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Abstract 
 

This thesis report of my 5-month internship explains the different possibilities I explored 

in order to reduce the loosening of the screws of a wheel by optimizing its design. Indeed, 

spontaneous loosening is a major issue in most bolted assemblies undergoing vibratory 

forces. These cyclic loadings can sometimes lead to spontaneous loosening of the bolts or 

screws, especially if the assembly was not correctly dimensioned. Despite all that, a lot of 

research has been done about screws loosening, but very few tackled the solving of this 

issue especially because many of these cases can be answered by using an additional system, 

which were not what we wanted. Therefore, to prevent this, the main points studied were 

the understanding and measuring of loosening in a general assembly, and the change of 

different design aspects to reduce the loosening previously measured. 

To understand and measure loosening, I compared a simple bolted assembly with that of 

Cobra software, which is able to predict loosening for small and simple assemblies. I also 

compared the results with Thomala’s method, a technique comparing the displacement of 

the screw with that of a theoretical beam. I also had to get a wheel model to optimize with 

OptiStruct, which I got by converting a previous Abaqus model given by Segula. Finally, I 

used my formerly acquired knowledge to change its design and improve the non-loosening 

of the four screws. 

To conclude, I modelled an optimized version of the wheel with a decreased loosening of the 

screws, and compared theses results with the initial version. I also conclude on the influence 

of the various parameters on loosening, in the specific case of the wheel, which could 

somewhat be extrapolated to other bolted assemblies. 
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Glossary 
 

(𝑎1, … , 𝑎𝑛+1) Coefficients of the regression 

𝐶0  Tightening torque 

𝑑  Screw nominal diameter 

𝑑2  Sidewall diameter (inside of the threads) 

𝑑𝑡  Diameter under the screw head 

𝐸  Young’s modulus (for the screw) 

𝐹𝑎𝑥   External axial load on the screw 

𝐹𝑡  External transverse load on the screw 

𝐹0  Screw preload or screw pretension 

𝐹0
+  Upper range of the practical tightening preload 

𝐹0
−  Lower range of the practical tightening preload 

𝐹0,𝑚𝑎𝑥  Maximal tightening preload tolerated by the assembly 

𝐹0,𝑚𝑖𝑛  Minimal tightening preload for the assembly 

∆𝐹𝑧  Decrease in preload after tightening (non-rotational component) 

𝐺  Shear modulus for the screw 

𝐼  Second moment of area (for the screw) 
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𝑘  Shear correction coefficient for a cylinder 

𝐿  Useful screw length between plates 

∆𝐿𝑐  Elongation due to creep 

∆𝐿𝑠  Elongation due to strain hardening of the joint surfaces 

𝑝  Screw pitch 

𝑅2  Coefficient of determination 

𝑆𝑒𝑞  Equivalent resistant cross-section 

𝑆𝑆𝑟𝑒𝑠  Sum of Squares of residuals 

(𝑥1, … , 𝑥𝑛) Parameters used in the regression 

𝑦  Screw tension for the regression 

�̂�  Screw tension approximation by the regression  

𝛽  Load introduction coefficient 

𝛿𝑐𝑟𝑖𝑡  Threshold displacement of the screwhead before it loosens 

𝛿𝑐𝑟𝑖𝑡,𝐸.𝐵 Threshold displacement of the screwhead for Euler-Bernoulli’s theory 

𝛿𝑐𝑟𝑖𝑡,𝑇  Threshold additional displacement of the the screw head for Timoshenko’s 

theory 

𝛿𝑝  Plate flexibility 

𝛿𝑠  Screw flexibility 

𝜆  Filtering coefficient 

𝜇  Global friction coefficient under the head and between the threads 

𝜇ℎ  Friction coefficient under the head 

𝜇𝑡  Friction coefficient between the threads 

𝜇𝑝,𝑚𝑖𝑛  Minimum friction coefficient between the plates 
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1. R&D activities for Segula company 
 

Segula technologies is a French engineering group present in 30 countries in the world. It is 

mainly involved in the major industrial sectors like automotive, aerospace & defence, energy, 

life sciences, naval and rail industries. 

 

Figure 1 : Summary of Segula influence 

Segula Technologies owns 5 main agencies in France: Trappes, La Ferté-Vidame, Bron, Rennes 

and Brognard where my internship takes place. This Specific Brognard site contains chassis 

engineering, synthesis and numerical simulation, processes and production systems as well as 

Research and Development as its main activities. Its automotive clients are among the top 

vehicle manufacturers like Stellantis, Mercedes-Benz, BMW and Audi, as well as equipment 

manufacturers like Valeo and Plastic Omnium. 

 

 

Figure 2 : Segula's clients 

The Brognard agency is involved in Research and Development, therefore my intership project 

was made to answer one of these Research aspects, while remaining a project internal to 

Segula Technologies. 
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1.1. Scientific approach 
 

My internship being part of a Research & Development activity, there was no initial plan for 

my 5 months of work, hence the Gantt chart below only considers the work done and not the 

work planned since these plans could completely change depending on the results and the 

approach we choose to follow. Therefore, this Gantt chart displays the actual work I did during 

my first 19 weeks. 

 

 

Figure 3 : Gantt chart 

1.2. Objectives and issues 
 

This research project focuses on the loosening aspect of the screws of a wheel of a vehicle. 

Since the efforts regularly applied to a wheel can loosen the screws or bolts which are 

tightened to the rim, this can lead to these parts detach from the wheel, thus removing the 

fixations of the different parts of the wheel. 

Although some systems exist to reduce this type of loosening, we will try in this study to 

reduce the loosening of the screws by changing the design of the different components of the 

current wheel. 

This is why this master thesis report called “Development of a method to predict bolt 

loosening” will also deal with the more general project of my internship called “Optimization 

of a wheel design to reduce loosening”. Hence the prediction of loosening will play an 

important role in this optimization project. 
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2. Literature review 

2.1. Current different designs 
 

There are currently a number of different wheel designs, particularly for rims, which can 

be of several shapes, beyond a circular outer part in the shape of the tyre. The variation then 

takes place inside the rim, and different structures exist to firmly connect the wheel axle to 

the tyre. 

 

Figure 4 : Different rim designs 

 

These different designs contain radial sections for structural strength. The materials used are 

generally aluminium or sheet metal. However, of the rims shown in Figure 4, 5-spoke rims are 

mainly used on classic vehicles, while commercial vehicles prefer multi-spoke rims. 

 

2.2. Aim of the study 
 

This problem of spontaneous loosening is well-known and common, and systems have already 

been designed to limit it (1). 

Some of them, such as notched washers, increase friction under the screw head. However, 

these are ineffective in terms of vibration, and their use is mainly for flat-screwed assemblies. 

In our case, there is no real plane under the screw head, and the surface area over which 

friction could be maximised is very small. Finally, this solution is very ineffective for vibratory 

loads, as it will be the case for our wheel for most of its service life. 

Other systems also increase friction in the threads, such as nylon ring nuts. However, these 

only slightly reduce loosening under vibratory loads, and cannot be implemented for tapped 

screws, which would require the screws in the current assembly to be redesigned as well. 

There are also locknut systems that limit this loosening. However, vibratory loads are not 

really affected by this solution, which is also more costly to implement in terms of time and 

resources. 
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Rotation-locking solutions such as wire brakes can also be considered, but these do not 

preserve the preload of the screws and require special screws as well. 

Finally, self-locking washers with ramps or safety nuts with ramp washers are expensive to 

install on all the bolts of the wheels of a vehicle. 

These technologies are not sufficient to solve our loosening problem, because none of them 

satisfies the static, dynamic and vibratory cases while remaining affordable. The approach 

adopted here is to modify the design of the rim so that this new design reduces the loss of 

tension in the bolts after loading the wheel. 

The parameters that can be studied are the general shape of the rim, its thickness, the friction 

between the parts, the type of bolt (conical shape of the washer), and any other useful 

parameter that can be modified. 

About the thickness of the rim, the thickness of the part is important for loosening, as will be 

seen in section 2.4.2. 

As far as friction is concerned, increasing friction can be beneficial to prevent loosening: with 

a higher friction coefficient (shown in Figure 5), and/or a larger friction surface, the normal 

tightening force applied by the screws will make it easier to maintain the relative position of 

the parts assembled, and this undergoing higher tangential forces. 

Let 𝑁 be the normal force applied by the screw to the assembly, and 𝑓 (and 𝑓𝑆) the friction 

coefficient (static), we obtain T the tangential force applied by the screw head to the rim. 

In the static case for a low external tangential force, the screw applies another tangential force 

T equal in norm and opposite in direction to the external one, so that it cancels this force and 

prevents any relative movement between these two parts. For an external tangential force 

greater than 𝑓𝑆𝑁, there is relative movement between the parts, and the screw only applies a 

force 𝑇 = 𝑓𝑁 which opposes the movement. 

 

Figure 5 : Static and dynamic friction cones 
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2.3. Loosening definition and characterisation 

2.3.1. Loosening definition 
 

In the case of screwed joints, the physical phenomenon leading to the loss of tension in the 

screw, following the loading of the parts being joined, is known as spontaneous loosening (1). 

Two phenomena can be differentiated by the relative movement between the screw and the 

nut: 

 Loosening only takes into account the loss of tension when the screw and nut’s 

positions are fixed in relation to each other and can be caused by settlement (parts 

settling into each other), creep (permanent deformation after long-term loading) or 

matting (plastic deformation caused by high pressure). 

 Spontaneous unscrewing then occurs during rotation of the nut relatively with the 

screw, or simply during rotation of the screw relatively with the thread. 

Hence, to characterise the overall loosening of the bolt, which will take into account the 

previous loosening and the spontaneous unscrewing, it is necessary to study the drop in 

tension induced in the screw, i.e. the loss of preload in the screw. During the first phase of 

loosening, matting and strain hardening phenomena reduce this preload without any relative 

movement nor rotation between the elements, which invalidates the study of loosening based 

only on the relative rotation between the screw and the nut. 

