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Introduction

The flow of the components dissolved in the groundwater is a complex process that includes a lot
of factors. To describe it, the transport-reactive problem is used. This problem describes the effect of
different transport and reaction processes on the concentrations of dissolved components.

The main goal of this project is to implement the alternative solution of the transport problem in the
TRM2D software. This means that this project focuses on the transport part of the transport-reaction
problem. To solve it separately from the reaction part, it is necessary to study the Operator splitting
method that divides the transport-reactive problem into two parts. This method allows to apply the
appropriate numerical methods separately to each part.

The transport part is presented by the system of differential equations for each transported component
separately. To find a solution, various numerical methods can be used, such as the Finite difference
method and the Finite volume method. Each method has its own advantages and disadvantages. In this
project we will apply both methods to the transport part of the transport-reactive problem and compare
it with the solution implemented in the TRM2D software. On the basis of the theoretical study, we will
suggest our own version of the solution and implement it in the TRM2D software. The implementation
of the new solution assumes the preliminary study of the structure and functionality of the software,
which is necessary for the successful implementation of the new solution.

The study is divided into four main chapters: mathematical-physical description of transport pro-
cesses in a porous medium, the numerical solution of the transport part of the advection-diffusion equa-
tion using different numerical methods, description of the TRM2D software, and modification of the
software with subsequent testing.
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Chapter 1

Transport processes in a porous medium

The first chapter is based on the Milan Hokr’s textbook [1], which describes transport processes.
It contains the basic mathematical-physical description of transport processes in a porous medium. In
this chapter, we will introduce equations describing the flow of the solution and the transport of dis-
solved substances through the advection and hydrodynamic dispersion processes. These equations play
an essential role in solving the transport-reaction problem.

1.1 Continuous model of a porous medium

The porous medium may be defined as a structure consisting of solid material grains or fibers (ma-
trix) and the empty pores between them which can be filled with air or water. This project focuses on
a solution-saturated porous medium. Due to the microscopic nature of pores we must introduce the
continuous model of the porous medium. This model is based on considering the whole medium as a
continuous material with a porosity coefficient and defining all values per volume. This approach allows
us to simplify the description of transport processes in a porous medium. To use a continuous model, we
need to propose the terms representative elementary volume (REV) and porosity ratio.

The term REV denotes the minimum volume required to overcome microscopic inhomogeneity. This
volume must be much larger than the size of a single pore but sufficiently smaller than the entire volume
of the medium. A porosity ratio is the name for a coefficient n that denotes the ratio between the volume
of pores in REV and the entire REV

n =
volume of pores in REV

REV volume
(1.1)

at a certain point of the medium.

1.2 Fluid flow in a porous medium

The fluid flow in the saturated porous medium is defined by two differential equations: the equation
of motion and the balance of quantity equation. In our case, the equation of motion is called Darcy’s law.

1.2.1 Darcy’s law

Darcy’s law defines the relationship between the movement of the fluid and the action force. It was
derived from an experiment measuring the flow of water through an inclined tube that connects two
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tanks placed at different heights. This tube is filled with a porous filter and can be interpreted as a one-
dimensional porous medium. The experiment introduces two values that are essential for describing fluid
flow through porous material: hydraulic head and Darcy’s velocity.

The water flow Q represents the volume of water flowing through a tube per unit of time and can be
calculated as

Q = K ·
S · (ϕ1 − ϕ2)

L
, (1.2)

where K is defined as the coefficient of permeability (it depends on the characteristics of the porous
material and the fluid), S is a cross-sectional area of the tube, L is the tube length, and the term in
brackets is the difference between the heights of the tanks. The symbol ϕ refers to the hydraulic head,
the value assigned to the ends of the tube. The term hydraulic head is also known as piezometric height
because it can be represented as the height of the water column pushed up by pressure at a certain point
of the medium. It can be calculated as

ϕ = z +
p
ρg
, (1.3)

where z is the vertical coordinate, p is pressure, ro is density, and g is gravitational acceleration. This
equation includes the potential of the gravitational field (z-position) and the potential of pressure (hydro-
static pressure of water above the given point). The term p

ρg , which denotes the pressure expressed in
units of length (as a height of a water column), is called the pressure head.

Then we will look at the flow of water more closely by introducing its local description. The term
water flux q may be defined as the ratio of the volume of flowing water and the size of the area perpen-
dicular to the direction of the flow q = Q

S . Furthermore, considering the limit in the longitudinal direction
as −∆ϕ = limL→0

ϕ1−ϕ2
L , allows us to derive Darcy’s law in the form

q = K∆ϕ. (1.4)

The value q is called Darcy‘s velocity because it is expressed in units of velocity. However, this
value does not describe the macroscopic movement of any point in the water flow, but rather the amount
of water flowing through any cross-sectional area of the medium.

To determine the velocity of a selected water particle or any given solute, the same model as in
Darcy’s experiment is used. Let us suppose a tube segment with the length L, then its volume is V = S L.
The volume of water flowing through this segment is Vw = n · S L, where n is the porosity coefficient.
Considering the water flux q, the period of flow of this volume Vw through the cross-sectional area is

t =
Vw
S q
=

nL
q
. (1.5)

Therefore, the velocity of the flow through the tube segment of length L is equal to

v =
q
n
, (1.6)

and is called the average pore water velocity.
Considering multidimensional cases, the hydraulic head and Darcy’s velocity vector are functions of

spatial coordinates and time, related by Darcy’s law in the form

q = −K∆ϕ, (1.7)

where K is a tensor that defines hydraulic conductivity depending on the properties of the porous medium
and the fluid itself.
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1.2.2 Balance of quantity equation

In any selected volume, the change in water mass must be equal to the change in water mass passed
across the boundary and to the change in sinks and sources, i.e.

∂

∂t

∫
V

ρndV = −
∫
∂V

ρq · dS +
∫
V

PρdV, (1.8)

where P is density of sinks (-) or sources (+) defined as a volume of liquid pushed into a unit volume
of the porous material per unit of time. This equation can be rewritten using Gauss‘s theorem, after
rearrangement

∂(ρn)
∂t
+ div(ρq) = Pρ. (1.9)

The term with time derivation denotes the change in density and porosity caused by the dependence of
liquid density on concentrations of solutes or by the thermal expansion effect. In this project, to describe
the transport of solutes, we will use a simplified model with constant density and porosity, therefore
equation (1.9) will be reduced to

div u =
P
n
. (1.10)

Now, equations (1.7) and (1.10) can be used as a system of two equations with two unknown functions
q, ϕ, or modified by combining them into a single equation

∇ · (K∇ϕ) = P (1.11)

with one unknown function ϕ.

1.3 Transport of solutes

The transport of solutes in a porous medium occurs through many processes, e.g. advection, diffu-
sion, dispersion, sorption, chemical reactions and radioactive decay. In this project, we will focus on
three basic transport processes of a significantly different nature: advection, molecular diffusion, and
mechanical dispersion.

The amount of the solute in the solution is represented by the concentration c, expressed as the mass
of the solute per unit volume of solution (water).

1.3.1 Advection and diffusion-dispersion processes

Advection is defined as the transfer of a substance caused by the movement of the entire solution.
The amount of transferred substance can be easily derived from the Darcy flow velocity: the mass of
substance passed through a unit area per unit time is

qadv
c = cq. (1.12)

Diffusion-dispersion processes induce the movement of the solutes due to a concentration gradient,
from a region of high concentration to a region of low concentration. Considering a porous environment,
we will express the diffusion-dispersion processes as two processes: molecular diffusion and mechanical
dispersion.

