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Abstrakt: Důležitou součástí matematiky je lineární algebra. QR rozklad se často používá k řešení vý-
počtu matic. Existuje několik metod pro výpočet QR rozkladu, jako je Gram-Schmidtův proces, Hou-
seholderovy transformace a Givensovy rotace. Hlavním cílem této bakalářské práce je porovnat tyto tři
metody QR rozkladu a zjistit, zda paralelizace výpočtu povede k rychlejším a přesnějším výsledkům.
Tyto algoritmy jsou porovnávány pomocí unit testů a benchmarku. Tato studie neprokázala, že paraleli-
zace výpočtů těchto tří metod rozkladu QR vede k rychlejším a přesnějším výsledkům. Dílčí výsledky
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thesis is to compare these three QR decomposition methods and find out whether parallelization of com-
putation will lead to faster and more accurate results. These algorithms are compared via Unit tests and
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Introduction

Sciences such as physics, chemistry, engineering and economy need modern technologies for their
existence and progression. Modern technologies are all around us, they help us in everyday activities.
The main basis of them is mathematics which is one of the most useful science in our lives, sometimes we
even don’t know about its presence. Modern technologies help with important and difficult mathematical
procedures and calculations, without them everything would be slower and take a longer time. An impor-
tant part of mathematics is linear algebra, which is used in most modern mathematics. It studies vectors,
vector space, system of linear equations and linear transformation. The linear transformation can be writ-
ten as a matrix. The QR decomposition is a decomposition of matrix into an orthogonal matrix Q and an
upper triangular matrix R. The QR decomposition is often used to solve the linear least squares problem
and is the basis for a particular eigenvalue algorithm, the QR algorithm. There are several methods for
computing the QR decomposition such as the Gram-Schmidt process, Householder transformations and
Givens rotations. Each of them has some advantages and disadvantages, main differences are in accuracy
and calculation time. These algorithms are compared via unit tests tests and benchmark. In unit tests,
the mathematical correctness of individual algorithms in which different testing approaches are tested.
The benchmark examines not only the error rate of each algorithm but also the computational time. This
test is performed successively on different number of cores. The main aim of this bachelor thesis is to
compare these three QR decomposition methods and find out whether parallelization of computation will
lead to faster and more accurate results.

All algorithms are programmed using the C++ language with its basic libraries. An additional library
is Template Numerical Library (TNL), mathematical library containing a variety of already implemented
functions. One of them, for example, is the function “dot”, which performs a scalar product. This library
increases the user-friendly aspect of the implementation. In addition, other tools such as Inscape and
Gnuplot, which is used for graph creation, are used in the work.

The bachelor thesis consists from a theoretical and a practical part. The theoretical part contains
all the essential concepts, which are important to understand the whole principle of QR decomposition.
The study of individual algorithms and understanding of the basic principles of these algorithms is an
integral part of the bachelor thesis. All the algorithms that are suitable for performing QR decomposition
are described here. The practical part deals not only with the implementation of individual algorithms
for QR decomposition but also with benchmarking and Unit testing. The implementation of individual
algorithms is shown using pseudocodes. The results of each test are evaluated and shown in graphs.
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Chapter 1

Basic terms

This first chapter is a review of the known definitions and general principles of QR decomposition
that must be mentioned for the following chapters.

1.1 Matrix

A matrix A of n rows and m columns (matrix of type n × m) is a set of rows (generally complex)
written in the form.

A =



a11 a12 a13 ... a1n

a21 a22 a23 ... a2n

a31 a32 a33 ... a3n
...

...
...
. . .

...

am1 am2 am3 ... amn


, (1.1)

where a jk ∈ C, j = 1, . . . ,m, k = 1, . . . , n. [1] In the matrix, various mathematical operations can be
performed. Then, the matrix can be added, subtracted (if they are of the same type) and multiplied (only
if the number of columns of the matrix A is the same as the number of rows in the matrix B) [2].

1.1.1 Complex and real matrices

A complex matrix is a matrix that has some complex numbers among its elements. The complex
matrix contains a complex/imaginary part, which is denoted by the letter i, and real numbers. Operations
with complex matrices are equivalent to real matrices. An important operation with complex matrices
is the search for the determinant. The determinant indicates whether the matrix has a solution at all [3].
On the other hand, a real matrix is a matrix whose entries are real numbers (a number that can be used to
measure a continuous one-dimensional quantity) [4].

1.1.2 Square and rectangular matrices

"A matrix A is said to be square if it has the same number of rows and columns" [4]. The following
example shows a square matrix:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (1.2)
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On the other hand, a matrix in which the number of rows is not equal to the number of columns is called
rectangular matrix. [4]

1.1.3 Triangular and diagonal matrices

A triangular matrix is a square matrix in which elements below and/or above the diagonal are all
zeros. The triangular matrices are divided into two groups: upper triangular matrix and lower triangular
matrix. An upper triangular square matrix is special type of matrix where all elements below the diagonal
are zeros and a lower triangular matrix has all elements above the diagonal zero. [5] "A matrix A 1.2 is
referred to as diagonal if all entries outside the main diagonal are zero" [6].

