ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STROJNÍ

ÚSTAV PROCESNÍ A ZPRACOVATELSKÉ TECHNIKY

SEPARACE CO₂ Z BIOPLYNU

DIPLOMOVÁ PRÁCE

Bc. JAROMÍR POUR

2023

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Pour	Jméno: Jaromír	Osobní číslo: 483241			
Fakulta/ústav:	Fakulta strojní					
Zadávající katedra	a/ústav: Ústav procesní a :	zpracovatelské techniky				
Studijní program:	Energetika a procesní inže	nýrství				
Specializace:	Procesní inženýrství					
ÚDAJE K DIPLOMOVÉ PRÁCI						
Vázev diplomové práce:						

Separace CO2 z bioplynu

П.

Název diplomové práce anglicky:

CO2 separation from biogas

Pokyny pro vypracování:

Vypracujte literární rešerši se zaměřením na technologie separace CO2 z bioplynu, používaná řešení a jejich výhody a nevýhody.

Na základě poznatků z rešerše:

Navrhněte výpočtové/simulační schéma a výpočtové parametry separační linky.

- Sestavte model linky ve zvoleném simulačním programu.
- Proveďte základní bilanční výpočty hmoty a energie linky pomocí zvoleného simulačního programu pro definované provozní stavy.
- Odhadněte provozní náklady pro navržené řešení linky.

Seznam doporučené literatury:

Dle pokynů vedoucího práce.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Radek Šulc, Ph.D. ústav procesní a zpracovatelské techniky FS

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Datum zadání diplomové práce: 17.04.2023

Termín odevzdání diplomové práce: 04.08.2023

Platnost zadání diplomové práce: 24.09.2023

prof. Ing. Tomáš Jirout, Ph.D.

podpis vedoucí(ho) ústavu/katedry

doc. Ing. Miroslav Španiel, CSc. podpis děkana(ky)

III. PŘEVZETÍ ZADÁNÍ

doc. Ing. Radek Šulc, Ph.D.

podpis vedoucí(ho) práce

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání

Podpis studenta

Prohlášení

Prohlašuji, že jsem diplomovou práci vypracoval samostatně pod vedením doc. Ing. Radka Šulce, Ph.D. a uvedl jsem všechny použité podklady a literaturu.

V Praze dne

.....

Bc. Jaromír Pour

Poděkování

Velice rád bych poděkoval doc. Ing. Radku Šulcovi, Ph.D, za odborné vedení mé diplomové práce, udělené rady a trpělivost. Dále děkuji své rodině a přítelkyni za dlouhodobou oporu po celou dobu studia.

Anotační list

Jméno autora:	Jaromír
Příjmení autora:	Pour
Název práce česky:	Separace CO ₂ z bioplynu
Název práce anglicky:	CO ₂ separation from biogas
Rozsah práce:	počet stran: 129
	počet obrázků: 62
	počet tabulek: 44
Akademický rok:	2022/2023
Jazyk práce	Český
Ústav:	Ústav procesní a zpracovatelské techniky
Studijní program:	Energetika a procesní inženýrství
Vedoucí bakalářské práce:	doc. Ing. Radek Šulc, Ph.D.

- Anotace: Diplomová práce se zabývá návrhem technologie separace CO₂ ze surového bioplynu a jeho zkapalnění. Na základě ověření proveditelnosti byla provedena simulace včetně analýzy a vyhodnocení energetické náročnosti a schopnosti dosahování požadovaných vlastností produktu. Pozornost byla také věnována samotnému předčištění surového bioplynu před separací CO₂. Pro simulaci procesu navržené technologie byl použit výpočetní program Aspen Plus.
- Annotation: The thesis is focused on the design of technology for the separation of CO₂ from biogas and its liquefaction. Based on the verification of feasibility, a simulation was carried out, including analysis and evaluation of the energy demand and the ability to achieve the required product properties. Attention was also paid to the actual pre-purification of raw biogas before CO₂ separation. The Aspen Plus calculation program was used to simulate the process of the proposed technology.
- Klíčová slova:bioplynová stanice, dehydratace, uhlíková stopa, zkapalnění CO2,
zušlechtění bioplynu
- **Keywords:** biogas plant, dehydration, carbon footprint, CO₂ liquefaction, biogas upgrading

Využití: Zušlechtění bioplynu a zkapalnění oxidu uhličitého jako sekundárního produktu.

Obsah

1		Úvo	od		. 10
2		Sou	časn	ý stav řešené problematiky	. 10
3		Biop	olyn		. 15
	3.	.1	Pro	ces výroba a vzniku bioplynu	. 15
		3.1.	1	Charakteristiky zdrojového substrátu pro výrobu bioplynu	. 15
		3.1.2	2	Fáze vzniku bioplynu	. 17
		3.1.	3	Procesní parametry výroby bioplynu	. 19
		3.1.4	4	Problémy při výrobě bioplynu	. 24
	3.	.2	Sep	arace oxidu uhličitého z bioplynu a dočištění biometanu	. 25
		3.2.	1	Absorpční čištění	. 25
		3.2.2	2	Adsorpční čištění	. 27
		3.2.3	3	Membránové čištění	. 32
		3.2.4	4	Kryogenní čištění	. 34
		3.2.	5	Zhodnocení separačních metod pro zušlechťování bioplynu	. 35
		3.2.0	6	Dočišťování bioplynu a proudu bohatého na oxid uhličitý	. 39
		3.2.7	7	Odstraňování vody	. 41
4		Průr	nysl	ově používané systémy pro zušlechťování bioplynu	. 44
	4.	.1	Zka	palňování CO ₂ – metody a oběhy	. 52
		4.1.	1	Zkapalňování CO2 prostřednictvím vnějšího chladícího cyklu	. 52
		4.1.2	2	Zkapalňování CO2 prostřednictvím škrcení	. 53
	4.	.2	Čist	tota oxidu uhličitého	. 54
	4.	.3	Dos	ažení potravinářské čistoty oxidu uhličitého	. 55
	4.	.4	Pod	mínky pro skladování a expedici oxidu uhličitého	. 56
5		Náv	rh a	koncepce linky na úpravu bioplynu a CO2 bohaté frakce	. 58
	5.	.1	Náv	rh použitých technologií a postupů	. 58
		5.1.	1	Technologie zušlechťování bioplynu	. 59

	5.1.2	Složení CO ₂ bohaté frakce za zušlechťovací jednotkou	61
	5.1.3	První stupeň odstranění vody (kompresorová stanice bioplynu)	64
	5.1.4	Druhý stupeň odstranění vody (kompresorová stanice CO2 frakce)	65
	5.1.5	Adsorpční dosušení CO2 frakce	66
	5.1.6	Vodní chlazení	68
	5.1.7	Externí nízkoteplotní chlazení	69
	5.1.8	CO ₂ kompresor	70
	5.2 Ná	vrh postupů zkapalňování CO2	71
	5.2.1	Zkapalnění čistého CO ₂ – vnější chladící zařízení	71
	5.2.2	Zkapalnění CO2 kombinací vnějšího chlazení a chlazení expanzí plynu.	71
6	Simulac	ce v programu Aspen Plus	74
	6.1 Sin	nulace technologie zkapalnění – čistý oxid uhličitý	74
	6.1.1	Nastavení podmínek simulace v programu Apen Plus	74
	6.1.2	Popis jednotlivých bloků a proudů	75
	6.1.3	Specifikace jednotlivých bloků a vstupního proudu	77
	6.1.4	Výsledky simulací – čistý CO ₂	80
	6.1.5	Energetické posouzení celkových příkonů	82
	6.1.6	Vyhodnocení energetických náročností	86
	6.2 Vý	počet zkapalňování CO2 frakce	88
	6.2.1	Předúpravy zkapalňování CO2 frakce	88
	6.2.2	Nastavení podmínek výpočtu zkapalnění CO2 frakce	89
	6.2.3	Výsledky simulace zkapalňování CO2 frakce	89
	6.2.4	Sestavení celkové technologie zušlechtění CO2 bohaté frakce	92
	6.3 Do	sažení potravinářské kvality kapalného oxidu uhličitého	95
	6.4 Vý	počet uhlíkové stopy navrženého projektu	96
7	Diskuze	e výsledků	99
8	Závěr		01

9	Seznam symbolů1	103
10	Seznam zkratek 1	104
11	Seznam obrázků1	105
12	Seznam tabulek 1	109
13	Seznam zdrojů a použité literatury1	111

1 Úvod

Bioplyn je jedním z možných alternativních zdrojů energie, kterým by si Česká republika mohla snížit závislost na importu zemního plynu a tím by si zajistila lepší schopnost regulovatelnosti cen energií. Aby bylo možné biometan vtláčet do distribuční sítě zemního plynu nebo prodávat na čerpacích stanicích jako bioCNG (stlačený biometan), je třeba surový bioplyn vyčistit a separovat oxid uhličitý, vodu, amoniak a další minoritní složky bioplynu. V současnosti se oxid uhličitý u většiny již použitých instalací vypouští do atmosféry.

Jednou z možností, jak ochránit Zemi před uvolňováním dalšího množství skleníkového plynu (oxidu uhličitého) do atmosféry je zajistit jeho další využití, například v potravinářství nebo pro chemické syntézy. Jedním z efektivních způsobů separace oxidu uhličitého z bioplynu je jeho zkapalnění. V kapalné fázi je vhodný pro skladování a dopravu.

Cílem této práce je navrhnout na základě rešerše linku pro separaci a zkapalnění CO₂ z bioplynu včetně analýzy a vyhodnocení energetické náročnosti jednotlivých zařízení a jejich schopnost dosahování požadovaných vlastností produktu. Pozornost bude věnována také samotnému předčištění bioplynu před separací CO₂.

2 Současný stav řešené problematiky

Zvýšení kapacity výroby bioplynu jako alternativního zdroje energie by mohla být snížena závislost České republiky na importu zemního plynu. V současné době se nacházejí na území České republiky stovky bioplynových stanic, které používají surový bioplyn jako vstupní médium do kogeneračních jednotek pro výrobu elektřiny a tepla. Pouze dvě bioplynové stanice v současnosti na našem území vyrábí biometan. Biometan je upravený bioplyn, který obsahuje nejméně 95 % metanu a složením je srovnatelný se zemním plynem. Proto je možné biometan vtláčet do distribuční sítě zemního plynu nebo prodávat na čerpacích stanicích jako bioCNG.

Bioplynové stanice koncipované na výrobu biometanu mají výrazně vyšší energetickou účinnost procesu výroby biometanu přibližně 97 %, oproti bioplynovým stanicím operujícím s kogeneračními jednotkami, které využijí potenciál metanu

přibližně z 40 % na výrobu elektrické energie a 40 % na výrobu tepla. Jednou z dalších výhod může být provozní podpora výrobny biometanu - "zelený bonus". [1]

Další podstatnou výhodou výroby biometanu ze surového bioplynu je možnost separace a záchytu nežádoucích složek plynu (CO₂, H₂S, H₂O, siloxany...), které při spalování snižují výhřevnost plynu nebo které se dostávají do ovzduší ve formě spalin a negativně ovlivňují klimatické podmínky.

Většina oxidu uhličitého je dnes vyráběna záchytem a následným dočištěním z proudu plynů bohatých na oxid uhličitý. Tyto proudy bývají vedlejšími či odpadními proudy v průmyslových výrobách spalující fosilní paliva, v chemických závodech, v ocelářském a sklářském průmyslu nebo v děličích vzduchu, které primárně vyrábějí další plyny jako kyslík, helium a argon.

Surový bioplyn obsahuje dvě majoritní složky, metan (50-70 obj. %) a oxid uhličitý (30-50 obj. %) [2]. Proto může být bioplyn považován za dobrý zdroje biometanu a zároveň oxidu uhličitého, který má využití v řadě průmyslových aplikací jako například hasicí médium, chladivo v potravinářství, ochranná atmosféra při svařování či v potravinářství, médium pro hubení škůdců, při výrobě sycených nápojů a v neposlední při optimalizaci růstu rostlin ve sklenících a další. [3]

Z ekologického hlediska se separace biometanu a záchyt oxidu uhličitého jeví jako výhodnější možnost zpracování bioplynu oproti použití kogenerační jednotky, protože záchytem oxidu uhličitého by mohla být pozitivně ovlivněna koncentrace oxidu uhličitého v atmosféře a případné snížení globálního oteplování. Oxid uhličitý je považován za jeden z hlavních skleníkových plynů a jeho zvyšující se koncentrace v atmosféře je značnou mírou ovlivněna lidskou produkcí, viz obr. 1.

Česká republika a další státy se dle Pařížské dohody zavázaly k omezení emisí skleníkových plynů, a tudíž zpracovávání bioplynu na biometan by mohl být jeden z kroků ke splnění této dohody [4].

Obr. 1: Srovnání lidské produkce CO2 a rostoucí koncentrace CO2 v atmosféře – převzato, upraveno [5]

Podle World Biogas Association má sektor bioplynu a biometanu potenciál snížit globální emise skleníkových plynů o 10-13 % [6]. Velký podíl na tomto potenciálu snížení emisí je nahrazení fosilních paliv, zamezení úniku metanu z odpadních surovin (hnoje, kejdy, bioodpadu apod.) a nahrazení průmyslově vyráběných uhlíkových hnojiv [7].

Celosvětový potravinářský a nápojový průmysl, používající oxid uhličitý k balení potravin a sycení nápojů vyžaduje velmi vysoké čistoty CO₂. Roční spotřeba datovaná k roku 2019 se pohybovala kolem 11 megatun CO₂ v potravinářství. Nezanedbatelný je také skleníkový sektor, který má odběr oxidu uhličitého závislý na ročním období. Nejvyšší potřeba oxidu uhličitého je na jaře a minimální spotřeba v zimě. Odhadovaná celosvětová roční spotřeba oxidu uhličitého přidávaného do skleníků k roku 2017 byla pouze 5 megatun, avšak potenciál nárůstu spotřeby CO₂ ve sklenících je vysoký, protože jen v Nizozemsku, ve státu s největším množstvím spotřebovaného CO₂ ve sklenících, je kapacita spotřeby mezi 5-6,3 megatun CO₂ ročně. [7, 8]

Dalším významným sektorem pro minimalizaci uhlíkové stopy je výroba hnojiv, kdy může být oxid uhličitý z bioplynu použit pro výrobu močoviny. Spotřeba dusíkatých hnojiv v Evropě k roku 2019-2020 byla 11 200 kilotun a z toho 20 % močovina [7]. Průměrný meziroční růst celosvětové spotřeby oxidu uhličitého je 1,7 % viz obr. 2, na kterém je také vidět rozdělení celosvětové poptávky po oxidu uhličitém k roku 2015.

Obr. 2: Globální spotřeba CO₂ (vlevo) a rozdělené poptávky po CO₂ v jednotlivých odvětvích (vpravo) – převzato, upraveno [9]

K červnu 2022 byl bioplyn v Česku podle České bioplynové asociace produkován v 574 bioplynových stanicích s instalovaným výkonem 367 MW, viz obr. 3. [10]

Ostatní bioplynové stanice

Obr. 3: Poloha bioplynových stanic v České republice [11]

V této chvíli jsou v České republice pouze dvě bioplynové stanice (v Rapotíně a v Litomyšli), které vyrobený bioplyn transformují na biometan a vtláčí jej do sítě vysokotlakých plynovodů (VTP). Potenciálně vyhovujících bioplynových stanice provozovaných do 2 km od VTP je 266 a do 5 km od VTP je dalších 117, viz obr. 4.

Obr. 4: Potenciálně vhodné bioplynové stanice pro vtláčení biometanu do sítě zemního plynu [12]

3 Bioplyn

Bioplyn je plynná směs s energetickým potenciálem, která je produkována biologickou degradací organických látek anaerobními mikroorganismy [6]. Procentuální zastoupení jednotlivých složek v bioplynu je ovlivněno především složením vstupní vsádky a dalšími parametry, viz kapitola 3.3.

Surový bioplyn je směs s rozdílným procentuálním zastoupením jednotlivých složek podle složení primární vsádky. Hlavními složkami bioplynu jsou metanu (50-70 obj. %) a oxid uhličitý (30-50 obj. %), dále jsou přítomny minoritní složky v bioplynu zejména sloučeniny síry, voda, kyslík, dusík, stopové množství kovů a jiných prvků. [2]

3.1 Proces výroba a vzniku bioplynu

Pro výrobu bioplynu jsou používány bioplynové stanice, viz obr. 5, ve kterých nejčastěji mokrou cestou dochází k fermentaci biomasy za vzniku bioplynu a digestátu.

Obr. 5: Funkční schéma bioplynové stanice agriKomp [13]

3.1.1 Charakteristiky zdrojového substrátu pro výrobu bioplynu

Surovinou pro výrobu bioplynu může být libovolná směs biologicky rozložitelných organických materiálů, která svým složením splňuje požadavky pro zajištění co nejvyšší schopnosti tvorby metanu metanogenními bakteriemi. Bakterie svou činností zajištují vznik biometanu, jehož procentuální zastoupení v bioplynu je důležitou vlastností při posuzování kvality produkovaného plynu. [14]

Podle dominantního zdroje organického materiálu pro výrobu bioplynu může biomasa pocházet ze zemědělského zdroje (živočišná kejda, speciálně pěstované energetické rostliny či různé další biologické zbytky ze zemědělství), z komunálního zdroje (tříděný bioodpad, zbytky potravin, tuhý komunální odpad a čistírenské kaly) a z průmyslového zdroje (veškeré organické odpady z potravinářského průmyslu, pivovarského průmyslu, organické kaly a odpadní vody z průmyslových procesů, vedlejší produkty při výrobě biopaliv a biorafinerií). [14]

Pro zvolení optimální vstupní suroviny je nutné provést analýzu vstupního materiálu, při které jsou zjišťovány hodnoty pH, poměr pevné látky k sušině, poměr těkavé pevné látky k organické sušině, chemická spotřeba kyslíku, amoniakální dusík, sumární množství dusíku a biochemický potenciál dusíku, obsah uhlíku a analýza stopových prvků jako je síra a fosfor.

Před podrobnou analýzou vsádky je možné ze znalosti základních parametrů vsádky udělat představu o vhodnosti vsádky jako potenciálního zdroje bioplynu. Je patrné, viz obr. 6, že ze znalosti obsahu vody a poměru sypkého materiálu vůči vláknitému může být vybrán nejvhodnější proces zpracování vsádky.

Objemné/vláknité materiály a anorganické látky

Obr. 6: Přehled vhodnosti vstupních surovin pro různé technologie zpracování - převzato, upraveno [14],

Možnosti podrobnějšího zhodnocení vstupního substrátu mohou být velmi omezené, protože dostupné suroviny často mívají nízké hodnoty vlastností, které jsou těžko měřitelné. Proto je obvykle preferováno kontinuální měření důležitých vlastností substrátu, jako je množství vody v surovině, nebo poměr uhlíku ku dusíku (C:N).

Pro zajištění kontinuální celoroční produkce bioplynu je dbáno na eliminaci výkyvů vlastností a složení vstupní vsádky, z důvodu snahy o udržení stabilního společenstva bakterií ve fermentoru. Proto jsou některé organické materiály či silážní

sezónní plodiny skladovány v blízkosti bioplynové stanice a celoročně přidávány do vsádky. [15]

3.1.2 Fáze vzniku bioplynu

Proces výroby bioplynu v bioplynových stanicích je prováděn metodou anaerobního vyhnívání organické vsádky. Tento proces je složen ze čtyř metabolických reakcí (hydrolýza, acidogeneze, acetogeneze a metanogeneze), [16], viz obr. 7.

Obr. 7: Schéma procesu anaerobní degradace organické hmoty - převzato, upraveno [17]

3.1.2.1 Hydrolýza

Při hydrolýze dochází prostřednictvím extracelulárních enzymů (katalyzátorů biochemické reakce) k hydrolytickému štěpení makromolekulárních látek především polysacharidů na jednodušší organické sloučeniny. Proces hydrolýzy probíhá zejména v primárním fermentoru na povrchu bakteriální stěny mikroorganismů. Tyto mikroorganismy spotřebovávají kyslík rozpuštěný ve vstupující kapalné vsádce a tím zajišťují anaerobní prostředí nezbytné pro ostatní obligátně anaerobní mikroorganismy účastnící se anaerobní digesce. Pro zefektivnění výroby bioplynu mohou být prodávány externě produkované enzymy, které urychlují hydrolýzu a zvyšují produkci bioplynu v řádech až desítek procent. Jednou z dalších výhod použití externích enzymů je efekt výrazného snížení viskozity digestátu díky zvýšené schopnosti degradace převážně travnatých organických vstupních surovin, čímž je také snížena zátěž čerpadel a míchadel. [18, 19]

3.1.2.2 Acidogeneze

V druhé fázi procesu vzniku bioplynu acidogenezi dochází k dalšímu štěpení produktů hydrolýzy za vzniku organických sloučenin o velikosti jeden až pět uhlíků, především kyseliny, alkoholy, aceton, oxidu uhličitý a vodík [15]. Množství jednotlivých vzniklých produktů acidogeneze je závislé na složení původního substrátu a také na podmínkách procesu, jako je například parciální tlak vodíku. Při nižších parciálních tlacích vzniká kyselina octová, vodík a oxid uhličitý a při vyšších parciálních tlacích vznikají vyšší organické kyseliny, kyselina mléčná a etanol. [20]

3.1.2.3 Acetogeneze

V acetogenní fázi dochází k oxidaci produktů acidogeneze na oxid uhličitý, vodík a kyselinu octovou prostřednictvím homoacetogenních mikroorganismů, které umožňují rozkladu vyšších organických kyselin a alkoholů. Prostřednictvím sulfátreduktantů a nitrátreduktantů jsou přeměňovány síra a dusík vázané v organických sloučeninách na plynný sulfan a dusík. Zároveň také dochází ke slučování oxidu uhličitého a vodíku za vzniku kyseliny octové. Produkty acetogeneze jsou oxid uhličitý, vodík, sulfan, dusík a kyselina octová. Štěpení vyšších organických kyselin dochází pouze při nízkém parciálním tlaku vodíku, čímž je uvolňována energie potřebná k přežití acetogenních bakterií. [15]

Acetogenní a metanogenní mikroorganismy žijí v symbióze, protože metanogenní bakterie vyžadují vysoký parciální tlak vodíku a během svého životního cyklu jej kontinuálně spotřebovávají, tím zároveň zajišťují snižování parciálního tlaku vodíku, který je vyžadován acetogenními mikroorganismy [20].