Molecular diffusion is influenced by the microscopic structure of the environment. Mechanical dis-
persion is caused directly by the inhomogeneity of the velocity in pores, i.e. in some places the solution
moves faster and in some slower than the average pore velocity u.

11



The intensity of molecular diffusion is independent of the flow and is given by the value of the dif-
fusion coefficient Dm. This coefficient varies for different substances and can depend on other influences
such as temperature. The diffusion in the fluid is described by Fick’s law

∂c
∂t
= Dm∆ = Dm

∑
i

∂2c
∂x2

i

, (1.13)

where Dm is a scalar coefficient that indicates the isotropy of the process. In a porous medium, the
diffusion is influenced by the geometry of pores described by the tensor of tortuosity T. Using this
tensor, the tensor of molecular diffusion can be obtained

Dm = DmT (1.14)

Mechanical dispersion is described by the same equation as molecular diffusion but with a different
coefficient. This coefficient is called a mechanical dispersion tensor D f and depends on the flow velocity.

The combined molecular diffusion and dynamic dispersion form a total dispersion process called
hydrodynamic dispersion. It is characterized by the tensor of hydrodynamic dispersion Dh

Dh = Dm + D f . (1.15)

The effect of molecular diffusion and mechanical dispersion on the total dispersion depends on the
properties of the porous medium, specific boundary conditions, and the scale of observation. The char-
acter of the total dispersion is given by the Peclet number

Pe =
vd
Dm
, (1.16)

where v is the average pore velocity of the solution [m/s], d is the average grain size [m], and Dm is the
molecular diffusion coefficient [m2/s]. The small Peclet number (Pe<0.01) corresponds to the dominant
effect of molecular diffusion, while the large Peclet number (Pe>104) corresponds to the dominant effect
of mechanical dispersion. Molecular diffusion is usually neglected for Pe> 20.

1.3.2 Advection-diffusion equation

At this point, the advection-diffusion equation will be introduced. The total mass flow qc affected by
advection and hydrodynamic dispersion is

qc = n(cu + Dh∇c). (1.17)

Considering this equation, the balance of the solute in the solution is defined by the equation

∂

∂t

∫
V

ncdV = −
∫
∂V

qc · dS +
∫
V

(P+c∗ + P−c)dV +
∫
V

rdV for any V, (1.18)

where P+ and P− express the positive and negative parts of the solution source density function (1.9).
These parts represent the fact that the solution with the given concentration c∗ is injected, while the
solution with concentration c corresponding to the required value of the function c(x, t) is pumped out
from a given point. The term r describes the amount of the solute created or destructed by other processes
(e.g., chemical reactions).
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By standard adjustment of integrals, equation (1.18) can be transformed to a differential equation

∂c
∂t
= −∇ · (cu) + ∇ · (Dh∇c) +

1
n

(P+c∗ + P−c) +
r
n
, (1.19)

which is called the advection-dispersion equation. It can be modified by deriving the product in the
advection term and replacing the term ∇ · u with equation (1.10), reducing the term P−

∂c
∂t
= −u · ∇c + ∇ · (Dh∇c) +

P+

n
(c∗ − c) +

r
n
. (1.20)

1.3.3 Initial and boundary conditions

As concentration is a time function, it is necessary to define the initial conditions. In our case, it is
the distribution of the concentrations of the solutes at the beginning of the investigated time interval

c(x, 0) = c0(x) ∀x ∈ Ω, (1.21)

where Ω ⊂ R3 is the volume where the problem is solved. If transport is not conservative (e.g., affected
by chemical reactions), the concentrations of the solutes that react with the examined solute must be
defined in the same way.

Dirichlet boundary condition
The Dirichlet boundary condition specifies the concentration on a given part of the boundary Γ1 = ∂Ω

c(x, t) = cD(x, t) ∀x ∈ Γ1. (1.22)

In the case of processes with the dominant effect of advection, this condition is defined on the part of the
boundary where the direction of flow of the solution is inward.

Neumann boundary condition
The Neumann boundary condition applies when only the dispersion flow is specified

(Dh∇c) · u = qdisp ∀x ∈ Γ2. (1.23)

This condition is used when the flow through the boundary is zero, which means that the boundary is im-
permeable. Another option is a case where the advection effect on the part of the boundary with outward
flow is dominant, i.e., the concentrations on both sides of the boundary are equal.

Cauchy boundary condition
The Cauchy boundary condition specifies general conditions for the prescribed flow

(cu + Dh∇c) · u = qdisp ∀x ∈ Γ3. (1.24)

Using this condition, it is possible to derive conditions for various specific situations. For example, if
there is zero flow through the boundary, the flow velocity u is zero, so the condition transforms into a
Neumann boundary condition.
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Chapter 2

Numerical model

The second chapter is based on Milan Hokr’s textbook [1], bachelor project of A. Sokolenko [3], and
doctoral thesis of P. Jiranek [5]. In this chapter, we will focus on the numerical solution of the transport
part of the advection-diffusion equation (1.20) formulated in the first chapter. In order to achieve this
goal, two different methods will be used: the Finite Difference Method and the Finite Volume Method.

2.1 Operator Splitting Method

Before starting to solve the transport part, we need to describe general reasons for it and introduce
the method that will allow us to deal and solve it separately from the reaction part.

In the first chapter, the advection-diffusion equation (1.20) was formulated as follows:

∂c
∂t
= −u · ∇c + ∇ · (Dh∇c) +

P+

n
(c∗ − c) +

r
n
. (2.1)

This equation defines the change in concentration caused by internal processes and water inflow
P+. Advection and diffusion terms include the spatial derivative: advection is defined by the velocity
vector field and diffusion is defined by the concentration gradient. Meanwhile, the reaction term has no
derivatives, which means that it evolves only in time and not in space. It will be difficult to solve such
an equation on the whole at once because each part requires different mathematical methods. Due to this
reason, we need to introduce the Operator Splitting Method.

The operator splitting method is used to solve complex differential equations consisting of two or
more parts of different nature that require different mathematical approaches. The general idea is to
rewrite the overall evolution operator as a sum of evolution operators corresponding to each part of the
equation. Thus, a complex equation can be divided into sub-equations that are solved separately and then
collected together. It involves the discretization of time into intervals and the sequential solution of each
equation on these intervals. The results of one equation are used as the initial value for the other.

According to this method, the equation (2.1) can be rewritten using operator A which represents all
operations applied to the concentration

∂c
∂t
= Ac. (2.2)

In our case, operator A is defined as a sum of two operators

A = T + R, (2.3)

where T represents operations in the transport part and R represents operations in the reaction part

T c = −u · ∇c + ∇ · (Dh∇c) +
P+

n
(c∗ − c), (2.4)
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Rc = r(c). (2.5)

Therefore, the transport-reaction problem will be split into two sub-equations:

∂u(t)
∂t
= Tu(t),

∂v(t)
∂t
= T v(t),

(2.6)

where t ∈ [tn, tn+1] and tn+1 = tn + ∆t. Firsty, the transport sub-equation is solved for the time step
∆t, then the reaction sub-equation is solved for the same time step ∆t using the results of the transport
sub-problem as an initial value. Finally, the results of the reaction sub-equation are applied as the initial
value to the transport sub-equation for the next time step.

2.2 Finite Difference Method

2.2.1 Basic characteristics of FDM

The main idea of the FDM is to approximate the derivatives in a differential equation with finite dif-
ferences. The medium is discretized into a mesh consisting of a finite number of points. The differences
use the values of the searched function at adjacent points for the approximation of the derivatives. As a
result, we obtain a mesh of points containing the approximated values of the function.