A lot of research has been carried out to characterise the phenomenon of loosening, including 

analytical, numerical and experimental studies. These studies generally agree on dividing 

loosening into 4 successive phases (2), as shown in Figure 6: 

 Initially, the assembled parts and the screw are all immobile. 

 The external forces exceed the forces induced by the screw preload and the 

assembled parts slide in relation to each other, but the screw head remains fixed 

with its part. The screw therefore begins to bend and a small amount of slip is 

introduced into the threads of the screw, known as "localised slip". 

 The screw continues to bend until it reaches an extreme position of maximum 

displacement known as the "critical threshold", at which point the screw head slips 

on its part. It is during this stage that the loosening mainly occurs. 

The screw returns to a position that no longer allows relative movement between the head 

and the part. 

Loosening is not reached when the screw head position does not exceed this threshold critical 

displacement, or when it does not slip at all. 
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Figure 6 :  Different loosening stages 

 

It was also concluded that spontaneous unscrewing was necessarily induced by complete slip 

of the nut or bolt head, based on the relative movement of the assembled parts. Spontaneous 

unscrewing therefore cannot occur by relative movement of the assembled parts alone, 

without slippage of different parts of the bolt. 

Hao Gong (1) explains the link between the theories of localised slip and complete slip in Figure 

7 , which summarises the behaviour of parts concerning slip. Even if the slip is only local 

initially, the tiny loosening it leads to then can increase the slip, which then propagates into 

full slip, under the screw head or in the threads, leading to significant loosening. 

 

 

Figure 7 : Relation between localised slip and complete slip 
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2.3.2. Interests and practical examples 
 

The study of loosening is mainly carried out to avoid loss of pretension in the screws. Reducing 

the pretension has an impact on the fixing of the assembled parts, which must generally not 

move. Too much slippage of the assembled parts following the loosening of the bolts can lead 

to transverse forces between the assembled parts and shear in the bolts in the assembly. 

However, the numerous parameters taken into account make this a complex study, requiring 

in-depth numerical, analytical and experimental analyses. 

The phenomenon of loosening can occur following different load cases on the assembled 

parts: transverse loading (perpendicular to the axis of the bolts), axial loading (parallel to the 

axis of the bolts) centered on the assembly, off-center axial loading, loading rotating around 

the axis of the assembly, etc. (2), as well as torsional, flexural and impact loading on the 

assembly (3). 

Among these load cases, Aziz (4) showed that axial loading on a correctly sized bolted joint 

could not lead to spontaneous loosening. It was also shown experimentally that transverse 

loading was the most likely to cause loosening (at similar loading values). It is therefore the 

one that will mainly be followed in this literature review, in addition to being the load case for 

our wheel. The other loadings mentioned above are not studied here, although theoretically 

possible but neglected. 

 

2.3.3. Standardised tests 
 

Numerous tests have been carried out to try and characterise the loosening according to 

different assembly configurations, in order to characterise the impacting properties and the 

value of this loosening. 

The ISO 16130 "Junker" test involves stressing the fastener to be tested with an alternating 

transverse movement. The test device consists of a movable plate assembled to a fixed 

support, both linked by the fastener to be tested. A rotary motor applies the alternating 

transverse movement to the mobile support via an eccentric. The following parameters can 

be set and adjusted: 

 The frequency (between 10 and 15 Hz according to ISO 16130 standard) 

 The displacement of the tray 
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Figure 8 : Junker ISO 16130 test set-up 

 

During this test, the nut tightened on the 2 plates is subjected to vibrations by the relative 

movement between the fixed plate and the moving plate. It is then possible to measure the 

loosening of the screw with the reduction in screw force measured by the force sensor. 

In order to highlight the loosening of the nut, it is also possible to measure and even observe 

the position of the bolt after the test. However, this angular position only takes into account 

the spontaneous loosening and not the first loosening as seen in paragraph 2.3. 

Bearings between the two assembled parts also minimise friction between these two parts, 

although often the loading is not an imposed displacement but a transverse force with friction 

between the two parts. This test then highlights the loosening of the screws due to the relative 

rotation between the nut and the head of the screw, created by the stresses. 

The NAS 3350, NASM 1312-7 ISO 7481 and ISO 8642 tests use an oblong hole test fixture 

carried by a vibrating pot. This vibrating pot generates shocks on the fixture at a frequency of 

around 30 Hz, for a defined displacement, in this case, 11,4 mm. 

 

 

Figure 9 : NAS/NASM test set-up 
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Finally, the NF E 25-005 test also stresses the fastener by impacts in a similar way to the 

previous test, at a frequency of approximately 22 Hz, and a displacement of 22,8 mm here. 

 

 

Figure 10 : NF E 25-005 test set-up 

 

There are also other non-standardised tests, such as the Clark and Cook test, the Pearce test 

and the test by Sase et al. (5). The aim of each of these tests is to demonstrate the loosening 

of screws under different cyclic loads, without having to measure the loss of tension within 

the screw if it has loosened sufficiently. 

 

2.4. Previous analytical and numerical studies on loosening 
 

In order to characterise this loosening, several methods were used to determine this criterion 

analytically, then numerically for greater precision and correlation with reality. 

Despite a good amount of research in the field, to date, no model has been able to correctly 

predict the loosening behaviour of a bolt or screw connection (6). Analytical approaches alone 

only take part of the problem into account and neglect some of the contact forces by 

simplifying the problem. 

 

2.4.1. Analytical studies of the various models 
 

Although calculations for screwed assemblies have had many years to be refined, the main 

difficulty lies in the multitude of contacts between the parts, resulting in numerous and 

sometimes unknown forces in the system, which make these calculations very complex and 

the analytical studies arduous. 

First of all, it is useful to determine the relationship between the tightening torque and the 

preload force transmitted to the screw, taking into account the helical screw, the friction in 
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the threads and the friction under the head. This gives the Kellerman and Klein relationship 

according to DIN 946 standard: 

𝐶0 = 𝐹0 (0.16𝑝 + 0.58𝜇𝑡𝑑2 +
𝜇ℎ𝑑𝑡

2
) (2.1) 

With: 

𝑝 the screw pitch 

𝜇𝑡 the friction coefficient between the threads 

𝜇ℎ the friction coefficient under the head 

𝑑2 the sidewall diameter (inside of the threads) 

𝑑𝑡 the diameter under the screw head 

Thus, in the event of a loosening, if the only forces to be taken into account are those of the 

previous relationship, it is possible to determine the minimum friction to be obtained in order 

to maintain the assembly in position so that loosening does not occur: 

𝜇 >
0.16𝑝

0.58𝑑2 +
𝑑𝑡

2

 (2.2) 

This result is only true if both friction coefficients are approximated to the same value, i.e. 

with          𝜇𝑡 = 𝜇ℎ = 𝜇, and in the case where no external force affects the structure. However, 

in our case, the spontaneous loosening is caused by an external force on the wheel, so this 

relationship is not sufficient, but developed further. 

This relationship from Kellerman and Klein also makes it possible to determine the force 𝐹0 

from the torque 𝐶0, again using the same approximation with the same friction coefficient. 

This means that tightening the bolt with the torque gives the preload force via a coefficient: 

 

𝐹0 =
𝐶0

(0.16𝑝 + µ (0.58𝑑2 +
𝑑𝑡

2 ))

 (2.3)
 

 

This relationship therefore allows us to obtain the preload using 2 uncertainties: the 

uncertainty of the tightening torque between 𝐶− and 𝐶+ with the precision of the tightening 

method, and the difference made by approximating 𝜇𝑓 = 𝜇𝑡 = 𝜇 located between extreme 

values 𝜇− et 𝜇+. 

From these two uncertainties, we obtain a frame of the preload 𝐹0 with 𝐹0
− = 𝑓(𝐶−, 𝜇+) and 

𝐹0
+ = 𝑓(𝐶+, 𝜇−) 
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Figure 11 : Preload uncertainty 

 

There is also a torque and angle tightening method in the plastic domain, which allows a lower 

overall uncertainty on the preload, but with another uncertainty on the angle. 

Thus it is necessary to keep this ∆𝐹0 interval in the range [𝐹0,𝑚𝑖𝑛;  𝐹0,𝑚𝑎𝑥], which is the range 

for screw preload for the assembly. 

𝐹0,𝑚𝑎𝑥 is generally imposed up to 90% of the elastic limit of the screw, or to guarantee the 

mechanical strength of all the components of the assembly. 

𝐹0,𝑚𝑖𝑛 is chosen to maintain contact between the parts and transmit the forces, after the initial 

loss of preload due to service and temperature settling, and while taking account of the 

external forces. We therefore have: 

𝐹0,𝑚𝑖𝑛 = (1 − 𝜆)𝐹𝑎𝑥 +
𝐹𝑡

𝜇𝑝,𝑚𝑖𝑛
+ ∆𝐹𝑧 (2.4) 

With: 

𝐹𝑎𝑥  the external axial load on the screw 

𝐹𝑡 external transverse load on the screw 

𝜇𝑝,𝑚𝑖𝑛 the minimum friction coefficient between the plates 

∆𝐹𝑧 the decrease in preload after tightening 

𝜆 the filtering coefficient such that λ = β
δs

δs+δp
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β the load introduction coefficient 

𝛿𝑠 and 𝛿𝑝 the flexibilities for the screw and the plates 

 

This decrease in preload ∆𝐹𝑧 adds up the settling of joint surfaces ∆𝐹𝐿𝑠
, the decrease in preload 

due to creep ∆𝐹𝐿𝑐
 and the decrease due to temperature changes, which we will not study. 

Their expressions are as follows: 

∆𝐹𝐿𝑠
=

∆𝐿𝑠

𝛿𝑠 + 𝛿𝑝
 (2.5) 

With ∆𝐿𝑠 = 0.00329 ∗ (
𝐿

𝑑
)0.34 according to VDI 2230 standard 

∆𝐿𝑠 the elongation due to strain hardening of the joint surfaces 

𝑑 the screw nominal diameter 

𝐿 the useful length between plates 

Similarly, we obtain ∆𝐹𝐿𝑐
=

∆𝐿𝑐

𝛿𝑣+𝛿𝑝
 with ∆𝐿𝑐 the elongation due to creep. 

