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Abstract

This thesis deals with the design, implementation, and validation of a control system
for an Unmanned Aerial Vehicle (UAV) with a suspended payload. The dynamics
of the system were thoroughly investigated, and both nonlinear and linear mathe-
matical models were derived. To estimate unmeasured state variables, including the
position of the load, a Kalman filter was designed and incorporated into the control
loop. The closed-loop control was achieved using a Quadratic Programming Model
Predictive Control (QP-MPC). Additionally, a trajectory generator was formulated
as a Quadratic Programming Optimal Control Problem (QP-OCP) to plan a sway-
free trajectory. The resulting system was rigorously evaluated using the Gazebo
robotic simulator, demonstrating its capability in effectively dampening load oscil-
lations, tracking the UAV’s target trajectory, and rejecting external disturbances.

Keywords Unmanned Aerial Vehicle, Suspended payload, Model Predictive Con-
trol, Kalman Filter, Sway-free trajectory, Optimal Control
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Abstrakt

Tato práce se zabývá návrhem, implementaćı a ověřeńım ř́ıdićıho systému pro
bezpilotńı letecký prostředek (UAV) se zavěšeným břemenem. Dynamika systému
byla d̊ukladně analyzována a byl odvozen nelineárńı a lineárńı matematický model
systému. Za účelem odhadu neměřených stavových proměnných, včetně polohy
břemene, byl navržen Kalman̊uv filtr a následně začleněn do řid́ıćı smyčky. Uzavřená
řid́ıćı smyčka je zajǐstěna kvadratickým prediktivńım regulátorem (QP-MPC). Dále
byl formulován generátor trajektorie jakožto kvadratický optimálńı problém ř́ızeńı
(QP-OCP) za účelem plánováńı trajektorie bez kmitáńı. Výsledný systém byl pečlivě
ověřen v robotickém simulátoru Gazebo a prokázal svou schopnost účinně tlu-
mit kmitáńı nákladu, sledovat požadovanou trajektorii UAV a odolávat vněǰśım
poruchám.

Kĺıčová slova Bezpilotńı prostředky, Zavěšené břemeno, Prediktivńı ř́ızeńı na
základě modelu, Kalman̊uv filtr, Trajaktorie bez kmitáńı, Optimálńı ř́ızeńı
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) are a rapidly evolving field within mobile robotics,
with a multitude of potential practical applications. Currently, UAVs are predominantly used
in industrial contexts for inspections, surveillance, search and rescue operations, transporta-
tion, environmental monitoring, and more. Research continues globally to explore and expand
the potential uses of these versatile machines.

Two major factors have driven the rapid development and widespread adoption of Micro
Aerial Vehicles (MAVs). First, advancements in computational technology have made in-
creased processing power more affordable and accessible. This allows for high-frequency con-
trol loops necessary for stabilizing MAV. Second, the mobile phone industry’s widespread
incorporation of Microelectromechanical Systems (MEMS) accelerometers into Inertial Mea-
surement Units (IMUs) in their devices led to mass production of these sensors. This mass
production significantly reduced the price of these sensors and improved their accessibility for
the MAV industry.

With the mass adoption of MAVs came a demand for increased autonomy. This spurred
further research into navigation, control, communication, and the cooperation of multiple
UAVs. Once the control of a single MAV was sufficiently mastered, the control community’s
focus expanded in several directions, most notably towards interaction with the environment.
This is a significant challenge due to the under-actuated nature of common UAVs. Interacting
with the environment amplifies the degree of under-actuation, making it a hot and ongoing
research topic. Some notable advancements in this subfield include UAV flight while balancing
an inverted pendulum [33], constructing tensile structures [28], building a wall [1], and human-
UAV interaction [27], among others.

1.1 Motivation

The scenario of transporting suspended loads is prevalent in military operations, typ-
ically carried out by helicopters. Historically, only highly trained pilots could perform these
tasks, as they require significant skill and experience. Mishandling of the payload could lead to
disturbances resulting in catastrophic failure [16]. Consequently, more reliable control systems
have been developed to perform these tasks, reducing the need for human intervention. This
challenge extends to UAVs. Simulations reveal that when controlled by a general-purpose
controller, certain combinations of payload weight and cable length can induce unwanted
oscillations or even cause resonance, leading to system failure.

With the rising adoption of UAVs, the challenge of handling suspended payloads has
become relevant for the civilian domain. Commercial delivery services, food delivery providers,
and even medical suppliers have expressed interest in implementing UAV deliveries. Despite

CTU in Prague Department of Cybernetics



1. INTRODUCTION 2/62

Attachment Mechanism Impact on Control Benefit

rigid simple alters rotational
inertia, easy to control

easy mechanical
implementation

semi-rigid complex and heavy alters rotational
inertia, easy to control

tolerates less precise
attachment

suspension simple and
light-weight

can destabilize the
system, challenging to

control

easy mechanical
implementation,

allows to carry large
and heavy payload

Table 1.1: Overview of approaches for attaching payloads to UAV

the current regulatory, technical, and practical issues, some such systems are already in oper-
ation at the time of writing this thesis. For example, Zipline delivers medical supplies in rural
areas of Ghana and Rwanda.

Different approaches exist for attaching payloads to UAVs, each with its unique charac-
teristics and challenges, as summarized in Table 1.1. Two of these approaches are depicted in
Figure 1.1. The suspension of a load represents the most lightweight and efficient method for
attaching a load, provided non-aggressive flight is assumed. However, this method introduces
a challenging control problem [13]. Numerous practical tasks, such as UAV carrying a sensor
into inaccessible places or UAVs designed to capture objects like Eagle.one11 [7], could benefit
from an effective slung load controller as well. Therefore, studying a system that allows for
the control of a UAV with a suspended payload has a clear practical motivation.

(a) Rigid attachment [2] (b) Suspension [10]

Figure 1.1: Methods of attaching payloads to UAV

1.2 Related Works

Described control problem has been extensively studied in the literature. However sev-
eral open problems still persist and complicate control design and implementation. In the
literature there are roughly two main approaches to design of described controller - nonlinear,
and optimal control.

1https://eagle.one

CTU in Prague Department of Cybernetics
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Nonlinear Control

The work of Klausen et al. [23] utilizes a back-stepping nonlinear method. While the
resulting tracking of the target UAV’s position was independent of the load’s amplitude in
simulations, the states of the load were not controlled. This resulted in large amplitudes of
the load during the tracking of the target trajectory. This issue was partly addressed by the
implementation of input shaping [36], but the proposed solution was only verified using simu-
lations based on the same model as that used for the control design. In [14], a passivity-based
controller was designed, requiring knowledge of the payload’s state and higher derivatives,
thus limiting its practical application. In [25], the flexibility of the rope is modeled and taken
into account, allowing for aggressive maneuvers with proven asymptotic stabilization of the
load during UAV translation. However, the experimental validation was limited, as the cable
was in the final test approximated as a single link.

Optimal Control

The second widely-used approach is rooted in optimal control theory. Two aspects can
be optimized: the trajectory and feed-forward control actions, and the feedback control. Tra-
jectory optimization can be precomputed and solved offline, allowing for highly nonlinear,
and even hybrid, models and complex objective functions. This approach is evident in [24],
where a task of generating a trajectory for passing through a small window is solved using
an iterative LQG algorithm. Similarly, in [32], a sway-free trajectory is derived via dynamic
programming optimization. Compared to these examples, Rigatos [6] proposes an algorithm
that linearly approximates the model in each iteration and calculates gains for an H∞ con-
troller by solving algebraic Riccati equations. Model Predictive Control (MPC), as employed
in [8], [22], and [21], is a versatile tool for this problem, allowing for optimization of both
trajectory and feedback control. Although the linearly-constrained version of MPC is limited
to non-aggressive flights, this is not a problem when aiming for real-world deployment.

It’s worth noting that the solutions proposed in the aforementioned works are often
verified only in simulations. Experimental works conducted on real hardware always employed
a Motion Capture (mocap) system, implying that all results were achieved using the ground-
truth position of the load. In more practical scenarios, the states of the load are not known
and must be estimated.

State Estimation

Most methods in literature utilize the fact that the load exerts a disturbance on the UAV,
which can be measured by an IMU or deduced from position changes. Some works further
utilize additional sensors to support the estimation process, including a down-facing onboard
camera [17], a load cell measuring tension [18], and a Light Detection and Ranging (LiDAR)
[5]. Extended Kalman filters have been developed and experimentally verified in [4] and [5]. In
[11], the task of simultaneous estimation of the load’s states and the rope’s length was tackled
using Fast Fourier Transform (FFT).

CTU in Prague Department of Cybernetics
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1.3 Task Setup

The objective of this thesis is to implement a control system for a UAV with a suspended
payload. This control system should be designed to utilize the UAV’s position and orientation
measurements, provided by a mocap system2. Preparing the system for real-world deployment
necessitates the estimation of the load’s position, as it will not be directly measured. The UAV,
for which the control system is designed, is equipped with a low-level controller, known as
the ’flight controller’, which stabilizes the UAV and manages its attitude (i.e. orientation and
thrust). Therefore, the designed control system will output the desired orientation and thrust
of the UAV. The resulting regulator is intended to be implemented in C/C++ on an onboard
computer, that the UAV is equipped with.

1.4 Contributions

This study was not designed to contest or redefine the control or estimation results of
existing state-of-the-art solutions. Instead, the goal was to establish a deployable system that
could operate on a platform without the need for additional sensors to support the estimation
of the load’s position. To the best of my knowledge, no such system has been reported in
literature thus far. Most documented control systems relied on mocap systems for localization
of the UAV and also the load, and while some works did develop estimators, they did not
include a controller and frequently utilized additional instrumentation.

The control system introduced here consists of a sway-free trajectory generator, an
Model Predictive Control (MPC) feedback controller, and a Kalman filter. This control system
has been implemented as a module of the open-source Multi-robot Systems Group (MRS)
system [3]. Although real-world hardware testing of the system has not yet been conducted,
the simulation results are promising, and the system is ready for real-world experimental
verification.

1.5 Mathematical Notation

Throughout the thesis, vector notation is frequently employed to enhance the readability
and conciseness of equations. However, the use of vector notation can also introduce confusion
due to the lack of complete uniformity in vector conventions found in the existing literature.
Consequently, it is crucial to establish the specific convention adopted within this thesis. The
general notation and nomenclature are defined in Table 1.2.

1.5.1 Block Matrices

In the case of matrices that are structured into blocks, partial or complete block notation
can be utilized. The most commonly recurring substructures in this thesis are the zero vector
or matrix 0 and the identity matrix I. To specify their dimensions, a subscript can be used, as
described in Table 1.2. However, when the dimensions are clear from the context, the subscript

2Throughout the thesis, the dependence on mocap was eliminated and substituted for Real-time Kinematics
(RTK) Global Positioning System (GPS) and flight controller’s estimate of attitude.

CTU in Prague Department of Cybernetics
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can be omitted. As and example the following matrix can be expressed in several equivalent
ways: 


1 1 0
2 0 1
3 0 0


 =

[
v I
3 0

]
=

[
v I2
3 01,2

]
=




1
I

2

3 0


 ,

where additional definition of v =
[
1 2

]T
is necessary.

1.5.2 Derivatives

To prevent confusion in multivariate derivatives, they are introduced in more detail.
Consider a scalar function of multiple variables f : Rn → R. The total derivative of f(x) is
represented as a row vector, while its gradient is a column vector:

df(x)

dx
= (∇f(x))T =

[
∂f(x)
∂x(1)

. . . ∂f(x)
∂x(n)

]
.

Similarly, the partial derivative of f(y, z) with respect to y is also a row vector. In order to
avoid transposition of a partial derivative, let us define operator partial gradient ∇··:

∂f(y, z)

∂y
= (∇yf(y, z))

T =
[

∂f(y,z)
∂y(1)

. . . ∂f(y,z)
∂y(l)

]
.

Now, consider a vector function of a single variable. The derivative of this function is a column
vector, while its gradient is a row vector.

Combining these concepts, we can establish a general rule for the derivative of a vector
function h : Rn → Rm:

dh(x)

dx
=




dh(1)(x)

dx
...

dh(m)(x)

dx


 =

[
∂h(x)
∂x(1)

. . . ∂h(x)
∂x(n)

]
=




∂h(1)(x)

∂x(1)
. . .

∂h(1)(x)

∂x(n)

...
. . .

...
∂h(m)(x)

∂x(1)
. . .

∂h(m)(x)

∂x(n)


 .

Aforementioned matrix is also known as Jacobian matrix. Similarly partial derivative of the
function is defined as:

∂h(y, z)

∂y
=




∂h(1)(y,z)

∂y(1)
. . .

∂h(1)(y,z)

∂y(l)

...
. . .

...
∂h(m)(y,z)

∂y(1)
. . .

∂h(m)(y,z)

∂y(l)


 .
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x, α vector, pseudo-vector, or tuple
x, ω unit vector or unit pseudo-vector
X,Ω matrix
IN , I N ×N identity matrix, identity matrix of dimensions which are clear from the context
0N,M ,0 zero vector or matrix with N rows and M columns, zero vector or matrix

of dimensions which are clear from the context
W,B,L Cartesian coordinate systems
Rx matrix representing rotation around x axis
RW

B matrix representing rotation from B to W coordinate system
x(n) = x⊺en nth vector element (row)
x[n] x at the sample n
f(·) scalar function f : Rn → R
f(·) vector function f : Rn → Rm
dx
dt

, ẋ, d2x
dt2

, ẍ 1st and 2nd time derivative of x
df(x)
dx

total derivative of a function
∂f(y,z)
∂y

partial derivative of a function

∇f(x) =
df(x)
dx

T
gradient of a function

∇xf(y, z) =
∂f(y,z)
∂y

T
partial gradient of a function

s(·), c(·) abbreviations of sin(·) and cos(·)
SO(3) 3D special orthogonal group of rotations
p(x|y, u) probability densitity function of x conditioned by y and u
x[n|n− 1] x at the sample n conditioned by sample n− 1
x̂ estimate of x

Table 1.2: Mathematical notation, nomenclature and notable symbols.
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Chapter 2

Mathematical Model of the System

This chapter is dedicated to the derivation of the mathematical model of the system
under study. While various approaches exist for controlling a system without prior knowledge
(also known as black-box systems), such as empirical tuning of controllers, these methods typ-
ically prove effective only for low-order stable systems. However, the system being investigated
in this study falls outside of that category. One method to incorporate prior knowledge is by
analyzing the physics of the system and developing its mathematical model. The model based
approach offers several advantages, including constraining the set of controller candidates,
enabling the analysis of the boundary between ”difficult” and ”impossible” scenarios, and
utilizing frameworks established by the control system community. Nonetheless, there exists
a risk of incorporating erroneous prior knowledge, which could introduce bias. Consequently,
it is crucial to derive an accurate and appropriate mathematical model of the system.

2.1 Mechanical Parameters of the System

The dynamics of the system are directly influenced by its mechanical properties. All
significant parameters that impact the system’s dynamics are listed in Table 2.1. While these
parameters can vary between different flights, it is assumed that they remain constant during
a single flight. As a result, these parameters are treated as constants throughout the derivation
of the model.

