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Introduction 1

Introduction
Efficient handling of vast and repetitive datasets holds significant importance in numerous re-

search fields, including biology, physics and computer science. Examples of large repetitive datasets
include software repositories such as GitHub, versioned documents such as Wikipedia, and genomic
databases such as the datasets of the 100,000 Genomes Project [1]. Especially in the field of bioin-
formatics, it is crucial not only to compress data but also to perform complex operations on them,
such as to search them or provide random access.

To efficiently store repetitive data, a wide class of methods called dictionary compressors has
been developed. To achieve more efficient compression, these methods employ the repeated sections
in the input. They enable not only to reduce storage requirements, but also provide theoretical and
practical tools to quantify the underlying complexity of the data. However, these measures tend to
be specific to the compression process and do not provide a universal view of the input complexity.
Additionally, the effectiveness of the methods, which often involve multiple algorithms, is hard to
compare.

A recently introduced notion of string attractors represents a new approach to this problem-
atics. The concept was initially presented by Nicola Prezza [2] and further studied by Prezza and
Dominik Kempa [3]. They demonstrated that string attractors, despite being relatively simple com-
binatorial objects, are naturally induced by dictionary compressors. They represent a way to unify
the compressors’ measures, thus offering a new approach to compare compression methods and pro-
viding a more comprehensive understanding of data complexity. The compressors can be viewed
as approximation algorithms to identify an attractor of minimum size. Kempa and Prezza also
showed that the problem of finding the minimum size attractor is NP-complete, which means that
the computational effort to obtain it grows exponentially with the input size, although verifying
the correct solution can be done efficiently.

Subsequently, properties of string attractors and optimization of obtaining them have been
studied. These include for instance the relation to the sensitivity of a string compression algo-
rithm [4], and obtaining a minimal attractor by reduction to MAX-SAT formulations [5]. A mod-
ification to a 𝑘-attractor has been introduced and studied [6, 7], as well as a circular variant of
attractors [8].

In the field of combinatorics on words, string attractors can also be examined in the context
of infinite words. This essentially means study of finite factors or prefixes of any length, which
was formalized in terms of string attractor profile function [9]. Considerable attention has been
dedicated to studying attractors of specific classes of infinite words that follow certain structural
regulations, which makes the problem more tractable. The attractors of minimum size for factors
and prefixes of various sequences have been determined so far. These include standard Sturmian
sequences [8, 10], the Tribonacci sequence [11], episturmian sequences [10], the Thue-Morse se-
quence [12, 11, 13], the period-doubling sequence [11], and the powers of two sequence [11, 14].
More recent works include string attractors of fixed points of 𝑘-bonacci-like morphisms [15].

In this work, we study string attractors in the context of previously unstudied sequences
obtained by pseudopalindromic closures. First, we focus on pseudostandard sequences, which are
obtained using antipalindromic closures. Second, we study the complementary-symmetric Rote
sequences generated by a special combination of pseudopalindromic closures. They form a subclass
in the family of generalized pseudostandard sequences, which also includes for example the well-
known Thue-Morse sequence. Building upon the known form of attractors of standard Sturmian
and episturmian sequences, we determine the form of the attractors of pseudopalindromic prefixes
of these infinite words and formally prove their minimality. To reach our results, we implement
several algorithms, which are included.
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1 String attractors and compression methods
1.1 Preliminaries

An alphabet 𝒜 is a finite non-empty set of symbols called letters. A word over 𝒜 of length
𝑛 is a string 𝑢 = 𝑢0𝑢1 · · · 𝑢𝑛−1, where 𝑢𝑖 ∈ 𝒜 for all 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}. We let |𝑢| denote the
length of 𝑢. The concatenation of two words 𝑢 = 𝑢0𝑢1 · · · 𝑢𝑛−1 and 𝑣 = 𝑣1𝑣2 · · · 𝑣𝑚−1 is the word
𝑢𝑣 = 𝑢0 · · · 𝑢𝑛−1𝑣0 · · · 𝑣𝑚−1. The neutral element for concatenation of words is the empty word 𝜀
and its length is set to |𝜀| := 0. The set of all finite words over 𝒜 together with the operation of
concatenation forms a monoid, denoted 𝒜*, and we write 𝒜+ = 𝒜*∖{𝜀}. If 𝑢 = 𝑥𝑦𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝒜*,
then 𝑥 is a prefix of 𝑢, 𝑧 is a suffix of 𝑢 and 𝑦 is a factor of 𝑢.

A sequence, also called an infinite word, over 𝒜 is an infinite string u = 𝑢0𝑢1𝑢2 · · · , where
𝑢𝑖 ∈ 𝒜 for all 𝑖 ∈ N. We always denote sequences by bold letters. A sequence u is eventually periodic
if u = 𝑣𝑤𝑤𝑤 · · · := 𝑣(𝑤)𝜔 for some 𝑣 ∈ 𝒜* and 𝑤 ∈ 𝒜+. If u is not eventually periodic, then it
is aperiodic. A factor of u = 𝑢0𝑢1𝑢2 · · · is a word 𝑦 such that 𝑦 = 𝑢𝑖𝑢𝑖+1𝑢𝑖+2 · · · 𝑢𝑗−1 for some
𝑖, 𝑗 ∈ N, 𝑖 ≤ 𝑗. If 𝑖 = 𝑗, then 𝑦 = 𝜀. In the context of string attractors, the set {𝑖, 𝑖 + 1, . . . , 𝑗 − 1}
is called an occurrence of the factor 𝑦 in u. (Usually, only the number 𝑖 is called an occurrence of
𝑦 in u.) If 𝑖 = 0, the factor 𝑦 is a prefix of u.

1.2 String attractors and their basic properties
Definition 1.1. A string attractor (or attractor for short) of a word 𝑤 = 𝑤0𝑤1 · · · 𝑤𝑛−1, where
𝑤𝑖 ∈ 𝒜 for all 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}, is a set Γ ⊂ {0, 1, . . . , 𝑛 − 1} such that every factor of 𝑤 has an
occurrence containing at least one element of Γ.

Example 1.2. Consider the word 𝑤 = 1324321324. One example of its attractor is the following
set Γ (see the corresponding positions in the word underlined):

Γ = {2, 3, 4, 6, 9} ↔ 𝑤 = 1324321324 .

Let us verify that Γ is a valid attractor of 𝑤. From Definition 1.1, all substrings of 𝑤 must have
an occurrence crossing some position from the attractor. Verifying the substrings that contain any
of the underlined positions is trivial, as they already cross some position from Γ. The remaining
substrings in between the underlined positions (the substrings are 1, 3, 2, 13, and 32) must have
another occurrence in the word that crosses some of the positions from Γ. We can observe that
this is satisfied.
Another attractor of 𝑤 is Γ*:

Γ* = {2, 3, 4, 6} ↔ 𝑤 = 1324321324 .

The * symbol denotes an attractor of the smallest possible size. We will denote this minimum size
as 𝛾* := |Γ*|. The size of the above attractor is apparently minimal since it is equal to the number
of distinct letters in the word.

Minimal attractors are not uniquely determined; a single string may have multiple as demon-
strated by the following example of another minimal attractor

Γ* = {0, 4, 5, 9} ↔ 𝑤 = 1324321324 .

From Definition 1.1 and Example 1.2, we can observe several fundamental properties of at-
tractors. The set {0, 1, . . . , 𝑛 − 1} always forms an attractor. All attractors must satisfy |Γ| ≥ |𝒜|
(assuming all letters appear in the word). Any superset of an attractor is an attractor, too.

1.3 Dictionary compression
Dictionary compressors are algorithms used to losslessly compress highly repetitive data. These

methods exploit the string repetitiveness and are able to achieve better results than other methods,
e.g. the widely used entropy compression. There are several groups of these algorithms, connected
by the underlying idea of referencing the repeated substrings to a dictionary of strings. Most of
these methods induce a measure of complexity of the compressed string, which is determined by
the individual method’s effect on the input. Below we will describe the underlying algorithms of
two widely used compressors – gzip and bzip2.
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Gzip is based on the LZ77 algorithm, which we will describe in detail below. This algorithm
belongs to a broader family of Lempel-Ziv (LZ) compressors [16], which employ a parsing technique
to divide the input into phrases. These phrases are then encoded using pointers to previously
encountered occurrences of the same phrases. The measure of the input repetitiveness is represented
by the number of phrases into which it is parsed.

Bzip2 uses the Burrows-Wheeler transform [17], which is a reversible textual transform. It is
based on sorting the rows of a matrix of the string’s circular permutations, and compressing the
last column of this matrix using some other method, e.g. run-length encoding. Its measure is the
number of equal-letter runs in the last column of the sorted matrix.

There are many other groups of dictionary compressors. One family based on context-free
grammar includes straight-line programs (SLP), run-length encoded SLP (RLSLP), and collage
systems [18], the latter being the richest generalization of the previous. The measure here is denoted
by the size of a generic collage system. Among other known compressors we can include the
compact directed acyclic word graph (CDAWG) [19]. It is based on building a compact automaton
for recognizing the string’s suffixes, and its measure is the number of its edges.

All of these methods can be viewed as an approximation algorithms of a minimal attractor
of the input. Attractors have a close relation to their measures of complexity, namely using the
minimum size 𝛾*, and Kempa and Prezza proved exact relations between them [3]. On top of that,
attractors and their way to represent a complexity measure are not dependent on any particu-
lar compression method and are therefore universal. Below we will describe in greater detail the
connection between string attractors and LZ and BWT methods.

Attractors and the methods based on Lempel-Ziv compression

Lempel-Ziv methods represent one of the largest groups of dictionary compressors. Their basic
principle is to replace repeated factors with pointers to previously seen instances of those factors.
There are many variants of the algorithm that were developed throughout the years – the most
used ones include LZ77, LZ78, and LZW [20]. In the example below, we will work with the LZ77
variant, however, in the context of string attractors, the differences between the variants are not
of much relevance.

The algorithm implements greedy, left-to-right parsing of the given word into the longest
previous factors. After this partition, the word is encoded by linking these phrases to their previous
occurrences. The estimate of the word’s repetitiveness is expressed by the measure 𝑧, which denotes
the number of phrases into which the word is parsed.

