Eq. (2)

y(k) = u(k − n) · an + · · · + u(k − 1) · a1 + u(k) · a0 − y(k − m) · bm − · · · − y(k − 1) · b1
b0

,

(2)

where n is the order of the TF numerator, m is the order of the TF denominator, m >

n, k represents the examined time instant, k − n (k − m) is the n-multiple (m-multiple)
delay in sampling frequency of the measured input vector (simulated output vector), an
is the calibration coefficient of the TF input and bm is the calibration coefficient of the
TF output.

Linear parametric models of autoregressive with external input (ARX) or outputs
error (OE) identifying structures are used with the help of Matlab Identification Toolbox
[15]. The linear parametric model ARX as an optimal model structure (with the best
fitting quality and robustness) is discussed in [16] where MISO (multiple input single
output) models handling with arbitrary TCP measurements are introduced. Excitations
in the case of the applied TFsmean temperatures measured close to heat sinks or sources,
and the responses stand for the linear deflections in the examined directions.

The approximation quality of the simulated behaviour is expressed by a local peak-
to-peak approach

p2p = |max(δZmea − δZsim)| + ∣
∣min(δZmea − δZsim)

∣
∣, (3)

where p2p is the abbreviation for a peak-to-peak evaluation method, δZmea in Eq. (3)
represents the measured output (thermal displacement at the TCP in the Z direction) and
δZsim is the simulated (predicted) thermal displacement obtained by applying the thermal
error compensation model. In this paper, the approximation quality of the identified
compensationmodels is also expressed by the fit value, the normalized rootmean squared
error expressed as a percentage, see [15], defined as follows

fit =
(

1 − ‖δZmea − δZsim‖
‖δZmea − δZmea‖

)

· 100. (4)

The δZmea stands for the arithmetic mean of the measured output (thermal displace-
ment) over time. The fit represents a global approach to express the approximation quality
of the compensation model, it is a percentage value where 100% would equal a perfect
match of measured and simulated behaviours.
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3.1 Identification of the Compensation Model

A thermal error compensation model is developed for large horizontal machining centre
(see Sect. 2). As the spindle is a dominant contributor to total thermal errors, model
predicts thermally induced displacements at the TCP caused by the spindle. It is a
simple compensation model, other influences (linear axis etc.) on thermally induced
errors at the TPC are not taken into account. To reduce the major thermal error of the
horizontal machining centre (in the Z-axis direction), a compensation ARX model was
calibrated on test no. 1 (see Table 1). The input is the temperature measured on the
spindle front bearing (ΔT in) and the output is the displacement measured in the Z-axis
direction (δZmea). The TF-based model of thermal displacement in the Z-axis direction
is expressed by Eq. (5) as

δZsim = ΔT in · ε, (5)

where δZsim is the simulated thermal displacement in the Z-axis direction) and ε is the
TF identified in the time domain.

The measured input (ΔT in), measured output (δZmea) and simulated output (δZsim)
used in the identification process of the TF model are shown in Fig. 2 (all quantities
are expressed in relative coordinates). Temperature fluctuations (see ΔT in in Fig. 2) are
caused by the control of the cooling fluid circuit. The approximation quality is fit = 89%
and p2p = 16.6 μm.

Fig. 2. Model identification process - measured input temperature, measured and simulated ther-
mal errors at the TCP in the Z-axis direction of the large horizontal machining centre (test no. 1
at the position Y = 0 mm).

The stability of the identified TF model is expressed by the Linear Time Invariant
(LTI) step response test shown in Fig. 3. System excitation represents the sudden change
of the key temperature equal to 1K (red curve in the graph in Fig. 3), and system response
is the predicted displacement at the TCP in the Z-axis direction given by Eq. (5), see
black curve in Fig. 3.

The established calibration coefficients an and bm of the identified 2nd order discrete
TF are summarised in Table 2. The order of the TF was selected based on the best fit
value, see Eq. (4).
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Fig. 3. LTI step response of the identified TF.

Table 2. Identified parameters of the thermal error model describing the influence of spindle
rotation on thermal error at the TCP in the Z-axis direction.

