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Abstrakt

Tento výzkum se soustřed́ı na ćıl přesně vybrat události vzniklé interakćı dvou gluon̊u
při srážce protonu s protonem na urychlovači LHC, jej́ımž výsledkem je pár top-antitop
a Higgs̊uv boson, což je proces známý jako tt̄H.

Ćılem studie je pomoćı dat zaznamenaných detektorem odlǐsit tyto události tt̄H od
událost́ı generovaných jinými procesy. Za t́ımto účelem využ́ıváme pro výběr událost́ı
př́ıstup hlubokého učeńı, konkrétně architekturu FT-Transformer.

Použit́ı takové metody strojového učeńı zvyšuje naši schopnost přesně identifikovat události
tt̄H, což vede ke zlepšeńı poměru signálu k šumu a statistické významnosti, a t́ım přisṕıvá
k našemu pochopeńı vlastnost́ı Higgsova bosonu. Kromě zkoumáńı pokročileǰśıch ar-
chitektur NN vylepšujeme předchoźı práci t́ım, že zkoumáme použit́ı rozš́ı̌rené trénovaćı
množiny, což nám umožňuje výrazně zvýšit trénovaćı statistiku a dosáhnout tak mnohem
lepš́ıho výkonu.

Ned́ılnou součást́ı tohoto výzkumu je vyhodnoceńı statistických i systematických nejis-
tot spojených s t́ımto procesem výběru událost́ı. Zjǐstěńı a metodiky prezentované v
této práci nab́ızej́ı slibný pokrok v oblasti výběru událost́ı částicové fyziky a přisṕıvaj́ı k
pokračuj́ıćımu úsiĺı kolaborace o zkoumáńı základńıch vlastnost́ı vesmı́ru.

Keywords: CERN, ATLAS, Higgs̊uv boson, Strojové učeńı, Neuronové Śıtě
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Abstract

This research is centered on the goal of accurately selecting events produced from the
interaction of two gluons in a proton-proton collision at the LHC, resulting in a top-
antitop pair and a Higgs boson, a process known as tt̄H.

With data recorded by the detector, the study aims to distinguish these tt̄H events from
those generated by other processes. To this end, we employ a deep learning approach,
specifically a FT-Transformer architecture, for the event selection. The use of such a
machine learning method enhances our ability to identify tt̄H events accurately, leading
to an improved signal-to-noise ratio and statistical significance, thereby contributing to
our understanding of the Higgs boson’s properties. Aside of exploring more advanced NN
architectures, we improve previous work, by exploring the use of an extended training set,
which allows us to dramatically increase the training statistic and thus achieve a much
better performance.

An integral part of this research is the evaluation of both statistical and systematic un-
certainties associated with this event selection process. The findings and methodologies
presented in this thesis offer promising advancements in particle physics event selection,
contributing to the Collaboration’s ongoing endeavors to probe the fundamental proper-
ties of the universe.

Keywords: CERN, ATLAS, Higgs boson, Machine Learning, Neural Networks
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Structure of the thesis

We begin with a short introduction to the fundamentals of particle physics and the Stan-

dard Model (SM) in the Chapter 1, explaining key terms such as Feynman diagrams,

branching fractions, production cross-sections, particle interactions, and decays.

Thereafter, we provide a brief overview of the Large Hadron Collider (LHC) and the

detector, enabling the readers to comprehend their operational mechanics, data collection

techniques, and the subsequent analysis involved.

We then proceed to explain the process of interest - the production of a top-antitop pair

and a Higgs boson from two gluons in a proton-proton collision (tt̄H), which constitutes

the central focus of our research - the separation of tt̄H events from other background

processes.

This is followed by an in-depth discussion on the concept of significance in particle physics,

covering its theoretical underpinnings and practical implications in event selection.

Chapter 2 outlines the machine learning techniques and strategies utilized, including

problem formulation, details on the Monte Carlo (MC) simulation, performance evaluation

metrics.

In Chapter 3, a comprehensive analysis of the statistical and systematic uncertainties is

presented.

Finally, in Conclusions we summarize our findings, briefly discuss the implications of

our research, and provide suggestions for future studies.

For further insights, the Appendix provides details about preselection, used features,

and training large Neural Networks (NNs) efficiently.

1



Chapter 1

Introduction

1.1 Overview of Particle Physics

Particle physics, also known as high energy physics (HEP), is a field of study that seeks to

understand the fundamental constituents of matter and their interactions. This branch of

physics has led to the discovery and characterization of a multitude of subatomic particles,

providing deep insights into the structure of the universe.

1.1.1 The Standard Model

The framework that describes elementary particles and their interactions is known as the

Standard Model (SM) of particle physics1. The SM consists of two types of elementary

particles: fermions and bosons. Fermions are particles with half-integer spin and include

quarks and leptons, while bosons are particles with integer spin and act as force carriers

in the SM.

Quarks come in six different flavors: up, down, charm, strange, top, and bottom, and in-

teract through the strong nuclear force. Quarks combine in various ways to form hadrons,

such as protons and neutrons.

Leptons, on the other hand, are particles that do not interact via the strong nuclear force.

They include electrons, muons, taus, and their corresponding neutrinos. Each lepton

flavor is associated with a specific neutrino.

Bosons are integral to the fundamental forces of the universe. The photon mediates the

electromagnetic force, the W and Z bosons mediate the weak nuclear force, and the gluon

mediates the strong nuclear force.

1https://home.cern/science/physics/standard-model

2
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Figure 1.1: Particles and forces of the Standard Model (SM).

1.1.2 The Higgs Boson

One additional particle that plays a significant role in the SM is the Higgs boson. Unlike

the other bosons, which mediate the fundamental forces, the Higgs boson is associated

with the Higgs field, a scalar field that permeates all space. The Higgs boson was proposed

in 1964 by physicist Peter Higgs and others as a result of their work on the so-called ”Higgs

mechanism” [1].

The Higgs mechanism is responsible for the mass of elementary particles. According to

this theory, particles acquire mass by interacting with the Higgs field. The more strongly

a particle interacts with this field, the greater its mass. Particles that do not interact

with the Higgs field, such as photons, are massless.
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The existence of the Higgs boson and the Higgs field was confirmed experimentally in

2012 by the ATLAS and Compact Muon Solenoid (CMS) collaborations at European

Organization for Nuclear Research (CERN)2, a discovery that led to the awarding of the

2013 Nobel Prize in Physics to François Englert and Peter Higgs.

The Higgs boson itself is unstable and quickly decays into other particles. The decay

channels and their corresponding probabilities, or branching ratios, are predicted by the

SM. One particular decay of interest in this work is the Higgs decay into a tau lepton

pair, denoted as H → τ τ̄ , which has a branching ratio of approximately 6% (Table 1.1).

Decay Channel Branching Ratio Relative Uncertainty

H → γγ 2.28× 10−3 +5.0%
−4.9%

H → ZZ 2.64× 10−2 +4.3%
−4.1%

H → W+W− 2.15× 10−1 +4.3%
−4.2%

H → τ+τ− 6.32× 10−2 +5.7%
−5.7%

H → bb̄ 5.77× 10−1 +3.2%
−3.3%

H → Zγ 1.54× 10−3 +9.0%
−8.9%

H → µ+µ− 2.19× 10−4 +6.0%
−5.9%

Table 1.1: Branching ratios for various Higgs boson decay channels. Taken from http://

opendata.atlas.cern/books/current/get-started/_book/the-higgs-boson.html

1.1.3 Particle Interactions and Decays

In particle physics, interactions between particles result from the exchange of force-

carrying particles, or gauge bosons. Each of the four fundamental forces (gravitational,

electromagnetic, strong nuclear, and weak nuclear) has its associated bosons, which me-

diate these interactions.

Decays are processes by which a particle transforms into two or more other particles.

These are inherently probabilistic processes, with specific probabilities associated with

each possible decay path, given by the branching ratios.

1.1.4 Branching Ratios

A branching ratio (or branching fraction) in particle physics is a measure of the fraction

of particles that decay via a particular decay mode with respect to the total decay modes.

2https://atlas.cern/updates/feature/higgs-boson

http://opendata.atlas.cern/books/current/get-started/_book/the-higgs-boson.html
http://opendata.atlas.cern/books/current/get-started/_book/the-higgs-boson.html
https://atlas.cern/updates/feature/higgs-boson
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It is a critical parameter in understanding particle interactions, as it gives insight into the

relative probabilities of various outcomes of a decay process.

For example, let us consider the production of a top-antitop pair along with a Higgs boson

in a proton-proton collision, also referred to as the tt̄H process. The Higgs boson can

decay into different particles, each with a certain branching ratio. In the case of the Higgs

boson decaying into a bottom-antibottom quark pair, the branching ratio is approximately

58%, which is the highest branching ratio among all the Higgs decay channels.

However, the probability of producing a Higgs boson, along with a top-antitop pair, in a

proton-proton collision is very small, estimated to be about 1% of the total cross-section

(subsection 1.3.1) 3 4. This small percentage, coupled with the fact that the Large Hadron

Collider (LHC) produces millions of collisions per second, means that a substantial amount

of data must be analyzed to isolate and identify the relatively few tt̄H events.

The ability to isolate these rare events depends not only on the branching ratios of the

Higgs boson and the top quarks, but also on our ability to accurately detect and identify

the decay products. For instance, in the case of the Higgs boson decaying into a bottom-

antibottom pair, we need to be able to identify these ’b-jets’ among a plethora of other

particles. This is a major challenge in particle physics and is a central focus of this thesis.

1.1.5 Feynman Diagrams

H
t̄

t

t

t̄

g

g

Figure 1.2: Feynman diagram of the tt̄H process.

A powerful tool in the field of particle physics is the Feynman diagram, named after its

creator, the renowned physicist Richard P. Feynman. Feynman diagrams offer a graphical

representation of the mathematical expressions describing the behavior of subatomic par-

ticles. These diagrams have become integral to predicting and understanding the results

of experiments in quantum mechanics, particularly those involving subatomic particles.

3https://home.cern/news/news/physics/higgs-boson-comes-out-top
4https://home.cern/news/press-release/cern/higgs-boson-reveals-its-affinity-top-quark

https://home.cern/news/news/physics/higgs-boson-comes-out-top
https://home.cern/news/press-release/cern/higgs-boson-reveals-its-affinity-top-quark
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In a Feynman diagram, each line represents a particle propagating through space (hor-

izontal axis) over time (vertical axis). Straight lines depict fermions (matter particles)

such as quarks and leptons, while wavy lines represent bosons (force-carrying particles),

including gluons, photons, and W and Z bosons. Interaction vertices, where lines meet,

indicate interactions between particles where energy and momentum are conserved.

Consider, for instance, the tt̄H process mentioned earlier. In a simple Feynman diagram

representing this process, two incoming gluons (represented as spiral lines) interact at a

vertex to produce a top-antitop pair (straight lines) and a Higgs boson (another straight

line). The top and antitop quarks then decay into other particles, typically W bosons

and b-quarks.

These diagrams do not just describe which particles are involved in an interaction; they

can also provide insight into the probability of the interaction occurring. By calculating

the areas of the regions enclosed by the lines and vertices of the diagram, physicists

can predict the likelihood of an interaction. However, while Feynman diagrams can be

extremely informative, they also can be complex, with multiple possible diagrams for a

single interaction - another aspect that adds to the challenges faced in particle physics.

1.2 LHC and the Detector

The LHC is the world’s largest and highest-energy particle accelerator. It was built by

CERN between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds

of universities and laboratories from around the world. The LHC is located near Geneva,

beneath the border of Switzerland and France. The accelerator is housed in a tunnel with

a circumference of 27 kilometers, around 100 meters underground 5 6.

The LHC’s primary purpose is to accelerate protons to near-light speeds and collide them

together, thereby producing extreme conditions that allow us to probe the nature of

the subatomic world. The protons are grouped into ”bunches” and circulated in oppo-

site directions around the LHC ring. When these bunches cross paths, protons collide,

producing energetic particle showers. The LHC is capable of generating up to a billion

proton-proton collisions per second.

The ATLAS7 detector is one of the two general-purpose detectors at the LHC. It is a

large and complex system designed to measure the properties of particles produced in the

proton-proton collisions. Covering an area equivalent to a five-story building, ATLAS is a

5https://home.cern/science/accelerators/large-hadron-collider
6https://home.cern/resources/faqs/facts-and-figures-about-lhc
7https://home.cern/science/experiments/atlas

https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/resources/faqs/facts-and-figures-about-lhc
https://home.cern/science/experiments/atlas
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Figure 1.3: CERN with the LHC and ATLAS detector.

multi-layered device consisting of several subsystems, each optimized to measure different

particle properties.

The innermost layer, or the tracking detector, records the trajectory of charged particles,

allowing the reconstruction of their paths. The subsequent layers, calorimeters, measure

the energy of particles. Finally, the outermost layer, the muon spectrometer, specifically

designed to detect muons, one of the few particles that can penetrate all inner layers.

The data collected by ATLAS is stored and subsequently analyzed by physicists around

the world. The sheer volume of this data, combined with the complexity of the collision

events, presents a significant challenge, requiring sophisticated statistical methods and

computational tools to make sense of the data. Machine learning techniques have been

increasingly employed in recent years to classify and analyze this data, which has led to

several significant breakthroughs in our understanding of particle physics, including the

discovery of the Higgs boson in 2012.
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1.3 tt̄H Process

The tt̄H process is a specific type of event that occurs within the LHC’s high-energy

particle collisions. In this process, two gluons collide, resulting in a pair of top quarks

and a Higgs boson.

The tt̄H process is of particular interest in particle physics due to its potential to shed

light on the nature of the Higgs boson. The Higgs boson is pivotal in the SM of particle

physics, as it is associated with the Higgs field, which gives other particles their mass.

Despite its significance, the Higgs boson remains one of the least understood particles due

to its elusive nature and the difficulty involved in its detection.

In a tt̄H event, the Higgs boson quickly decays into other particles, making it impossible

to observe it directly. Instead, physicists must reconstruct its presence from the particles

into which it decays. The top quarks, on the other hand, have a higher lifetime, making

them easier to detect. The tt̄H process is unique in that it allows the observation of the

Higgs boson’s interactions with top quarks - the heaviest known fundamental particle -

thereby providing a direct probe into the Higgs mechanism.

The primary goal of this research is to separate tt̄H process events from other events,

which is a challenging task given the similarities between tt̄H events and certain back-

ground processes. By leveraging Deep Learning (DL) techniques, this task can be achieved

more effectively, thereby facilitating a more detailed study of the Higgs boson and its

properties.