Example 1.3. Let us have a finite word 𝑤 = 0101101101 to be compressed by the LZ77 algorithm.
We will use the LZ77 variant where the overlaps between phrases are allowed. The word will be
parsed into phrases as

0 1 2 3 4 5 6 7 8 9
LZ77(𝑤): 0 1 0 1 1 0 1 1 0 1

.

The two-letter factor 01 has an occurrence in the word’s prefix, and the factor 101101 has an
occurrence starting at the position 1. After this parsing, we can encode the word as a set of pairs
(length, letter/position):

LZ77(𝑤) = (1, ′0′), (1, ′1′), (2, 0), (6, 1) .

In this case, the size of the Lempel-Ziv parse (i.e. the number of factors) is 4, therefore the measure
𝑧 = 4.

String attractors are closely connected to the final parsing. Firstly, we can observe that the
first positions in the individual phrases always form an attractor of the given word (in Example
1.3 this would mean 0101101101). This is due to the fact that for any factor there either must
exist its previous occurrence of this phrase, or it is the first occurrence and then its position is in
the attractor. However, it is clearly not minimal – consider 0101101101 in Example 1.3. Overall,
the size 𝛾* of the smallest string attractor gives us both lower and upper bounds for the measure
𝑧 as summarized in the following theorems. Here the number 𝑛 denotes the length of the string.

Theorem 1.4 (Lemma 3.7 in [3]). Let 𝑧 be the number of factors of the Lempel-Ziv factorization
of a string 𝑤. Then, 𝑤 has an attractor of size 𝑧.
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Theorem 1.5 (Corollary 3.15 in [3]). The following bound holds between the size 𝑧 of the Lempel-
Ziv parse and the size 𝛾* of the minimal string attractor: 𝑧 ∈ 𝒪(𝛾* log2(𝑛/𝛾*)).

Attractors and the methods based on the Burrows-Wheeler transform

The Burrows-Wheeler transform is an invertible string transform that rearranges text into
runs of identical letters. The transformation itself is not a compression method, but used on highly
repetitive data, it creates much more compressible content for e.g. run-length encoding (RLBWT).
Importantly, in the context of data compression and bioinformatics, BWT can be further equipped
with additional data tables to form a highly efficient fulltext index called the FM-index [21].

The computation of the BWT of a given string starts by appending the $ character to the
string to ensure reversibility, and creating a matrix containing all the string’s circular rotations as
the rows. The rows are then lexicographically sorted, after which the last column of the matrix
contains the resulting BWT-transformed string. Note that in practice more memory- and time-
efficient algorithms are used.

The obtained transformed string can be then compressed using relatively simple methods, such
as the run-length encoding (RLE), as in the example below. The measure 𝑟 of the words complexity
is the number of runs of equal letters in the transformed string. We note that for simplicity, many
theoretical papers about string attractors that focus primarily on their asymptotic properties use
a slightly different, non-reversible, variant of the BWT, which results also in slightly different values
of 𝑟.

Example 1.6. Let us again take the word 𝑤 = 0101101101, this time to be compressed by
RLBWT. Firstly, we append the sign $, then we create the word’s rotation matrix and sort it.

0 1 0 1 1 0 1 1 0 1 $
1 0 1 1 0 1 1 0 1 $ 0
0 1 1 0 1 1 0 1 $ 0 1
1 1 0 1 1 0 1 $ 0 1 0
1 0 1 1 0 1 $ 0 1 0 1
0 1 1 0 1 $ 0 1 0 1 1
1 1 0 1 $ 0 1 0 1 1 0
1 0 1 $ 0 1 0 1 1 0 1
0 1 $ 0 1 0 1 1 0 1 1
1 $ 0 1 0 1 1 0 1 1 0
$ 0 1 0 1 1 0 1 1 0 1

Matrix with word’s rotations as rows

$ 0 1 0 1 1 0 1 1 0 1
0 1 $ 0 1 0 1 1 0 1 1
0 1 0 1 1 0 1 1 0 1 $
0 1 1 0 1 $ 0 1 0 1 1
0 1 1 0 1 1 0 1 $ 0 1
1 $ 0 1 0 1 1 0 1 1 0
1 0 1 $ 0 1 0 1 1 0 1
1 0 1 1 0 1 $ 0 1 0 1
1 0 1 1 0 1 1 0 1 $ 0
1 1 0 1 $ 0 1 0 1 1 0
1 1 0 1 1 0 1 $ 0 1 0

Lexicographically sorted rows

The last column of the sorted matrix, BWT(𝑤) = 11$11011000 is then encoded by the run-length
algorithm and we obtain RLBWT(𝑤) = (2, 1), (1, $), (2, 1), (1, 0), (2, 1), (3, 0). In this case, the
number of equal-letter runs is 6, therefore 𝑟 = 6.

Similarly to the LZ example, we can again observe the attractors’ trail in the encoded word –
the first positions in the runs always form an attractor. Thanks to the fact that the BWT preserves
the relative order of equal letters, we are able to trace the letters in the first positions in BWT(𝑤)
back in the original word. In this example, we underlined them in BWT(𝑤) = 11$11011000.
Indexing from 0 in the original word 𝑤 = 0101101101, we can determine that the underlined
positions in BWT(𝑤) are reflected to positions 1, 4, 0, 7 and 2, respectively, i.e., 𝑤 = 0101101101.
It can be easily recognized that the underlined positions form an attractor of 𝑤. However, we can
observe that it is not minimal.

In general, the size of a minimal attractor represents the lower bound for the measure 𝑟.

Theorem 1.7 (Theorem 3.9 in [3]). Let 𝑟 be the number of equal-letter runs in the Burrows-
Wheeler transform of 𝑤. Then, 𝑤 has an attractor of size 𝑟.

Attractors and comparison of the methods

Besides providing upper and lower bounds, string attractors are also useful for comparing indi-
vidual dictionary compressors to each other. For illustration, we give an example of the relationship
between LZ measure 𝑧 and BWT measure 𝑟.



String attractors and compression methods 5

Theorem 1.8 (Corollary 3.16 in [3]). The following bound holds between the number 𝑟 of equal-
letter runs in the BWT, the size 𝑧 of the Lempel-Ziv parse, and the length 𝑛 of the input:
𝑧 ∈ 𝒪(𝑟 log2 𝑛

𝑟 ).

In the next chapter, we will study string attractors in the context of several classes of sequences
studied in combinatorics on words.
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2 Episturmian, pseudostandard, and Rote sequences
In this section, we will study three families of sequences and methods to generate them. We

will describe attractors of their prefixes and formally prove their minimality.

2.1 Palindromic closures and episturmian sequences
The language ℒ(u) of a sequence u is the set of all its factors. A factor 𝑤 of u is left special

if 𝑎𝑤, 𝑏𝑤 are in ℒ(u) for at least two distinct letters 𝑎, 𝑏 ∈ 𝒜. The factor complexity of a sequence
u is the mapping 𝒞u : N → N defined by 𝒞u(𝑛) = #{𝑢 ∈ ℒ(u) : |𝑢| = 𝑛}. The factor complexity of
an aperiodic sequence u satisfies 𝒞u(𝑛) ≥ 𝑛 + 1 for all 𝑛 ∈ N [22].

The aperiodic sequences with the lowest possible factor complexity 𝒞u(𝑛) = 𝑛 + 1 are called
Sturmian sequences. Sturmian sequence is standard if all left special factors are prefixes.

Clearly, all Sturmian sequences are defined over a binary alphabet, e.g., {0, 1}. It is a well-
known fact that for each Sturmian sequence there exists a unique standard Sturmian sequence
with the same language [23]. Since we are interested in the language of Sturmian sequences, it
suffices to consider only standard Sturmian sequences. They can be generated using a method
called palindromic closures.

Definition 2.1. The map 𝑅 : 𝒜* → 𝒜*, called reversal, associates with each word its mirror
image, i.e., 𝑅(𝑢0𝑢1 · · · 𝑢𝑛−1) = 𝑢𝑛−1 · · · 𝑢1𝑢0, where 𝑢𝑖 ∈ 𝒜 for each 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}. A word
𝑢 is a palindrome if 𝑢 = 𝑅(𝑢).

Definition 2.2. Let 𝑢 be a word, then by palindromic closure (𝑢)𝑅 we denote the shortest palin-
drome having 𝑢 as prefix.

Example 2.3. Let 𝑢 = 00, then (𝑢)𝑅 = 𝑢 = 00 and (𝑢1)𝑅 = (001)𝑅 = 00100. For 𝑣 = 110110,
we have (𝑣0)𝑅 = 110110011011 and (𝑣1)𝑅 = 11011011.

Definition 2.4. Let Δ = 𝛿1𝛿2𝛿3 · · · with 𝛿𝑖 ∈ 𝒜 and define 𝑢0 = 𝜀 and 𝑢𝑛+1 = (𝑢𝑛𝛿𝑛+1)𝑅 for all
𝑛 ∈ N. Then we denote u(Δ) = lim𝑛→∞ 𝑢𝑛, i.e., u(Δ) is a unique sequence having 𝑢𝑛 as prefix for
each 𝑛 ∈ N, and we call Δ the directive sequence of u(Δ).

Theorem 2.5 (Theorem 5 in [10] restricted to Sturmian sequences). Let u be a standard Sturmian
sequence over 𝒜 = {0, 1}. Then u = u(Δ) for a unique sequence Δ = 𝛿1𝛿2 · · · with 𝛿𝑖 ∈ 𝒜.

Generation of Sturmian sequences by palindromic closures gives a direct view on minimal
attractors of their prefixes. The proof from [10] restricted to Sturmian sequences is recalled here as
a similar technique will be applied later for describing the attractors of pseudostandard sequences.

Theorem 2.6 (Theorem 7 in [10] restricted to Sturmian sequences). Let u be a standard Sturmian
sequence u = u(Δ). Then each 𝑢𝑛 containing two letters (both 0 and 1) has an attractor of size 2
in the form Γ = {𝑚0, 𝑚1}, where 𝑚𝑎 = max{|𝑝| : 𝑝 is a palindrome and 𝑝𝑎 is a prefix of u}.

Example 2.7. Let us have a directive sequence Δ = 01001 · · · . Then the generation of prefixes
unfolds as follows (attractors are underlined in accordance with Theorem 2.6):

𝑢1 = 0

𝑢2 = 010

𝑢3 = 010010

𝑢4 = 010010010

𝑢5 = 01001001010010010

Proof. Let us recall that we index the positions in words from 0, i.e., 𝑢 = 𝑢0𝑢1 · · · 𝑢|𝑢|−1. We will
make the proof by mathematical induction on 𝑛. Let 𝑢𝑘 be the first word to contain both letters
and without loss of generality, let the directive sequence be in the form Δ = 0𝑘−11 · · · , where
𝑘 > 1.