Physical Property Notation

mass of the UAV muav

mass of the load ml

length of the cable l

Table 2.1: Overview of mechanical parameters of the system

2.2 Lagrangian Formalism

The Lagrangian formalism is a widely utilized modeling approach based on the Euler-
Lagrange equations:

d

dt

∂L(q, q̇)
∂q̇(k)

− ∂L(q, q̇)
∂q(k)

= 0, k = 1, . . . , N,
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where L(q, q̇) denotes the Lagrange function, also known as the Lagrangian, and q ∈ RN rep-
resents the vector of generalized coordinates. The set of equations (2.1) can also be expressed
compactly in vector form using the notation introduced in Section 1.5:

d

dt
∇q̇L(q, q̇)−∇qL(q, q̇) = 0. (2.1)

Lagrangian is generally defined as

L(q, q̇) = T ∗(q, q̇)− V(q), (2.2)

where T ∗(q, q̇) represents the kinetic co-energy and V(q) represents the potential energy.

To clarify the notation, the ∗ sign is not an indicator of the co-energy case; rather,
it is an operator representing the Legendre transformation. This transformation defines the
fundamental relation between energy and co-energy. In the case of mechanical systems moving
much slower than the speed of light, the relationship between momentum p and velocity v is
approximately linear. Consequently, the kinetic co-energy becomes identical to kinetic energy.
This simplification has a straightforward and intuitive interpretation since the kinetic energy
is defined as:

T =

∫ t1

t0

P (t)dt,

and therefore refers to the area under the curve in Fig. 2.1. Hence, throughout the thesis, these
terms can be interchanged without loss of correctness, and the Lagrangian can be formulated
as:

L(q, q̇) = T (q, q̇)− V(q). (2.3)

p

v

3
4c

τ

τ ∗

(a) General nonlinear relation

p

v

1
10c

τ

τ ∗

(b) Approximately linear part of the relation
valid for most mechanical systems

Figure 2.1: Momentum-velocity and kinetic energy-coenergy relation

2.3 Generalized Coordinates

The Lagrangian formalism is characterized by a structured procedure consisting of
clearly defined steps. However, when it comes to the selection of generalized coordinates,
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there is room for creativity and flexibility. The objective of this step is to identify a set
of independent variables that is as small as possible, yet expressive enough to describe the
mechanical configuration of the system. These chosen coordinates, known as ”generalized”
coordinates, often encompass a combination of translational and angular variables.

2.3.1 Coordinate Systems

As previously mentioned, the Lagrangian formalism necessitates the use of generalized
coordinates and the Lagrange function as inputs, both expressed within an inertial refer-
ence frame1. However, it may be advantageous to introduce additional coordinate systems.
These coordinate systems can simplify the definition of generalized coordinates, facilitate the
formulation of the Lagrangian, and provide a more systematic approach overall.

The role of the inertial frame of reference is fulfilled by the coordinate system W. While
a perfect inertial frame of reference does not exist, for the scale of the problem and precision
required for its solution, a coordinate system fixed on the Earth’s surface approximates an
inertial frame of reference well enough. The coordinate system W is a Cartesian right-handed
system, with the z-axis pointing away from the Earth’s center 2.

The next coordinate system, denoted as B, is bound to the frame of the UAV, with its
origin located at the center of the UAV’s mass. Since the UAV is not motionless and experi-
ences acceleration with respect to the inertial frame of reference W, B is clearly not an inertial
frame. The relation between these two coordinate systems determines the displacement and
orientation of the UAV. Additionally, the motivation behind introducing the third coordinate
system, L, is to describe the configuration of the load. The origin of this coordinate system
is situated at the center of mass of the load, and its z-axis points towards the center of mass
of the UAV. A visual depiction of the aforementioned coordinate systems can be found in
Fig. 2.2.

To ensure clarity regarding the reference frame in which the generalized coordinates
are expressed, the following notation is introduced. A vector of generalized coordinates q
expressed in coordinate system B is denoted as qB. In cases where the upper-script is omitted,
it indicates that the vector is expressed in the inertial frame W. This notation hopefully
enhances readability and avoids ambiguity in understanding the coordinate system of the
generalized coordinates.

2.3.2 Generalized Coordinates of the UAV

The mechanical configuration of the UAV can be fully described by a displacement

vector suav =
[
x y z

]T
expressed in the coordinate system W, along with the intrinsic

Tait-Bryan angles Γ =
[
ϕ θ ψ

]T
. The introduced angles adhere to the right-hand rule

and are in more detail described in Table 2.2. The rotation matrix RW
B ∈ SO(3), representing

the transformation from the UAV-frame coordinate system to the inertial coordinate system,

1Coordinate has no meaning without a coordinate system.
2Defining the orientation of the z-axis with respect to the gravitational acceleration is tempting, but due

to the lack of agreement within the physics community regarding its orientation convention, it would lead to
an ambiguous definition.
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W

ŵx

ŵy

ŵz

b̂x

b̂y

b̂z

B

suav

θl

φlL

l̂x
l̂y

l̂z

Figure 2.2: Illustration of coordinate systems and generalized coordinates of the load

can be obtained through three consecutive rotations:

RW
B (ϕ, θ, ψ) = Rz(ψ)Ry(θ)Rx(ϕ),

Rx(ϕ) =




1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


 ,

Ry(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 ,

Rz(ψ) =




cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 .

(2.4)

The sequence of rotations leading to the final orientation of the UAV in the inertial coordinate
system is also illustrated in Fig. 2.3. Consequently, the generalized coordinates describing the
UAV are defined as:

quav =
[
x y z ϕ θ ψ

]T
.

2.3.3 Generalized Coordinates of the Load

Similar to a UAV, the mechanical configuration of the load can also be described using
six generalized coordinates, resulting in a total of twelve generalized coordinates for the entire
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name notation axis of rotation

roll ϕ wx

pitch θ Rx(ϕ)wy

yaw ψ Ry(θ)Rx(ϕ)wz

Table 2.2: Description of Tait-Bryan angles

φ

θ

ψ

Figure 2.3: Visualization of rotations defined by Tait-Bryan angles. Axes follow RGB conven-
tion.

system. It is important to note that the dynamics of the system depend not only on the
generalized coordinates but also on their first derivatives. Consequently, the dimensionality
of the state vector for the derived model is doubled or potentially increased even further.
In such cases involving high-order systems, it is a common practice to reduce the model by
disregarding the least relevant elements of the state vector. This reduction is necessary to
enable system analysis and control design. Therefore, it is advisable to proactively reduce
the dimensionality of the state vector during the modeling process by introducing suitable
assumptions.

Although the problem formulation assumes a load connected to the UAV by a flexible
cable, modeling such a case would be challenging, and the resulting complex model would
be impractical for control design. Flexible structures are classified as spatially distributed
systems and are typically described by partial differential equations. To make the model
more applicable, it is common practice to approximate the partial differential equations by a
set of Ordinary Differential Equations (ODEs). In this case, the rope is divided into several
rigid-body segments, with each segment described by a single ODE. The accuracy of the
approximation depends on the number of segments, allowing for a trade-off between model
precision and complexity based on the specific problem requirements.

For the purposes of this thesis, it is assumed that the UAV performs only non-aggressive
maneuvers, ensuring that the cable remains in tension. Under this assumption, the cable
behaves similarly to a stiff rod, and it is sufficient to approximate it using a single rigid body
segment. The general nonholonomic constraint, expressed as the Euclidean distance between
the UAV and the load being less or equal to the cable length, is transformed into a holonomic
constraint:

||suav − sl|| − l = 0,

where sl is the displacement vector of the load. This constraint reduces the number of gen-
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eralized coordinates by one, allowing the displacement of the load to be intuitively expressed
using the UAV displacement (suav) and two angles (θl and ϕl) that describe the orientation of
the rod. Since the task assumes a general load without any other prior knowledge beyond its
stiffness, and considering that the load orientation is not relevant to the problem, the load is
approximated as a point mass. This simplification further reduces the number of generalized
coordinates.

Based on the declared assumptions, the mechanical configuration of the load can be
described using two angular coordinates ql =

[
ϕl θl

]
. These coordinates parametrize the

matrix RW
L ∈ SE(3), which represents a sequence of consecutive intrinsic rotations:

RW
L (ϕl, θl) = Rx(ϕl)Ry(θl). (2.5)

The generalized coordinates for the entire system are defined as:

q̄ =
[
qT
uav qT

l

]T
=
[
x y z ϕ θ ψ ϕl θl

]T
. (2.6)

2.4 Lagrange Function

In the context of Lagrangian mechanics, the system’s behavior is described in terms of its
energies: kinetic and potential. The system’s energy transitions between these two forms, but
their differential remains constant in scenarios without energy dissipation. This fundamental
concept underlies the definition of the Lagrangian as:

L(q, q̇) = T ∗(q, q̇)− V(q).

2.4.1 Potential Energy

Potential energy is a form of stored energy that has the potential to be converted into
other forms of energy and perform work. In the context of the problem, the only source
of potential energy is the gravitational field, and thus the following simple equation can be
utilized:

V = gmh, (2.7)

where g represents gravitational acceleration, m denotes the total mass of the system, and h
stands for the height of the center of mass above a reference height with zero potential. For
the sake of simplicity, the zero-potential level is chosen such that it contains the origin of the
coordinate system W. The task of formulating the potential energy boils down to expressing
Equation (2.7) using the generalized coordinates defined in Equation (2.6) and the mechanical
parameters of the system.

The displacement of the load can be expressed in the coordinate system B using Equation
(2.5) as follows:

sBl = RW
L
[
0 0 −l

]T

and further, in the coordinate system W, by consecutive translation:

sl = sBl + suav = RW
L
[
0 0 −l

]T
+ suav. (2.8)

The equation (2.7) translates for the studied system to:

V(q̄) = g(muavz +mlzl) = g
[
0 0 1

]
(muavsuav +mlsl) . (2.9)

Plugging Equation (2.8) into Equation (2.9) yields:

V(q̄) = gmuavz +ml(z − l cos θl cosϕl)). (2.10)
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2.4.2 Kinetic energy

Since the assigned problem assumes the use of an embedded attitude controller, there
is no need to derive the model of the rotational dynamics directly. Instead, the model of the
closed-loop rotational dynamics is introduced in a separate section. Therefore, the rotational
kinetic energy can be disregarded, and the focus is only on translational kinetic energy. The
translational kinetic energy of the system can be obtained by summing the kinetic energy of
both the UAV and the load:

T ( ˙̄q) =
1

2

(
muav ||ṡuav||2 +ml

∣∣∣∣ṡuav + ṡBl
∣∣∣∣2
)
. (2.11)

The velocity of the load expressed in frame B has the following form:

ṡBl =
d

dt
RW

L (ϕl, θl)




0
0
−l


 =




−l cos(θl)θ̇l
−l sin(θl) sin(ϕl)θ̇l + l cos(θl) cos(ϕl)ϕ̇l
l cos(ϕl) sin(θ)lθ̇l + l cos(θl) sin(ϕl)ϕ̇l


 . (2.12)

Putting Equation (2.12) into Equation (2.11) yields:

T ( ˙̄q) =
1

2

(
muav

(
ẋ2 + ẏ2 + ż2

)
+ml

((
ẋ− lθ̇l cos(θl)

)2
+

(
−lθ̇l sin(θl sin(ϕl) + lϕ̇l cos(θl) cos(ϕl) + ẏ

)2
+

(
lθ̇l sin(θl) cos(ϕl) + lϕ̇l cos(θl) sin(ϕl) + ż

)2))
. (2.13)

The Lagrange function of the system is obtained by substituting equations (2.10) and
(2.13) into equation (2.2).

2.4.3 Reduced Generalized Coordinates

It is worth noting that neither the potential energy nor the kinetic energy depends on
the Tait-Bryan angles ϕ, θ, and ψ. This arises because the rotational dynamics of the UAV’s
body is not included in the model. Although the orientation of the UAV does not directly
appear in the Lagrangian, it influences the system through the external forces exerted by the
propellers. Since the left-hand sides of the equations in (2.1) corresponding to the Tait-Bryan
angles of the UAV are identically zero, these equations can be omitted, resulting in a reduced
set of equations of motion and a simplified model. The reduced generalized coordinates are
defined as:

q =
[
x y z ϕl θl

]T
.

To maintain clarity and consistency in notation, the following identity will be used throughout
the rest of the thesis:

L(q̄, ˙̄q) = L(q, q̇).

2.5 External and Dissipative Forces

The Euler-Lagrange equations given by (2.1) are applicable only when no external forces,
except for those associated with potential energy, act on the system. In other words, these
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equations hold true only for the scenario of free fall in a vacuum. However, when considering
the presence of rotating propellers and the thrust they exert, as well as the dissipation of
energy, the right-hand sides of the equations become non-zero:

d

dt
∇q̇L(q, q̇)−∇qL(q, q̇) = fext(Γ, F ) + fdis(q̇,q), (2.14)

where fext(·) represent external forces, fdis(·) accounts for dissipative forces and F denotes
magnitude of the collective thrust of the propellers. In this context, the external forces corre-
spond to the collective thrust exerted by the propellers. Considering the mechanical design of
a general under-actuated UAV, it is evident that the collective thrust aligns with the b̂z axis.
It can be expressed in the coordinate system W using the rotation matrix given by (2.4) as
follows:

fext(Γ, F ) =




Fx(Γ, F )
Fy(Γ, F )
Fz(Γ, F )

0
0



=

[
RW

B (Γ)
0

]


0
0
F


 =

F




sin(θ) cos(ψ) cos(ϕ) + sin(ψ) sin(ϕ)
sin(θ) sin(ψ) cos(ϕ)− cos(ψ) sin(ϕ)

cos(θ) cos(ϕ)
0
0



, (2.15)

where Fx, Fy, and Fz are the force components expressed in the W coordinate frame.

The main source of dissipation in the system is not explicitly specified in the problem
formulation. It is likely that air drag plays a significant role when dealing with a large and
light load. On the other hand, friction in the joint connecting the cable and the UAV may be
more prominent when dealing with a dense object. In the latter case, the dissipation would
be negligible, and therefore, only the air drag component of dissipation is modeled. Since no
prior knowledge regarding the shape of the load or the aerodynamic parameters is provided,
it is not necessary to incorporate a precise and complex model. Hence, a simple linear model
is employed. This model assumes a centrally symmetrical load, represented by a single drag
coefficient, denoted as d > 0.