1.3.1 2lSS + 1τhad channel

The work at CERN is often divided into different channels, with each channel focusing on

a specific final state of interest. These channels are orthogonal, meaning that each event

can only belong to one channel, preventing any overlap in the analysis.

One such channel, and the main focus of this thesis, is the two-lepton same-sign plus

one tau (2lSS + 1τhad) (e, µ) channel. This specific final state arises from the decay of

a top-antitop-Higgs (tt̄H) system, where one top quark decays to a W boson and a b

quark, with the W boson further decaying to a lepton and a neutrino. The other top

quark also decays to a W boson and a b quark, but in this case, the W boson decays into

a pair of quarks. Lastly, the Higgs boson decays to a pair of tau leptons, where one tau

lepton decays into another lepton and two neutrinos, while the other tau lepton decays

to a pair of quarks and a neutrino. This complex series of decays results in a final state

consisting of two same-sign leptons and a hadronically decaying tau lepton, hence the
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Figure 1.4: Feynman diagram of the 2lSS + 1τhad process.

name 2lSS + 1τhad channel (Figure 1.4).

The branching ratios for these decays are approximately

Higgs boson to a pair of tau leptons: B(H → ττ) ≈ 6.0%

Tau lepton to a W boson and a neutrino: B(τ → Wν) ≈ 100%

Top quark to a W boson and a b quark: B(t→ Wb) ≈ 100%

W boson to an electron and a neutrino: B(W → eν) ≈ 11%

W boson to a muon and a neutrino: B(W → µν) ≈ 11%

W boson to a pair of quarks: B(W → qq) ≈ 67% .

Given that the theoretical cross-section for the tt̄H process is about σtt̄H ≈ 500 fb. The

luminosity for the analyzed period (LHC Run-2) is L = 140 fb−1, the total number of

expected tt̄H events is approximately Ntt̄H = σtt̄H · L = 70 000. When accounting for the

aforementioned branching ratios, the expected number of tt̄H events in the 2lSS + 1τhad

final state is approximately reduced to

Ntt̄H, 2lSS + 1τhad = 2 ·Ntt̄H · B(H → ττ) · (B(W → eν) + B(W → µν))2 · B(W → qq)2

= 2 · 70 000 · 0.06 · (0.11 + 0.11)2 · 0.672 ≈ 183 .
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Note that factor 2 takes into account the two configurations where leptons have either both

positive sign, or both negative sign. The first (positive) case is presented in Figure 1.4,

while the second one would have the top quark decay into t → bq̄q, antitop quark decay

into t̄→ b̄l−ν, and then from the Higgs, τ̄ → q̄qν, and τ → l−νν.

It is a simplified calculation, but it provides a good estimate of the scale of the challenge

we face in detecting the tt̄H in the 2lSS+1τhad channel. As we apply the selection criteria

to the simulated data (section 1.6), we drop from about 8.9M to just 32K raw events.

For the tt̄H, this corresponds to 0.8M → 15K raw events. Note that additional cuts

(subsection 1.3.2) are applied, numbers here correspond to the SR. In terms of weighted

events the transition is from 46K → 32.72 weighted events across all the processes, and

523.42 → 12.22 weighted events for the tt̄H. The details for all processes are given in

Table 1.2.

1.3.2 Regions in Particle Physics

All Events

Signal 
Region

Control 
Region

Validation 
Region

Figure 1.5: Relationship between different regions.

We briefly describe the notion of regions in particle physics. There are three types of

regions:

• Signal Region (SR) is where we expect the events of interest, the signal, to be

most prevalent. It is defined by certain selection criteria that maximize the signal’s

prominence against the background. Appendix A.2 shows the precise definition of

the SR.

• Control Regions (CRs) is where we estimate the amount of background con-

tamination present in the SR. The CR is characterized by negligible signal but a

significant amount of background events, similar to what we expect in the SR. By

studying the CR, we can understand and model the background in the SR.
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• Validation Regions (VRs) are used to test the reliability of our model predictions

and the Monte Carlo (MC) simulations. VRs are typically chosen where neither the

signal nor the background is expected to be particularly high or low. Any significant

deviation of the observed data from our model predictions in the VR may indicate

the presence of a new physics process or systematic errors in our model or simulation.

These regions are not arbitrarily defined but are carefully chosen based on detailed knowl-

edge of the physics processes involved and the detector’s characteristics.
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Figure 1.6: Distributions of the transverse momentum of the leading and subleading
leptons inside the SR. Table 1.2 shows the precise numbers of events of the backgrounds,
and Table 1.3 shows the numbers for the fake lepton events. The areas are crossed out
because the events in these regions are blinded. Blinding refers to hiding the data points
in the bin if signal to background ratio is larger than a certain threshold. A threshold of
0.3 is used as blinding condition for all bins.

Figure 1.6a and Figure 1.6b show the distributions of the leading and subleading leptons’

transverse momenta inside the SR. This type of plots (yields plots) is most common

generated by the TRExFitter8 software. Such plots are often used to check the modelling

of the variables, catch some trivial issues early on, and compare the differences between

the different versions of the MC production (section 1.6). Further plots are presented in

the Appendix A.4.

Note that the fake electron, muon and tau contributions are based on a Template Fit

8TRExFitter is a framework for binned template profile likelihood fits heavily used at CERN. The
documentation can be found at https://trexfitter-docs.web.cern.ch/trexfitter-docs/. The code
can be found at https://gitlab.cern.ch/TRExStats/TRExFitter

https://trexfitter-docs.web.cern.ch/trexfitter-docs/
https://gitlab.cern.ch/TRExStats/TRExFitter
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Process SR (Raw) SR (Weighted) ALL (Raw) ALL (Weighted)
tt̄H 15293 12.22 834970 523.42
tt̄W 1479 5.49 581089 1680.34
tt̄WEW 74 0.59 15314 122.36
tt̄Z 9612 7.78 1750978 1550.66
tt̄ 3 0.33 299808 33487.35
Diboson (V V ) 1433 2.55 3829589 7046.18
tZ 32 0.29 40946 378.09
WtZ 209 1.20 45931 248.63
tW 0 0.00 4493 413.89
tt̄t 449 0.16 22980 8.08
tt̄tt̄ 482 0.97 22746 45.27
ggV V 38 0.01 792331 354.08
V V V 20 0.02 151324 60.93
V H 0 0.00 255 102.55
WttW 94 0.81 5944 50.56
tHjb 3058 0.14 445666 21.41
tWH 492 0.18 30587 15.95
Total 32768 32.72 8874951 46109.77

Table 1.2: Comparison of the number of events generated by the MC simulation (sec-
tion 1.6) before and after applying the SR selection criteria. For each process, the number
of raw events and the number of weighted events are given.

method9 using simulated shapes and overall normalization with recorded data in dedicated

selections (CRs). Fake lepton events are not used in the Neural Network (NN) training.

Fake lepton events are subtracted from the simulated MC sample, and the fake lepton

events from the Template Fit method are added. In total, there are 14.96 tt̄H and 40.21

background events after the preselection in the SR.

As a general rule in the ATLAS Collaboration, the recorded data must be blinded for

those bins where the signal over background ratio is above a certain threshold. This

blinding avoids a bias in the analysis, and the blinding condition is only removed after

the analysis is completed and finalized, and the ATLAS Collaboration gives approval for

unblinding.

1.4 Significance

Significance represents the confidence level at which we can assert that a detected event

is indeed a tt̄H event rather than a product of background noise or other processes. A

robust measurement of significance ensures that the observations are not mere statistical

fluctuations.

9Private Communication, August 2023, Nello Bruscino.



CHAPTER 1. INTRODUCTION 13

Process SR (Weighted)
fake µ 0.71
fake e 1.62
fake (e+ µ) 0.02
fake (µ+ µ) 9 · 10−06

fake (e+ e) 0.02
Qmis−ID 0.39
fake τ 3.90
tt̄H (fake τ) 2.74
fake τ(tt̄W ) 6.17
fake τ(tt̄Z) 3.50
fake τ + µ 1.33
fake τ + e 1.48
fake τ + µ+ e 1.4 · 10−3

fake τ + µ+ µ 10−5

fake τ + e+ e 10−3

fake τ +Qmis−ID 0.53
Total 22.43

Table 1.3: Number of fake lepton events inside the SR.

1.4.1 Poisson Distribution

In particle physics, data collected from collision events are assumed to occur randomly

and independently, thus following the principles of a Poisson distribution. A Poisson

distribution is a discrete probability distribution that expresses the probability of a given

number of events occurring in a fixed interval of time or space, given a fixed average rate

of these events.

An illustrative example might be the number of phone calls received by a call center

within an hour, assuming a constant average rate. If the call center typically receives an

average of 10 calls per hour, and the calls are independent of each other, the number of

calls received in any given hour can be modeled by a Poisson distribution with a mean

of λ = 10. However, in real-world applications, the assumption of a constant rate might

not always hold. For example, the probability of receiving a call at 1pm may differ

substantially from that at 1am, reflecting variations in call patterns throughout the day.

Such complexities necessitate a more nuanced approach in actual implementations, where

time-dependent variations in the rate of occurrence may need to be considered.

For a Poisson process, the average number of events in an interval is designated by the

parameter λ, which is the rate parameter. The probability of observing k events in an

interval is given by the equation:
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P (k events in interval) =
λke−λ

k!
, (1.1)

where e is the base of the natural logarithm, and k! is the factorial of k.

Figure 1.7 shows the Poisson distribution for various values of λ.
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Figure 1.7: Poisson distribution for various values of λ. For large λ, the Poisson distribu-
tion approaches a Gaussian distribution.

1.4.2 Central Limit Theorem

The Poisson distribution and the Gaussian (or Normal) distribution are linked by the

Central Limit Theorem (CLT), one of the fundamental theorems in probability theory

and statistics.

The CLT states that the sum of a large number of independent and identically distributed

random variables, each of which may be arbitrarily distributed, will approximately follow

a Gaussian distribution, regardless of the shape of the original distribution. This is true

provided the mean and variance of the original distributions are finite.

For a Poisson process, consider that each event occurs independently. So, we can imagine

that our λ (average number of events in a given time period) is the sum of several smaller,

independent rates. For instance, λ could be the result of n independent processes each

with a rate of λ
n
. Thus, our Poisson process with rate λ can be viewed as the sum of n

Poisson processes each with a rate λ
n
.
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So, what happens when n is large and λ
n
is small? Each individual Poisson process will

rarely contribute an event to the sum, but there are a lot of them (n is large). This is

precisely the sort of condition under which the CLT operates. As such, we expect for

large λ that the Poisson distribution will start to look more and more like a Gaussian

distribution, as the Poisson distribution is the sum of many independent and identically

distributed random variables.

Mathematically, a random variable X that is Poisson-distributed with mean λ can be

approximated by a Gaussian distribution with mean λ and variance λ, if λ is large. This

is usually taken to mean λ > 20 or 30 (Figure 1.7). Thus, for a Poisson distribution with

large λ, it can be approximated as

X ∼ N(λ,
√
λ) . (1.2)

This allows us to use Gaussian statistics for large λ, which are mathematically more

tractable. In the context of particle physics, the number of events is often large, so the

Poisson distribution can be approximated by a Gaussian distribution, allowing us to use

Gaussian statistics to analyze the data.

In our context, each collision event in the tt̄H could either be a signal (in our case, a tt̄H

event) or part of the background (any other process). The events are counted, and the

count follows a Poisson distribution.

1.4.3 Significance

In the context of particle physics, and scientific experiments in general, significance plays

a crucial role in hypothesis testing. Hypothesis testing is a statistical method used to

make inferences or draw conclusions about a population based on a sample of data. The

methodology of hypothesis testing involves the formulation of two competing hypotheses,

the null hypothesis (H0) and the alternative hypothesis (H1). The null hypothesis is a

statement about the population that will be accepted if the sample data do not provide

sufficient evidence that it is false. On the other hand, the alternative hypothesis is a claim

about the population that will be accepted if the sample data provide sufficient evidence

that it is true. In our case specifically, the null hypothesis is that tt̄H process does not

exist, which we either accept or reject based on the amount of evidence provided by the

data.

The process of hypothesis testing involves collecting data and calculating a test statistic

which is then compared to a critical value to decide whether to accept or reject the null
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hypothesis. This is where the p-value comes into play. The p-value is a probability that

provides a measure of the evidence against the null hypothesis provided by the data. A

smaller p-value provides stronger evidence against the null hypothesis. If the p-value is

below a predetermined significance level, typically 0.05 or 0.01, the null hypothesis is

rejected in favor of the alternative hypothesis. Figure 1.8 shows the relationship between

the p-value and the significance level.

More 
statistically 
significant(random)

Z-value

Figure 1.8: The relationship between the p-value and the significance level. Note that
p-value is defined for the two-tailed test, while in our case we concerned with the case
where we have more events than expected. However, this is not a problem, as the the
significance level computed would underestimate the true significance level, meaning that
in reality we would expect even better results.

In particle physics, the null hypothesis often refers to the background-only hypothesis, i.e.,

the hypothesis that only known SM processes are occurring. The alternative hypothesis,

on the other hand, includes both the background and a potential new signal.

This is where we connect hypothesis testing to Poisson statistics. We model the number

of observed events as a random variable that follows a Poisson distribution, with an

expectation value equal to the sum of the expected number of background events (b) and

signal events (s). If the actual observed number of events is significantly larger than the

expected number of background events, then we have evidence against the null hypothesis.

The ”significance” in particle physics refers to how many standard deviations an observed

result is away from the expectation under the null hypothesis. If our data gives a result

that is very unlikely under the null hypothesis (say, less than a 0.01 chance), we have
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strong evidence against the null hypothesis. The significance Z is, in essence, the number

of standard deviations that the observed data is away from the expectation under the null

hypothesis, with Z = 1 corresponding to a p-value of about 0.16 (or 16%), and Z = 2

corresponding to a p-value of about 0.023 (or 2.3%). Note that we are interested in a

one-sided conference level (as the number of signal events s is assumed to be positive),

thus 2σ corresponds approximately to the 1− 0.05 = 0.95 CL (Table 1.4).

Z(p) = Φ−1(1− p) p(Z) = 1−Φ(Z) =

∫ ∞

Z

1√
2π

e−
x2

2 dx (1.3)

Significance 1 2 3 4 5

p-value (%) 15.87 2.28 0.13 3 · 10−5 3 · 10−7

p-value (one-sided) (%) 31.73 4.55 0.27 6 · 10−3 6 · 10−5

Table 1.4: Significances and corresponding p-values.