3.1.2.4 Metanogeneze

Ve čtvrté fázi produkce bioplynu vzniká finální podoba produkovaného bioplynu, tedy plynu tvořeného dvěma hlavními složkami (metan a oxid uhličitý) a minoritně zastoupenými složkami (sulfan, amoniak, dusík, kyslík a další). Metanogenní bakterie jsou děleny do tří skupin na acetotrofní, metylotrofní a hydrogenotrofní, viz tab. 1, podle schopnosti přeměny jednotlivých substrátů na metan, další vedlejší produkty a energii. Přibližně 70 % vzniklého metanu vzniká oxidací acetátu a zbylých 30 % vzniklého metanu je produkován syntézou oxidu uhličitého a vodíku. Snížení metanogeneze může nastat v případě použití substrátů bohatých na síru, kdy mikroorganismy redukující sírany na sirovodík a tím spotřebovávají vodík potřebný pro metanogenní bakterie. Zároveň je sirovodík toxický pro některé metanogenní organismy. [15]

Typ bakterií	Chemická reakce	Reakční energie [kJ/mol]
Undua con atua fuí	$4H_2 + HCO_3 + H^+ \rightarrow CH_4 + 3H_2O$	-135,4
Hydrogenouolin	$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$	-131
Acetotrofní	$CH_3COO^- + H_2O \rightarrow CH_4 + HCO_3$	-30,9
Matulatrafai	$4CH_{3}OH \rightarrow 3CH_{4} + HCO_{3} + H^{+} + H_{2}O$	-314,3
Wetylottollli	$CH_3OH + H_2 \rightarrow CH_4 + H_2O$	-113

Tab. 1: Vznik biometanu během metanogeneze při anaerobní fermentaci [15]

3.1.3 Procesní parametry výroby bioplynu

Výroba bioplynu prostřednictvím anaerobní digesce je proces založený na sledu biochemických reakcí, které jsou ve fermentoru zabezpečovány mnoha druhy mikroorganismů. Každý druh mikroorganismu má jiné optimální životní podmínky, a proto jsou nastavovány procesní parametry, aby co nejvíce vyhovovaly většině druhů mikroorganismů a byly zajištěny všechny čtyři základní fáze anaerobního rozkladu, viz kap. 3.1.2. Pro nastavení správných provozních podmínek jsou nejčastěji všechny změny parametrů jednotlivě testovány v laboratorním, popřípadě pilotním zařízení. V laboratorním měřítku jsou analyzovány a posuzovány vstupní surovina, pro zjištění vhodnosti jejich použití k výrobě bioplynu. Jsou stanovovány biofyzikální charakteristiky jako je obsah celkových pevných látek, těkavých pevných látek, sušiny, organické sušiny, chemické spotřeba kyslíku, obsah dusíku a C:N poměr. Protože proces výroby bioplynu je zajišťován společenstvím živých organismů, tak ani laboratorní testy nezvládnou se 100% jistotou stanovit přesná pravidla optimálního nastavení provozu. Při dlouhodobém pozorování se ukázalo nejvýhodnější udržovat stabilní přísun vsádkové suroviny do fermentoru z hlediska kontinuity nátoku a stability složení. Případné změny složení vsádky by mělo probíhat pozvolna, aby měli mikroorganismy ve fermentoru čas na adaptaci. Dále je nezbytné monitorovat a případně regulovat parametry, které mají na proces největší vliv, viz níže. [14, 21]

3.1.3.1 Teplota

Teplota procesu je velmi významným parametrem, který výrazně ovlivňuje správnou funkci mikroorganismů produkující bioplyn. Existují tři základní druhy mikroorganismů adaptované na různé rozsahy teplot, dělí se na psychrotrofní (do 20 °C),

mezofilní (kolem 35 °C) a termofilní (kolem 55 °C) mikroorganismy. Optimální rozmezí provozních teplot jsou ± 2 stupně Celsia od uvedených hodnot. V průmyslovém měřítku jsou nejčastěji používány mikroorganismy mezofilní, nebo termofilní. Již postavené bioplynové stanice jsou častěji nastaveny na mezofilní teploty, protože jejich provoz je stabilnější, vyžaduje menší nároky na vytápění a zároveň jsou bakterie přizpůsobeny širšímu rozsahu teplot, a tím obecně méně náchylné v porovnání s termofilními mikroorganismy. Neméně podstatnou výhodou mezofilního procesu je nižší spotřeba tepla. Hlavními výhodami termofilního procesu jsou kratší doba fermentace a vyšší produkce bioplynu, viz obr. 8 a 9. [22]

Obr. 8: Závislost doby fermentace na teplotě – převzato, upraveno [15]

Obr. 9: Závislost relativního množství plynu vznikajícího ve fermentoru na teplotě – převzato, upraveno [23]

3.1.3.2 pH

Koncentrace vodíkových iontů je výrazně ovlivněna činností jednotlivých mikrobiálních kultur. Optimální hodnoty pH jsou odlišné v jednotlivých fází anaerobní digesce. Ve fázi hydrolýzy jsou mikroorganismy preferovány hodnoty pH mezi 5 a 6, v acidogenezi mezi 5,5 a 6,5. Optimální hodnoty pH pro metanogenní bakterie jsou mezi hodnotami 6,7 až 7,5. Většina provozovatelů bioplynových stanic udržuje pH

v hodnotách optimálních pro metanogenní bakterie s cílem co nejvyšší produkce metanu, viz obr. 9. [14, 15, 67]

Obr. 10: Simulace optimální kumulativní produkce bioplynu v závislosti na pH - převzato, upraveno [24]

Hodnota pH je často udržována samovolně prostřednictvím symbiózy jednotlivých kultur mikroorganismů, avšak problém může vzniknout například při biologickém přetížení fermentoru, kdyby dominovaly první dvě fáze anaerobní digesce za vzniku velkého množství kyselin, čímž by se snížila pH ve fermentoru a mohlo dojít až k úplnému zastavení metanogeneze. Z tohoto důvodu, jsou hodnoty pH sledovány a v případě jejich snížení jsou přidávány zásadité látky jako hydroxid vápenatý, uhličitan sodný nebo hydroxid sodný. [14]

3.1.3.3 Vstupní substrát a jeho složení

Podstatnou vlastností vstupního materiálu je poměr sušiny vůči kapalné fázi vsádky. Ideální koncentrace sušiny vsádky se při mokré fermentaci pohybuje v rozmezí 5 až 12 % [25]. Ve spodní oblasti intervalu operují bioplynové stanice se vsádkou o vysokém obsahu proteinů, a naopak horní část intervalu je optimální pro bioplynové stanice, kde vsádce dominuje siláž či jiný typ energetických rostlin. Pro polosuchou a suchou metodu fermentace jsou používány hodnoty 10-20 % a více než 20 % sušiny ve vsádce [14]. Horní hranice obsahu sušiny se pohybuje kolem 50 % a jejím limitem je zaručení čerpatelnosti vsádky. [26]

Vstupní surovina pro výrobu bioplynu musí být anaerobně rozložitelná s vhodným prvkovým složením. Anaerobní digesce vsádky je pomalý proces, pro který jsou vhodné jen dobře rozložitelné organické látky. Vhodnost organických látek je posuzována podle doby rozložitelnosti, na kterou je dimenzována doba zdržení vsádky

ve fermentoru. Zvýšení účinnosti vzniku metanu je dále realizováno rozmělněním vsádky. Zvýšení povrchu umožňuje přístup většího počtu mikroorganismů a zvyšuje účinnost přetvoření organického materiálu na metan. Polysacharidy, tuky a bílkoviny jsou řazeny do skupiny dobře rozložitelných organických látek vhodných jako vstupní surovina výroby bioplynu. Procentuální výnosnost a složení vzniklého bioplynu pro jednotlivé typy látek je znázorněno v tab. 2.

Substrát	Bioplyn [Nm ³ /t TS]	CH4 [%]	CO ₂ [%]
Sacharidy	790-800	50	50
Bílkoviny	700	70-71	29-30
Tuky	1200-1250	67-68	32-33
Lignin	0	0	0

Tab. 2: Maximální výtěžnost plynu a procentuální obsah majoritních složek [27]

Vsádka vtláčená do fermentoru je směs biologicky rozložitelných látek, které jsou složeny z velkého množství prvků, přičemž jedno z nejdůležitějších kritérií prvkového složení je poměr uhlíku a dusíku (C:N). Hodnota tohoto poměru se u bioplynových stanic často liší, zejména kvůli rozdílnému množství vstupního materiálu. Nízké hodnoty tohoto ukazatele naznačují, že je vsádka bohatá na proteiny, což by vedlo k vyšší produkci amoniaku a potlačení metanogeneze. Naopak vyšší hodnoty poměru C:N znamenají nízké hodnoty dusíku, které negativně ovlivňují životní cyklus mikroorganismů, jejich energetický a látkový metabolismus. Optimální hodnoty C:N faktoru se pohybují pro metanogenní fázi od 20:1 do 30:1. [14]

Materiálové vlastnosti jednotlivých substrátů a jejich výtěžnost je uvedena v tab. 3. V některých případech je rozšířen C:N faktor o fosfor a síru, tedy C:N:P:S (1000-500:15-20:5:3). [15]

Vsádka také obsahuje další prvky jako jsou vodík, kyslík, fosfor, síra, vápník, draslík a jiné. Určité koncentrace stopových prvků (železo, kobalt, nikl, zinek, měď a hořčík) jsou nezbytné k přežití jednotlivých druhů anaerobních mikroorganismů. Rovněž je nezbytné udržovat koncentrace inhibitorů pod kritickými hodnotami, které výrazně ovlivňují metanogenezi či jinou fázi anaerobního rozkladu. Je potřeba vyhnout se materiálům s potenciálním obsahem plísní, antibiotik, dezinfekčních prostředků, amoniakem, sulfanem a dalším. Tyto látky mohou být při určité koncentraci nezbytné pro život mikroorganismů, ale po překročení kritického množství mají inhibiční vlastnosti.

Pokud dochází k pozvolnému navyšování koncentrací inhibitorů, tak jsou mikroorganismy schopné se přizpůsobit. Největším problémem jsou skokové změny, které bývají obvykle fatální.

		Organická	Výtěžnost		
	Sušina-TS	Sušina-OS	bioplynu		Obsah CH 4
Substrat	[%]	[% z TS]	[m ³ /t OS]	C:N	[obj. %]
Kejda skotu	6-11	68-85	400	10-17	60
Kejda prasat	2,5-9,7	60-85	450	5-10	60-70
Hnůj skotu	12-25	65-85	400	14-25	60
Hnůj prasat	20-25	75-90	450	9-16	60
Travní siláž	26-82	67-98	500-600	<10	54-55
Obilná sláma	85-90	85-89	250-350	12	cca. 55
Stonky	86	72	500	30	50 55
kukuřice	80	12	500	50	50-55
Jablečné	25	86	350 550	30	65 70
výlisky	25	80	330-330	50	03-70
Melasa	80	95	450	14-27	70-75
Rostlinný	5-20	76-90	400-600	15	55-65
odpad	5-20	70-90	+00-000	15	55-05
Obsah žaludku	14	82	450-550	19	58-70
skotu	17	02	+30 330	17	50 70
Potravinový	9-37	75-98	600	18	45-65
odpad)-31	15-70	000	10	+3-05
Kaly	5-24	85-98	1200	6-12	60-72
Materiál	2-70	70-99	1300		60-72
lapače tuku	270	10 77	1500		0072

Tab. 3: Materiálové vlastnosti jednotlivých substrátů s výtěžností bioplynu [28, 29]

3.1.3.4 Obsah kyslíku

I přes název procesu anaerobní digesce je kyslík v první fázi nutnou součástí, kdy při hydrolýze dochází ke spotřebě kyslíku rozpuštěného v kapalné fázi vsádky. Pro další anaerobní mikroorganismy ve fermentoru má však již koncentrace vyšší než 0,1 mg/L kyslíku inhibiční účinky [15]. Malé množství plynného kyslík bývá uměle vstřikováno

do fermentoru nad hladinu vsádky a působí jako první stupeň desulfurizace, viz rovnice 1 a obr. 11. Dávkování kyslíku je nastaveno tak, aby se vždy spotřebovalo veškeré množství ve fermentoru a v bioplynu bylo již jen stopové množství kyslíku. Vzniklá pevná síra se usazuje na nosných střešních konstrukcích fermentorů. [30]

Druhou metodou vpravování kyslíku do fermentoru je vstřikování pod hladinu vsádky, kdy dochází ke sledu reakcí vyúsťující ke vzniku pevné síry plovoucí na hladině vsádky. Prostřednictvím mikroaerace je snižována hodnota sulfanu z jednotek tisíců ppm na nízké stovky ppm H₂S obsaženým v bioplynu. [32]

$$H_2S + \frac{1}{2}O_2 \to S + H_2O$$
 (1)

SOB: Bakterie oxidující síru SRB: Bakterie redukující síru

Obr. 11: Primární odsíření bioplynu prostřednictvím mikroaerace - převzato, upraveno [31,34]

3.1.4 Problémy při výrobě bioplynu

Provozování bioplynové stanice je kontinuální proces, při kterém jsou kontrolovány a udržovány v optimálních hodnotách výše zmíněné parametry z důvodu co nejvyšší produkce bioplynu s požadovanou koncentrací biometanu. Při nedodržení některých parametrů může dojít k pěnění fermentační vsádky, ucpání potrubí, inhibici růstu mikroorganismů, otrávení fermentoru. Vážné poruchy výroby bioplynu jsou řešeny vyprázdněním fermentoru, vyčištěním a opětovnou aktivací vsádky mikroorganismy. Takto řešené poruchy jsou finančně i časově náročné, viz obr. 12. [15, 28, 33]

Obr. 12: Produkce bioplynu a obsah biometanu při spouštění fermentace – převzato, upraveno [15]

3.2 Separace oxidu uhličitého z bioplynu a dočištění biometanu

Cílem této části práce je shrnout výčet metod separace oxidu uhličitého z bioplynu, dále popis jejich principů, zjištění charakteristik procesů, mezi které patří čistota finálního proudu bohatého na biometan, energetická náročnost metod separace a složitost pro obsluhu. První část je orientována na odstranění nežádoucích složek (CO₂, H₂S, H₂O a dalších) z proudu bioplynu a zajištění více než 95% čistoty proudu biometanu. Druhá část je zaměřena na dočištění odpadního proudu bohatého na oxid uhličitý.

3.2.1 Absorpční čištění

Principem metody absorpce je rozdílná rozpustnost složek plynu v kapalném či pevném rozpouštědle. Plyn je vázán do absorpčního činidla rovnoměrně v celém objemu rozpouštědla. Existují dva typy absorpce, fyzikální a chemická.

Při fyzikální absorpci plynu vznikají fyzikální mezimolekulové vazby mezi složkami plynu a rozpouštědlem. Z důvodu slabých mezimolekulárních sil mezi molekulou CO₂ a kapalným absorbentem je fyzikální absorpce často provozována při vysokých tlacích a nízkých teplotách z důvodu zvýšení rozpustnosti oxidu uhličitého v rozpouštědle. [35]

Chemická absorpce využívá jako hlavní hnací sílu rozdílné chemické působení mezi molekulami rozpouštědla a pohlcované složky ze separované směsi. Pohlcování oxidu uhličitého z proudu bioplynu je nejčastěji realizováno vznikem kovalentní vazby mezi molekulou CO₂ a rozpouštědlem. Výhodou chemické absorpce je tvorba silnějších vazeb, díky kterým je proces efektivní i při atmosférickém tlaku a okolní teplotě. [44]

Proces fyzikální i chemické absorpce je doprovázen desorpcí, kdy je z absorbentu odstraňován absorbát, čímž je obnovena možnost znovu použití absorbentu. Pro zaručení efektivního procesu absorpce je nutné zvolit optimální absorbent, vhodnou náplň

absorpční kolony pro zaručení dostatečně velké styčné plochy rozpouštědla a plynu a stavení vhodných parametrů toků jednotlivých proudů.

Příklad zušlechťování bioplynu absorpcí oxidu uhličitého do vody je vyobrazen na obr. 13, kde je vodný absorbent přiváděn do horní části absorpční kolony a bioplyn do spodní. Voda s absorbovaným oxidem uhličitým je vedena přes výměník tepla do stripovací kolony, kde absorbent regenerován. Odpadní proud oxidu uhličitého je v aplikaci převzaté z [36] dále dochlazován kvůli záchytu zbytkové vodní páry. Plynný oxid uhličitý je vypouštěn do ovzduší.

Obr. 13: Schématické znázornění absorpce CO2 z biometanu – převzato, upraveno [36]

Rozdílná rozpustnost jednotlivých složek bioplynu v rozpouštědle definuje vhodnost použitého rozpouštědla, respektive rozdíl rozpustnosti CO₂ a CH₄. Například rozpustnost NH₃, H₂S, CO₂ a CH₄ během fyzikální absorpce vodou při 25 °C a atmosférickém tlaku je pro uvedené organické látky následující: 280000, 1020, 340, a 13,2 mmol·kg⁻¹·MPa⁻¹ [15]. Další požadované vlastnosti rozpouštědla jsou cena, ekologická náročnost, technická a energetická náročnost regenerace a vhodná viskozita.

V současnosti se využívá jen několik typů rozpouštědel. Do skupiny aminových rozpouštědel se řadí nejpoužívanější monoetanolamin a dále například dietanolamin a metyldietanolamin, viz tab. 4. Do skupiny alkalických rozpouštědel patří hydroxid sodný, hydroxid draselný či hydroxid vápenatý a je druhou nejrozšířenější skupinou absorbentů CO₂. Další používané absorbenty jsou roztoky uhličitanů a roztoky solí

aminokyselin. Optimální metoda regenerace, její energetická náročnost a zajištění minimální degradace rozpouštědel je stále oblastí výzkumu. [35]

Absorbent	Rosný bod	Tlak par	Aktivační	CO2 kapacita
	[°C]	při 20 °C	energie	[mol(CO ₂)/mol(abs.)]
		[Pa]	[kJ/mol]	
MEA	170	8,5	46,7	0,5
MDEA	-30	1,3	44,3	1
AEEA	165	0,15	-	1
DETA	-66	20	-	1

Tab. 4: Absorpční materiály používané k záchytu CO₂ z bioplynu – [58]

3.2.2 Adsorpční čištění

Adsorpční technologie separace plynné složky z plynné směsi funguje na principu rozdílné afinity povrchu pevného adsorbentu k jednotlivým složkám separovaného plynu účinkem mezipovrchových přitažlivých sil. Z definice principu fungování fyzikální adsorpce vyplývá hlavní nevýhoda adsorpce, a to její neselektivnost. Dochází k saturaci adsorpčního lože více typy nečistot, které spolu "soutěží". [37]

Mezi často používané adsorbenty se řadí uhlíková molekulová síta, aktivní uhlí, zeolity, silikagely a další látky, u kterých je dbáno na vytvoření co největšího specifického povrchu. Proto jsou adsorpční materiály často porézní či jemně namleté na prášek. Obdobně jako absorpce funguje i adsorpce pouze do stavu dosažení rovnováhy. Poté je nutné použít desorpci (teplotní, tlakovou, či desorpci inertním plynem), a tím regenerovat adsorbční materiál. Pro zajištění kontinuity procesu jsou vyžadovány minimálně dvě adsorpční kolony zapojené paralelně, přičemž v jedné probíhá adsorpce a v druhé regenerace na dvě základní, a to regenerace při zvýšeném tlaku (Pressure swing adsorption-PSA, obr.14), nebo při zvýšené teplotě (Temperature swing adsorption-TSA, obr.15). [37]

Obr. 14: Zjednodušený proces PSA s předúpravou - převzato, upraveno [40]

Obr. 15: Zjednodušený proces TSA - převzato, upraveno [41]

PSA je proces, kdy je do adsorpčního zařízení vháněn plyn o vyšším tlaku, než je atmosférický tlak. Adsorbčním materiálem je selektivně zachycována požadovaná složka směsi. Po nasycení adsorpčního materiálu adsorbovanou složkou je snížením tlaku zajištěna desorpce pevného adsorbentu. Maximální doba procesu regenerace jedné adsorpční kolony musí být nižší než doba adsorpce druhé. Proces PSA znázorněn na obr. 16, kde bod 1 reprezentuje zregenerovanou adsorpční kolonu připravenou k adsorpci při tlaku $p_1 > p_2$ a minimálním poměru adsorbentu adsorbátu uchyceného v adsorpční koloně. Vstupující plyn o koncentraci y_F prochází kolonou až do stavu naplnění, při kterém je adsorpční lože saturováno adsorbovanou složkou a není při tomto tlaku p_I schopné další adsorpce (bod 2). V tomto okamžiku je kolona přivedena do procesu regenerace prostřednictvím snížení tlaku na tlak p_2 (bod 3, viz obr. 16). Čištění pokračuje profukem adsorpčního lože plynem o tlaku p_2 a složením y_3 až do dosažení rovnováhy (bod 4). Následně se zvýší tlak na tlak p_1 , čímž je kolona opět připravena k adsorpci (bod 1).

Obr. 16: Adsorpční kapacita adsorbentu jako funkce složení plynu při tlacích p_1 a p_2 ($p_1 > p_2$) – převzato, upraveno [37]

Proces TSA je obvykle provozován za konstantního tlaku a pro regeneraci je využíváno zvýšení teploty pomocí ohřátého proudu inertního plyn nebo zpětného proudu již čistého plynu. U TSA adsorpce platí, že adsorbent při daném parciálním tlaku plynu s jakýmkoli zvýšením teploty sníží adsorbované množství plynu, viz obr. 17 [37, 38, 39].

Obr. 17: Závislost adsorpční kapacity na tlaku při různých teplotách – převzato, upraveno [44]

Ve velkém množství případů platí, že čím vyšší rozdíl teplot mezi adsorpcí a desorpcí, tím vyšší schopnost regenerace adsorbentu, avšak horní hranice teploty pro desorpci je limitována teplotou degenerace adsorbentu a následně také ekonomickou rozvahou procesu. Doba regenerace adsorbentu je limitována dobou adsorpce druhé paralelní kolony (v případě zapojení dvou adsorpčních kolon). Avšak regenerace je v tomto případě rozdělena do fáze desorpce za zvýšené teploty a následuje chlazení adsorbentu, při kterém je adsorbent ochlazen na původní adsorpční teplotu, viz obr. 18. Pro ohřev plynu je do adsorpčního cyklu nejčastěji zapojován vařák, přičemž množství spotřebované energie na tepelnou regeneraci adsorbentu je jedním ze stálých provozních nákladů adsorpčního zařízení.