1.1.4 Orthogonal matrix

A square matrix A is orthogonal if and only if its transpose is the same as its inverse, i.e. AT = A−1,
where AT is the transpose of A and A−1 is the inverse of A [7].

1.1.5 Frobenius norm

The definition of the Frobenius norm is as follows

∥A∥F =

√√√ m∑
i

n∑
j

∥ai j∥
2 =

√
tr(AT A) =

√√√min{m,n}∑
i=1

σ2
i (A), (1.3a)

where σi(A) are the singular values of A and tr is abbreviation for trace. It denotes the sum of elements
on the diagonal of this matrix, i.e. the sum of elements a11, a22, . . . , ann, where n is the number of
columns of the matrix A [8].

1.2 QR decomposition

The QR decomposition is one of the fundamental calculations and also very useful [9].
Definition: "A pair of matrices Q and R is called a QR-decomposition of matrix A if

A = QR, (1.4)

where Q is the orthogonal matrix and R the upper triangular matrix"[10].
QR decomposition can reduce the difficulty of some numerical calculations, such as solving linear

systems. In this work, the QR decomposition will be performed according to the following algorithms:
the Gram-Schmidt Orthogonalization Process, Householder refelctions and Givens rotation. [10]

1.2.1 Gram-Schmidt orthogonalization process

The first method can be used for the QR matrix decomposition is the Gram-Schmidt orthogonaliza-
tion process. This process is generally not computationally intensive. First, let us denote the input matrix
as M. The matrix must be square. Then we denote the columns of matrix M as vectors, which we will
denote by u1, u2, u3, ...un. In the next step, the set U = {u1, u2, u3, ....un} will be orthogonalized, that
is, we are looking for a set V = {v1, v2, v3, ...vn} for which it will be true that the vectors are mutually
orthogonal and each vector from the set V can be written as a linear combination of vectors from the set
U. [11]

In general, the Gram-Schmidt orthogonalization process can be performed in several steps.
12



1. We set the vector u1 equal to the vector v1. [11]

u1 = v1 (1.5)

2. Using the vector u2, which is from the set U, we then create a vector v2, which is orthogonal to v1,
in the orthogonal set V . [11]

Figure 1.1: Gram-Schmidt orthogonalization process-setting the second vector of an orthogonal set

Figure 1.1 shows the vector u1, which is identical to the vector v1. The representation of the vector
v2 is using the vector u2 and a multiple of the vector v1. [11] The vector v2 is then equal to:

v2 = u2 − λv1 (1.6)

To get the vector v2, we need to know the multiple of v1, which we denote by the Greek letter λ.
This is obtained using the scalar product, which is then adjusted. [11]

We use uT v to denote the product of vectors u and v. Because of the orthogonality of vectors v1
and v2, the following equation for the scalar product will hold [11]:

vT1 v2 = 0 (1.7)

Next, we substitute equation (1.6) into (1.7) and obtain:

vT1 v2 = v
T
1 (u2 − λv1) (1.8a)

vT1 v2 = v
T
1 u2 − λ(vT1 v1) (1.8b)

0 = vT1 u2 − λ(vT1 v1) (1.8c)

λ =
vT1 u2

vT1 v1
(1.8d)

v2 = u2 −
vT1 u1

vT1 v1
v1 (1.8e)

3. Let us use the vector u3 to find the vector v3 orthogonality to both v1 and v2. [11]

Figure 1.2 shows not only the vectors v1 and v3, which are orthogonal to each other, but also the
vector v3, which has the same property of the vectors v1 and v2. [11]

u3 = λ1v1 + λ1v2 + v3 (1.9a)

v3 = u3 − λ1v1 − λ2v2 (1.9b)

13



u3

v3
λ2v2

λ1v1

v2

v1

Figure 1.2: Gram-Smith orthogonalization process-setting the third vector of an orthogonal set

From the orthogonality conditions for vectors v1, v3 and v3, v2 we find the unknown multiples
λ1,λ2. [11]

vT1 v3 = 0 (1.10a)

vT3 v2 = 0 (1.10b)

Then we evaluate vT1 v3, considering the vector v3 of the form (1.9b).

vT1 v3 = (u3 − λ1v1 − λ2v2)T v1 (1.11a)

vT1 v3 = uT
3 v1 − λ1(vT1 v1) − λ2(vT2 v1) (1.11b)

0 = uT
3 v1 − λ1(vT1 v1) (1.11c)

λ1 =
uT

3 v1

vT1 v1
(1.11d)

Multiplying vector v3 by vector v2 we find λ2.

vT3 v2 = (u3 − λ1v1 − λ2v2)T v2 (1.12a)

vT3 v2 = uT
3 v2 − λ1(vT1 v2) − λ2(vT2 v2) (1.12b)

0 = uT
3 v2 − λ2(vT2 v2) (1.12c)

λ2 =
uT

3 v2

vT2 v2
(1.12d)

v3 = u3 −
uT

3 v1

vT1 v1
v1 −

uT
3 v2

vT2 v2
v2 (1.12e)

4. To work with other vectors from the set U up to un, we use a similar procedure. From the relations
already mentioned, all vector multiplicities of the constructed orthogonal set V can be deduced
and calculated. [11]

vn = un −
uT

3 v1

vT1 v1
v1 −

uT
n v2

vT2 v2
v2 − ... −

n−1∑
k=1

uT
n vn−1

vTn−1vn−1
vn−1

 (1.13)
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1.2.2 Householder reflections

Theorem 1." Each matrix A ∈ Rm×n can be decomposed by s = min{n,m − 1} Householder matrix to
QR product and the following expression applies." [10]

Hs . . .H2H1A = QT A =


(
R1
0

)
m > n

(R1, 0) m < n
R m = n

(1.14)

Then get the matrix A ∈ Rm×n

A =


a11 ... a1n

a21 ... a2n
...
. . .