We illustrate this with an example. Suppose we only expect background processes to

occur. In other words, during a measurement period, we expect to observe b background

events. However, we observe n = b+s events. This could be due to statistical fluctuations,

or it could be due to the presence of a new signal. Because events follow the Poisson

distribution, which can be approximated by a Gaussian for large b and s, we can use the

Normal distribution N(b,
√
b) to model the number of observed events. The Z-score is

then given by:

Z =
n− b√

b
=

s√
b

(1.4)

We should note, however that due to the approximation of the Poisson distribution by

the Gaussian distribution, the number of background events b must be large enough for

the Z-score to be a good approximation of the significance.

In practice, such approximation is often used in the early stages of a search due to its

simplicity. For more accurate results, a more complex statistical model is used that also

accounts for different nuissance parameters (NPs) - systematic uncertainties (Chapter 3,

[2], [3] for more details):
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q0 = −2
L(µ = 0,

ˆ̂
θ(µ = 0))

L(µ̂, θ̂)
where µ̂ > 0 (1.5)

Z = Φ−1(1− p) =
√
q0 (1.6)

p(Z) = 1−Φ(
√
q0) , (1.7)

where L is the profile likelihood function10, (Equation 3.2), µ is the parameter of interest11,

θ are the nuissance parameters (NPs), µ̂ and θ̂ are the Maximum Likelihood Estimators

(MLEs) of µ and θ respectively, and
ˆ̂
θ is the MLE of θ for a fixed value of µ.

This provides a powerful tool for identifying new phenomena in particle physics. If the

significance of a signal exceeds a certain threshold (often 5σ in particle physics, corre-

sponding to a p-value of about 3 · 10−7), the signal is considered a discovery.
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Figure 1.9: Influence of the threshold on the significance. Two approximations are used.
As the threshold changes, the significance changes accordingly. The threshold that max-
imizes the significance is chosen.

For our experiments, we conduct the more precise calculation of significance once the

best network is selected. However, to get an estimate of what we can expect, we use the

approximation described above to calculate the significance during the model selection.

It is important to note that when optimizing for significance, the argmax strategy is usu-

ally not optimal, so the threshold scanning (or working point optimization) is performed

(Figure 1.9b):

10https://statisticalmethods.web.cern.ch/StatisticalMethods/statisticaltests
11For our case specifically, µ refers to the signal strength, and so it is set to 0 as the null hypothesis

assumes that there is no signal.

https://statisticalmethods.web.cern.ch/StatisticalMethods/statisticaltests
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When we start with a threshold of 0, all events are classified as tt̄H, producing a high

number of true positives, but also a high number of false positives. As the threshold

increases, the model gets more conservative and starts classifying fewer events as tt̄H,

reducing the number of true positives and false positives. For each threshold, we compute

both values for the significance and choose the threshold that maximizes the significance.

As noted, this is only an approximation, and the significance is calculated again using the

better statistical model of significance.

1.5 Motivation for Deep Learning in Particle Physics

In recent years, the application of DL techniques in various scientific domains has gained

significant attention due to their ability to extract complex patterns and relationships

directly from data. In the field of particle physics, DL has shown promising potential

for improving the analysis of high-dimensional datasets and enhancing the discrimination

power between signal and background events [4].

Within the context of the tt̄H process in the 2lSS + 1τhad channel, previous work by [5]

and [6] has already explored the involvement of NNs to tackle the signal and background

separation problem. Their work has provided valuable insights into the feasibility and ini-

tial performance of DL approaches for this specific process. Building upon their research,

we aim to further advance the application of DL techniques and address some challenges

encountered in their work.

While it is true that DL methods are usually outperformed [7] by ”standard” machine

learning techniques like XGBoost [8], Boosted Decision Trees (BDTs), random forests [9]

for tabular data, in many other applications (i.e. computer vision, Natural Language

Processing (NLP)) they are commonly a State-of-the-Art (SOTA) method [10]–[12]. In

the context of particle physics, DL methods have also shown potential for surpassing

these traditional methods [13]. The remarkable capacity of deep neural networks to learn

complex representations and capture intricate dependencies within the data makes them

well-suited for tasks involving high-dimensional and non-linear patterns.

An important factor that affects the performance of DL algorithms is the availability of

sufficient training data. In our work, we address this limitation by experimenting with

an extended dataset obtained by dropping all the selection cuts (see section 2.4). This

extended dataset provides a larger sample size and allows the neural networks to capture

more diverse patterns and improve their generalization capabilities. By leveraging this

extended dataset, we aim to demonstrate that DL models can achieve comparable or

superior performance to other machine learning techniques, such as XGBoost, BDT, or
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random forests, in the context of the tt̄H signal and background separation.

Moreover, we explore the application of the famous transformer [14] architecture, origi-

nally developed for Natural Language Processing (NLP) tasks, in the context of particle

physics analysis. Transformers have since became extremely popular and were applied to

almost every domain of machine learning. We research the performance of the transformer

architecture in the context of particle physics and compare it to the previous results, as

well as other tree-based methods.

By leveraging the capabilities of DL and exploring novel architectures like transformers, we

seek to address the challenges encountered in previous work and enhance the performance

of signal and background separation in the 2lSS + 1τhad channel. Through our research,

we aim to contribute to the growing body of knowledge on DL in particle physics and

demonstrate its potential for advancing the field.

1.6 Monte Carlo (MC) Simulation

To be able to train classifiers for the precise identification of tt̄H events, we must adopt a

method that transcends mere observation of final state particles. Our particle accelerator,

engineered to collide particles and equipped with advanced detectors, can capture various

attributes of these final states, including their energy, momentum, and type.

The obstacle we face is the intrinsic limitation of detecting only the final state particles

and not the elusive intermediate processes. Since the intermediate particles remain unde-

tectable, due to their extremely short lifetimes, limitations in current detection technology,

the inherent complexity of the interactions, and the energy levels at which they exist, we

must reconstruct the entire collision event from the observable final state particles.

This problem can be elegantly formulated as a supervised learning task (see section 2.1).

Although clustering presents an alternative, supervised learning often proves to be more

efficient and is favored when the conditions allow for its use (see Appendix A.5 for more

details).

By employing a theoretical model with established branching rules, we construct a MC

simulation. We use software like Pythia12 to generate a labeled dataset where the final

state particles and their properties are the features, and the intermediate processes, such

as tt̄H or tt̄W , are known and are thus assigned as the corresponding labels.

A vital aspect of our simulation is its adaptability to various detector and accelerator con-

figurations. This ensures an accurate representation, capturing not only the fundamental

12https://pythia.org/

https://pythia.org/
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physical processes but also the specific characteristics of how these processes are observed

in a real-world particle accelerator environment.

This simulation relies heavily on having an accurate theoretical model and precise mod-

eling of various technical aspects of the detectors. Recognizing that the simulation may

have imperfections, we engage in an iterative process that involves comparing the simu-

lated results with real data, finding and accounting for any discrepancies, and producing

a new more refined and accurate version of the simulated dataset13.

1.6.1 Event Weighting

The tt̄H process is very rare and accounts for only about 1% of all Higgs production.

This results in a very low number of signal events, and, as noted before, training on such

a small dataset is practically not tractable. To alleviate this difficulty, more signal events

are explicitly generated.

However, this leads to a very different distribution than the one observed in the real data.

To align the MC simulation with the real, the weight wi is applied to each event i. This

weight is essentially the estimate of the probability of the event i occurring in the real

data, also given specific detector configuration.

Various factors contribute to the weight of an event. The most important ones are the

luminosity, that is different for different runs of the LHC, and the cross-section. We

provide the complete formula in Appendix A.3.

13This work was done on the version 8 (v0801) of the n-tuples. Appendix A.1 shows list of files for
each process.



Chapter 2

Methodology

2.1 Problem Formulation

2.1.1 Empirical Risk Minimization (ERM)

As stated before, our primary objective in this thesis is to distinguish the tt̄H events from

other events of the other detected by the ATLAS detector. Given an observation x ∈ X ,
we want to predict its corresponding class label y ∈ Y . Here X denotes the space of all

possible observations (in our case this corresponds to the different measurements of the

event), and Y denotes the space of all the class labels we are differentiating between. We

can further split the problem into either a binary classification (seeking to differentiate

between tt̄H (signal) and not tt̄H (background)) or a multi-class classification (seeking

to correctly discriminate between each of the processes - tt̄H, tt̄W , tt̄Z, tt̄, etc.).

As we approach this task as a supervised learning problem (section 1.6), we assume that

a set of labeled observations T trn = (xi, yi)
N
i=1 is provided. Here xi ∈ X is a feature vector

representing different properties (features) of an event and yi ∈ Y is its corresponding

true class label. We assume there exists a joint probability distribution P (x, y) over the

observations x and their corresponding class labels y. Then, we require the examples in

the training set (xi, yi) ∈ T trn to be drawn i.i.d. from the joint distribution P (x, y).

We also assume that there is a non-negative real-valued loss function L(y, ŷ) that quantifies

the discrepancy between the true label y and the predicted label ŷ. The common example

of such a loss function would be a zero-one loss function, which is defined as

L0/1(y, ŷ) =

0 if y = ŷ

1 otherwise
. (2.1)

22
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The goal is to find the best hypothesis h∗ ∈ H : X→ Y that would minimize the expected

loss over the joint distribution P (x, y):

h∗ = argmin
h∈H

E(x,y)∼P (x,y)[L(y, h(x))] . (2.2)

In practice, we do not have access to the joint distribution P (x, y), but only to the training

set T trn. To tackle this problem, we use the ERM principle [15], which states that the

best hypothesis h∗ is the one that minimizes the empirical risk over the training set T trn:

ĥ = argmin
h∈H

Rtrn
T (h) = argmin

h∈H

1

N

N∑
i=1

L(yi, h(xi)) . (2.3)

2.1.2 Validation and Test Sets

Consider, for example the following ”cheating” classifier:

h(x) =

yi if ∃i : x = xi

y0 otherwise
. (2.4)

This classifier would have zero empirical risk, but would perform poorly on unseen data

(would not generalize well). This is referred to as overfitting (Figure 2.1). Generally, in

case of an unconstrained hypothesis space H, we have no guarantee that the empirical

risk Rtrn
T (h) is a good approximation of the true risk R(h).

Specifically, the problem in this case is that the prediction ŷi depends not only on the

observation xi, but also on the labels y1, . . . , yN . Consider, for example, a NN classifier hθ

with trainable parameters θ. When training hθ on the training set by back-propagation, θ

becomes implicitly conditioned on the true labels y1, . . . , ys that the network has encoun-

tered before (s denotes the training step). This violates the i.i.d. assumption and thus

the empirical risk Rtrn
T (hθ) is not a good approximation of the true risk R(hθ) anymore.

To address this issue and more accurately assess the generalization ability of the classifier

h, we need a separate set T val ∼ P (x, y) that provides an unbiased estimate of the true

risk R(h). This set is called the validation set. The validation set is used to compare

the performance of different classifiers. Consider two classifiers h1 and h2, where the

risk on the training set is Rtrn
T (h1) < Rtrn

T (h2), but the risk on the validation set is

Rval
T (h1) > Rval

T (h2). In this case, we prefer the classifier h2 over h1 as it generalizes better

to unseen data. The specific case is often seen with the NN classifiers, where the classifier

h is parametrized by θ. Then essentially we compare h1 = hθ1 and h2 = hθ2 , where θ1
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and θ2 are two different sets of parameters. The process of selecting the best classifier h∗

from a set of classifiers H is called model selection.

0 20 40 60 80 100
Epoch

0

1

2

Standard training set trn

0 20 40 60 80 100
Epoch

Extended training set trn
ext

Training Loss Validation Loss

Figure 2.1: Training and validation losses during the training process on standard versus
extended training sets. The semi-transparent lines show the actual loss values, while the
solid lines show the exponential moving average. The left plot shows the training of the
FT-Transformer with 2 blocks (subsection 2.3.5) on the standard training set. Because
of the lack of training samples, and high capacity of the model, we observe overfitting.
The training loss continues to decrease while the validation loss starts to increase. The
checkpoint with the validation loss is the lowest is then used as the final model. This
is referred to as early stopping. The best way to prevent overfitting is to get more
training data (section 2.4). If that is not possible, one might also consider augmentation
techniques, or regularization - dropout (subsection 2.3.6), weight decay etc. The right
plot shows the training of the FT-Transformer with 5 blocks (subsection 2.3.5) on the
extended training set. Also, the 20% dropout is introduced. We observe only a slight
overfitting, which means that the model has generalized a lot better.

The caveat of using the validation for model selection is that in doing so we are implic-

itly fitting to the validation set, as now our best classifier h∗ is also conditioned on the

evaluations of the other classifiers on the validation set. To address the similar issue, a

third set is normally introduced, called the test set T tst ∼ P (x, y). The test set should

be used only once to assess the performance of the fully-trained classifier h∗.

2.1.3 Training

The process of finding the best hypothesis h∗ is called training (or learning). In the

context of ERM, this further reduces to minimization of the empirical risk Rtrn
T (h). As

described before, the empirical risk is an expectation of the loss function L(y, h(x)) over

the training set T trn. Thus, the choice of the loss function will determine the available
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training algorithms.

This work focuses on training Neural Network (NN) classifiers. A NN can be formally

described as a parametric model parametrized by a vector of parameters θ. NNs are

generally composed of multiple layers f 1
θi
, . . . fD

θL
(D denotes the total number of layers

- depth of the network), where each layer f i
θi

is a parametric function parametrized by

θi. NNs can take different architectures, a common one1 is a feed-forward NN where the

output of the layer f i
θi

is fed as an input to the next layer f i+1
θi+1

. The output of the last

layer fD
θL

is the output of the network hθ. Alternative to feed-forward NNs would be the

network that contain cycles (e.g. Recurrent Neural Networks (RNNs)2 [16], [17]).

The parameter vector of the whole neural network can be seen as a concatenation of the

parameters of the individual layers:

θ =


θ1

...

θL

 . (2.5)

The goal is then to find the optimal set of parameters θ∗ that minimizes the empirical

risk Rtrn
T (hθ).