Assuming no wind, the force caused by air drag is linear with respect to the translational
velocity of the load expressed in W coordinates. To determine its effect on the pendulum, it
is necessary to transform the force to the coordinate system L. Subsequently, the tangential
part of the transformed force (i.e., the coordinates corresponding to the lx and ly axes) can
be mapped to the corresponding angular variables. This can be expressed as:

f ldis(q̇,q) = −d
[

0 1 0
−1 0 0

]
R−1

y (θl)R
−1
x (ϕl)ṡ

W
l . (2.16)

On the other hand, the radial part of the transformed force does not affect the angular variables
of the load. Instead, it affects the UAV itself3. However, the way it acts on the UAV must
be considered in the W coordinate system. This line of thought involves several consecutive

3Imagine a degenerated load in the form of a parachute
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transformations:

fuavdis (q̇,q) = −dRx(ϕl)Ry(θl)




0 0 0
0 0 0
0 0 1


R−1

y (θl)R
−1
x (ϕl)ṡ

W
l . (2.17)

Combining equations (2.16) and (2.17) yields the total air drag acting on the system:

fdis(q̇,q) =

[
fuavdis

f ldis

]
= −D(ϕl, θl)q̇

− d




s2(θl) s(θl)c(θl)s(ϕl) s(θl)c(θl)c(ϕl) 0 0
s(θl)c(θl)s(ϕl) c2(θl)s

2(ϕl) c2(θl)s(ϕl)c(ϕl) 0 0
s(θl)c(θl)c(ϕl) c2(θl)s(ϕl)c(ϕl) c2(θl)c

2(ϕl) 0 0
0 c(ϕl) s(ϕl) lc(θl) 0

c(θl) s(θl)s(ϕl) s(θl)c(ϕl) 0 l



q̇. (2.18)

2.6 Equations of Motion

Expressing equation (2.14) directly can be quite overwhelming. However, it can be
manipulated into a form that is often used in manipulation robotics and improves readability:

M(q)q̈+ (C(q̇,q) +D(q)) q̇+ g(q) = fext(Γ, F ). (2.19)

The vector functions mentioned in the equation are defined as follows:

M(q) =




muav +ml 0 0 0 −lmlc(θl)
0 muav +ml 0 lmlc(θl)c(ϕl) −lmls(θl)s(ϕl)
0 0 muav +ml lmlc(θl)s(ϕl) lmls(θl)c(ϕl)
0 lmlc(θl)c(ϕl) lmlc(θl)s(ϕl) l2mlc

2(θl) 0
−lmlc(θl) −lmls(θl)s(ϕl) lmls(θl)c(ϕl) 0 l2ml



,

(2.20)

C(q̇,q) =




0 0 0 0 lθ̇lmls(θl)

0 0 0 −lml(θ̇ls(θl)c(ϕl) + ϕ̇lc(θl)s(ϕl)) −lml(θ̇lc(θl)s(ϕl) + ϕ̇ls(θl)c(ϕl))

0 0 0 lml(ϕ̇lc(θl)c(ϕl)− θ̇ls(θl)s(ϕl)) lml(θ̇lc(θl)c(ϕl)− ϕ̇ls(θl)s(ϕl))

0 0 0 −1
2 l

2θ̇lmls(2θl) −1
2 l

2mlϕ̇ls(2θl)

0 0 0 1
2 l

2mlϕ̇ls(2θl) 0



,

g(q) =
[
0 0 g(muav +ml) glml cos(θl) sin(ϕl) glml sin(θl) cos(ϕl)

]T
,

and D(q), fext(Γ, f) already being defined by (2.18) and (2.15) respectively. The equations of
motion presented in this section are consistent with the model described in [23], except for the
dissipative vector function D(q). The author of the paper opted to include only the friction
in the joint connecting the cable and the UAV, while neglecting the air-drag of the load. As
a result, there is a difference in the models of dissipation between the two approaches.

2.7 Model of the Embedded Control Loop

Every UAV requires some form of control in order to achieve stable flight. At the lowest
level, Electronic Speed Controllers (ESCs) are used to control the rotations per minute of

CTU in Prague Department of Cybernetics



2. MATHEMATICAL MODEL OF THE SYSTEM 16/62

the propellers. Above that, there is typically an embedded controller, such as the popular
Pixhawk, which enables control at various levels, including the orientation (attitude) of the
UAV and the collective thrust. The controller developed in this thesis utilizes this control
loop and outputs the desired target orientation (ϕd, θd, ψd) and target collective thrust (Fd)
as control actions. However, to design an effective controller, it is necessary to account for the
dynamics of the inner control loop, which requires a model of its closed loop behavior.

The embedded controller is often treated as a black box from the user’s perspective. Its
step response typically resembles a real exponential function, allowing it to be approximated
by a first-order system with a general transfer function:

G(s) =
K

Ts+ 1
,

where K represents the steady-state gain and T is the time constant. The previous work [9]
and [20] has demonstrated the satisfactory nature of this approximation. By converting these
transfer functions into state-space representations and combining them, the following model
is obtained:




θ̇

ϕ̇

ψ̇

Ḟ


 =




− 1
Tθ

0 0 0

0 − 1
Tϕ

0 0

0 0 − 1
Tψ

0

0 0 0 − 1
TF







θ
ϕ
ψ
F


+




Kθ
Tθ

0 0 0

0
Kϕ

Tϕ
0 0

0 0
Kψ

Tψ
0

0 0 0 KF
TF







θd
ϕd
ψd

Fd


 =

ẋa = Aaxa +Buu.

(2.21)

The model described in (2.21) assumes complete decoupling of the control loops. Practical
experiments, as reported in [9], have shown that this assumption holds fairly well for well-
designed embedded controllers and non-aggressive maneuvers.

2.8 State Transition Model

To provide a comprehensive understanding of the system dynamics within the context of
the task, it is necessary to establish the relationship between the equations of motion defined
by (2.19) and the closed-loop dynamics of the embedded attitude controller (2.21). By merging
these models together, we obtain the following representation:

M(q)q̈+ (C(q̇,q) +D(q)) q̇+ g(q) = fext(xa), (2.22)

ẋa = Aaxa +Buu. (2.23)

The set of equations (2.22) and (2.23) represents a complete nonlinear model of the system.
Equation (2.22) is a second-order ODE. To convert it into a set of two first-order ODEs, we
can introduce a substitution:

q̇ = ν, (2.24)

M(q)ν̇ + (C(ν,q) +D(q)) ν + g(q) = fext(xa). (2.25)

However, equation (2.25) is still in an implicit form, i.e. f̃(ν̇, ν,q,xa) = 0. In certain
situations, it can be advantageous to explicitly express the relationship between ν̇ and the
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remaining variables as ν̇ = f̄(ν,q,xa). This can be achieved by inverting the vector function
M and rearranging equation (2.25), resulting in:

q̇ = ν,

ν̇ = −M−1(q) ((C(ν,q) +D(q)) ν + g(q)− fext(xa)) ,

ẋa = Aaxa +Buu.

(2.26)

Equations (2.26) represent the state transition model of the system, expressed as a set of
first-order explicit ODEs. The notion of state of the system, denoted by x, augments already
introduced variables:

x =
[
qT νT xT

a

]T
=
[
x y z ϕl θl ẋ ẏ ż ϕ̇l θ̇l θ ϕ ψ F

]T
.

Similarly, the right-hand side of equations (2.26) can be combined into a single vector function,
resulting in the standard form of the state transition model:

ẋ = f (x,u) .

Conversion of the implicit model into its explicit form however comes at some cost. The
inversion of the matrix M(q) introduces a singularity in the model. Looking at (2.20), it is
evident that M(q) becomes singular when θl =

π
2 , making it impossible to invert. While this

singularity is a result of the chosen representation and does not indicate any physical issue, it
may cause numerical instability near the singularity. Nevertheless, considering the assumptions
made in Section 2.3.3, which constrain the amplitude of θl and ϕl, the singularity is far from
being reached, and the explicit form of the model can still be used effectively.

2.9 Linearization

Since most control system frameworks for analysis and control desing focus on linear
systems, it is a common practise to approximate the nonlinear state space model by a linear
one. This approximation, often referred to as linearization, is performed around an operating
point. As the name suggests, operating point is typically the state in which the system spends
the most time. Therefore it makes sense to have the lowest approximation error around this
point. In the case of the studied system, a natural choice for the operating point x0 is the
hover state, where the load is motionless directly beneath the UAV. The operating point can
be defined as:

x0 =
[
sTuav0 0 0 0 0 0 0 0 0 0 0 g(muav +ml)

]T
, (2.27)

where sTuav0 denotes displacement of the UAV at the operating point. It should be noted
that the linear approximation does not depend on the UAV displacement, so suav0 can be
chosen arbitrarily. Similarly, the operating yaw angle can also be chosen freely and is therefore
arbitrarily set to zero. The operation thrust is set to compensate for the gravitational force
g(·), resulting in zero vertical velocity of the UAV. The choice of the operating point (2.27) is
further justified by the symmetry of the system. Since the system is symmetric with respect
to its states (except for the vertical velocity, which is affected asymmetrically by gravity), it
is not meaningful to choose positive or negative values for elements of the operating point.
This would lead to an asymmetric model of a symmetric system.
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The linear time-invariant (LTI) state transition model of the system can be described
by the equation:

ẋ = Ax+Bu, (2.28)

where matrices A and B are defined as:

A =
∂f(x,u)

∂x
(x0) =




0

0 0 0 0 0

0
0 0 0 0 0
0 0 0 0 0

0 gml
muav

0 −g(muav+ml)
lmuav

0

− gml
muav

0 0 0 −g(muav+ml)
lmuav

I

d
lmuav

0 0 0 d(muav+ml)
l2muavml

0

0 d
lmuav

0 −d(muav+ml)
l2muavml

0

0 0 − d
muav+ml

0 0

0 d
muav

0 −d(muav+ml)
lmuavml

0

− d
muav

0 0 0 −d(muav+ml)
lmuavml

0

g(muav+ml)
muav

0 0 0 g(muav+ml)
lmuav

Aa
0 −g(muav+ml)

muav
0 g(muav+ml)

lmuav
0

0 0 0 0 0
0 0 1

muav+ml
0 0




T

,

B =
∂f(x,u)

∂u
=

[
0
Bu

]
.

(2.29)

2.10 Measurement Model

To provide a comprehensive mathematical description of the control problem, a mea-
surement model is developed to establish the relationship between the physically measured
variables, the system states, and the system inputs. Since only the position and Tait-Brian
angles of the UAV are directly measured, it is necessary to incorporate this fact into the
mathematical model.

A vector of outputs y =
[
xm ym zm θm ϕm ψm

]T
is defined to represent the

measured variables. This vector is explicitly related to the state vector x and the input vector
u through a generally nonlinear function:

y = g(x,u).

In this case, where some states are directly measured, the measurement model simplifies to a
linear relationship:

y = Cx =

[
I3 0 0 03,1
0 0 I3 03,1

]
, (2.30)

where C is the corresponding measurement matrix.
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2.11 Discretization

Most iterative algorithms inherently rely on a discrete-time model of the system. Hence,
it is practical to discretize the Linear time-invariant (LTI) state-space model presented by
equations 2.28 and 2.29. Various methods are available to achieve this, each optimizing dif-
ferent objectives. Some aim to resemble the original system’s step or impulse response, while
others focus on frequency domain similarities. The primary requirement for the chosen method
is its simple closed-form formula explicitly dependent on the sampling period. As the measure-
ment or control loop may not be perfectly periodic, using a fixed discrete model introduces
errors. Hence, an advantageous approach is to use online discretization, performed at each
iteration of the loop and based on the time difference between the current and last iterations.
Since many discretization algorithms are designed to be run only once, and may be com-
plicated with long run-times, a simpler yet sufficiently accurate method is presented in this
work.

The discrete-time LTI state-space is defined as follows:

x[t+ 1] = Āx[t] + B̄u[t], (2.31)

y[t] = C̄x[t] + D̄u[t]. (2.32)

The objective is to find matrices Ā, B̄, C̄, D̄ for the discrete-time model. The simplest method
of numerical integration, the forward Euler method, is employed for this task. This method
is based on the first-order Taylor expansion:

x(t+ Ts) = x(t) + Tsẋ(t), (2.33)

where Ts denotes sampling period. Applying this method to the continuous transition model
(2.28) yields:

x(t+ Ts) = x(t) + Ts (Ax(t) +Bu(t)) = (I+ TsA)x(t) + TsBu(t), (2.34)

which results in discrete-time state transition matrices as functions of the sampling period:

Ā(Ts) = I+ TsA, B̄(Ts) = TsB. (2.35)

The state output matrix C remains unaffected by discretization, thus the equation C̄ = C
holds. As the system has no direct feed-through (D = 0), the formula for D̄ is not relevant.

2.12 Summary

This chapter has focused on understanding the physics of the system by introducing
variables that describe the state of the system and their relation to different coordinate frames.
These variables were then used to formulate a Lagrange function and derive a nonlinear
state transition model that captures the dynamics of the system. Furthermore, the linear
approximation of the nonlinear model was derived, resulting in a LTI model. Subsequently, a
straightforward online discretization method was introduced, enabling the utilization of the
model in quasi-periodical algorithms. The main contributions of this chapter are the derived
LTI model (2.28), (2.29) and the nonlinear state space model (2.15), (2.18), (2.20), (2.21)
(2.26), providing a comprehensive understanding of the system’s dynamics.
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Chapter 3

State Estimator

This chapter focuses on the design of an estimator for estimating the states of the
controlled system. Some classes of controllers operate only on measurements of controlled
variables. PID controllers, for example, which are well-established in the industry, belong to
this category. Their performance, however, is relatively limited, making them ill-suited for
controlling systems with complex dynamics. Moreover, since their behaviour is solely based
on the output variables, they often lack context of state variables that are not measured.
Consequently, they are unable to handle constraints on unmeasured states. To circumvent
some of these issues, they are frequently stacked into different structures. In a previous study
[9], which tackled a similar setup without a load, a cascade of PID controllers was employed,
facilitating constraints on the UAV’s velocity. This approach, however, is sensitive to precise
parameter tuning. Furthermore, due to the cascade nature of this approach, a delay is in-
troduced, resulting in inferior performance compared to controllers that are more informed.
Therefore, this chapter introduces a state estimator that enables the use of state-dependent
controllers.

3.1 Stochastic Systems

A state estimator is defined as a function or mapping h(·), responsible for determining
the internal state based on observed data and system dynamics:

x̂[t] = h(u[0],y[0], . . . ,u[t− 1],y[t− 1]) = h(Dt−1), (3.1)

where ·̂ denotes an estimated value and Dn is a sequence of observed inputs and outputs up
to and including the nth sample. If the system is deterministically modeled, all variables in
(3.1) are deterministic, and the function h(·) is often termed a state observer. However, as
most systems contain a certain level of stochasticity, it can be useful to adopt a probabilistic
system model and treat the mentioned variables as random variables.

The model of a stochastic system can be formulated in multiple ways depending on the
use case. One of the most common representations is the following discrete-time model, which
incorporates additive noise:

x[t+ 1] = f(x[t],u[t]) + v[t],

y[t] = Cx[t] + e[t],
(3.2)

Here, v[t] stands for the process noise, while e[t] symbolizes measurement noise, both at
sample t. Given that our model is inherently imperfect - as some physical phenomena were
deliberately ignored to simplify it - the state transition introduces some level of error. This
error is represented by the process noise. Furthermore, measurements often deviate from the
ground truth value due to sensor noise. This discrepancy is accounted for by the measurement
noise.
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Assume both process and measurement noises to be independently and identically dis-
tributed, drawn from a joint normal Probability Density Function (PDF):

p

([
v[t]
e[t]

])
= N

(
0,

[
Q S
ST R

])
.