...

am1 ... amn

 (1.15)

As with the Gram-Schmidt orthogonalization process, the Householders reflections can be displayed
through the following steps. [10]

1. Firstly, the Householder matrix H1 must be set exactly so that H1A has only zeros in the first
column. The only exception is the position in the matrix (1, 15). That is denoted by ∗. [10]

H1A =


∗ ∗ . . . ∗

0 ∗ . . . ∗
...
...
. . .

...

0 ∗ . . . ∗

 . (1.16)

For the following step we denote matrix A(1) := H1A.

2. Let us construct the Householder matrix H2 such that H2A(1) is 0 in the second column "below
position (2,2)", observing the requirement of the first step, i.e. [10]

A(2) := H2A(1) =



∗ ∗ ∗ . . . ∗

0 ∗ ∗ . . . ∗

0 0 ∗ . . . ∗
...
...
...
. . .

0 0 ∗ . . . ∗


(1.17)

The matrix H2 is obtained as follows: First, we construct a Householder matrix of size (m − 1) ×
(n − 1)

Ĥ2 := In−1 −
2

uT
n−1un−1

× (un−1uT
n−1) (1.18)

such that

Ĥ2


c22
c32
...

cm2

 =

∗

0
...

0

 , (1.19)
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And that is defined as

H2 :=


1 0 . . . 0
0
... Ĥ2
0

 . (1.20)

This gives the matrix A(2) = H2A(1). Analogously, the next steps follow.

3. Creation a general Householder matrix[10],

For k ≤ s
Ĥk := In−k+1 −

2
uT

n−k+1un−k+1
× (un−k+1uT

n−k+1) (1.21)

of the size (m − k + 1) × (n − k + 1) such that

Ĥk


ckk
...

cmk

 =

∗

0
...

0

 . (1.22)

Defined as

Hk :=
(
Ik−1 0

0 Ĥk

)
, (1.23)

It could be evaluated A(k) = HkA(k−1).

In this manner, after s steps, the matrix A(s) is obtained that has the shape of the upper triangle,
being just the matrix R. Because of

A(k) = HkA(k−1) k = 2, . . . , s, (1.24)

It follows that

R = A(s) = HsA(s−1) = HsHs−1A(s−2) = . . . = HsHs−1 · · ·H2H1A, (1.25a)

QT = HsHs−1 · · ·H2H1. (1.25b)

The required QR decomposition
R = QT A, (1.26)

i.e.
A = QR. (1.27)

1.2.3 Givens rotations

The last algorithm used is known as Givens rotation. Givens rotations are orthogonal transformations
that provide the elimination of individual elements of the vector x ∈ Rn. For a pair of indices i, j and

16



angle θ, this rotation is defined as follows [10]:

G(i, j, θ) =



1
. . .

1
cos θ sin θ

1
. . .

1
− sin θ cos θ

1
. . .

1



(1.28)

A plane is chosen in the space Rn, which is defined by the j-th and i-th coordinate in Rn and in this space
a rotation is created with the magnitude of the angle θ , which is clockwise. The vector y will be defined
as the Givens rotation at coordinates i, j and angle θ , so that for the k-th position [10]:

Due to the shape of the matrix G, if we salt it with some vector

x =


x1
x2
...

xn

 , (1.29)

then only the i-th and j-th position of the vector x will change, the rest will remain unchanged. Sub-
sequently, the renaming s = sin θ and c = cos θ will be used, where the following formula will apply
[10]

c =
xi√

x2
i + x2

j

(1.30)

s =
x j√

x2
i + x2

j

(1.31)

It means that

cxi + sx j =
x2

i√
x2

i + x2
j

+
x2

j√
x2

i + x2
j

=

√
x2

i + x2
j (1.32)

and then

yi =
√

x2
i + x2

j (1.33a)

y j = 0 (1.33b)

θ = arctan
(
−x j/xi

)
(1.33c)

Givens rotations can be used to gradually eliminate all the elements below the diagonal to obtain QR
decompostion. [10]
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1.3 TNL library

TNL,Template Numberical Library, is a open-source library that is being developed at CTU. This
library consists of several building blocks that facilitate the development of both efficient numerical
solvers and High-Performance Computing (HPC) algorithms. The library is built on the C++ language,
providing a flexible and user-friendly interface. [12]

1.4 Language C++

C++ is a multiparadigm programming language that was developed by Bjarne Stroustrup while
working on his Ph.D thesis in 1979. This language was originally known as "C with Classes". The
C++ language gained popularity due to fuatures like virtual function, and operator overloading, making
it suitable for OOP (object oriented programming). Over the years, C++ received regular updates like
libraries, such as the Standard Template Library (STL). It is a programming language that was designed
to be able to work with hardware or to handle the complexity, which is in real an application.This lan-
guage is not only an object-oriented language, but it also supports other programming styles such as
procedural programming and generic programming. According to the American magazine TIOBE (the
software quality company) [13], it is ranked third in popularity and usability for 2022. And this trend is
not expected to change in 2023. [14]

1.4.1 Use of the C++ language

The use of the C++ language is quite varied. Its main use is in system programming. Other areas
where C++ is used are antivirus programs, networking software, programming language compilers etc.