TF method a0 (μm·K−1) a1 (μm·s−1·K−1) b0 (–) b1 (s−1) b2 (s−2) fit (%)

ε ARX −0.0130427 0.0130361 1 −1.9982716 0.998272 89

3.2 Verification Tests Results

The model identified in Sect. 3.1 was applied to the heating phase of tests no. 2 to no.
5 (see Table 1). Figure 4 depicts the behaviour of the front bearing temperature ΔT in,
ambient temperature ΔTamb behaviour over time, the position of the TCP in the Y-axis
direction and the spindle speed during verification tests on the large horizontalmachining
centre. The data measured during the heating phases (active heat source represented by
spindle rotation) of tests no. 2, 3, 4, 5 according to Table 1 are presented in Fig. 4.
The cooling phases of each measurement are omitted, as the data acquisition was not
realized during the cooling phases. Moreover, the heating phases of tests no. 2 to no. 5
are linked together in order to present the measured data in a single graph in Fig. 4. This
data representation is in accordance with the intended adaptation of the compensation
model using on-machine measurement presented in Sect. 4.

The resulting displacements at the TCP obtained by on-machine measurement can
be employed as feedbacks for the compensation model to refine its prediction accuracy.
Consequently, this leads to a lower sampling rate for the on-machinemeasurement. Since
a manufacturing process begins basically from an initial alignment of the workpiece, the
on-machine measurement is often the first task that must be performed. Subsequently,
the compensation model is supposed to always be updated at the beginning of each work
shift (see Sect. 4). Figure 5 depicts the thermal displacement measured at the TCP in the
Z-direction (solid blue curve) and the predicted thermal displacement (solid red curve) of
the large horizontal machining centre obtained from the TF model calculated by Eq. (5)
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Fig. 4. Temperature measured at the spindle front bearing, ambient temperature, spindle speed,
and position on the Y-axis during verification tests no. 2 to 5.

for the verification tests no. 2 to no. 5. The data in Fig. 5 are presented analogously to
Fig. 4 (linked heating phases of the verification tests without the cooling phases).

Fig. 5. Thermal displacement measured and simulated in the Z-direction during verification tests
no. 2 to 5.

Approximation quality expressed by the fit value given by Eq. (4) is only 41.5%.
The approximation quality expressed by the p2p value of the thermal error compensation
model according to Eq. (3) is 64 μm for the verification tests. Identification of the TF-
based model is derived from test no. 1 which was set at the zero position of the linear
Y-axis (the lowest vertical position of the spindle stock on the column, Y = 0 mm). The
model training conditions applied in Sect. 3.1 evidently differ from the machine tool
working conditions during the verification tests no. 2 to no. 5, see Table 1.

Firstly, the position of the heat sources (the vertical position of the spindle stock on
the column) varied during the verification tests. Secondly, the spindle speed also varied
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during the tests. Previous studies (e.g., [17, 18]) showed that a TF-based compensation
model is capable of sustaining the high approximation quality (stability in prediction
performance) in the event of a changeable spindle speed that differs from the training
phase. However, in the previous studies mentioned above, the compensation model of
a medium-sized CNC machining centre was investigated only in one spindle excitation
position. On the contrary, the verification tests on a large horizontal machining were
intended to excite the heat source, represented by the spindle, in various machining
centre positions. It results in low compensation model prediction accuracy of thermal
errors at the TCP in the Z direction, as shown in Fig. 5.

4 Adaptive Compensation Model

Due to the complexities of manufacturing processes, real machining conditions may not
be identical to the experimental conditions used for the compensation model derivations
shown in Sect. 3. Therefore, to increase the robustness of the prediction performance
of thermal error Z-direction displacement, a process intermittent probing is used to
adaptively update the model parameters (on-machine measurement with eddy current
type displacement sensors and the test mandrel, see Sect. 2).

4.1 Principle of Model Adaptation

Adaptation of the compensation model is realised using the gain. The gain is defined as
follows

gainτ
tol = δZmea(tu)

δZsim(tu)
, (6)

where δZmea(tU) represents themeasured thermal displacement in the Z-axis direction at
times tU , δZsim(tU) is the simulated thermal displacement obtained by the thermal error
compensation model according to Eq. (5), see Sect. 3, τ is the on-machine measurement
sampling interval, and parameter tol is the size of the tolerance band of the residual error
res (residuum res is given by Eq. (8), see below) at times tU..