Obr. 18: Teplotní průběh během procesu adsorpce a regenerace – převzato, upraveno [37]

Základním rozdílem mezi procesy TSA a PSA kromě jiných tlakových a teplotních úrovní je doba regenerace (okolo 1-10 min pro PSA a 4-16 h pro TSA), obvyklá pozice vstupního plynu do kolony (z vrchu pro TSA a ze spodu pro PSA) a množství adsorpčních kolon (2-3 pro TSA a až 16 pro PSA). [37]

Nejdůležitější výhodou PSA je prevence proti přehřátí adsorbentu, při kterém degraduje adsorbent a trvale se snižuje adsorpční účinnost TSA [42]. Výhodou PSA je také možnost pracovat v rychlejších cyklech, protože se změnou tlaku nastává téměř okamžitá regenerace adsorbentu. Střídání cyklů adsorpce a desorpce, ale může způsobit jednu z největších nevýhod PSA technologie, a to zavedení rázů do soustavy. Největší výhodou TSA je vysoká účinnost adsorpce a vysoká čistota desorbátu (v tomto případě CO₂). [43]

Dalšími adsorpčními metodami je metoda vakuové adsorpce (VSA), při které je adsorpční proces provozován při atmosférickém tlaku a desorpce probíhá při podtlaku.

Kombinací metod PSA a VSA vzniká metoda VPSA (Vacuum pressure swing adsorption) s výhodami obou metod. Obdobou metody TSA je metoda elektrické adsorpce (ESA), která teplo pro regeneraci generuje elektrodami vydávající Joulovo teplo při průchodu elektrického proudu vodičem.

K záchytu oxidu uhličitého adsorpcí je možné použít aktivní uhlí, zeolity, povrchově upravený meziporézní oxid křemičitý typu MCM-41 a SBA-15, mikroporézní organické polymery a kovovo-organické struktury (metal-organic frameworks MOF's) [45, 58].

Při volbě adsorpčního materiálu je nejdůležitějším parametrem adsorpční kapacita, tab. 5, která je silně závislá na specifickém povrchu adsorbentu vztaženou na jednotku hmotnosti (aktivní uhlí 400–2000 m²/g, zeolity 1500 m²/g, MOF's 1500-7000 m²/g). Adsorpční kapacita je také závislá na teplotě, vlhkosti a parciálním tlaku CO₂. Použití adsorbentu MOF's má potenciál zejména pro vyšší hodnoty tlaků. [45, 46, 47]

	Teplota	Tlak	Adsorpční
Adsorbent	[°C]	[bar]	kapacita [mmol/g]
PEI+MCM-41	25	-	0,62
PEI+SBA-15	25	-	0,04
Zeolit 13X	20	0,15	2,63
Zeolit 13X	22	1,5	4,9
Zeolit 13X	22	1	4,61
Molekulové síto 13X	25	1	3,2
Molekulové síto 13X	20	0,15	2,18
Molekulové síto 4A	25	1	2,7
Molekulové síto 4A	20	0,15	1,65
13X	5	0,9	6,3
5A	5	0,7	5,46
MOF's	25	15	8-10,2

Tab. 5: Adsorpční kapacity pro oxid uhličitý při použití různých typů adsorbentů [47, 48, 58]

3.2.3 Membránové čištění

Technologie membránové separace dělí vstupní plyn na permeát (složka plynu, která prochází membránou) a retentát (část plynné směsi, která neprojde membránou), viz obr. 19. Membránová separace je založena na rozdílné propustnosti jednotlivých složek membránou, přičemž hlavní hnací silou membránové separace je tlaková diference mezi retentátovým a permeátovým proudem a rozdíl koncentrací separované složky před a za membránou. Pro volbu vhodného membránového modulu nutné znát přibližný obsah oxidu uhličitého v separované směsi a další proměnné parametry, jako jsou teplota, tlak, vlhkost a obsah dalších složek směsi plynu vstupující na membránových modulů. Pro separaci plynů jsou nejčastěji využívané moduly s dutými vlákny, které zajišťují velkou vztyčnou plochu. [37, 49]

Obr. 19: Schématické znázornění membránové separace bioplynu – převzato, upraveno [82]

Během membránového zušlechťování bioplynu na biometan dochází k prostupu vodní páry, sirovodíku, amoniaku, a částečně dusíku a kyslíku do permeátu. Závislost propustnosti membrány je dána především velikostí pórů a velikostí molekul směsi plynu. Relativní rychlost prostupu molekuly plynu membránou je ukázána na obr. 20. [44, 50]

$$C_3H_8$$
 CH_4 N_2 H_2S CO_2 H_2O

Pomalá propustnost Obr. 20: Relativní rychlost permeace rozdílných složek bioplynu membránou ze skelného polymeru – převzato, upraveno [44]

Pro dosažení vysoké čistoty produktu jsou membrány často zapojovány do sérií se zpětným tokem retentátu a permeátu za vzniku vícestupňových membránových separačních zařízení, viz obr. 21.

Výběr vhodného membránového materiálu pro separaci CO₂/CH₄ záleží především na procesních parametrech jako jsou teplota a tlak. Husté polymerní membrány vyžadují velkou tlakovou diferenci kvůli odporu membránového materiálu. Membrány s usnadněným transportem používají reaktivní nosiče, které jsou součástí membránového materiálu, reagují s molekulami oxidu uhličitého a ulehčují difuzi molekul. Obvykle jsou provozovány při nízkých parciálních tlacích oxidu uhličitého. Membrány z dutých vláken využívají vysokou propustnost díky velké separační ploše. Dále často používané membrány jsou anorganického původu, které mají vyšší propustnost, selektivitu a chemickou a teplotní stabilitu oproti polymerním membránám, ale jejich pořizovací cena je výrazně vyšší. Vícevrstvé hybridní membrány a membrány se smíšenou matricí z více materiálů mají potenciál překonat polymerní i anorganické membrány, je však potřeba dalšího výzkumu, viz tab. 6. [52, 53]

Тур	Materiál	Permeabilita CO ₂	Selektivita
		[barrer]	CO ₂ /CH ₄
,é ′	Pebax-1657	100	20
ukov nery	Polyetylen	12,6	4,3
auči olyr	Polymetylakrylát	6,67	28,4
K	Přírodní kaučuk	134	4,7
	Polyimid PI-5	190	33,9
lné nery	Polyimide 6FDA-TMPDA	555,7	22,7
Ske oolyr	p-polyeterimid	200	26,3
1	PIM-7	1100	26,2
e	6FDA-TAPOB rozvětvený PI	19	238
atric ovýr (PI)	6FDA-6FpDA-PDMS	17,3-229	29,8-5,3
á má mid dem	Matrimid 5218/CueBPYeHFS	7,29-15,06	34,71-25,55
uíšen olya áklau	Kompozitní skelné aromatické PI	34,4-1344	14-24,1
sm s p zá	MIL-68(Al)/Matrimid 5218	279,6	79

Tab. 6: Tabulka vybraných membránových materiálů a jejich vlastností [53]

Obr. 21: Schéma A) jednostupňová, B) dvoustupňová, C) třístupňová membránové separace biometanu z bioplynu – převzato, upraveno [51]

Hodnoty permeabilit materiálů jsou stanovovány nejčastěji experimentálně a jsou uváděny v jednotkách 1 barrer, viz rovnice 2. [54]

$$1 Barrer = 10^{-10} \cdot \frac{cm^3(STP)cm}{cm^2 s \ cmHg}$$
(2)

3.2.4 Kryogenní čištění

Kryogenní technologie zušlechťování bioplynu využívá rozdílné teploty kondenzace jednotlivých složek plynu a při snižování teploty různé složky zkapalní. Při atmosférickém tlaku je teplota zkapalnění oxidu uhličitého 194,69 K a teplota varu metanu 91,15 K. Proces kryogenní separace je nejčastěji provozován prostřednictvím

kryogenní destilace, viz obr. 22, a to při zvýšených tlacích z důvodu zvýšení teplot zkapalnění a ušetření energetických nákladů na dodávání chladu. Výhodou kryogenního čištění je schopnost dosažení téměř 100% čistoty jednotlivých složek a v případě zájmu o kapalný produkt není potřeba zapojení dalšího zkapalňovacího zařízení. Kryogenní zařízení pro separaci složek bioplynu obsahuje kompresor, výměníky tepla, turbínu, chladič a další části, které spotřebovávají velké množství elektrické energie. Kryogenní separace vyžaduje odbornou obsluhu. Nevýhody této metody separace jsou vysoké pořizovací i provozní náklady a kvůli složitosti zařízení je i obtížná implementace kryogenního čištění do již fungujících provozů. [37, 49, 55]

Obr. 22: Zjednodušené schéma kryogenní destilace – převzato, upraveno [56]

3.2.5 Zhodnocení separačních metod pro zušlechťování bioplynu

Výběr vhodné metody transformace bioplynu na biometan, je převážně dán požadovanou čistotou produktu, energetickou náročností, pořizovacími náklady, ekonomikou provozu zařízení a náročností pro obsluhu, viz tab. 7. Pro výběr optimální metody separace musí být tyto parametry vyhodnoceny převážně v závislosti na množství separovaného plynu, viz obr. 23. Při zvolení separační metody je nutné brát v úvahu i okolní technologické předúpravy bioplynu jako je odstranění vody a sulfanu, viz obr. 24, a jejich implementace do finální technologie zušlechťování bioplynu.

Obr. 23: Porovnání investičních nákladů metod zušlechťování bioplynu v závislosti na průtoku bioplynu – převzato, upraveno [57]

Obr. 24: Schématické zobrazení základních kombinací čištění a zušlechťování bioplynu – převzato, upraveno [34]
Vlastnosti / technologie	PSA	Absorpce vodou	Chemická absorpce	Fyzikální absorpce	Jednostupňová membránová separace	Vícestupňová membránová separace	Kryogenní separace
Čistota CH4 [%]	>98	>98	>99	93-98	90-97 >99		>99
Ztráty CH ₄ [%]	<3	<1	<0,1 2-3 <5 <0,5		<0,5	<0,1	
Provozní tlak [bar]	4-10	6-10	1-1,5	4-7	6-18		40-80
Spotřeba el. energie (kWh/Nm ³)	0,25	0,3-0,33	<0,15	0,25-0,33	0,18-	0,35	0,18-0,63
Náročnost pro obsluhu	vysoká	nízká	střední	vysoká	minin	nální	vysoká
	Ε	nergetická	náročnost	(kWh/Nm ³	vyčištěné	ho plyn	u)
[63]	0,247	0,208	0,117	0,288	0,288 0,341		0,344
[64]	0,354	0,423	0,433	0,461	0,2	77	0,369
[65]	0,46	0,46	0,27	0,58	0,3	34	1,17
[61]	-	-	-	-	-		0,568
[62]	0,46	0,46	0,27	-	0,25-	0,43	-

Tab. 7: Porovnání parametrů nejvýznamnějších technologií zušlechťování bioplynu [59, 60, 62]

Podle Evropské bioplynové asociace lez dosáhnout více než 99% koncentrace oxidu uhličitého jako sekundárního proudu jakoukoli výše zmíněnou optimalizovanou technologií separace [7]. Při zvolení membránové separace může být výhodou relativně konstantní průtok bohatého proudu CO₂ a proudu s CH₄ oproti například sorpčním technologiím, kdy se rázově uvolňuje velké množství CO₂ při regeneraci sorbentu.

Nejpoužívanější metody již pracujících bioplynových stanic používá membránovou separaci, vodní vypírku či adsorpci chemickými rozpouštědly, viz obr. 25 [7]. Shrnutí výhod a nevýhod jednotlivých technologií je uvedeno v tab. 8.

Obr. 25: Relativní využití rozdílných metod zušlechťování bioplynu v Evropě v roce 2020 – převzato, upraveno [7]

technologie	pozitiva	negativa
	relativně levná technologie	• vysoké ztráty CH ₄
	• bez potřeby tepla	 potřeba odstranění H₂S a H₂O před adsorpcí
DCA	bez chemikálií	 vysoké pořizovací náklady
PSA	 vhodná i pro malé kapacity BP 	 vysoké provozní náklady
	 známá technologie 	 náročné řízení procesu
	 nízká energetická náročnost 	• nižší dosahované čistoty CH ₄
	• adsorpční odstranění i O ₂ a N ₂	
	jednoduchá technologie	• potřeba velkých objemů vody
	 nízké náklady 	 nižší účinnost
	• současné odstranění H ₂ S a NH ₃	• nižší dosahované čistoty CH ₄
Absornce	 jednoduché ovládání 	• středě vysoké ztráty CH ₄
Absorpce vodou	 flexibilní při změnách kapacit čištěného plynu 	 možné ucpávání
	 bez chemikálií 	 korozní problémy
	 snadná regenerace vody 	 pomalý proces
		• nutné následné sušení biometanu
	 vysoká účinnost separace 	 vysoké pořizovací náklady
	 bez pohyblivých komponentů 	• velké množství tepla potřebného pro regeneraci absorbentu
Chemická absorpce	• úplné odstranění H ₂ S	 toxicita rozpouštědla pro člověka i přírodu
(aminy)	 nízká spotřeba energie 	 možná degradace aminů kyslíkem či jinými chemikáliemi
	 proces bez zvýšeného tlaku 	
	 nízké ztráty CH4 	

Tab. 8: Výhody a nevýhody používaných technologií na zušlechtění bioplynu [125, 126]

F ' ! -' ! -'	 vysoká účinnost 	 vysoké investiční a provozní náklady 		
Fyzikalni absorpce	 nízké ztráty CH₄ 	 obtížný provoz 		
(glykol)	Fyzikální absorpce (glykol)• vysoká účinnost nízké ztráty CH4 • možná regenerace • současné odstranění H2S, H2O, NH3Membránová separace• nízké náklady na údržbu 	 drahé rozpouštědlo vysoká energetická náročnost pro regeneraci absorbentu 		
	 nízké náklady na údržbu 	 vysoké ceny membrán 		
	• jednoduchá a kompaktní konstrukce	 nutná odstranění H₂S před membránami 		
Membránová separace	 malá zastavěná plocha jednoduchá instalace i do již pracujících procesů 	 pro velké objemy BP jsou relativně vysoké energetické náročnosti 		
	 vhodné i pro malé průtoky BP bez chemikálií 	 nutnost vícestupňových systémů pro snížení ztrát CH₄ a zvýšení čistoty 		
	 odstranění H₂O z CH₄ proudu snadné navýšení kapacit zpracovávaného plynu 	 membrány degradují v čase 		
	• nízké ztráty CH ₄	 vysoké investiční náklady a náklady na údržbu 		
Kryogenní separace	 dosahování vysokých čistot CH₄ 	 předúpravy na odstranění H₂S a siloxanů jsou potřeba 		
	 možnost čistého CO₂ jako produkt 	 technicky náročný proces – potřeba kvalifikované obsluhy 		
	bez chemikálií	vysoká energetická náročnost		
		 účinnost procesu je závislá na teplotě okolí 		

3.2.6 Dočišťování bioplynu a proudu bohatého na oxid uhličitý

3.2.6.1 Odstraňování sulfanu

Sulfan je toxická sloučenina, která je pro člověka smrtelná již při koncentraci 1000 ppm. V nízkých koncentracích může být identifikován prostřednictvím typického zápachu po zkažených vejcích. Odstraňování sirovodíku z bioplynu je primárně kvůli kogeneračním jednotkám, kde při spalování vyvolává korozi ocelí. Sulfan vzniká během anaerobní digesce ve fermentoru a jeho koncentrace je závislá především na složení vsádky. V zemědělských bioplynových stanicích se v surovém bioplynu sulfan vyskytuje o koncentracích nízkých jednotek tisíců ppm. U bioplynové stanice zpracovávající organický materiál s vysokým obsahem proteinů se hodnoty koncentrací sulfanu pohybují v řádech stovek ppm. [37, 66]

První stupeň odsíření představuje aerace fermentoru kyslíkem za vzniku síry v pevném skupenství s možností rozšíření o dávkování železných kationtů za vzniku

pevného sulfidu železnatého, viz kapitola 3.3.4. Atomární síra se v pevném skupenství uchycuje na střešní konstrukci fermentoru, viz obr. 26. Pro efektivní odsíření v prvním stupni je nutná velká plocha potřebná k záchytu síry. Proto je vhodné ponechat sirné nánosy na trámoví. Prostřednictvím aerace dosahuje bioplyn koncentrací H₂S v řádu nízkých stovek až vyšších desítek ppm. [66, 67].

Obr. 26: Ochranný strop fermentoru z dřevěných trámů [13]

Ve většině případů je pro druhý stupeň odsíření použit adsorpční záchyt sirovodíku na pevném sorbentu, jako je aktivní uhlí, zeolity či oxidy železa. Výběr sorbentu je ovlivněn koncentrací sirovodíku v čištěném plynu, sorpční kapacitou jednotlivých adsorbentů a schopností adsorpce oxidu uhličitého, která je v této chvíli konkurenční vůči adsorpci sulfanu. Významnou roli pro výběr sorbentu hraje i náročnost regenerace, která je v určitých případech náročná jak energeticky, tak technologicky. Regenerace aktivního uhlí je možná za použití horké vody či tepelným ošetřením, avšak snížení adsorpční kapacity po regeneraci je výrazné. [68] Proto se adsorpce sulfanu na aktivní uhlí vyplatí pouze při nízkých hodnotách koncentrací a po zaplnění adsorpčního materiálu je aktivní uhlí považováno za odpad nutný k likvidaci. Likvidace je obvykle prováděna externí společností termickým způsobem v souladu s platnou legislativou. Při použití aktivního uhlí či povrchově impregnovaného aktivního uhlí se z koncentrací nízkých stovek ppm sirovodíku v bioplynu dostáváme na hodnoty jednotek ppm. [62, 69]

Za mezistupeň mezi mikroaeračním způsobem odstraňování sulfanu a adsorpčním způsobem může být považováno kondenzační sušení bioplynu, protože je sulfan dobře rozpustný ve vodě, viz tab. 9. [68]

Tlak	Rozpustnost při 5 °C
[bar]	[mmol/kg]
1	0,0094
5	0,505
10	0,990

Tab. 9: Závislost rozpustnosti sulfanu ve vodě na tlaku [70]

Hodnoty adsorpčních kapacit adsorbentů jsou silně ovlivňovány koncentrací sulfanu v čištěném proudu plynu. Kritéria výběru adsorbentu jsou adsorpční kapacita, adsorpční kinetika, mechanické vlastnosti adsorbentu, chemická stabilita a možnost regenerace, případně její náročnost. [68, 71, 72, 78]

Dalšími základními možnostmi odstraňování sirovodíku je absorpce v kapalných rozpouštědlech, přičemž tato metoda je využívána převážně v případech, kdy je absorpce zvolena jako hlavní způsob separace oxidu uhličitého. Pro dočišťování bioplynu z bioplynových sanic není obvykle absorpční metoda využívána kvůli relativně nízkým hodnotám průtoků sirovodíku. [73]

3.2.7 Odstraňování vody

Bioplyn z bioplynových stanic je obvykle plně nasycen vodní párou, která výrazně snižuje výhřevnost bioplynu, což je také hlavní důvod proč ji odstraňovat. Dalším podstatným důvodem odstraňování vodní páry z bioplynu je snaha o zabránění kondenzace vody za tvorby korozivních kyselin, popřípadě hromadění a ucpání potrubí. Při výrobě biometanu z bioplynu je nutné dosáhnout 95% obsahu CH₄ ve výsledném produktu a bez odstranění vody by bylo téměř nemožné dosáhnout této koncentrace metanu. Odstraněním vody z bioplynu je také zvýšena životnost adsorpčního materiálu (aktivního uhlí, molekulových sít, …) pro dočištění sirovodíku. Pro separaci vody z bioplynu existuje více technik jako je například adsorpce na pevné materiály, absorpce vody glykolem, sušení a také metoda chlazení a kondenzace. Volba vhodné metody odstranění vody je závislá na požadovaném stupni odstranění vody, a proto bývá často použito více metod současně jako například kondenzační metoda a metoda absorpce vody kapalnými rozpouštědly, nebo metoda adsorpce.

Separace vody kondenzací je považováno za nejméně energeticky náročnou metodou pro odstranění velkého množství vody z proudu bioplynu, a to buď snížením teploty, zvýšením tlaku, nebo kombinací obou procesů. Při dosažení tlakového rosného bodu je bioplyn plně saturován vodní parou a s jakýmkoli dalším snížením teploty či

zvýšením tlaku proběhne kondenzace vodní páry [74]. Potřebná zařízení pro kondenzační odvodnění bioplynu jsou: kompresor, chladič či výměník tepla, hydrocyklon, oddělovač kapek, lapač páry a nádoby na kondenzát.