C++ is widely used in science to increase the speed of mathematical calculations, data analysis and
scientific simulations. [15]
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Chapter 2

Implementation of QR decomposition

This chapter is dedicated to the "pseudo-code" that served as the first code visualization for each of
the compared algorithms, which are the Gram-Schmidt orthogonalization process, Householder reflec-
tions and Givens Rotations.

2.1 Functionality used from the TNL library

To simplify and visualize the code, some functions from TNL are used. In general, matrices can be
written using vectors. This is why many templated classes from the TNL library can be used. First of all,
dynamic vector are discussed. Dynamic vectors have tree template parameters:

• Real is type of data which is stored in the vector

• Device is the device where the vector is allocated

• Index is the type which is used for correct indexing the vector elements

The subsequent examples of operations can be performed on vectors. The dynamic vectors are divided
into horizontal operation and vertical operations.

2.1.1 Horizontal operations

Horizontal operations can be considered as operations where one or more vectors are input but only
one vector is output. In the TNL library, this operation is performed using the Expression Templates.
It is metaprogramming technique which forms structures representing calculation at compile time. The
expression is evaluated for individual elements rather than whole vectors, which avoids the allocation of
temporary objects. Thus, this technique can save a large amount of memory. Horizontal operations are
used primarily in basic mathematical operations such as multiplication, subtraction, additions and divi-
sion. Other uses are scalar and vector multiplication. Futhermore, this method reduces the time needed
to write a code, and improve the user experience. Without this method a for loop would be used. This
kind of operation is used in each algorithm (the Gram-Schmidt orthogonalization process, Householder
reflections, Givens rotation). Examples of horizontal operations are marked in the algorithms. [16] [17]

2.1.2 Vertical operations

Vertical operations can be considered as the operations where one vector expression is an input and
one value as an output. These operations are used, for example with scalar product, normalization and/or
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finding the minimum and/or maximum of a vector element. The example of the function where scalar
product is used, is the dot function. Two vectors are multiplied by this function. [17]

2.1.3 Binding

The use of classical libraries, e.g. "iostream" and other libraries, does not allow the array to share
data already allocated elsewhere. However, this can be achieved using the ArrayView structure, which
does not deal with data allocation and deallocation, unlike Array. Therefore, we can use ArrayView to
wrap data allocated elsewhere and split the array into subarrays[17]. This process where external data
is "indicated" by external data is called binding. This method is called by using device kernels. The
function bind() includes the following parameters:

• data: The data pointer bound to the array view.

• size: In the array views, the number of elements is the number of elements [17].

2.2 Pseudocodes

A pseudocode is a description of series of steps which must be done in a computer program for
the correct function of the program. The algorithm is expressed in a formally-styled language then in
a programming language. The pseudocode allows programmers to express the main algorithm ideas
without having to follow the formalism of a specific programming language[18].

2.2.1 Gram-Schmidt orthogonalization process

Algorithm 1 The Gram-Schmidt function
Require: Matrix A
Ensure: A = QR
Matrix Q = (m, n) ▷ The variable m represents the number of rows
Matrix R = (m, n) ▷ The variable n represents the number of columns
R=0
v0.bind (&A(0,0),m) ▷ The function bind creates the vector v0
q0.bind(&Q(0,0),m) ▷ The function bind creates the vector q0
norm= a1/|a1|

for i=1 to n do
qi=v1
for j=0 to i do
d=TNL::dot(vi,q j) ▷ Vertical operation
R( j, i) = d
qi = qi − d · q j ▷ Horizontal operation

end for
norm=TNL::l2Norm(qi) ▷ Vertical operation
qi=qi/norm
R(i,i)=norm

end for
return{Q,R}
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This algorithm describes The Gram-Schmidt orthogonalization process. The input data is the matrix
A, which will be decomposed by the algorithm into the product of matrices Q and R. The matrix Q is
initially set to the zero matrix. The following vectors v0 and q0 are created with the function bind from
the library TNL, which is explained in 2.1 section. The computed normalization of the first vector, is
then stored in the norm variable. The selected for loop iterates through the columns from one to the n.
In this loop value q1 to v1 is assigned. The inside for loop iterates through the columns from the zeros
to the i-th element. The function dot, which is explained in 2.1 section, calculates and stores the scalar
product of the vectors vi and q j. Then the value of R( j,i) is set to the d. The vector qi is normalized by
function l2Norm and by means of its elements by the norm consecutively,which si explained in 2.1. The
norm is set to the value of element R(i,i). In the end, the program returns the matrices Q and R as the
result.