The differences are represented by special difference formulae. For the first derivative, there are
three basic types of difference formulae: forward, backward, and central. The main difference between
these types is the selection of points for approximation. As an example, we will approximate the spatial
derivative of the concentration function c using each formula. Let us consider the mesh consisting of
three points xn−1, xn, and xn+1 with a ∆x as a distance between them.

The forward difference formula uses for the approximation the values of the function in points xn and
xn+1:

∂c
∂x
=

cn+1 − cn

∆x
+ O(∆x). (2.7)

The backward difference formula uses the values of the function in points xn-1 and xn:

∂c
∂x
=

cn − cn−1

∆x
+ O(∆x). (2.8)

Together, these two types of difference formulae are called one-sided difference formulae. However,
a more accurate approximation can be obtained by using the central difference formula that uses the
values of the function at the points xn−1 and xn:

∂c
∂x
=

cn+1 − cn−1

2∆x
+ O(∆x2). (2.9)

It is also possible to formulate the central difference formula for the second derivative of the function
c:

∂2c
∂x2 =

cn+1 − 2cn + cn−1

∆x2 + O(∆x2). (2.10)

The results of this approximation will be used later in our equation.
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2.2.2 Application of FDM to transport problem

After the application of the OSM to the equation (1.20), the following equation is obtained

∂c
∂t
= −u · ∇c + ∇ · (Dh∇c) +

P+

n
(c∗ − c). (2.11)

This equation can be rewritten for the 2D problem as a sum of differential functions as follows:

∂c
∂t
= −(vx

∂c
∂x
+ vy
∂c
∂y

) + Dh(
∂

∂x
·
∂c
∂x
+
∂

∂y
·
∂c
∂y

) +
P+

n
(c∗ − c). (2.12)

After rearrangement, the equation will take the following form:

∂c
∂t
= −vx

∂c
∂x
− vy
∂c
∂y
+ Dh,x

∂2c
∂x2 + Dh,y

∂2c
∂y2
+

P+

n
(c∗ − c). (2.13)

The terms vx and vy are the components of the velocity vector u. They are defined as

vx = −
1
n

Kx
∂ϕ

∂x
,

vy = −
1
n

Ky
∂ϕ

∂y
.

(2.14)

Since the evaluation of the velocity components is contained in a separate part of the TRM2D software,
we will use them as they are and will not substitute them in the equation (2.11).

Furthermore, the equation (2.11) should be transformed according to the amount of different con-
centration components. Considering m ∈ N concentration components the equation can be rewritten as
follows

∂cI

∂t
= −vx

∂cI

∂x
− vy
∂cI

∂y
+ Dh,x

∂2cI

∂x2 + Dh,y
∂2cI

∂y2
+

P+

n
(c∗I − cI), (2.15)

where I ∈ 1, ...,m.
In the first chapter, advection was defined as the transfer of a substance caused by the movement

of the entire solution. It means that it always depends on the orientation of the velocity vector. To
approximate this process, it is appropriate to use the upwind scheme that respects the orientation of the
process by considering the value of the transported concentration to be equal to the concentration in the
direction opposite to the velocity vector. The forward difference formula (2.6) is used for movement in
the positive direction (v > 0), and the backward difference formula (2.7) is used for the opposite direction
(v < 0).

The diffusion is not dependent on the movement of the whole solution as it induces the movement
of the solutes due to a concentration gradient. It allows us to use the central difference formula (2.8) for
approximation. After the substitution of difference formulae, the equation (2.13) will take the following
form:

∂cI,i, j(t)
∂t

= −vx ·
cI,i, j(t) − cI,i−1, j(t)

∆x
·

1
2

(1 + sgn(vx)) − vx ·
cI,i+1, j(t) − cI,i, j(t)

∆x
·

1
2

(1 − sgn(vx))

−vy ·
cI,i, j(t) − cI,i, j−1(t)

∆y
·

1
2

(1 + sgn(vy)) − vy ·
cI,i, j+1(t) − cI,i, j(t)

∆y
·

1
2

(1 − sgn(vy))

+Dh,x
cI,i+1, j(t) − 2cI,i, j(t) + cI,i−1, j(t)

∆x2 + Dh,y
cI,i, j+1(t) − 2cI,i, j(t) + cI,i, j−1(t)

∆y2
+

P+

n
(c∗I,i, j − cI,i, j),

(2.16)

where i and j are the indices of the internal points of the mesh.
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The concentrations and velocity of the flow at the boundary points are defined by the Dirichletian
condition at the entire boundary

cI,i, j = c̄I,i, j, (2.17)

where I is the index of the concentration component, and i, j are the indices of the boundary points of
the mesh.

2.3 Finite Volume Method

2.3.1 Basic characteristics of FVM

The FVM is based on dividing the medium into a finite number of control volumes (also called
grid cells) and approximating the integral form of differential equation over each of these volumes. The
variables of the given function are replaced by the average values in the control volumes. Each term of
the equation could be separately approximated in a suitable way.

The terms containing a divergence are converted to surface integrals using the Gauss’s theorem.
These terms are then considered as fluxes through the surfaces of each finite volume. It is important to
calculate the flux through the given surface in the same way for both adjacent cells. In that case, the FVM
satisfies the conservation law and guarantees the conservation of the given quantity, which is considered
as the advantage of the FVM over the FDM.

2.3.2 Application of the FVM to the transport problem

To apply the FVM to the transport problem, we will use the advection-diffusion equation (1.19).
After deriving the transport part using the OSM and considering multiple concentration components, the
following equation is obtained:

∂cI

∂t
= −∇ · (cIu) + ∇ · (Dh∇cI) +

1
n

(P+c∗I + P−cI) +
r
n
. (2.18)

Firstly, we will divide the medium Ω into a set T of finite volumes or cells. The equation (2.18) is then
integrated over the control volume K ∈ T∫

K

∂cI(t, x)
∂t

= −

∫
K

div(cIu) +
∫
K

div(Dh · grad(cI) · n) +
∫
K

1
n

(P+c∗ + P−c). (2.19)

We assume that function c is continuously differentiable in space and time. Therefore, it is possible to
apply the Gauss’s theorem

d
dt

∫
K

cI(t, x) = −
∫
∂K

cIu · n+
∫
∂K

Dh · grad(cI) · n+
1
n

∫
K

(P+c∗ + P−c). (2.20)

Then we must introduce a discrete variable c̄I,K which represents the average value of concentration of
Ith solute in the cell K

c̄I,K(t) =
1

m(K)

∫
K

cI(t, x)dx, (2.21)

where m(K) is the volume of cell K.
Let us consider two adjacent cells K and L. It is possible to rewrite the advection term as∫

σK|L

cIu · n = fK|L ∗ c̄I,K|L, (2.22)
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where fK|L is a water flux at the boundary σK|L between K and L. It is defined as

fK|L = n · m(σK|L) · vx, (2.23)

if the cells are adjacent at the direction of x, and as

fK|L = n · m(σK|L) · vy, (2.24)

if in the direction of y. The term m(σK|L) represents the area of the boundary between K and L, vx
and vy are the elements of average pore velocity vector defined by equation (1.6), and n is the porosity
coefficient.