 

If 𝐹0
− < 𝐹0,𝑚𝑖𝑛, there is a possibility that the tightening will be below this minimum accepted 

value, and therefore the risk of the assembled parts coming loose, or worse sealing. Axial 

forces could also be poorly filtered, and the risk of spontaneous unscrewing would not be 

negligible. 

In case 𝐹0
+ > 𝐹0,𝑚𝑎𝑥, the preload may be too high to ensure the mechanical strength of all 

the components in the assembly. 

Spontaneous unscrewing is thus characterised by the relation 𝐹0
− < 𝐹0,𝑚𝑖𝑛, as defined earlier.  

 

Finally, when tightening, we can choose a maximum tightening level, i.e. ask for 𝐹0
+ ≡ 𝐹0,𝑚𝑎𝑥. 

In this case, the non-loosening condition 𝐹0
− > 𝐹0,𝑚𝑖𝑛 can be:  

𝐹0,𝑚𝑎𝑥 − 𝐹0,𝑚𝑖𝑛 > 𝐹0
+ − 𝐹0

− (2.6) 

To characterise loosening, Zarwel (7) uses Thomala’s method to determine whether a screw 

can loosen, by comparing it to a beam. 

Indeed, based on Euler and Bernoulli’s theory of beams, the screw is compared to a beam 

embedded at one end. The maximum displacement possible before the screw loosens is then: 

𝛿 =
𝐹𝑡. 𝐿3

3. 𝐸. 𝐼
 𝑜𝑟 𝛿 =

𝐹𝑡. 𝐿3

12. 𝐸. 𝐼
 (2.7) 
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Depending on whether the screw is assimilated to a beam built-in at one end or both 

respectively. 

Using Timoshenko’s theory on thick beams, we can add the shear component of the 

displacement. Zarwel also adds a third experimental term called “thread slip” to correspond 

to the results he got for his loosening curves. 

 

𝛿𝑐𝑟𝑖𝑡 =
𝜇. 𝐹0. 𝐿3

3. 𝐸. 𝐼
+

𝜇. 𝐹0. 𝐿

𝐺. 𝑆𝑒𝑞 . 𝑘
+ 𝑡ℎ𝑟𝑒𝑎𝑑 𝑠𝑙𝑖𝑝 (2.8) 

With: 

𝛿𝑐𝑟𝑖𝑡 the threshold displacement of the screw head before it loosens 

𝜇 the global friction coefficient for the threads and the screw head 

𝐹0 the screw preload 

𝐹𝑡 the tangential external load 

𝐿 the useful length between plates 

𝐸 the Young modulus for the screw 

𝐼 the second moment of area for the screw 

𝐺 the shear modulus for the screw 

𝑆𝑒𝑞 the equivalent resistant cross-section 

𝑘 the shear correction coefficient for a cylinder 

These 3 terms represent the bending of the screw, its shearing, as well as slight slippage in the 

screw threads, which leads to additional movement of the screw head. 

This relation takes into account the geometry of the screw and no longer the external forces 

(included in the displacement of the head). Correlating unscrewing with the displacement of 

the screw head can be risky, and requires precautions before being used in a more complex 

model such as ours. 

 

2.4.2. Numerical studies of the various models 
 

Several numerical studies of this phenomenon have been carried out under different 

conditions, with the aim of refining or even validating the analytical models, after correlation 

with the experimental models. They were mainly carried out on the loosening of a single 

screw, in order to isolate its behaviour, while optimizing the results thanks to a finer mesh. 

Indeed, for numerical models modelling the threads, this characteristic will be decisive in 

understanding the loosening, hence the need for a fine, suitable mesh. 
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Thus Zarwel (7) models a single preloaded screw on an assembly of parts subjected to cyclic 

transverse loading obtained by forcing one of the two parts to move relative to the other. 

 

Figure 12 : Zarwel’s model for a screw loosening 

 

He then obtains the drop in preload in the screw as well as the rotation of two parts of the 

screw during the loading cycles. 

 

Figure 13 : Unscrewing of the assembly obtained for the previous configuration 

From this unscrewing curve as a function of cycles, some researchers define spontaneous 

unscrewing as soon as it reaches 0.03° of rotation per cycle during the first 10 cycles, or any 

other steady given value since a slight tension deficit is inevitable due to creep. It is also clear 

that the screw load is related to the screw rotation. 
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He also measures the under-head slip as a function of the screw head deflection, a parameter 

that will be used to correlate the simulation and analytical calculations seen above in 

paragraph 2.4.1 and which validates the local slippage theory. 

 

 

Figure 14 : Appearance of under-head slippage during screw bending 

 

For her part, Ksentini (8) models the behaviour of a bolt whose preload holds in place two 

plates whose relative displacement is also imposed and sinusoidal.  

 

 

Figure 15 : Model of 2 plates maintained by a bolt 

She then obtains the loss of preload and the relative rotation of the screw and nut as a function 

of time. 
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Figure 16 : Axial load in the screw and rotation of the nut in relation to the screw 

 

Steps 1, 2 and 3 correspond respectively to the pre-tensioning of the nut, its stabilisation and 

the sinusoidal movement of the plate. 

All these results for a single bolt can be compared with our case of a bolted assembly, without 

losing sight of the difference with our case involving several screws and non-planar plates. It 

would therefore be inappropriate to simply transfer the above results to our case study. 

However we notice the importance of screw deflection in the loosening process, displaying 

the possible use of Thomala’s method to predict loosening. 

Manoharan (9) is modelling 2-bolt bolted assemblies and stimulating a particular side of his 

assembly. He then studied the influence of the distance between these two bolts, and the 

impact of the assembled material on the loosening of the bolts. 

 

 

Figure 17 : Loosening of 2 bolts with different stiffness 
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Two conclusions can be drawn from these results: 

 As the displacement stress is applied on the side of bolt 1, the loosening of this bolt is 

greater than that of bolt 2, and the assembled plates have absorbed some of the 

energy during the transfer of forces from bolt 1 to bolt 2 

 Higher stiffness plates mean greater absorption of the external forces, which increases 

the loosening range of the various bolts. 

 

He also carries out simulations for different distances between the bolts, i.e. 4 and 7 times 

their diameter. 

 

Figure 18 : Influence of bolt spacing 

 

Strangely, the distance between the two bolts has a different effect on loosening depending 

on their distance apart. It should be clear that bolt B2 loosens less whatever the distance, but 

it is not the case for a distance equal to 4D. However we clearly notice the impact of the 

distance between the bolts which can play an important role. 

 

2.5. Previous experimental studies on loosening 
 

In order to validate the analytical formulations and numerical modelling, it is necessary to 

carry out loosening tests and measurements in parallel to correlate these three aspects. 
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2.5.1. Experimental studies using 1 screw 
 

Most of the tests are reproductions of Junker's test with a bolt, the diagram of which is 

given in part 2.3.3. 

This machine consists of two parts joined by a tight bolt. A motor imposes a sinusoidal 

transverse movement on a plate, of a given amplitude and frequency. Sensors are added to 

the system to measure the loss of preload during loosening, as well as the rotation of the nut 

relative to the bolt. As this is the test that is widely modelled in the simulations, it is possible 

to compare the different results obtained. 

 

Figure 19 : Junker test loosening curves by Zarwel and Ksentini 

 

Although the set-ups in the literature have different initial conditions, they indicate an overall 

similar behaviour in the loosening of the bolts as shown by the previous curves; with an initial 

phase of localised slip, followed by complete slip with a significant loss in pretension. By 

varying the various parameters of the assemblies, it was also possible to determine their 

impact on these loosening curves, such as the length of the threaded part, the material of the 

parts and the screw, and the friction coefficient at the joint surfaces. 

Hence Zarwel and Ksentini carried out several studies using other friction values, preloads, 

screw lengths, materials and surface treatments. 

 

2.5.2. Experimental study using 2 screws 
 

Ksentini (8) also carried out tests with 2 bolts, which are more representative of our wheel 

screwed assembly containing 4 of them. 
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Figure 20 : Bolted assembly with 2 bolts 

She then mounts a mass fixed by 2 bolts whose relative positions can be modified, as shown 

in the photo of the assembly in Figure 20. An electric motor imposes a vertical displacement 

on the mass, as in Junker's previous tests. 

She also compares her results with those from the 1 bolted assembly in order to determine 

the impact of their number and position. 

Overall, the loosening of the connection with 2 bolts would correspond roughly to the 

loosening with a single bolt, but with the forces doubled. This is contrary to the simulations 

carried out by Manoharan (9), unless the plates used in his experiment were very stiff. 

With regard to the positioning of the bolts with a vertical load, horizontally positioned bolts 

(as in Figure 20) are less resistant to loosening than when they are arranged vertically, in the 

same direction as the load. However vertical bolt the closest to the source of the load loosens 

more than the bolts in the horizontal position. 

 

2.6. Influence of assembly design on loosening 
 

This part of the literature review focuses on changing the design of conventional bolted 

joints in order to reduce loosening. However, the literature is largely focused on assemblies 

of 2, flat, parallel plates; the documents studied here report only minor changes with a 

conventional assembly. 

Some other parts of design optimization were already tackled in part 2.4.2, the following 

section contains the other interesting changes I found in the literature. 
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2.6.1. Shape of the assembly 
 

The shape of the joint and the position of the bolts in relation to the imposed 

displacements can have an impact on the loosening of the bolts. Manoharan (9) showed that 

the distance between a bolt and the stimulus could vary the loosening, in particular from the 

energy absorbed by the material. Shifting the imposed movement from the bolt axis also helps 

reduce loosening thanks to the elasticity of the materials, which reduces the displacement of 

the plates at the bolts. 