Další metodou odstranění vodní páry z bioplynu je metoda využívající Joule-Thomsonův efekt pro rychlé zchlazení plynu prostřednictvím poklesu tlaku. To způsobí zvětšení molekulových vzdáleností, zvýšení jejich potenciální energie, což vede k ochlazení plynu a kondenzaci vody. [74]

Adsorpční metoda odstranění vodní páry z bioplynu, viz obr. 27, je metoda, při které je bioplyn v kontaktu s kapalným rozpouštědlem, obvykle v protiproudém zapojení. Nejčastěji používané rozpouštědlo je glykol, kvůli své vysoké afinitě k vodě, nízkému tlaku par a nízké rozpustnosti metanu. Absorpce glykolem je vhodná pro tlakové rosné body v oblasti 15-49 °C. Odstraňování molekul vody glykolem probíhá ve dvou fázích, nejprve dochází k absorpci vodní páry do kapalného rozpouštědla a poté dochází k regeneraci kapalného rozpouštědla. Regenerace je prováděna zahřátím proudu glykolu obohaceného vodní parou, nástřik do stripovací kolony a prostřednictvím reboileru dochází k zahřátí směsi a výrazný rozdíl teplot varu vody (100 °C) od glykolu (288 °C) umožňuje použití metody destilace k odstranění vody z rozpouštědla. [74, 75]

Obr. 27: Konvenční odstraňování vody z plynu metodou absorpce trietylenglykolem – převzato, upraveno [75]

Sušení plynu prostřednictvím adsorpce na pevné adsorbenty je používáno často při požadavku vysoké suchosti, a to prostřednictvím záchytu plynných molekul vody povrchovými silami s možností dosažení rosného bodu -50 °C [76]. Adsorpce se dělí na chemickou a fyzikální, přičemž při dehydrataci plynů jde většinou o fyzikální adsorpci. Adsorpční materiály mohou být rozděleny na materiály bez možnosti regenerace (například CaCl₂) a s možností regenerace (například molekulová síta, zeolity, oxid hlinitý). Vybraný adsorpční materiál by měl mít vysokou adsorpční kapacitu, vysokou selektivitu, nízkou energetickou náročnost na regeneraci, nízké pořizovací náklady, vysokou teplotní, mechanickou a chemickou stálost, viz tab. 10. [74, 76]

Vlastnosti	Silikagel	Al ₂ O ₃	Molekulová síta
Specifický povrch [m ² /g]	750-830	210	650-800
Adsorpční kapacita [kg _{H2O} / 100 kg ads.]	7-9	4-7	9-12
Teplota regenerace [°C]	230	240	290
Desorpční teplo [J]	3256	4183	3718

Tab. 10: Porovnání adsorbentů používaných pro odstranění vody ze zemního plynu a bioplynu [77, 78]

Volba použité metody dehydratace bioplynu je závislá na požadované finální suchosti plynu, viz obr. 28. Adsorpční sušení využívající k regeneraci zvýšenou teplotu a profouknutí malým množstvím suchého plynu, čímž je zvýšena adsorpční schopnost adsorbentu, a s kombinací se zvýšením rychlosti čištění (nastavení kratší doby cyklů) lze dosáhnout nižších rosných bodů (-60 až -80 °C). [79]

Obr. 28: Přehled oblastí vhodných pro aplikaci metody cílové dehydratace - převzato, upraveno [76]

4 Průmyslově používané systémy pro zušlechťování bioplynu

V České republice a v celé Evropě existuje mnoho firem zabývajících se zušlechťováním a dalším zpracováním bioplynu, těmi nejvýznamnějšími zástupci jsou:

• Agrikomp Bohemia

Je jednou ze společností, která postavila v České republice nejvíce bioplynových stanic, o instalovaném výkonu pod 500 kW elektrické energie. Všechny využívají kogenerační jednotky pro transformaci bioplynu na elektrickou energii a teplo. Proces výroby biometanu z bioplynu prochází přes předčištění, kde dochází k odstranění nežádoucích složek jako je vlhkost, sloučeniny síry a těkavé organické látky. V předúpravě dochází k prostupu bioplynu přes filtry s aktivním uhlím a přes kompresory, pomocí nichž je realizováno sušení plynu. [80]

Dále následuje čištění bioplynu (upgrading), kdy dochází k odstraňování oxidu uhličitého a dalších složek plynu jako je kyslík a dusík. K upgradingu bioplynu používá společnost Agrikomp membránovou technologii agriPure z důvodu vhodnosti parametrů membránové technologie pro zušlechtění bioplynu vzniklého ze zemědělských a odpadních substrátů. Použité membránové jednotky agriPure zaručují nízké provozní náklady a nízké metanové ztráty při upgradingu. Obvykle jsou společností Agrikomp využívány třístupňové membránové systémy, ve kterých prochází přes membránu CO₂ a metan zůstává v retentátovém proudu. Technologií agriPure jsou dosahovány čistoty 99,5 obj. % a pouze 0,5 obj. % biometanu prochází do permeátu [81]. Odpadní plyn obsahuje až 98 obj. % oxidu uhličitého, tento proud je možno dočistit a využít. [81]

• Hochreiter

Společnost Hochreiter dodává modulární-kontejnerový systém úpravy bioplynu o výkonech od 40 do 5000 m³/h bioplynu. Linka na transformaci bioplynu na biometan začíná předúpravou, kdy je pomocí dmychadla a ochlazování na přibližně 5 °C částečně odstraňována voda. Dále jsou zapojeny adsorbéry s aktivním uhlím k odstranění organických těkavých látek a sirovodíku. Prostřednictvím zapojení vysoce účinné rekuperační jednotky, která využívá teplo z kompresorů a z chladící jednotky k vytápění fermentorů dochází k minimalizaci množství potřebného externě dodávaného tepla a tím i spotřeby elektrické energie v bioplynové stanici. Před samotným zušlechťováním je bioplyn stlačen na 16 barů pístovým kompresorem. Pro upgrading bioplynu je používána patentovaná třístupňová membránová separace [94], viz obr. 29 a 30, která je při optimálním provozu dosahuje účinnosti vyšší než 99,5 % s minimální metanovou ztrátou menší než 0,5 %. Je také k dispozici možnost rekuperace odpadního proudu bohatého na oxid uhličitý se snahou o další využití například v potravinářském průmyslu. [82]

Obr. 29: Blokové schéma a schéma se znázorněnými zařízeními pro úpravy bioplynu firmou Hochreiter [82]

Obr. 30: Blokové membránové separace – převzato, upraveno [82]

• Hitachi Zosen Inova

Společnost Hitachi Zosen Inova se zaměřuje na kompletní dodání technologie zpracování bioplynu. Řešení je dodáno na míru a může být použita kogenerační jednotka nebo separace bioplynu na biometan. V první fázi procesu dochází k předúpravám plynu, a to konkrétně odstranění vodní vlhkosti systémem využívající komprese plynu a sušení, dále odstraněním sloučenin síry prostřednictvím adsorpce na aktivním uhlí. V hlavní fázi zušlechťování bioplynu je odstraňován oxid uhličitý metodou membránové separace nebo nízkotlaké aminové vypírky. Volba metody je závislá na výkonu bioplynové stanice, na požadavcích provozovatele či na podmínkách trhu. Obě zvolené metody dosahují vysokých čistot metanu a jeho minimální ztráty, je zde také odpadní proud plynu s relativně vysokým obsahem oxidu uhličitého, který muže být dále zpracováván.

Nízkotlaká aminová vypírka bioplynu funguje na principu absorpce oxidu uhličitého do aminového roztoku, který je v horní části náplňové kolony rozstřikován. Předupravený bioplyn je přiváděn na spodní část kolony, ze které stoupá absorpční kolonou a dochází ke kontaktu bioplynu a absorbentu. Použitý absorbent je nutné tepelně regenerovat pro obnovu absorpční kapacity. Použití aminové vypírky je vhodné instalovat tam, kde je k dispozici zdroj tepla pro regeneraci například z jiné výroby, nebo když je část bioplynu zpracovávána kogenerační jednotkou. Aminová vypírka je také vhodná při požadavku vysoké čistoty biometanu na výstupu a také v případě, kde je požadovaný nízký tlak výstupního biometanu pro přepravu do vtláčecí stanice. [83]

Membránová separace bioplynu funguje na principu rozdílné permeace oxidu uhličitého membránou oproti metanu, kdy molekuly oxidu uhličitého přednostně procházejí membránou díky velikosti molekuly a selektivitě membrány. Bioplyn je na membránu přiváděn za vysokého tlaku a postupně prochází třístupňovou membránovou separací. Membránová separace je vhodná pro provozy s malými nebo kolísavými objemy vstupního bioplynu a tam kde je požadován výstupní biometan o vysokém tlaku [83].

• Bright Biometane

Bright Biometane je jedním z nejvýznamnějších dodavatelů zařízení na zušlechťování bioplynu s kapacitami od 40 Nm³/h do 5 000Nm³/h. Pro zušlechťování bioplynu jsou používány třístupňové membránové systémy SEPURAN[®] od společnosti Evonik, viz obr. 31, s účinností separace nad 99,5 % metanu z bioplynu [87]. Společnost

využívá i odpadní proud oxidu uhličitého pro případné zkapalnění a oxid uhličitý je považován za další zdroj příjmů, viz obr. 32. [84]

Obr. 31: Schéma třístupňové membránové separace systému SEPURAN – převzato, upraveno [88]

Obr. 32: PFD schéma zkapalňování CO2 – převzato, upraveno [89]

Membránová separace je preferovaná z důvodu snadného zvýšení kapacit doinstalováním dalších membránových modulů, jednoduché měřitelnosti složení proudů plynu, jednoduchosti pro obsluhu a odolnosti membrán proti poškození škodlivinami včetně nízkým koncentracím sirovodíku [87].

Po odstranění vody jsou z bioplynu odstraňovány také znečišťující látky jako sulfan, siloxany a těkavé organické látky prostřednictvím adsorpčních kolon s aktivním uhlím a 3 µm prachovým filtrem umístěným za adsorbentem. Zkapalňování CO₂ je realizováno prostřednictvím deskového výměníku tepla při tlaku 18-19 bar, kdy je jako zdroj chladu

zapojen vnější chladící kompresorový okruh s freonovým chladivem či s amoniakem, viz obr. 33.

Obr. 33: Schéma se znázorněnými zařízeními pro zušlechťování bioplynu firmou Bright Biometane [84]

Společnost Bright Biometane optimalizovala provoz zařízení na zušlechťování biometanu, viz obr. 33, a dosahuje spotřeby elektrické energie 0,22 kWh/Nm³ bioplynu [84]. Prostřednictvím rekuperace tepla používaného ve fázi předúpravy bioplynu (adsorpční odstraňování vody a sirovodíku s tepelnou regenerací) a tepla vzniklého v kompresorových jednotkách pro stlačování bioplynu před membránovou separací je získáváno více než 0,25 kWh_t/Nm³ [84]. Tím je pokrývána hlavní energetická spotřeba zařízení na úpravu bioplynu. Výrobcem jednotek na zušlechťování bioplynu je firma Prodeval, která zařizuje technologie předúprav, filtry s aktivním uhlím, membránovou separaci a odorizaci biometanu tetrahydrotiofenem. [85, 86]

• Hutira green gas

Je společnost zajišťující technologie kontroly a úpravy biometanu pro vtláčení do plynárenské soustavy, viz obr. 34, reguluje tlakové parametry, odstraňuje vlhkost, zajišťuje odorizaci, měření a servis bioplynových stanic a biometanových zušlechťovacích zařízení.

Obr. 34: Schéma vtláčení biometanu do plynárenské sítě a zkapalňování CO₂ [90]

• Air Products

Air Products je jednou z největších firem v plynárenském průmyslu, která mimo jiné vyrábí a distribuuje oxid uhličitý. Jedním ze zdrojů dodávaného oxidu uhličitého je oxid uhličitý z bioplynu, který je zušlechťován třístupňovým membránovým systémem PRISM[®]. Do membránového systému, viz obr. 35, je vháněn surový bioplyn a po průchodu separačním systémem dosahuje retentátový proud stejné kvality jako zemní plyn z plynárenské sítě a je vhodný pro průmyslové využití. V případě zkapalňování biometanu je dále retentátový proud dočištěn. Výhodou membránového zařízení je také selektivita membrán pro vodu, která z velké části prochází do permeátového proudu, viz obr. 36, bohatého na oxid uhličitý a pro získávání biometanu je eliminována potřeba úplného vysoušení celého objemu surového bioplynu. Membrány jsou odolné vůči nečistotám a sirovodíku a udržují si dlouhou životnost osmi až dvanácti let. [91]

Obr. 35: Znázornění linky na zušlechťování bioplynu i s předúpravami společností Air Products – převzato, upraveno [91]

Společnost používá stejné typy membrán pro všechny nabízené konfigurace membránových separátorů na zušlechťování bioplynu. Podle velikosti produkce bioplynu se zvolí vhodné membránové moduly s dostatečnou membránovou plochou a konkrétní zapojení a stupeň optimalizace se zvolí dle požadavků zákazníka, viz tab. 11. Výsledky separace bioplynu třemi různými PB membránami v tab. 12 byly provedeny testováním dvousložkové směsi metanu (55 mol.%) a oxidu uhličitého (45 mol.%). Výstupní retentátová směs obsahovala 98 mol.% CH₄ a 2 mol.% CO₂, složení permeátu z membránové separace dosahoval 99,7 mol.% CO₂ a 0,3 mol.% CH₄. Průměrně 52,5 obj. % vstupního proudu zůstává jako retentát a 47,5 obj.% prochází přes membránu do permeátu.

Obr. 36: Membránový PB separátor od společnosti Prism se znázorněnou separací jednotlivých složek bioplynu – převzato, upraveno [91]

Konfigurace	Vysoká n výtěž	netanová most	Nízká sp ener	ootřeba gie	Nízké kapitálové náklady		
Měrný nříkon	0,22 kW	//Nm ³ /h	0,15 kW	/Nm ³ /h	0,17 kW	//Nm ³ /h	
	biop	lynu	biopl	ynu	biopl	ynu	
Využití CH4	99,8	8 %	94	%	90	%	
Zušlechť ovací	Třístu	oňová	Třístup	oňová	Dvousti	upňová	
technologie	membránov	vá separace	membránov	á separace	membránov	vá separace	
Objemový tok	PB6050P3	60,0	PB6050P3	120	PB6050N1	350	
vstupního BP [Nm³/h]	PB4050P3	23,0	PB4050P3	46,4	PB4050N1	135,5	
	PB4030P3	13,8	PB4030P3	28,0	PB4030N1	81,6	
Objemový tok	PB6050P3	33,6	PB6050P3	63,3	PB6050N1	176,8	
CH4 frakce (retentát)	PB4050P3	13,0	PB4050P3	24,4	PB4050N1	68,5	
[Nm ³ /h]	PB4030P3	7,8	PB4030P3	14,7	PB4030N1	41,2	
Objemový tok	PB6050P3	26,4	PB6050P3	56,7	PB6050N1	173,2	
CO ₂ frakce	PB4050P3	10,0	PB4050P3	21,9	PB4050N1	67,0	
[Nm ³ /h]	PB4030P3	6,0	PB4030P3	13,2	PB4030N1	40,4	

Tab. 11: Možnosti optimalizace separačního zařízení od firmy Air Products [91]

Pozn.1: Tlak vstupního do membrány je 12 barg, tlak retentátového proudu klesl na 11,8 barg a tlak permeátového proudu klesl na 0 barg.

Pozn. 2: PBXXXXP3 je označení použitých membránových modelů firmou Air Products

• Linde

Linde je významnou společností dodávající oxid uhličitéhý, který je získáván z mnoha zdrojů. Například z výroby amoniaku, etylenoxidu, etylenglykolu, bioetanolu, z rafinerií ropy, z výroben syntézního plynu, čištěním zemního plynu a z bioplynu. Proces zušlechťování bioplynu probíhá v obdobných fázích, jako u výše zmíněných společností, a to ve fázích předčištění, komprese, promývání vodou (scrubbing-většinou s kapalným rozpouštědlem vodného amoniaku a monoetanolaminu), sušení a adsorpce těkavých látek a sulfanu. Při regeneraci rozpouštědla vzniká proud plynu bohatý na oxid uhličitý, který je následně zkapalňován v kondenzátoru. V závislosti na požadované kvalitě (i více než 99,9 obj. % CO₂) je optimalizován proces regenerace rozpouštědla. [92]

Pro bioplynové stanice s malým výkonem Linde nabízí řešení zušlechťování biometanu prostřednictvím třístupňového patentovaného membránového zařízení dodávané firmou Evonik, viz obr. 37.

Obr. 37: Schéma třístupňového membránového systému Evonik – převzato, upraveno [93, 94]

4.1 Zkapalňování CO₂ – metody a oběhy

Jedním z důvodů zkapalňování oxidu uhličitého je fakt, že jsou kapalná čerpadla mnohem méně energeticky náročná, oproti plynovému kompresoru. Limitní hodnota tlaku, při které lze oxid uhličitý zkapalnit, je tlak trojného bodu $p_T=5,17$ bar. Druhou je kritická teplota $t_k=31$ °C, nad kterou již nelze pouhou změnou tlaku zkapalnit oxid uhličitý. [95]

4.1.1 Zkapalňování CO2 prostřednictvím vnějšího chladícího cyklu

Principem izobarického zkapalnění je dodání dostatečného chladu na zkapalnění vnějším chladícím cyklem bez přímého kontaktu chladiva a chlazené látky. Zkapalnění probíhá ve výparníku tepla, do kterého vstupuje stlačený plyn zbavený příměsí a vlhkosti. Pro snížení energetické náročnosti může být využito sériové zapojení více chladících cyklů s jinými teplotními úrovněmi. Díky zapojení více chladících cyklů, viz obr. 38, nemusí být dosaženo v prvním stupni teplot zkapalnění a může být snížen kompresní poměr, což vede ke snížení potřebné energie na jednotku chladící energie [96].

Obr. 38: Schéma zkapalňovacího procesu se dvěma vnějšími chladícími cykly [96]

4.1.2 Zkapalňování CO2 prostřednictvím škrcení

Zkapalňování plynného oxidu uhličitého prostřednictvím vnitřního chlazení funguje na principu Joule-Thomsonova (JT) efektu, při kterém probíhá adiabatická expanze plynu bez konání práce. V případě expanze za teploty nižší, než je inverzní teplota, bude docházet vždy k ochlazování plynu, naopak plyn s vyšší teplotou, než je inverzní, se bude ohřívat. Hodnoty inverzních teplot pro jednotlivé tlaky jsou znázorněny na obr. 39 a je patrné, že v oblasti teplot pod 300 °C se nacházíme pod inverzní teplotou a při škrcení CO₂ se teplota vždy snižuje.

Obr. 39: Joule-Thomsonova inverzní křivka pro CO₂. Plná čára znázorňuje prognózu dle stavové rovnice od Spana a Wagnera [97], kroužky jsou výsledky simulace technikou Monte Carlo pro intermolekulární potenciál CO₂ [98] a trojúhelníky jsou výsledky simulace technikou Monte Carlo pro Lenardův-Jonesův potenciál CO₂ [99]

Spotřeba energie u systému využívající JT efekt, může být snížena prostřednictvím využití vícestupňové komprese a škrcení, viz obr. 40. Spotřeba energie je snížena, protože není potřeba stlačovat veškerý plyn z nejnižší hodnoty tlaku. [96]

Obr. 40: Schéma zkapalňovacího procesu CO2 využívající expanzní chlazení [96]

4.2 Čistota oxidu uhličitého

Oxid uhličitý je v plynné formě používán v celé řadě odvětví jako je lékařství, potravinářský průmysl, ve svařování, jako superkritická tekutina a ve výzkumu. Podle dané oblasti použití je požadována různá čistota oxidu uhličitého, viz tab. 12, a to z důvodu potenciálního dopadu na výsledky měření, na vlastnosti produktů a charakteristikami látek se kterými by mohly nečistoty interagovat. [100]

Tab. 12: Stupně čistoty oxidu uhličitého [100]

Oblast použití	Čistota CO ₂
Výzkum	99,999 %
Superkritická kapalina	99,998 %
Lasery	99,950 %
Nápojový průmysl	99,900 %
Potravinářský průmysl	99,900 %
Lékařské použití	99,500 %
Průmyslové použití	99,500 %

Rozdíl mezi jednotlivými třídami použití CO₂ není pouze v čistotě plynu, ale zejména v maximálních přípustných hodnotách obsahu nečistot. V Evropské unii kvalitu potravinářského oxidu uhličitého definují standardy organizace EIGA (European Industrial Gases Association), které odpovídají požadavkům dle nařízení Evropské komise číslo EC 231/2012 [101], viz tab.13.