Independence of samples implies that the noise isn’t time-correlated. This noise model
is termed Gaussian white noise, and the class of estimators that assumes it is referred to
as Kalman filters. The concept of stochastic systems and filtering is visually represented in
Fig. 3.1.

Plant

State
estimator

+
u y

x̂

ev

Figure 3.1: General concept of stochastic systems and state estimation

3.2 Bayesian Justification

Since the system’s state and measurements are modelled as random variables it is rea-
sonable to express the model in terms of probabilities:

state transition model p(x[t+ 1]|x[t],u[t],y[t]),
measurement model p(y[t]|x[t],u[t]). (3.3)

Consider the typical discrete scheme where a measurement is first obtained, followed by a
state transition calculation. If there’s a correlation between the process and measurement
noise, indicated by S ̸= 0, the measurement can bring insights about the process noise. This
information can be harnessed to enhance the precision of the predicted state. As a result, the
state transition model is in general conditioned by this measurement. Nevertheless, in many
instances, the absence of correlation is presumed, leading to a simplified state transition model:

p(x[t+ 1]|x[t],u[t],y[t]) = p(x[t+ 1]|x[t],u[t]).

This assumptions allows to execute following steps separately.

Assuming that a conditioned PDF p
(
x[t]|Dt−1

)
, alongside the observations y[t],u[t],

are provided, the PDF can be updated as follows:

p
(
x[t]|Dt

)
=
p
(
y[t]|x[t],u[t],Dt−1

)

p (y[t]|u[t],Dt−1)
p
(
x[t]|u[t],Dt−1

)
∝ p (y[t]|x[t],u[t])︸ ︷︷ ︸

measurement model

(
x[t]|Dt−1

)
︸ ︷︷ ︸

prior

. (3.4)

When executing the final step of (3.4), two pivotal concepts are invoked:
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• By definition, the state provides comprehensive information about the system. Hence,
any further observations are redundant.

• A natural control condition is assumed, implying that the control is based on previous
observations and doesn’t introduce new insights.

Upon employing (3.4) to filter the state estimate, the state’s future trajectory can be
projected as:

p
(
x[t+ 1],Dt

)
=

∫
p
(
x[t+ 1]|x[t],Dt

)
︸ ︷︷ ︸
state transition model

p
(
x[t]|Dt

)
︸ ︷︷ ︸
updated prior

dx[t]. (3.5)

As already indicated, this sequential approach is possible thanks to assumption on uncorre-
lated noise.

Subsequent to these steps, the resulting Probability Density Function (PDF) updates
in accordance with the current time-frame, transitioning from p

(
x[t]|Dt−1

)
to p

(
x[t+ 1]|Dt

)
.

Within this context, (3.4) is termed the data-update, whereas (3.5) is designated as the time-
update. The iterative procedure, encapsulated by (3.4) and (3.5), underpins the foundational
theory for all Kalman filters operating under the assumption S = 0. Distinct Kalman filter
variants diverge based on the model, referenced in (3.3), they adopt or implementation of
steps (3.4) and (3.5).

3.3 Linear Kalman Filter

This section introduces a widely adopted estimation technique known as the Linear
Kalman Filter (LKF). It represents as a pivotal advancement within the control system do-
main, extending the applicability of automatic control to domains previously unexplored by
this field. Arguably, one of the most notable accomplishments of the LKF was its pivotal
contribution to the successful moon landing.

3.3.1 Linear Discrete-Time Stochastic Systems

Linear Kalman filter formulates stochastic model (3.3) as a linear discrete-time state
space model:

x[t+ 1] = Ax[t] +Cu[t] + v[t],

y[t] = Cx[t] +Du[t] + e[t].
(3.6)

Given that the mean values of noise are zero, the dynamics of these mean values align with
the deterministic discrete-time LTI state space:

x̂[t+ 1] = Ax̂[t] +Cu[t],

ŷ[t] = Cx̂[t] +Du[t],
(3.7)

where input u[t] is considered deterministic, since we have full authority over it. Similarly
dynamics of error term, x̃[t] = x[t]− x̂[t], can be expressed as:

x̃[t+ 1] = x[t+ 1]− x̂[t+ 1] = Ax̃[t] + v[t],

ỹ[t] = y[t]− ˆy[t] = Cx̃[t] + e[t].
(3.8)
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Using model (3.8), one can derive the evolution of the covariance matrix:

cov

([
x[t+ 1]
y[t]

])
= ε

([
x̃[t+ 1]
ỹ[t]

] [
x̃[t+ 1]
ỹ[t]

]T)
=

[
APx[t]A

T +Q APx[t]C
T + S

CPx[t]A
T + ST CPx[t]C

T +R

]
, (3.9)

where Px[t] represents the covariance matrix of the state at sample t.

3.3.2 Optimality

Given the linearity of the measurement model, the data-update process, as outlined in
(3.4), remains a linear function of the current observation. As demonstrated in [31], the Linear
Kalman Filter stands as the optimal linear mean square estimator (LMSE), irrespective of
the noise distribution. In scenarios with a normal distribution, the mean square estimate
(MSE) manifests as a linear function of the observation, thereby aligning with the LMSE.
Under the assumption of Gaussian white noise, the Linear Kalman Filter achieves optimal
performance in minimizing mean square error when compared with all possible estimators,
inclusive of nonlinear variants. Nevertheless, in situations where this Gaussian assumption is
not satisfied, the LKF retains its position as the optimal estimator within the realm of linear
approaches.

3.3.3 Linear Mean Square Estimate

Estimation is in general defined as a task of finding estimate ˆ̄x(ȳ), where x̄ represents
the random vector subject to estimation, and ȳ denotes the observed data’s random vector.
Relation between these two vectors is defined by a joint probability density function p(x̄, ȳ).
Quality of an estimate is often determined by an objective function formulated as an mean
square error:

JMS = ε((x̄− ˆ̄xMS(ȳ))
T (x̄− ˆ̄xMS(ȳ))) =

∫ ∫
(x̄− ˆ̄xMS(ȳ))

T (x̄− ˆ̄xMS(ȳ))p(x̄, ȳ) dx̄ dȳ

(3.10)
To acquire the mean square estimate, one must minimize (3.10). However, the challenge lies
in accessing the joint probability density function p(x̄, ȳ), which is typically intricate to de-
termine in practical scenarios.

As a simplifying measure, the estimate is often postulated to be a linear function of the
observation, leading to the formulation of a linear mean square estimate:

ˆ̄xLMS(ȳ) = Aȳ + b. (3.11)

Furthermore, it’s generally accepted that both vectors, x̄ and ȳ, are drawn from a joint normal
probability density function:

p

([
x̄
ȳ

])
= N

([
µx
µy

]
,

[
Pxx Pxy

Pyx Pyy

])
.

Plugging (3.11) into (3.10) results in the objective function for the linear mean square estimate:

JLMS = E((x̄−Aȳ − b)T (x̄−Aȳ − b)) = tr
(
E
(
(x̄−Aȳ − b)(x̄−Aȳ − b)T

))
=

tr
(
Pxx +A(Pyy + µyµ

T
y )A

T + (b− µx)(b− µx)
T + 2Aµx(b− µx)

T − 2APyx

)
, (3.12)
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where tr(·) denotes a trace of matrix. Minimum of (3.12) is found by taking a derivative of
the objective function with respect to A and b and declaring it to be equal to zero:

∂JLMS

∂A
= 2A(Pyy + µyµ

T
y ) + 2(b− µx)µ

T
y − 2Pxy = 0,

∂JLMS

∂b
= 2(b− µx) + 2Aµy = 0.

(3.13)

Set of equation (3.13) is solved by:

A = PxyP
−1
yy , b = µx −PxyP

−1
yy µy (3.14)

Inserting (3.14) into (3.11) provides a closed form for the linear mean square estimate:

ˆ̄xLMS(ȳ) = µx +PxyP
−1
yy (ȳ − µy). (3.15)

The error covariance associated with the mean square estimate is expressed as:

Pˆ̄xLMS
= E

((
x̄− ˆ̄xLMS(ȳ

) (
x̄− ˆ̄xLMS(ȳ)

)T)
=

E
((

(x̄− µx)−PxyP
−1
yy (ȳ − µy)

) (
(x̄− µx)−PxyP

−1
yy (ȳ − µy)

)T)
= Pxx −PxyP

−1
yy Pyx

(3.16)

These findings directly apply to the LKF and play a critical role in formulating the LKF
algorithm.

3.3.4 Algorithm

Drawing upon the foundational theory outlined in Section 3.2 and synthesizing the
results from Sections 3.3.3 and 3.3.1, this section lays out the algorithmic architecture of the
linear Kalman filter (LKF).

Given a predetermined conditional PDF of the state as:

p
(
x[t]|Dt−1

)
= N (x̂[t|t− 1],P[t|t− 1]) .

By utilizing the measurement model, the joint conditional PDF of both the state and the
output can be articulated as:

p

([
x[t]
y[t]

]∣∣∣∣Dt−1

)
= N

([
x̂[t|t− 1]
ŷ[t|t− 1]

]
,

[
P[t|t− 1] P[t|t− 1]CT

CP[t|t− 1] CP[t|t− 1]CT +R

])
. (3.17)

Data Update

The formulations for the data-update step, as defined by (3.4), are derived by integrating
(3.17) into both (3.15) and (3.16). Thus, the data-updated representation of the estimate is
expressed as:

x̂[t|t] = x̂[t|t− 1] + L[t](y[t]−Cx̂[t|t− 1]−Du[t]︸ ︷︷ ︸
ŷ[t|t−1]

),

L[t] = P[t|t− 1]CT
(
CP[t|t− 1]CT +R

)−1
.

Here, L[t] is designated as the Kalman gain. Concurrently, the covariance associated with the
estimate is updated as:

P[t|t] = P[t|t− 1]− L[t]CP[t|t− 1].
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Time Update

The time-update step (3.5) applies the transition model for the mean value, as given by
(3.7), and can be concisely represented by:

x̂[t+ 1|t] = Ax̂[t|t] +Bu[t].

Correspondingly, the expression governing the time-updated covariance of the estimate em-
ploys the derived covariance dynamics from (3.9), resulting in:

P[t+ 1|t] = AP[t|t]AT +Q.

The procedural steps, coupled with the associated PDFs of the random variables, are il-
lustrated in Fig. 3.2. The LKF algorithm’s iterative cycle is triggered by sequentially incoming
measurements. The process initiates with a data update, subsequently availing the resulting
estimate to the control system. This is followed by the time update phase, post which the
algorithm awaits the next measurement input. Crucially, the decoupling of the estimation into
two distinct steps is feasible due to the underlying assumption of uncorrelation between the
process and measurement noise. In situations where S ̸= 0, the estimation would necessitate
a unified approach, culminating in a Riccati equation formulation.

Data update

Time update

N (x̂[t|t],P[t|t]) N (x̂[t+ 1|t],P[t+ 1|t])

N (ŷ[t],R)

tt+ 1

Figure 3.2: Kalman filter scheme

3.3.5 Practical Aspects

Real-world applications often pose the challenge of ascertaining the precise covariance
values for both process and measurement noise. These unknowns render their determination
nontrivial, leading to a common approach where they serve as tuning parameters. To stream-
line the tuning process, both covariance matrices are frequently configured to be diagonal.

The process noise covariance, Q, serves as a metric of trust in the model. A smaller
diagonal entry in Q signifies a heightened trust in the associated state variable’s transition
model. This implies that the estimator would place a higher reliance on the model predictions.
Analogously, a smaller entry in the measurement noise covariance matrix, R, underscores an
increased confidence in the corresponding sensor’s measurement, directing the estimator to
lean more towards actual sensor readings.
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Crucially, it is the relative proportion between the elements of Q and R that dictates
the behavior of the estimator rather than their absolute magnitudes. The calibration of these
parameters revolves around striking a balance between the smoothness of the state estimate
(characterized by a small Q and large R) and its responsiveness (typified by a large Q and
small R).
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Chapter 4

Model Predictive Control

In the realm of optimal control problem formulation, there are typically two primary
methodologies based on the element subjected to optimization. The indirect approach aims
to optimize performance through the derivation of an optimal controller. Once this optimal
controller is identified, it remains fixed, negating the need for subsequent optimization. While
this approach is computationally efficient, its versatility is limited by the fixed nature of the
derived controller. Conversely, the direct approach directly optimizes control actions. This
method necessitates online optimization, implying that an algorithm capable of real-time
optimization must be incorporated. Within the direct approach domain, MPC stands out as
a particularly prominent methodology.

MPC has witnessed a surge in its application over the past decade. Its origins can
be traced back to the process control field, where it begun to be utilized in chemical plant
operations starting in the 1980s. Given the inherently slow dynamics of chemical processes,
there was no pressing need for rapid control action computation, making the computationally-
intensive MPC a viable choice for such scenarios. However, as computational capabilities
advanced, coupled with algorithmic refinements, MPC began to permeate other sectors. This
expansion included fields characterized by rapid dynamics, such as automotive and UAV
industry.

4.1 Discrete-Time Optimal Control Problem on Finite Hori-
zon

To delve deeper into the nuances of MPC, one must first familiarize with the founda-
tional concept of discrete-time optimal control problem on finite horizon. In this setup, envision
a system regulated by a digital feed-forward controller over a span of N iterations. The pri-
mary objective is to determine an optimal sequence of control actions, u[t], . . . ,u[t+N ], that
adheres to the designated objective function J(·). This objective function effectively acts as a
metric, or norm, to assess the quality of control, gauging performance based on a combination
of the system’s states and control actions:

J (u[t], . . . ,u[t+N ],x[t], . . . ,x[t+N ]) . (4.1)

However, directly tasking a generic optimization solver to minimize the objective func-
tion (4.1), without acknowledging the intrinsic interdependencies amongst optimization vari-
ables, would be useless. These interdependencies stem from the system’s inherent transition
model:

x[k + 1] = f(x[k],u[k]), k = t, . . . , t+N − 1. (4.2)

In accordance with the recursive nature of (4.2), a defined initial state is vital:

x[t] = x0. (4.3)
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Thus, equations (4.2) and (4.3) serve as mandatory constraints, that specify the dynamical
context of the task.

For enhanced similarity to real-world scenario, incorporating additional constraints is
often deemed advantageous. Recognizing that every actuator possesses inherent limitations,
passing these constraints to the solver is beneficial:

umin ≤ u[k] ≤ umax, k = t, . . . , t+N − 1. (4.4)

Furthermore, certain system states may threaten stability, particularly pertinent in the UAV
context. The Safe Flight Envelope (SFE), as outlined in [15], defines a set of conditions
that prevent loss of control. Implementing SFE safeguards ensures the UAV’s operational
parameters remain within this safe envelope. A pragmatic approach within the MPC paradigm
involves constraining states to remain encapsulated within the SFE:

xmin ≤ x[k] ≤ xmax, k = t, . . . , t+N − 1. (4.5)

One of MPC’s standout attributes is its systematic capability to impose constraints on
both the control actions and the system states. While alternative control strategies might offer
similar functionalities, their execution lacks the finesse and clarity inherent to MPC. Tradi-
tional controllers, when pushed to their operational limits, tend to underperform compared to
their output under more moderate conditions 1. This underscores MPC’s performance consis-
tency, irrespective of the proximity of control actions and states to their saturation thresholds.