 

Figure 21 : Bolts loosening with and without shifting the load axis 

 

2.6.2. Assembly parallilism 
 

Although most studies have been carried out on two plates assembled completely parallel, 

whether at the bolt or further away, non-parallelism has been studied in a few specific cases. 

It is difficult to draw general conclusions from this phenomenon with respect to loosening. 

Yang and Nassar (10) as well as Bin Yang (11) consider that two non-parallel plates increase 

the resistance to loosening, whereas Sawa (12) considers that it’s the case of assemblies with 

parallel faces which is the least conducive to loosening. 

 

2.6.3. Assembly flatness 
 

In a bolted joint, it is necessary to maintain contact pressure between the assembled parts. 

This pressure not only ensures that the assembly is watertight, but also distributes the forces 

on the structure. 
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In a flat plate assembly, the pressure is distributed according to the Rötscher cone (13), 

approximated around 45° from the fastener to the joint between the parts as shown in Figure 

22: 

 

Figure 22 : Stress propagation in the plates 

 

In our case, the interface at the joint surfaces is not flat but distorted, which may influence 

pressure distribution, preload and the risk of loosening. In fact, the force transmitted by the 

tightening of the screw to the plates is probably only absorbed by a smaller surface area than 

in the case of flat plates where the pressure is distributed at 45°. 

 

Figure 23 : Cross-section of the parts clamped by the screw 
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2.7. Previous work 
 

In order to carry out some of the numerical calculations, an Abaqus finite elements model 

was available for the study. It contains the main parts of a wheel assembly, including the hub, 

rim and 4 assembled bolts. 

 

 

Figure 24 : Meshed model of the wheel (Abaqus model) 

 

This 1.5 million elements model contains both volumetric and surface meshes, depending on 

the parts. 

The materials used are mainly represented by elastoplastic models. It was also necessary to 

take into account the friction coefficients between the various parts in contact, as they are of 

prime importance in this loosening study. 

Concerning the screws, their preload is modelled without a nut, by a preload section to which 

the tightening force is applied. The other forces applied are the input forces on the wheel, in 

order to model the load. 

For the boundary conditions, the hub is embedded and the other parts are connected by 

contact. 

 

Using this model, we can measure various results: 

 The pressure and displacement fields within each part 

 The screw bending caused by the load 

 The plastic deformations of the parts 

 The slip fields which are particularly useful for obtaining the threshold displacement 

studied in part 2.4.1. 

 Any other mechanical parameter from Abaqus if necessary 
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2.8. Literature review critique 
 

The previous section describes various studies on screw connections, an area that is very 

present in current mechanics research. Although they are varied and extensive, none of them 

has really dealt with a subject directly applicable to our project. In fact, these studies 

constitute barriers that require further research into loosening. 

The numerical models studied are mainly flat assemblies with parallel plates joined by a single 

bolt. This research is therefore quite different from the case we are interested in which 

consists of non-planar plates joined by several bolts. It could therefore be dangerous to try to 

extrapolate all these results and conclusions to our model, or even to attempt to compare 

them. 

Experimental models are no more representative either, and stop at 2 screws, ignoring the 

impact of the number of screws and their relative positions in the assembly. 

Finally, analytical models cannot take into account all the stresses at contact interfaces, in 

particular because of localised sliding, in addition to the multitude of contacts and therefore 

stresses to be taken into account. 

These three points underline the research and innovation interest of this wheel design 

optimization project, especially as the design optimization aspect was not greatly researched 

either, apart from certain material properties. 

However, this literature review still granted us with interesting topics to take inspiration from: 

 Thomala’s method could predict loosening, but the theory of localised slip also states 

that loosening occurs when the slip state changes from localised to general slippage 

for the planar assemblies described earlier, which could be another possibility to 

predict loosening 

 The formula of 𝐹0,𝑚𝑖𝑛 as well as the relation (2.6) give a good insight at what 

parameters should be changed in order to reduce loosening, as well as other 

parameters specifically studied in the literature 

 The few studies made on design optimization against spontaneous loosening bring 

even more confidence in the previous point with the parameters to change for our 

optimization 
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3.  Numerical loosening study 

3.1. Cobra V6 loosening comparisons 
 

CobraV6 is a software that enables the user to model simple bolted assemblies, in order 

to gather some data on the various mechanical characteristics of this assembly, including the 

potential self-loosening. 

Indeed, Cobra uses the Kellerman and Klein equation (2.4) and the mechanical parameters of 

the assembly 𝐹0,𝑚𝑎𝑥 and 𝐹0,𝑚𝑖𝑛 to get to the equation (2.6) shown in part 2.4.1. 

By representing the possible pretension force applied on the screw with a blue line, and the 

admissible preload for the mechanical assembly, in order to stay in the [𝐹0,𝑚𝑖𝑛; 𝐹0,𝑚𝑎𝑥] interval 

in green, a correct assembly with not risk of loosening should look like this: 

 

Figure 25 : Cobra results for a non-loosening assembly 

 

However, there is no uncertainty on the torque, and the friction coefficient is set in the 

simulation. 

Therefore the tightening preload is exactly 𝐹0
̅̅̅, and the only equation that needs to be satisfied 

is 𝐹0,𝑚𝑖𝑛 < 𝐹0
̅̅̅ to avoid loosening. 

Also, the value 𝐹0
̅̅̅ is equal to 2659N. It corresponds to the 𝐹0

+ value equalled to 𝐹0,𝑚𝑎𝑥 for the 

mechanical safety of the assembly, minus the uncertainty of tightening due to the torque and 

the friction coefficient. 

 

The model used to correspond to the assemblies which Cobra was able to do only consisted 

of 2 plates and 1 screw in the middle. The geometrical parameters are give below. Concerning 

the material properties, both plates and the screw had a Young’s modulus of 210GPa and 

Poisson’s ratio of 0.285. It was necessary to stay in the elastic domain since Cobra could not 

handle plastic deformation. 
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Figure 26 : OptiStruct model of the simple Cobra assembly 

 

Concerning this model, the contact between the plates was driven by a Coulomb contact using 

a dynamic and a static friction coefficients. The same contact rule was applied to the interface 

between the head of the screw and the upper plate. The lower plate was fixed as well as the 

lower half of the screw body. 

Eventually, 2659N of pretension were applied to the screw according to Cobra software, in 

order to match the theoretical 𝐹0
+ value with 𝐹0,𝑚𝑎𝑥. An axial load and a tangential load were 

also applied to the upper plate. 

 

The goal of this study is to determine the start of self-loosening with parameters inside 

OptiStruct, that is to say noticing the changes in OptiStruct which have the assembly change 

from no loosening to self-loosening, using the criteria given by Cobra. 

To reach the self-loosening stage, it is necessary to increase 𝐹0,𝑚𝑖𝑛 past 𝐹0
−. Thus I increased 

the tangential load on the upper plate. Ideally, to observe any change in the bolted assembly 

when going past this stage, we try to run several models before and after this stage, with 

multiple ones when 𝐹0,𝑚𝑖𝑛 is very close to 𝐹0
−. 

The first step to use the Cobra software was to gather the forces 𝐹𝑎𝑥  and 𝐹𝑡 applied on the 

screw, because these can be different from the initial forces applied on the upper plate. I did 

so by changing the 3D screw with a 1D beam of 1 element, hence I got the axial load and the 

shear load to be entered in Cobra. After getting this Cobra model, I could set it up with 

different loads to compare the stages before and after reaching self-loosening. 

 

After studying 16 different load cases with a different tangential load on the plate, I could 

compare the results I got and plot them with respect to the external (tangential) load. 

 



   
 

36 

 

 

Figure 27 : Results of the 16 models on the screw (top) and the upper plate (bottom) 

These results show the maximum displacement (in red) and the maximum slip distance (in 

green) for the screw and for the upper plate, with different loads on the plate. Unfortunately, 

the R² close to 1 on each of these curves shows that the different points form a straight line, 

that is to say the maximum displacement and slippage for the screw and the plate are affine 

functions of the load, and cannot help differentiate the self-loosening stage from the non-

loosening stage. 

Similar results were obtained for other output data, and none could help us determine when 

the assembly reached a self-loosening stage only based on the OptiStruct model. 

 

Moreover, the contact status between the upper plate and the head of the screw remained 

all the time stuck, even with the Coulomb contact model. However, according to the localised 

slip theory, the screw head should start slipping from the upper plate just before reaching 

loosening. This is not what happened with our different models, when none showed any slip 

between the head and the upper plate, even with an external load supposedly enough to get 

to self-loosening according to the Cobra results. 

 

More precisely, the model was made so that a large enough external force could have the 

upper plate leave the lower plate. Indeed, the only contacts were between the head of the 

screw and the upper plate, and between both plates, thus the only forces preventing the 

upper plate from leaving the lower plate was the tangential force given by the Coulomb 

contact. These solids are deformable, hence the simple Coulomb theory is not enough to tell 

whether the screw pretension will have the upper plate stay close to the lower plate despite 
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the tangential external load. However, a large enough tangential load (higher than the 180N 

shown here) could have it slip. 

 

 

Figure 28 : Contacts on the simple OptiStruct model 

 

The previous loads did not exceed 250N of external tangential force. However, when 

increasing this load to 501N, the head of the screw split up into one half slipping with the 

upper plate, and the other half stuck with Coulomb’s frictions. It is what was explained in the 

local slippage theory part 2.3.1. 

Generally speaking, when a load is applied to the bolted assembly, the parts in contact may 

start slipping despite the pretension, especially the screw head with the upper plate. This slip, 

which initially is only local slip, increases loosening, which increases the slip area to end up in 

a complete slippage state where the screw head completely slips with the upper plate. In our 

case, we estimate the transition between local slippage and complete slippage when the slip 

region on the screw head exceeds 50%. This state is reached when the external load applied 

to the plate is 501N, for our loosening case of 2659N of screw pretension. Therefore we will 

consider loosening at this state when using Thomala’s method. 