2.2.2 Householder reflections

This algorithm describes the Householder reflections. The input data is the matrix A, which is de-
composed by the algorithm into the product of matrices Q and R. The matrix Q is initially set to the
identity matrix. Through the for loop, the Householder transformation is performed for each column of
the matrix R. The matrix A is attributed to the matrix R. As explained in section 2.1.3, the vector ri is
set by bind function. Using the same process, the vector x is set for the truncated row by the value i, as
explained in section 2.1.2. The Euclidean norm of vector is returned by l2Norm function and then the
norm of columnsx is calculated. The vector x is assigned to vector ui. The value x is assigned to 0. If
loop finds where ui is sharply greater than 0, then the value in element ui is added to the norm variable
and then the first element in the x array is assigned the value of the norm variable. Otherwise, the value
of the norm variable is subtracted from the ui element and then the first element in the x array is assigned
the value of the norm variable. As explained in section 2.1.2, the vector ui is normalized to unit length
by l2Norm function. The subsequent for loop traverses the columns from the i-th +1. Vector r j is set by
the function bind. The vector y is set for the truncated row by the value i using the same method. The
dot function enables an easier computation of vector multiplication, as described in section 2.1.2. The
multiplication is stored in the variable d. The second for loop traverses the column which start from
value 0. As explained in section 2.1.3, the vector k is set by the function bind. Using the same method,
the vector e is set for the truncated row by the value i. As explained in section 2.1.2, the variable d
represents the scalar product of vector ui and e, which is obtained using the dot function of TNL library.
The numerical formula e contains the numerical relation given by the equation (1.19). When the two for
loops are finished, the matrix Q is transposed and returned in pair with matrix R.

21



Algorithm 2 The Householder reflections function
Require: Matrix A
Ensure: A = QR
Matrix Q = (m, n) ▷ The Variable m represents the number of rows
Matrix R = (m, n) ▷ The Variable n represents the number of columns
Q=identity matrix
R=A
for i=O to n do

ri.bind(&R(0,i),m) ▷ The function bind creates the vector ri

x.bind(&ri[i],m-i) ▷ The function bind creates the vector x
norm=TNL::l2Norm(x) ▷ Vertical operation
ui = x
x = 0
if ui [0]>0 then

ui[0]=ui[0]+norm
x[0]=norm

else
ui[0]=ui[0]-norm
x[0]=norm

end if
ui=ui/TNL::l2norm(ui) ▷ Vertical operation
for j=i+1 to n do

r j.bind(&R(0, j),m) ▷ The function bind creates the vector r j

y.bind(&r j[i],m-i) ▷ The function bind creates the vector y
d =TNL::dot(ui,y) ▷ Vertical operation
y = y − 2d · ui ▷ Horizontal operation

end for
for j=0 to n do

k.bind($Q(0, j).m) ▷ The function bind creates the vector k
e.bind(&k[i],m-i) ▷ The function bind creates the vector e
d=TNL::dot(ui,e) ▷ Vertical operation
e = e − 2d · ui ▷ Horizontal operation

end for
end for
return{QT,R}
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2.2.3 Givens rotation

Algorithm 3 Givens rotation function
Require: Matrix A
Ensure: A=QR
Matrix Q = (m, n) ▷ Variable m represents the rows
Matrix R = (m, n) ▷ Variable n represents the columns
Q=identity matrix
R=A
for i = 0 to m do

for i = i+1 to n do
if a j == 0 then

c = 1
s = 0

else if |a j| ≥ |ai| then
t = ai/a j

s = 1/
√

1 + t2

c = s · t
else

t = a j/ai

c = 1/
√

1 + t2

s = c · t
end if
for p = i to n do

newi = R(i, p)
new j = R( j, p)
R(i, p) = c · newi + s · new j

R( j, p) = −s · newi + c · new j

end for
for p = 0 to m do

newi = Q(p, i)
new j = Q(p, j)
Q(p, i) = c · newi + s · new j

Q(p, j) = −s · newi + c · new j

end for
end for

end for
return{Q,R}

This algorithm describes the Givens Rotation. The input data is the matrix A, which is decomposed
by algorithm into the product of matrix Q and R. The matrix Q is initially set to the identity matrix. A
copy of matrix A is stored as matrix R. The first for loop iterates through the rows and the inside for
loop iterates through the columns, where the index is i+1. If a j is equal to 0 in the loop then c is assigned
the value 1 and s is assigned the value 0. If a j is greater that or equal to ai, the following operations are
performed. The result of the division of ai by a j is stored in the variable t. The inverse of the square
root of 1 + t2 is stored in variable s. The multiplication of variables c and t is assigned to the variable
s. If the conditions previously stated are not valid, the following operations are performed. The result
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of the division of a j by ai is stored in the variable t. The inverse of the square root of 1 + t2 is stored in
variable c. The multiplication of variables c and t is assigned to the variable s. The for loop performs
transformations for all rows of the matrix. The transformations are as follows:

• The variable newi is assigned to the matrix R in row i and column p

• The variable new j is assigned to the matrix R in row j and column p

• The element R(i, p) is equated to the relation c · newi + s · new j

• The element R( j, p) is equated to the relation −s · newi + c · new j

The inside for loop transforms all elements in column i of matrix Q and column j of matrix Q.