Training NNs efficiently involves the use of gradient-based optimization algorithms where

the gradient of the empirical risk Rtrn
T (hθ) with respect to the parameters θ is computed

and is used to update the parameters θ in the direction of the steepest descent. The

gradient of the empirical risk Rtrn
T (hθ) with respect to the parameters θ can be computed

using the chain rule:

∇θR
trn
T (hθ) = ∇θ

1

N

N∑
i=1

L(yi, hθ(xi)) =
1

N

N∑
i=1

∇θL(yi, hθ(xi)) , (2.6)

and is essentially an average of the gradients of the loss function L(yi, hθ(xi)) with respect

to the parameters θ over the training set T trn. During the update step, the parameters

θ are updated in the direction of the steepest descent:

θ ← θ − α∇θR
trn
T (hθ) , (2.7)

1In this thesis we use an adaptation of Residual Neural Networks (ResNets) to tabular data and
Feature Tokenizer + Transformers (FT-Transformers), which are both special cases of feed-forward
NNs.

2Overview of the different types of RNNs https://paperswithcode.com/methods/category/

recurrent-neural-networks.

https://paperswithcode.com/methods/category/recurrent-neural-networks
https://paperswithcode.com/methods/category/recurrent-neural-networks
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where α is the learning rate, a hyperparameter controlling the size of the update step. In

practice, instead of computing the gradient over the whole training set T trn, the gradient is

computed on the so-called mini-batches of the training data. This gradient, computed on

the mini-batch acts as an unbiased estimate of the true gradient. This approach is called

Stochastic Gradient Descent (SGD) and is the most common optimization algorithm

used for training NNs3. Throughout our experiments we use an improvement of SGD

called Adaptive Moment Estimation with Weight Decay (AdamW) [18], [19] which is an

adaptive learning rate optimization algorithm that uses the first and second moments of

the gradient to adapt the learning rate dynamically.

Computation of the gradient of the loss function L(yi, hθ(xi)) with respect to the pa-

rameters θ is done using the chain rule. The chain rule is a formula for computing the

derivative of the composition of two or more functions:

d(f ◦ g)
dx

=
df

dg

dg

dx
, (2.8)

where f and g are functions of x.

In the context of NNs, the chain rule is used to compute the gradient of the loss function

with respect to the parameters θ by an iterative approach. First, let the outputs of the

individual layers are recorded during the forward pass (or forward propagation):

zi = f i(zi−1) i = 1, . . . , L (2.9)

z0 = x , (2.10)

where zi is the output of the i-th layer and z0 = x is the input to the first layer. Then,

we can compute the gradients with respect to the outputs of the layers:

3Aside from having low computational and memory requirements, being able to learn online, SGD
has some other advantages, such as being able to escape local minima, generalize better and provide the
regularization effect - all consequences of an inherent noise in the gradient estimate.
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δD =
dL

dfD
(2.11)

δD−1 =
dL

dfD

dfD

dzD−1
= δD dfD

dfD−1
(2.12)

δD−2 = δD−1df
D−1

dfD−2
(2.13)

...

δ1 = δ2df
2

df 1
. (2.14)

Next, the gradient of the loss function with respect to the parameters of each layer θi is

computed as

dL

dθD

=
dL

dfD

dfD

dθD

= δDdfD

dθD

(2.15)

dL

dθL−1

=
dL

dfD

dfD

dfD−1

dfD−1

dθL−1

= δD−1df
D−1

dθD−1

(2.16)

dL

dθD−2

= δD−2df
D−2

dθD−2

(2.17)

...

dL

dθ1

= δ1df
1

dθ1

. (2.18)

The chain rule is the reason why NNs are so successful in practice. It allows for the

efficient computation of the gradient even for very deep NNs.

2.1.4 Cross-Entropy Loss

In order for the back-propagation to work, all the functions must be differentiable. The

zero-one loss function that we used in the previous section does not conform to this

requirement. In practice, when training NNs on the classification tasks, the cross-entropy

loss function is used. Cross-entropy loss operates on the probabilities, rather than on

the predicted label, thus making it differentiable and suitable to be used in the back-

propagation algorithm. The cross-entropy loss function is defined as:

L(yi,h(xi)) = −
|Y|∑
j=1

Jyi = yjK log(hj(x)) . (2.19)
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In certain scenarios, such as imbalanced datasets, it may be beneficial to apply different

weights to different classes. Class weights are used to give more importance to under-

represented classes, effectively balancing the contribution of each class to the overall loss.

This helps the learning algorithm focus more on the minority class, which may be of

particular interest or significance.

For example, consider a medical diagnosis application where 95% of the samples are

negative (y = 0) and only 5% are positive (y = 1) for a specific condition. Training a

model on this dataset without any adjustments may lead to a classifier that almost always

predicts the negative class, since it is encountering it much more often. Such a skewed

prediction can be problematic in critical applications, as missing the rare positive cases

could have serious consequences. To alleviate this issue, class weights can be introduced

to the loss function to give equal importance to both classes. The modified loss function

is:

L(yi,h(xi)) = −
|Y|∑
j=1

Jyi = yjKwj log(hj(x)) . (2.20)

Here weights w1, . . . , w|Y| are assigned to each class, where wi is calculated as:

wi =
|{y ∼ Y | y = i}|
|Y|
∑|Y|

i=1wi

i = 1, . . . , |Y| . (2.21)

Essentially, we count the number of examples of class i and divide it by the total number

of examples in the dataset. Then we normalize4 the weights so that they sum up to 1.

Similarly, the way the cross-entropy is defined, we can also introduce a more refined

sample-wise weighting. In this case, the loss function is defined as:

L(yi,h(xi)) = −
|Y|∑
j=1

Jyi = yjKwi log(hj(x)) . (2.22)

Here we should note that wi is not the same as the class weight wi from the previous

example. In this case, wi is a weight assigned to each sample, rather than to each class,

which we note by using the same index i as in the yi and xi. This formulation is not

commonly used, but was explored by the previous analysis [5], [6], thus we include it here

for completeness. More details are given in section 2.6.

4This is optional, but helpful - inverse frequencies can have a large range, especially if there is extreme
imbalance between the classes. Keeping the weights in the [0, 1] range also help interpretability.
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2.2 Evaluating the Classifier Performance

During evaluation, it is essential to go beyond the loss function and consider different

metrics that shed light on various aspects of the model’s performance. These metrics

offer a more comprehensive understanding of how well the classifier is doing. For example,

in a binary classification problem such as diagnosing a specific medical condition, merely

looking at the loss might not reveal how well the model is identifying positive cases among

the minority class.

Classification metrics include measures like Accuracy, which gives an overall picture of

correct classifications, and Precision and Recall, which focus on the model’s performance

with respect to a specific class. Other metrics like the F1-Score provide a balance between

Precision and Recall, and AUC-ROC measures the ability of the model to discriminate

between positive and negative classes. Choosing the right combination of these metrics is

vital, as it guides the optimization during training and influences the model’s generaliza-

tion to unseen data.

Understanding and selecting the appropriate classification metrics ensures alignment with

the problem’s unique requirements and goals, enhancing the model’s utility and effective-

ness in real-world applications.

Confusion Matrix

The confusion matrix provides a comprehensive view of the classifier’s performance. For

a binary classification task, it is a 2 × 2 matrix where the rows correspond to the true

classes and the columns correspond to the predicted classes:

Cbin =

(
TP FP

FN TN

)
(2.23)

TP =
N∑
i=1

Jyi = 1 ∧ ŷi = 1K (2.24)

FP =
N∑
i=1

Jyi = 0 ∧ ŷi = 1K (2.25)

FN =
N∑
i=1

Jyi = 1 ∧ ŷi = 0K (2.26)

TN =
N∑
i=1

Jyi = 0 ∧ ŷi = 0K , (2.27)
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where TP (true positive) is the number of positive instances correctly identified as positive,

TN (true negative) is the number of negative instances correctly identified as negative,

FP (false positive) is the number of negative instances incorrectly identified as positive

(Type I error), and FN (false negative) is the number of positive instances incorrectly

identified as negative (Type II error).

As explained in section 1.6, the event weights should always be used when evaluating the

classifier’s performance. Otherwise, the results we obtain are not representative of the

real-world performance. All metrics we use thus stem from the weighted confusion matrix,

defined as:

Cbin
w =

(
TPw FPw

FNw TNw

)
(2.28)

TPw =
N∑
i=1

wiJyi = 1 ∧ ŷi = 1K (2.29)

FPw =
N∑
i=1

wiJyi = 0 ∧ ŷi = 1K (2.30)

FNw =
N∑
i=1

wiJyi = 1 ∧ ŷi = 0K (2.31)

TNw =
N∑
i=1

wiJyi = 0 ∧ ŷi = 0K , (2.32)

where Cbin
w is the confusion matrix, wi is the MC weight of the i-th event, calculated as

described in the Appendix A.3, and N is the total number of events in the evaluation set.

Further on, when referring to the confusion matrix, true positives, false positives, false

negatives, and true negatives, we will always be referring to their weighted counterparts,

dropping the subscript w for brevity, unless otherwise specified.

Figure 2.2 shows how such confusion matrix looks in our case for the binary classification

task - when we only care about differentiating between tt̄H and non-tt̄H events.

Binary confusion matrix naturally extends to a multi-class formulation (Figure 2.3), lead-

ing to a |Y| × |Y| matrix for a |Y|-class classification task:

Cmulticlass
ij =

|Y|∑
k=1

wkJyk = i ∧ ŷk = jK , (2.33)
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Figure 2.2: Confusion matrix for a binary classification task. This confusion matrix is
produced using 5-blocks FT-Transformer (subsection 2.3.5) trained on the extended train-
ing set (section 2.4) evaluated on the validation set, that contains 20% of the SR events.
Signal refers to tt̄H, and background refers to all the other classes. The argmax classifi-
cation strategy was used. Note that the classifier was trained to differentiate between all
the classes, but during evaluation, all the non-tt̄H events are grouped together.

where i and j are the true and predicted classes, respectively. The diagonal elements of

the matrix correspond to the correctly classified events, while the off-diagonal elements

correspond to the misclassified events. The multi-class confusion matrix is not symmet-

ric, and the sum of the elements in each row is equal to the number of events in the

corresponding true class.

The confusion matrix serves as the basis for several other performance metrics, including

accuracy, F1 score, and area under the Receiver Operating Characteristic (ROC) curve

(AUC-ROC).

Accuracy: The Proportion of Correct Predictions

Accuracy is the most intuitive performance metric. It is the ratio of the number of

correctly classified examples to the total number of examples (called events in particle

physics). Accuracy is calculated trivially from the confusion matrix:
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Figure 2.3: Confusion matrix for a multi-class classification task. This confusion matrix
is produced using 5-blocks FT-Transformer (subsection 2.3.5) trained on the extended
training set (section 2.4). The argmax classification strategy was used.

Accuracy =
trCii∑Y

i=1

∑Y
j=1Cij

, (2.34)

While accuracy is straightforward and commonly used, it may not always be the most

representative metric, especially in cases where the classes are imbalanced. Consider the

example of our particle physics problem where we are searching for tt̄H events and suppose

that 90% of the events are background and only 10% are signal. A näıve classifier that

always predicts the background class would achieve an accuracy of 90%. However, such

a classifier would be entirely unhelpful for the task at hand since it fails to identify any

tt̄H events.

Certainly, the accuracy is not entirely without value, and there are contexts where it might

still be useful. Even in imbalanced scenarios, accuracy can provide a general sense of how

often the classifier is correct across both the majority and minority classes. While it may

not provide a nuanced view of performance on the minority class (such as tt̄H events in

our case), it still provides information on the overall hit rate of correct predictions.
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Additionally, in scenarios where the cost of false positives and false negatives are roughly

equivalent, or when the class distribution in the model’s operational environment matches

the training data, accuracy might still be a relevant metric. It offers a quick and easily

interpretable measure of performance.

However, in the specific context of searching for rare or significant events, such as tt̄H

in particle physics, relying solely on accuracy can be misleading. It would typically be

considered alongside other metrics that give more insight into the performance on the

class of interest. Thus, while accuracy may not be the most representative metric in such

cases, it might still hold some value as part of a broader evaluation framework.

Precision and Recall

Two other important metrics which are derived from the confusion matrix are precision

and recall, which are particularly useful when dealing with imbalanced classes.

Precision is the proportion of TP to all predicted positives. Specifically, in our case, it

is the ratio of the correctly classified tt̄H events, to all events classified (or misclassified)

as tt̄H. From here on, we assume y1 = tt̄H, and so the true tt̄H events correspond to

the first row of the confusion matrix, while predicted tt̄H events correspond to the first

column. Precision is then given by

Precision =
C11∑Y
j=1C1j

. (2.35)

Recall (or sensitivity) is the proportion of TP to all actual positives. In our case, it is

the ratio of the correctly classified tt̄H events to all actual tt̄H events (which the model

might have missed by classifying them as background). Recall is given by

Recall =
C11∑Y
i=1 Ci1

. (2.36)

Precision tells us how reliable our positive predictions are, while recall informs us how

many of the actual tt̄H events we were able to detect. Both these metrics provide com-

plementary insights, and understanding the trade-off between them is essential in many

real-world classification tasks. Next, we will introduce the F1 score, a metric that com-

bines both precision and recall to provide a balanced view of the model’s performance on



CHAPTER 2. METHODOLOGY 34

both fronts.

F1 Score: The Balance Between Precision and Recall

The F1 score is the harmonic mean of precision and recall, providing a balance between

the two. It is calculated as:

F1 score = 2 · Precision · Recall
Precision + Recall

(2.37)

ROC Curve and AUC: The Trade-off Between Sensitivity and Specificity

The ROC curve is a plot of the true positive rate (recall or sensitivity) against the false

positive rate (1 - specificity) for different classification thresholds. The area under the

ROC curve (AUC-ROC) measures the classifier’s ability to distinguish between classes.

A perfect classifier has an AUC-ROC of 1, while a random classifier has an AUC-ROC of

0.5. The ROC curves for the tt̄H and two most dominant background processes tt̄W and

tt̄Z are shown in Figure 2.4.
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Figure 2.4: ROC curves for the tt̄H, tt̄W , and tt̄Z computed using one process versus
all other processes. The curves are produced using 5-blocks FT-Transformer (subsec-
tion 2.3.5) trained on the extended training set (section 2.4). We provide both the ROCs
computed with the weighted and unweighted confusion matrices for completeness and
comparison with the previous analysis, however, we emphasize that the weighted ROCs
are the ones that should be used always.

These metrics, combined with the loss function, provide a comprehensive view of the

classifier’s performance and guide the optimization process during training. They also

provide a robust measure for comparing different classifiers or the same classifier with

different hyperparameters. Generally, one should examine all of these metrics to get a

complete picture of the classifier’s performance.
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2.3 Architectures and Optimization Techniques

This section covers the classifier architectures and optimization techniques we employed

in our research. As a baseline model, we used an adaptation of the ResNets to the

tabular data, inspired by [7]. The primary model that has shown the best results was

the FT-Transformer, also adopted from [7]. The process of training these models and the

optimization techniques used to improve their performance is described in the subsequent

sections.