Considering isotropic diffusion, it is possible to approximate the diffusion term in the following way∫
σK|L

D · grad(cI) · n = m(σK|L) · dI ·
c̄I,K − c̄I,L

dK|L
, (2.25)

where dI is a diffusion coefficient related to the Ith transported concentration component, c̄I,K and c̄I,L

are average concentrations in K and L, and dK|L is a distance between centers of K and L.
For the reasons described in Subsection 2.2.2, it is appropriate to apply the upwind scheme to the ad-

vection term. After the substitution of advection and diffusion terms, the equation (2.18) can be rewritten
in the following way:

n · m(K) ·
dc̄I,K(t)

dt
= −
∑
σ∈εK

fσc̄I,K(t) ·
1
2

(1 + sgn( fσ)) −
∑
σ∈εK

fσc̄I,L(t) ·
1
2

(1 − sgn( fσ))

+
∑
σ∈εK

m(σ) · dI ·
c̄I,L(t) − c̄I,K(t)

dK|L
+ m(K) · P+Kc+I,K(t) − m(K) · P−KcI,K(t),

(2.26)

where εK is a whole boundary of cell K. In the advection term, if the direction of flow through the
boundary σ is inward, then we consider the concentration of the adjacent cell L, if the direction of flow
is outward, then the concentration in K itself. However, this equation defines the change of concentration
in the internal cells only and does not consider the boundary conditions.

The initial and Dirichlet boundary conditions are defined as

c̄I,K(0) =
1

m(K)

∫
K

cI(o, x,K ∈ T ,

c̄+I,K(0) =
1

m(σ)

∫
σ

cI(t, x, σ ⊂ ∂Ω
(2.27)

After modification of equation (2.26) using the boundary conditions (2.27), the following equation is
obtained

n · m(K) ·
dc̄I,K(t)

dt
= −

∑
σ∈εK∩εint

fσc̄I,K(t) ·
1
2

(1 + sgn( fσ)) −
∑

σ∈εK∩εint

fσc̄I,L(t) ·
1
2

(1 − sgn( fσ))

−
∑

σ∈εK∩εext

fσc̄I,K(t) ·
1
2

(1 + sgn( fσ)) −
∑

σ∈εK∩εext

fσc+I,K(t) ·
1
2

(1 − sgn( fσ))

+
∑

σ∈εK∩εint

m(σ) · dI ·
c̄I,L(t) − c̄I,K(t)

dK|L
+
∑

σ∈εK∩εext

dΓ,KdI · dI · (c̄+I,K(t) − c̄I,K(t))

+ m(K) · P+Kc+I,K(t) − m(K) · P−KcI,K(t),

(2.28)

where εint is a set of all internal boundaries of the medium, εext is a set of all external boundaries of the
medium, dΓ,K is the diffusion boundary flow coefficient representing the ratio of the external boundary
area m(σ), σ ∈ εK ∩ εext to the distance dK|σ between the center of the cell K and the boundary σ. This
equation considers boundary conditions and therefore defines the change of concentration in all cells of
the grid.
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2.4 Solution of the resulting system of ordinary differential equations of
the first order

Since the TRM2D software uses the FVM during the simulation of groundwater flow movement, we
will solve the system of ordinary differential equations derived using the FVM.

For approximation of time derivative of function c̄I,K(t) in every cell K ∈ T of the grid we will apply
the Euler’s method to the system of equations (2.28).

n · m(K) ·
c̄I,K(t + ∆t) − c̄I,K(t)

∆t
= −

∑
σ∈εK∩εint

fσc̄I,K(t) ·
1
2

(1 + sgn( fσ)) −
∑

σ∈εK∩εint

fσc̄I,L(t) ·
1
2

(1 − sgn( fσ))

−
∑

σ∈εK∩εext

fσc̄I,K(t) ·
1
2

(1 + sgn( fσ)) −
∑

σ∈εK∩εext

fσc+I,K(t) ·
1
2

(1 − sgn( fσ))

+
∑

σ∈εK∩εint

m(σ) · dI ·
c̄I,L(t) − c̄I,K(t)

dK|L
+
∑

σ∈εK∩εext

dΓ,KdI · dI · (c̄+I,K(t) − c̄I,K(t))

+ m(K) · P+Kc+I,K(t) − m(K) · P−KcI,K(t),
(2.29)

where ∆t is the selected time step. The ordered set of values{
c̄I,K(t)|t ∈ (o, ...,T ),K ∈ T , I ∈ {1, ...,mI}

}
(2.30)

is then a solution of the transport problem.
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Chapter 3

TRM2D software

The third chapter contains the description of the TRM2D software and the implementation of the
main objective of this bachelor project which was specified in Section 2 as an extension of the transport
calculation method with the diffusion effect as an alternative solution of the transport problem.

3.1 Basic description of TRM2D software

The first subsection of the third chapter describes the TRM2D software in the context of simulating
the transportation of solution components. It includes the description of the configuration file structure
and methods that provide the main calculations of the transport problem.

TRM2D is a mathematical-physical software written in the language C++. It was developed for the
simulation of transport and reaction processes occurring during groundwater flow movement. Its basic
idea consists in combination of the PhreeqcRM geochemical library with 2D transport in the regular
rectangular mesh of elements (also volumes/cells). The software is designed to support the settings of
the boundary conditions in the form of the inflow and outflow of the solution volume per unit of time.
It is also possible to set the changes in the boundary conditions during the calculation process. The
same feature is implemented for the reaction module, i.e., it is possible to set the initial and boundary
compositions of the solute and its changes during the calculation. The detailed solute compositions are
stored in the Phreeqc configuration files. All these configurations are collected in the XML configuration
file, which is read as input after the start of program compilation.

When the calculations are completed, the output is written in the form of XML file and could be
extended with the CSV files for the transport and reaction module separately.

3.2 Description of configuration file

As mentioned in the previous subsection, the configuration file contains the definitions of the trans-
port and reaction initial and boundary conditions. It is presented in the form of XML file. This file is
stored in XML format. The format of the file implies the syntax in which the settings are written, i.e. the
set of tags nested within each other in the form of tree. The most general, root tag <TRM> is divided into
several child tags. Each of these child tags contains information for different purposes.

The tag <LogFile> is responsible for the log files that are used to store the internal information
about software run. It specifies their format and the level of logging.

20



The tag <Quantities> specifies units of measurement for each quantity. The program uses quanti-
tyID to identify the type of data it is currently reading. It is also important to ensure that the quantities in
the XML file are consistent with those in the Phreeqc configuration files.

The tag <TransportModule> contains the key data for the simulation of transport processes. It
defines the time parameters, such as time interval, time step, and the moment of boundary conditions
change; the grid parameters, such as the number of rows and columns, and volumes of the cells; initial
and boundary conditions for each cell. The composition of the particular solution within the initial or
boundary condition is represented by the map value defined under <ReactionModule> tag. The content
of the <TransportModule> will be later corrected to implement the main project’s goal.

The tag <ReactionModule> defines the configurations for the reaction module that is based on the
Phreeqc library. It includes the name of the Phreeqc database, map values and names of the Phreeqc
files containing the information about solution composition for initial and boundary conditions, and the
values of physical quantities, e.g. temperature, pressure, saturation, density.

The tag <ResultFile> specifies the output configurations. Among the directory path and name of
XML file, it is also possible to extend the output with the CSV files or separately define the frequency of
the recordings from a reaction and transport modules.

3.3 Description of program execution process

3.3.1 Loading of input data

The program starts with loading of the configuration XML file in the trm_main.cpp file. The name
of the file is set as the parameter of the load_inputs(...) method defined in the trm_main class.
The method uses the TinyXML library for the interpretation of the configuration file. This library builds
a Document Object Model (DOM) and provides access to its elements. The data from each tag are
collected and stored in the memory.