 

Figure 29 : Screw head contact with the upper plate at 501N of external load, slip (green) and stick (red) regions 
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3.2. Thomala’s method 
 

Another method to determine whether an assembly will loosen is Thomala’s method, as 

explained in part 2.4.1. Indeed, Thomala compares the displacement of the head of the screw 

to its theoretical displacement in “normal” conditions. If the head moves more than it should 

according to the model after the external loads are applied, it means the assembly is likely to 

loosen. 

First of all, it is necessary to correct the relation (3.8) given for one single bolt. Indeed, we 

have to keep in mind this relation was found with the approximation of a beam fixed at one 

end. However, this approximation can be corrected depending on the conditions of the screw. 

If the bolt is supposed to be fixed at one end, we can keep the Bernoulli’s component of the 

critical displacement as 𝛿𝑐𝑟𝑖𝑡,𝐸.𝐵 =
𝜇.𝐹0.𝐿3

3.𝐸.𝐼
, but if it is longer, it is better to suppose the beam is 

built-in at both ends, and change this component of the critical displacement to 𝛿𝑐𝑟𝑖𝑡,𝐸.𝐵 =
𝜇.𝐹0.𝐿3

12.𝐸.𝐼
. 

However, the length of the screw or the beam has to be compared to its diameter to know 

whether to screw can be supposed thick enough to add Timoshenko’s component, since the 

beam can be thicker than what Euler and Bernoulli’s theory could include. In that case, we add 

Timoshenko’s component for the shear of the beam 𝛿𝑐𝑟𝑖𝑡,𝑇 =
𝜇.𝐹0.𝐿

𝐺.𝑆𝑒𝑞.𝑘
. 

Moreover, the numerical models have no play between the threads and the plates, or it is 

simply modelled by no contact between the screw body and the upper plate in our case. 

Therefore we cannot keep the “thread slip” in the critical displacement formula. 

Finally, the difference between a beam fixed at one or both ends is mainly made by the ratio 
𝐿

𝑑⁄  with L the length of the screw and d its nominal diameter. When 𝐿 𝑑⁄ > 3, we can consider 

the screw to be fixed at both ends, and we can consider it only built-in at one end when 𝐿 𝑑⁄ <

1. When 1 < 𝐿
𝑑⁄ < 3, it is necessary to take the angle of the screw into account, so that it is 

possible to differentiate the case where the beam is built-in at one or both ends. This angle 

corresponds to the bending of the screw after the external loads are applied. 

To summarize, the general relation for the critical displacement will take into account both 

Euler and Bernoulli and Timoshenko’s components for more accuracy. In that case, the 

numerical formula will simplify the relation (3.8) to: 

𝛿𝑐𝑟𝑖𝑡 = 𝛿𝑐𝑟𝑖𝑡,𝐸.𝐵 + 𝛿𝑐𝑟𝑖𝑡,𝑇 (3.1) 

With: 

𝛿𝑐𝑟𝑖𝑡 the critical displacement of the screw 

𝛿𝑐𝑟𝑖𝑡,𝐸.𝐵 =
𝜇.𝐹0.𝐿3

3.𝐸.𝐼
 for beams fixed at one end 
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𝛿𝑐𝑟𝑖𝑡,𝐸.𝐵 =
𝜇.𝐹0.𝐿3

12.𝐸.𝐼
 for beams fixed at both ends 

𝛿𝑐𝑟𝑖𝑡,𝑇 for the shear component 

 

In the case presented part 3.1, the diameter of the screw is 4mm, and the length of the 

screw body that is not fixed to the lower plate also is 4mm. Thus the ratio 𝐿 𝑑⁄  is between the 

two Euler and Bernoulli’s cases for the critical displacement. The correct case has to be 

determined based on the angle of the screw: 

If the angle formed by the play in the thread is higher than the angle of the screw when it is 

bent by the external loads, the case considered is the same as if 𝐿 𝑑⁄ < 1. However, our model 

has no play between the screw body and the plates. Therefore the displacement component 

used will be the one for a screw fixed at both ends. This is also verified by the displacement of 

the screw with respect to the height position in the screw body, which clearly matches more 

the curve of a beam fixed at both ends instead of only one. 

The critical displacement used in this model will be: 

 

𝛿𝑐𝑟𝑖𝑡 =
𝜇. 𝐹0. 𝐿3

12. 𝐸. 𝐼
+

𝜇. 𝐹0. 𝐿

𝐺. 𝑆𝑒𝑞 . 𝑘
 (3.2) 

 

To measure the corresponding displacement of the screw in the simulation, it is necessary to 

keep the same kind of hypothesis as the ones made to get to equation (3.2). Hence, the length 

taken into account will be the length of the screw between the fixed lower plate and the 

bottom of the screw head, because the lower part of the screw which is fixed has by definition 

0 displacement, and the head of the screw has no direct load applied to it since it is above the 

upper plate. Obviously, the diameter used for 𝐼, 𝐺 and 𝑆𝑒𝑞 is the diameter of the cylinder since 

the threads were not represented in this model. The main geometric parameters are 

summarized in the image below: 
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Figure 30 : Geometric parameters for the simple Cobra model in OptiStruct 

 

When this value is computed, we obtain an analytical critical displacement at 1,78𝜇𝑚. 

 

In addition, to measure the correct displacement of the supposed beam, we need to find 

the point on the neutral axis at the end of the beam right before the screw head, in the 

center of this circle section. We also need to solely consider the transverse displacement 

caused by the external load and not by the tightening. 

In the case of 501N tangential load applied on this upper plate, the tangential displacement 

of this point of the screw reaches 1,777𝜇𝑚. 

Therefore, Thomala’s method applied to this kind of bolted assembly seems to properly 

determine loosening according to the previous hypothesis made, contrary to Cobra whose 

results did not correspond to OptiStruct’s results. 
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4.  Wheel model conversion 
 

First of all, in order to optimize the design of the wheel, it was necessary to have it 

modelled on a computer. Fortunately, we had a wheel model available under Abaqus with the 

complete numerical simulation. All the parts were meshed, the loads were set on the rim and 

the hub was embedded. 

However, it was not possible to use the Abaqus solver at Segula due to license issues. It was 

therefore necessary to convert it into OptiStruct from HyperMesh. 

The following parts describe how the conversion was made, and checked so that the new 

wheel model on OptiStruct would be likely to represent what happens with Abaqus. It is also 

worth noting the version used for HyperMesh was version 2017.2, but other simulations were 

run later remotely with 2020 and 2021 versions. 

 

4.1. Automatic conversion 

 
Part of the conversion from Abaqus to OptiStruct can be made automatically by the 

software, using the option “Convert” from the “Tool” menu. This handles the different parts 

along with their mesh and element formulation, some of the contacts between parts, the 

external load and some material properties. 

The remaining conversion of the model had either to be made by hand or to be deleted if it 

was not seen as necessary. 

 

4.2. Material properties conversion 
 

Not all the properties of the materials were converted correctly. Hence, I had to 

convert and recreate the elastoplastic properties for the 4 different materials. The data 

for Hooke’s law were given, and 2 points were available for the plastic part of the stress-

strain curve. This part was not difficult thanks to the information we had and how the 

OptiStruct solver could do it. 

 

4.3. Membranes conversion 
 

The Abaqus model contained membranes for the 2 shell parts in order to easily post-

process the output data. Indeed, usual shell elements have their data calculated at their 

neutral axis, which may be far from the actual border of the part, even with the shell 
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assumptions fulfilled. Hence, these membrane parts are stuck to their respective shell parts, 

but with a shell thickness around 1nm so that the data measured at the edge of the membrane 

is the same as the one on the neutral axis. 

However, OptiStruct could not handle plastic material properties with such membrane 

components. We hence had to remove these parts and be careful during the analysis of the 

post-processed data for the shell components. 

 

4.4. Contacts conversion 
 

The conversion of the contacts was the one HyperMesh could do the least well, and a lot 

had to be revised especially because this is a very critical aspect of the model. 

In order to set up a contact between parts in OptiStruct, I needed to both determine the 

elements and nodes implied in this contact, and define how the contact should be managed. 

When it comes to the elements and nodes of the parts in contact, most of them were visible 

on the Abaqus model, so the conversion could easily be made by hand. It was also useful to 

reduce some of them to the minimal surfaces possible to reduce the computing time. 

Choosing nodes or surface elements for the contact depends on how the contact is defined, 

and which of the contact parts is the slave or the master. 

 

4.4.1. Contact definition 
 

There are several possibilities to define contact between parts. It is possible for the parts 

to either interact upon contact or to remain in relative position like stuck together. 

When the contact is set for the parts to interact upon contact, the contact can be detected 

following different discretization rules. These rules differentiate Node to Surface and Surface 

to Surface contact. 

 

A Node to Surface contact discretization requires defining a master set of surfaces and a slave 

set of nodes, between the parts in contact. The slave nodes are given in the set of nodes, and 

the master surfaces are defined using the nodes of the main surface as well. The slave nodes 

are then projected on the master surfaces, and their smallest distance to the surface creates 

the normal of the surface with the corresponding node. In case no normal projection is 

detected, the nearest segment is considered the distance between the two parts instead if 

the angle with the theoretical normal is lower than 30°. 
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Figure 31 : Node to Surface contact discretization 

 

Once the distance of this normal is smaller than a distance previously specified (search 

distance), the element is considered to be in contact with the master surface. 

 

A Surface to Surface contact discretization requires defining contact element surfaces for both 

master and slave parts. The solver creates sample points on both surfaces to compute the 

distance between them, similarly to Node to Surface contact. The smallest distance between 

different sample points is considered the distance between the parts, and contact is detected 

if this distance is smaller than a distance previously defined. 

 

 

Figure 32 : Surface to Surface contact discretization 

 

Before the contact is determined, OptiStruct also enables the user to adjust the parts 

theoretically in contact to touch at the beginning of the numerical simulation. In other words, 

if 2 part meshes are not exactly touching with a zero distance between them, the solver moves 

the slave part so that the contact is initially detected. This helped get a smoother model 

despite a complex geometry due to the shape of the parts and the mesh. 
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Figure 33 : Adjust parameter for penetration or separation 

 

It was also possible to define the tracking of the contact, choosing between small sliding and 

finite sliding, sliding being allowed thanks to specific contact properties defined in part 4.4.2. 