2.3.1 Previous Work

In an attempt to extend our understanding of the tt̄H process, this work builds upon the

previous efforts made by [5] and [6]. Their research also involved training feed-forward

neural networks to distinguish between the tt̄H and the background processes.

The primary architecture [5] utilized was a Multi-Layer Perceptron (MLP). The work

examines the effect of various hyperparameters such as the number of layers, embedding

size, learning rate, and batch size on the significance. The work also includes the estima-

tion of statistical uncertainties, associated with the median signal strength. The authors

experimented with binary and multi-class classification, as well as proposed a staged net-

work approach. The staged network is composed of 5 binary classifiers (for tt̄Z, tt̄W , tt̄,

V V , and all the other backgrounds grouped together in one category ”others”). Each of

the classifiers is a MLP itself, and during the training only receives events of tt̄H and the

corresponding background.

Although the staged network is its essence is equivalent to a single, larger MLP, it allows

for the training of each subnetwork on a different set of features. This can potentially

reduce the systematic uncertainties, associated with the final prediction.

The highest mean significance obtained with a multi-class classifier was reported to be

Z = 3.064 while the highest mean significance obtained with a binary classifier was

reported to be Z = 3.114. The expectation was that having the NN focus on differentiating

between two classes only would improve the performance. However, the results show that

there was no significant difference. In our work, however, we have observed that when the

classifier is trained on multiple classes, the performance is increased (section 2.7). The

highest mean significance obtained with a staged network was reported to be Z = 2.964,

which is very similar to the other results5.

In [6], the experiments were also extended beyond simple MLPs, experimenting with

5Note that different production of the input n-tuples are used. They have different calibrations, and
thus a direct comparison is only approximate.
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TabNet [20] and XGBoost [8]. The authors have also experimented with different hyper-

parameters, as well as different fractions of the training set, and different feature sets.

The best results were obtained with XGBoost trained on all the features and the whole

training set, which is unsurprising. The highest mean significance obtained with XGBoost

is reported as Z = 2.90. The authors have also evaluated the uncertainty, associated with

the prediction, which is reported as µ = 1+0.42/− 0.37, where µ is the ratio of expected

signal to the expectation in the SM (Equation 3.1).

Our research seeks to improve upon these previous efforts by introducing more complex

architectures and advanced optimization techniques, which will be discussed in the fol-

lowing sections.

2.3.2 Multi-Layer Perceptron (MLP)

In previous work, [5] utilized Multi-Layer Perceptrons (MLPs) as the primary model

architecture. While he experimented with combining multiple MLPs, this approach is

essentially equivalent to using a single, larger MLP. This can be formalized as in [21]:

MLP(x) = Linear(MLPBlock(. . . (MLPBlock(x)))) (2.38)

MLPBlock(x) = Dropout(σ(Linear(x))) (2.39)

Where σ is the activation function6, Linear is a linear transformation:

Linear(x) = Wx+ b , (2.40)

and Dropout is a layer that randomly (with a fixed probability p) sets a fraction of the

input features to zero [25]:

Dropouti(x) =

0, with probability p

xi, otherwise .
(2.41)

Here, x ∈ Rdf is an input vector of features size of size df . The first Linear layer

transforms the input vector into a vector of size dh, where dh is the embedding size

(number of hidden units), thus W ∈ Rdh×df and b ∈ Rdh . Each Linear layer in principle

6Common activation functions include ReLU, Leaky ReLU (LReLU) [22], [23], sigmoid, tanh, and
others. Throughout our experiments we mostly use GELU activation [24].
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may have a different embedding size, but in practice, we use the same embedding size for

all the layers. The last Linear layer transforms maps the output vector to the desired

output size do, where do is the number of classes to distinguish between.

2.3.3 Residual Neural Network (ResNet)

We compare the staged network to a slightly improved version of the MLP that introduces

residual/skip connections between the layers (Figure 2.5) proposed by [26].

LayerNorm

LayerNorm

Linear

GELU

GELU

Linear

Linear

+

Dropout

Pre-processing

Continuous

features

Categorical

features

N blocks

Logits

Figure 2.5: ResNet architecture.

These connections improve the training of deep neural networks, as the gradient can flow

unimpeded back to the first layers. This helps to address the vanishing gradient problem.

We can formalize this as in [21]:

ResNet(x) = Prediction(ResNetBlock(. . . (ResNetBlock(Linear(Embed(x)))))) (2.42)

ResNetBlock(x) = x+ Dropout(Linear(LayerNorm(σ(x)))) (2.43)

Prediction(x) = Linear(LayerNorm(σ(x))) (2.44)
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Because of residual connections, ResNets are very fast to train, and are more sample

efficient than MLPs. While keeping the number of trainable parameters the same, we

have observed that deeper networks perform better than wider ones. Although wide NNs

are fast to train, they are extremely prone to overfitting, as the wide layers close to the

inputs essentially memorize the training data.

We introduce a few other changes to the training procedure:

1. We use an Adaptive Moment Estimation with Weight Decay (AdamW) optimizer

[19].

2. We use a GELU activation [24].

3. We introduce LayerNorm [27] layers before each Linear layer.

2.3.4 Pre-Processing and Embedding

In previous work, all the features were treated as continuous variables. Before feeding

them to the network, they were normalized to have zero mean and unit variance. This

is essential for the training of deep neural networks, as it prevents the gradients from

exploding or vanishing.

However, this approach is far from optimal when working with the categorical features.

The standard way of dealing with categorical features is to either use one-hot encoding,

or use learnable embeddings.

Suppose we have categorical features a, b, c, d. Now let us focus a categorical feature a

with na unique values. One-hot encoding would turn it into a vector of size na, with

all the values being zero, except for the one corresponding to the value of the feature.

Suppose, a takes it’s j-th unique value aj. Then one-hot encoding would turn it into an

na-dimensional vector with 1 at the j-th position and 0 everywhere else:

a = aj ====⇒
one-hot



0
...

1 at j-th position

...

0


. (2.45)

Often, such one-hot encoded vector is then further multiplied with a learnable matrix

W a ∈ Rdh×na , where dh is the dimensionality of the hidden layer. This operation can be

implemented more efficiently as a lookup table:
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a = aj ====⇒
lookup

((W a)T )j = eaj . (2.46)

Here we denote eaj as the embedded vector, corresponding to the feature a and its j-th

unique value aj.

Essentially, we construct a matrix with the number of rows corresponding to the number

of unique values of the feature na, where each row is a vector of learnable weights of size

dh. As noted before, this reduces the space and time complexity, and so this is what is

commonly used in practice.

Often we would also like to learn affine embeddings instead of just linear ones:

a = aj ===⇒
affine

((W a)T )j + ba = eaj . (2.47)

Here ba is a learnable bias vector of size dh for the feature a.

Note that as embedding each categorical feature turns it to a 2-dimensional vector, we

would need to combine it with the continuous features, which are 1D. We have explored

two options: first would be to simply ”flatten” the embeddings:

(x1, . . . , xn︸ ︷︷ ︸
continuous

, a, . . . , d︸ ︷︷ ︸
categorical

) ====⇒
embed

(x1, . . . , xn︸ ︷︷ ︸
continuous

,


ea

j

1
...

ea
j

dh

 , . . . ,


ed

j

1
...

ed
j

dh


︸ ︷︷ ︸

categorical

) (2.48)

====⇒
flatten

(x1, . . . , xn︸ ︷︷ ︸
continuous

, ea
j

1 , . . . , ea
j

dh
, . . . , ed

j

1 , . . . , ed
j

dh︸ ︷︷ ︸
categorical

), (2.49)

while the second option would be to map each continuous feature xi to a dh-dimensional

space as well:

xi ====⇒
embed

xi w
i + bi = exi . (2.50)

(x1, . . . , xn︸ ︷︷ ︸
continuous

, a, . . . , d︸ ︷︷ ︸
categorical

) ====⇒
embed

(


ex

1

1
...

ex
1

dh

 , . . . ,


ex

n

1
...

ex
n

dh


︸ ︷︷ ︸

continuous

,


ea

j

1
...

ea
j

dh

 , . . . ,


ed

j

1
...

ed
j

dh


︸ ︷︷ ︸

categorical

) . (2.51)
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For the FT-Transformer, the Equation 2.51 is necessary (subsection 2.3.5), as each atten-

tion layer operates on an array of 2D tokens, as opposed to an array of 1D features. For

the ResNets, however, we have found that such embeddings were completely unnecessary,

suggesting that categorical features were not particularly useful in prediction.

Furthermore, the dataset contains missing or invalid values for some samples. Some7

features use -1 to indicate a missing value, some8 use -99, and some9 use -999. To properly

handle these, we introduce a separate category for them when the feature is categorical

(as an invalid value is essentially an extra unique value, so the number of unique values for

the feature would be automatically increased by 1). For continuous features, we replace

the missing values with a learnable parameter10 wNaN
i for each feature xi:

xi ============⇒
handle invalid values

wNaN
i if xi is missing or invalid

xi otherwise
. (2.52)
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Figure 2.6: Impact of using learnable parameters for missing/invalid values and/or em-
bedding categorical features for ResNets. The semi-transparent lines show the real values,
while the solid lines show the exponential moving average.

Overall, with the 8 blocks ResNet with an embedding size of 64 we were able to achieve a

7lep nTrackParticles 0, lep nTrackParticles 1
8taus passJVT 0
9lep nInnerPix 0, lep nInnerPix 1, lep Mtrktrk atConvV CO 0, lep Mtrktrk atPV CO 1,

lep Mtrktrk atPV CO 0, lep Mtrktrk atConvV CO 1
10We have experimented with also setting such values to zero. We didn’t observe any notable differ-

ence with ResNets, but for FT-Transformer it seemed to have been an important optimization to make
(Figure 2.6, Figure 2.7).
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Figure 2.7: Impact of using learnable parameters for missing/invalid values on FT-
Transformers. FT-Transformerwith 2 blocks trained on the standard training set T trn

was used. The semi-transparent lines show the real values, while the solid lines show the
exponential moving average.

significance Z = 2.29, AUCtt̄H = 0.74, AUCmean = 0.83. The results are summarized on

the Figure 2.13.

2.3.5 Feature Tokenizer + Transformer

We adopt the Feature Tokenizer + Transformer (FT-Transformer) as our primary ar-

chitecture. The architecture was proposed in [21] and is an adaptation of the famous

transformer architecture [14] to the tabular data.

Transformer Architecture

The transformer architecture was originally proposed for the NLP processing tasks, but

has since been applied to almost every domain of machine learning. The transformer

architecture is a fully-attentional architecture, which means that it does not use any

convolutional [28] or recurrent [29] layers. Instead, it uses the attention11 12 mechanism

[30] to learn the dependencies between the input features.

The crux of the transformer’s power lies in its scaled dot-product attention mechanism,

which allows the model to weigh the importance of different input features relative to

11Here we use self-attention, which means that the keys and values are produced from the same source
as queries.

12We use the scaled attention, which refers to a division of the scores by
√
dk before applying the

softmax.
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each other. It can be thought of as a method to compute a weighted sum of values based

on their relevance to a given query. Attention requires all the features to be mapped into

the X ∈ Rdh×nfeatures subspace. Then, for all the features, the so-called query, keys, and

values are computed:

Q = WQX (2.53)

K = WKX (2.54)

V = WVX , (2.55)

where WQ,WK ∈ Rdk×dh ,WV ∈ Rdv×dh are the trainable projection matrices. The

dimensionality of the query, key, and value vectors is dk, dk, dv, respectively
13.

The output of the whole layer is computed as:

Attention(Q,K,V ) = softmax(
QKT

√
dh

)V . (2.56)

First, the dot-product of the queries and keys is computed and scaled by 1√
dk
. For large

values of dk this helps to avoid the softmax function from saturating. Then the softmax

function is applied to obtain the attention weights14. Finally, the dot-product is computed

with the values V to obtain the output of the layer.

This mechanism enables the transformer to focus on different parts of the input data

depending on the context provided by the query. In practice, applying multiple such

heads in parallel was found to be more effective15:

MultiHeadAttention(Q,K,V ) = Concat(head1, . . . , headh)WO , (2.57)

where headi = Attention(QWQ
i ,KWK

i ,V W V
i ) . (2.58)

Here, queries, keys, and values, are projected by different matrices WQ
i ,WK

i ,W V
i to each

head i, and then attention is applied in parallel. This allows the model to jointly attend

to information from different representation subspaces at different positions. Then, the

13We used dk = dv = dh, which is a fairly standard practice.
14Optionally, masking can be applied before softmax. For example in the NLP, when predicting the

next token, the model is only allowed to look at the previous tokens, so all the tokens after the current
position are set to −∞.

15We used 4 heads throughout all our experiments.
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outputs of the heads are concatenated and projected to the desired dimensionality by the

matrix WO.

The full FT-Transformer transformer architecture is formalized as follows:

FT-Transformer(x) = Linear(LayerNorm(FTTBlock(. . . (FTTBlock(Embed(x)))))1) (2.59)

FTTBlock(x) = FeedForward(x+ MultiHeadAttention(LayerNorm(x))) (2.60)

FeedForward(x) = x+ Dropout(Linear(GELU(Linear(LayerNorm(x))))) . (2.61)

The architecture is composed of multiple blocks which are applied sequentially after map-

ping continuous and categorical features into the embedding space. Each block consists

of a LayerNorm, MultiHeadAttention, and two Linear layers. The residual connections

are applied after the MultiHeadAttention, and one more time after at the end of each

block. LayerNorm layers are applied before each MultiHeadAttention, and additionally

before the first Linear layer. After the first Linear layer, a GELU activation is applied.

Additionally, Dropout is applied in the end of the block before the residual connection.

The output of the last block is passed to the LayerNorm, and then the first token as taken

and passed to the final Linear layer to obtain the log probabilities (logits) The whole

structure is formalized in Equation 2.59 as well as presented on the Figure 2.8.

Since the original paper [14], not many things have changed with the transformer design.

The notable change is that LayerNorm layer has been moved from after the MultiHeadAttention

and FeedForward layers (post-norm formulation) to before them (pre-norm formulation).

The pre-norm formulation has been shown to be more stable and easier to train [31]. We

also adopt this change, following [21].