• For 𝑛 = 𝑘, the word is in the form 𝑢𝑘 = 0𝑘−110𝑘−1, the longest palindromic prefix followed
by 0 is 𝑚0 = 0𝑘−2 and the longest palindromic prefix followed by 1 is 𝑚1 = 0𝑘−1. Indeed,
the set {𝑘 − 2, 𝑘 − 3} forms an attractor in 𝑢𝑘 = 0𝑘−2010𝑘−1.
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• For 𝑛 > 𝑘, let us assume that the next letter in the directive sequence is 0 (if we chose
1, the proof would be analogous). The word is then 𝑢𝑛 = (𝑢𝑛−10)𝑅 = 𝑤0𝑚00𝑅(𝑤) where
𝑢𝑛−1 = 𝑤0𝑚0 = 𝑚00𝑅(𝑤) and 𝑚0 is the longest palindromic prefix followed by 0 in 𝑢𝑛−1.
From this we can observe that the two occurrences of 𝑢𝑛−1 overlap in the word 𝑢𝑛. The case
𝑢𝑛 = 𝑢𝑛−10𝑢𝑛−1 cannot occur as 𝑢𝑛−1 ̸= 111 · · · 1.
We want to show that the underlined positions in 𝑢𝑛 = 𝑤0𝑚00𝑅(𝑤) = 𝑚11 · · · is an attrac-
tor. Note that 𝑚1 remains the same for both 𝑢𝑛 and 𝑢𝑛−1 because in this step we added 0.
Let us take any factor in 𝑢𝑛 = 𝑤0𝑚00𝑅(𝑤) = 𝑚11 · · · . If it crosses the position of the
underlined zero, the proof is finished. If it does not, then it must be wholly contained in 𝑢𝑛−1
and cross the attractor position of 1. This is due to the fact that 𝑢𝑛−1 forms both the prefix
and suffix of 𝑢𝑛. Using the induction assumption, the positions of the 0 that is now in the
suffix form of 𝑢𝑛−1 and the 1 that is found in the prefix form of 𝑢𝑛−1 formed the attractor
for 𝑢𝑛−1, therefore any attractor contained in 𝑢𝑛−1 crosses at least one of them.

A similar statement holds not only for palindromic prefixes of standard Sturmian sequences,
but also for any factors.

Theorem 2.8 (Theorem 10 in [10] restricted to Sturmian sequences). Each factor of a Sturmian
sequence has an attractor of size 2.

Sturmian sequences form a subclass of another family of strings with low complexity, called
episturmian sequences. In fact, Sturmian sequences correspond to aperiodic binary episturmian
sequences. Again, we can generate these infinite words using palindromic closures and obtain
a minimal attractor of their prefixes, this time using any finite alphabet.

Definition 2.9 (Definition 4 in [10]). Let u be a sequence whose language is closed under reversal
and such that for each length 𝑛 it contains at most one left special factor. Then u is called an
episturmian sequence. An episturmian sequence is standard if all left special factors are prefixes.

In the study of attractors, we are interested in the language of the infinite words. Similarly to
Sturmian sequences, for each episturmian sequence there exists a standard episturmian sequence
with the same language. Therefore, we will consider only standard episturmian sequences.

Theorem 2.10 (Theorem 5 in [10]). Let u be a standard episturmian sequence over 𝒜. Then
u = u(Δ) for a unique sequence Δ = 𝛿1𝛿2 · · · with 𝛿𝑖 ∈ 𝒜.

Theorem 2.11 (Theorem 7 in [10]). Let 𝑢 be a non-empty palindromic prefix of a standard
episturmian sequence. For every letter 𝑎 occurring in 𝑢, denote

𝑚𝑎 = max{|𝑝| : 𝑝 is a palindrome and 𝑝𝑎 is a prefix of 𝑢}.

Then Γ = {𝑚𝑎 : 𝑎 occurs in 𝑢} is an attractor of 𝑢 and its size is minimal.

Theorem 2.12 (Theorem 10 in [10]). Let u be an episturmian sequence. Each factor of u con-
taining 𝑑 distinct letters has an attractor of size 𝑑.

The algorithm to generate episturmian words and their attractors in accordance with Theo-
rem 2.11 is described as Algorithm 1.

2.2 Antipalindromic closures and pseudostandard sequences
Another studied group of infinite words are pseudostandard sequences, which are generated

using antipalindromic closures. Due to the definition of antipalindromes, we are now restricted to
binary alphabet.

Definition 2.13. The map 𝐸 : {0, 1}* → {0, 1}*, called exchange antimorphism, is a composition
of reversal and letter exchange, i.e., 𝐸(𝑤0𝑤1 · · · 𝑤𝑛−1) = 𝑤𝑛−1 · · · 𝑤1 𝑤0, where 𝑤𝑖 ∈ {0, 1} and
𝑤𝑖 = 1 − 𝑤𝑖 for each 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}. A word 𝑤 is an antipalindrome if 𝑤 = 𝐸(𝑤).

Definition 2.14. Let 𝑤 be a word, then by antipalindromic closure (𝑤)𝐸 we denote the shortest
antipalindrome having 𝑤 as prefix.
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Example 2.15. Let 𝑢 = 01, then (𝑢)𝐸 = 𝑢 = 01 and (𝑢1)𝐸 = (011)𝐸 = 011001. For 𝑣 = 1101,
we have (𝑣0)𝐸 = 110100 and (𝑣1)𝐸 = 1101100100.

Definition 2.16. Let Δ = 𝛿1𝛿2 . . ., where 𝛿𝑖 ∈ {0, 1} for all 𝑖 ∈ N. The infinite word w(Δ, 𝐸𝜔),
called pseudostandard sequence, is the sequence having prefixes 𝑤𝑛 obtained from the recurrence
relation 𝑤𝑛+1 = (𝑤𝑛𝛿𝑛+1)𝐸 , 𝑤0 = 𝜀. The sequence Δ is called the directive sequence of the infinite
word w(Δ, 𝐸𝜔).

Theorem 2.17. Let 𝑤𝑛 be a non-empty antipalindromic prefix of w(Δ, 𝐸𝜔), where the prefix of
Δ of length 𝑛 contains at least two 0’s and one 1, and Δ = 0 · · · . Then, when indexing from 0,
a minimum size attractor is equal to Γ = {𝑚0, 𝑚1, |𝑤𝑛| − 𝑚1 − 1},
where 𝑚𝑎 = max{|𝑞| : 𝑞 is an antipalindrome and 𝑞𝑎 is a prefix of 𝑤𝑛}.

Remark 2.18. For Δ starting with 1 the statement and the proof are analogous.

Example 2.19. Let us have a directive sequence Δ = 01001 · · · . Then the generation of the
pseudostandard sequence unfolds as follows (attractors are underlined):

𝑤0 = 𝜀

𝑤1 = 01

𝑤2 = 011001

𝑤3 = 011001011001

𝑤4 = 011001011001011001

𝑤5 = 0110010110010110011001011001011001

Note that the attractor form of 𝑤𝑖 corresponds with the theorem statement for 𝑖 ≥ 3, where both
letters have already appeared in the directive sequence Δ.

Proof. Firstly, using the mathematical induction on 𝑛, we will show that the set {𝑚0, 𝑚1, |𝑤𝑛| −
𝑚1 − 1} forms an attractor. Secondly, we will explain its minimality.

• The initial step is for 𝑛 = 𝑘, where Δ = 0𝑘−11 · · · for 𝑘 > 1. Then the word is of the form
𝑤𝑘 = (01)𝑘−110(01)𝑘−1 = 0101 · · · 0101100101 · · · 0101. The underlined positions clearly
form an attractor.
Another initial step complying with the requirements from the statement could be Δ =
010 · · · . In that case, the word is 𝑤3 = 011001011001 and the underlined positions form an
attractor.

• For the next generation step 𝑛 − 1 → 𝑛, two cases may occur:

1. The next letter is 1 and we obtain

𝑤𝑛 = (𝑤𝑛−11)𝐸 =

𝑤𝑛−1⏞  ⏟  
𝑣0𝑤𝑙11𝐸(𝑣)⏟  ⏞  
𝑤𝑛−1

, (1)

where 𝑤𝑙1 ̸= 𝜀 is the longest antipalindromic prefix followed by 1 in 𝑤𝑛−1, and 𝑣 is the
prefix of the word. Let 𝑤𝑙0 ̸= 𝜀 denote the longest antipalindromic prefix followed by
0 in 𝑤𝑛−1. Notice that the longest antipalindromic prefix of 𝑤𝑛 followed by 1 is equal
to 𝑤𝑛−1 = 𝑣0𝑤𝑙1 and the longest antipalindromic prefix of 𝑤𝑛 followed by 0 is the same
as for 𝑤𝑛−1, i.e., 𝑚0 = |𝑤𝑙0 |. Consequently, we want to show that the attractor of 𝑤𝑛 is
formed by the underlined positions 𝑤𝑛 = 𝑣0𝑤𝑙11𝐸(𝑣) = 𝑤𝑙00 · · · .
Let us take an arbitrary factor in the word 𝑤𝑛. It either crosses the underlined 1, i.e.,
the position |𝑤𝑛−1|, or it does not cross the position |𝑤𝑛−1| and is entirely contained in
the prefix 𝑤𝑛−1. Using the induction hypothesis, the attractor of 𝑤𝑛−1 is formed by the
underlined positions 𝑤𝑛−1 = 𝑣0𝑤𝑙1 = 𝑤𝑙00 · · · = 𝑤𝑙11 · · · . The first two cases coincide
with two positions of the expected attractor of 𝑤𝑛. If the factor crosses the position
|𝑤𝑙1 |, then observing (1), the factor has also an occurrence in 𝑤𝑛 crossing |𝑤𝑛−1|, which
is a contradiction.
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2. The next letter is 0 and we have

𝑤𝑛 = (𝑤𝑛−10)𝐸 =

𝑤𝑛−1⏞  ⏟  
𝑣1𝑤𝑙00𝐸(𝑣)⏟  ⏞  
𝑤𝑛−1

.