The small and finite sliding matter depends on the potential length of the slip between parts. 

In our case, deformation was important but the slip was small, hence small sliding was 

necessary for optimal contact management. 

 

All in all, all the contacts were defined as either tie contact or Coulomb contact with Node to 

Surface definition and small sliding, with their respective friction coefficient. However, after 

the first conversion of the model, we noticed an abnormal behaviour of the contact pressure. 

Indeed, the contact pressure was far above zero in a region where no contact was supposed 

to happen during the whole analysis. 
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Figure 34 : Contact pressure on the disk in contact with the hub, with n2s (left) and s2s (right) discretization 

 

In this picture, we see can the contact pressure on the side of the hub in contact with the disk. 

The pressure is given in MPa and can exceed 50MPa for some areas in red. On the left is the 

model where this contact used Node to Surface discretization, and on the right is the new 

model with a Surface to Surface discretization. 

The reason behind this flaw is the way OptiStruct computes contact pressures. Indeed, the 

contact pressures are first determined at the face of each element. However, Hyperview only 

displays the pressure at the nodes such that the average of the nodes gives the surface 

pressure for each element. Hence, the pressure was above 50MPa in some areas without 

contact, because some elements on the side of the disk were in contact with other elements 

of the hub. 

This issue was solved using Surface to Surface contact for this interface. We clearly see the 

value of contact pressure decreased on the side of the disk, as it should. 

After a meticulous check of all the other contact interfaces, no other contact pressure was 

computed out of the contact surfaces, so all the other contacts remained discretized as Node 

to Surface contacts. 
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4.4.2. Contact properties 
 

Once the contact is detected, it is necessary to define how the parts will interact together. 

The different contacts defined in this model either used a Coulomb friction coefficient or tied 

the parts together. 

For the Coulomb contact definition, it was necessary to define the static friction coefficient 

given in the Abaqus model and allow the possible separation of the parts, meaning a search 

distance lower than the computed distance between the master and slave components. The 

dynamic coefficient was equal to the static coefficient by default. The contact properties also 

enable the contact to be determined from the side of the shell components rather than the 

neutral axis. 

For the stick contacts, it was necessary to tie the bottom of the screws to the hub for the 

tightening, which was defined between master surfaces of the hub and slave nodes of the 

screws. 

 

4.5. Model steps conversion 
 

In order to properly run the model, I had to define the different steps, which were not the 

same as in the Abaqus model. Running this model required only 2 steps with OptiStruct when 

3 were necessary for Abaqus. 

The 2 steps included 1 step for the tightening of the screws and 1 step for the load of the rim. 

Both steps were run successively so that the load step kept the effect of the tightening of the 

screws. The analysis was run with non-linear quasi-static type because HyperMesh v2017.2 

did not include non-linear static like the 2021 version. Both steps were ran with this analysis 

type, and other parameters relating to non-linear analysis. 

The first step for the tightening only required redefining the pretension section (in green 

below) of each screw, slightly below the bottom of the cones, as well as the preload. 

 

 

Figure 35 : Pretension section of a screw in green 
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The second step required to add the different loads on the rim, but the nodes to set these 2 

loads were already defined in the Abaqus model for this load case. 

 

4.6. Non-linear static parameters 
 

Running a non-linear analysis with OptiStruct required additional parameters to properly 

reach the converging solution. Non-linear parameters allowed to specify the initial increment 

for the simulation as well as the maximum number of iterations before reducing the 

increment. 

I also added specific output card requests to gather data for the contacts of the parts, to help 

compare with the initial model. 

 

4.7. Mesh optimization for reduced computing time 
 

The mesh was completely converted thanks to the automatic conversion tool. However, 

this was clearly not optimal, and even before comparing the output results, I noticed the 

computing time was way too high for any possible later optimization of the model. Indeed, 

the memory available on my computer was too small, and running the complete model using 

32 processors took around 4-5 days. The main reason is the number of elements to consider, 

increasing as well to a huge number of elements and nodes possibly in contacts. 

The initial model contained about 1,5 million elements, mainly for the disk and the hub which 

were meshed with 3D tetra elements. These two parts are therefore the ones I optimized the 

mesh. The general considerations to follow in order to coarsen a mesh are what I followed to 

make a 3D tetra mesh for both parts. 

o Trim the geometry to change the mesh using relevant parameters for the number of 

elements and the bias along trim lines. This enables the mesh not to be uniform, and 

focus the mesh with smaller elements near the areas of interest. In addition, no big 

defeaturing was necessary here since the shapes were rather simple. 

o Mesh the surfaces with 2D trias elements using the trim lines.  The smallest elements 

need to be focused on the areas with greater stress gradients and highly non-regular 

geometries. 

o Fill the geometry with 3D tetra elements from the trias surface. Moreover, using a 

quadratic formulation for tetra elements instead of linear formulation helps reduce 

the stiffness flaw of this formulation. 

After remeshing these components, the total number of elements was reduced to about 0,5 

million, which highly helped the simulation run in only 2 to 3 hours with the same amount of 

processors. 
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4.8. Models comparison 
 

Before comparing both models after the conversion, it is also necessary to keep in mind 

the initial model made for Abaqus solver was not correlated to any test nor analytical result. 

This is why the priority for this conversion is to have a model which fits the expected reality 

as well rather than only trying to perfectly match the results of the initial model. Yet the initial 

model was not too bad, and getting close results can only be a good sign for the well-

conversion of the model. 

The main results available concerning the initial Abaqus model were regarding displacement, 

slip and contact pressure. These are the 3 parameters we will look at in order to compare with 

our new model. 

Because of confidentiality, the numerical values will not be given, but the colored scales can 

give an overview of the similarities and differences. 

 

4.8.1. Displacements comparison 
 

Since the model is using large displacement analysis, comparing them can give a good 

insight of the possible differences. We will only view here the displacement of the whole 

wheel at the end of step 2 (after the load). 

 

 

Figure 36 : Displacements of the wheel with Abaqus (left) and OptiStruct (right) 
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We notice a small displacement of the screws, due to their tightening. The other relevant parts 

are the 2 red spots at the bottom side of the rim. These parts have higher displacement 

because it is where the load is applied. 

When comparing these models (with this view and others not displayed in this report), we 

notice no important difference whatever the part. When it comes to matching the 

displacements, this conversion is a success and no result seems to be far from reality. 

 

4.8.2. Slips comparison 
 

Comparing the slip of parts between the models only concerns the parts where contact 

takes place. Except for the 4 screws and the middle of the rim, all the other contacts are set 

using the Coulomb definition and with the same dynamic friction coefficient as the static 

coefficient. Hence, slip occurs when the tangential force exceeds the normal force multiplied 

by the local friction coefficient. 

The locations where the slip is 0 either mean the slips cancelled, or that no slip ever occurred 

here. 

Among the different interfaces where slip was potentially present, the ones I will compare in 

this report are between the rim and the disk, and between the disk and the hub, both at the 

end of the load. 

 

Concerning the slip between the rim and the disk, no major difference is present. Only a small 

sliding is present on the inner part of the rim, which might be due to the new mesh of the disk. 

When it comes to the slip values, they seem to be rather similar. 
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Figure 37 : Slip distances on the rim with the disk, with Abaqus (left) and OptiStruct (right) 

 

Now concerning the slip between the disk and the hub, we notice more important differences 

between the models. 

First of all, the slip distance is defined for locations where forces allow relative displacement 

of the parts in contact depending on the Coulomb contact definition. These locations are 

different between the Abaqus and OptiStruct models because of the meshes of the disk and 

the hub which are coarser. Moreover, the Surface to Surface contact characterisation defined 

at the hub and disk interface changed some of the contact location and the contact status of 

these parts together. 
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Figure 38 : Slip distances on the disk with the hub, with Abaqus (left) and OptiStruct (right) 

 

4.8.3. Pressures comparison 
 

We will now compare the different pressure values between the models, looking at both 

sides of the disk. 

Concerning the side of the disk in contact with the hub, the pressures are quite different. 

First of all, the values differ a lot and exceed 400MPa on various locations of the OptiStruct 

model when most locations of this side of the disk are below 300MPa in the Abaqus model. 

However, the OptiStruct model is more representative of reality as explained in part 4.4.1 

thanks to the Surface to Surface contact definition, compared to the Abaqus model that uses 

Nodes to Surface contact. Hence the pressure at the very edges of the disk is lower on the 

OptiStruct model, as it should be since there is no contact there. 
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Figure 39 : Contact pressures between the disk and the hub, with Abaqus (left) and OptiStruct (right) 

 

When it comes to the side of the disk in contact with the rim, the initial Surface to Surface 

contact characterisation was not an issue when post-processing this part of the model, so both 

Abaqus and OptiStruct models have the same contact definition, the only difference being the 

elements of the disk on the second one. We can see here the pressure values are rather close, 

as well as the maximum value not displayed here. Therefore, the pressure values in this disk 

are fairly well represented after the conversion. 

 

 

Figure 40 : Contact pressures between the disk and the rim, with Abaqus (left) and OptiStruct (right) 
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4.8.4. Screw angles and loosening 
 

In order to better compare the results, it was also possible to compare the angle of the 

screws due to the load, as shown in the picture below. The angle is defined as 𝐴𝐵�̂� with A , B 

and C being on the neutral axis of the screw. A is at the bottom of the screw, B is at the same 

height as the hub (y-coordinate) and C is just before the pretension section where the 

tightening is applied. 

 

 

Figure 41 : 𝐴𝐵�̂� angle definition for post processing measurement 

 

These measurements compared between the Abaqus and OptiStruct models show good 

similarities between them. 
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Figure 42 : Screw angles for the 2 models 

 

It is normal the screw n°4 has a higher screw angle because it is the closest to the origin of the 

load. Despite a few differences, the bending seems to be correctly represented after the 

conversion. 