Since this bachelor project focuses on the transport part of the TRM2D software, the most impor-
tant part of the load_inputs(...) method relates to the reading of <TransportModule> tag. The
transport module of the TRM2D software is implemented as a class that contains all the methods and
variables needed for the transport calculation process. The instance of this class is called trans and is
declared in the trm_main class.

The initialisation of the transport module starts with the setting of metadata using the method trans.
set_metadata(...), which reads the attributes of the <TransportModule> tag. The method trans.
set_grid_size(...) reads the time settings from the <Time> tag. Grid parameters are loaded by the
trans.set_grid_size(...) method from the <GridSize> tag.

The parameters of the cells, i.e., volume, porosity, initial and boundary conditions, are stored as
children of the <GridElements> tag. Volume and porosity are loaded using the init_variable(...)
method of the trm_main class. It is a multipurpose method that allows store the loaded data in the form
of sparse/dense vectors and matrices, depending on the requirements of the user. This method compares
the transport module grid parameters with the attributes of the loaded tag, and if they match, initialises
the data using the init_from_string(...) method.

Finally, the initial and boundary conditions are loaded within the init_components(...) method.

3.3.2 Activation of transport module

The next and the main stage of program execution takes place in the calculate() method of the
trm_main class which goes right after the load_inputs(...) method in the trm_main.cpp file. This
method includes all the processes related to the calculations in the transport and reaction modules. It
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activates the transport module, sets physical quantity values, initiates the reaction module and boundary
conditions, and prepares all data structures required for calculation. When all preparations are done, it
starts the calculation in the for cycle, which is representing the Operator splitting method. The transport
module calculation occurs in the trans.calculate(...) method defined in trm_trans.cpp.

Before analysis of the trans.calculation() method, it is necessary to describe the activation of
the transport module and the preparation of the data structures required for calculation. The transport
module is activated by calling the trans.activate() method.

The activation starts with the calculation of temporary position matrices needed for the initialisation
of the variables. Then the transport module calculates diagonal matrix volume_diag_inverse contain-
ing the inversed volumes of the grid cells, multiplied by the porosity coefficient. This matrix is set in the
init_volumes() method of the trm_trans class based on the data read in the configuration file. After
all, it calculates the vector of the hydraulic head and the matrix of grid flow for the time of boundary
conditions change.

After activation of the transport module, the method activate_boundary_conditions() is used
for initialisation of the boundary conditions for calculation. This method applies the method trans.
set_boundary_conditions(...)with component names and corresponding conditions as parameters
to set the boundary conditions in the transport module.

The last preparation before the start of calculation cycle is creating the empty vector of double type
called transport_concs. This vector will be filled with the concentrations of the components in the
react.activate() method and then is used as a parameter for the trans.calculate(...) method.

3.3.3 Calculation of transport

The calculation of transport is executed within the trans.calculate(...) method defined in the
trm_trans.cpp file. In accordance with the OSM, this method is invoked for each time step. As
parameters, it requires the time of the calculation, concentrations of the transport components, names of
transport components, and time of boundary conditions change.

The data from the transport_concs vector, represented within the trans.calculate() method
as concentrations[], are assigned to the transport_components_mat matrix declared as a part of
the transport module. The number of rows in this matrix is equal to the number of cells ncells, while the
number of columns is equal to the number of components. All concentrations of transport components
are stored in this matrix.

The main calculations are executed by the following expression on the line 33 in Appendix A

1 transport_components_mat += volume_diag_inverse * (in_out_flow_modif * in_comps *
2 curr_time_step + grid_flow_modif * transport_components_mat *curr_time_step);.

To describe this expression, we will rewrite the equation (2.29) transformed to a similar form

c̄I,K(t + ∆t) =c̄I,K(t) +
1

n · m(K)
(−

∑
σ∈εK∩εint

fσc̄I,K(t) ·
1
2

(1 + sgn( fσ))∆t −
∑

σ∈εK∩εint

fσc̄I,L(t) ·
1
2

(1 − sgn( fσ))∆t

−
∑

σ∈εK∩εext

fσc̄I,K(t) ·
1
2

(1 + sgn( fσ))∆t −
∑

σ∈εK∩εext

fσc+I,K(t) ·
1
2

(1 − sgn( fσ))∆t

+
∑

σ∈εK∩εint

m(σ) · dI ·
c̄I,L(t) − c̄I,K(t)

dK|L
∆t +

∑
σ∈εK∩εext

dΓ,KdI · dI · (c̄+I,K(t) − c̄I,K(t))∆t

+ m(K) · P+Kc+I,K(t)∆t − m(K) · P−KcI,K(t)∆t),
(3.1)
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and compare them. The TRM2D model by default considers a grid with an impermeable external bound-
ary. Therefore, the effect of advection through the external boundary needs to be combined with the
source term.

In the expression (3.1), the term in_out_flow_modif * in_comps * curr_time_step repre-
sents the inflow of the concentration given by the boundary conditions. The matrix in_out_flow_modif
is a sparse matrix that contains the data about the amount of injected solution P+K . This informa-
tion is defined by the user under the <InOutFlow> tag in the configuration XML file. The matrix
in_out_flow_modif is element-wise multiplied by the sparse matrix in_comps of the same size as
transport_components_mat. This matrix contains the concentrations of the components taken from
the boundary conditions and corresponds to the c+I,K in equation (3.1). When comparing the term
in_out_flow_modif * in_comps * curr_time_step with the equation (3.1), it is equivalent to
m(K) · P+Kc+I,K)(t)∆t which in fact represents both terms −

∑
σ∈εK∩εext fσc+I,K(t) · 1

2 (1− sgn( fσ))∆t +m(K) ·
P+Kc+I,K(t)∆t. Here the author of the original software made identity between boundary conditions and
sources/sinks because they both bring/take water into/out of one cell from the outside. This makes the
code simpler but does not limit the class of solvable problems very much.

The term grid_flow_modif * transport_components_mat *curr_time_step represents the
advection effect through internal boundaries combined with the outflow. The matrix grid_flow_modif
is a square matrix of size ncellsxncells that contains the values of water flux between each cell and
the value of outflow. This matrix is calculated by the software in the init_grid_flow(...) method
during the initialisation of the grid in the load_inputs() method. The grid_flow_modif matrix
is multiplied by the transport_components_mat. When comparing the term grid_flow_modif
* transport_components_mat *curr_time_step with the equation (3.1), it corresponds to
−
∑
σ∈εK∩εint fσc̄I,K(t) · 1

2 (1 + sgn( fσ))∆t −
∑
σ∈εK∩εint fσc̄I,L(t) · 1

2 (1 − sgn( fσ))∆t −
∑
σ∈εK∩εext fσc̄I,K(t) ·

1
2 (1 + sgn( fσ))∆t − m(K) · P−KcI,K(t)∆t.

As can be seen from the comparison, the calculation method implemented in the TRM2D software
does not consider the effect of diffusion. Therefore, as an alternative solution of the transport part, we
have decided to improve the TRM2D calculation method by adding the diffusion effect.
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Chapter 4

Alternative solution of transport problem
in TRM2D software

4.1 Implementation of the alternative solution

The Section 4.1 describes the changes made in the software in order to add the diffusion effect into
calculation method. The formula of concentration change caused by diffusion only can be derived from
the equation (3.1)

c̄I,K(t+∆t) = c̄I,K(t)+
1

n · m(K)
(
∑

σ∈εK∩εint

m(σ)·dI ·
c̄I,L(t) − c̄I,K(t)

dK|L
∆t+

∑
σ∈εK∩εext

dΓ,KdI ·(c̄+I,K(t)−c̄I,K(t))∆t).