Again the longest antipalindromic prefix followed by 1 in 𝑤𝑛−1 must comply 𝑤𝑙1 ̸= 𝜀,
similarly 𝑤𝑙0 ̸= 𝜀. Notice that the longest antipalindromic prefix of 𝑤𝑛 followed by 0 is
equal to 𝑤𝑛−1 and the longest antipalindromic prefix of 𝑤𝑛 followed by 1 is the same
as for 𝑤𝑛−1, i.e., 𝑚1 = |𝑤𝑙1 |. Therefore, we want to show that the attractor of 𝑤𝑛 is
formed by the underlined positions 𝑤𝑛 = 𝑤𝑙11𝑧0𝐸(𝑣) = 𝑣1𝐸(𝑧)0𝑤𝑙1 , where 𝑧 is a factor
of 𝑤𝑛.
The rest of the proof is analogous to the part 1.

Now let us comment on the attractor’s minimality.

• As soon as 0𝑘1 for 𝑘 ≥ 2 is a prefix of Δ, then 𝑤𝑘+1 = (01)𝑘−1011001(01)𝑘−1. It follows
from Definition 2.21 that for each 𝑛 ≥ 𝑘 + 1, the factor 00, resp. 11, only occurs as a factor
of 011001 in 𝑤𝑛.

An attractor of size two does not exist any more. Let us explain why. All factors of length
two, i.e., 00, 01, 10, 11, have to cross the attractor. We underline below the possible positions
for an attractor of size two containing 00, 01, 10, 11:

1. 𝑤𝑛 = · · · 011001 · · ·

2. 𝑤𝑛 = · · · 011001 · · ·

3. 𝑤𝑛 = · · · 011001 · · · 011001 · · ·

4. 𝑤𝑛 = · · · 011001 · · · 011001 · · ·

5. 𝑤𝑛 = · · · 011001 · · · 011001 · · ·

6. 𝑤𝑛 = · · · 011001 · · · 011001 · · ·

However, in all the above cases, either 010, or 101 does not cross the attractor.

• If 01𝑘0 for 𝑘 ≥ 1 is a prefix of Δ, then 𝑤𝑘+2 = 01(1001)𝑘(0110)𝑘01. It follows from Defini-
tion 2.21 that for each 𝑛 ≥ 𝑘 + 2, the factor 00, resp. 11, only occurs as a factor of 011001
in 𝑤𝑛. An attractor of size two does not exist. All factors of length two, i.e., 00, 01, 10, 11,
have to cross the attractor. Using the same arguments as in the first case, we can then show
that either the factor 010 or 101 does not cross the attractor.

The algorithm to generate pseudostandard words and their attractors in accordance with
Theorem 2.17 is described as Algorithm 2.

Remark 2.20. In the assumption of Theorem 2.17, the prefix of the directive sequence Δ is
restricted to contain at least two 0’s and one 1 (and without loss of generality starting with 0). Let
us explain that when a prefix of length 𝑛 of Δ does not comply with this rule, the corresponding
prefix 𝑤𝑛 has an attractor of size two. Two situations may occur.

• If 01𝑛−1 for 𝑛 ≥ 2 is a prefix of Δ, then 𝑤𝑛 = 011001(1001)𝑛−2, where we underlined the
positions of an attractor of size two. For comparison, here we underlined the position of Γ as
obtained from the theorem statement for 𝑛 ≥ 3: 𝑤𝑛 = 011001(1001)𝑛−31001 and for 𝑛 = 2:
𝑤𝑛 = 011001.

• If 0𝑛 is a prefix of Δ, then 𝑤𝑛 = (01)𝑛 and any two positions of 0 and 1 (except for the set
{0, 𝑛 − 1}) form an attractor.
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2.3 Combination of closures and Rote sequences
We have introduced sequences generated by palindromic and antipalindromic closures and their

attractors, so it is only natural to study attractors of infinite words generated by a combination of
these two methods. We call a word (or a closure) pseudopalindromic if it is either palindromic or an-
tipalindromic. In this section, we will describe the minimal attractors of pseudopalindromic prefixes
of complementary-symmetric Rote sequences, which form a subclass of generalized pseudostandard
sequences. Such sequences are obtained by expanding a directive sequence by pseudopalindromic
closures.

Definition 2.21. Let Δ = 𝛿1𝛿2 . . . and Θ = 𝜗1𝜗2 . . ., where 𝛿𝑖 ∈ {0, 1} and 𝜗𝑖 ∈ {𝐸, 𝑅} for all
𝑖 ∈ N. The sequence w(Δ, Θ), called generalized pseudostandard sequence, is the sequence having
prefixes 𝑤𝑛 obtained from the recurrence relation

𝑤𝑛+1 = (𝑤𝑛𝛿𝑛+1)𝜗𝑛+1 ,

𝑤0 = 𝜀.

The bi-sequence (Δ, Θ) is called the directive bi-sequence of the infinite word w(Δ, Θ).

Example 2.22. Consider w = w(Δ, Θ) with Δ = 01𝜔 and Θ = (𝑅𝐸)𝜔, then w is the Thue-Morse
sequence. Here are the first six pseudopalindromic prefixes:

𝑤0 = 𝜀

𝑤1 = 0

𝑤2 = 01

𝑤3 = 0110

𝑤4 = 01101001

𝑤5 = 0110100110010110

Definition 2.23. Complementary-symmetric (CS) Rote sequences are binary sequences having
complexity 2𝑛 and such that their language is closed under letter exchange.

Besides being generalized pseudostandard sequences, the CS Rote sequences are also closely
connected to Sturmian sequences by a structural theorem.

Let 𝑢 = 𝑢0𝑢1 · · · 𝑢𝑛 be a binary word on {0, 1} of length at least two. The sum of 𝑢, denoted
by 𝑆(𝑢), is the word 𝑣 = 𝑣0𝑣1 · · · 𝑣𝑛−2 defined by

𝑣𝑖 = (𝑢𝑖+1 + 𝑢𝑖) mod 2, for 𝑖 ∈ {0, 1, . . . , 𝑛 − 2}

For example, if 𝑢 = 0011010, then 𝑆(𝑢) = 010111.

Theorem 2.24 (Theorem 3 in [24]). A binary sequence w is a CS Rote sequence if and only if
the sequence 𝑆(w) is a Sturmian sequence.

We say that a CS Rote sequence w is standard if both 0w and 1w are CS Rote sequences.
Equivalently, a sequence w is standard CS Rote if and only if 𝑆(w) is standard Sturmian.

The connection between the CS Rote sequences and the Sturmian sequences includes also
their prefixes. The relation between pseudopalindromic prefixes of a standard CS Rote sequence
w and palindromic prefixes of a standard Sturmian sequence 𝑆(w) is as follows.

Lemma 2.25 (Lemma 37 in [25]). Let w be a standard CS Rote sequence starting with 0. Let
𝑢0 = 𝜀, 𝑢1, 𝑢2, . . . , and 𝑤0 = 𝜀, 𝑤1, 𝑤2, . . . be the pseudopalindromic prefixes of 𝑆(w) and w,
respectively, ordered by length. Then 𝑆(𝑤𝑛+1) = 𝑢𝑛 for all 𝑛 ∈ N, 𝑛 ≥ 1.

Remark 2.26. Let us explain that it is not possible to use known attractors of palindromic
prefixes of standard Sturmian sequences to obtain attractors of pseudopalindromic prefixes of CS
Rote sequences.

Consider the following palindromic prefix 𝑢 = 010010010 of a standard Sturmian sequence.
The corresponding standard CS Rote sequence starting in 0 has the antipalindromic prefix 𝑤 =
0011100011, i.e., 𝑆(𝑤) = 𝑢. Let us underline the positions of the attractor of 𝑢 from Theorem 2.6:
𝑢 = 010010010 and also from [8] (Theorem 22): 𝑢 = 010010010. Now, the factor 10 has a unique
occurrence in 𝑤, therefore each attractor of 𝑤 has to contain either the position 4 or 5. However,
there is no straightforward way how to obtain these positions from the underlined attractors of 𝑢
(or their mirror image from Observation 2.30).
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Blondin-Massé at al. [25] showed that the standard CS Rote sequences form a subclass of
binary generalized pseudostandard sequences. Moreover, they described precisely the form of the
corresponding directive bi-sequence.

Theorem 2.27 (Corollary 42 in [25]). Let (Δ, Θ) be a directive bi-sequence. Then w = w(Δ, Θ)
is a standard CS Rote sequence if and only if w is aperiodic and no factor of length two of the
directive bi-sequence is in the set

{(𝑎𝑏, 𝐸𝐸) : 𝑎, 𝑏 ∈ {0, 1}} ∪ {(𝑎𝑎, 𝑅𝑅) : 𝑎 ∈ {0, 1}} ∪ {(𝑎𝑎, 𝑅𝐸) : 𝑎 ∈ {0, 1}} .

Moreover, if Θ does not start in 𝐸, then the prefixes 𝑤𝑛 from Definition 2.21 coincide with all
pseudopalindromic prefixes of w.

The aperiodicity of a binary generalized pseudostandard sequence may be recognized easily.

Theorem 2.28 (Remark 12 in [26]). Let (Δ, Θ) be a directive bi-sequence. Then w = w(Δ, Θ) is
aperiodic if and only if there is no bijection 𝜋 : {𝐸, 𝑅} → {0, 1} such that 𝜋(𝜗𝑛) = 𝛿𝑛+1 for all
sufficiently large 𝑛.

In the proof of the main theorem on string attractors of pseudopalindromic prefixes of standard
CS Rote sequences, the following statements will be useful.

Proposition 2.29 (Proposition 7 [27]). Let u be a standard Sturmian sequence and let (𝑢𝑛)∞
𝑛=0

be the sequence of palindromic prefixes of u ordered by length. If 𝑢𝑛 contains both letters, then for
some 𝑎 ∈ {0, 1}

𝑢𝑛 = 𝑢𝑛−1𝑎𝑎𝑢𝑖 ,

where 𝑢𝑖 is the longest palindromic prefix of 𝑢𝑛 followed by 𝑎.

Observation 2.30. If 𝑤 is a palindrome with an attractor Γ, the mirror image Γ = {|𝑤| − 1 − 𝛾 : 𝛾 ∈ Γ}
is an attractor of 𝑤, too.