Složka	Nápojový průmysl	Potravinářský průmysl
Slozka	CO ₂	CO ₂ – E290
Oxid uhličitý CO ₂	99,9 % v/v min.	>99,9 % v/v
Vlhkost H ₂ O ^(g)	20 ppm v/v max.	< 52 ppmv
Oxid uhelnatý CO	10 ppm v/v max.	< 10 ppmv
Olej	5 ppm w/w max.	< 5 mg/kg
	50 ppm v/v max.	
Uhlovodíky	z toho max. 20 ppm v/v.	< 50 ppmv
	ne-CH ₄	
Kyslík O ₂	30 ppm v/v max.	-
Amoniak NH ₃	2,5 ppm v/v max.	-
Oxidy dusíku NO/NO ₂	2,5 ppm v/v max. každý	-
Metanol	10 ppm v/v max.	-
Celková síra	<0,1 ppm v/v max.	-
Při překročení celkové síry:		
Sirovodík H ₂ S	0,1 ppm v/v max.	-
Karbonylsulfid COS	0,1 ppm v/v max.	-
Oxid siřičitý SO ₂	1,0 ppm v/v max.	-

Tab. 13: Specifikace oxidu uhličitého pro použití v nápojovém a potravinářském průmyslu [102, 103]

4.3 Dosažení potravinářské čistoty oxidu uhličitého

Výrobny oxidu uhličitého jsou často lokalizovány u průmyslových závodů, kde se nachází odpadní proud bohatý na oxid uhličitý. Podle Evropské bioplynové asociace lze jakoukoli optimalizovanou konvenční separační technologií (membránová technologie, adsorpce, absorpce) dosáhnout 99% čistoty oxidu uhličitého [7], což nesplňuje kvalitativní požadavky složení potravinářského oxidu uhličitého, viz tab.13. Výrobci potravinářského CO₂ (Bright Biometane, Hutira green gas, Atlas copco, Pentair, a další) jsou nuceni do výroby připojit další dočištění [89, 90, 105]. Zařízení používané pro dosažení potravinářské kvality je stripovací kolona s reboilerem, viz obr. 32, 41. Po odstranění vody a nečistot je proud bohatý na oxid uhličitý přiváděn přes reboiler, kde je proud předchlazen, do kondenzátoru, ze kterého čerpán kapalný reflux do hlavy stripovací kolony. Při styku kapaliny a plynu dochází k uvolňování těkavějších látek (CH4, N2, O2) z kapaliny do plynu, čímž je zvyšována finální kvalita kapalného oxidu uhličitého odebíraného ze spodní části kolony, tab. 14. Ve spodní části kolony je instalovaný reboiler, kterým je dodávané teplo na odpaření níže vroucích látek. [104, 106]

Obr. 41: Systém dočištění oxidu uhličitého do potravinářské kvality firmou Pentair – převzato, upraveno [104, 114]

Tab. 14: Parametry systému dočištění oxidu uhličitého firmou Pentair [104]

Kapacit průtoku plynu	Složení vstupního plynu	Spotřeba energie	Složení odplynu	Čistota kapalného CO2
250-1800	>99 % CO ₂	~110 Wh/Nm ³	30 % CH4	> 99,997 %
Nm ³ /h	0,9 % CH4	~220 Wh/kg	67 % CO ₂	Splňuje standardy
	0,1 % O ₂ /N ₂		$3 \% O_2/N_2$	EIGA

4.4 Podmínky pro skladování a expedici oxidu uhličitého

Oxid uhličitý je skladován ve formě kapaliny či superkritické tekutiny [107]. Pro volbu skladovacích parametrů je kritická cena tlakové nádoby, která se zvyšuje s velikostí nádrže a s hodnotou maximálního povoleného tlaku v nádobě. Skladování kapalného oxidu uhličitého v zásobníkových tancích je realizováno při:

- Tlaku 45-65 bar a teplotě okolí [109]
- Tlaku 12-25 bar a teplotě -35 až -15 °C [109]
- Tlaku 6-7 bar a teplotě -52 °C

Transport oxidu uhličitého je realizován prostřednictvím lodní dopravy, železniční dopravy, automobilové dopravy nebo prostřednictvím sítě potrubí. Plynný oxid uhličitý

je dopravován prostřednictvím potrubní sítě a je limitován fázovou přeměnou (max. 4,5 MPa při předpokladu nejnižší teploty trubky 10 °C) [110]. Ostatní formy transportu CO₂ využívají kapalné skupenství či superkritickou tekutinu z důvodu zvýšení hustoty média, viz obr. 42, a tím snížení objemu, což zvyšuje nákladovou efektivitu přepravy. Pro lodní dopravu většina autorů doporučuje udržovat oxid uhličitý v kapalném skupenství těsně nad trojným bodem (5,2 bara, -56,5 °C) [107]. Kvůli zamezení zamrzání je vhodné mírné zvýšení tlaku oxidu uhličitého na 6,5 bara a teplotu -52 °C [108]. Automobilová doprava je limitována velikostí nádrže a hmotností nákladního automobilu s nákladní kapacitou přibližně 30 tun kapalného oxidu uhličitého o tlaku 7 bara a teplotě -50 °C [110, 111]. Železniční doprava oxidu uhličitého není tak častá, jako výše zmíněné metody, ale je realizována při přibližně stejných hodnotách tlaků a teplot jako u automobilové dopravy. Ceny dopravy jsou závislé na vzdálenosti, množství dopravovaného oxidu uhličitého a zda je již vybudována železnice, potrubní síť a pozemní komunikace. Náklady na přepravu oxidu uhličitého na vzdálenost 200 km jsou uvedeny v tab. 15. Tab. 15: Orientační ceny za přepravu oxidu uhličitého na vzdálenost 200 km pro rok 2008 a 2019 [112]

Metoda dopravy	Výpočetní vzorec	Vzdálenost přepravy		
		200 km		
Nákladní automobil	0,111 \$/t-km	13 320 \$/600 t		
Vlak s kapacitou 600 t	0,044 \$/t-km + 2 \$/t	6 480 \$/600 t		
Potrubní síť	grafické závislost	3 000-6 000 \$/600 t		
*rok 2008	5-10 \$/t-200 km			

Pozn.: *ceny pro potrubní síť jsou výrazně více variabilní oproti vlakové a automobilové dopravě z důvodu závislosti na místních stavebních nákladech a práv pro vybudování potrubní sítě

Obr. 42: Znázornění závislosti hustoty oxidu uhličitého jako funkce tlaku – převzato, upraveno [113]

5 Návrh a koncepce linky na úpravu bioplynu a CO₂ bohaté frakce

Cílem této části práce je na základě literární rešerše navrhnout vhodný proces zušlechťování bioplynu a následnou úpravu permeátového proudu bohatého na CO_2 na úroveň dostatečnou pro další použití v průmyslu či v jiné oblasti, viz tab. 14. Návrh linky byl proveden pro navržené vstupní parametry uvedené v tab. 16.

Parametr	Označení	hodnota
Průtok LBM	\dot{m}_{LBM}	266 kg/h
Koncentrace CO ₂ v sur. BP	$C_{CO_2}^{sur.BP}$	37,6 obj. %
Tlak surového bioplynu	p _{sur.BP}	15 barg
Relativní vlhkost sur. BP při 5 °C	$\Phi_{sur.BP}^{5\ \circ C}$	100 %
Průtok CO ₂ frakce	$\dot{m}_{CO_2 rich}$	362 kg/h
Tlak CO ₂ frakce po zušlechtění BP	p_{CO_2}	0,2 barg
Teplota CO ₂ frakce po zušlechtění BP	t_{CO_2}	3 °C
Složení suché frakce bioplynu před zušlec	chtěním:	
Koncentrace CO ₂	C_{CO_2}	37,47 obj. %
Koncentrace CH ₄	C_{CH_4}	62 obj. %
Koncentrace O ₂	C_{O_2}	0,3 obj. %
Koncentrace N ₂	C_{N_2}	0,14 obj. %
Koncentrace inertů (H ₂ S, NH ₃ , He,)	C _{inertů}	0,09 obj. %

Tab. 16: Vstupní parametry procesu

5.1 Návrh použitých technologií a postupů

Na základě znalostí získaných z literární rešerše byla navržena linka pro úpravu proudu bohatého na oxid uhličitý. Zdrojem tohoto CO₂ bohatého proudu je zušlechťovací jednotka zušlechťující surový bioplyn z malé bioplynové stanice, viz tab. 16. Navržené blokové schéma celé technologie včetně zušlechťovací jednotky je prezentováno na obr. 43. V této práci detailně řešená část linky je na obrázku vymezena červeně označenou oblastí.

Obr. 43: Blokové schéma návrhu úpravy bioplynu

5.1.1 Technologie zušlechťování bioplynu

Navržené parametry linky uvedené v tab. 16, odpovídají průtoku surového bioplynu na vstupu 570 kg/h (475 Nm^3/h_{BP} stanoveno při standardních podmínkách a hustotě $\rho_{BP}= 1,2 \text{ kg/m}^3$), což lze považovat, dle [115], za výtěžek z malé bioplynové stanice. Podle obr. 23 je pro uvedený průtok bioplynu nejvhodnější použití membránové technologie pro separaci biometanu z bioplynu. Z průmyslové rešerše, viz kap. 4, většina dodavatelů zušlechťovacích zařízení nabízí membránovou technologii a pro malé systémy ji doporučuje. Z těchto důvodů byla membránová separace zvolena na zušlechtění bioplynu.

Pro úpravu surového bioplynu byl zvolen třístupňový membránový systém společnosti MemBrain s.r.o., viz obr. 44. Proud číslo 1, viz obr. 44, již prošel kompresorem a adsorpčním čištěním sirovodíku, dočištěného dle kap. 3.2.6.1 na hodnotu koncentrace 1-2 ppm. Proto byla společností Membrain koncentrace sirovodíku počítána společně s ostatními inerty a testovaný membránový systém odpovídal suchému bioplynu obsahující: CH₄, CO₂, O₂, N₂, inerty, viz tab. 17. Pro přibližný odhad chování dalších složek bioplynu jako je vodní pára, sirovodík a amoniak byl firmou MemBrain s.r.o. dodán obr. 45, podle kterého lze určit přibližné rozdělení těchto plynů mezi permeát a retentát při styku s membránovým materiálem.

na regeneraci adsorbérů v LNG

Obr. 44: Schéma třístupňové membránové technologie na zušlechťování bioplynu od MemBrain [116]

		Číslo proudu									
Parametr	1	2	3	4	5	6	7	8	9	10	11
Testovaný											
průtok	170	283	152	131	4	127	107	63	93	20	89
[Nm ³ /h]											
Konc.CH ₄	62	64	56.2	_	_	98.3	98.2	0.5	_	98.3	96.1
[obj. %]	02	04	50,2		_	70,5	70,2	0,5	_	70,5	70,1
Konc.CO ₂	37 17		42			1.0	1.0	00.42		1.0	0.80
[obj. %]	37,47	-	42	-	-	1,0	1,0	99,42	-	1,0	0,89
Konc. N ₂	0.14						0 222	7.10-5		0.5	262
[obj. %]	0,14	-	-	-	-	-	0,222	/.10	-	0,5	2,02
Konc. O ₂	0.2						0.426	0.060		0.2	0.20
[obj. %]	0,5	-	-	-	-	-	0,430	0,009	-	0,2	0,39
Konc.											
inertů	0,09	-	-	-	-	-	0,143	1,093·10 ⁻⁴	-	-	-
[obj. %]											

Tab. 17: Technologie Membrain: parametry proudů (číslování proudů dle obr. 44) dle nabídky [116]

Obr. 45: Technologie Membrain: propustnost membrán pro jednotlivé složky – převzato, upraveno [116]

Na základě dat od firmy MemBrain byly dopočítány objemové průtoky jednotlivých proudů, viz tab. 18, pro zadanou hodnotu 8. proudu 232 Nm³/h, což

odpovídá hodnotě ze zadání 362 kg_{CO² frakce}/h, viz tab. 16, za předpokladu stejného složení proudů. Stejné složení lze předpokládat, je-li zachován stejný poměr objemového průtoku zušlechť ovaného plynu k velikosti aktivní plochy membrány jako u nabídnutého systému.

	Číslo proudu										
Parametr	1	2	3	4	5	6	7	8	9	10	11
Průtok [Nm ³ /h]	626	1042	560	482	15	468	394	232	342	74	328

Tab. 18: Technologie Membrain: parametry proudů pro navržený výkon linky

Pozn.: Čísla proudů odpovídají obr. 44.

Z parametrů jednotky uvedených v tab. 17 je taktéž vidět, že proud bohatý na oxid uhličitý splňuje minimální koncentraci >99 % oxidu uhličitého, která je vhodná pro dosažení vysoké čistoty zkapalněného CO₂. Dosažení nižší koncentrace 0,47 obj. % CH₄ žádoucí, neboť koncentrace 0,5 obj. % je maximální možná koncentrace methanu, která může být vypuštěna do atmosféry. Zároveň koncentrace metanu v CH₄ bohaté frakci je větší než 95 obj. % (98,3 obj. %), což teoreticky zaručuje dostatečnou čistotu pro možnost vtláčení biometanu do vysokotlaké potrubní sítě zemního plynu.

Součástí zušlechťovací stanice je adsorbér s aktivním uhlím, který je předřazen kompresorové stanici a membránové technologii pro snížení zatížení membrán sulfanem. Zaručená odolnost membrán je garantována do koncentrací 20 ppm H₂S, které by při správné optimalizaci odsíření bioplynu, viz kap. 3.6.2, nemělo být problém dosáhnout [116]. Předřazený adsorbér sulfanu redukuje koncentrace sulfanu z 50-100 ppm na koncentrace <20 ppm. Po adsorpci maximálního množství sulfanu na aktivním uhlí je nahrazen znečištěný adsorbent novým a použitý adsorbent je termicky zlikvidován. Většinu času provozu jsou výsledné koncentrace sulfanu za adsorbérem mezi 1-2 ppm, které procházejí na membránovou jednotku. Díky relativně nízkému množství adsorbované síry v adsorbéru (vstup cca 80 ppm, což odpovídá adsorpci 2,5 gH₂S/h) je výdrž adsorpční kolony vysoká, v řádu 3-5 měsíců [67].

5.1.2 Složení CO₂ bohaté frakce za zušlechťovací jednotkou

Podklady pro výpočet membránové jednotky byly uvedeny pro suchý plyn. Parametry mokré CO₂ frakce byly vypočteny dle následujícího postupu.

Koncentrace vody v CO₂ frakci byla stanovena ze znalosti tlaku vodních par p" a celkovém tlaku p_{celk} CO₂ frakce dle rovnice 3.

$$y_{H_2O} = \frac{p''}{p_{celk}} \tag{3}$$

Koncentrace suché CO₂ frakce y_{SG} byla určena dle rovnice 4.

$$y_{SG} = 1 - y_{H_2O} \tag{4}$$

Ze znalosti koncentrace y_{SG} a koncentrací suché CO₂ frakce $y_{(i)}$, viz proud 8 tab. 17, pro jednotlivé složky byly stanoveny koncentrace jednotlivých složek mokré CO₂ frakce $y_{WG(i)}$, dle rovnice 5.

$$y_{WG(i)} = y_i \cdot y_{SG} \tag{5}$$

Dále byla stanovena molární hmotnost CO_2 frakce M_{WG} prostřednictvím znalosti molárních hmotností jednotlivých složek M_i a jejich koncentrací $y_{WG(i)}$, dle rovnice 6.

$$M_{WG} = \sum M_i \cdot y_{WG(i)} \tag{6}$$

Molární tok mokré CO₂ frakce byl vypočítán rovnicí 7, kde celkový průtok je dán tab. 16.

$$\dot{n}_{WG} = \dot{m}_{CO_2 rich} / M_{WG} \tag{7}$$

Následně byly dopočítány látkové toky jednotlivých složek $\dot{n}_{(i)}$ rovnicí 8.

$$\dot{n}_i = \dot{n}_{WG} \cdot y_{WG(i)} \tag{8}$$

Hmotnostní toky jednotlivých složek $\dot{m}_{(i)}$ byly určeny dle rovnice 9.

$$\dot{m}_i = \dot{n}_{(i)} \cdot y_{WG(i)} \tag{9}$$

Celkový výpočet byl proveden v programu Excel, a protože nebyla známa hodnota parciálního tlaku, ale zbytkový hmotnostní tok vody, tak byl výpočet nejprve s hodnotou tlaku nasycení vodních par p'' = 758,08 Pa při 3 °C a poté byl změněn hmotnostní tok vody a citlivostní analýzou – hledáním řešení, byl zpětně určen parciální tlak vodní páry. Hmotnostní tok vody byl určen dle nezkondenzovaného množství vody v bioplynu po první kompresi, viz tab. 20. Hodnoty koncentrací, látkových a hmotnostních toků vypočtené pro výstupní proud z membránové separace (proud 6, viz obr. 43) jsou uvedeny v tab. 21. Při určování složení proudu po kompresi na 15 bar (a) (proud 8, viz obr. 43) lze uvažovat parciální tlak vody a látkové toky jednotlivých složek, kromě látkového toku vody, za konstantní a vypočítaný látkový tok suché CO₂ frakce $\dot{n}_{(SG)comp}$ je před i po kompresi totožný. Prostřednictvím těchto informací a rovnice 3 byla vypočítána nová koncentrace vodní páry ve stlačené CO₂ frakci $y_{(H_2O)comp.}$, použitím rovnice 4 byla stanovena koncentrace suchého frakce CO₂ po stlačení. Látkový tok mokré stlačené frakce CO₂ $\dot{n}_{(WG)comp.}$ byl určen rovnicí 10.

$$\dot{n}_{(WG)comp.} = \dot{n}_{(SG)comp.} \cdot y_{(SG)comp.}$$
(10)

Látkový tok vody ve stlačené CO₂ frakci $\dot{n}_{(H_2O)comp.}$ byl stanoven rozdílem látkových toků mokré a suché stlačené CO₂ frakce, viz rovnice 11.

$$\dot{n}_{(H_2O)comp.} = \dot{n}_{(WG)comp.} - \dot{n}_{(SG)comp.}$$
(11)

Látkové množství zkondenzované vody $\dot{n}_{(H_2O)kond.}$ je stanovené rozdílem látkových množství CO₂ frakcí před a po kompresi podle rovnice 12.

$$\dot{n}_{(H_2O)kond.} = \dot{n}_{(H_2O)} - \dot{n}_{(H_2O)comp.}$$
(12)

Tab. 19: Technologie zušlechtění bioplynu – parametry CO ₂ frakce (proud 6)
---	---

	Objemová	Molární	Látkový	Hmotnostní
Proud 6	koncentrace	hmotnost	Tok	tok
	[-]	[kg/kmol]	[kmol/h]	[kg/h]
označení	У	М	n	m
suchá CO ₂ frakce	1	43,857	8,248	361,714
CO ₂ -SG	0,9942	44,01	8,1997	360,8677
CH ₄ -SG	0,005	16,04	0,0412	0,6615
O ₂ -SG	0,00069	31,999	0,0057	0,1821
H ₂ O-SG	0	18,015	0	0
N ₂ -SG	0,0000007	28,013	5,773·10 ⁻⁶	1,617.10-4
H ₂ S-SG	0,00001	31,4	8,248·10 ⁻⁵	$2,590 \cdot 10^{-3}$
NH ₃ -SG	3,33.10-6	17,031	2,749.10-5	4,682.10-4
ostatní plyny-SG	9,597·10 ⁻⁵	-	-	-
mokrá CO2 frakce	1	43,808	8,263	362,000
CO ₂ -WG	0,992293	44,01	8,1997	360,8677
CH ₄ -WG	0,004990	16,04	0,0412	0,6615
O ₂ -WG	0,00068867	31,999	0,0057	0,1821
H ₂ O-WG	0,001918	18,015	0,0159	0,2856
N ₂ -WG	6,987·10 ⁻⁶	28,013	5,773·10 ⁻⁶	1,617.10-4
H ₂ S-WG	0,00001	31,4	8,263.10-5	$2,595 \cdot 10^{-3}$
NH ₃ -WG	3,33.10-6	17,031	2,754.10-5	4,691.10-4
ostatní plyny-WG	9,576·10 ⁻⁵	-	-	-

Pozn.: Hodnoty jsou vztaženy k proudu číslo 6, viz obr. 43.

5.1.3 První stupeň odstranění vody (kompresorová stanice bioplynu)

Zvolená membránová technologie vyžaduje zvýšení tlaku vstupního plynu z důvodu vytvoření tlakového spádu a tím zajištění lepší funkce membránové separace. Průmyslově používané membránové systémy mají tlaky na vstupu 8 až 15 bar (a). Vstupní proud surového bioplynu na kompresorovou stanici bioplynu (proud 2, viz obr. 43) je při vstupní teplotě 5 °C plně nasycen vodní parou. Proto po kompresi plynu při zachování výstupní teploty 5 °C dochází ke kondenzaci vodní páry, viz tab. 21. Pro ilustraci byly vypočítány objemy kondenzátu a objemy zbytkové vody za separátorem i pro další hodnoty tlaků, které jsou používány pro membránové systémy jiných dodavatelů. Při výpočtu se předpokládá atmosférický tlak surového bioplynu.

Z důvodu zvolené technologie zušlechtění bioplynu (membránová technologie), která operuje při zvýšeném tlaku na 8 až 15 bar (a), je první stupeň odvodnění realizován kompresí nasyceného bioplynu vodou při teplotě 5 °C. Objem vody po kompresi je uveden v tab. 20 a byl stanoven z hustoty nasycených vodních par 6,7989 g/m³ [117] při atmosférickém tlaku a při teplotě 5 °C pro vstupní objem suchého bioplynu 626 Nm³/h, viz tab. 18. Objemový průtok vodní páry v nasyceném bioplynu před kompresí byl 4,256 kg_{H2O}/h.

Vstupní průtok vlhkého BP (proud 2)	630 Nm ³ /h					
Vstupní průtok suchého BP	626 Nm ³ /h					
Tlak za kompresorem	Množství H2O na vstupu při p=1atm. (proud 2) [kgH2O/h]	Hmotnostní tok kondenzátu (proud 4) [kg _{H2O} /h]	Hmotnostní tok H2O za separátorem (proud 5) [kgH2O/h]	Tlak nasycených par vody p"H2O [Pa]		
8 bar (Hutira green gas)	4,283	3,748	0,535	436		
10 bar	4,283	3,855	0,428	349		
12 bar (Air Products	4,283	3,926	0,357	291		
15 bar (MemBrain; BrightBiometane)	4,283	3,998	0,286	233		

Tab. 20: Množství vody v proudu bioplynu vstupující na membránovou jednotku

Pozn.: Data jsou vypočítána pro teplotu 5 °C. Čísla proudů odkazují na obr. 43. Hodnoty parc. tlaků z jsou určeny dle kap. 5.1.2.

V membránovém zařízení prochází veškerá vodní pára do permeátového proudu bohatého na oxid uhličitý, viz obr. 45, až jeho nasycení. V případě plné saturace CO₂ bohatého proudu (proud 6, viz obr. 43) je tento proud o hmotnostním toku 362 kg/h při tlaku 0,2 bar (g), viz tab. 16, schopen nést 1,578 kg_{H2O}/h. Porovnáním stanovené hodnoty pro plnou saturaci s hodnotami zbytkové vody v bioplynu, viz tab. 20 může být s jistotou řečeno, že veškerá vodní pára přejde do permeátu a retentátový proud biometanu bude suchý.

5.1.4 Druhý stupeň odstranění vody (kompresorová stanice CO₂ frakce)

Dle výpočtů v kapitole 5.1.3 prochází veškerá zbytková vodní pára membránou do CO₂ bohatého proudu. Pro zkapalnění proudu bohatého na oxid uhličitý musí být tlak vyšší, než je tlak trojného bodu 5,2 bar (a). S rostoucím tlakem roste spotřeba energie pro kompresi. Zároveň platí, že s rostoucí hodnotou tlaku roste hodnota teploty bodu varu CO₂, kterou je snazší při zkapalňování dosáhnout, a také se zvyšuje množství zkondenzované vody. Výběr optimálního tlaku z hlediska energetické náročnosti zkapalnění CO₂ bohaté frakce je dále stanoven v kap. 6.1.6. Vliv tlaku na výstupu z kompresoru na koncentraci vodní páry a hmotnostní tok vody na výstupu z kompresoru (proudu 8, viz obr. 43) jsou uvedeny v tab. 21.

Tlak [bar]	Koncentrace H ₂ O (proud 8)	Hmotnostní tok H2O (proud 8)
	[ppm]	[g/h]
6	388	57,5
10	233	34,58
20	116	17,5
40	58,2	8,75
60	38,8	5,75
80	29	4,17
100	23,3	3,46

Tab. 21: Vliv výstupního tlaku po druhé kompresi na množství zbytkové vody v CO2 frakci

Pozn.: Proud 8 odkazuje na obr. 43

Z tab. 21 je vidět, že i při stlačení na vysoké hodnoty až 100 bar (a) zůstává v CO₂ bohatém proudu relativně velké množství vody, která by při expanzi mohla vymrznout a ucpat expanzní ventil. Z toho důvodu je navrženo adsorpční dosušení CO₂ frakce jako třetí stupeň odstranění vody.