To conclude, transformer is a powerful architecture. Attention mechanism essentially

represent a form of the computation and have shown to be able to approximate a wide

range of functions really well. The possibility of parallelization that comes with using

modern GPUs makes it possible to train such models very efficiently. The usage of residual

connections and LayerNorm layers makes it possible to train very deep models.

In our experiments, we have observed that transformers have shown better regularization

and better results. On the other hand, training requires much more time and memory

compared to the simple ResNets, and produces a larger CO2 footprint.

2.3.6 Regularization, Ensembling, and Dropout

Regularization is a crucial component in training neural networks to prevent overfitting

and improve generalization. From the ERM perspective, regularization can be viewed as
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Figure 2.8: FT-Transformer architecture.

constraining the hypothesis space H. Given a hypothesis space H with VC dimension

d, training set T trn of size N , and a classifier hT trn
training on that training set, for any

δ > 0 the following bound:

R(hT trn

)−Rtrn
T (hT trn

)︸ ︷︷ ︸
generalization error

≤ 2

√
2d log 2N

d
+ 2 log 2

δ

N
(2.62)

holds with probability at least 1− δ [32].

From this inequality, it follows that the generalization error can be reduced by increasing

the size of the training set16, or by reducing the VC dimension of the hypothesis space17.

16Because limN→inf
logN
N = 0.

17 ∂
∂dd log

2N
d = 2N

d − 1, which is larger than 0 when d < 2N
e . In practice, it is almost always true, it is

uncommon to have VC dimension as disproportionally large, compared to the training set size.
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The latter can be achieved by constraining the hypothesis space, which is precisely what

regularization does.

An example of a regularization technique is weight decay, which operates by adding a

penalty term to the loss function that penalizes large weights. This penalty term is

typically proportional to the L2 norm of the weights w, and the regularization strength

is controlled by a hyperparameter λ. We use a standard value of 0.01 throughout our

experiments.

Another extremely popular regularization method is dropout, which operates by randomly

dropping out, or ”turning off”, a proportion of the neurons during training. Introduced

by [25], this technique is simple and computationally efficient, and it has been widely

adopted in the deep learning community.

The dropout rate, the proportion of neurons to drop, is a hyperparameter that requires

tuning. A moderate dropout rate (e.g., 0.5) introduces noise into the training process,

which helps prevent the model from memorizing the training data and potentially im-

proves generalization. However, a high dropout rate may hinder the learning process by

adding too much noise, while a low dropout rate may not provide sufficient regularization.

Generally, for input neurons a dropout rate of 0.2 is recommended, while for hidden neu-

rons a dropout rate of 0.5 is recommended [25]. With FT-Transformers, we have found

that applying a dropout rate of 0.2 for all the layers worked best.

From the perspective of model ensembling, dropout can be viewed as a way to implicitly

create an ensemble of different ”thinned” networks, which share parameters. The output

of the network with dropout can be seen as an averaged prediction of these thinned

networks. Ensembling typically provides a boost in model performance by aggregating

predictions of diverse models, thus reducing the risk of overfitting to specific patterns in

the training data.

In our experiments, applying dropout to the neural network architectures led to an im-

provement in generalization, reflected by a decrease in the gap between training and

validation performance metrics, decreased validation loss and increase in the Area Un-

der the Curves (AUCs) of the ROCs curves. The detailed results are presented in the

Figure 2.13.

Despite its advantages, dropout does introduce an additional layer of randomness into

the training process, making the convergence slower and sometimes harder. It is crucial

to first ensure that the model can fit the training data closely, even if it overfits, before

applying dropout. Also, while dropout can improve generalization, it does not replace

the need for sufficient training data (see the next section), careful feature selection, and
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other components of a successful machine learning project.

2.4 Increasing Statistics by Dropping the Cuts

As seen from the Equation 2.62, one of the best ways to improve the generalization of the

classifier is to increase the number of samples. This is the most reliable way to improve

the performance of the classifier.

In [7], authors explore why deep neural networks despite having shown a great performance

on a variety of tasks such as computer vision, natural language processing, and speech

recognition, have not been widely adopted in the tabular data domain. The main reason

is that the tabular data is very sparse, and the number of samples is very small. This

makes it difficult to train a deep neural network which would generalize well. Random

forests and gradient boosting methods perform much better in this domain. However, as

the number of samples increases, the performance of deep neural networks improves and

becomes comparable to the other methods.

As noted before (Table 1.2), the number of samples in the SR is very small to allow

for a reliable training of deep NNs. Moreover, some classes such as tt̄ are extremely

underrepresented, where the SR contains only 3 samples of them. Furthermore, the

relative event weight nraw

nweighted
associated with these events is usually very high, hence

misclassifications impact the metrics severely in a negative way.

Ultimately, our goal is to train a classifier, that would be able to perform well on the

events inside our SR. However, we can exploit the fact that events outside the SR likely

share the same underlying physics and are not completely unrelated to the SR. In other

words:

1. We suppose there is a joint distribution, PSR(x, y), from which we have sampled a

training dataset T trn ∼ PSR(x, y). All the previous works have used such training

set.

2. We further suppose that there is a joint distribution P (x, y), such that PSR ⊂
P (x, y). This is a more general distribution, which represents more general physics,

related to all the events.

3. Thus, we suppose that by learning from the more general distribution P would allow

us to generalize better, while having more samples (statistics) to train on. We thus

propose to include these samples, which lie outside the signal region into the training

set, and to train the classifier on the extended training set T trn
ext , while keeping the

validation set the same.
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A somewhat similar approach was proposed by the BDT group18, where some cuts19

were dropped to obtain higher number tt̄ samples. Similarly to our work, the group has

reported an increased classification performance.

An important detail is, however, accounting for the event weights. When we change the

cut expression, the distribution of events changes as well. We thus need to apply the

correct scaling to each class to keep the total number of weighted events the same as in

the SR. This is precisely what is done in the BDT working group. In our experiments,

however, we have not observed any particular difference with training with or without

weights, however, the subject requires more investigation (section 2.6).

We should be careful to keep the validation set the same as it was (composed solely of

events inside SR), as we would like the evaluations to be unaffected by the change of the

cut expression. Otherwise, we would be potentially reporting results on very different

region than SR or even 2lSS + 1τhad. Figure 2.9 illustrates the relationship between the

standard, extended training sets, as well as the validation set.

We have observed experimentally that extending the training set has a significant impact

on the performance. There is an increase along all the metrics (Figure 2.13). The most

significant improvement is observed for the underrepresented classes, such as tt̄. Even

though we are most interested in the discriminative performance for the tt̄H, we have

observed that correctly recognizing each background class has a positive impact on the

accuracy of the prediction for the tt̄H as well. Furthermore, a model that has a good

performance on differentiating between all the classes has more potential in a subsequent

fine-tuning to the binary classification (section 2.7).

2.5 Effect of the Reduced Training Set Size

Our extended training set contains roughly 8.7 million events. Combined with the fact

that our NN is quite large as well (about 4 million learnable parameters), the training

takes a long time. We have thus decided to investigate the effect of the reduced training

set size on the performance of the classifier, hoping that we can reduce the training time

without sacrificing too much performance. The results are summarized on the Figure 2.10.

We have performed 4 experiments with 100%, 50%, 10%, and 5% of the extended training

set T trn. The results are shown in Figure 2.10. During each experiment, we kept the

same random seed to keep the initialization of the NN the same. We also kept the same

batch size and learning rate. The results show that the performance of the classifier does

18Private Communication, August 2023, Nello Bruscino.
19PLIV cuts, specifically - Appendix A.2
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Figure 2.9: Training and validation sets, as well the extended training set. Extended
training set is mostly (99.7%) comprised of events outside the SR. The validation set is
kept the same as before, to ensure that the evaluation is not affected by the change of the
cut expression. The training-validation split is 80-20%.
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Figure 2.10: Effect of reduced training set size on classifier performance. FT-Transformer
with 2 blocks was used. The semi-transparent lines show the real values, while the solid
lines show the exponential moving average.

not degrade significantly from 100% and 50%. Such training set size of about 4 million

events seem adequate to obtain some sufficiently good results. Of course, for maximum

performance, it is best to use the full training set. When dropping to 10% or 5% of the

training set, the performance degrades significantly, but is nevertheless much better than

when the standard training set T trn is used.

2.6 Weights in the Training - Different Approaches

As we described before, each event coming from the MC simulation has an associated

weight so that the distribution of the simulated sample matches the distribution of the

real data (section 1.6). As described in section 2.2, weights should always be used during

evaluation.

Regarding the training, as described in subsection 2.1.4, the Cross-Entropy loss function

allows to assign a weight to each class that would put more or less emphasis on it. In

[6] the authors trained with using the event weights as in Equation 2.22, however, the

weights were per-batch normalized to sum to 1.

In our analysis we have experimented with different approaches:

1. No weights - the weights were not used at all.

2. Per-sample weights - the weights were used as in [6].
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3. Per-sample weights, not normalized - the weights were used as in [6] but with-

out the per-sample normalization (Equation 2.22).

4. Raw class-imbalance weights - the total number of raw samples was divided

by the number of raw samples in each class. Then the weights were normalized

(Equation 2.20).

5. Weighted class-imbalance weights - the total number of weighted samples was

divided by the number of weighted samples in each class. Then the weights were

normalized (Equation 2.20).

6. Raw class-imbalance weights & per-sample not normalized weights: item 3

& item 4

7. Weighted class-imbalance weights & per-sample not normalized weights:

item 3 & item 5

Results are shown on the Figure 2.11. Any of the weighting methods did not produce any

substantial increase in performance. Further investigation of the subject is suggested. We

have decided to train without weights for simplicity.
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Figure 2.11: Comparison of different weighting strategies. FT-Transformer with 2 blocks
was used on the standard training set T trn. The semi-transparent lines show the real
values, while the solid lines show the exponential moving average.
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2.7 All Classes versus Signal and Background Only

In [5], the authors experimented with both multiclass and binary classification formu-

lations. The multiclass formulation is a direct approach where the model is trained to

differentiate among all classes simultaneously. In contrast, the binary formulation is a

specialized approach where the model is trained to distinguish only between signal and

background classes. All classes, except for the signal, are treated as background. This

approach is motivated by the hypothesis that the model can concentrate more of its

resources on the primary task of signal and background discrimination.

For [5], based solely on the reported significance, the results were quite similar20 for

both formulations. However, our observations suggest that when the model is trained to

differentiate among all classes, it demonstrates enhanced learning capabilities21 and can

potentially extract more information from the input data (Figure 2.12). This approach,

however, also allocates resources towards distinguishing individual background classes,

which might not be essential for the primary task of signal and background discrimination.

Consequently, we suggest considering an alternative strategy, which we refer to as ”two-

phase training,” to utilize the model’s resources more effectively. Initially, it would involve

training the model on all classes. Once satisfactory performance is achieved, one could

transition to the binary formulation. In practical terms, this would mean no longer

penalizing the model for misclassifying among the background classes (e.g., if the true class

is tt̄W and the predicted one is tt̄Z, the prediction would still be deemed correct since both

processes are background). This strategy could potentially allow the model to focus on the

primary task of signal and background discrimination after gleaning sufficient information

from the distinctions among all classes. The model would first learn the patterns in the

underlying physics comprehensively and then hone its focus on the primary task.

The results are summarized in Figure 2.12, showcasing the progress in AUC and accuracy

for differentiating signal from background. It is evident that the multiclass formulation

outperforms the binary one, and we hypothesize that this performance could be further

enhanced by the two-phase training strategy.

20Based solely on significance, it is challenging to conclude which approach is superior.
21Based on accuracy, AUC, and significance.
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lines show the real values, while the solid lines show the exponential moving average.
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Figure 2.13: Results of the different architectures and configurations. FTT refers to the
FT-Transformer.



Chapter 3

Evaluation of Uncertainties

This section presents the estimation of the statistical and systematic uncertainties on the

median signal strength µ, where µ is defined as a scale factor, applied to the number

of the signal events, such that the sum of the scaled signal s and background b events

matches the observed data n:

b+ µ · s = n . (3.1)

Estimation of the uncertainties on the µ is done by performing a fit to the Asimov dataset

[3], where we assume n = b + s, thus µ = 1. The Asimov dataset is a representative

data set that provides a simple method to obtain the median experimental sensitivity

of a search or measurement as well as fluctuations about this expectation. It is used to

estimate the median significance by replacing the ensemble of simulated data sets by a

single representative one.

To perform statistical testing, the binned profile likelihood method is used. The binned

profile likelihood is a statistical method commonly used in high-energy physics, especially

in the context of searches for new phenomena or precision measurements. It is a variant

of the profile likelihood method adapted for histogram-like (binned) data.

Each bin has a count representing the number of events or occurrences in that bin. When

applying the profile likelihood method to binned data, one constructs a likelihood based

on the expected number of events in each bin and the observed number of events. The

expected number of events is typically a function of both the parameters of interest and

the nuisance parameters.

The likelihood for each bin i, given a signal strength parameter µ, background b, and

observed data n is modeled as a Poisson distribution:

55
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L(µ,θ) =
N∏
j=1

(µsj + bj)
nj

nj!
e−(µsj+bj)

M∏
k=1

uk(θ)
mk

mk!
e−uk(θ) (3.2)

The first part of the equation models the likelihood of observing the parameter of interest

µ given the binned distribution. Here N is the number of bins, sj is the number of signal

events in bin j, bj is the number of background events in bin, nj = sj + bj is the total

number of events in bin j. We have used the distribution of the NN output (probability

of event being tt̄H, formally the posterior p(y = tt̄H|x))1 as the binned distribution

(Figure 3.1), however any variable can be used in principle. The automatic binning was

used in order to make sure there is a relatively equal number of events in each bin.
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Figure 3.1: NN output for the signal and background events.

The second part of the equation models the likelihood of observing the nuisance param-

eters θ given some control sample. Here M is the number of bins in the control sample,

mk is the number of events in bin k, and uk(θ) are calculable quantities that depend

on the nuisance parameters θ [3]. When maximizing the likelihood with respect to the

nuisance parameters, such θ are taken, which produce the maximum values for the quan-

tities uk(θ). Essentially, this allows us to generate a control sample (for example with a

different MC generator) and use it to estimate the nuisance parameters.

1To achieve this, one must either inject the custom feature - NN output in our case - into the existing
n-tuples, or use the so-called friend trees. The approach is described in the Appendix A.6



CHAPTER 3. EVALUATION OF UNCERTAINTIES 57

3.1 Statistical Uncertainties

Statistical uncertainties emerge from the inherently stochastic nature of the data collection

process, particularly due to the limited size of our data sample. This type of uncertainty,

which decreases as we accumulate more data, is tied to our estimate of the significance of

the tt̄H signal.