Lemma 2.31. Let w be a standard CS Rote sequence starting in 0. Then for 𝑛 ≥ 2, using notation
from Definition 2.21 and denoting 𝑎 := 𝛿𝑛, we have:

1. If 𝑤𝑛−1 = 𝑅(𝑤𝑛−1) and 𝑤𝑛 = 𝑅(𝑤𝑛), then 𝑤𝑛 = 𝑤𝑛−1𝑎𝑤𝑖, where 𝑤𝑖 is the longest antipalin-
dromic prefix followed by 𝑎.

2. If 𝑤𝑛−1 = 𝑅(𝑤𝑛−1) and 𝑤𝑛 = 𝐸(𝑤𝑛), then 𝑤𝑛 = 𝑤𝑛−1𝑎𝑤𝑖, where 𝑤𝑖 is the longest palin-
dromic prefix followed by 𝑎.

3. If 𝑤𝑛−1 = 𝐸(𝑤𝑛−1) and 𝑤𝑛 = 𝑅(𝑤𝑛), then 𝑤𝑛 = 𝑤𝑛−1𝑎𝑤𝑖, where 𝑤𝑖 is the longest palin-
dromic prefix followed by 𝑎.

Proof. Assume 𝑆(𝑤𝑛) contains both letters. The reader is invited to check the cases, where 𝑆(𝑤𝑛)
contains only one letter. The possible prefixes of (Δ, Θ) are given in Theorem 2.27.

1. Since 𝑤𝑛 = 𝑤𝑛−1𝑎 · · · and 𝑤𝑛−1 as a palindrome has 0 as both the first and the last letter,
then by Lemma 2.25, Theorem 2.24, and Proposition 2.29, we obtain 𝑆(𝑤𝑛) = 𝑢𝑛−1𝑎𝑎𝑢𝑖,
where 𝑢𝑖 is the longest palindromic prefix of 𝑢𝑛 followed by 𝑎. Consequently, 𝑤𝑛 is equal to
𝑤𝑛−1𝑎𝑤, where 𝑤 starts in 1 and is a pseudopalindrome by Lemma 2.25. Therefore, since 𝑤
is a suffix of 𝑤𝑛 = 𝑅(𝑤𝑛), we get 𝑤 = 𝑤𝑖, where 𝑤𝑖 is the longest antipalindromic prefix of
𝑤𝑛 followed by 𝑎.

2. The proof is the same as before, just the last sentence changes: Therefore, since 𝑤 is a suffix
of 𝑤𝑛 = 𝐸(𝑤𝑛), we get 𝑤 = 𝑤𝑖, where 𝑤𝑖 is the longest palindromic prefix of 𝑤𝑛 followed by
𝑎.

3. Since 𝑤𝑛 = 𝑤𝑛−1𝑎 · · · and 𝑤𝑛−1 as an antipalindrome has 1 as the last letter, then by
Lemma 2.25, Theorem 2.24, and Proposition 2.29, we obtain 𝑆(𝑤𝑛) = 𝑢𝑛−1𝑎𝑎𝑢𝑖, where 𝑢𝑖

is the longest palindromic prefix of 𝑢𝑛 followed by 𝑎. Consequently, 𝑤𝑛 is equal to 𝑤𝑛−1𝑎𝑤,
where 𝑤 starts in 0 and is a pseudopalindrome by Lemma 2.25. Therefore, since 𝑤 is a suffix
of 𝑤𝑛 = 𝑅(𝑤𝑛), we get 𝑤 = 𝑤𝑖, where 𝑤𝑖 is the longest palindromic prefix of 𝑤𝑛 followed by
𝑎.
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Let us state the main theorem describing the minimal string attractors of pseudopalindromic
prefixes of standard CS Rote sequences.

Theorem 2.32. Let w be a standard CS Rote sequence, then the size of the minimal attractor of
any pseudopalindromic prefix equals the number of letters contained in the prefix. More precisely,
if the directive bi-sequence (Δ, Θ) has (0, 𝑅) as the first element, then the minimal attractors of
the pseudopalindromic prefixes of w containing at least two letters are of the following form:

1. If 𝑤𝑛 = 𝐸(𝑤𝑛), 𝛿𝑛 = 𝑎, and 𝑤𝑖 is the longest antipalindromic prefix of 𝑤𝑛 followed by 𝑎,
then

Γ1 = {|𝑤𝑖|, |𝑤𝑛−1|} ;
Γ2 = {|𝑤𝑛−1| − |𝑤𝑖| − 1, |𝑤𝑛| − |𝑤𝑖| − 1}

are attractors of 𝑤𝑛.

2. If 𝑤𝑛 = 𝑅(𝑤𝑛), 𝛿𝑛 = 𝑎, 𝜗𝑛−1 = 𝐸, and 𝑤𝑗 is the longest palindromic prefix of 𝑤𝑛 followed
by 𝑎, then

Γ = {|𝑤𝑗 |, |𝑤𝑛−1|}

is an attractor of 𝑤𝑛.

3. If 𝑤𝑛 = 𝑅(𝑤𝑛), 𝛿𝑛 = 𝑎, 𝜗𝑛−1 = 𝑅, and 𝑚 is the minimum index satisfying that 𝜗𝑖 = 𝑅 for
all 𝑖 ∈ {𝑚, . . . , 𝑛}, then the attractor of 𝑤𝑚 from Item 2 is simultaneously an attractor of
𝑤𝑛.

Proof. First of all, Theorem 2.27 describes the form of (Δ, Θ) guaranteeing that pseudopalindromic
prefixes coincide with the prefixes 𝑤𝑛. It follows that Θ has to start with 𝑅. The assumption that
(0, 𝑅) is the first element of (Δ, Θ) is thus without loss of generality. If a pseudopalindromic prefix
contains one letter, then any position is its attractor. Further on, let us consider pseudopalindromic
prefixes 𝑤𝑛 containing two letters. Let us proceed by induction on 𝑛.

Consider the first pseudopalindromic prefix 𝑤𝑘+1 containing both letters 0 and 1. Then by
Theorem 2.27 (0𝑘1, 𝑅𝑘𝐸) is a prefix of (Δ, Θ) and 𝑘 ≥ 1. Then 𝑤𝑘+1 = 0𝑘1𝑘 and the longest
antipalindromic prefix of 𝑤𝑘+1 followed by 0 is 𝑤0 = 𝜀. Hence Γ1 = {0, 𝑘} and Γ2 = {𝑘 − 1, 2𝑘 − 1}
are clearly attractors of 𝑤𝑘+1 = 00𝑘−111𝑘−1 = 0𝑘−101𝑘−11 (we underlined the positions of Γ1,
resp. Γ2).

Now, for 𝑛 ≥ 𝑘 + 1, let us denote 𝑎 := 𝛿𝑛 and assume 𝜗𝑛 = 𝜗𝑛+𝑚+1 = 𝐸 (by Theorem 2.27
𝑚 ≥ 1), while 𝜗𝑖 = 𝑅 for all 𝑖 ∈ {𝑛 + 1, . . . , 𝑛 + 𝑚}. We assume that 𝑤𝑛 has the attractors

Γ1 = {|𝑤𝑖|, |𝑤𝑛−1|} ;
Γ2 = {|𝑤𝑛−1| − |𝑤𝑖| − 1, |𝑤𝑛| − |𝑤𝑖| − 1} ,

where 𝑤𝑖 is the longest antipalindromic prefix of 𝑤𝑛 followed by 𝑎 (it may be an empty word). We
will show that under this assumption, 𝑤𝑛+1 up to 𝑤𝑛+𝑚+1 have also the attractors as described
in Theorem 2.32. This will prove the theorem completely.

There are four situations to be considered according to Theorem 2.27. We will treat the first
two of them. The remaining ones are analogous.

1. 𝑚 = 1 and (𝛿𝑛−1𝛿𝑛𝛿𝑛+1𝛿𝑛+2, 𝜗𝑛−1𝜗𝑛𝜗𝑛+1𝜗𝑛+2) = (𝑎𝑎𝑎𝑎, 𝑅𝐸𝑅𝐸): By Lemma 2.31

𝑤𝑛−1 = 𝑤𝑗𝑎𝑤𝑖 = 𝑤𝑖𝑎𝑤𝑗 and 𝑤𝑛 = 𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑗 = 𝑤𝑗𝑎𝑤𝑛−1 , (2)

where 𝑤𝑗 is the longest palindromic prefix of 𝑤𝑛 followed by 𝑎 (it may be 𝜀). Using the
different forms of 𝑤𝑛−1, we can also rewrite 𝑤𝑛 as

𝑤𝑛 = 𝑤𝑖𝑎𝑤𝑗𝑎𝑤𝑗 = 𝑤𝑗𝑎𝑤𝑗𝑎𝑤𝑖 , (3)

where we underlined the positions from Γ1 and Γ2, respectively.

• Using palindromic closure and Lemma 2.31, we obtain

𝑤𝑛+1 = (𝑤𝑛𝑎)𝑅 = 𝑤𝑛−1𝑎𝑤𝑗𝑎𝑤𝑛−1 . (4)
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We will show that Γ = {|𝑤𝑗 |, |𝑤𝑛|} is an attractor of 𝑤𝑛+1 – see the corresponding
positions underlined:

𝑤𝑛+1 = 𝑤𝑗𝑎𝑤𝑛−1𝑎𝑤𝑛−1 . (5)

By (4), each factor 𝑓 of 𝑤𝑛+1 either crosses |𝑤𝑛|, i.e., the underlined 𝑎 in (5), or is
entirely contained in 𝑤𝑛. In that case, consider the attractor Γ2 = {|𝑤𝑛−1| − |𝑤𝑖| −
1, |𝑤𝑛| − |𝑤𝑖| − 1} = {|𝑤𝑗 |, |𝑤𝑛| − |𝑤𝑖| − 1} of 𝑤𝑛. Using (2) we can rewrite 𝑤𝑛+1 as

𝑤𝑛+1 =
𝑤𝑛−1⏞  ⏟  

𝑤𝑗𝑎𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑗𝑎𝑤𝑖⏟  ⏞  
𝑤𝑛

=
𝑤𝑛−1⏞  ⏟  

𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑗 . (6)

From this form, we can see that 𝑓 contained in 𝑤𝑛 either crosses |𝑤𝑗 |, i.e., the underlined
𝑎, or 𝑓 crosses the position |𝑤𝑛| − |𝑤𝑖| − 1 in (6) and is contained in the word 𝑤𝑛−1 =
𝑤𝑗𝑎𝑤𝑖, where we underlined the position crossed by 𝑓 . Observing the right-hand form
of 𝑤𝑛+1 in (6), the factor 𝑓 has then an occurrence containing the position |𝑤𝑛|, i.e.,
the underlined 𝑎.