 

 

Figure 43 : Screws numbering on the wheel 

 

Similarly, we can compare the tension in the screws due to the load applied to the wheel. This 

parameter is one of those we have to maximize in order to reduce self-loosening. 
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Figure 44 : Screws loads for the 2 models 

 

The decrease in preload is extremely close, which shows how this parameter can confidently 

be optimized with this OptiStruct model. 

 

4.9. Conversion conclusion 
 

After converting the model from Abaqus to OptiStruct and comparing the different results, 

we concluded this new version was correct to be a good representation of the wheel. Indeed, 

the results of this OptiStruct model match those of the Abaqus one, except for those which 

did not fit reality, which actually got improved. 

Therefore it is the model I will use and optimize in order to reduce loosening thanks to the 

previous study in part 3. 
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5. Wheel design optimization 

5.1. Manual optimization 
 

In order to optimize the design of the wheel, we will try to reduce the loosening of the screws. 

To do so, the parameter we will first study is the tension in the screws. Indeed the higher the 

tension in the screw after the load is applied to the wheel, the lower the loosening, as seen in 

the literature review. Hence, this screw tension is a good indicator. I will specifically look at 

the screw n°4 (at the bottom of the wheel, close to the load) since it is the one most likely to 

loosen according to the study made by Ksentini (8) and Manoharan (9). 

 

The optimization will be conducted in 2 parts: firstly we try to get an idea of the behaviour of 

the tension relating to some parameters, secondly we use this relation to set the wheel with 

the optimal parameters which can maximise the final screws tension. 

 

5.1.1. Linear and quadratic regressions 
 

As a mean to approximate the curve of the screw tension depending on the different 

parameters, the method used here is a linear regression (and quadratic if necessary). By 

running multiple simulations while having different parameters vary, a linear regression 

should help get a linear function of the screw tension. 

By noting ŷ the approximation of the tension based on n multiple parameters (x1, … , x𝑛), the 

screw tension y will be approximated as 

y ≈ ∑ a𝑖x𝑖

𝑛+1

𝑖=1

= ŷ (5.1) 

 

With x𝑛+1 ≡ 1 so that a𝑛+1 can represent the constant term in the linear expression. 

The coefficients (a1, … , a𝑛+1) are taken such that they minimize the error between y and ŷ 

with the 2-norm for the p tests taken into account. 

Each of these tests gives 1 equation for 1 screw tension 𝑦𝑘 and n+1 parameters, x𝑘,𝑖 being the 

parameter x𝑖  used in the 𝑘𝑡ℎ test. These p equations can be written as below: 

𝑦𝑘 ≈ ∑ a𝑖x𝑘,𝑖

𝑛+1

𝑖=1

= ŷ𝑘 𝑤𝑖𝑡ℎ 𝑘 ∈ ⟦1, 𝑝⟧  
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The proper way we chose to determine the coefficients (a1, … , a𝑛+1), was by minimizing the 

error between 𝑦 and ŷ using the least squares model with the 2-norm: 

‖ⅇ‖2
2

= ‖y − ŷ‖2
2

= ∑(𝑦𝑖 − ŷ𝑖)2

𝑝

𝑖=1

 (5.2) 

 

 

In order to find the minimum of this n+1-variable function, the gradient is determined for each 

coefficient: 

𝜕‖𝑒‖2
2

𝜕𝑎𝑖
=  −2 ∑(𝑦𝑘 − 𝑦�̂�)𝑥𝑘,𝑖

𝑝

𝑘=1

    ∀𝑖 ∈ ⟦1, 𝑛⟧ 

Hence, we want to find the proper coefficients (a1, … , a𝑛+1)  which cancel this value for any 

𝑖 𝑖𝑛 ⟦1, 𝑛⟧. 

 

Using a matrix notation, we can have: 

𝑌 = (

𝑦1

⋮
𝑦𝑝

), Ŷ = (

𝑦1̂

⋮
𝑦�̂�

), 𝐴 = (

𝑎1

⋮
𝑎𝑛+1

), 𝑋 = (

𝑥1,1 ⋯ 𝑥1,𝑛+1

⋮ 𝑥𝑖,𝑗 ⋮
𝑥𝑝,1 ⋯ 𝑥𝑝,𝑛+1

) 

 

Hence, the previous equation can transform to: 

𝜕‖𝑒‖2
2

𝜕𝑎𝑖
= 0     ∀𝑖 ∈ ⟦1, 𝑛⟧ ⇔ ∑(𝑦𝑘 − 𝑦�̂�)𝑥𝑘,𝑖

𝑝

𝑘=1

= 0     ∀𝑖 ∈ ⟦1, 𝑛⟧ (5.3) 

 

⇔ 𝑋𝑇(𝑌 − Ŷ) = 0 

⇔ 𝑋𝑇(𝑌 − XA) = 0 

⇔ 𝐴 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (5.4) 

 

Since the matrix 𝑋 has a full rank because we can choose its values, dⅇt(𝑋𝑇𝑋) ≠ 0 and 

(𝑋𝑇𝑋)−1 exists. 

In addition, 𝑋𝑇𝑋 being a symmetric matrix, it is positive-definite, which means 𝐴 ↦

‖𝑌 − 𝑋𝐴‖2
2
 is convex and the solution for A ensuring the equation (5.3) is the only global 

minimum in ℝ𝑛+1. 
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This value given by equation (5.4) can ensure to approximate best most values of the screw 

tension without having to start more simulations. 

Out of this approximation, we can gather interesting information: 

 The Sum of Squares of residuals 𝑆𝑆𝑟𝑒𝑠 = ∑ 𝑒𝑖
2𝑝

𝑖=1  corresponds to how close the 

approximation is from the real values 

 The coefficient of determination 𝑅2 = 1 −
∑ 𝑒𝑖

2𝑝
𝑖=1

∑ (𝑦𝑖−�̅�)²
𝑝
𝑖=1

 corresponds to how 

representative the parameters (x1, … , x𝑛) for the value y, with �̅� the average value of 

the 𝑦𝑘. 

Hence, a R² close to 1 means the parameters we chose to minimize loosening (in our case by 

maximizing the screw tension) are enough, whereas a R² close to 0 means we lack many 

important parameters to characterize it. 

 

This method is an overview of what Excel can do by itself with a series of data. However, we 

know not all processes can be explained properly with a linear expression which we can 

understand with the 𝑆𝑆𝑟𝑒𝑠 and 𝑅2 parameters. Therefore, a quadratic regression can be used 

to better approximate the function of the screw tension with our parameters. 

Since Excel can only do linear regressions for multiple parameters, it is possible to get 

quadratic regressions with no interaction between parameters by adding n other parameters 

(x1², … , x𝑛²) to the same linear regression method. Excel can thus solve this as a linear 

regression with (x1, … , x𝑛, x1
2, … , x𝑛²) parameters and (a1, … a𝑛, a𝑛+1, … , a2𝑛, a2𝑛+1) 

coefficients. 

However, it needs about twice the experiments to accurately predict the value of the screw 

tension. 

 

5.1.2. Optimization with parameters variations 
 

A wheel model simulation takes on average about 2 hours to run using 32 processors. Thus 

it was possible to run up to 27 models with different parameter variations. 

Moreover, since the coefficients of the matrix A are set to primarily fit the points given by the 

matrix X, we will add later some other values to check if the interpolation remains acceptable 

for these other points external to the approximation. 

 

The parameters chosen to be optimized are the results of logical thinking and the study of 

Mehdi ZARWEL (7). 
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Indeed, he studies the impact of some parameters of a single-bolted assembly on loosening. 

Among the parameters he explains have an impact on self-loosening, we will make vary the 

different friction coefficients in the model (only theoretically here since we cannot change the 

materials, but we hope some surface treatments could help us reach these optimal friction 

coefficients). Concerning the geometries, two parts of the rim are modelled using shell 

elements, making it easy to change their thickness. Similarly, we will change the arc of the 

inside of the rim as follows: 

 

Figure 45 : Warped rim arc on the wheel 

The arc of the warped rim can be represented as a conic between 3 points, with a specific 

ratio. 

The initial rim arc with this representation had a ratio around 0.37 and a third point around 

y=-52. 

The different variations of the rim design regarding these parameters had this ratio varying 

between 0.37 and 0.5, and the y coordinate of the third point between -70 and -80. 

 

 

Figure 46 : Conics cross-section with third point y-coordinate and ratio 
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The different parameters can be summarized in the table below: 

 

Figure 47 : Parameters used for the manual optimization 

Thanks to the 27 models run with different parameters, it was possible to extract a linear 

regression and a quadratic regression without interaction. 

I ran 5 more models with different parameters from the ones used in the previous 

interpolation. The average error for the linear model is 0,187% and 0,063% for the quadratic 

interpolation. Moreover, the coefficient of determination R² for the linear model was 0.958 

and it reached 0.995 for the quadratic model. 

However, some coefficients for the quadratic regression reached around 75 000 which 

seemed quite high for such an approximation. Since I did not consider it necessary to use any 

lasso (least absolute shrinkage and selection operator) method, I preferred to keep the linear 

regression which had coefficients more than 10 times lower than the quadratic regression 

ones. Therefore I kept the linear regression to optimize these parameters for the self-

loosening. 

Using this approximation, the final expression of the screw tension can use the following 

coefficients: 

 

 

Figure 48 : Coefficients of the linear regression 

 

In order to choose the parameters which could maximize the screw tension, it is important to 

note that all parameters are taken without interaction in this formula. Moreover, each range 

is taken as a closed interval, therefore since this linear expression is continuous with respect 

to each parameter, the optimal value of a parameter can be given separately by maximizing 

its corresponding term with its coefficient, and the optimal value will either be the upper 

range or the lower range of the interval depending on the sign of the coefficient.  