• The variable newi is assigned to the matrix Q in the row p and column i

• The variable new j is assigned to the matrix Q in the row p and columns j

• The element Q(p, i) is equated to the relation c · newi + s · new j

• The element Q(p, j) is equated to the relation −s · newi + c · new j

After the completion of the inside and outside for loop cycle, the matrices Q and R are returned.
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Chapter 3

Code testing and benchmarking

In this chapter, the error rate of algorithm is tested by unit tests and the measurement of each algo-
rithm is tested by benchmark. As mentioned previously, three algorithms are implemented to decompose
the matrices, namely Householder reflections, Gram-Schmidt process and Givens rotations. Our study
emphasizes the comparison of each algorithm. The subject of investigation is the computation time and
also the accuracy of the computations. For the attainment of relevant results, extensive calculations with
different data are performed. To compare the result, each algorithm is tested with the same dataset. The
unit test verifies the functioning and consistency of the implemented algorithms.

3.1 Unit tests

Unit tests are used to automatically test and verify both the whole algorithm and its subparts[19].
The C++ language is used within the Google test library, which allows testing and verification of the
mentioned algorithms correctness. Embedded header files containing the implemented code of the al-
gorithms are included at the beginning of the unit test. All three algorithms are tested according to the
following steps.

1. The creation of matrix A and subsequent initialization of matrices Q and R were subsequently
realized.

2. The function Givens/Householder/Gram-Schmidt is called.

3. The correct dimensions of the matrices Q and R (whose number of rows and columns correspond
to the original matrix A) is verified.

4. An auxiliary matrix B, which calculates the product of the matrices Q and R, is created.

5. The matrix B is compared with the matrix A.

6. In the auxiliary matrix E, the difference between matrix A and matrix B is stored.

7. The Frobenius norm is calculated from the matrix E.

3.2 Performance benchmark

Benchmark is an algorithm used to measure the running time of a program and to compare the
performance of individual algorithms. This benchmark is programmed in the C++ programming lan-
guage. Libraries such as TNL/timer (measures the running time of algorithms) and STL Random library
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(generates random matrices) are used. Embedded header files containing the implemented code of the
algorithms are included at the beginning of the benchmark. All three algorithms are tested according to
the following steps.

1. Implementation of the Frobenius function which calculates the Frobenius norm.

2. Implementation of the measureQRTime function that measures the computation time of algo-
rithms.

3. Implementation of the RandomMatrix function that generates a random matrix with dimensions
"rows" and "columns".

4. The "main" function performs the benchmark in the following steps:

(a) The dimensions of the matrix n is entered by the user.

(b) Random matrix A is generated by RandomMatrix function.

(c) A QR decomposition is performed for each algorithm and stored in variables. The measure-
ment of calculation time of individual algorithms is base on this analysis.

(d) In each algorithm, an auxiliary matrix B that computes the product of matrices Q and R is
created.

(e) For each algorithm, the difference between original matrix A and matrix B is calculated. The
Frobenius norm of the difference for each of these matrices as the measure of the error of
the QR decomposition is evaluated.

5. The results of the individual algorithms are compared with the output and their accuracy and
computation time are listed on the output.

3.3 Results of benchmark

In this section, the measured values during benchmark testing are examined for each algorithm. The
main objective of this project is to test the complexity of individual algorithms and to verify the alignment
of theoretical knowledge with the measured values.

3.3.1 Theory of complexity

Theory of complexity includes algorithmic complexity which describes the velocity of a specific
algorithms performance. The complexity is characterized as a numerical function T(n) - time depending
on the input size n. The aim is to determine the duration of the algorithm without relying on the specifics
of its execution.

Complexity of each algorithm:

• Gram-Schmidt orthogonal process: 2n3 flops

• Householder reflection: 8
3 n3 flops

• Givens rotation: 4n3 flops

The complexity of the algorithms Householder and Givens include also complexity of computing the
matrix Q by matrix products. Meanwhile, the Gram-Schmidt algorithm computes the matrix Q without
matrix products.
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3.3.2 Measured complexity

n Givens rotation Gram-Schmidt process Householder reflection
norm time[s] norm time[s] norm time[s]

100 7.54E-05 0.0008 1.74E-05 0.0010 6.82E-05 0.0007
200 2.19E-04 0.0071 4.89E-05 0.0120 1.80E-04 0.0139
400 6.17E-04 0.0338 1.39E-04 0.0342 3.61E-04 0.0547
600 1.09E-03 0.0874 2.55E-04 0.1083 6.17E-04 0.1655
800 1.69E-03 0.2295 3.92E-04 0.2160 8.86E-04 0.3894

1000 2.38E-03 0.2953 5.47E-04 0.3859 1.14E-03 0.7233
1200 3.12E-03 0.7091 7.19E-04 0.5965 1.54E-03 1.1786
2000 6.59E-03 5.0132 1.55E-03 2.3832 3.11E-03 4.6402
2500 9.33E-03 10.6160 2.16E-03 4.5163 4.24E-03 8.8375
3000 1.21E-02 18.7938 2.84E-03 7.3198 5.62E-03 14.3757
3500 1.53E-02 30.2631 3.56E-03 11.1714 7.09E-03 21.9541
4000 1.88E-02 65.5368 4.33E-03 16.6865 8.54E-03 31.6138
4500 2.17E-02 117.9170 5.14E-03 22.8485 1.02E-02 44.8669
5000 2.56E-02 177.2025 5.97E-03 31.3516 1.21E-02 59.4051

Table 3.1: Table of values which show "norm" and "time[s]" of the algorithms

Table 3.1 shows the measured data for three algorithms. The measured data for the individual matri-
ces sizes are in the columns n. The rows show the uniform algorithms that contain two subsets -"norm"
and "time". The norm shows the computation of the Frobenius norm that gives the overfitting of the
algorithm. The time line is used to indicate the uniform computation times of the algorithms.