The initial value of the gain in Eq. (6) is equal to 1. The simulated displacement
calculated by the adaptive compensation model is defined as

δZτ,tol
sim−adap= δZsim · gainτ

tol, (7)

where δZsim is the original compensation model of thermal errors at the TCP in Z-axis
direction calculated according to Eq. (5).

The residual error of the original compensation model (see Eq. (5)) is expressed as

res = δZmea − δZsim. (8)

Thus, the adaptive compensation model is only updated if

|res(tu)| > tol. (9)
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There are two adjustable parameters of the adaptive model. First, it is the sampling
interval τ. The second is the selected tolerance band tol of the residual error res. This
approach enables rapid updating of the original thermal error compensation models
with minimal additional modelling effort, since only one quotient needs to be calcu-
lated (gainτ

tol). Primarily, no special software (e.g., System Identification Toolbox™ for
Matlab software [15]) is required to continually update the compensation model as it is
needed for the adaptive model, which has to identify completely new set of transfer func-
tion parameters (see [9]). Consequently, the proposed method of model updating using
a gain factor can be quickly and easily implemented into the standard CNC controller
of the machining centre without additional costs (e.g., no industrial PC with software is
required for the identification process of the transfer function parameters).

Moreover, the substantial advantage of the proposed solution is that the original
compensation model parameters can remain unaffected, thus preserving model trans-
parency. Instead, the gain is modified to multiply the original compensation model.
Furthermore, the method also provides information on the required sampling frequency
of the on-machine measurement and its effect on the resulting approximation quality of
the updated model, which is discussed in Sect. 4.2.

4.2 Adaptive Compensation Results

The adaptive compensation model was tested for various values of the sampling interval
τ. Specifically, the parameter τ was set as τ = {30, 60, 90, 120, 150, 180} minutes and
for different values of the parameter tol (specifically for tol = {1, 3, 5, 10, 15, 20, 25}
μm).

Figure 6 depicts the measured, simulated displacement in the Z-axis direction (iden-
tified in Sect. 3.1) and the predicted displacements by adaptive model with sampling
interval values τ = 30 min and tolerance band tol = 10 μm. The black dashed line
shows the value of the set tolerance band and the purple curve shows the absolute value
of the residual displacement res; see Eq. (8). The red dotted lines indicate the sampling
intervals when the condition in Eq. (9) is evaluated. The green dotted lines indicate
moments when the compensation model was adapted according to Eq. (7). In this exam-
ple, a significant reduction in the required number of themodel updates (NoU) depending
on the selected value of the parameter tol can be observed (red dotted lines vs. green
dotted lines).

The results of the adaptive compensation model for the other tolerance band tol are
shown in Fig. 7.

Figure 7 depicts the approximation quality of the simulated displacement in the Z-
axis direction (dashed lines) and the approximationquality of the displacement calculated
by the adaptive model depending on the selected value of the parameter tol at τ =
30 min. The yellow curve represents the required number of model updates (NoU)
depending on the selected value of the parameter tol for the adaptive compensation
model. As mentioned in Sect. 3.2, the approximation quality of the thermal behaviour
during verification tests is expressed by the p2p value of the thermal error compensation
model according to Eq. (6) is 64 μm (see black dashed line in Fig. 7) and the fit value is
only 42% (see red dashed line in Fig. 7). The fit value for the adaptive model according
to Eq. (7) increases from 78% to 92% (solid red line in Fig. 7) depending on the tolerance
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Fig. 6. Comparison of adaptive model results with (for τ = 30 min and tol = 10 μm) with
measured data.

Fig. 7. Approximation quality and the required number of model updates NoU of the adaptive
compensation model for τ = 30 min and different values of the parameter tol.

band tol (from 25 μm to 1 μm). The p2p value for the adaptive model is reduced from
51 μm to 45 μm on the tolerance band tol (from 25 μm to 1 μm). The application of
the adaptive model has a positive effect on the resulting fit value and the p2p value, as
expected.