 

When computing the theoretical maximal screw tension value with these parameters, the 

linear regression gives an approximation at 70745N and we reach 70702N when it comes to 

the numerical simulation with these parameters. We can draw several conclusions from this. 
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Firstly, the theoretical screw tension given by the approximation gives of course the highest 

value among the ones previously run in the 32 tests, but the numerical value is also higher 

than any previously simulated value, which allows me to believe this approximation was 

decent, at least when accouting for these parameters. 

Secondly, the error between this last approximation and the corresponding computed value 

is only 0,06%. This means although this optimal value was out of the range of the previous 27 

tests, our approximation remains correct, which gives us even more confidence in the 

accuracy of our maximal value. 

 

5.1.3. Shape changes 
 

It is also possible to change the shape of some of the volumetric components to minimize 

loosening. However there is no precise trend on how to change this shape. The best rules to 

follow are to try to increase the overall stiffness of the parts as explained in equation (2.4). 

Therefore the following improvements are not optimal but were tested after comparing the 

final screw tension in both cases. 

 

I first changed the design of the rim in contact with the disk. I tried to increase the overall 

stiffness by filling in some holes of this side of the rim. After using Hypermesh to change the 

geometry, the final meshed design is as follows: 

 

 

Figure 49 : Inner rim design improvement 

 

Although the impact of the design on loosening also depends on other parameters, when 

using the parameters from the initial version (the 8 parameters listed for the linear regression 

in part 5.1.2) the screw tension loss decreased by 6% thanks to this new design only, and this 

decrease may slightly vary depending on the values of other parameters. 
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Similarly, I also changed the design of the cone of the screws, as well as its counterpart on the 

rim. I changed the angle of the cone from 60° to 39° to study the influence of this angle. 

 

 

Figure 50 : Measurement of the angle of the cone on the screw 

 

The final result on the rim part does not affect the previous improvement since the cones of 

the screws are on the other side. The final design of these screw holes is the following: 

 

 

Figure 51 : Cones design improvement 

 

I again ran a simulation with the same initial parameters as for the previous shape 

improvement. However the difference in screw tension was so low I concluded this angle had 

no real impact, but I should have tried more angles to carefully draw such a deduction if I had 

more time. Also the surface in contact between the screw and the rim was very similar in both 

designs, but increasing the contact surface between these parts would be very likely to reduce 

loosening. Hence I kept the initial cone version which did not require changing the cones. 

 

Finally, the manually optimized wheel design considers the four friction coefficients and the 

two thicknesses, as well as the optimized warped rim arc and the new inner rim design. 

The loss in screw tension for the 4th screw (dimensioning one) is lower than that of the initial 

wheel design by 21%. 
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5.2. Automatic optimization 
 

OptiStruct software also enables the user to optimize a design automatically. It is therefore 

possible to minimize different parameters like the volume of the mass while keeping other 

parameters above or below a threshold value. Hence optimizing this wheel design using 

OptiStruct’s automatic optimization tool could have been made by minimizing the loss in 

screw load (or possibly its lateral displacement considering Thomala’s method) while keeping 

the shape inside a maximum volume envelope. However, my technical tutor and I faced 

numerous problems: 

 OptiStruct optimization tool could not support non-linear large displacements 

analysis, so the only optimization possible would be with the hypothesis of small 

displacements, which could either give a good insight of the optimization, or 

complete non sense 

 The current model contained 2 different loadsteps, i.e. the complete run of the 

model was made 1 step at a time, and it was not possible to specify the 

optimization to be made for the 2nd step only 

 Finally the best parameter to optimize was the final screw tension, and the closest 

parameter we could find to optimize by the software was external forces, and not 

an internal force such as our screw load 

In conclusion, I had to stick to the manual optimization to improve our model, although I know 

it might not be optimal, but the previous design improvements already led to some decent 

results. 

 

5.3. Loosening prediction 
 

In order to fully validate our optimized wheel model, we will now assess whether the 

screws can loosen due to the given load case. The loosening prediction will use Thomala’s 

method confirmed by the localised slippage theory with equation (3.2). 

The useful parameters of the screw are summarized below: 

 

 

Figure 52 : Screw parameters to predict loosening of the wheel 
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The shear modulus was obtained with a Poisson’s ratio of 0,3 and the second moment of area 

was computed with the diameter of the screw. 

In comparison, we measure the actual displacement of the screw. It is important for the 

measurement to only consider the lateral displacement due to the loading, and no 

displacement caused by the first tightening step. 

Therefore, the lateral displacement measured with HyperView is 0,075mm. 

According to Thomala’s method, the screw should not undergo spontaneous loosening with 

this load case. 
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6. Conclusion 
 

The initial aim of this master thesis was to change the design of a given wheel model in 

order to minimize its loosening, and to better understand the spontaneous loosening process 

of screwed assemblies. The literature review has provided numerous examples and many 

details on the loosening aspects of a bolted assembly, as well as numerical, analytical and 

experimental studies on the subjects. 

Firstly, it was necessary to properly define loosening; what I considered loosening, and how I 

could characterise and measure it. Indeed, loosening could be measured by the loss in screw 

preload as well as its rotation relative to the nut for a bolt, or to the upper part of the assembly 

for a screw. However, since loosening considers matting, strain hardening and even creep at 

the same time, it was more appropriate to measure it with screw tension loss rather than 

mere angle rotation to also take them into account. Therefore, the parameter to minimize in 

our case was the loss in screw tension after applying the load on the wheel. 

Secondly, I developed Cobra and Thomala’s methods to predict loosening on a general 

screwed assembly. The method with Cobra only considered analytical relations, with 

loosening occurrence depending on the external forces applied to the bolt compared to its 

preload. However, the various simulations ran with OptiStruct did not make any noticeable 

difference between the load cases where the assembly should witness spontaneous loosening 

and the others, thus the comparison with Cobra gave no usable result, since it was not possible 

to predict loosening with that method. When it comes to Thomala’s method, this one 

compares the displacement of the screw head with the theoretical deflection of a beam with 

the same external forces. I used it on the previous assemblies, and the theoretical critical 

displacement was reached for a specific tangential load which corresponded to when half the 

screw head reached slipping with the upper plate. This half area of slip is also characterised as 

the transition between local slip and complete slip, which is the threshold value before 

reaching loosening, according to experimental and theoretical studies on local slippage. Hence 

this critical displacement corresponds to the start of loosening. I therefore considered 

Thomala’s method accurate to determine loosening on this kind of screwed assembly. 

Thirdly, since I know what to optimize, it is necessary to get a usable wheel model with 

OptiStruct, because the current model was only available with Abaqus. After completing the 

conversion, I followed with many comparisons with the post-treatment of the models to be 

sure both had very similar behaviours. Although it is hard to give a numerical value on the 

overall similarities between the models, the final results were close enough to consider the 

OptiStruct model properly converted. 

Lastly, without considering Thomala’s method first, minimizing loosening meant minimizing 

screw tension loss. Therefore the change in the wheel design had to minimize this parameter 

to reduce spontaneous loosening. I ran 27 wheel models with 8 different parameters in order 

to get an approximation of their influence on loosening. This provided me with a linear 

regression of the final screw tension, which led me to the optimal values of these 8 
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parameters. The overall friction between the parts has to be high, as well as the stiffness of 

the components, which meant a higher thickness for shell components. Finally, it is good to 

increase the stiffness of a component by changing its shape, but this is too shape-dependent 

to draw general conclusions on how to change the topology of the wheel to increase its 

stiffness, and numerical simulations can generally help by comparing shape designs one by 

one. I also manually changed other geometries of the design like the inner rim, since 

optimizing the topology automatically with OptiStruct was not possible. All of this taken into 

account, the optimal model I got for the wheel had a screw tension loss lowered by 21%. This 

optimized wheel model also seems to resist spontaneous loosening when applying Thomala’s 

method.   
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7. Further possible research and improvements 
 

The previous conclusion summarized the work done during the 5 months of my 

internship at Segula Technologies. I will explain here the possible work to further continue in 

order to go deeper into the design optimization of this wheel model. 

Firstly, since this is an optimization, there is still room for improvement. When it comes to 

the design of the wheel and its shape, a lot of work could be done by a software like 

OptiStruct. Unfortunately, it was not possible during my internship, but it could potentially 

solve the whole topology optimization matter by itself if it was possible, although the limits 

of the shapes could be hard to set up. 

Secondly, it can be interesting to accurately determine whether the screws will loosen due 

to the external load. The optimization has to minimize the loss in screw tension for the 

dimensioning screw. Therefore, this case has the lowest probability for any screw to loosen 

due to this load. It is also important to note that despite the wheel rotating along its axis 

when driving, this case where one screw is at the lowest point near the external force is 

where the screw is most likely to loosen, thus other cases will have better results. I 

unfortunately did not have time to improve a method similar to Thomala’s but for screws 

with an angle for the cone and the upper plate, hence possible adjustments for this conical 

shape might be necessary to precisely assess on the possible loosening of a screw. 

Fortunately, these small adjustments could be neglected here since the critical displacement 

far exceeds the screw head deflection.  

Lastly, predicting loosening by looking at the slip and stick regions only considers the area 

where slip could occur, which could be more representative of the phenomenon for some 

cases. In comparison, since a conical screw and a conical upper plate might get the screw 

head in contact with the upper plate before reaching the theoretical critical displacement, 

an equivalent of Thomala’s method might not be accurate for any conical screw head 

because of this screw and plate penetration not being considered in the beams theories. 

Again, the screw deflection in our case is small enough to prevent any of this to happen. 

When it comes to the optimized design of the wheel, this model is one of the theoretically 

best designs I could achieve with the different parameters I studied, but this still has to be 

proven experimentally. Moreover, every change in the model is not as easy to change in 

reality. Indeed, the friction coefficients could be changed to the optimal value without 

changing the materials by using surface treatments or other methods, but this is not sure 

and I did not study this part. Concerning all the shape designs, adding volume on the inner 

rim also adds weight which can be an issue. Concerning the shell parts and also this inner 

rim, their new designs might have them harder to produce, and some of the previous design 

changes were probably a compromise between non-loosening and several other 

characteristics I did not take into account like the ease of production, the weight or many 

others.  
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