5.1.5 Adsorpční dosušení CO₂ frakce

Adsorpční sušení je využíváno pro odstranění nízkých koncentrací zbytkové vodní páry v proudu plynu a bez ohledu na zvolenou hodnotu tlaku po druhé kompresi je koncentrace zbytkové vody dostatečně nízká pro vhodnost použití adsorpčního sušení, viz obr. 28. Podle kapitoly 3.6.2. je použitím molekulových sít možné dosáhnutí rosného bodu (-70 až -80 °C). Množství zbytkové vody v CO₂ bohatém proudu po adsorpčním dosušení pro různé teploty rosného bodu je uvedeno v tab. 22. Koncentrace vody v CO₂ frakci byla určena za použití rovnice 3. Hodnoty hmotnostního toku vody byla stanovena rovnicí 13.

$$\dot{m}_{H_20} = y_{(H_20)comp.} \cdot \dot{n}_{celk} \cdot M_{H_20}$$
(13)

t [°C]	Parciální tlak nasycené vodní páry p" [Pa]	Koncentrace H2O (proud 9) y [ppm]	Hmotnostní tok H2O (proud 9) [g/h]
20	2340	3900	579,979
5	873	1455	216,376
0	610,71	1017,85	151,367
-5	401,5	669,17	99,514
-10	259,7	432,83	64,368
-20	103,2	172	25,579
-40	12,83	21,38	3,180
-50	3,935	6,56	0,9753
-60	1,081	1,80	0,2679
-80	0,05472	0,0912	0,01356
-100	0,001402	0,00234	0,0003475

Tab. 22: Hodnoty koncentrací a hmotnostních toků vodní páry v CO2 frakci pro různé teploty rosného bodu

Pozn.: Proud 9 označuje proud z obr. 43.

Pracovní tlak adsorbéru se obvykle pohybuje v rozmezí 0,1 až nízké desítky bar (g). Z tohoto důvodu byl pro návrh adsorpčního dosušení zvolen tlak na výstupu z kompresoru 6 bar (a). Zároveň relativně nízký provozní tlak působící na adsorpční materiál zaručuje nízkou degradaci adsorbentu [120]. V případě zkapalňování CO₂ bohaté frakce za použití expanzního ventilu z vyšších tlaků na tlak 6 bar (a), je možné vracet nezkapalněný plyn za tento kompresorový stupeň. Při tlaku 6 bar (a) je zaručuje dostatečný tlakový rozdíl od tlaku trojného bodu pro skladování kapalného CO₂.

Adsorpční materiál byl vybírán na základě schopnosti zachycení vodní páry a zároveň minimálním záchytu oxidu uhličitého. Molekulové síta pracují na principu fyzikální adsorpce, a proto byly porovnány velikosti pórů molekulových sít s velikostí jednotlivých molekul plynu, viz tab. 23.

Látka	Velikost póru/molekuly [nm]
Voda	0,270
Oxid uhličitý	0,334
Metan	0,380
Sirovodík	0,470
3A mol. síto	0,3
4A mol. síto	0,4
Mikroporézní aktivní uhlí	0,4-0,8
Silikagel	> 2
Aktivovaný oxid hlinitý	> 2,5

Tab. 23: Velikost molekul a pórů vybraných adsorbentů [119, 120, 121]

Podle tab. 23 a po konzultaci s [120] bylo zvoleno molekulové síto 3A, které má optimální velikost pórů pro záchyt zbytkové vlhkosti. Návrh velikosti adsorpčního zařízení vychází z adsorpčních izoterm molekulového síta 3A, viz obr. 46. Oranžová přímka v obr. 46 označuje hodnotu 0,055 Pa parciálního tlaku vody, který podle tab. 22 odpovídá teplotě rosného bodu -80 °C. Zbytkový průtok vody v proudu vycházejícího z adsorbéru (proud 9, viz obr. 43) bude 0,0136 g/h.

Obr. 46: Adsorpční izotermy vody molekulového síta 3A – převzato, upraveno [122]

Při výše zvolených podmínkách (6 bar (a)) dosahuje koncentrace vody v CO₂ frakci 388 ppm, což odpovídá hmotnostnímu toku (proudu 8, viz obr. 43) 57,5 g_{H2O}/h , viz tab. 21. Adsorpční kapacita 3A molekulového síta při dosaženém parciálním tlaku 0,055 Pa a teplotě mezi 0 až 25 °C je přibližně 2 kg_{H2O}/100kg_{ADS}, dle obr. 46.

Molekulové síto 3A je vhodné regenerovat zvýšenou teplotou 175 až 260 °C po dobu 3 až 6 hodin [123, 124]. Před opětovným použitím je nutné adsorbent zchladit na teplotu maximálně 15 °C vyšší, než je teplota nástřiku CO₂ frakce. Při uvažování dvanáctihodinových cyklů je potřeba 0,69 kg_{ADS} na adsorpci hmotnostního toku vody 57,496 g/h. Dle výše uvedených výpočtů lze použít adsorpční jednotku se dvěma adsorpčními kolonami vyplněnými 1 kg molekulového síta 3A každá. Pro regeneraci adsorbéru je doporučeno využít suchý vyčištěný proud oxidu uhličitého a to alespoň 10 obj. % z objemu vstupního proudu vstupujícího na adsorpci [120].

5.1.6 Vodní chlazení

Vodní chlazení je instalováno za každý kompresor a je navrženo tak, aby bylo schopné pracovat během celého roku. Proto je při výpočtech uvažována teplota chladící vody 25 °C, která by měla být dosažitelná i v letním období [140]. Rozdíl teplot ohřáté výstupní chladící vody a výstupní teploty chlazeného plynu je ve výpočtech nastaven na 10 °C. Takto zvolená teplotní diference vodního chladiče by měla zaručovat přiměřeně velikou teplosměnnou plochu výměníku a tím i jeho cenovou přijatelnost.

Vodní chladící systémy jsou nabízeny celou řadou společností, jako například Atlas Copco, Hanscool, Cool-chiller, Hitema, Lneya, Bosch, ABC a další. Byly vybrány vodní chladiče od firmy Hitema, viz obr. 47, protože byla nabídnuta široká škála zařízení s odpovídajícími výkonovými charakteristikami, a zároveň byly poskytnuty potřebná data, jako je celkový příkon zařízení pro konkrétní chladící kapacitu.

Obr. 47: Ukázka chladící jednotky poskytované společností Hitema [130]

5.1.7 Externí nízkoteplotní chlazení

Při zkapalňování je nutné dodat potřebný chlad externě či vytvořit vnitřní chladící efekt expanzí plynu. I při zapojení expanzního ventilu je vhodné expandovat z oblasti nižších teplot (bod 8), pro dosažení zkapalnění vysokého procenta frakce (bod 9), viz obr. 52. Dodání externího chladu je znázorněno mezi body 8,1 a 8, viz obr. 52. Výběr externího chladiče CO₂ bohaté frakce byl proveden podle požadované teploty ochlazené CO₂ frakce, která se pohybuje kolem -30 °C za předpokladu zkapalňování s využitím expanzního ventilu. Expanze z této teploty, jak je ukázáno v tab. 32, je výhodná, neboť množství nezkapalněného plynu přibližně odpovídá průtoku plynu potřebného na regeneraci adsorbéru, proud 12, viz obr. 43.

Bylo vybráno přírodní chladící médium R744 (oxid uhličitý), které je často používané pro chlazení v rozsahu teplot -25 až -50 °C [127]. I přes technické složitosti a nutnost ochranných systémů detekujících únik CO₂ byl zvolen externí chladič s oxidem uhličitým jako pracovní látkou, a to převážně kvůli nízkému indexu GWP=1 (Global warming potential). Oxid uhličitý používaný jako chladivo R744 je zařazen do kategorie future-ready a splňuje podmínky Kjótského protokolu [128].

Společnosti poskytující externí chladiče s oxidem uhličitým jako chladící kapalinou jsou například Carrier, HiRef, SCMfrigo, TEMPEST, Frost, Cooltech a další. Bylo vybráno externí chladící zařízení od společnosti Carrier, viz obr. 48, z důvodu dlouholeté zkušenosti a práci v oboru a také kvůli svému širokému výběru chladících jednotek [129].

Obr. 48: Externí chladící zařízení MiniCO2OLcompact od společnosti Carrier

5.1.8 CO₂ kompresor

Kompresorová jednotka je nedílnou součástí linky pro úpravu bioplynu a CO₂ bohaté frakce. Kompresory na oxid uhličitý jsou podobné kompresorům na stlačování vzduchu, avšak není možné vzduchové kompresory použít na kompresi CO₂. Součásti kompresorů oxidu uhličitého musí být odolnější a také musí být schopni odolat kyselině uhličité, která při kompresi může vznikat. [131]

Při volbě vhodného kompresoru bylo vybíráno od společností Danfoss, Bitzer, Dorin, Emerson, AtlasCopco, Mehrer, Ventos a Haug. Všechny tyto společnosti dlouhodobě vyrábějí kompresory na oxid uhličitý, viz obr. 49, a jsou významnými celosvětovými dodavateli.

Obr. 49: Kompresor Haug.Sirius vhodný pro kompresi oxidu uhličitého od společnosti Sauer [132]

5.2 Návrh postupů zkapalňování CO₂

Oxid uhličitý může být zkapalněn izobaricky dodáním chladu potřebného ke zkapalnění vnějším chladícím cyklem nebo s využitím vnitřního ochlazení plynu při škrcení plynu (adiabatické expanzi bez konání práce). Pro odhad parametrů zkapalňování byla v této kapitole bohatá frakce CO₂ považována zjednodušeně za čisté CO₂. Níže jsou uvedena schémata a grafy navržených zkapalňovacích zařízení, které využívají níže uvedené možnosti zkapalnění, viz kap. 5.2.1 a 5.2.2. Teploty oxidu uhličitého před škrcením se pohybují v řádech desítek stupňů Celsia pod či nad nulou, kde je zaručeno ochlazování látky při expanzi, viz kap. 4.4.2.

5.2.1 Zkapalnění čistého CO₂ – vnější chladící zařízení

Při tomto přístupu je předpokládaný efekt zkapalnění dosažen izobaricky vnějším dodáním chladu externím chladičem, viz obr. 50. Před samotným dodáním chladu je potřeba dostat plyn nad tlak trojného bodu 5,2 bar (a). Z důvodu snadnějšího skladování kapalného oxidu uhličitého a snížení požadavků na tepelnou izolaci nádoby byl zvolen tlak 6 bar (a), který zaručuje dostatečný rozdíl od tlaku trojného bodu tak, aby tlakové senzory nádoby měly dostatečnou rezervu při případné ztrátě tlaku.

Obr. 50: Schéma zkapalnění CO2 vnějším chlazením

5.2.2 Zkapalnění CO₂ kombinací vnějšího chlazení a chlazení expanzí plynu

Postup zkapalnění oxidu uhličitého využívající kombinaci vnějšího chlazení externím chladícím okruhem a vnitřního chlazení škrcením plynu, viz obr. 51, je možné realizovat při různých tlacích a teplotách. Hodnota tlaku za škrtícím ventilem (proud 9, viz obr. 51) je z důvodů uvedených v kap. 5.2.1nastavena na hodnotu 6 bar (a). Hodnoty tlaků a teplot proudu 8, viz obr. 51, jsou nastaveny tak, aby došlo ke zkapalnění velkého procenta vstupního plynu a zároveň aby aspoň 10 % vstupního média zůstalo v plynné fázi, kvůli regeneraci adsorpčního sušiče vody, viz kap. 5.1.5.

Obr. 51: Schéma procesu zkapalnění oxidu uhličitého kombinací expanze plynu a vnějšího chlazení

Pro kompresi byla navržena třístupňová komprese s vodními mezichladiči. Grafické znázornění procesu je prezentováno v p-h diagramu na obr. 52, pro zvolený tlaku 40 bar (a) před škrcením (bod 8, obr. 52). Společným bodem všech návrhů zkapalňovací linky je vstupní bod 1, viz obr. 52, který znázorňuje výstupní proud CO2 bohaté frakce vystupující z membránové jednotky o přetlaku 20 kPa a teplotě 5 °C. Proud je dále stlačen na tlak 6 bar (a), z důvodu možnosti zapojení zpětného recyklu nezkapalněného proudu oxidu uhličitého (proud 13, viz obr. 53). Rozdělení proudu 12 zachovává hodnotu objemového průtoku proudu 14 na 10 % toku proudu vstupující na adsorpční sušičku (proud 8, viz obr. 43). Dále je plyn ochlazen na 30 °C vodním chlazením (bod 2→bod 3). Plyn je nadále stlačován v druhém a třetím kompresorovém stupni na tlaky 15,5 a 40 bar (a) a následně chlazen. Vodní chladiče pracují s vodou o výstupní teplotě 20 °C a je předpokládaný rozdíl teplot vody a chlazeného plynu 10 °C. Izobarická změna z bodu 7 do bodu 8 je dosažena prostřednictvím vnějšího zdroje chladu a případného recyklu nezkapalněného oxidu uhličitého po škrcení (bod 7→bod 8,1). Poslední částí procesu je expanze oxidu uhličitého z kapalné formy do dvoufázové oblasti (bod 8→bod 9), při které se se snižujícím tlakem snižuje teplota, avšak část oxidu uhličitého přechází zpět do plynné formy. Poměr vzdáleností bodů (9-10 a 9-11) nám stanovuje množství kapaliny a plynu po škrcení.

Obr. 52: Zkapalňovací proces se škrcením: p-h diagram

Obr. 53: Schéma procesu zkapalnění oxidu uhličitého kombinací expanze plynu a vnějším chlazením s recyklem

6 Simulace v programu Aspen Plus

V předchozí kap. 5 byly navrženy dva koncepty zkapalnění frakce bohaté na oxid uhličitý. Pro detailní analýzu procesu byla provedena simulace v programu Aspen Plus.

Aspen Plus je počítačový software, který je považován za jeden z předních výpočtových a simulačních programů v oblasti chemického a procesního inženýrství. Pro nastavení simulace jsou v programu předdefinované jednotlivé bloky znázorňující technologické procesy jako změny tlaků, separátory, destilace a další. Tyto bloky jsou možné propojit technologickými proudy a vytvořit celkové schéma simulované technologie. Výpočet procesu pracuje s definovanými vstupními daty proudů a jednotlivých bloků počítány prostřednictvím přednastavených termodynamických modelů dle volby uživatele. [133]

Při ověřování technologie za použití počítačového simulačního programu lze přeskočit časově a finančně náročnou fázi výroby pilotního zařízení a lze vytvořit optimalizovanou technologii, kterou lze snadno vyzkoušet s jinými provozními parametry. Prostřednictvím změny parametrů v simulaci lze také předem detekovat maximální provozní parametry či oblasti s možnými závadami. [133]

6.1 Simulace technologie zkapalnění – čistý oxid uhličitý

Podle návrhu linek uvedených v kapitole 5.2 (viz obr. 50 a 51) byly v programu Aspen Plus vytvořeny simulační modely. Cílem simulací bylo určit parametry procesu tak, aby byla technologie energeticky co nejméně náročná a zároveň realizovatelná.

6.1.1 Nastavení podmínek simulace v programu Apen Plus

Již při vytváření nového souboru v programu Aspen Plus je vhodné vybrat si z předem nadefinovaných šablon. Druhým krokem při definici podmínek je volba sloučenin a následně volba výpočtové rovnice

Pro simulace v této práci byla zvolena kategorie zpracování plynů s jednotkami SI. Použitá sloučenina je oxid uhličitý a zvolená výpočetní metoda termodynamických veličin byla Peng–Robinsonova kubická stavová rovnice, která je nápovědou doporučována pro simulace zpracování plynů.

Po analýze vlastností a nastavení veškerých požadovaných parametrů byly vytvořeny simulační schémata, obr. 51, 53.

6.1.2 Popis jednotlivých bloků a proudů

Proud 1 v obou simulacích, obr. 50 a 51, odpovídá proudu čistého oxidu uhličitého, reprezentující výstupní permeátový proud z membránového separačního zařízení (proud 6 viz obr. 43).

6.1.2.1 Technologie izobarického zkapalňování vnějším chladícím zařízením – popis

V tab. 24 a 25 jsou uvedeny seznamy jednotlivých zařízení a proudů s popisem funkce technologie izobarické zkapalňování, viz obr. 54.

Obr. 54: Schéma zkapalnění CO2 – externí chladící zařízení

Tab. 24: Popis jednotlivých zařízení technologie izobarického zkapalnění vnějším chlazením

Označení zařízení	Popis funkce
COMP1	První stupeň komprese
HEX1	Externí chladící zařízení
HEX-RC	Výměník tepla zpětného recyklu nezkapalněného CO ₂
CHLAD1	Vodní chladič plynu za první kompresorem
SEP1	Separátor kapalné a plynné fáze s tangenciálním nátokem

Tab. 25: Popis proudů technologie zkapalnění s vnějším chlazením

Proud	Popis funkce
1	Vstupní proud plynu (CO ₂) do prvního stupně kompresoru
2	Proud plynu vstupující do prvního vodního chladiče
3	Proud plynu vstupující do výměníku tepla případného recyklu
4	Proud vstupující do externího chladícího zařízení
5	Proud CO ₂ vstupující na separátor
6	Proud nezkapalněného CO ₂
7	Proud kapalného CO ₂
8	Výstupní proud plynného CO2 k regeneraci adsorbéru

6.1.2.2 Technologie zkapalňování kombinací vnějšího chlazení a expanzí plynu – popis

V následujících tab. 26 a 27 jsou popsány názvy a funkce jednotlivých zařízení a proudů technologie zkapalňování expanzí plynu a vnějším chlazením, viz obr. 55.

Obr. 55: Schéma zkapalnění CO2 – kombinace expanze plynu a vnějšího chlazení

Označení zařízení	Popis funkce
COMP1	První stupeň komprese
COMP2	Druhý stupeň komprese
COMP3	Třetí stupeň komprese
HEX1	Externí chladící zařízení
HEX-RC	Výměník tepla zpětného recyklu nezkapalněného CO ₂
CHLAD1	Vodní chladič plynu za první kompresorem
CHLAD2	Vodní chladič plynu za druhým kompresorem
CHLAD3	Vodní chladič plynu za třetím kompresorem
J-T	Joule-Thomsonův škrtící ventil
SEP1	Separátor kapalné a plynné fáze s tangenciálním nátokem

Tab. 26: Popis jednotlivých zařízení technologie zkapalnění

Proud	Popis funkce
1	Vstupní proud plynu (CO ₂) do prvního stupně kompresoru
2	Proud plynu vstupující do prvního vodního chladiče
3	Proud plynu vstupující do druhého stupně kompresoru
4	Proud plynu vstupující do druhého vodního chladiče
5	Proud plynu vstupující do třetího stupně kompresoru
6	Proud plynu vstupující do třetího vodního chladiče
7	Proud plynu vstupující do trubkové části výměníku tepla
8,1	Proud plynu vstupující do externího chladícího zařízení
8	Proud CO ₂ vstupující na škrtící ventil
9	Dvoufázový proud CO2 vstupující na separátor
10	Proud nezkapalněného CO ₂ vstupující jako recykl do výměníku tepla
11	Proud kapalného CO ₂
12	Výstupní proud plynného CO2 pro regeneraci adsorbéru

Tab. 27: Popis proudů technologie zkapalnění s vnějším i vnitřním chlazení

6.1.3 Specifikace jednotlivých bloků a vstupního proudu

Složení a průtok vstupního proudu (proud 1, viz obr. 54 a 55) je uveden v tab. 28.

Tab.	28:	Charakteristika	vstupního	proudu
------	-----	-----------------	-----------	--------

Číslo proudu	Složení	Hmotnostní průtok	
· · r · · · · ·		[kg/h]	
1	100 % CO ₂	362	

6.1.3.1 Technologie izobarického zkapalňování vnějším chladícím zařízením – specifikace

Specifikace jednotlivých bloků, viz tab. 29, nastavených v programu Aspen Plus pro zapojení s vnějším chladícím zařízením vyobrazeno na obr. 54.

Tab.	29:	Nastavení	jednotliv	ých	bloků	simulace	v programu	Aspen	Plus

Označení zařízení	Specifikace procesu			
	Model: kompresor			
	Typ: izoentropický			
COMP1	Výstupní tlak: 6 bar (a)			
	Izoentropická účinnost: 0,8			
	Mechanická účinnost 0,9			
	Model: externí výměník tepla (chladič)			
UEV1	Typ: tlakový/plynná frakce			
ΠΕΛΙ	Výstupní tlak: 6bar (a)			
	Výstupní plynná frakce: 0,1			
	Model: výměník tepla			
	Typ výpočtu: shortcut			
LIEV DC	Typ výměníku: protiproudý			
IILA-KC	(teplé médium v trubkách)			
	Součinitel přenosu tepla: 35 W/m ² K [134]			
	Rozdíl teplého vstupního a chladného výstupního proudu: 10 K			
	Model: vodní chladič			
	Typ: tlakový/teplotní			
CHLADI	Výstupní tlak: 6 bar (a)			
	Výstupní teplota plynu: 30 °C			
	Model: separátor			
SED1	Typ: tlakový/plynná frakce			
SLF I	Výstupní tlak: 6 bar (a)			
	Výstupní plynná frakce: 0,1			

6.1.3.2 Technologie zkapalňování kombinací vnějšího chlazení a expanzí plynu – specifikace

Specifikace jednotlivých bloků, viz tab. 30, nastavených v programu Aspen Plus pro zapojení s vnějším chladícím zařízením, viz obr. 55. Při optimalizaci procesu byly měněny hodnoty finálních tlaků p₃ za třetím kompresorovým stupněm (proud 6, viz obr. 55), a proto také dochází ke změně tlaku za druhým stupněm kompresoru (proud 4, viz obr. 55). Hodnota tlaku za druhým stupněm kompresoru byla stanovena dle rovnice 14. Byly také měněny hodnoty teplot T₉ před škrtícím ventilem (proudu 8, viz obr. 55) tak, aby bylo možné dosáhnout zkapalnění oxidu uhličitého a zároveň zanechat alespoň 10 % nezkapalněné frakce pro regeneraci adsorbéru.

$$p_2 = \sqrt{p_1 \cdot p_3} \tag{14}$$

Tab.	30:	Nastavení	jednotlivy	ých l	bloků	simulace	v programu	Aspen	Plus
				/			1 0		

Označení zařízení	Specifikace procesu					
	Model: kompresor					
	Typ: izoentropický					
COMP1	Výstupní tlak: 6 bar (a)					
	Izoentropická účinnost: 0,8					
	Mechanická účinnost 0,9					
	Model: kompresor					
	Typ: izoentropický					
COMP2	Výstupní tlak: p ₂ bar (a)					
	Izoentropická účinnost: 0,8					
	Mechanická účinnost 0,9					
	Model: kompresor					
	Typ: izoentropický					
COMP3	Výstupní tlak: p ₃ bar (a)					
	Izoentropická účinnost: 0,8					
	Mechanická účinnost 0,9					
	Model: externí výměník tepla (chladič)					
	Typ: tlakový/teplotní					
HEAT	Výstupní tlak: p3 bar (a)					
	Výstupní teplota: T9					
	Model: výměník tepla					
	Typ výpočtu: shortcut					
LIEV DC	Typ výměníku: protiproudý					
HEA-KC	(teplé médium v trubkách)					
	Součinitel přenosu tepla: 35 W/m ² K [134]					
	Rozdíl teplého vstupního a chladného výstupního proudu: 10 K					
	Model: vodní chladič					
	Typ: tlakový/teplotní					
CIILADI	Výstupní tlak: 6 bar (a)					
	Výstupní teplota plynu: 30 °C					
	Model: vodní chladič					
	Typ: tlakový/teplotní					
CIILAD2	Výstupní tlak: p ₂ bar (a)					
	Výstupní teplota plynu: 30 °C					
	Model: vodní chladič					
СНІ АДЗ	Typ: tlakový/teplotní					
CIILADS	Výstupní tlak: p ₃ bar (a)					
	Výstupní teplota plynu: 30 °C					
	Model: škrtící ventil					
J-T	Typ: adiabatický					
	Výstupní tlak: p ₃					
	Model: separátor					
SED1	Typ: tlakový					
SLF I	Výstupní tlak: 6 bar (a)					
	Chladící povinnost: 0 Watt					

6.1.4 Výsledky simulací – čistý CO2

Simulace byla provedena pro obě varianty technologií, se 100% oxidem uhličitým o průtoku 362 kg/h. Výsledky simulace pro zkapalnění vnějším chladícím okruhem, viz kap. 5.2.1, jsou uvedeny v tab. 31 a simulace s vnějším i vnitřním chlazením, viz kap. 5.2.2, jsou zaznamenány v tab. 32. Teplota kapalného oxidu uhličitého při 6 bar (a) je -52,6 °C.