According to the theory of complexity, the Gram-Schmidt process is the fastest procedure for QR
decomposition following by Householder reflection and Givens rotations as the slowest one. Our study
confirms this assumption but the Householder reflection and the Givens rotations seem to be even more
time consuming than the theory of complexity supposes.
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Figure 3.1: Graph of matrix size dependence on computational power

The graph in Figure 3.1 shows the comparison of the algorithms Gram-Schmidt, Householder reflec-
tion and Givens rotation with the computation time. The x-axis represents matrix sizes (n) and the y-axis
represents the computation power, which is measured in seconds. The graph shows that as the size of the
matrices increases, the computation time of all algorithms increases at the same time. This increase in the
computational time is mainly due to the higher computational complexity of the individual algorithms. It
is visible from the graph, that the the Gram-Schmidt algorithm has the shortest computation time which
depends on the size of the matrix, in contrast to the Givens rotation which has the longest computation
time.
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Figure 3.2: Graph of error norms for different matrix sizes

The graph in Figure 3.2 shows the comparison of the algorithms Gram-Schmidt, Householder reflec-
tion and Givens rotation with the Frobenius norm. The x-axis represents matrix sizes (n) and the y-axis
represents the Frobenius norm. The data demonstrate, that regardless of the algorithm type,the error
rate increases with increasing the matrix size. This tendency indicates that with increasing matrix size
the computational complexity decreases for all algorithms. Unlike the Givens rotation, which performs
relatively high algorithm error rates, the Gram-Schmidt process performs relatively low.

3.3.3 Parallelization

Parallelization is a process in which computation is split into multiple concurrent components that
can be virtual and physical. For instance, virtual Graphics Processing Unit (GPU) threads and physical
Central Processing Unit (CPU) are suggested. Parallelization offers many advantages such as increase in
processing power to solve decomposition of large matrices, or full utilization of CPU and GPU hardware
[20]. Using already implemented algorithms, operations can be divided into those that are suitable for
parallelization and those that are sequential.

Unlike the Householder reflection and Gram-Schmidt orthogonal process, Givens rotation is not
suitable for parallelization, because individual operations depend on the previous ones.
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3.3.3.1 Parallelized operation

In case of the Householder reflection and Gram-Schmidt orthogonal process, some operations can
be parallelized. One of the operation that is part of Householder’s algorithm, is the calculation of the
vector for each column of the matrix R, which is performed independently. Similarly, the calculation of
the column of the matrix R is performed independently. The following operations are parallelized in the
Gram-Schmidt algorithm.

• The calculation of the scalar product of vector

• Normalisation of vector qi

• Application of orthogonal transformations to matrices Q

• Validity calculation of vector v0

3.3.4 Parallelized algorithms

In this part of the study, the implementation of the algorithm is analyzed in parallel. The macOS
Monterey system with M1 chip, which supports high performance (4 threads available) and energy effi-
ciency (4 threads available), is used. The algorithms are designed for parallelization on multiple threads.
First of all, the algorithms are tested on a single thread, whose benchmark results are located in chapter
3.3.2. The algorithm is tested for one and four threads.

n Givens rotation Gram-Schmidt process Householder reflection
one core four cores one core four cores one core four cores

100 0.0008 0.0018 0.0010 0.0015 0.0007 0.0020
200 0.0071 0.0063 0.0120 0.0120 0.0139 0.0142
400 0.0338 0.0401 0.0342 1.2008 0.0547 0.7030
600 0.0874 0.1010 0.1083 4.0085 0.1655 4.1239
800 0.2295 0.3311 0.2160 7.0672 0.3894 11.4638

1000 0.2953 0.3103 0.3859 11.6640 0.7233 22.4726
1200 0.7091 0.7159 0.5965 15.9757 1.1786 35.0741
2000 5.0132 5.1028 2.3832 44.3141 4.6402 113.7870
2500 10.6160 10.5667 4.5163 73.0379 8.8375 186.2050
3000 18.7938 19.5969 7.3198 102.8590 14.3757 282.6100
3500 30.2631 31.3132 11.1714 140.5550 21.9541 383.4850
4000 65.5368 65.5623 16.6865 183.7850 31.6138 626.0220
4500 117.9170 116.6370 22.8485 248.5960 44.8669 695.2690
5000 177.2025 176.1060 31.3516 292.4920 59.4051 844.6290

Table 3.2: The table of values which show computation time [s] for one and four threads.