• Next, using antipalindromic closure, we obtain

𝑤𝑛+2 = (𝑤𝑛+1𝑎)𝐸 =
𝑤𝑛+1⏞  ⏟  

𝑤𝑛−1𝑎𝑤𝑛 𝑎𝑤𝑛−1 . (7)

We will show that the attractors of 𝑤𝑛+2 are:
(a) {|𝑤𝑛|, |𝑤𝑛+1|}: Each factor 𝑓 of 𝑤𝑛+2 = 𝑤𝑛𝑎𝑤𝑛−1𝑎𝑤𝑛−1 (we underlined the posi-

tions of the expected attractor) either crosses |𝑤𝑛+1|, i.e., the underlined 𝑎, or is
entirely contained in 𝑤𝑛+1 = 𝑤𝑛𝑎𝑤𝑛−1. In this case, we can write 𝑤𝑛+2 as

𝑤𝑛+2 =
𝑤𝑛+1⏞  ⏟  

𝑤𝑗𝑎𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑖𝑎𝑤𝑗𝑎𝑤𝑗𝑎𝑤𝑖⏟  ⏞  ⏟  ⏞  
𝑤𝑛 𝑤𝑛

. (8)

By (5), 𝑓 then either crosses |𝑤𝑛|, i.e., the underlined 𝑎, or 𝑓 is contained in 𝑤𝑛 =
𝑤𝑗𝑎𝑤𝑛−1 and crosses |𝑤𝑗 |. However, since 𝑤𝑛 forms also the suffix of 𝑤𝑛+2, the
factor 𝑓 has an occurrence containing the position |𝑤𝑛+1|, i.e., the underlined 𝑎.

(b) {|𝑤𝑛+1| − |𝑤𝑛| − 1, |𝑤𝑛+2| − |𝑤𝑛| − 1} = {|𝑤𝑛−1|, |𝑤𝑛+2| − |𝑤𝑛| − 1}: Each factor 𝑓
of 𝑤𝑛+2 = 𝑤𝑛−1𝑎𝑤𝑛−1𝑎𝑤𝑛 (we underlined the positions of the expected attractor)
either crosses |𝑤𝑛−1|, i.e., the underlined 𝑎, or 𝑓 is entirely contained in 𝑤𝑛+1 =
𝑤𝑛−1𝑎𝑤𝑛 and, by Observation 2.30, crosses the mirror image of the attractor of
𝑤𝑛+1, i.e., Γ = {|𝑤𝑛+1| − |𝑤𝑛| − 1, |𝑤𝑛+1| − |𝑤𝑗 | − 1} (taking the indices only in
𝑤𝑛+1). The situation can be depicted as

𝑤𝑛+2 =
𝑤𝑛 𝑤𝑛⏞  ⏟  ⏞  ⏟  

𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑗⏟  ⏞  
𝑤𝑛+1

. (9)

We can observe that if 𝑓 crosses the position |𝑤𝑛+1| − |𝑤𝑛| − 1 in 𝑤𝑛+1, then 𝑓
crosses |𝑤𝑛+2| − |𝑤𝑛| − 1 in 𝑤𝑛+2, i.e., the underlined 𝑎. Or 𝑓 is entirely contained
in 𝑤𝑛 = 𝑤𝑗𝑎𝑤𝑖𝑎𝑤𝑗 and crosses the underlined 𝑎. Since 𝑤𝑛 is a prefix of 𝑤𝑛+2, it
follows that the factor 𝑓 has then an occurrence containing the position |𝑤𝑛−1|, i.e.,
the underlined 𝑎.

2. 𝑚 ≥ 2 and (𝛿𝑛−1𝛿𝑛𝛿𝑛+1 · · · 𝛿𝑛+𝑚𝛿𝑛+𝑚+1, 𝜗𝑛−1𝜗𝑛𝜗𝑛+1 · · · 𝜗𝑛+𝑚𝜗𝑛+𝑚+1) = (𝑎𝑎𝑚+1𝑎, 𝑅𝐸𝑅𝑚𝐸):
The proof that Γ = {|𝑤𝑗 |, |𝑤𝑛|} is an attractor of 𝑤𝑛+1 stays the same as above.

• Using palindromic closure, since 𝑤𝑛−1 is the longest palindromic prefix of 𝑤𝑛+1 followed
by 𝑎, we obtain

𝑤𝑛+2 = (𝑤𝑛+1𝑎)𝑅 = 𝑤𝑛𝑎𝑤𝑛−1𝑎𝑤𝑛 = 𝑤𝑛𝑎𝑤𝑛+1 . (10)

We will show that the attractor of 𝑤𝑛+2 is the same as the attractor Γ = {|𝑤𝑗 |, |𝑤𝑛|}
of 𝑤𝑛+1. Indeed, each factor 𝑓 either crosses |𝑤𝑛| or by (10) 𝑓 is entirely contained in
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the prefix 𝑤𝑛+1 of 𝑤𝑛+2 and crosses an element of Γ.
Similarly, for 𝑘 ∈ {3, . . . , 𝑚}, we have 𝑤𝑛+𝑘 = 𝑤𝑛𝑎𝑤𝑛+𝑘−1. The attractor of 𝑤𝑛+𝑘

is again equal to Γ: each factor 𝑓 either crosses |𝑤𝑛|, or 𝑓 is entirely contained in
the prefix 𝑤𝑛+𝑘−1 of 𝑤𝑛+𝑘 and the attractor of 𝑤𝑛+𝑘−1 is by induction assumption
Γ = {|𝑤𝑗 |, |𝑤𝑛|}.

• Using antipalindromic closure, since 𝑤𝑛 is the longest antipalindromic prefix followed
by 𝑎, we have

𝑤𝑛+𝑚+1 = (𝑤𝑛+𝑚𝑎)𝐸 = 𝑤𝑛+𝑚−1𝑎𝑤𝑛𝑎𝑤𝑛+𝑚−1 . (11)
We will show that the attractors of 𝑤𝑛+𝑚+1 are:
(a) {|𝑤𝑛|, |𝑤𝑛+𝑚|}: Each factor 𝑓 of 𝑤𝑛+𝑚+1 = 𝑤𝑛𝑎𝑤𝑛+𝑚−1𝑎𝑤𝑛+𝑚−1 (we underlined

the positions of the expected attractor) either crosses |𝑤𝑛+𝑚|, i.e., the underlined
𝑎, or by (11) 𝑓 is entirely contained in 𝑤𝑛+𝑚 or in 𝑤𝑛+𝑚 (a suffix of 𝑤𝑛+𝑚+1).
Using the previous expressions, the word 𝑤𝑛+𝑚+1 can be expressed as

𝑤𝑛+𝑚+1 =
𝑤𝑛⏞  ⏟  

𝑤𝑛𝑎𝑤𝑛+𝑚−2𝑎𝑤𝑛−1𝑎𝑤𝑗𝑎𝑤𝑛−1𝑎𝑤𝑗𝑎𝑤𝑛+𝑚−2⏟  ⏞  ⏟  ⏞  
𝑤𝑛+𝑚 𝑤𝑛+𝑚−1

= (12)

=
𝑤𝑛⏞  ⏟  

𝑤𝑛−1𝑎𝑤𝑗𝑎𝑤𝑛−1𝑎𝑤𝑗𝑎𝑤𝑛+𝑚−2𝑎𝑤𝑛+𝑚−1⏟  ⏞  
𝑤𝑛

. (13)

If 𝑓 is contained in 𝑤𝑛+𝑚, then 𝑓 crosses the attractor Γ = {|𝑤𝑗 |, |𝑤𝑛|} of 𝑤𝑛+𝑚.
It means that either 𝑓 crosses |𝑤𝑛|, i.e., the underlined 𝑎, or 𝑓 is contained in
𝑤𝑛 = 𝑤𝑗𝑎𝑤𝑛−1, where we underlined the position crossed by 𝑓 . Then from (12) we
can see that the factor 𝑤𝑛 has an occurrence such that the 𝑎 is in the attractor of
𝑤𝑛+𝑚 and it is therefore covered.
If 𝑓 is contained in the suffix 𝑤𝑛+𝑚−1 of 𝑤𝑛+𝑚+1, then 𝑓 crosses its attractor
Γ = {|𝑤𝑗 |, |𝑤𝑛|}. By (11) the factor 𝑓 either crosses |𝑤𝑛| in 𝑤𝑛+𝑚, which means
that 𝑓 crosses |𝑤𝑛+𝑚| in 𝑤𝑛+𝑚+1, or 𝑓 is contained in the prefix 𝑤𝑛 = 𝑤𝑗𝑎𝑤𝑛−1,
where we underlined the position crossed by 𝑓 . However, then 𝑓 has an occurrence
in 𝑤𝑛+𝑚+1 containing |𝑤𝑛| since 𝑤𝑛𝑎𝑤𝑛−1 is a prefix of 𝑤𝑛+𝑚+1 and 𝑤𝑗 is a suffix
of 𝑤𝑛, as can be observed from (13).