č.	p [bar]	Hmotnostní tok plynné frakce (proud 6) [-]	Příkon kompresoru (COMP1) [kW]	Tepelný výkon vodního chladiče (CHLAD1) [kW]	Tepelný výkon externího chladiče (HEX1) [kW]	Tepelný výkon chlazení recyklem (HEX-RC) [kW]
C1	6	0	12 010	10.956	-41,837	0
C2	0	0,1	13,918	-10,850	-37,741	0,617

Tab. 31: Výsledky simulace technologie externího chlazení

č.	tpřed_exp [°C]	ppřed_exp [bar]	p _{po_exp} [bar]	Plynná frakce po škrcení [-]	Příkon kompresorů (COMP1,2,3) [kW]	Tepelný výkon vodního chladiče (CHLAD1,2,3) [kWt]	Tepelný výkon externího chlazení (HEX1) [kWt]	Tepelný výkon chlazení recyklem (HEX- RC) [kWt]
E1	-20	20	6	0,187	24.015	22 167	-34,378	-1,211
E2	-30	20	0	0,126	24,915	-22,107	-37,026	-0,812
E3	-10			0,252			-30,363	-1,634
E4	-20	30	6	0,1856	28,589	-26,679	-33,234	-1,202
E5	-30			0,125			-35,841	-0,809
E6	5			0,367			-24,063	-2,377
E7	-5			0,285			-27,577	-1,848
E8	-10			0,250	31,245	-30,448	-29,111	-1,617
E9	-20	40	6	0,184			-31,918	-1,194
E10	-30			0,125			-34,488	-0,807
E11	-40			0,067			-36,893	-0,445
E12	-50			0,016			-39,176	-0,101
E13	15			0,445	35,045	-37,597	-16,964	-2,883
E14	-5	60	6	0,279			-24,116	-1,806
E15	-20	00		0,182			-28,266	-1,181
E16	-30			0,124			-30,770	-0,804
E17	23,71			0,512			0	-3,313
E18	15			0,424		-54,164	-3,763	-2,746
E19	-5	80	6	0,274	37,773		-10,219	-1,774
E20	-20			0,181			-14,219	-1,171
E21	-30			0,124			-16,668	-0,803
E22	21,57			0,465			0	-3,009
E23	15			0,410			-2,350	-2,656
E24	-5	100	6	0,270	39,909	-58,100	-8,370	-1,749
E25	-20			0,180			-12,247	-1,165
E26	-30			0,124			-14,650	-0,803
E27	20,59			0,442			0	-2,861
E28	15			0,400			-1,806	-2,589
E29	-5	120	6	0,267	41,666	-60,663	-7,517	-1,729
E30	-20			0,179			-11,296	-1,160
E31	-30			0,124			-13,655	-0,805

Tab. 32: Výsledky energetických nároků simulace technologie externího a vnitřního chlazení

6.1.5 Energetické posouzení celkových příkonů

V tab. 31 a tab. 32, jsou prezentovány energetické náročnosti navržených způsobů zkapalňování pro zvolené parametry. V této kapitole byla vybrána jednotlivá zařízení tak, aby splňovala minimální požadovaný výkon procesu. Dále jsou sečteny příkony zařízení pro jednotlivé provozní parametry a jako nejvýhodnější nastavení provozních parametrů považuji z ekonomického hlediska nastavení s nejnižším požadovaným příkonem.

6.1.5.1 Vodní chladící zařízení

Pro odhadnutí potřebných příkonů vodních chladičů byly použity hodnoty chladících jednotek od firmy Hitema a Omi (CHWT 372), viz tab. 33. a dále je předpokládáno, že konkurenční výrobky mají přibližně stejné celkové příkony potřebné k dosažení požadovaného výkonu. Parametry chladících výkonů vodních chladičů nejsou od výrobce uvedeny pro stejné podmínky, které uvažuji při simulaci, a proto byly voleny zařízení s mírným předimenzováním tak, aby volba byla na straně bezpečnosti.

č.	Požadovaný chladící výkon [kWt]	Název zařízení	Chladící výkon zařízení [kWt]	Celkový příkon [kW]	Nominální průtok vody [m³/h]
C1-C2	10,856	Hitema ENR.018	18	7,5	3,1
E1-E2	22,167	Hitema ENR.030	31	11,1	5,3
E3-E5	26,679	CHWT 372*	37,5	10,42	9,6
E6-E12	30,448	Hitema ENR.045	45	16	7,7
E13-E16	37,597	Hitema ENRF.045	45,2	18,4	7,8
E17-E21	54,164	Hitema ENR.061	61	21,4	10,5
E22-E26	58,100	Hitema ENRF.061	60,5	23,4	10,4
E27-E31	60,663	Hitema ENRF.070	69,9	25,6	12

Tab. 33: Příkony zvolených vodních chladičů [130, 135]

Pozn. 1: Chladící výkon zařízení Hitema je udáván pro teplotu okolního vzduchu +35 °C, teplotu vstupní/výstupní vody +12/+7 °C a chladící výkon pro zařízení od firmy Omi (CHWT 372), je uveden pro teplotu okolí 25 °C a teplotu chlazené vody 15 °C

Pozn. 2: Příkon čerpadla chladícího zařízení je již započítán v celkovém příkonu

6.1.5.2 Externí chladící zařízení

Jako zástupce externích chladičů byl vybrán chladič typu MiniCO₂OL_{compact} od společnosti Carrier, který je použit k odhadu celkového příkonu externí chladící jednotky.

Vybraný typ chladiče je zapojen v kaskádovém uspořádání, viz obr. 56, kdy výparník prvního okruhu je zároveň kondenzátorem druhého. První část chladícího okruhu pracuje se středními hodnotami vypařovacích teplot (MT) -12 až -5 °C pracovního média a druhá část kaskádového zapojení pracuje s nízkou vypařovací teplotou (LT) pracovního média -40 až -30 °C. Pracovním médiem je oxid uhličitý o objemu 188 litrů. [136]

Obr. 56: Schéma chladícího oběhu externího chladícího zařízení MiniCO₂OL_{compact} [136]

Externí chladící zařízení pro simulace parametrů C1 a C2 operují při tlaku 6 bar (a) a teplotě zkapalnění -52.6 °C. Proto již nelze použít chladící zařízení s oxidem uhličitým jako pracovní látkou. Byla vybrána chladící jednotka (LN -60 °C ~ -10 °C) od společnosti Ineya, která pracuje s kaskádovým systémem chladícího média R404A a R23. Chladivo R404A je běžně používaná směs fluorovaných uhlovodíků (R125 / R143a / R134a) a chladivo R23 je freonový plyn (trifluormetan CHF₃). Uvedená chladiva zatím nejsou Evropskou unií zakázána, ale je snaha o jejich postupnou eliminaci. Potenciál globálního oteplování (GWP) chladiv je uveden v tab. 34. [137, 138]

Tab. 34: Potenciál globálního oteplování chladiv externího chladiče od společnosti Ineya [137]

Chladivo	GWP
R404a	3922
R23	14800

Energetická náročnost externího chlazení je uvedena v tab. 35. Simulace s označením E1 až E31, které odpovídají obr. 55, využívají chladič typu MiniCO₂OL_{compact} a simulace C1-C2, viz obr. 54, jsou externě chlazeny chladiči (LN -60 °C ~ -10 °C) od společnosti Ineya.

č.	Nutný chladící výkon [kW]	Název zařízení	Chladící kapacita zařízení MT+LT [kW]	Celkový příkon MT+LT [kW]	Provozní příkon [kW]
E17,22,27	0	-	-	0	0
E28	1,806	MINI CR3-4MT 7	44,5+0	24,9+0	1,01+0
E23	2,350	MINI CR3-4MT 7	44,5+0	24,9+0	1,32+0
E18	3,763	MINI CR3-4MT 7	44,5+0	24,9+0	2,11+0
E29	7,517	MINI CR3-4MT 7 +CB2-2G/2F S	13,4+25,6	24,9+5,4	13,97+1,59
E24	8,370	MINI CR3-4MT 7 +CB2-2G/2F S	13,4+25,6	24,9+5,4	15,55+1,77
E19	10,219	MINI CR3-4MT 7 +CB2-2FSL 4 S	13,4+25,6	24,9+5,4	18,99+2,16
E30	11,296	MINI CR3-4MT 7 +CB2-2K/2J S	28,4+13,1	24,9+3	9,90+2,59
E25	12,247	MINI CR3-4MT 7 +CB2-2K/2J S	28,4+13,1	24,9+3	10,74+2,80
E31	13,655	MINI CR3-4MT 7 +CB2-2JSL 2 S	25,3+15,6	24,9+3,6	13,44+3,15
E20	14,219	MINI CR3-4MT 7 +CB2-2JSL 2 S	25,3+15,6	24,9+3,6	13,99+3,28
E26	14,650	MINI CR3-4MT 7 +CB2-2JSL 2 S	25,3+15,6	24,9+3,6	14,42+3,38
E21	16,668	MINI CR3-4MT 7 +CB2-2J/2H S	23,1+17,5	24,9+3,9	17,97+3,71
E13	16,964	MINI CR3-4MT 7	44,5+0	24,9+0	9,49+0
E6	24,063	MINI CR3-4MT 7	44,5+0	24,9+0	13,46+0
E14	24,116	MINI CR3-4M-4K-4K +CB2-2G/2F S	27,3+25,6	32,3+5,4	28,22+5,09
E7	27,577	MINI CR3-4KT10 +CB2-2FSL 4 S	27,6+31,7	36,4+6,7	36,37+5,83
E15	28,266	MINI CR3-4MT 7 +CB2-2FSL 4 S	6,1+31,7	24,9+6,7	24,9+5,97
E8	29,111	MINI CR3-4MT 7 +CB2-2FSL 4 S	6,1+31,7	24,9+6,7	24,9+6,15
E3	30,363	MINI CR3-4MT 7 +CB2-2FSL 4 S	6,1+31,7	24,9+6,7	24,9+6,42
E16	30,770	MINI CR3-4MT 7 +CB2-2FSL 4 S	6,1+31,7	24,9+6,7	24,9+6,50
E9	31,918	MINI CR3-4KT10 +CB2-2H/2C S	22,8+35,8	36,4+7,4	36,4+6,60
E4	33,234	MINI CR3-4KT10 +CB2-2H/2C S	22,8+35,8	36,4+7,4	36,4+6,87
E1	34,378	MINI CR3-4KT10 +CB2-2H/2C S	22,8+35,8	36,4+7,4	36,4+7,11

Tab. 35: Příkony externích chladících zařízení MiniCO2OL [136]

E10	34,488	MINI CR3-4KT10 +CB2-2H/2C S	22,8+35,8	36,4+7,4	36,4+7,13
E5	35,841	MINI CR3-4KT10 +CB2-2ESL 4 S	18,5+39,5	36,4+8,0	36,4+7,26
E11	36,893	MINI CR3-4KT10 +CB2-2ESL 4 S	18,5+39,5	36,4+8,0	36,4+7,47
E2	37,026	MINI CR3-4KT10 +CB2-2ESL 4 S	18,5+39,5	36,4+8,0	36,4+7,50
C2	37,741	LN-40W	40	93	87,75
E12	39,176	MINI CR3-4KT10 +CB2-2F/2C S	15,3+42,1	36,4+8,6	36,4+8,00
C1	41,837	LN-60W	60	122	85,07

Pozn. 1: Hodnoty celkového příkonu jsou výrobcem stanoveny pro nízkoteplotní (LT) variantu při teplotě vypařování pracovního média -30 °C a pro variantu se středními teplotami (MT) -5 °C. Pozn. 2: Hodnoty chladících kapacit a celkového příkonu zařízení LN-40 W a LN-60 W jsou stanoveny při teplotě -55 °C.

Celkový příkon v tab. 35 je uveden výrobcem pro maximální chladící kapacitu středně teplotního okruhu (MT) a nízkoteplotního okruhu (LT) kaskádového chladícího zařízení. Proto byl stanoven provozní příkon, který udává konkrétní hodnotu příkonu zařízení pro požadovaný chladící výkon. Pro simulace externího chladícího zařízení pracujících při nízkých teplotách, kdy byla zvolena varianta s nižší chladící kapacitou MT, než je požadovaný chladící výkon, je uvažována nutnost maximální hodnoty příkonu v MT cyklu, pro zajištění spolehlivého chodu druhého nízkoteplotního okruhu (LT) kaskádového chladícího zařízení. Při výpočtu poměrného příkonu byla uvažována lineární závislost mezi chladící kapacitou a příkonem. Z tohoto důvodu se může okamžitý příkon od vypočteného poměrného příkonu reálně zapojeného zařízení lišit.

6.1.5.3 Kompresorová jednotka

K dispozici je mnoho různých druhů kompresorů na oxid uhličitý. Nejvýznamnějšími a nejvíce vyráběnými jsou pístové kompresory, šroubové kompresory a spirálové kompresory. Pro některé aplikace jsou vhodné axiální, lamelové či membránové kompresory. Použitý kompresor byl zvolen tak, aby odpovídal svými výkonnostními parametry požadovanému procesu a aby byl vhodný pro styk s potravinami (možnost výroby potravinářského CO₂).

Jednotliví výrobci kompresorových jednotek oxidu uhličitého se výrazně liší v hodnotách celkových příkonů kompresorů. Vždy jsou pouze uváděny maximální příkony kompresorů, které jsou ale dimenzovány na vyšší průtokové objemy a často i vyšší maximální tlaky. Proto by bylo nutné zažádat o otestování nabízených kompresorů při definovaných tlacích a průtocích pro stanovení směrodatných hodnot příkonů či zadat poptávku pro vyhotovení kompresorů o potřebných definovaných parametrech.

Pro další porovnání budou hodnoty příkonů kompresorů uvažovány z hodnot v tab. 31 a 32, které byly vypočítány simulací v programu Aspen Plus. Hodnoty z tab. 31 jsou pro jednostupňový kompresor a tab. 32 uvažuje zapojení třístupňových kompresorů o hodnotě mezitlaku definovaný rovnicí 14. Do simulačního programu byly nastaveny kompresory jako izoentropické s izoentropickou účinností 0,8 a s mechanickou účinností 0,9. Celkový příkon kompresoru je dán součtem příkonů jednotlivých stupňů.

6.1.6 Vyhodnocení energetických náročností

V této kapitole jsou shrnuty výsledky energetických náročností pro jednotlivé nastavení simulací, které vycházejí z kap. 6.6. Celkový elektrický příkon jednotlivých simulovaných technologií, viz obr. 54 a 55, je dán součtem elektrických příkonů vodního chladiče, externího chladiče a kompresorové jednotky. V tab. 36 je také uvedena celková spotřeba elektrické energie potřebná na zkapalnění 1 kg CO₂.

Podle výsledků v tab. 36 vyplývá, že technologie zkapalnění pracující pouze s externím chladícím cyklem, viz obr. 54, není konkurence schopná technologii kombinující vnější i vnitřní chlazení pro dosažení zkapalnění, viz obr. 55. Pro regeneraci adsorbéru zbytkové vody je nutné zachovat minimálně 10% recykl nezkapalněného sušeného plynu, a proto jsou technologie s označením E12, E11 a C1 nevhodné. Varianta číslo E2 (expanze plynu z 20 barů při -30 °C) se zdá být nejméně energeticky náročná, a proto budou tyto parametry použity v dalších výpočtech.

Tab. 36: Energetická náročnost zkapalnění CO₂

č.	Příkon vodního chlazení [kW]	Příkon externího chlazení [kW]	Příkon kompresorů [kW]	Celkový elektrický příkon [kW]	Podíl plynné frakce po škrcení [-]	Elektrická energie potřebná pro zkapalnění 1 kg CO ₂ [kWh/kgco2]
E2	11.1	43.9	24.915	79.915	0.126	0.2526
E21	21,4	21,68	37,773	80,853	0,124	0,2550
E26	23,4	17,8	39,909	81,109	0,124	0,2558
E12	16	44,4	31,245	91,645	0,016	0,2573
E20	21,4	17,27	37,773	76,443	0,181	0,2578
E25	23,4	13,54	39,909	76,849	0,18	0,2589
E3	10,42	31,32	28,589	70,329	0,252	0,2597
E5	10,42	43,66	28,589	82,669	0,125	0,2610
E31	25,6	16,59	41,666	83,856	0,124	0,2644
E6	16	13,46	31,245	60,705	0,367	0,2649
E16	18,4	31,4	35,045	84,845	0,124	0,2676
E30	25,6	12,49	41,666	79,756	0,179	0,2684
E11	16	43,87	31,245	91,115	0,067	0,2698
E1	11,1	43,51	24,915	79,525	0,187	0,2702
E4	10,42	43,27	28,589	82,279	0,1856	0,2791
E15	18,4	30,87	35,045	84,315	0,182	0,2847
E10	16	43,53	31,245	90,775	0,125	0,2866
E8	16	31,05	31,245	78,295	0,25	0,2884
E18	21,4	2,11	37,773	61,283	0,424	0,2939
C1	7,5	85,07	13,918	106,488	0	0,2942
E23	23,4	1,32	39,909	64,629	0,41	0,3026
E24	23,4	17,32	39,909	80,629	0,27	0,3051
E9	16	43	31,245	90,245	0,184	0,3055
E19	21,4	21,15	37,773	80,323	0,274	0,3056
E29	25,6	15,56	41,666	82,826	0,267	0,3121
E13	18,4	9,49	35,045	62,935	0,445	0,3132
E28	25,6	1,01	41,666	68,276	0,4	0,3143
E22	23,4	0	39,909	63,309	0,465	0,3269
E14	18,4	33,31	35,045	86,755	0,279	0,3324
E27	25,6	0	41,666	67,266	0,442	0,3330
E17	21,4	0	37,773	59,173	0,512	0,3350
C2	7,5	87,75	13,918	109,168	0,1	0,3351
E7	16	42,2	31,245	89,445	0,285	0,3456

6.2 Výpočet zkapalňování CO₂ frakce

V této části je použit výpočtový model z kap. 5.2.2, avšak oproti kapitole 6,1, kde bylo použit čistý oxid uhličitý jako médium pro zkapalnění je zde aplikován vstupní proud CO₂ bohaté frakce o stanoveném složení v kap. 5.1.2.

6.2.1 Předúpravy zkapalňování CO2 frakce

V kap. 5.1.4 je popsáno částečné odstranění zbytkové vody kompresí CO₂ bohaté frakce na 6 bar a následně podle návrhu v kap. 5.1.5 je plyn adsorpčním sušením dosušen. Tento proces je znázorněn na obr. 57, přičemž objemová koncentrace proudu 1 odpovídá hodnotám koncentrace mokré CO₂ frakci z tab. 19. Dále byly vypočítány látkové toky v proudu 1, které by měly být zachovány po proud 2 a 3. V separátoru vody H-SEP1 byla odstraněna část vody v kapalném skupenství a se změnou látkového toku vody se změnily koncentrace všech složek proudu 5. Výpočet koncentrací jednotlivých složek proudu 6 na obr. 57 byl spočítán pro hodnotu tlakového rosného bodu -80 °C při 6 bar, viz tab. 22. Výpočty byly provedeny podle rovnic z kap. 5.1.2 a výsledky jsou uvedeny v tab. 37.

Obr. 57: Schéma první části úpravy CO2 bohatého plynu, před zkapalňováním

Koncentrace [obj. %]	Po membránové separaci (1. proud)	Po kondenzaci vody (5. proud)	Po ads. sušení (6. proud)
CO ₂	99,23	99,30	99,346
CH ₄	0,4991	0,4994	0,49963
O ₂	0,06887	0,06892	0,06895
N ₂	0,0000699	0,00007	0,0000699
H ₂ O	0,19082	0,03879	0,0000091
Inertní plyny	0,01091	0,09111	0,08524
Tlak [bar]	1,21325	6	6
Teplota [°C]	3	30	30

Tab. 37: Vypočítané hodnoty složení jednotlivých proudů

Inertní plyny jsou další látky, které vznikají ve fermentoru či jsou vháněny do fermentoru společně se vsádkou a s mikroaerací. Jedná se o nízké koncentrace látek (jako

H₂S, NH₃, He, Ar, Ne, a další), které se neodstraní při kondenzaci vody, při adsorpci a prochází přes membránovou jednotku do CO₂ bohatého proudu. Pro výpočet v programu Aspen Plus je s těmito inertními plyny počítáno jako s neonem, jehož hodnota molekulové hmotnosti je přibližně rovná průměrné molekulové hmotnosti inertních plynů. Důvodem použití neonu je také jeho teplotní stabilita a nízká hodnota teploty zkapalnění (-239 °C při 6 bar (a)), která zaručuje nevymrzání inertních plynů v oblasti škrtícího ventilu. Pro zjednodušení výpočtu byly objemové koncentrace uvažovány za molární a ty byly vloženy do nastavení simulace.