(4.1)
Therefore, to consider the diffusion effect during the calculation, it is necessary to add two terms: the
diffusion flow between the cells of the grid, i.e., through the internal boundaries σ ∈ εint∑

σ∈εK∩εint

m(σ) · dI ·
c̄I,L(t) − c̄I,K(t)

dK|L
∆t, (4.2)

and the diffusion flow through the external boundaries σ ∈ εext∑
σ∈εK∩εext

dΓ,KdI · (c̄+I,K(t) − c̄I,K(t))∆t). (4.3)

The variables c̄I,K(t) (and also c̄I,L(t)) and c̄+I,K(t) are already implemented in the software and repre-
sented by the matrices transport_components_mat and in_comps.

To implement the internal diffusion (4.2), we need to define two additional parameters of the grid:
the sizes of all internal boundaries σ ∈ εint, and the distances between the centers of adjacent cells. Since
the TRM2D software calculates the transport in the regular rectangular mesh of cells, these parameters
can be obtained using the longitudinal and transverse sizes of each cell.

Because the advection part of the model considered impermeable boundaries, the software did not
provide any option to define boundary conditions and associate them to individual edges of the mesh.
We have decided to let the user specify the geometrical diffusion flow coefficient dΓ,K , which represents
the intensity of the inflow of the concentration by the diffusion effect.

The last value that is missing in terms (4.2) and (4.3), is the diffusion coefficient dI related to the Ith
transported concentration component.

To specify these values, it is appropriate to use the same configuration XML file as for other param-
eters of the grid.
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4.1.1 Modification of the configuration file and reading methods

The longitudinal and transverse parameters of the cells will be represented by two vectors, deltaX
and deltaY. Since these values are parameters of grid cells, we created the tags <DeltaX> and <DeltaY>
as children tags of the <GridElements> tag. The new tags contain the indexed values of the size of each
column and row of the cell. Using the indices allows us to define different size values for each row and
column of the grid.

To store these values in the transport module, we have declared two new variables of the component
class in the transport_module class in the trm_trans.h file. The component class contains a set of
variables and methods for working with matrices. It is also needed to modify the transport_module::
get_variable() method in trm_trans.cpp so that it returns newly added variables.

Then we modified the trm_main::load_inputs() method in trm.cpp to load the data for the
new variables. We used the method init_variable(), which was modified to load the data into newly
added variables. Also, the condition was added to check the number of elements in deltaY and deltaY.
These numbers should match the number of columns and rows defined under <GridSize> tag in the
XML file.

By analogy with the deltaX and deltaY, we have added the variable in_out_diff of type compo-
nent to the transport_module class in the trm_trans.h file. This variable stores the sums of diffusion
boundary flow coefficients dΓ,K for each cell (specifically the values of

∑
σ∈εK∩εext dΓ,K and it is defined

in the XML file under the new tag <InOutDiff> in the <GridElements> tag. This tag uses index data
format that allows to define different coefficients for each cell of the grid. After modification, the method
init_variable() is used to load the data into the new variable.

To define the diffusion coefficients related to the specific component of the solution, the new tag
<DiffusionCoefficients> was added to the <TransportModule> tag. The coefficients are repre-
sented by the set of tags <DiffusionCoefficient> with a name of the component as an attribute.
It is also possible to set the default coefficient that will be assigned to all components without a sep-
arately specified coefficient. To load these coefficients into the transport module, the new method
load_diff_coeffs(...) was added to the transport_module class in the trm_trans.cpp. This
method stores the values into new variable diff_coeffs of type map<string, double> added to the
transport_module in the trm_trans.h file.

4.1.2 Preparation of matrices for calculation

The preparation of matrices for calculation was implemented within the trm_main::calculate()
method during the activation of the transport module in the transport_module::activate()method.

The sizes m(σ), σ ∈ εint of all internal boundaries are calculated in the transport_module::
init_cell_side_sizes() method. The size of the boundary between cells K and L is derived as
the arithmetic average of the adjacent boundary sizes of each cell. The size of the cell boundary σ is
obtained by the division of the cell volume by the longitudinal (or transverse) side of the cell represented
by deltaX (or deltaY). All these sizes are stored in the cell_side_sizes sparse matrix declared as
part of the transport_module class. This matrix has ncells rows and ncells columns. By default, it
is filled with zeros. Depending on the mutual position of the cells, the boundary sizes are stored in this
matrix. As a result, the matrix cell_side_sizes contains the sizes of all boundaries between each
couple of cells of the grid. Distances between the centres of adjacent cells are obtained in a similar
way. The new sparse matrix distances_inverse is declared in the transport_module class. The
initialisation of this matrix is done in the transport_module::init_distances() method, which
sets the size ncells x ncells, fills it with zeros, and calculates the distances between cell centres as
the arithmetic average of the deltaX (or deltaY) values depending on the mutual position of the cells.

25



According to the equation (4.2), these values are divisors, so it is appropriate to inverse them here. As a
result, the matrix distances_inverse contains the inverse distances between all the centres of adjacent
cells of the grid.

The matrix of diffusion boundary flow coefficients
∑
σ∈εK∩εext dΓ,K is declared in the transport module

as the sparse matrix in_out_diff_mat. To initialise this matrix, the method transport_module::
init_in_out_diff_mat() was created. This method sets the size ncells x ncells, fills the matrix
with zeros, and assigns the values from the in_out_diff component to the diagonal of the new matrix
in_out_diff_mat.

The matrices cell_side_sizes and distances_inverse are then combined in the sparse ma-
trix diff_flows_mat declared in the transport module. The diff_flows_mat matrix defines the
values of the diffusion flow through internal boundaries. This matrix is initialised in the new method
transport_module:: init_diff_flows_mat(). This method provides element-wise multiplication
of the cell_side_sizes and distances_inverse matrices. Then it counts the sum of the elements
in each row, assigns it to the temporary vector row_sums, and puts that vector with a negative sign on the
diagonal of the diff_flows_mat matrix. After all, the matrix in_out_diff_mat is subtracted from
the diff_flows_mat to consider the boundary conditions.

All the methods described above are executed during the activation of the transport module. However,
at that moment the reactive module is not activated yet and the exact components of the transport are un-
known. The initialisation of the sparse matrix diff_coeffs_mat containing diffusion coefficients dI is
done once after reactive module activation, in the main calculation cycle of trm_main::calculate().
The matrix has a size equal to the number of actual components defined in Phreeqc and increased by
one. During the initialisation, we compare the component names assigned to loaded coefficients with the
names of the solution components, and fill the matrix diff_coeffs_mat according to the actual order
of components.

4.1.3 Modification of calculation method

When all required matrices are prepared, it is possible to modify the transport calculation method
transport_module::calculate(...).

To implement the term (4.2) representing diffusion flow through internal boundaries, the matrix
diff_flows_mat is multiplied by the transport_components_mat and diff_coeffs_mat. The
result of this multiplication is then scalar multiplied by the time step curr_time_step. Therefore, the
term (4.2) will be implemented as

∑
σ∈εK∩εint m(σ) · dI ·

c̄I,L(t)−c̄I,K (t)
dK|L

∆t = diff_flows_mat · transport_components_mat·
diff_coeffs_mat · curr_time_step.

(4.4)

The term (4.3) representing diffusion flow through the external boundaries, will be obtained by the matrix
multiplication of matrices in_out_diff_mat, in_comps, and diff_coeffs_mat. The resulting matrix
is then scalar multiplied by the curr_time_step. As a result, the term (4.3) will be implemented as
follows ∑

σ∈εK∩εext dΓ,KdI · (c̄+I,K(t) − c̄I,K(t))∆t) = in_out_flow_modif · in_comps·
diff_coeffs_mat · curr_time_step.