(b) {|𝑤𝑛+𝑚| − |𝑤𝑛| − 1, |𝑤𝑛+𝑚+1| − |𝑤𝑛| − 1} = {|𝑤𝑛+𝑚−1|, |𝑤𝑛+𝑚+1| − |𝑤𝑛| − 1}: Each
factor 𝑓 of 𝑤𝑛+𝑚+1 either crosses |𝑤𝑛+𝑚−1|, or by (11) 𝑓 is entirely contained in
𝑤𝑛+𝑚 (prefix of 𝑤𝑛+𝑚+1) or in 𝑤𝑛+𝑚. The word can be expressed as

𝑤𝑛+𝑚+1 =
𝑤𝑛⏞  ⏟  

𝑤𝑛+𝑚−1𝑎𝑤𝑛+𝑚−2𝑎𝑤𝑗𝑎𝑤𝑛−1𝑎𝑤𝑗𝑎𝑤𝑛−1⏟  ⏞  
𝑤𝑛+𝑚

(14)

=
𝑤𝑛⏞  ⏟  

𝑤𝑛+𝑚−2𝑎𝑤𝑗𝑎𝑤𝑛−1𝑎𝑤𝑗𝑎𝑤𝑛−1𝑎𝑤𝑛+𝑚−2𝑎𝑤𝑛⏟  ⏞  
𝑤𝑛+𝑚

(15)

If 𝑓 is contained in 𝑤𝑛+𝑚 = 𝑤𝑛+𝑚−1𝑎𝑤𝑛, then by Observation 2.30, 𝑓 crosses the
mirror image of the attractor of 𝑤𝑛+𝑚, i.e., Γ = {|𝑤𝑛+𝑚|−|𝑤𝑛|−1, |𝑤𝑛+𝑚|−|𝑤𝑗 |−1}.
Then 𝑓 either crosses |𝑤𝑛+𝑚| − |𝑤𝑛| − 1 = |𝑤𝑛+𝑚−1| or 𝑓 is contained in the
suffix 𝑤𝑛 = 𝑤𝑛−1𝑎𝑤𝑗 of 𝑤𝑛+𝑚, where the position crossed by 𝑓 is underlined.
Then we can observe from (14) that 𝑓 has an occurrence containing the position
|𝑤𝑛+𝑚+1| − |𝑤𝑛| − 1, i.e., the underlined 𝑎.
If 𝑓 is contained in 𝑤𝑛+𝑚 = 𝑤𝑛+𝑚−1𝑎𝑤𝑛, then 𝑓 crosses the mirror image of the
attractor of 𝑤𝑛+𝑚, i.e., Γ = {|𝑤𝑛+𝑚| − |𝑤𝑛| − 1, |𝑤𝑛+𝑚| − |𝑤𝑗 | − 1} (taking the
indices in 𝑤𝑛+𝑚). The factor is either covered by the position |𝑤𝑛+𝑚−1| in 𝑤𝑛+𝑚,
which corresponds with the position |𝑤𝑛+𝑚+1| − |𝑤𝑛| − 1 in the attractor, or 𝑓 is
entirely contained in 𝑤𝑛 = 𝑤𝑛−1𝑎𝑤𝑗 , where we underlined the position crossed by
𝑓 . By (15), the factor 𝑓 has then an occurrence containing |𝑤𝑛+𝑚| − |𝑤𝑛| − 1, i.e.,
the underlined 𝑎.

3. 𝑚 = 1 and (𝛿𝑛−1𝛿𝑛𝛿𝑛+1𝛿𝑛+2, 𝜗𝑛−1𝜗𝑛𝜗𝑛+1𝜗𝑛+2) = (𝑎𝑎𝑎𝑎, 𝑅𝐸𝑅𝐸)



Episturmian, pseudostandard, and Rote sequences 15

4. 𝑚 ≥ 2 and (𝛿𝑛−1𝛿𝑛𝛿𝑛+1 · · · 𝛿𝑛+𝑚𝛿𝑛+𝑚+1, 𝜗𝑛−1𝜗𝑛𝜗𝑛+1 · · · 𝜗𝑛+𝑚𝜗𝑛+𝑚+1) = (𝑎𝑎𝑎𝑚𝑎, 𝑅𝐸𝑅𝑚𝐸)

Example 2.33. To illustrate the case of 𝑚 = 1 we will generate prefixes of a Rote sequence
from the bi-sequence starting in (0011001, 𝑅𝑅𝐸𝑅𝐸𝑅𝐸). The attractors from Theorem 2.32 are
underlined.

𝑤1 = 0

𝑤2 = 00

𝑤3 =
𝑤2⏞ ⏟ 
00 11 = 00

𝑤2⏞ ⏟ 
11

𝑤4 =
𝑤1⏞ ⏟ 
0 011100⏟  ⏞  

𝑤3

𝑤5 =
𝑤3⏞  ⏟  

0011100011⏟  ⏞  
𝑤4

=
𝑤3⏞  ⏟  

0011100011⏟  ⏞  
𝑤4

𝑤6 =
𝑤2⏞ ⏟ 
00 1110001100011100⏟  ⏞  

𝑤5

𝑤7 =
𝑤5⏞  ⏟  

00111000110001110011100011⏟  ⏞  
𝑤6

=
𝑤5⏞  ⏟  

00111000110001110011100011⏟  ⏞  
𝑤6

For illustration of the case 𝑚 > 1 we will use the bi-sequence starting in (001100001, 𝑅𝑅𝐸𝑅𝐸𝑅𝑅𝑅𝐸).
The steps for 𝑛 ≤ 5 are identical with the previous example.

𝑤1 = 0

𝑤2 = 00

𝑤3 = 0011 = 0011

𝑤4 = 0011100

𝑤5 = 0011100011 = 0011100011

𝑤6 =
𝑤2⏞ ⏟ 
00 1110001100011100⏟  ⏞  

𝑤5

𝑤7 =
𝑤2⏞ ⏟ 
00 111000110001110001100011100⏟  ⏞  

𝑤5

𝑤8 =
𝑤2⏞ ⏟ 
00 11100011000111000110001110001100011100⏟  ⏞  

𝑤5

𝑤9 =
𝑤5⏞  ⏟  

0011100011000111000110001110001100011100111000111001110001110011100011⏟  ⏞  
𝑤8

=
𝑤5⏞  ⏟  

0011100011000111000110001110001100011100111000111001110001110011100011⏟  ⏞  
𝑤8
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3 Algorithms and software implementations

To study minimal attractors of episturmian and pseudostandard words on practical examples,
we designed a series of algorithms to generate the words and obtain their attractors, and imple-
mented them in Python. The programs described below were also used to generate examples in
this work and to apply the theorems on larger datasets of words that would be hard to manage
manually.

3.1 Episturmian words

First, we designed and implemented an algorithm to generate a palindromic prefix of the
episturmian sequence and its minimal attractor in accordance with Theorem 2.11 (Algorithm 1).
For a user-provided prefix of a directive sequence dir_seq, the function uses prefix to store
the generated prefix, which is then one of the outputs. It uses dictionary lpp_index to store the
distinct letters as keys, with the starting indexes of the longest palindromic prefixes followed by
these letters as corresponding values. The attractor is stored in the list attractor; it is exactly
the set of positions stored in lpp_index, which is in accordance with Theorem 2.11.

The algorithm then iterates through the directive sequence, appending letters to the prefix.
The palindromic closure is performed using the knowledge of the longest palindromic prefixes
followed by distinct letters, as we did in the proof of Theorem 2.6. When creating the palindromic
closure, we add one letter and then look for the longest palindromic suffix formed with the added
letter, and then copy the rest of the word in reversed order. However, this process is equivalent to
searching for the longest palindromic prefix followed by the same letter that we added. We have
this information stored in lpp_index, which means that we only have to copy the letters from
the index len(prefix) - lpp_index[dir_seq[i]] - 2 to the beginning, where dir_seq[i] is
the letter that we added from the directive sequence, lpp_index[dir_seq[i]] is the starting
index of the longest palindromic prefix followed by the letter dir_seq[i], and len(prefix) is the
current length of the prefix. The copy process is done by the function complete_from(prefix,
position).

Algorithm 1: Function to generate an episturmian word and compute its associated minimum attractor
from a user-provided directive sequence

1 def pa l indromic_att rac tor ( dir_seq ) :
2 a t t r a c t o r = set ( ) # s e t to s t o r e the a t t r a c t o r
3 p r e f i x = [ ] # p r e f i x o f the generated word
4 lpp_index = {} # indexes o f the l o n g e s t pa l indromic p r e f i x e s

f o l l o w e d by d i s t i n c t l e t t e r s
5
6 for i in range ( len ( dir_seq ) ) :
7 p r e f i x . append ( dir_seq [ i ] ) # add l e t t e r to p r e f i x
8 to_index = len ( p r e f i x )−1
9 i f dir_seq [ i ] in lpp_index : # the l e t t e r has a l r eady appeared

10 _complete_from ( pr e f i x , len ( p r e f i x )−lpp_index [ dir_seq [ i ] ] −2)
11 else :
12 _complete_from ( pr e f i x , len ( p r e f i x ) −1)
13 lpp_index [ dir_seq [ i ] ] = to_index # update the l i s t o f p r e f i x e s
14 a t t r a c t o r = set ( lpp_index . va lue s ( ) )
15 return pre f i x , a t t r a c t o r
16
17 # func t i on to compute the pa l indromic c l o s u r e o f a g iven s t r i n g
18 def _complete_from ( pr e f i x , p o s i t i o n ) :
19 index = p o s i t i o n − 1
20 while index != −1:
21 p r e f i x . append ( p r e f i x [ index ] )
22 index −= 1
23 return p r e f i x
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3.2 Pseudostandard words
Second, we designed and implemented an algorithm to generate antipalindromic prefixes of

the pseudostandard sequence based on the given prefix of the directive sequence, and its minimal
attractor in accordance with Theorem 2.17 (Algorithm 2). The input is again the finite prefix of
the directive sequence dir_seq, the output is the generated word prefix and its attractor stored
in attractor. To generate the prefix, we use the longest antipalindromic prefixes followed by
distinct letters (stored in lap_index) and the function anticomplete_from(prefix, position)
that generates the antipalindromic closure analogously to the previous program. After the copy
process, we add the third, mirrored, position to the attractor.