Combining the objective function (4.1) with constraints (4.2), (4.3), (4.4), and (4.5)
culminates in the comprehensive formulation of the discrete-time optimal control problem on
a finite horizon:

min
u[t],...,u[t+N−1]
x[t],...,x[t+N ]

J (u[t], . . . ,u[t+N − 1],x[t], . . . ,x[t+N ]) ,

s.t. x[k + 1] = f(x[k],u[k]),

x[t] = x0,

umin ≤ u[k] ≤ umax,

xmin ≤ x[k] ≤ xmax, k = t, . . . , t+N − 1.

(4.6)

It’s crucial to note that the control action u[t + N ] can be excluded from the optimization
problem’s formulation since it doesn’t influence states within an N sample horizon. As alluded
to earlier, the sequence resulting from (4.6) possesses an open-loop characteristic. The result-
ing control actions function as feed-forward directives, while states might act as a reference
trajectory.

4.2 MPC Control Loop

In order to establish a feedback controller, the discrete-time optimal control problem
is solved in each control iteration. This involves setting the initial condition x0 to the cur-
rent state estimate x̂[t], followed by the solution of the optimization problem (4.6). Despite
obtaining full sequence of control actions and trajectory, only the first control action u[t] is ex-
ecuted, rendering the remainder redundant. Consequently, from the user’s perspective, MPC

1A good example is a common PID and the heuristic solution of anti-windup
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functions as a black box that takes the current state as input and returns the appropriate
control action. The distinction between MPC and state feedback may not be apparent to the
user, as in certain cases, the MPC solution can yield an analytical solution equivalent to state
feedback. This assertion can be formally concluded through proof in 4.4.4.

The parameter N , indicating length of the open-loop sequence, is referred to as the
prediction horizon in the context of MPC. Given the typical continuity of the controlled
system, it is appropriate to interpret the prediction horizon not only in terms of iterations,
but also as a span of continuous time. Thus, the continuous prediction horizon is computed
as Nt = N Ts, where Ts denotes the discretization interval of the transition model.

The computational demand of MPC is notably significant due to the optimization being
performed in every iteration. The dimensionality of the optimization problem is inherently
determined by the prediction horizon. Thus, reducing the prediction horizon diminishes the
computational burden of MPC. Nonetheless, shortening the continuous prediction horizon
inevitably sacrifices the consideration of the further-ahead future, resulting in compromised
performance. One could argue that this can be tackled by increasing the discretization period
Ts. This however again compromises performance, since the precision of the model is reduced
and the controller looses the ability to compensate for fast dynamics. Hence, a common
technique aimed at reducing computational burden of the MPC while not having significant
impact on performance, is presented.

4.2.1 Reduction of Dimensions

In the context of a discrete-time optimal control problem, the reliability of predicted
states and associated control actions diminishes as the prediction horizon extends further into
the future. This assertion is anchored in two primary considerations:

1. The transition model employed for predictive purposes is inherently imperfect. As such,
errors within the model are cumulatively integrated, magnifying with each subsequent
predicted state. This progressive accumulation renders the control actions aligned with
these states progressively less relevant.

2. Inherently, the future remains an unpredictable entity. Certain environmental factors
remain beyond our control and evade straightforward modeling. Within the UAV con-
text, these factors may encompass unpredictable disturbances, such as wind gusts, or
unforeseen shifts in reference points.

Supporting this notion, empirical data from simulations and experiments frequently demon-
strates a convergence of control actions towards a steady-state value as predictions reach
further into the future. Consequently a compelling idea to allocate more emphasis to con-
trol actions intended for the imminent future, while de-prioritizing actions intended for more
distant time horizons arises.

In response, one can introduce a control horizon Nc ≤ N . So far, the prediction horizon
determined the number of future states to be optimized and matched the number of optimized
control actions. Analogously, the control horizon governs the number of consecutive control
actions available for shaping the desired behavior. This is manifested in the modification of
the control actions constraint within the original optimization problem (4.6) as follows:

umin ≤ u[j] ≤ umax, j = t, . . . , t+Nc − 1,

u[l] = 0, l = t+Nc, . . . , t+N − 1.
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Consequently, this technique reduces the number of optimization variables, while retain-
ing the same time frame for penalizing states. Extensive experimentation demonstrates that
this approach substantially reduces computational resource demands without substantially
compromising performance. The conserved resources can then be redirected towards extend-
ing the prediction horizon, which significantly outweighs the marginal performance decline
due to the shortened control horizon.

4.3 Context

While MPC embraces numerous sub-variants, the foundational concept delineated ear-
lier remains a constant. The chief differentiation between these subclasses lies in the nature
of the transition model, f(x[t],u[t]), which inherently shapes the constraints of the associated
optimization problem. When the model is linear, it’s categorized under Linear Model Predic-
tive Control (LMPC). In contrast, a nonlinear state transition model designates the method
as Nonlinear Model Predictive Control (NMPC).

Parallel to the transition model’s influence, the choice of the objective function provides
another dimension of classification. The flexibility of this function allows customization to
specific tasks; however, its formulation often poses challenges. Unsuitable design could result
in a non-convex function, trapping solvers in local optima, or potentially leading to undesirable
behaviour. Therefore, common objective functions are often based on the notion of p-norms,
which measure the distance between predicted and target states, as well as the control effort.
As depicted in Table 4.1, each p-norm possesses a unique statistical justification tailored for
varied applications. For instance, scenarios demanding heightened robustness frequently resort
to the l1 norm [38].

p-norm name definition minimizer

l1 Manhattan norm ||x||1 :=
∑n

i=1 |xi| median

l2 Euclidean norm ||x||2 :=
√
xTx mean

l∞ Infinity-norm ||x||∞ := max(|x1|, . . . , |xn|) mid-range

Table 4.1: Overview of commonly used p-norms and their minimizers

Objective function based on l1 or l∞ norm can be formulated as a Linear Program-
ming (LP), while l2 norm leads to Quadratic Programming (QP). Consequently, in scenarios
involving the previously mentioned objective functions paired with LMPC, the resulting prob-
lem is convex. A plethora of QP or LP solvers can be therefore applied, allowing for primarily
focus on system modeling, horizon selection, and objective function parameter tuning, rather
than on optimization solver implementation.

Contrastingly, Nonlinear Model Predictive Control (NMPC) poses a more intricate op-
timization problem. Even in the presence of a convex objective function, the introduction
of nonlinear constraints most often results in the final problem being in non-convex do-
main, demanding sophisticated optimization strategies. Predominantly, such strategies em-
ploy Newton-type optimization schemes encapsulated within shooting or collocation methods
[26].

Ensuring precise UAV control down to orientation and thrust levels necessitates a con-
troller operating in time periods of tens of milliseconds. Achieving this temporal precision
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is more seamless with LMPC. Given the assigned task of tracking target UAV’s position, it
becomes reasonable to minimize the average tracking error, thus favoring a quadratic objec-
tive function. Consequently, rest of this sections will predominantly focus on the nuances of
linearly constrained quadratic cost MPC - QP-MPC.

4.4 Formulations of QP-MPC

Building on the previously defined criteria of a quadratic objective function and a linear
model, these parameters can be explicitly reflected in the foundational formulation (4.6),
resulting in:

min
u[t],...,u[t+N−1]
x[t],...,x[t+N ]

1

2

t+N−1∑

k=t

( xT [k]Qx[k] + uT [k]Ru[k]
)
+

1

2
xT [t+N ]Sx[t+N ],

s.t. x[k + 1] = Ax[k] +Bu[k],

x[t] = x0,

umin ≤ u[k] ≤ umax,

xmin ≤ x[k] ≤ xmax, k = t, . . . , t+N − 1.

(4.7)

The optimization problem (4.7) is often called Quadratic Programming Optimal Control Prob-
lem (QP-OCP). The summative component within the objective function, termed the running
cost, primarily penalizes control actions and states, excluding the terminal state. The emphasis
on penalizing the terminal state, described as the terminal cost, tends to be more pronounced.
This is attributable to the terminal state’s pivotal role in approximating the state’s evolu-
tion beyond the horizon. To ensure strict convexity of the objective function, matrices Q and
S must be positively semi-definite (Q,S ⪰ 0), while matrix R should be positively definite
(R ≻ 0).

For effective deployment of a universal QP solver, the aforementioned formulation de-
mands transformation into a standard QP configuration:

min
z

zTWz+ cT z,

s.t. Vz ≤ b.
(4.8)

Certain solvers are designed to accommodate equality constraints. Clearly single equality
constraint is functionally equivalent to a pair of inequalities:

Vz = d ⇔ (Vz ≤ d ∧ d ≤ Vz) .

Therefore, in the sake of comprehensive analysis, we shall consider the possibility of equality
constraints in subsequent discussions, thus not constraining our exploration to inequalities
exclusively.

4.4.1 Simultaneous (Sparse) Formulation

Let us stack states and control actions to following vectors:

x̄T =
[
xT [t+ 1] . . . xT [t+N ]

]
, ūT =

[
uT [t] . . . uT [t+N − 1]

]
(4.9)
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and similarly the cost-matrices:

Q̄ =




Q
. . .

Q
S


 , R̄ =




R
. . .

R




and also the state-space matrices:

Ā =




0
A 0

. . .
. . .

A 0


 , B̄ =




B
. . .

B


 , Ā0 =




A
0
...
0


 . (4.10)

Optimization problem (4.7) can be then rearranged using (4.9) - (4.10) into form (4.8) as
following:

min
x̄,ū

1

2




x̄
ū
1



T 


Q̄ 0 q̄
0 R̄ r̄
q̄T r̄T 0






x̄
ū
1


 ,

s.t. x̄ = Āx̄+ B̄ū+ Ā0x[t],

x[t] = x0,

ūmin ≤ ū ≤ ūmax,

x̄min ≤ x̄ ≤ x̄max.

(4.11)

Here ūmin, x̄min, ūmax and x̄max are vectors of stacked lower and upper limits respectively
and r̄, q̄ are linear coefficients corresponding to c term in (4.8). Form (4.11) is very flexible.
Notably, the bounds placed on both states and control actions, along with the quadratic
and linear coefficients, can be adjusted independently for each sample. Additionally, even the
underlying model can be modified on a per-sample basis, underscoring the adaptability of this
formulation.

4.4.2 Sequential (Dense) Formulation

One could argue that given the initial state, transition model and sequence of control
actions, the future states can be determined. This is a key idea of the alternative, sequential,
formulation. By considering the linear transition model, it becomes evident that a state can
be expressed as a function of the preceding state and the applied control action:

x[t+ 1] = Ax[t] +Bu[t].

Taking this notion a step further, by substituting for x[t+ 1], we derive:

x[t+ 2] = Ax[t+ 1] +Bu[t+ 1] = A2x[t] +ABu[t] +Bu[t+ 1].

This process can be extended, resulting in the ability to express an arbitrary state x[t + n]
as a function of any previous state x[t] and the sequence of control inputs from that moment
until iteration t+ n:

x[t+ n] = Anx[t] +An−1Bu[t] +An−2Bu[t+ 1] + · · ·+Bu[t+ n− 1].
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This relation can be used to express whole trajectory. Upon being organized in matrix form,
a coherent structure emerges:



x[t+ 1]
x[t+ 2]

...
x[t+N ]




︸ ︷︷ ︸
x̄

=




B 0 0 0
AB B 0 0
...

...
. . .

...
AN−1B AN−2B . . . B




︸ ︷︷ ︸
B̂




u[t]
u[t+ 1]

...
u[t+N − 1]




︸ ︷︷ ︸
ū

+




A
A2

...
AN




︸ ︷︷ ︸
Â

x[t] (4.12)

This relationship is useful for eliminating states in the objective function of the simul-
taneous formulation (4.11), resulting in:

J̃(ū,x[t]) =
1

2

(
B̂ū+ Âx[t]

)T
Q̄
(
B̂ū+ Âx[t]

)
+

1

2
ūT R̄ū+

1

2
xT [t]Qx[t] =

1

2
ūT
(
B̂T Q̄B̂+ R̄

)

︸ ︷︷ ︸
H

ū+ xT [t] ÂT Q̄B̂︸ ︷︷ ︸
FT

ū+
1

2
xT [t]

(
ÂT Q̄Â+Q

)
x[t] (4.13)

Since the current state x[t] is a given, the final element of (4.13) is constant. While its omission
alters the optimum, the optimizer remains unaffected. The identity (4.12) can be also leveraged
in the constraints on states. The formulation of sequential MPC takes the following shape:

min
ū

1

2
ūTHū+ xT [t]FT ū,

s.t. x[t] = x0,

ūmin ≤ ū ≤ ūmax,

x̄min ≤ B̂ū+ Â ≤ x̄max.

(4.14)

Presented procedure is often referred to as condensation.

4.4.3 Formulation Choice

A comparison between the simultaneous (4.11) and sequential (4.14) formulations pri-
marily underscores differences in the model incorporation methodologies. The simultaneous
approach integrates the model by enforcing relations between the optimized variables via con-
straints. Conversely, the sequential formulation embeds the model directly into the objective
function, optimizing solely over control actions.

At first glance, the sequential formulation might appear to be the superior choice due
to its dimensionality reduction feature. However, this assumption is misleading. The simulta-
neous method’s advantage lies in its generation of sparse matrices. Solvers can exploit such
sparse structures, resulting in enhanced efficiency compared to case of non-sparse problems of
equivalent dimensions. In [34] it is concluded that while the dense formulation usually outper-
forms in standard scenarios, its efficiency degrades with respect to longer horizons. Specifically,
using the Interior Point Method [29], the dense formulation’s scaling with horizons is cubic.
However, for MPC challenges necessitating extended horizons, the sparse approach provides
significant speedup due to its linear scaling relative to horizons. Thus, the choice of formulation
is tied to the problem’s nuances.

Furthermore, as highlighted in [19], the decision between sparse (simultaneous) and
dense (sequential) formulations need not be binary. Over recent years, the development of
partial condensing algorithms and solvers has affected this choice. As Axehill noted:

CTU in Prague Department of Cybernetics



4. MODEL PREDICTIVE CONTROL 34/62

‘control engineers working with MPC should not ask whether to formulate the
problem in a sparse or dense way, but instead what is the correct level of sparsity
for the problem at hand to obtain maximum performance‘ [19].

The essence of partial condensation is the reformulation of the original problem into mul-
tiple smaller dense blocks. When these blocks are diagonally merged, the resulting matrix,
formulating the optimization problem, emerges. The matrix’s sparsity is intuitively depen-
dent on the dense block’s dimensions. A minimal block size yields a formulation identical to
the common sparse one. Conversely, maximizing the block size culminates in a formulation
mirroring the dense one.