(4.5)

When these terms are put together, it is possible to add them to expression on line 33 in Appendix A

1 transport_components_mat += volume_diag_inverse * (in_out_flow_modif * in_comps *
2 curr_time_step + grid_flow_modif * transport_components_mat * curr_time_step +
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3 diff_flows_mat * transport_components_mat * diff_coeffs_mat * curr_time_step +
4 in_out_diff_mat * in_comps * diff_coeffs_mat * curr_time_step);.

This expression now calculates the transport of the components in the solution considering the diffusion
effect.

4.2 Testing of implemented solution

Subsection 4.2 describes the testing process of the extended TRM2D software on a 1D problem.
The testing is performed by comparison of the analytical solution described in the T. Havelka bachelor’s
project [6] and the numerical solution of the diffusion equation implemented in the TRM2D software.

4.2.1 Description of analytical solution

The analytical solution of the diffusion equation considers a model of particle propagation through a
thin, infinitely long tube. This process is described by the one-dimensional equation of diffusion

∂

∂t
φ(x, t) = D

∂2

∂x2φ(x, t) (4.6)

which defines the change in diffusion according to the change in time. The explicit solution of this
equation is obtained in the form:

φ(x, t) =
M

2
√
πDt

e−
x2

4Dt (4.7)

where M is the amount of substance injected at the point x0 = 0 of the considered tube at time t0 = 0, D
is the diffusion coefficient.

4.2.2 Formulation of testing problem

The testing problem is represented by a tube of length 5 m and volume 25 m3. The porosity is set
to 0.2 by default, so the volume of water in tube is equal to 5 m3. The tube is divided into the set of n
cells according to the selected length ∆x of cell. We consider three types of approximation: 5 cells with
∆x = 1 m, 25 cells with ∆x = 0.2 m, and 125 cells with ∆x = 0.04 m. Each type requires different time
step ∆t to meet the stability conditions, for ∆x = 1 m it was set to 0.1 days, for ∆x = 0.2 m it was set to
0.05 days, and for ∆x = 0.04 m it was set to 0.01 days.

As an initial condition, the first cell contains water with the amount of chlorine equal to 1224 mg.
Therefore, concentration value in the first cell depends on the selected volume of the cell. Other cells
are filled with clear water, i.e., the water without dissolved substances. All solutions are defined in the
chlorine_5.phr, chlorine_25.phr, chlorine_125.phr, and water.phr files.

Since the numerical solution is represented by the average value of concentration in a cell, we will
compare it with the analytical solution at the center point of the cell. Before comparing these values, it is
important to set the initial time of analytical solution, because at time t = 0, the analytical solution is rep-
resented by the unit impulse, which has to distribute for some time to correspond with the concentration
value in the first cell.

TRM2D by default considers impermeable boundary, so the conservation laws within the grid are
always met. However, the analytical solution is distributed over the whole x axis, so it was needed
to choose an optimal time interval, which would allow to observe the spread of the solution before it
will start to be significantly influenced by the concentration outflow over the boundary. We decided to
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Figure 4.1: Comparison of initial conditions for 5, 25, 125 cells.

calculate the concentrations for the time interval < 0, 10 > and compare the values at the time t = 10
days.

The results for the chlorine concentrations are stored in the "Cl Results.csv" file in the "transport"
directory. To test the calculations, for all 3 approximations we tried two different diffusion coefficients:
0.02 and 0.04.

4.2.3 Comparison of analytical and numerical solutions

When the calculations are finished, the results of each run are compared with the analytical solution.
We decided to measure the difference between the analytical and numerical solutions using the l2-norm
defined as:

∥c1 − c2∥2 =

√√√ N∑
i−1

(c1,i − c2,i)2 (4.8)

where c1 and c2 are the vectors of chlorine concentrations from the analytical and numerical solution
respectively.

Now it is possible to collect and measure the results from the previous tests using l2-norm:

∆x [m] ncells [1] ∆t [d] l2 [mg/l]
1 5 0.1 2,15e1

0.2 25 0.05 2,34e1
0.04 125 0.01 1,82e-1

Table 4.1: Basic numerical parameters and l2-norm of difference between numerical and analytical solu-
tion for dI = 0.02.
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Figure 4.2: Comparison of numerical results for diffusion coefficient 0.02 using 5, 25, and 125 cells with
the corresponding analytical solutions (t = 10 days).

Figure 4.3: Comparison of numerical results for diffusion coefficient 0.04 using 5, 25, and 125 cells with
the corresponding analytical solutions (t = 10 days).
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∆x [m] ncells [1] ∆t [d] l2 [mg/l]
1 5 0.1 2,83e1

0.2 25 0.05 1,93e1
0.04 125 0.01 1,26e-1

Table 4.2: Basic numerical parameters and l2-norm of difference between numerical and analytical solu-
tion for dI = 0.04.

The results in the tables above express dependency between the accuracy of the results and the length
of the ∆x. For both diffusion coefficients, the l2-norm decreases with the refinement of the grid, i.e., the
lower ∆x is set, the more precise results are obtained.



Conclusion

The main goal of this bachelor project was to implement an alternative solution of the transport
problem in the TRM2D software. For this purpose, the mathematical and physical model describing
the movement of groundwater was studied. It includes the study of transport and reaction processes
in the porous medium and solving of the transport-reactive problem using various numerical methods.
Among the methods explained under this project were the Operator splitting method, the Finite difference
method, and the Finite volume method. The most important method for this project was the FVM,
because the calculation of transport in the TRM2D software is based on this method.

After study of theoretical ground, we became acquainted with the TRM2D software. We studied the
structure, functionality, and main calculation methods. Working with software, we proposed an alterna-
tive method to calculate transport of the components considering the diffusion effect. The implementation
of the new solution included the modification of existing methods and the creation of new ones. After
the implementation of the new calculation method, all changes were listed and explained in this project.
We tested the new functionality of the software by comparing the analytical solution with the numerical
solution calculated by the software. As a result, we confirm that the software works correctly, and that
the new solution corresponds to the analytical solution.
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Appendix A

Original implementation of the
transport_module::calculate() method

1 void transport_module::calculate(unsigned t_index, double time, vector<double >&
concentrations , vector<string >& component_names , unsigned curr_bc_time , vector<
double >& mapping)

2 {
3 if (has_state(DISABLED) || has_state(DISABLED_CALCULATION)) {
4 return;
5 }
6

7 unsigned col, row;
8 // initialization for t_index 1 is enough, in next steps content of the first

column of transport_component_mat is kept
9 if (t_index == 1) {

10 for (row = 0; row < ncells; row++) {
11 transport_components_mat(row, 0) = get_component_data("

TransportComponents", t_index - 1, "0")(row, 0);
12 }
13 }
14 unsigned c = 0;
15 for (col = 1; col < transport_components_mat.n_cols; col++) {
16 for (row = 0; row < ncells; row++) {
17 transport_components_mat(row, col) = concentrations[c];
18 c++;
19 }
20 }
21

22 // concentrations of in components taken from boundary conditions
23 arma::sp_mat in_comps(ncells, transport_components_mat.n_cols);
24 for (col = 0; col < transport_components_mat.n_cols; col++) {
25 ostringstream oss;
26 oss << col;
27 string col_str = oss.str();
28 arma::sp_mat comp_data = in_components[curr_bc_time][col_str].