Algorithm 2: Function to generate a pseudostandard word and compute its associated minimum attractor
from a user-provided directive sequence

1 def ant ipa l i ndromic_at t rac to r ( dir_seq ) :
2 a t t r a c t o r = set ( ) # s e t to s t o r e the a t t r a c t o r
3 p r e f i x = [ ] # p r e f i x o f the generated word
4 lap_index = {} # indexes o f the l o n g e s t an t i pa l indromic p r e f i x e s

f o l l o w e d by d i s t i n c t l e t t e r s
5
6 for i in range ( len ( dir_seq ) ) :
7 p r e f i x . append ( dir_seq [ i ] ) # add l e t t e r to p r e f i x
8 to_index = len ( p r e f i x )−1
9 i f dir_seq [ i ] in lap_index : # the l e t t e r has a l r eady appeared

10 _anticomplete_from ( pr e f i x , len ( p r e f i x )−lap_index [ dir_seq [ i
] ] −2)

11 else :
12 _anticomplete_from ( pr e f i x , len ( p r e f i x ) )
13 lap_index [ dir_seq [ i ] ] = to_index
14 a t t r a c t o r = set ( lap_index . va lue s ( ) )
15 # adding the t h i r d p o s i t i o n to a t t r a c t o r
16 i f ( len ( lap_index . va lue s ( ) ) == 1) :
17 a t t r a c t o r . add ( len ( p r e f i x )−lap_index [ dir_seq [ 0 ] ] −1)
18 else :
19 a t t r a c t o r . add ( len ( p r e f i x )−lap_index [ abs(1−dir_seq [ 0 ] ) ] −1)
20 return pre f i x , a t t r a c t o r
21
22 # func t i on to compute the an t i pa l indromic c l o s u r e o f a g iven s t r i n g
23 def _anticomplete_from ( pr e f i x , p o s i t i o n ) :
24 index = pos i t i on −1
25 while index > −1:
26 p r e f i x . append ( abs(1− p r e f i x [ index ] ) )
27 index −= 1
28 return p r e f i x

3.3 General attractor verifier
We then developed and implemented an algorithm to verify whether the given set of positions

forms an attractor of the given word (Algorithm 3). This program takes a list word and a set of
positions attractor as an input and verifies if the positions form an attractor of the given word.
The output is the shortest factor that does not have an occurrence crossed by any of the positions
from attractor. If all the factors are covered, it returns None.

The algorithm processes the sections in between the given positions one by one and verifies
the subfactors in the same way as in Example 1.2. It starts from individual letters and gradually
increases the verified factors’ length. Once an occurrence of the given factor is found crossing
a position from the presumed attractor, it is stored in a dictionary, with the given position as value
and the verified factor as key. The program then does not have to look through the word for each
factor, but it verifies first whether it is contained in the dictionary. In case the factor is not in the
dictionary and it does not have an occurrence crossed by any position from the expected attractor,
the factor is returned and the algorithm ends. Otherwise, it ends after processing all the factors
with the conclusion that the given positions form an attractor for the given word.
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Algorithm 3: Verifying whether a given set of positions forms an attractor
1 def v e r i f y _ a t t r a c t o r ( word , a t t r a c t o r ) :
2 a t t r a c t o r = l i s t ( sorted ( a t t r a c t o r ) ) # s o r t s p o s i t i o n s in

inc r ea s in g order
3 s ta r t_o f_sec t i on = 0
4 v e r i f i e d _ f a c t o r s = {} # s t o r e s f a c t o r s crossed by p o s i t i o n s from

a t t r a c t o r
5
6 # v e r i f y i n g s e c t i o n s in between the p o s i t i o n s from a t t r a c t o r
7 for i in range ( len ( a t t r a c t o r ) ) :
8 i f s ta r t_o f_sec t i on != a t t r a c t o r [ i ] :
9 mis s ing_factor = _ver i fy_subfactor s ( s tar t_of_sect ion ,

a t t r a c t o r [ i ] −1 , word , a t t r a c to r , v e r i f i e d _ f a c t o r s )
10 i f miss ing_factor : # some f a c t o r i s not covered
11 return miss ing_factor
12 s ta r t_o f_sec t i on = a t t r a c t o r [ i ]+1 # move to the next s e c t i o n
13
14 # v e r i f y i n g the l a s t s e c t i o n s e p a r a t e l y
15 i f len ( word )−1 != a t t r a c t o r [ −1 ] :
16 mis s ing_factor = _ver i fy_subfactor s ( a t t r a c t o r [ −1]+1 , len ( word )

−1, word , a t t r a c to r , v e r i f i e d _ f a c t o r s )
17 i f miss ing_factor :
18 return miss ing_factor
19 return None
20
21 # re turns s u b f a c t o r o f the word t h a t i s not covered
22 def _ver i fy_subfactor s ( s ta r t , end , word , a t t r a c to r , f a c t o r s ) :
23 # i t e r a t e s through d i f f e r e n t l e n g t h s o f f a c t o r s
24 for i in range (1 , end−s t a r t +2) :
25 for j in range ( s t a r t , end+2− i ) :
26 cur rent = word [ j : j+i ]
27 # i f i t has not been a l r eady v e r i f i e d b e f o r e
28 i f str ( cur r ent ) not in f a c t o r s . keys ( ) :
29 r e s u l t = _cros se s_att rac to r ( current , word , a t t r a c t o r )
30 i f r e s u l t i s not None : # s u i t a b l e occurrence was found
31 f a c t o r s [ str ( cur r ent ) ] = r e s u l t
32 else : # t h i s f a c t o r i s not covered
33 return word [ j : j+i ]
34 return None
35
36 # re turns which p o s i t i o n from a t t r a c t o r i s crossed by the g iven f a c t o r
37 def _cros se s_att rac to r ( f a c to r , word , a t t r a c t o r ) :
38 for p o s i t i o n in a t t r a c t o r :
39 # i t e r a t i n g through p o s s i b l e c r o s s i n g s o f f a c t o r and p o s i t i o n
40 for i in range (max(0 , po s i t i on −len ( word )+len ( f a c t o r ) ) , min( len (

f a c t o r ) −1, p o s i t i o n )+1) :
41 i s_in = True
42 # v e r i f y i n g i n d i v i d u a l l e t t e r s
43 for j in range ( len ( f a c t o r ) ) :
44 i f f a c t o r [ j ] != word [ po s i t i on −i+j ] :
45 i s_in = False
46 break
47 i f i s_ in :
48 return p o s i t i o n
49 return None
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3.4 General attractor generator
In case there are no structural assumptions on the word for which we try to find an attractor,

we are tackling an NP-complete problem. The brute-force approach to this is to try all the combi-
nations of positions and for each verify whether it forms an attractor. We used this simple solution
to test our conjectures (e.g. to disprove pseudostandard words having a minimal attractor of size
2).

The input is a list word and an integer limit, which sets the maximum number of positions
that will be verified whether they form an attractor. The output is the smallest possible list of
positions that form an attractor of the given word. If such combination does not exist (within the
range of the limit), the output is None.

The program uses the attractor verifier from Algorithm 3 and the package itertools to
generate the possible combinations of the given number of positions.

Algorithm 4: Brute-force approach to find a minimum attractor of a given word
1 def f i nd_at t r a c t o r ( word , l i m i t ) :
2 indexes = [ i for i in range ( len ( word ) ) ] # a l l indexes in the word
3 min_attr_size = len ( set ( word ) ) # number o f d i s t i n c t l e t t e r s
4 for a t t r _ s i z e in range ( min_attr_size , l i m i t ) :
5 for combination in i t e r t o o l s . combinat ions ( indexes , a t t r _ s i z e ) :
6 mis s ing_factor = v e r i f y _ a t t r a c t o r ( word , l i s t ( combination ) )
7 # i f the combination forms an a t t r a c t o r
8 i f miss ing_factor i s None :
9 return l i s t ( combination )

10 return None

3.5 Implementation and experimental evaluation
Algorithms 1-4 were implemented in Python 3. The Algorithm 4 uses an external library

itertools. The programs for attractor verification and generation run in exponential time.
We also evaluated the obtained implementation on a standard laptop computer. We found that

the running time of the attractor generator is approximately 1 second to either find an attractor of
standard Sturmian word of length 90, or of a pseudostandard word of length 80, or of a randomly
generated word over 4-letter alphabet of length 20 (although the computation time of the latter
varies from 0.5 second to 6 seconds). The limits of the program are very tight, as the generation
of the minimal attractor of a randomly generated word over 2-letter alphabet of length 100 takes
several minutes, and for 3-letter alphabet it already takes more than an hour. For longer words,
the program is practically unusable.

We used the algorithms to obtain valuable insights into the form of attractors of episturmian
and pseudostandard words. We were able to test our conjectures on larger datasets and alternatively
provide counter-examples.
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Conclusion
Our thesis studied string attractors, a recently introduced concept unifying the theory of

dictionary compressors. String attractors provide a unified framework to rigorously study and
compare the power of various classes of compression methods, including those based on Lempel-
Ziv or the Burrows-Wheeler transform.

The primary focus of our work regarded combinatorics on words – to identify the form of an
attractor within a specific class of sequences and prove its minimality. We have newly discovered
such results for two distinct categories of infinite aperiodic sequences, both of which were generated
using pseudopalindromic closures.

Firstly, we discovered the smallest attractor of size 3 for the prefixes of pseudostandard se-
quences. We worked with antipalindromic closures and formally proved the attractor’s minimality.

Secondly, we determined a minimal attractor of size 2 of the pseudopalindromic prefixes of
standard complementary-symmetric Rote sequences. This subset of generalized pseudostandard
sequences is generated through a specific combination of palindromic and antipalindromic closures,
and is connected to standard Sturmian sequences through modular letter difference. We formally
proved the attractor’s minimality, highlighting that its existence does not trivially follow from the
previously known attractors of Sturmian sequences.

Another major contribution of the thesis is the design, implementation, and experimental
evaluation of several algorithms to obtain valuable observations to help us determine the form of
the attractors, and then to test hypotheses on larger datasets. Firstly, we have presented programs
capable of generating the prefixes of episturmian and pseudostandard sequences and their attrac-
tors. Both programs use pseudostandard closures, and generate attractors in the form outlined in
this work. Additionally, we constructed an attractor verifier that uses a dictionary of factors to
assess whether a given set forms an attractor for a given word. Lastly, the latter program is used
as a part of a general attractor generator, which essentially utilizes a brute force approach to test
which smallest set forms an attractor of a given word. While the software was developed primarily
with the goal of building our intuition and examples for the theoretical section, its applicability
goes beyond the context of this thesis.

The thesis opens a series of questions for further investigation. Building upon our current
understanding of the minimum attractor for the given classes of infinite words, we can ask how the
dictionary compression algorithms will behave for the prefixes of these sequences. Specifically, if the
size of the attractor remains constant as the prefix length increases, can we expect the compression
measure of a given method to also remain constant? What structure will the compressed words
have?

Another compelling open problem are the attractors of generalized pseudostandard sequences,
which are generated by an arbitrary sequence of pseudopalindromic closures. These infinite words
encompass various sequences, including the well-known Thue-Morse sequence, whose attractors are
already known. However, the construction of these attractors remains unrelated to closures.

Results concerning attractors in the field of combinatorics on words are rather isolated. This
work contributes as one of the building blocks to construct a more comprehensive theory of attrac-
tors of infinite words, with potential applications extending to the broader field of bioinformatics.
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