4.4.4 Solution of Unconstrained QP-MPC

While QP-MPC typically necessitates iterative solutions, a closed-form solution is ob-
tainable when neither the control actions nor states are constrained. Given the convex nature
of the objective function, it possesses a global extremum. When the optimization set remains
unconstrained, the optimization problem becomes a matter of locating the gradient of the
objective function where it equates to the zero vector:

∇ūJ̃(ū,x[t]) = Hū+ Fx[t] = 0.

This equation naturally yields a sequence of control actions defined by:

ū = −H−1Fx[t].

Given that MPC utilizes only the initial control action, the comprehensive formula for
the control action to be employed is:

u[t] = −
[
I 0 . . . 0

]
H−1Fx[t].

This finding is significant. The unconstrained QP-MPC operates as a unique form of state
feedback. Consequently, its deployment is straight-forward. The omission of an optimization
solver not only simplifies the implementation but also ensures that computational demands
are minimal.

4.4.5 Tracking

So far the objective function was formulated to solve a regulation problem, i.e. the
problem of driving the system to the zero state. The task of this thesis is however tracking of
target trajectory or state. For this purpose the objective function is modified such that the
tracking error e[t] = xr[t]−x[t] is penalized instead of the state itself. After substitution into
the objective function from (4.7), the expression can be further rearanged as described by
(4.15). Setting the reference consequently boils down to adjusting linear parameter of state,
denoted by q and augmenting it to the final q̄ from (4.11).
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1

2

t+N−1∑

k=t

(
(xd[k]− x[k])TQ(xd[k]− x[k]) + uT [k]Ru[k]

)
+

1

2
(xd[t+N ]− x[t+N ])TS(xd[t+N ]− x[t+N ]) =

const.︷ ︸︸ ︷

�����������
1

2
xT
d [t+N ]Sxd[t+N ]

q[N ]︷ ︸︸ ︷
−xT

d [t+N ]Sx[t+N ] +
1

2
xT [t+N ]Sx[t+N ]+

t+N−1∑

k=t


�������1

2
xT
d [k]Qxd[k]

︸ ︷︷ ︸
const.

−xT
d [k]Qx[k]︸ ︷︷ ︸
q[k−t]

+
1

2
xT [k]Qx[k] +

1

2
uT [k]Ru[k]


 (4.15)
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Chapter 5

Implementation Aspects

Building on the theoretical frameworks of LKF and MPC presented in Chapters 3 and
4 respectively, this chapter delves into their pragmatic implementation. Notably, it demon-
strates how the MPC technique can be utilized for trajectory generation. While certain soft-
ware platforms, like Matlab, offer automated code generation for control loop components, the
resulting code is often not very human-readable, making subsequent adjustments and main-
tenance cumbersome. As an alternative, a manual implementation was carried out in C++.
The designated execution environment for the developed code is an onboard computer, such
as the Intel NUC, equiped with a Linux operating system.

The practical realization of the system depends on several parameters, the tuning of
which largely draws from empirical methods. To facilitate this, the Gazebo-based simulation
platform [3] was utilized. Since the actual implementation poses limited challenges, especially
when leveraging external libraries, the main objective of this chapter is to offer a pragmatic
perspective on methods that were previously elaborated in a theoretical context.

5.1 Model

At the core of every component lies the system’s model. It’s encapsulated as a class
shared across all modules, offering nonlinear, continuous LTI state-space and discrete LTI
state-space representations. Furthermore, this centralized model provides interfaces for both
reading and modifying system parameters1.

To simplify both the model and the subsequent components, certain assumptions are
made. The dynamics of thrust, for instance, are neglected. It is presumed that the exerted
thrust mirrors the desired value precisely, implying a flawless inner control loop. Consequently,
this related state is omitted from the model. A keen reader may have noticed in (2.29) that
linearizing the model at ψ = 0 results in the UAV’s yaw angle having no influence over other
state variables. Within the linear model, the yaw dynamics operate independently from the
other system’s states. However, this abstraction remains valid only in proximity to ψ = 0. As
there is no explicit requirement to manage the UAV’s heading, the desired yaw angle defaults
to zero. This relies on the flight controller’s capability to accurately track this value, allowing
the yaw state variable to be entirely removed from the model. Such simplifications not only
facilitate the employment of a linear estimator but also enhance the computational efficiency
of the MPC.

In the context of system parameters, it is assumed that prior knowledge of these parame-
ters is available. These parameters can be determined by measuring the mechanical attributes
of the system. However, obtaining accurate parameters for the flight controller’s model can
be more challenging. A systematic approach involves conducting a human-supervised flight

1This capability offers prospects for adaptive adjustments to the system model in subsequent work.
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and then applying linear regression to the acquired data, aiming to minimize the least square
error. For a more detailed explanation of the method outlined, refer to [9] and [20].

5.2 Kalman Filter

The LKF was implemented using the Eigen linear algebra library, ensuring efficient and
numerically stable matrix operations. With the computational elegance offered by Eigen, the
code becomes rather straightforward, allowing primary focus on tuning of parameters and
practical adaptations.

During the LKF implementation, the idea of transitioning away from the near-perfect
localization provided by the mocap system emerged. Such a shift could complicate estimation
but also paves the way for broader deployment capabilities. The utilized simulation platform,
a component of the MRS system [3], can simulate RTK GPS and the position estimate rooted
in this localization method. Hence, the LKF was adapted and refined to rely on this estimation
rather than the almost exact mocap system.

5.2.1 Tuning

As discussed in Section 3.3.5, empirical tuning is a prevalent approach, particularly when
dealing with parameters like noise covariance that, despite their statistical interpretations, are
often elusive. Ground truth measurements, essential for noise assessment, are seldom available.
This leaves one estimating noise, ironically creating an estimation loop. Similarly, process noise
poses challenges due to the inherent unmeasurability of all system states.

Despite these challenges, empirical noise covariance tuning was conducted in the sim-
ulator. Striking a balance between rapid response and estimation smoothness is inherently
subjective. Ideally, the system’s response is swift with minimal steady-state error, but noise
should remain low enough to ensure smooth control. This iterative tuning process yielded the
following covariance matrices:

parameter value

x y z ϕl θl ẋ ẏ ż ϕ̇l θ̇l θ ϕ
QKF diag([ 1 1 1 1 1 10 10 100000 100 100 1 1 ])
RKF diag([ 100 100 100 1 1 ])

x y z θ ϕ

Table 5.1: Overview of Kalman filter’s parameters

It should be noted that an inconsistency emerged during the tuning process. The derived
model from Chapter 2 predicted that, in a steady state, propeller force should counteract the
combined gravitational forces of the UAV and the payload. However, simulation data indicated
a marginally larger steady-state control input, prompting the need for an enlarged variance
in the vertical velocity process noise, as reflected in QKF .
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5.2.2 Asynchronous Scheme

While the control loop is configured to operate at a consistent frequency, real-world
scenarios sometimes induce irregularities, causing control iterations to either delay or pre-
empt. The inherent limitation of the standard LKF, which leans on a discrete state-space
model, is its inability to accommodate these inconsistencies, especially during the time-update
phase. To tackle this, a dynamic approach was implemented that utilizes the continuous state-
space model. By discretizing this model based on the current interval between measurements,
it ensures a more adaptive and accurate time-update step. The rest of the algorithm remains
unchanged, leading to standard date-update.

5.2.3 Disturbance Estimation

The disturbance estimator stands as a valuable extension to the Kalman filter, providing
insights in diverse contexts, whether it’s wind disturbances during flight or unexpected envi-
ronmental interactions. Moreover, it presents arguably the most systematic route to negate
steady-state errors when employing an MPC.

However, implementing a disturbance estimator presents its own complexities. Given the
UAV’s perspective, the load’s actions manifest as disturbances. This means that the load’s
state is inferred from these disturbances, albeit indirectly, by extracting insights from the UAV
states and control inputs. A potentially more refined approach might involve introducing a
novel state to represent disturbances and basing the load state estimation on this variable.
This state variable could be also utilized to resolve steady state error and other issues. While
attempts inspired by [20] were initiated, they did not yield efficient outcomes. Future work
may revisit and perfect this aspect.

5.3 MPC

Implementing the MPC in a real-world scenario involves addressing a multitude of
practical challenges:

1. Reference Definition: It’s essential to determine the nature of the reference.
• Is it a single point or an entire trajectory?
• How feasible are the given references?
• Are the references known in advance or are they dynamic?

2. Computational Aspects:
• Establishing suitable prediction and control horizons is critical.
• The choice of MPC formulation and the corresponding solver must align with the
specific problem’s requirements.

3. Objective Function Tuning:
• Properly tuned objective function is imperative to ensure the system behaves as
desired.

4. Constraints:
• Are there specific constraints that the system must adhere to?
• Implementing these constraints without causing infeasibility is a significant chal-
lenge.

This section delves into each of these considerations, providing insights and strategies for
effective MPC deployment in real-world scenarios.
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5.3.1 Setup

When designing the controller, understanding the operational context and the frame-
work, it’s supposed to be part of, is vital. The MRS system, employed in this thesis, already in-
corporates a trajectory generator, producing reference points and feed-forward control actions.
However, this generator does not consider the complexities introduced by a cable-suspended
payload, leading to potential misbehaviors. Thus, its utility in this context is limited.

The fundamental UAV control objective is target position tracking. Although this can
be achieved without a predefined trajectory, large transitions can amplify tracking errors,
leading to actuator saturation or constraint activation. Although MPC technique handles these
in general exceptionally well, they can, in some cases, result in ill-conditioned optimization
problem and the solver may give up and call the problem unfeasible. Thus, a specialized
trajectory generator (TG), conscious of the suspended payload’s dynamics, becomes essential.
Fig. 5.1 provides an architectural overview of the proposed control framework.

Plant

KF

MPCTG

Feedback control loopFeed-forward control

y

x̂

u

target
trajectory

optimized
trajectory

Figure 5.1: Architecture of the control framework

5.3.2 Trajectory Generator

Utilizing MPC as the primary feedback controller simplifies the trajectory generation
process. As elaborated in the prior chapter, the sequence of control actions, resulting from the
finite discrete-time optimal control problem, inherently adopts an open-loop structure. This
sequence not only provides feed-forward commands but also lays the foundation for deter-
mining a reference trajectory. This prompts the question: Is an external trajectory generator
essential when MPC inherently computes an internal trajectory and feed-forward sequence in
every iteration? There are two main relevant arguments:

1. Single Computation: The trajectory generation is envisioned as a single, non-
periodical computation. Unlike real-time operations, there isn’t an immediate and strict
deadline for this computation. The UAV is already stabilized by the MPC and therefore
delay in trajectory generation doesn’t pose significant issue. This enables the optimiza-
tion of trajectories over extended horizons compared to typical MPC cycles.

2. Flexible Discretization: Given that the UAV’s dynamics are stabilized by the MPC,
there’s flexibility to employ a larger model discretization period for trajectory gener-
ation. A larger discretization period inherently translates to sparser trajectory points,
extending the prediction span. However, this approach has a limitation. Overly large dis-
cretization periods can compromise the system’s controllability, pushing solvers towards
infeasibility.
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Consequently, the trajectory generator necessitates its unique parameter tuning process to
strike an optimal balance between prediction accuracy and computational efficiency.

5.3.3 Acados and Solvers

Acados stands out as an advanced software package, specifically tailored for solving
optimal control and estimation challenges. It boasts a wide variety of algorithms and solvers
dedicated to handling an array of optimization problems, with NMPC being a prominent
use-case. Most importantly, for the context of this thesis, Acados integrates an array of state-
of-the-art QP solvers, encompassing the likes of HPIPM, qpOASES, qpDUNES, and OSQP,
under a unified interface.

This unified approach offers a distinct advantage. Traditional methodologies often entail
rigorous research to pinpoint an ideal solver, followed by problem formulation tailored to the
specific solver interface. Transitioning to another solver, under such circumstances, requires
re-implementing the problem to match the new solver’s interface, adding to the overhead.
Acados efficiently mitigates this challenge. With its unified interface, switching between solvers
is seamless, boiled down to a mere argument modification. This facilitates effortless selection
of the most performance-optimized solver tailored for the problem at hand.

The Acados input format, termed as OCPQP, is inherently aligned with a sparse formu-
lation. However, flexibility is at the core of Acados, enabling transitions between formulation
types. Users can seamlessly transition from a sparse formulation to its dense counterpart
through the condensation feature. Furthermore, this condensation can be fine-tuned, offering
a degree of partial condensation based on user-defined parameters.

Interacting with Acados is intuitive:

1. Problem Formulation: Users have the leverage to modify the OCPQP formulation.
Common modifications include adjusting objective function parameters or setting ref-
erences. This is typically performed during initialization and, subsequently, with each
iteration to define the initial conditions.

2. Solver Execution: Post formulation, the solver can be invoked to determine the solu-
tion for the defined problem.

The interface extends the capability to define elements of the OCPQP formulation as time-
variant, allowing independent adjustments for every iteration. Moreover, the problem’s dimen-
sions can dynamically adapt across the prediction horizon. This particularly fits techniques like
control horizon adjustments or input blocking, making their implementation straightforward.
In essence, Acados emerges as a versatile tool, characterized by flexibility and practicality,
making it indispensable for embedded MPC development endeavors. For a deeper dive, readers
can refer to:

[12] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli, et
al., Acados: A modular open-source framework for fast embedded optimal control,
arXiv:1910.13753 [math], Nov. 2020. [Online]. Available: http://arxiv.org/abs/
1910.13753 (visited on 07/29/2023)
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5.3.4 Horizons

When calibrating the parameters for MPC, it’s essential to begin with setting the pre-
diction and control horizons, in addition to determining the model’s discretization period.
A widely acknowledged heuristic for the prediction horizon is ensuring its duration encom-
passes the system’s principal dynamics and transient behaviors. Considering that the system’s
dynamic characteristics are defined in continuous time, it’s logical to express the prediction
horizon similarly. This leads to a direct relationship for the continuous-time horizon, th:

th = NTd,

where N is the discrete-time horizon, and Td represents the discretization frequency of the
model.

Empirical simulations indicate poor MPC performance when the continuous prediction
horizon falls short of the natural period of the pendulum symbolizing the load. An approximate
relation for the pendulum’s natural frequency, in terms of the cable’s length l, is given by:

Tl(l) ≈ 2π

√
l

g
.

Derived from the linearized pendulum model, this equation is most accurate for minor am-
plitude oscillations. Based on these insights, the lower bound for the prediction horizon is
N Td > Tl(l). Nevertheless, increasing the continuous time horizon continually enhances per-
formance. The optimal performance, based on empirical observations, is approximately 2.5
times Tl, leading to:

NTd ≈ 5π

√
l

g
. (5.1)

Until now, it has been assumed that both the prediction and control horizons are iden-
tical. Typically, while control action sequences converge to a steady state, altering the control
horizon or blocking inputs doesn’t profoundly affect control performance. However, simula-
tions indicate deviations from this trend. Given the harmonic nature of the load’s dynamics
and its damping properties, the development of control actions exhibits periodic traits. When
the control horizon is extensive, or mirrors the prediction horizon, the MPC confidently ex-
ecutes aggressive control actions, anticipating subsequent compensatory actions to stabilize
the load. A truncated control horizon, on the other hand, influences the MPC to adopt a
conservative approach, minimizing load swings but at the expense of increased tracking error.
These interpretations are consistent with simulated outcomes, revealing peak performance
when control and prediction horizons align.