The best fit results when only statistical uncertainties corresponds to the measurement

precision shown in Figure 3.2.
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H)t (tµ-0.44
0.491.00 

Figure 3.2: Expected uncertainties on the median signal strength µ for the tt̄H process
including statistical uncertainties only.

3.2 Systematic Uncertainties

Systematic uncertainties in particle physics originate from a wide range of sources, with

several relevant to our analysis:

• Luminosity Uncertainty: The luminosity of the accelerator, or the number of par-

ticles within a beam per unit area, is a fundamental parameter in any experiment.

Uncertainties in the measurement of luminosity can translate into uncertainties in

the overall scale of the data.

• Electron and Muon Uncertainty: The identification, reconstruction, and isolation

of electrons and muons can have associated uncertainties. Differences in efficiencies

between data and simulation can result in systematic errors.

• Next Leading Order (NLO) Uncertainty: Predictions of the rates for various pro-

cesses are typically calculated to leading order (LO) or next-to-leading order (NLO)

in perturbation theory. The precision of these predictions is limited by the order to

which they are calculated, with higher-order terms introducing potential systematic

uncertainties.

• Final State Radiation (FSR) and Initial State Radiation (ISR) Uncertainties: These

uncertainties are associated with the additional emission of photons from the initial
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or final state particles. While these effects are included in simulations, they are

based on theoretical models and can have associated uncertainties.

• Modeling Uncertainties for Each Class: Each class or category of events you’re an-

alyzing (e.g., tt̄H, tt̄W , tt̄Z, etc.) may have associated modeling uncertainties.

These arise due to potential differences between the simulation and the actual ex-

perimental data. The uncertainties can stem from the choice of event generator, the

specific model assumptions for the process in question, or the parameters used in

the simulation.

• Cross-Section Uncertainties: The cross-section of a process is a measure of the

likelihood of that process occurring. In particle physics, theoretical calculations

predict these cross-sections, but they come with uncertainties. These uncertainties

can be due to missing higher-order terms, variations in parton distribution functions,

or other theoretical approximations.

• Generator Uncertainties: These are uncertainties associated specifically with the

event generators (e.g., Pythia, Sherpa2). Event generators use a myriad of theo-

retical approximations and models to simulate particle collisions. Each generator

has its strengths and weaknesses, and switching from one to another or even using

different versions/settings of the same generator can yield different results.

When these systematic uncertainties are combined with the statistical ones, the measure-

ment precision shown in Figure 3.3.
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Figure 3.3: Expected uncertainties on the median signal strength µ for the tt̄H process
including statistical and systematic uncertainties.

An important aspect of the analysis of systematic uncertainties is the ranking plot. The

ranking plot shows the relative impact of each systematic (or statistical - denoted by γ)

uncertainty on the final result. The ranking plot for the tt̄H process is shown in Figure 3.4.

The uncertainties are ranked in descending order of their impact on the final result. The

top 20 uncertainties are shown.

2https://sherpa-team.gitlab.io/
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Figure 3.4: Ranking plot for systematic uncertainties.

These results on systematic uncertainties are preliminary and further studies are ongoing.



Conclusions

In this thesis, we have developed and employed advanced machine learning techniques

to improve the identification of the tt̄H process. The results of this work advance upon

previous efforts in the field, demonstrating the potential of machine learning to enhance

the identification of the tt̄H process.

This research explored the usage of a transformer architecture, adapted for the tabular

data (FT-Transformer), particularly in the domain of particle physics and event selection.

Additionally, the thesis investigated the impact of dropping the selection cuts and training

on the extended training set. Combined with the large NN models, this approach yielded

a significant increase in performance, showcasing the importance of a substantial and

diverse dataset for model training in particle physics.

The evaluation of systematic uncertainties was a new step in the tt̄H analysis, the ranking

of the uncertainties was performed, and the measurement precision on the median strength

parameter µ was estimated.

The binary and multi-class prediction problems were investigated, and it was found that

differentiating between all the classes yielded better results. Furthermore, the two-phase

training process is proposed, where the model is initially trained on the multi-class pre-

diction problem and subsequently switched to binary classification.

The measurement precision on the median signal strength parameter µ was estimated as

µ = 1 + 0.49 /− 0.44 with statistical uncertainties only, and µ = 1 + 0.80 /− 0.51 when

systematic uncertainties are also taken into account. It is noted that statistical and

systematic uncertainties contribute about equally to the final result.
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A.1 List of .root Files Used in V8

tt̄H

mc16a/p4498/346343, mc16a/p4498/346344, mc16a/p4498/346345,
mc16d/p4498/346343, mc16d/p4498/346344, mc16d/p4498/346345,
mc16e/p4498/346343, mc16e/p4498/346344, mc16e/p4498/346345.

tt̄W

mc16a/p4416/700168, mc16d/p4416/700168, mc16e/p4416/700168.

tt̄WEW

mc16a/p4590/700205, mc16d/p4590/700205, mc16e/p4590/700205.

tt̄Z

mc16a/p4416/504330, mc16a/p4416/504334, mc16a/p4416/504342,
mc16d/p4416/504330, mc16d/p4416/504334, mc16d/p4416/504342,
mc16e/p4416/504330, mc16e/p4416/504334, mc16e/p4416/504342.

tt̄

mc16a/p4308/410470, mc16d/p4308/410470, mc16e/p4308/410470.

V V

mc16a/p4416/364250, mc16a/p4416/364253, mc16a/p4416/364254,
mc16a/p4416/364255, mc16a/p4308/364283, mc16a/p4308/364284,
mc16a/p4308/364285, mc16a/p4308/364286, mc16a/p4308/364287,
mc16a/p4308/363355, mc16a/p4308/363356, mc16a/p4308/363357,
mc16a/p4308/363358, mc16a/p4308/363359, mc16a/p4308/363360,
mc16a/p4308/363489, mc16d/p4416/364250, mc16d/p4416/364253,
mc16d/p4416/364254, mc16d/p4416/364255, mc16d/p4308/364283,
mc16d/p4308/364284, mc16d/p4308/364285, mc16d/p4308/364286,

64
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mc16d/p4308/364287, mc16d/p4308/363355, mc16d/p4308/363356,
mc16d/p4308/363357, mc16d/p4308/363358, mc16d/p4308/363359,
mc16d/p4308/363360, mc16d/p4308/363489, mc16e/p4416/364250,
mc16e/p4416/364253, mc16e/p4416/364254, mc16e/p4416/364255,
mc16e/p4308/364283, mc16e/p4308/364284, mc16e/p4308/364285,
mc16e/p4308/364286, mc16e/p4308/364287, mc16e/p4308/363355,
mc16e/p4308/363356, mc16e/p4308/363357, mc16e/p4308/363358,
mc16e/p4308/363359, mc16e/p4308/363360, mc16e/p4308/363489.

tZ

mc16a/p4308/410560, mc16d/p4308/410560, mc16e/p4308/410560.

WtZ

mc16a/p4308/410408, mc16d/p4308/410408, mc16e/p4308/410408.

tW

mc16a/p4308/410646, mc16a/p4308/410647, mc16d/p4308/410646,
mc16d/p4308/410647, mc16e/p4308/410646, mc16e/p4308/410647.

tt̄t (three top)

mc16a/p4308/304014, mc16d/p4308/304014, mc16e/p4308/304014.

tt̄tt̄ (fourTop)

mc16a/p4308/410080, mc16d/p4308/410080, mc16e/p4308/410080.

ggV V

mc16a/p4308/345705, mc16a/p4396/345706, mc16a/p4396/345715,
mc16a/p4396/345718, mc16a/p4396/345723, mc16d/p4308/345705,
mc16d/p4396/345706, mc16d/p4396/345715, mc16d/p4396/345718,
mc16d/p4396/345723, mc16e/p4308/345705, mc16e/p4396/345706,
mc16e/p4396/345715, mc16e/p4396/345718, mc16e/p4396/345723.

V V V

mc16a/p4308/364242, mc16a/p4308/364243, mc16a/p4308/364244,
mc16a/p4308/364245, mc16a/p4308/364246, mc16a/p4308/364247,
mc16a/p4308/364248, mc16a/p4308/364249, mc16d/p4308/364242,
mc16d/p4308/364243, mc16d/p4308/364244, mc16d/p4308/364245,
mc16d/p4308/364246, mc16d/p4308/364247, mc16d/p4308/364248,
mc16d/p4308/364249, mc16e/p4308/364242, mc16e/p4308/364243,
mc16e/p4308/364244, mc16e/p4308/364245, mc16e/p4308/364246,
mc16e/p4308/364247, mc16e/p4308/364248, mc16e/p4308/364249.
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V H

mc16a/p4308/342284, mc16a/p4308/342285, mc16d/p4308/342284,
mc16d/p4308/342285, mc16e/p4308/342284, mc16e/p4308/342285.

WttW

mc16a/p4308/410081, mc16d/p4308/410081, mc16e/p4308/410081.

tHjb

mc16a/p4308/346799 AF, mc16d/p4308/346799 AF, mc16e/p4308/346799 AF.

tWH

mc16a/p4308/346678 AF, mc16d/p4308/346678 AF, mc16e/p4308/346678 AF.
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A.2 SR Cut Expression

custTrigMatch_LooseID_FCLooseIso_DLT

&& (dilep_type && (lep_ID_0*lep_ID_1)>0)

&& ((lep_Pt_0 >= 10e3 && lep_Pt_1 >= 10e3) && (fabs(lep_Eta_0) <= 2.5 && fabs(lep_Eta_1) <= 2.5)

&& ((abs(lep_ID_0) == 13 && lep_isMedium_0 && lep_isolationLoose_VarRad_0 && passPLIVTight_0)

|| ((abs(lep_ID_0) == 11 && lep_isTightLH_0 && lep_isolationLoose_VarRad_0 && passPLIVTight_0

&& lep_ambiguityType_0 == 0 && lep_chargeIDBDTResult_recalc_rel207_tight_0 > 0.7)

&& ((!(!(lep_Mtrktrk_atConvV_CO_0 < 0.1 && lep_Mtrktrk_atConvV_CO_0 >= 0 && lep_RadiusCO_0 > 20)

&& (lep_Mtrktrk_atPV_CO_0 < 0.1 && lep_Mtrktrk_atPV_CO_0 >= 0)))

&& !(lep_Mtrktrk_atConvV_CO_0 <0.1 && lep_Mtrktrk_atConvV_CO_0 >= 0 && lep_RadiusCO_0 > 20))))

&& ((abs(lep_ID_1) == 13 && lep_isMedium_1 && lep_isolationLoose_VarRad_1 && passPLIVTight_1)

|| ((abs(lep_ID_1) == 11 && lep_isTightLH_1 && lep_isolationLoose_VarRad_1 && passPLIVTight_1

&& lep_ambiguityType_1 == 0 && lep_chargeIDBDTResult_recalc_rel207_tight_1 > 0.7)

&& ((!(!(lep_Mtrktrk_atConvV_CO_1 < 0.1 && lep_Mtrktrk_atConvV_CO_1 >= 0 && lep_RadiusCO_1 > 20)

&& (lep_Mtrktrk_atPV_CO_1 < 0.1 && lep_Mtrktrk_atPV_CO_1 >= 0)))

&& !(lep_Mtrktrk_atConvV_CO_1 < 0.1 && lep_Mtrktrk_atConvV_CO_1 >= 0 && lep_RadiusCO_1 > 20)))))

&& nTaus_OR==1

&& nJets_OR_DL1r_85>=1

&& nJets_OR>=4

&& ((dilep_type==2) || abs(Mll01-91.2e3)>10e3)

We have kept the cuts the same as [5], except for the cut on the nJets_OR to >=4 to keep
consistent definition SR definition across the tt̄H 2lSS + 1τhad analysis.
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A.3 Event Weighting

Channels = {364250, 364253, 364254, 364255, 364283, 364284, 364285,
364286, 364287, 363355, 363356, 363357, 363358, 363359, (A.1)

363360, 363489, 345705, 345706, 345715, 345718, 345723}

WeightnJets =



1.0, if nJets OR = 0

0.986980, if nJets OR = 1

0.853062, if nJets OR = 2

0.785437, if nJets OR = 3

0.741692, if nJets OR = 4

0.709992, if nJets OR = 5

0.685452, if nJets OR = 6

0.665613, if nJets OR ≥ 7

(A.2)

XXX VV NJET =

{
WeightnJets, if mcChannelNumber ∈ Channels

1.0, otherwise
(A.3)

YearLuminosity =


36646.74, if RunYear = 2015 or RunYear = 2016

44630.6, if RunYear = 2017

58791.6, if RunYear = 2018

(A.4)

Event weight = w = YearLuminosity

× σ

L
× custTrigSF LooseID FCLooseIso SLTorDLT

× weight pileup

× jvtSF customOR

× bTagSF weight DL1r 85

× XXX VV NJET

× weight mc

× lep SF CombinedTight 0

× lep SF CombinedTight 1

× lepSF PLIV Prompt 0

× lepSF PLIV Prompt 1

× 1∑
w∼MCw

, (A.5)

where L = Luminosity = 140068.94, σ is the cross-section (xs), and
∑

w∼MCw is the sum
of the weights of all simulated events (totalEventsWeighted).
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A.4 Yields Plots
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(a) Distribution of the transverse momen-
tum of the leading lepton.
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(c) Distribution of the number of jets.

1 1.5 2 2.5 3 3.5 4

b-jetsN

0

0.5

1

1.5

 

D
at

a 
/ P

re
d.

5

10

15

20

25

30

35

40

45

E
ve

nt
s

-1 = 13 TeV, 140 fbs

 4j 1bτ2lSS 1
Pre-Fit

Data Htt
)τH (fake tt Wtt

*)γ(Z/tt tt
Diboson Other

µfake fake e
double-fake QmisID

τfake τfake l+
Uncertainty

(d) Distribution of the number of b-jets.

Figure A.1: Distributions of different variables inside the SR. The blinding threshold of
0.3 is applied.
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A.5 Why Supervised Learning?

In the context of classifying specific particle interactions like tt̄H events, supervised learn-
ing is often favored for several reasons:

1. Labeling Ground Truth: With a well-established theoretical model and simulation
techniques, you can generate labeled datasets that represent the intermediate and
final states of particle collisions. This allows for direct training on what you want
the model to learn.

2. Efficiency and Precision: Supervised learning can leverage this labeled data to create
precise and targeted models for the classification problem at hand. This generally
results in a more efficient learning process compared to unsupervised methods like
clustering, which may not have specific labels to guide the learning.