The table 3.2 shows the measured data using four threads, when algorithms are employed. The matrix
size is displayed on the columns. The rows depicted the uniform algorithm that contain two subsets-"one
core and "four cores". The "one core" represents the computation of computation time for one thread.
The "four cores" line is used to indicate the uniform computation times for four threads of the algorithms.
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Figure 3.3: Graph of matrix size dependence on computational power

The graph in Figure 3.3 shows the comparison of the mentioned algorithms with the computation
time using one and four threads. The x-axis represents matrix size (n) and the y-axis represents the
computation power, which is measured in seconds. The graph shows that as the size of the matrices
increases, the computation time of all algorithm increases.

From the graph, it is readable that the number of running threads does not matter for the Givens
algorithm, and therefore, parallelization does not have any influence on the computation time. The effect
of parallelization on the shortening computation time is not discovered for the remaining two algorithms.
Unexpectedly, the more threads are used, the longer computation time is occurred. In comparing to
other algorithms, the algorithm of Householder with four threads appears to be the most computational
demanding, while Gram-Schmidt using a single thread seems to be as the computational fastest.
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Chapter 4

Future applications

The using of modern of technology needs creation of more and more algorithms which is used in
mathematics and other sciences. Already programmed algorithms can do the computation faster and
user friendly. Programmed algorithms allow user to work with a much larger data than before.

4.1 QR decomposition

The use of QR decomposition has many useful applications in mathematics, physics and other sci-
ences. One of them can be the signal analysis where signal can be represented by the matrix QR decom-
position. Many finite element solvers use QR decomposition to solve eigenvalue problems.

4.1.1 Parallelization

Not every algorithm is suitable for parallelization. The right method choose for parallelisation is
crucial for the computing. The results can be different for example because of using Gram - Schmidt
modified transformation which is not suitable for parallelization, but more accurate in computing results.
And vice versa usual Gram - Schmidt transformation is more suitable for parallelization, but leads to less
accurate computing results. Remaining two methods might be modified for better use in parallelization.

4.2 Use of Gram-Schmidt, Householder and Givens algorithms

Programmed algorithms (Gram-Schmidt orthogonalisation process, Householder reflection, Givens
rotation) can serve as quite powerful tools in linear algebra and numerical calculations.

As mentioned above, all tree algorithms are quite efficient tools for QR decomposition. However,
this is not the only use of these algorithms.

The Gram-Schmidt orthogonalization algorithm has a primary purpose: to orthogonalize a vector in
space. This algorithms can be part of solving linear equations or approximating functions, but it can be
part of many other mathematical problems that require an orthogonal base. Other applications of this
algorithm are found in linear regression, signal filtering or compression algorithms.

The Householder reflection is used to reduce the matrix to a triadiagonal form. Similar to the Gram-
Schmidt orthogonalization process algorithm, this algorithm is used in the solution to linear equations,
but not only in it. Another method can be function approximation, where the function is approximated by
polynomials. This procedure is commonly used to approximate relatively complex functions to simplify
ones. The algorithm is used primarily in the fields of physics (the signal filtering and i the mage analysis)
and mathematics (linear regression).
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In particular, the rotation of the vector in space is the main use of the Givens rotation. Another
application may be in the calculation of condition systems of equations or least squares approximation.

4.3 Future work

This work could then be furthered through testing on high-performance graphics cards. One of the
potential benefits of this testing would be to verify the magnitude of the computation speed increase
due to parallel processing. For more exact results, other testing of this algorithm should be provided by
solution some mathematical examples. One of these could be searching for custom number using QR
algorithm.

The future usage could be implementation into TNL library, which can help scientist with mathemat-
ical examples. The algorithms can be modified and subsequently used on modern supercomputers for
further use for the better algorithm efficiency.



Conclusion

Linear algebra is one of the main part of modern mathematics and is used in most science and fields
of engineering. Computing is often very difficult and complicated, takes a long time and needs the
newest PC equipment. To find an optimal way how to make computing most efficient and accurate is
an important aim of current and future studies. This study didn’t shown that using of three QR decom-
positions methods (the Gram-Schmidt process, Householder transformations and Givens rotations) in
parallelisation of computation leads to faster and more accurate results.

The performance and complexity of three algorithms were compared using the benchmark. The
object of the investigation was to find the Frobenius norm of computation time for different matrix
sizes. Both the Frobenius norm and the measured computation time increased in value with the size of
the matrices. A relatively lower error rate and computation time were observed for the Gram-Schmidt
algorithm compared to Givens rotation and Householder reflection. For all algorithms, the computation
times increased depending on their theoretical complexity. Results of the compared tests did not confirm
the consistency of theoretical knowledge with practical measurements.

Unexpectedly, the more threads are used, the longer computation time is occurred. The number of
running threads does not matter for the Givens algorithm, and therefore, parallelization does not have
any influence on the shortening of the computation time. The effect of parallelization on the shortening
computation time is not discovered for the remaining two algorithms as well. In comparing to other algo-
rithms, the algorithm of Householder with four threads appears to be the most computational demanding,
while Gram-Schmidt using a single thread seems to be as the computational fastest. Unexpected results
could be caused by using Gram-Smidt modified transformation which is not suitable for parallelization,
but more accurate in computing results. And vice versa usual Gram - Schmidt transformation is more
suitable for parallelization, but leads to less accurate computing results. Remaining two methods might
be modified for better use in parallelization.
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