Having established the equivalency of control and prediction horizons without imple-
menting input blocking, the single horizon length, N , can be defined by assessing solver
performance and computational constraints. A typical control loop frequency for such control
levels is 100Hz. Allocating computational resources for the Kalman filter and other controller
components, based on hardware benchmarks, results in a computational duration of 1ms.
This necessitates control action computations to meet a 9ms deadline. Optimal configura-
tions are derived through experimentation with various solvers and problem formulations,
and are outlined in Table 5.2.

To finalize, the model’s discretization period is determined using the empirical optimum
(5.1), mirroring synchronous sampling schemes commonly used in non-stationary signals anal-
ysis. As a result, the sampling period is tailored to the load dynamics, rendering the MPC
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entity N Nc formulation M solver run-time

MPC 100 100 partial condensing 10 HPIPM 8ms

trajectory generator 250 250 partial condensing 2 HPIPM 150ms

Table 5.2: Overview of tuned parameters of optimization problems. N denotes prediction
horizon, Nc control horizon and M is level of condensation.

adaptive to the cable length. In scenarios with shorter cables and rapid load dynamics, the
MPC samples with greater density and a reduced continuous horizon. Conversely, longer cables
with slower dynamics lead to sparse sampling but an extended continuous horizon. Account-
ing for the UAV’s dynamics further constrains the discretization period within the bounds
of [Tmin

d , Tmax
d ]. Empirical simulation results, determining subjective controller performance,

define this interval as [20ms, 150ms]. The interrelation between the discretization period and
cable length is illustrated in Fig. 5.2.

0 2 4 6 8 10
0

50

100

150

l [m]

T
d
[m

s]

Figure 5.2: Relation between length of the cable l and the discretization period of the model
Td

5.3.5 Tuning of Objective Function

The objective function’s parameters are tailored to ensure the resulting behavior aligns
with specified requirements. Nevertheless, these requirements can be challenging to articulate
explicitly, resulting in the project’s inherent vagueness. The subsequent discourse aims to
discuss the precise objectives and the associated issues. Specifically, the presented techniques
facilitate the resolution of two seemingly contradictory challenges:

1. Tracking the UAV’s target position, irrespective of the load’s state.
2. Dampening the load’s oscillations, without prioritizing the UAV’s target position.

These tasks represent the extremities of a continuum. Thus, any relevant objective
can be conceptualized as an affine combination of these contrasting goals. Among the listed
challenges, the second lacks pragmatic utility, as real-world applications primarily demand
accurate target position tracking, underscoring the significance of the first task. However, the
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presented methods are dependent on a linear model. This model’s validity diminishes as the
load’s amplitude grows. Consequently, the solution to effectively track the UAV’s position
requires that the load’s amplitude remains low. This implies that the optimal approach, given
the constraints of the tools available, requires a synthesis of the aforementioned tasks.

The tuning process of the objective function’s parameters, albeit empirical, offers more
intuitive engagement compared to other control methods like PID. This stems from the fact
that the objective function’s parameters are intrinsically linked to the system’s states and
control actions, ensuring their adjustments are more interpretable. The parameters that yield
the desired behavior are included in Table 5.3.

Parameter Value

x y z ϕl θl ẋ ẏ ż ϕ̇l θ̇l θ ϕ
QMPC diag([ 100 100 1000 100 100 0 0 0 0 0 0 0 ])
QTG diag([ 1 1 100 100 100 0 0 0 0 0 0 0 ])
RMPC diag([ 50 50 0.01 ])
RTG diag([ 0.01 0.01 0.001 ])

θd ϕd F

Table 5.3: Overview of parameters of the objective function of the MPC and the trajectory
generator (TG)

5.3.6 Steady State Error

The optimization problem’s objective function, as described in (4.15), inherently does
not ensure a zero steady-state tracking error. One widely recognized strategy to counter this
limitation is the incorporation of a delta input formulation [37]. However, its effectiveness man-
ifests only when the reference isn’t an equilibrium of the model. Under such circumstances,
the model indicates that non-zero control actions are required to track the reference without a
steady-state error, making the delta input formulation effective. Nonetheless, when the track-
ing error originates from disturbances, this formulation does not yield requested results. This
limitation arises since the disturbance is not integrated into the MPC’s predictive modeling of
future trajectories. Hence, even with delta formulation, disturbances remain uncompensated.
This characteristic is particularly relevant for most practical situations. The desired steady-
state is with no exception an equilibrium, considering the under-actuated nature of UAVs. As
a result, the steady-state tracking error is predominantly induced by external disturbances
(e.g. wind) or model discrepancies (e.g. inaccuracies due to improperly mounted IMUs).

One might propose the integration of a disturbance estimator, expanding the model to
encompass it, and subsequently embedding this estimate into the MPC’s predictions. How-
ever, attempts on implementation of this methodology failed, as discussed in Section 5.2.3.
Consequently, a less direct strategy was adopted. By incorporating an additional integrator
layer above the MPC, it’s possible to adjust the UAV’s target position, effectively countering
the disturbances and ensuring zero steady-state tracking error. This approach, while partially
effective, is not without its challenges and issues. A sluggish integrator may lag in compensat-
ing for fast disturbances like wind, while an overly aggressive one could introduce oscillations.
Further, it’s susceptible to windup, requiring the incorporation of heuristic mechanisms to

CTU in Prague Department of Cybernetics



5. IMPLEMENTATION ASPECTS 44/62

mitigate this secondary issue. As implemented, this solution predominantly compensates for
offsets in measured attitude and lacks effectiveness in managing fast external disturbances.

5.3.7 Constraints

A fundamental attribute of MPC, as discussed in Section 4.1, is its systematic treatment
of constrained control actions and states. This capability safeguards the UAV from venturing
beyond the predefined SFE. Additionally, it ensures that the system predominantly stays
within a set of states wherein the linear model retains its validity. This is realized through
constraints imposed on control actions2 and velocity.

These constraints are typically enforced in two stages. Primarily, they are integrated
into the trajectory generator to prevent any generated trajectory from violating them. Sub-
sequently, these constraints are further embedded within the MPC. In an ideal environment
without disturbances and with perfect models, the MPC wouldn’t require further constraints,
as the trajectory would behave well. However, real-world scenarios often feature disturbances
capable of inducing excessive tilting, potentially resulting in mission failure. Consequently, the
MPC must possess constraints as well, albeit less strict ones than the trajectory generator.
These milder constraints often remain inactive, allowing the UAV to catch up with the target
trajectory even if temporary delays occur due to disturbances. It’s important to note that
the magnitude of these constraints depend on the payload mass, as naturally looser attitude
constraints might lead to a descent if the payload is heavy. A comprehensive overview of these
constraints is presented in Table 5.4.

entity constrained variable value

TG
control action 0.3 rad

horizontal velocity 4m s−1

MPC
control action 0.5 rad

horizontal velocity 5m s−1

Table 5.4: List of constraints for 0.5 kg heavy payload and 2 kg heavy UAV.

It’s worth noting that the introduction of these constraints can, in certain situations,
introduce infeasibility issues of the optimization problem’s solution. Such circumstances could
potentially trigger complications during real-world deployment, as an optimal control action
might not be determined in that specific iteration of the control loop. Furthermore, the subse-
quent iteration might not yield a different outcome. This issue can culminate in total system
failure, necessitating the activation of fallback controllers. However, this challenge is effectively
mitigated through the adoption of soft constraints. Instead of enforcing constraints rigidly, as

2And consequently attitude.
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depicted in (4.11) or (4.14), these constraints are reformulated as:
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xs.

Here, xs and us denote state and control action slack variables respectively. These variables
function as decision variables subjected to minimization. However, their associated costs are
considerably higher than that of other variables. Consequently, these slack variables generally
assume a value of zero, manifesting only in scenarios where no other viable alternatives exist,
and where the solution’s feasibility is at risk.

5.3.8 Preview

A particularly useful attribute of MPC is its ability to consider the forthcoming evolu-
tion of a reference trajectory, provided that such information is available. This characteristic
gives rise to an anticipatory behavior within the control system. To harness this distinctive
capability, the trajectory generator accepts both a reference point(s) and a corresponding
time-stamp(s). This time-stamp represents the intended instant at which the UAV should
ideally reach the specified reference point. Consequently, the generated trajectory results in
more seamless and less costly transition, with respect to the objective function.
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Chapter 6

Experiments

This chapter focuses on the experimental validation of the framework introduced earlier,
specifically the parameterization detailed in Section 5.3.5. Firstly, the simulation platform
utilized for these tests will be detailed. Subsequent sections will delve into individual tests
of each component of the framework. By evaluating each component in isolation, we aim to
provide a granular understanding of their respective performances within the broader system.
Following this, the integrated framework will be assessed, showcasing its ability to address
real-world challenges. Lastly, introduced framework will be compared against a state-of-the-art
general-purpose control system.

6.1 Simulator

The subsequent set of experiments were conducted utilizing a simulation platform devel-
oped by the MRS at the Czech Technical University in Prague. The MRS system’s simulator
[3] is built upon the physics simulation engine Gazebo [30]. This simulation environment is
designed to seamlessly bridge the gap between simulation and real-world application, incor-
porating real-world complexities such as sensor noise, sensor offset, and imperfections in the
flight controller. The findings of [3] affirm the high degree of resemblance between real-world
experimental outcomes and simulation results.

The MRS system offers versatile control options across various levels and is capable of
implementing lower-level controls. In the context of this thesis, the system provides the track-
ing of desired UAV attitude and thrust. Developed on the foundation of the Robot Operating
System (ROS), the architecture of the MRS system is highly modular. Within its modular
structure, the controller module has been replaced by the newly introduced implementation.

The subsequent simulations are executed employing a model representative of the DJI
F450 platform. This UAV platform weights approximately 2 kg. It has been observed that the
intensity of disturbances and the complexity of the control problem tend to increase propor-
tionally with the payload’s mass. Nonetheless, the weight of the payload is constrained by
the UAV’s maximum thrust capacity. When the payload’s weight reaches the upper threshold
(approximately 1.5 kg for the F450), the UAV is unable to execute maneuvers without ex-
periencing altitude loss. In order to formulate a challenging yet practical control problem, a
payload mass of 0.5 kg is chosen. This weight strikes a balance between imposing disturbance
on the UAV and allowing the UAV to perform aggressive maneuvers without compromising
altitude stability. For the sake of consistency, experiments were consistently conducted with
a 1m long cable, unless explicitly specified otherwise.
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(a) Gazebo (b) RViz

Figure 6.1: Graphical user interface of the simulation platform

6.2 Kalman Filter

While assessing the estimator’s performance can present challenges in practical sce-
narios, the simulator offers the advantage of providing ground truth values, enabling direct
comparisons. An properly performing Kalman filter’s estimation should smoothly track the
ground truth state without compromising control smoothness, while simultaneously maintain-
ing a responsiveness to ensure robust flight characteristics. To evaluate these attributes, two
types of experiments were conducted.

6.2.1 Common Flight

This experiment verifies the Kalman filter’s performance under normal flight condi-
tions. The primary focus of this experiment is on the Kalman filter’s behavior, rather than
the specifics of control performance. Notably, a poorly performing controller might lead to
substantial load oscillations, consequently making the estimation more challenging. Since the
Kalman filter utilizes a linear model of the system, it may struggle in the presence of large
oscillations. Successful performance in case of such disturbances would suggest an even more
effective performance under conditions with smaller oscillations. Thus, the experiment was
conducted using a moderately tuned SE(3) controller [35]. The simulated scenario was de-
signed to make the UAV perform position step response in forward direction. The magnitude
of the step was empirically selected to generate significant load oscillations. The outcomes of
this simulation are illustrated in Figure 6.3.

6.2.2 Effect of Disturbance

While the system typically operates in alignment with its model, it’s critical to evaluate
the Kalman Filter’s robustness when exposed to phenomena not encapsulated within the
model. Real-world instances of such scenarios might include strong wind gusts, the payload
encountering obstacles, and other unexpected disturbances. An estimator heavily relaying on
its model can produce delayed responses, potentially leading to misguided control actions.
Consequently, the control system’s overall robustness is linked to the estimator’s robustness.
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Figure 6.2: Performance of the Kalman filter in the normal flight scenario

For this experiment, the SE(3) controller from the prior test was employed. The in-
troduced disturbance is simulated as an impulsive external force exerted on the payload in
the direction of axis l̂x. Prior to this disturbance, the system remained stationary, having
stabilized to its steady-state condition. The outcomes from this simulation are depicted by
Fig. 6.3.
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Figure 6.3: Performance of the Kalman filter when an impulse disturbance is applied on the
load

The outcomes from the initial experiment, as illustrated in Fig. 6.2, confirm that the
Kalman filter’s estimate properly tracks the ground truth state, even during significant load
amplitudes (up to 0.4 rad ≈ 23◦). The subsequent experiment demonstrates ability of the
estimator to track the ground truth even in case of external disturbance acting on the payload.
As depicted by Fig. 6.3, after the application of the impulse disturbance, the estimation error
dissipates within approximately 1.5Tl. Following experiments will reveal, if the response is
fast enough to allow for robust control. In summation, the Kalman filter exhibits satisfactory
performance, validating its integration into the control system.

6.3 Trajectory Generator

The trajectory generator has significant impact on tracking performance of the con-
trol system since it dictates the reference trajectory for the MPC. Thus, it is necessary to
thoroughly validate its performance. To assess its behavior, an experiment was structured
in which the trajectory generator encounters a challenging target reference- a short step in
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position that doesn’t provide the load sufficient time to damp naturally. This experiment was
repeated under two distinct scenarios:

• The trajectory generator immediately encounters a step in the target reference when
tasked.

• The generator is provided with the forthcoming evolution of the reference, allowing it to
exploit the preview capability. Specifically, it is informed that the step will occur after
a span of 7.5 s.

The results of these simulations are illustrated in Fig. 6.4 and Fig. 6.5. Notably, both scenarios
result in smooth position tracking with a minor overshoot. The benefit of the previewing
mechanism is evident, It allows for gentler transition, thus reducing the peak amplitude of
the load and the UAV’s tilt angles. It can be noticed that in case of absence of preview, the
UAV after accelerating counteracts the induced swing by tilting in the opposite direction.
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Figure 6.4: Translational variables of generated trajectories

As illustrated in 6.5, the trajectory generator adopts a coherent strategy. The UAV’s
tilt mirrors the load’s angle, acting as if the cable’s attachment were rigid, without any joint
flexibility. This mirroring ensures minimal tangential forces on the load. Consequently, the
angle of the load relative to the UAV’s body is nonzero only in two cases:

1. The UAV has to reposition itself.
2. The UAV tries to counteract the swing.

This observed behavior can be consequently segmented into the induction phase and the
compensation phase, as portrayed in Fig. 6.5. These phases are determined based on signs of
angular rate of the load and the relative angle of the load (in this experiment θ − θl). If they
align, the UAV accelerates the angular rate; otherwise, it aims to diminish it. As illustrated
in 6.5, the generated trajectory alternates between these phases, striking a balance between
position tracking and load damping. The intuitiveness of this behavior provides confidence in
the trajectory generator’s effectiveness.