get_data_sparse();
29 for (unsigned row = 0; row < ncells; row++) {
30 in_comps(row, col) = comp_data(row, 0);
31 }
32 }
33 transport_components_mat += volume_diag_inverse * (in_out_flow_modif * in_comps

* bc_times_steps[curr_bc_time] + grid_flow_modif * transport_components_mat *
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bc_times_steps[curr_bc_time]);
34

35 // change mapping sent to the reaction module
36 mapping = arma::conv_to<vector<double >>::from(transport_components_mat.col(0));
37

38 // change concentration sent to the reaction module
39 c = 0;
40 for (col = 1; col < transport_components_mat.n_cols; col++) {
41 for (row = 0; row < ncells; row++) {
42 concentrations[c] = transport_components_mat(row, col);
43 c++;
44 }
45 }
46

47 if (output->is_step_for_output(t_index, time_end_id) && output->
get_cell_output_type() != "none") {

48 vector<string> tmp_component_names = component_names;
49 tmp_component_names.insert(tmp_component_names.begin(), 1,

get_first_component().get_name());
50

51 vector<string >::size_type ncomps = tmp_component_names.size();
52 for (vector<string >::size_type cn = 0; cn < ncomps; cn++) {
53 arma::mat tmp_comp(ncells, 1);
54 for (row = 0; row < ncells; row++) {
55 tmp_comp(row, 0) = transport_components_mat(row, cn);
56 }
57

58 component trans_comp;
59 trans_comp.copy_metadata(get_first_component());
60 ostringstream oss;
61 oss << cn;
62 trans_comp.set_id(oss.str());
63 trans_comp.set_name(tmp_component_names[cn]);
64 trans_comp.set_data(tmp_comp , true);
65 trans_comp.set_time(time);
66 add_component(trans_comp , "TransportComponents", t_index);
67 }
68 }
69 log(BASIC) << "Transport for time step ID ’" << t_index << "’ (time " << time <<

") calculated.";
70 }
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Appendix B

Original version of configuration XML file

1 <?xml version="1.0" encoding="UTF-8"?>
2 <TRM xsi:schemaLocation="DHI.PASTRM C:\MyFiles\TACR\Epsilon02\TransportSim\PasTRM\

Example5\PasTRMv10_02.xsd" xmlns="DHI.PASTRM" xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance">

3

4 <LogFile filePrefix="Log\Log_" fileSuffix=".log" logDetails="
BasicComponentMessages" />

5

6 <Quantities >
7 <None quantityID="0">1 </None>
8 <Time quantityID="1">day </Time>
9 <Length quantityID="2">m </Length>

10 <Volume quantityID="3">m3 </Volume>
11 <Flow quantityID="4">m3/d </Flow>
12 <Temperature quantityID="31">K </Temperature >
13 <Pressure quantityID="32">kPa </Pressure >
14 <Mass quantityID="33">kg </Mass>
15 <Concentration >
16 <Liquids quantityID="101 ">mg/l </Liquids>
17 <Phases quantityID="102">mg/kg </Phases>
18 <Gases quantityID="103">mol/l </Gases>
19 </Concentration >
20 </Quantities >
21

22 <TransportModule name="TRM" version="2020.01.13" type="console">
23 <Time quantityID="0">
24 <Init>0</Init>
25 <End>20</End>
26 <Step idTimeStep="0">1</Step>
27 <BorderCondChanges >
28 <Step idTimeStep="10">1</Step>
29 </BorderCondChanges >
30 </Time>
31 <GridSize >
32 <Nrows >40</Nrows>
33 <Ncols>1</Ncols>
34 </GridSize >
35 <GridElements >
36 <Volume typeID="denseVector" dataTypeID="double" Nrows="40" quantityID

="3">
37 <Data>5</Data>
38 </Volume>
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39 <InOutFlow typeID="sparseVector" dataTypeID="double" Nrows="40" quantityID="4"
idTimeStep="0">

40 <IndexData >
41 1 -1
42 40 1
43 </IndexData >
44 </InOutFlow >
45 <InOutFlow typeID="sparseVector" dataTypeID="double" Nrows="40" quantityID="4"

idTimeStep="10">
46 <IndexData >
47 1 0.5
48 5 -1
49 40 0.5
50 </IndexData >
51 </InOutFlow >
52 </GridElements >
53 <GridElements2GridElements >
54 </GridElements2GridElements >
55 <InComponents idTimeStep="0">
56 <Component id="0" name="Pas2Phr" typeID="sparseMatrix" dataTypeID="double"

Nrows="40" quantityID="101">
57 <IndexData >
58 1 100
59 </IndexData >
60 </Component >
61 </InComponents >
62 <InComponents idTimeStep="10">
63 <Component id="0" name="Pas2Phr" typeID="sparseMatrix" dataTypeID="double"

Nrows="40" quantityID="101">
64 <IndexData >
65 5 50
66 </IndexData >
67 </Component >
68 </InComponents >
69 <TransportComponents idTimeStep="0" Time="0">
70 <Component id="0" name="Pas2Phr" typeID="denseMatrix" dataTypeID="double"

Nrows="40" quantityID="101">
71 <Data>
72 3
73 </Data>
74 </Component >
75 </TransportComponents >
76 </TransportModule >
77

78 <ReactionModule name="PhreeqCRM" version="3.3.11-12535" runReactionStep="1">
79 <Nthreads >8</Nthreads >
80 <PhreeqcDatabase directoryPath="inputs">
81 phreeqc.dat
82 </PhreeqcDatabase >
83 <OnInit writeOutput="true" errorHandlerMode="1" componentH2O="false"

rebalanceFraction="0.5" rebalanceByCell="true" useSolutionDensityVolume="false"
setPartitionUZSolids="false" unitsSolution="1" unitsPPassemblage="1"
unitsExchange="1" unitsSurface="1" unitsGasPhase="1" unitsSSassemblage="1"
unitsKinetics="1">

84 <InitCond mapValue="3" directoryPath="inputs">domain3.phr</InitCond >
85 <BorderCond mapValue="100" directoryPath="inputs" idTimeStep="0">bc_amd.phr</

BorderCond >
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86 <BorderCond mapValue="50" directoryPath="inputs" idTimeStep="10">bc_domain2.
phr</BorderCond >

87 </OnInit>
88 <OnActivation initFrom="MapComponent" borderCondChange="true">
89 <InitCond >
90 <MapComponent componentID="0"/>
91 </InitCond >
92 <BorderCond >
93 <IDTimeStep >0</IDTimeStep >
94 <IDTimeStep >10</IDTimeStep >
95 </BorderCond >
96 </OnActivation >
97 <RunCells timeConversion="1.1574e-5" representativeVolume="1" saturation="1"

density="1" pressure="1" temperature="20">
98 <Run idTimeStep="0" time="0">
99 </Run>

100 </RunCells >
101 <PhreeqcOutputs >
102 <RunOutputs directoryPath="Results" prefixFilename="pichem_amd_1D"

writeCells="all" writeSteps="all">
103 <WriteCell id="0"/>
104 <WriteStep id="0"/>
105 </RunOutputs >
106 <DumpFile ></DumpFile >
107 </PhreeqcOutputs >
108 </ReactionModule >
109

110 <ResultFile directoryPath="Results" filename="results.xml" useCsvSubdirs="true">
111 <Transport writeCells="all" writeSteps="all">
112 <LoopStep >2</LoopStep >
113 </Transport >
114 <Reaction writeCells="all" writeSteps="all">
115 <LoopStep >1</LoopStep >
116 </Reaction >
117 </ResultFile >
118

119 </TRM>
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