3. Model Interpretability: By aligning the model with labeled examples, it’s often eas-
ier to interpret the model’s decision process and understand how it correlates the
inputs to the desired classification. This can be important in scientific contexts
where understanding the model’s behavior can be as crucial as its predictive accu-
racy. In the case of our task, specifically, a particular use-case would be to determine
which parts of detectors deserve more attention during improvement, and which one
may not be so relevant.

4. Directly Aligned with the Objective: If the main goal is to classify specific types
of events, then using supervised learning directly aligns with this objective. It uti-
lizes the available knowledge of the phenomena being studied (in this case, particle
physics and the standard model) to create a learning paradigm specifically designed
to recognize those events.

5. Potential for Fine-Tuning: Supervised models can often be fine-tuned or adjusted
with new data or different structures to continually improve or adapt to new insights.
This iterative refinement aligns well with the scientific method of incremental un-
derstanding and improvement.

6. Control Over Error and Bias: In the supervised learning framework, you can often
have more control over the types of errors and biases that the model may introduce,
as you’re explicitly defining what constitutes a correct classification.

7. Challenges with Unsupervised Learning: On the contrary, unsupervised learning
methods like clustering would require determining similarities between events with-
out clear labels, potentially leading to ambiguous or less accurate classifications. It
might not leverage the rich theoretical knowledge available in the field of particle
physics.

8. In conclusion, while unsupervised methods might be useful in exploratory phases
or when labeled data is not available, the specific nature of tt̄H event classification,
combined with the availability of simulated labeled data and theoretical grounding,
makes supervised learning a well-suited and likely more effective approach.

Clustering, as an unsupervised learning technique, can be applied to the context of our
task, but with some significant caveats. Here is how it might work and the challenges
involved:
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1. Application: Clustering could be used to group collision events based on similari-
ties in their observable features, without prior knowledge of labels. By identifying
patterns in the data, you might uncover groups that correspond to different types
of events, such as tt̄H and others.

2. Prediction: Once the clusters have been identified, you could theoretically assign
labels to those clusters based on expert knowledge or additional analysis. These
labels could then be used to classify new data. However, this is where the challenges
and limitations become apparent.

3. Challenges and Limitations: Lack of Ground Truth: Without labeled data to guide
the clustering, there’s no straightforward way to ensure that the clusters align with
the actual underlying physics. The clusters might correspond to some other aspects
of the data that aren’t relevant to the classification task.

4. Ambiguity: The boundaries between clusters may be ambiguous, leading to uncer-
tainty in how to label the clusters. This could result in less accurate classifications.

5. Model Complexity: Interpreting and validating the clusters might require significant
expertise and additional modeling, making it a more complex and potentially less
reliable approach than supervised learning.

6. Predictive Power: Without a clear mapping from features to labels (as in supervised
learning), the predictive power of a clustering-based model might be lower, especially
if the clusters do not correspond well to the underlying physics.

7. Not Directly Aligned with the Task: Clustering is generally used for exploratory data
analysis and pattern recognition rather than direct classification. Adapting it to a
classification task like identifying tt̄H events may require significant modification
and may not be as efficient or effective as using a method specifically designed for
classification, such as supervised learning.
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A.5.1 Features used

lep E X

The energy of the Xth lepton.

DRjj lead

∆R between the two leading jets. ∆R is a distance metric in the η − ϕ space frequently
used in particle physics.

Ptll01

The transverse momentum of the dilepton system made up of the two leading leptons.

lep nTrackParticles X

The number of tracks associated with the Xth lepton.

custTrigMatch LooseID FCLooseIso DLT

Custom trigger matching for loosely identified and loosely isolated leptons.

Mll01

The invariant mass of the two leading leptons.

Mlll012

The invariant mass of the three leading leptons.

total charge

The sum of the electric charges of the particles in the event.

HT

The scalar sum of the transverse momenta of all jets in the event.

HT lep

The scalar sum of the transverse momenta of all leptons in the event.

HT jets

The scalar sum of the transverse momenta of all jets (not forward jets) in the event.

HT fwdJets

The scalar sum of the transverse momenta of all forward jets in the event.
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HT taus

The scalar sum of the transverse momenta (Pt) of all tau leptons in the event.

lep Eta X

The pseudorapidity of the Xth lepton.

nTaus OR Pt25

The number of overlapping-removed taus with a transverse momentum above 25 GeV.

nFwdJets OR

The number of overlapping-removed forward jets.

MLepMet

The invariant mass of a lepton and the missing transverse energy vector.

taus DL1r X

The DL1r score for the Xth tau.

lep isolationLoose VarRad X

Indicates whether a lepton (where X refers to the lepton index) passes an isolation cut
with a variable radius. Looser isolation cuts allow more nearby activity in the detector.

lep EtaBE2 X

The pseudorapidity of the Xth lepton in the second layer of the electromagnetic calorime-
ter.

taus width X

The width of the Xth tau.

nJets OR DL1r 85

Number of jets that pass overlap removal (OR) and are b-tagged according to the DL1r
algorithm at the 85% working point.Overlap removal is a step in particle reconstruction
where, for instance, an object identified as both a jet and a tau would be considered only
as one or the other.

lep nInnerPix X

Number of hits in the inner pixel detector associated with the lepton, where X refers to
the lepton index.

met phi

The azimuthal angle of the missing transverse energy in the event.
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DeltaR max lep bjet77

The maximum ∆R value between a lepton and a b-tagged jet.

MbX

Invariant mass associated with the leading b-jet in the event

lep RadiusCO X

Radius of the cone used for isolation of the lepton, or alternatively a parameter associated
with the trajectory of the lepton.

lep Mtrktrk atConvV CO X

The invariant mass of track pairs at the conversion vertex for lepton X.

lep Pt X

The transverse momentum of the Xth lepton.

mjjMax frwdJet

The maximum invariant mass of a pair of forward jets.

dilep type

The type of dilepton event (e.g., ee, µe, µµ).

eta frwdjet

The pseudorapidity of the forward jet.

Mlb

Invariant mass of a lepton and a b-jet.

minDeltaR LJ X

The minimum ∆R distance between the Xth lepton and any jet in the event.

nTaus OR

Number of tau leptons that pass overlap removal.

DeltaR min lep jet

The minimum ∆R distance between a lepton and a jet in the event.
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lep sigd0PV X

Significance of the transverse impact parameter (d0) of the lepton X with respect to
the primary vertex (PV). This is a common variable for distinguishing prompt particles
produced in the primary collision from secondary particles produced in a decay.

taus eta X

The pseudorapidity of the Xth tau.

lep Phi X

The azimuthal angle (in radians) of the Xth lepton.

lep chargeIDBDTResult recalc rel207 tight X

The outcome of a BDT-based charge identification for a lepton, recalculated with some
specific settings, and applying a ’tight’ threshold.

taus phi X

The azimuthal angle (in radians) of the Xth tau.

taus passJVT X

A boolean flag indicating whether the Xth tau passes the jet vertex tightness (JVT)
requirement.

jets eta

The pseudorapidity of the jets (array).

taus charge X

The charge of the Xth tau.

passPLIVTight X

Boolean flag indicating if a lepton with high transverse momentum passes the ”tight”
criteria of the Prompt Lepton Veto (PLIV), a tool for identifying non-prompt light leptons.

lep Mtrktrk atPV CO X

The invariant mass of track pairs at the primary vertex for lepton X.

taus JetRNNSigMedium X

RNN-based score for tau lepton, used to distinguish tau leptons from jets, with ’medium’
selection criteria.

minOSMll

The minimum invariant mass of oppositely-signed dilepton pairs.
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lep ID X

The identification number for the Xth lepton.

Mllll0123

The invariant mass of the four leading leptons.

custTrigSF TightElMediumMuID FCLooseIso DLT

Custom trigger scale factor, for events with a tight electron and a medium muon, both of
which are loosely isolated.

best Z Mll

The invariant mass of the dilepton system that is closest to the Z boson mass.

met met

The missing transverse energy in the event.

MtLep1Met

Transverse mass between the leading lepton and missing transverse energy. Transverse
mass is often used in searches for particles that decay to a lepton and a neutrino.

lep ambiguityType X

Type of ambiguity for lepton identification, where X refers to the lepton index. Am-
biguity could arise from several factors, such as a single track matching with multiple
reconstructed particles.

jets phi

The azimuthal angle (in radians) of the jets (array).

lep isMedium X

Boolean flag indicating if a lepton passes the ’medium’ selection criteria.

taus RNNJetScore X

RNN-based score for tau lepton, used to distinguish tau leptons from jets.

MtLepMet

The transverse mass of a lepton and the missing transverse energy vector.

DeltaR min lep jet fwd

The minimum ∆R distance between a lepton and a forward jet in the event.
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jets e

The energy of the jets (array).

minOSSFMll

The minimum invariant mass of oppositely-signed, same-flavor dilepton pairs.

nJets OR

The number of overlapping-removed jets.

total leptons

The total number of leptons in the event.

taus numTrack X

The number of tracks associated with the Xth tau.

taus passEleOLR X

A boolean flag indicating whether the Xth tau passes the electron overlap removal.

DRll01

The ∆R distance between the two leading leptons.

taus JetRNNSigLoose X

RNN-based score for tau lepton, used to distinguish tau leptons from jets, with ’loose’
selection criteria.

taus pt X

The transverse momentum of the Xth tau.

flag JetCleaning LooseBad

A flag variable indicating whether a jet passes a loose cleaning cut to remove bad or noisy
jets from the analysis.

taus fromPV X

A boolean flag indicating whether the Xth tau comes from the primary vertex.

best Z other MtLepMet

The transverse mass between the lepton and missing transverse energy for the event that
best reconstructs a Z boson using other criteria.
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nJets OR DL1r 77

Count of jets that pass overlap removal (OR) and are b-tagged according to the DL1r
algorithm at the 77% working point.

jets pt

The transverse momentum of the jets (array).

lep isTightLH X

Boolean flag indicating if a lepton passes the ’tight’ Likelihood-based identification crite-
ria.

taus JetRNNSigTight X

RNN-based score for tau lepton, used to distinguish tau leptons from jets, with ’tight’
selection criteria.

sumPsbtag

The sum of b-tagging weights for jets in the event.

taus decayMode X

The decay mode of the Xth tau.

dEta maxMjj frwdjet

The maximum difference in pseudorapidity (η) between two forward jets.

max eta

The maximum pseudorapidity among all particles in the event.

best Z other Mll

The invariant mass of the dilepton system that is closest to the Z boson mass, not con-
sidering the leading leptons.

taus passEleBDT X

Flag indicating if a tau lepton passes the Electron Boosted Decision Tree discriminator.
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Figure A.2: Feature importance of the top 20 most important features. The feature
importance was calculated using the Integrated Gradients (IG) method [33].
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A.6 Friend Trees

To be able to perform the analysis of the impact of the systematic uncertainties in
TRExFitter using the custom classifier’s output variable, one must either inject the vari-
able in all the root files, or create the so-called friend n-tuples, where each file only contains
the classifier’s output variable. The latter is the preferred option, as it does not require
modifying or copy the original files (which are ≈ 2.7 TB in size).

First, one must essentially process all the events with the classifier. However, to make the
processing shorter, the cuts can be applied to all the systematic files first, which reduces
the total size to ≈ 40 GB. Then, the classifier should be applied to all the events to
produce the output variable. For each input file, a new ”friend” file is produced, which
contains only the classifier’s output variable.

Once the friend trees are produced, TRExFitter should be made aware of them.

To do so, UseFriend: TRUE should be added across all the Sample blocks. Then, in
the Job block definition, FriendPath: XXX FriendPaths should be added, with the
XXX FriendPaths pointing to the nominal directory of the trees.

Furthermore, for the systematic blocks definitions, where the NtuplePathsUp or NtuplePathsDown
are defined, the FriendPathsUp and FriendPathsDown should be added, respectively.

This enables TRExFitter to access both the original trees containing all the systematics-
related information, and the friend trees containing only the classifier’s output variable.
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A.7 Training Optimizations

Here we list some additional details that do not influence the quality of the optimization
itself.

As we have used large NNs and a large training set, the training times are quite long.
Without some necessary optimization, experiments take extremely long time to complete.
We have used the following techniques to speed up the training:

A.7.1 Mixed Precision Training

Mixed precision training is a technique in deep learning that leverages the benefits of both
low-precision and high-precision numerical representations to accelerate model training
and improve overall efficiency. It involves using a combination of reduced-precision (such
as 16-bit) and full-precision (such as 32-bit) floating-point computations during the train-
ing process. By employing reduced precision for certain computations, such as matrix
multiplications, mixed precision training can significantly speed up the training process
while maintaining a comparable level of accuracy. This approach is especially useful
when training large-scale models with massive amounts of data, as it reduces memory
usage, allows for faster computations, and enables the use of larger batch sizes. Overall,
mixed precision training is a valuable technique that helps us achieve faster and more
efficient deep learning models, leading to quicker iteration cycles and advancements in
various fields, including computer vision, natural language processing, and reinforcement
learning.

A.7.2 PyTorch 2.0 and torch.compile()

torch.compile() is a feature introduced in PyTorch 2.0 [34] that aims to improve the per-
formance of PyTorch code by JIT-compiling it into optimized kernels. It allows PyTorch
code to run faster while requiring minimal code changes. The torch.compile() supports
arbitrary PyTorch code, control flow, and mutation, and comes with experimental support
for dynamic shapes. By using torch.compile(), developers can optimize their PyTorch
code without sacrificing flexibility or ease of use. This feature is particularly useful for
boosting the performance of PyTorch models during training and inference.

A.7.3 FlashAttention

FlashAttention [35] is a fast and memory-efficient exact attention algorithm that aims to
improve the training speed and quality of models with long sequences in machine learning
applications. It incorporates IO-awareness, which involves dividing operations between
faster and slower levels of GPU memory to optimize performance. By reordering the at-
tention computation and leveraging classical techniques such as tiling and recomputation,
FlashAttention significantly speeds up the attention process and reduces memory usage
from quadratic to linear in sequence length. This algorithm outperforms other exact at-
tention algorithms in terms of training speed and model quality, especially when dealing
with long sequences. It achieves faster end-to-end training time and higher quality mod-
els by accounting for GPU memory reads and writes, resulting in improved performance
and reduced compute complexity. FlashAttention is a valuable tool for researchers and
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practitioners working with attention mechanisms in machine learning, enabling them to
train models more efficiently and effectively.
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