6.4 MPC

The validation of the MPC is centered around its capability to accurately follow the
generated trajectory without inducing additional oscillations and its robustness with respect
to external disturbances. In order to isolate sources of error and test solely performance of the
MPC, the MPC utilized ground truth values of unmeasured states in following experiments.
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Figure 6.5: Generated angles of the UAV and the load and their interpretation

6.4.1 Trajectory Tracking

For this test, the trajectory generator was supplied a step reference of magnitude 30m.
This generated trajectory subsequently served as the MPC’s reference. The target step size
was selected to ensure that the generator’s velocity constraint (|ẋ| ≤ 4m s−1) was activated.
Beyond the primary objective of evaluating the MPC’s tracking capabilities, this setup also
verified the integrity of the generated trajectory, especially concerning its adherence to spec-
ified constraints.

The experimental results, showcased in Figure 6.6, proves the MPC’s exceptional tra-
jectory tracking abilities. As an outcome, the velocities executed mirror the generated values,
eliminating the need for additional adjustments based on the MPC’s velocity tracking error.
Although the trajectory generator accounted for the velocity constraints, the nature of soft
constraints makes the actual maximum velocity slightly exceeded the prescribed limit.

Referring back to Section 5.3, it’s evident that the MPC is specifically penalized for
deviations in position tracking and the amplitude of the load’s attitude. This design choice
gives the MPC freedom to determine its own attitude and associated control actions. As such,
it finetunes the generated trajectory within a more granular and higher resolution timeframe.
Effect of this tow-level optimization becomes obvious when observing the load’s attitude in
Figure 6.6, which surpasses the generator’s predictions. Notably, the UAV’s motion strategy
ensures that upon reaching its terminal velocity, the load remains stationary relative to the
UAV. Additionally, an interesting behavior emerges before the UAV’s forward movement,
where it induces a counter-swing. This maneuver intuitively provides the UAV with a rapid
acceleration capacity and at the same time compensating the swing.

6.4.2 Disturbance Rejection

Though the outcomes of the prior experiment might be considered impressive, a standard
feedback controller, given an ideal trajectory and feed-forward control actions, might produce
similar results. However, it would likely fail when confronted with unexpected disturbances,
like a wind gust. The subsequent experiment examines the MPC’s robustness and its capability
to counteract such perturbations. The experimental design closely mirrors the one discussed
in Section 6.2.2, especially in terms of the introduced disturbance and initial conditions.

The data, as delineated in Fig. 6.7, indicates that the payload’s oscillations were al-
most entirely suppressed within its initial cycle. This was accomplished while maintaining
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Figure 6.6: Tracking capabilities of the MPC when utilizing ground-truth state

a respectable positional tracking error. The observed control strategy is again coherent. As
illustrated in Figure 6.7, the control actions are set to propel the UAV in alignment with the
load’s trajectory, effectively damping its motion.
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Figure 6.7: Demonstration of MPC’s robustness when utilizing ground-truth state

In retrospection, the conducted tests reveal that the implemented MPC accurately fol-
lows the desired trajectory when supplied with accurate state information. Furthermore, the
MPC consistently outperforms the trajectory generator’s predictions concerning the resulting
load attitude angles. The controller’s ability to effectively counter impulse disturbances ap-
plied on the load was also proved. This capability to manage disturbances efficiently within a
limited space and to dampen the load’s motion in a single cycle underscores the proficiency of
the formulated feedback controller. Also an interplay between trajectory generator and MPC
in tracking task proves to be effective.

6.5 System Integration

Each component of the control system has been individually tested and validated up
to this point. Although each component demonstrated commendable performance on its own,
there’s no implicit assurance that their collective operation in the integrated control system
will yield analogous results. Past observations indicate that integrating a state estimator with
a controller often leads to loss of the margins guaranteed by the control methodology. A
relevant illustration is the augmentation of the Linear-quadratic Regulator (LQR) with a
Kalman filter. As aptly summarized in John Doyle’s paper titled ”Guaranteed margins for
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LQG regulators”, the conclusion was simply: ”There are none” [39]. Thus, it’s crucial to verify
that the dynamics and error associated with estimation do not adversely impact the MPC’s
effectiveness.
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Figure 6.8: MPC’s tracking performance when utilizing state estimate

6.5.1 Verification

To ensure the robustness of the integrated system, the same tests as discussed in Section
6.4 were replicated. Simulations, as showcased in Fig. 6.8, confirm that the MPC’s tracking
performance, when provided with estimates from the Kalman filter, aligns closely with its
performance when using ground truth states. This outcome was anticipated given that the
trajectory is primarily generated to guide the system’s behavior as requested. Notably, even
when the MPC operates based on the Kalman filter’s estimates, the actual performance con-
cerning the load’s attitude surpasses the originally predicted trajectory, much like in the
ground truth scenario.
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Figure 6.9: Demonstration of MPC’s robustness when utilizing state estimate

In this context, one of the most demanding tests for the system is its capability to reject
disturbances. As illustrated in the previous experiment (refer to Fig. 6.3), there’s a noticeable
delay before the Kalman filter’s estimate aligns with the ground-truth value. However, the
results showcased in Fig. 6.9 confirm the MPC’s robustness in managing this estimation
error without compromising its operational effectiveness significantly. The pendulum’s swing
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is effectively damped within two of its natural periods- a commendable outcome given the
constraints and available information provided to the control system.

So far, the control system was tasked to track only a step position reference. In order to
demonstrate its capabilities to track more complex trajectories one more tracking experiment
was conducted. This time the UAV was assigned with following a figure-8 trajectory. Moreover
in order to track the requested trajectory more precisely, the elements of QTG penalizing the
load’s amplitude were reduced from 100 to 1. Requested, generated and executed trajectories
are depicted by Fig. 6.10. Relevant statistics are included in Table 6.1, however it should be
again noted that they reflect performance of this subjectively tuned parametrization.
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Figure 6.10: Testing capabilities to track complex trajectory

Variable Mean Standard Deviation

trajectory generator’s position tracking error 0.2957m 0.2904m

MPC’s position tracking error with respect to
target trajectory

0.4267m 0.3873m

MPC’s position tracking error with respect to
optimized trajectory

0.1944m 0.1527m

Regulation error of load’s amplitudes 0.1827 rad 0.1520 rad

KF’s tracking error of load’s amplitudes 0.0471 rad 0.0505 rad

Table 6.1: Statistics of the figure-8 tracking experiment. All errors were calculated using
Euclidean norm

6.5.2 Comparison to General-Purpose Controller

An additional experiment was carried out to showcase the advantages of the developed
controller over a general-purpose regulator. For benchmarking purposes, we employed an
extended SE(3) controller in conjunction with an MPC tracker. These components, integral

CTU in Prague Department of Cybernetics



6. EXPERIMENTS 54/62

to the MRS system, have been optimized for agile flight scenarios, as underscored in [3].
While the adoption of MPC controllers is on the rise, this combination remains exemplary
in its performance, warranting its designation as state-of-the-art. The chosen benchmark was
particularly apt as it mirrors the agility and speed characteristics of our implemented MPC.
This ensured a pronounced contrast between the two methods, allowing for a clear evaluation
of their respective strengths and weaknesses.

In this experiment, an unfeasible step reference position is set. To further stress-test
the versatility of our method in managing varied load configurations, the cable’s length was
extended to 2.5m. It’s worth noting that neither the MRS tracker nor our trajectory generator
was informed about future development of the reference trajectory and therefore couldn’t use
preview feature.

Simulated results are visually presented in Fig. 6.11. Upon analysis, while the refer-
ence solution achieves the target position in a shorter time and with a diminished overshoot
compared to the new framework, this efficiency is offset by ensuing oscillations. Conversely,
our proposed method effectively damps the payload swing, stabilizing the system at a steady
state much faster. An important consideration is that while a marginal overshoot in the UAV’s
position might seem beneficial initially, in real-world scenarios where collisions with obstacles
are strictly forbidden, the more relevant metric becomes the combined overshoot of both the
UAV and the payload. Therefore, although the UAV may maintain its position accurately,
introducing a considerable amplitude in the load’s oscillation can amplify the overall position
overshoot.
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Figure 6.11: Comparison of presented system’s and general-purpose state-of-the-art con-
troller’s tracking capabilities

The experimental data underscores the efficient synergy between the implemented
Kalman filter, MPC, and trajectory generator. The trio effectively addresses real-world chal-
lenges, relying solely on UAV position and attitude measurements. The robustness of the
closed-loop system is evident, demonstrating its resilience to disturbances. When pitted
against a state-of-the-art, generic control framework, our proposed system exhibits superior
performance, particularly in scenarios that mirror practical applications.

6.6 Versatility and Performance of the Framework

The experiment discussed in Section 6.5.2 admittedly favors scenarios where the refer-
ence control framework might underperform. Nevertheless, the underlying motivation for this
experiment is based on practical considerations. The findings highlight a significant challenge
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faced by controllers designed without accounting for a UAV transporting a payload suspended
by a cable: their reliability and performance predictability can be substantially diminished.

Contrastingly, the performance of our proposed framework isn’t easily affected by the
mechanical variations of the suspended load. Instead, the control system is parameterized
according to these mechanical characteristics. Consequently, if accurate parameters are pro-
vided, the system demonstrates consistent behavior. Simulations further confirm that minor
deviations from these parameters still permit stable UAV flight. However, a comprehensive
analysis concerning the robustness with respect to these parameters remains a subject for
future investigations.

This framework’s versatility extends beyond just the type of systems it can govern;
it also encompasses a broad spectrum of tasks it can efficiently tackle. As long as task-
specific criteria can be mapped to the parameters of a constrained QP problem, our framework
is likely adept at handling it. The conversion to QP objectives, owing to their structure,
remains intuitive. Task requirements are typically addressed by adjusting the elements of the
QTG matrix, which impacts position tracking errors and load amplitudes. Similarly, if a task
demands unique robustness specifications, they can be modulated using elements from the
QMPC matrix. Achieving this level of adaptability with alternative methodologies can be
challenging. Take, for example, the LQR. Although it shares a similar intuitive parameter
design based on states, its implementation requires the resolution of a Riccati equation, which
can limit its flexibility. In contrast, our framework offers online adjustments to QP parameters.
Such dynamic tunability can be harnessed by higher-level software or directly by operators,
facilitating real-time behavioral adjustments if deemed necessary.

In essence, this framework showcases versatility, effectively managing a spectrum of sys-
tems and tasks. While the specific parameterization evaluated in this chapter offers promising
outcomes, it isn’t the sole focus of this research. The principal contribution is the establishment
of a universal control framework distinguished by its system and task-agnostic characteristics.
At a macroscopic level, this controller can be aptly described as a tool finely tuned by both
the system it governs and the behavior it’s expected to exhibit. This conceptual approach is
visually represented in Fig. 6.12.

tasks

systems

Experimentally verified
parametrization of
control framework

General-purpose
controller

Presented control framework

QMPC ,QTG, . . .

muav,ml, l, . . .

Figure 6.12: High level view on controllers and their abilities to solve different tasks handling
different hardware.
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6.7 Summary

This chapter provides a detailed examination of the experimental results obtained from
a specific configuration of the introduced framework. Each individual component of this frame-
work was found to meet its performance specifications, suggesting that they could be seam-
lessly integrated or utilized as distinct modules. One key takeaway is the versatility of the
trajectory generator. It doesn’t only produce a feasible trajectory and associated feed-forward
control actions in context of this framework, but these outputs can enhance the performance
of any given controller with regard to the dynamics of the suspended load. Furthermore, the
feedback MPC enhances this performance by optimizing on a denser and shorter time frame.
This two-level optimization means that the final performance exceeds the predictions of the
trajectory generator.

The experiments underscored the effectiveness of the LKF in providing state estimates
that are both smooth and responsive. The integration of the LKF and MPC manifested as
a robust and efficient combination. In scenarios with impulse disturbances impacting the
load, the MPC successfully stabilized the UAV, granting the LKF sufficient time to refine
its state estimates. Concurrently, the LKF’s estimates maintained the accuracy required by
the MPC for stabilization. In summary, the evaluated configuration of the control framework
demonstrated considerable effectiveness and holds promise for practical applications.
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Chapter 7

Conclusion

In this thesis a software, that allows for stable and agile control of an UAV carrying
a cable suspended payload, was developed. The dynamical model of the system has been
derived and it served as a foundation for other components. The introduced system contains
Kalman filter that estimates unmeasured state variables including angle and angular rate of
the payload. QP-MPC was then employed to close the control loop. This closed loop was
extended by a trajectory generator in form of linearly constrained quadratic program. All
these components were successfully implemented in C/C++ as a module of MRS system.

Experiments conducted in simulator proved that the implemented framework allows
for smooth and accurate tracking of target position and is robust with respect to external
disturbances. Presented and tested parametrization of the system focused on dampening the
load and proved effective in that regard, moreover it outperformed general-purpose state of the
art control system. The introduced framework was designed such that it allows for online and
intuitive adjustment of behaviour thus offering a tool that can be easily tailored to different
mechanical setups and different assigned tasks. The assignment of this thesis has therefore
been fulfilled successfully. To summarize, following tasks have been accomplished:

• Dynamics of the system were studied and their mathematical model has been derived.
• A Kalman filter has been derived and implemented to estimate unmeasured states vari-
ables.

• Amodel predictive controller has been implemented to ensure short time horizon optimal
control.

• A trajectory generator has been implemented to turn infeasible trajectories into desirable
ones.

• Experiments have been conducted to verify capabilities of the solution to track target
position or trajectory while dampening the load.

Few additional facts however should be noted. Although assigned task assumed uti-
lization of motion capture system, a platform used for simulations motivated the author to
assume less reliable and less accurate measurements of position provided by Real Time Kine-
matics GPS and attitude provided by the low-level flight controller. This made the problem
more challenging but at the same time more applicable. The results should be still applicable
for the original motion capture system assignment. Although the resulting implementation of
the control framework was ready to be tested on real hardware, the hardware platform did
not allow it. In order to test these results, MRS system would have to be interfaced to the
non-Pixhawk low-level flight controller and motion capture system. Neither MRS system nor
hardware platform were completely ready for that and additional obstacles would have to be
tackled thus resulting in further not easily estimated amount of work.
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7.1 Future Work

The main focus of future work is on experimental verification of the system on real
hardware. Apart from that during solving the problem, few ideas emerged. The obvious one
relates to constraints on zero heading. Although common load carrying task does not typically
require independent control of heading, it makes the system incomplete, less versatile and
therefore will be addressed. Next practical improvement would be in extension of Kalman filter,
that would allow for estimation of disturbance. Current implementation suffers from persistent
wind disturances and offset sensors. Disturbance estimator would solve these practical issues.
Another significant improvement could be achieved by employing an offline nonlinear model
predictive control for trajectory generation. Not only it would result in accurately generated
trajectory even for aggressive maneuvers, it would also allow for nonlinear constraints such
as limiting size of the UAV’s velocity vector.
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