The dependence of the required number of model updates NoU on the sampling
interval values τ and the tolerance band tol is shown in Fig. 8. The dependence of the
number of the model updates NoU on the values of the τ and tol in Fig. 8 reveals that
the maximum model updates NoU is 58 for the shortest (tested) sampling interval τ =
30 min and the strictest (tested) tolerance band tol = 1 μm as expected. The minimum
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number of model updates NoU is 5 for the longest sampling interval τ = 240 min and
the most benevolent tolerance band tol = 25μm, also as expected. The number of model
updates NoU increases significantly for the strict tolerance band (especially 5 μm and
smaller).

Fig. 8. Dependence of the required number of model updates NoU value on the values of the τ

and tol.

Similar graphs for the approximation quality expressed by fit and p2p are shown in
Fig. 9 and Fig. 10. The dependence of the approximation quality on the sampling interval
values τ and the tolerance band tol is not unambiguous. For the global approximation
quality expressed by fit, the results are always better with a smaller sampling interval (the
smaller the sampling interval, the higher the fit value). However, the local approximation
quality expressed by the peak-to-peak (p2p) method can be worse in some cases, as
shown in Fig. 10. Taken together, these findings suggest that the length of the sampling
interval has to be selected carefully and the shorter sampling interval is not always
beneficial. The relationships between length of the sampling interval, number of model
updates, tolerance band and achievable accuracy were detailly explored for particular
adaptive compensation model of the horizontal machining centre. This analysis enables
to select proper on-machine sampling interval and tolerance band tol to achieve required
accuracy of the machine tool (compensation model) and to ensure high productivity of
the machining process without excessive interruption by on-machine probing.

Generally, specific thermal error compensation model has to be developed for par-
ticular machine tools depending on the machine tool structure, its size, heat sources and
heat sinks etc. However, the proposed updating of the compensation model using a gain
factor can be universally applied as extension for this particular (original) compensation
model of thermally induced errors for particular machine tool. Thus, the adaptive com-
pensation model using a gain factor will be always based on this ‘original’ compensation
model for a particular machine tool. However, the method of updating the model using
a gain factor is fully transferable. Furthermore, it can be assumed that the length of the
sampling interval, number of model updates and the resulting precision of the adaptive
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Fig. 9. Dependence of the fit value on the values of the τ and tol parameters.

Fig. 10. Dependence of the p2p value on the values of the τ and tol parameters.

model will be significantly influenced by the prediction accuracy and the robustness of
the ‘original’ compensation model.

5 Conclusions

This paper investigates the adaptation of thermal error compensation models using on-
machine measurements to improve prediction performance. Specifically, the relation-
ships between compensation model accuracy, the sampling interval length, the size of
the tolerance band and required number of model updates are discussed in detail. The
study is focused on wider range of the on-machine sampling interval from 30 to 180min.
The goal is to increase the sampling interval to minimize interruption of the machining
process by intermittent probing.
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First, a TF-based model was built to compensate for the thermal errors of the large
horizontal machining centre caused by the spindle. Tests with spindle excitation were
performed in 3 different linear Y-axis positions in total. TF-based model identification
is derived from measurement at the lowest linear Y-axis position. Furthermore, the
developed model was applied in verification tests with the spindle excitation in different
Y-axis positions. This resulted in a low prediction accuracy of thermal errors at the
TCP in the Z-axis direction. Consequently, an adaptive model was proposed using on-
machine measurements and gain factor technique. The presented findings confirm that
the prediction accuracy measured as peak-to-peak values and the normalized root mean
squared error of the thermal error compensationmodels are significantly improved by up
to 33% (from 64μm to 43μm) and 51% (from 78% to 92%) respectively when adaptive
compensation model is applied using on-machine measurement. Future studies should
concentrate on experimental verification of the proposed compensation model updating
using a gain factor for different machine tools (thermal error compensation models) to
show if the results are transferable. Additional data collection would help to determine if
the relationship between the length of the sampling interval, number of model updates,
tolerance band and achievable accuracy shows similar trends.
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