6.2.2 Nastavení podmínek výpočtu zkapalnění CO2 frakce

Při tvorbě simulace byla použita Peng-Robinsonova kubická stavová rovnice za výpočtovou metodu termodynamických veličin. Kvůli nemožnosti výpočtu adsorbéru vody (ADS1, viz obr. 57) v programu Aspen Plus a jeho propojení se zbývajícím výpočtem procesu zkapalnění, viz obr. 58, byly pro výpočet použity hodnoty koncentrací proudu 6, viz tab. 37. Schéma technologie z obr. 58 odpovídá navržené technologii zkapalnění vnějším a vnitřním chlazením, viz obr. 55. Označení jednotlivých zařízení bylo zachováno jako v předchozí kapitole, viz tab. 26 a specifikace procesu byly nastaveny dle tab. 30. Prostřednictvím vyhodnocení energetických náročností procesu, dle tab. 36, byly vybrány parametry varianty E2, viz tab. 32. Tlak p₃ za třetím kompresorem (COMP3) byl nastaven na hodnotu 20 bar a teplota T₉ proudu 12 byla zadána výstupní teplotou z externího chladiče (HEX1) na -30 °C.

Obr. 58: Schéma technologie zkapalnění CO2 frakce vnějším a vnitřním chlazením

6.2.3 Výsledky simulace zkapalňování CO2 frakce

Simulace byla provedena s nastavenými hodnotami dle kap. 6.2.1 a 6.2.2. Výsledné hodnoty složení jednotlivých proudů je uvedeno v tab. 38, ze které je také vidět, že příměsi CO_2 frakce nepatrně snižují hodnotu zkapalnění z hodnoty -52,6 °C pro čistý oxid uhličitý na hodnotu -53,71 °C pro CO_2 frakci.

	Tenlota	Tlak	Průtok	Molové koncentrace [%]					
Proud	[°C]	[bar]	[kg/h]	CO ₂	CH ₄	O ₂	N_2	H ₂ O	Ostatní plyny
6	30	6	362	99,35	0,4996	0,069	6,99·10 ⁻⁵	9,1.10-6	0,085
7	83,13	10,95	362	99,35	0,4996	0,069	6,99·10 ⁻⁵	9,1·10 ⁻⁶	0,085
8	30	10,95	362	99,35	0,4996	0,069	6,99·10 ⁻⁵	9,1·10 ⁻⁶	0,085
9	83,75	20	362	99,35	0,4996	0,069	6,99·10 ⁻⁵	9,1.10-6	0,085
10	30	20	362	99,35	0,4996	0,069	6,99·10 ⁻⁵	9,1.10-6	0,085
11	21,38	20	362	99,35	0,4996	0,069	6,99·10 ⁻⁵	9,1.10-6	0,085
12	-30	20	362	99,35	0,4996	0,069	6,99·10 ⁻⁵	9,1.10-6	0,085
13	-53,71	6	362	99,35	0,4996	0,069	6,99·10 ⁻⁵	9,1.10-6	0,085
14	-53,71	6	48,43	95,87	3,0824	0,434	4,80.10-4	1,29.10-7	0,613
15	-53,71	6	313,57	99,89	0,0912	0,011	5,01-10-6	1,05.10-5	0,0016
16	20	6	48,43	95,87	3,0824	0,434	4,80.10-4	1,29.10-7	0,613

Tab. 38: Výsledky ekonomicky nejvýhodnější simulace technologie zkapalňování CO2 s parametry E2

Pro určení kvality výsledného kapalného proudu oxidu uhličitého (obr. 58, proud 15) byly stanovené koncentrace jednotlivých složek porovnány s minimálními požadavky na složení potravinářského oxidu uhličitého stanovenými dle EIGA, viz tab. 39.

Koncentrace	LCO ₂	Požadované složení LCO2 dle EIGA
[obj. %]	(proud 15)	pro potravinářský/nápojový průmysl
CO ₂	99,896	99,9
CH ₄	0,09118	< 0,005
O ₂	0,01126	< 0,003
N ₂	0,00000501	-
H ₂ O	0,0000105	< 0,0052
Ostatní plyny	0,001572	-

Tab. 39: Porovnání kvality kapalného oxidu uhličitého [102, 103]

Z tabulky je vidět, že dosažená koncentrace oxidu uhličitého zjištěná simulací jen o 4 tisíciny procenta nedosahuje požadované minimální koncentrace CO₂. Větší rozdíl je u maximální koncentrace metanu a kyslíku, které také nebyly dosaženy. Vzhledem k tomu, že pro ekonomicky nejvýhodnější případ nastavení procesních parametrů nebyly dosaženy podmínky čistoty pro potravinářský kapalný oxid uhličitý, byly provedeny další simulace linky (obr. 58) i pro další výše uvedené tlaky a teploty, viz tab. 32.

Pro řadu variant nastavení parametrů simulace, viz tab. 32, bylo dosaženo více než 99,9 obj. % CO₂ v kapalném proudu, ale ve všech případech byla překročena podmínka maximální koncentrace metanu v kapalném proudu CO₂. Pouze pro jednu variantu nastavení podmínek – varianta č. E6, viz tab. 32, bylo dosaženo podmínky maximální koncentrace kyslíku a zároveň bylo dosaženo nejnižší hodnoty koncentrace metanu, viz tab. 40. Při těchto podmínkách došlo k rapidní změně průtoku mezi frakcí zkapalněného média (proud 15, viz obr. 58) a nezkapalněného média (proud 14, viz obr. 58) z původní hodnoty plynné frakce pro simulaci s čistým CO₂ 0,367 na hodnotu 0,81 pro frakci bohatou na CO₂. K těmto výrazným poklesům zkapalněného množství média dochází pouze pro takové simulace, u kterých byly nastaveny výstupní teploty z externího chladiče HEX1, viz obr. 58, tak, že se pro simulace s čistým CO₂ pohybovaly blízko hranice saturační křivky a pro CO₂ frakci se bod, ze kterého dochází ke zkapalnění (bod 8, viz obr. 52), posunul výrazně do pravé části oblasti dvoufázové směsi.

Koncentrace	LCO ₂
[obj. %]	(proud 15)
CO ₂	99,9794
CH ₄	0,01806
O ₂	0,002186
N ₂	0,00000898
H ₂ O	0,0000455
Ostatní plyny	0,000272

Tab. 40: Složení zkapalněného média pro škrcení z 40 bar při 5 °C.

Získaná data vykazovala trend rostoucí koncentrace oxidu uhličitého v proudu 15 s klesajícím tlakem před škrtícím ventilem (proud 12) při zachování konstantní teploty proudu 12, viz tab. 41, která je vytvořena pro teplotu -20 °C proudu 12 (obr. 58). Dále pro výsledky simulací se stejnými tlaky platí, že s rostoucí teplotou proudu 12 roste koncentrace CO₂ a zároveň klesají koncentrace metanu a kyslíku v proudu 15, viz tab. 42 pro hodnotu tlaku před škrcením 40 bar (a).

TT 1 41 D / /	1 2 1	1 / 1 / 1	v• 1 1	1 / / /	1 / 1	V1 / 00 (201
Lah /LL·Porovnani	docazenvch	koncentraci clozek	nr1 7/2000	Inovani 7 ten	loty nred	ckreenim ///	~ `
1 a 0.41.1010 vitam	uusazunvun	KUNCUNNAU SIUZUN	VII ZKADA	movam z ico		SKICCHIIII -20	U.S.
	2		1 1	1	J 1		

Tlak před	Molová koncentrace [-]								
škrcením [bar]	CO ₂	CH4	O 2	N_2	H ₂ O	Inerty			
20	0,999550	0,000395	4,813·10 ⁻⁵	2,02.10-8	1,399·10 ⁻⁷	6,183·10 ⁻⁶			
30	0,999233	0,000673	8,256.10-5	3,57·10 ⁻⁸	1,128.10-7	1,108E-05			
40	0,999229	0,000677	8,305·10 ⁻⁵	3,59·10 ⁻⁸	1,126.10-7	1,115·10 ⁻⁵			
60	0,999221	0,000683	8,386·10 ⁻⁵	3,63.10-8	1,123.10-7	$1,127 \cdot 10^{-5}$			
80	0,999216	0,000688	8,447·10 ⁻⁵	3,66·10 ⁻⁸	$1,121 \cdot 10^{-7}$	1,136.10-5			
100	0,999212	0,000692	8,491·10 ⁻⁵	3,68·10 ⁻⁸	1,119·10 ⁻⁷	1,143·10 ⁻⁵			
120	0,999209	0,000694	8,521.10-5	3,69.10-8	1,118.10-7	1,147.10-5			

Tab. 42: Porovnání dosažených koncentrací složek při zkapalňování z tlaku před škrcením 40 bar (a)

Teplota před	Molová koncentrace [-]								
skrcenim [°C]	CO ₂	CH4	O 2	N_2	H ₂ O	Inerty			
5	0,999794	0,000181	$2,19 \cdot 10^{-5}$	8,98·10 ⁻⁹	4,55·10 ⁻⁷	2,72·10 ⁻⁶			
-5	0,999468	0,000467	5,7·10 ⁻⁵	2,41·10 ⁻⁸	1,28·10 ⁻⁷	7,40·10 ⁻⁶			
-10	0,999402	0,000525	6,42·10 ⁻⁵	2,73·10 ⁻⁸	1,22· 10 ⁻⁷	8,41· 10 ⁻⁷			
-20	0,999229	0,000677	8,31·10 ⁻⁵	3,59·10 ⁻⁸	1,13·10 ⁻⁷	1,11·10 ⁻⁵			
-30	0,998954	0,000917	11.3·10 ⁻⁵	5,03·10 ⁻⁸	1,05·10 ⁻⁷	1,58·10 ⁻⁵			
-40	0,99845	0,001355	16.9·10 ⁻⁵	7,93·10 ⁻⁸	9,90·10 ⁻⁸	2,57·10 ⁻⁵			
-50	0,997312	0,002332	29,9·10 ⁻⁵	1,60·10 ⁻⁷	9,43·10 ⁻⁸	5,67·10 ⁻⁵			

6.2.4 Sestavení celkové technologie zušlechtění CO₂ bohaté frakce

Plynný proud ze separátoru SEP1 (proud 16, viz obr. 58) může být dále využit jako zdroj inertního proudu k regeneraci adsorpčního sušiče. Upravené schéma technologie je prezentováno na obr. 59.

Obr. 59: Schéma technologie zkapalnění CO₂ frakce vnějším a vnitřním chlazením s využitím nezkapalněné frakce pro regeneraci adsorbéru

Pro regeneraci vyžaduje navržený adsorbér minimálně 10% průtok plynu po dobu aktivní vysokoteplotní (250 °C) regenerace (cca 3 hodiny), což odpovídá 36,2 kg_{plynu}/h. Požadované množství regeneračního plynu (proud 16,1) je zaručeno děličem průtoku

(SPLIT), viz obr. 57. Zbylý čas (cca 9 hodin) z 12 ti hodinového pracovního cyklu jedné věže adsorbéru má adsorbent čas na vychladnutí. Ochlazení adsorbentu může být zprostředkováno prostřednictvím zavření proudu 16,1, přičemž teplo by přecházelo do okolí, nebo může být chlazení urychleno vypnutím ohřívače HEATER1 a ponecháním průtoku chladného proudu 16,1. Teplota proudu 16,1 je 20 °C. S tímto přístupem regenerace adsorbéru je možné docílit výrazného zkrácení jednotlivých cyklů adsorpce. Proud 16,2, nepotřebný zbytek nezkapalněné frakce, který obsahuje přibližně 3 obj. % metanu může být zapojen zpět jako recykl do proudu bioplynu před membránovou jednotku, s cílem minimalizovat ztráty metanu. Proud číslo 17 byl zapojením výměníku tepla HEX-CR2 ohřát z 20 °C na hodnotu 73,75 °C, čímž byla ušetřena část energie na ohřátí proudu 17 v ohřívači (HEATER1) a zároveň se snížila hodnota tepelné energie, kterou odvádí vodní chladič (CHLAD3). Nastavení výměníku tepla HEX-RC2 bylo provedeno totožně jako nastavení výměníku HEX-RC, viz tab. 30. Hodnota teploty proudu 17 závisí na volbě finálního tlaku za 3. kompresorovým stupněm (COMP3). Pro simulaci s parametry varianty č. E2, viz tab. 32, bylo zapojením výměníku HEX-RC2 ušetřeno 514 W tepelného výkonu, který by bylo nutné dodat ohřívačem (HEATER1) a zároveň bylo potřeba o 489 W méně tepelného výkonu pro ochlazení proudu 9,1 vodním chladičem (CHLAD3). Zapojení výměníku HEX-RC2 může šetřit energii pouze 3 hodiny z 12 ti hodinového cyklu. Proud číslo 18 je dohříván externím ohřívačem na teplotu 250 °C vhodnou pro regeneraci adsorbérů.

Spojením předúprav v kap. 6.2.1 a hlavní fáze zkapalnění CO₂ frakce, viz obr. 59, vznikne celkové schéma technologie úpravy CO₂ bohaté frakce vycházející jako permeátový proud z membránové jednotky, viz obr. 60.

Obr. 60: Blokové schéma celkové navržené technologie úpravy CO_2 bohaté frakce 94

6.3 Dosažení potravinářské kvality kapalného oxidu uhličitého

Bylo zjištěno, že u navržených uspořádání linky nelze dosáhnout změnou podmínek požadovaného složení pro potravinářský oxid uhličitý definovaný asociací EIGA. Pro zajištění požadované kvality by bylo nutné zapojení dalšího dočištění a dle kap. 4.3 je průmyslově používána destilační kolona s reboilerem a kondenzátorem. Možné blokové schéma procesu se zapojením destilační kolony je vyobrazeno na obr. 59.

Obr. 61: Zkapalnění CO2 frakce se zapojením destilační kolony

Destilační kolona byla volena jako náplňová, s Rashigovými kroužky jako náplní. Nastavení kolony je uvedeno v tab. 43.

Parametry destilační kolony	Specifikace
Typ výpočtu	Rovnovážný
Počet pater	5
Typ kondenzátoru	Parciální
Platné fáze	Plyn-kapalina
Hmotnostní refluxní poměr	3,5
Hmotnostní tok spodní části kolony (proud 15)	325,8 kg/h
Nástřikové patro	3
Tlak v kondenzátoru	6 bar
Frakce par destilátu	1

Tab. 43: Parametry nastavení destilační kolony

Složení kapalného proudu LCO₂ z vařáku kolony je uvedeno v tab. 44. Hodnoty byly vypočteny pro tlak 40 bar a teplotu 0 °C před škrcením (proud 12, viz obr. 59). Z výsledků vyplývá, že za použití destilační kolony lze získat kapalný oxid uhličitý v potravinářské čistotě.

Koncentrace [obj. %]	LCO ₂ (proud 15)	Požadované složení LCOc2 dle EIGA pro potravinářský/nápojový průmysl
CO ₂	99,996	99,9
CH ₄	0,00379	< 0,005
O2	0,000344	< 0,003
N_2	1,3947·10 ⁻⁸	-
H ₂ O	0,00001015	< 0,0052
Ostatní plyny	7,6771·10 ⁻⁸	-

Tab. 44: Složení kapalné frakce 15 vycházející z destilační kolony

I přes ponechání veškerých nastavení zařízení jako v kap. 6.2 by s nově instalovanou destilační kolonou (RADFRAC1, viz obr. 61) muselo být dodáno externí chlazení kondenzátoru kolony, kde je teplota kondenzace -53 °C \pm 1 °C. Zapojení tohoto externího chladící zařízení kondenzátoru by bylo nemohlo být stejné jako HEX1, kvůli nutnosti jiného pracovního média. Vařák byl nastaven jako vnější cirkulační bez přepážky, viz obr. 62.

Vzhledem ke srovnání s průmyslově vyráběným zařízení viz obr. 41, ve kterém využívají pouze externí chlazení při tlaku 18,5 bar (a), nebylo toto řešení již dále energeticky a ekonomicky vyhodnocováno.

6.4 Výpočet uhlíkové stopy navrženého projektu

Uhlíková stopa je pojem, který byl zaveden pro možnosti srovnání jak lidé, procesy či podniky ovlivňují zemskou atmosféru. Je to suma vypuštěných skleníkových plynů vyjádřena v ekvivalentech oxidu uhličitého. V tomto případě jde o uhlíkovou stopu technologie na přečištění a zkapalnění CO₂, viz obr. 59. Do celkové uhlíkové stopy této technologie by měl být započítán uhlíkový ekvivalent pro postavení linky a pro její provoz. Z důvodu obtížné zjistitelnosti ekologické náročnosti výroby jednotlivých zařízení byl stanoven uhlíkový ekvivalent pouze z hodnot provozní spotřeby elektrické energie pro všechny varianty zkapalnění, viz tab. 32. Výpočet vyprodukovaného množství uhlíkového ekvivalentu spotřebou elektrické energie byl realizován za použití hodnoty průměrné uhlíkové stopy elektrické energie pro Českou republiku mezi dny 23.6. až 23.7., která činila 0,439 kgCO₂/kWh [139]. Pro zjednodušení výpočtu byla vynechána spotřeba elektrické energie ohřívače (HEATER1, viz obr. 59), protože v této práci nebyl navrhován a je zapnut pouze 3 hodiny z 12 ti hodinového cyklu adsorbéru. Bylo vypočítáno množství zachyceného oxidu uhličitého za hodinu pro jednotlivé varianty z tab. 32 a k nim byly spočítány hodnoty vyprodukovaného oxidu uhličitého. Poměr příkonu vůči zkapalněnému množství CO₂ stanovuje potřebnou energii pro zkapalnění 1 kg CO₂. Rozdílem množství záchytu vůči produkci CO₂ spotřebou elektrické energie byla stanovena hmotnost oxidu uhličitého, který by byl hodinově vypouštěn do ovzduší v případě zušlechťovací stanice bioplynu bez úpravy CO₂ bohaté frakce, viz tab. 45. V tabulce je také uvedena hodnota poměru zachyceného vůči vyprodukovaného CO₂.

			Množství CO2		
	Celkový	Množství	nrodukované	Rozdíl záchvtu	Poměr záchvtu
	elektrický	zachyceného	snotřebou	CO2 vůči jeho	vůči produkci
č.	nříkon	CO ₂	elektrické	nrodukci	CO ₂
	[kW]	[kg/h]	energie	[kg/h]	[kg/kg]
		[g,]	[kg/h]	[8,]	[8]
E2	79,915	316,388	35,054	281,334	9,026
E21	80,853	317,112	35,466	281,646	8,941
E26	81,109	317,112	35,578	281,534	8,913
E12	91,645	356,208	40,200	316,008	8,861
E20	76,443	296,478	33,531	262,947	8,842
E25	76,849	296,840	33,709	263,131	8,806
E3	70,329	270,776	30,849	239,927	8,777
E5	82,669	316,750	36,262	280,488	8,735
E31	83,856	317,112	36,783	280,329	8,621
E6	60,705	229,146	26,628	202,518	8,605
E16	84,845	317,112	37,217	279,895	8,521
E30	79,756	297,202	34,985	262,217	8,495
E11	91,115	337,746	39,967	297,779	8,451
E1	79,525	294,306	34,883	259,423	8,437
E4	82,279	294,813	36,091	258,722	8,169
E15	84,315	296,116	36,984	259,132	8,007
E10	90,775	316,750	39,818	276,932	7,955
E8	78,295	271,500	34,344	237,156	7,905
E18	61,283	208,512	26,881	181,631	7,757
C1	106,488	362,000	46,710	315,290	7,750
E23	64,629	213,580	28,349	185,231	7,534
E24	80,629	264,260	35,368	228,892	7,472
E9	90,245	295,392	39,586	255,806	7,462
E19	80,323	262,812	35,233	227,579	7,459
E29	82,826	265,346	36,331	229,015	7,304
E13	62,935	200,910	27,606	173,304	7,278
E28	68,276	217,200	29,949	187,251	7,252
E22	63,309	193,670	27,770	165,900	6,974
E14	86,755	261,002	38,055	222,947	6,859
E27	67,266	201,996	29,506	172,490	6,846
E17	59,173	176,656	25,956	150,700	6,806
C2	109,168	325,800	47,886	277,914	6,804
E7	89,445	258,830	39,235	219,595	6,597

Tab. 45: Uhlíková stopa technologie zkapalnění CO2

7 Diskuze výsledků

Pro návrh vhodných parametrů byly provedeny simulace v programu Aspen Plus pro čisté CO₂ a pro různá nastavení vstupních parametrů.

Energetická náročnost technologie zkapalnění pracující pouze s externím chladícím cyklem o nastavených podmínkách C2 byla 0,3351 kWh/kg_{C02} (tab. 36). Energetická náročnost technologie kombinující externí chlazení s vnitřním chlazením plynu byla v rozmezí 0,2526 ~ 0,3456 kWh/kg (tab. 36). Energeticky nejvýhodnější podmínky E2, E21 a E26 vykazovaly tyto měrné spotřeby elektrické energie na zkapalnění 0,2526 kWh/kg_{C02} pro E2, pro E21 0,255 kWh/kg_{C02} a pro E26 0,2558 kWh/kg_{C02}.

V další části výpočtů bylo v simulacích použito reálné složení CO₂ bohaté frakce. Simulace byla provedena pro technologii kombinující externí chlazení s vnitřním chlazením plynu a variantu E2, která v případě čistého CO₂ vykazovala nejmenší energetickou náročnost. Vzhledem k tomu, že za těchto podmínek nebylo dosaženo čistoty pro potravinářský kapalný oxid uhličitý, byly provedeny další simulace linky (obr. 58) i pro další výše uvedené tlaky a teploty, viz tab. 32.

V případě reálného složení CO₂ bohaté frakce se mírně snižuje teplota zkapalnění při hodnotě tlaku 6 bar (a) z hodnoty -52,6 °C pro čisté CO₂ na hodnotu -53,7 °C pro CO₂ frakci. Z toho důvodu v případech jako je E6, kdy jsou nastavené parametry proudu před škrtícím ventilem (proud 12, viz obr. 58) pro čisté CO₂ blízko saturační křivky, dochází při použití CO₂ bohaté frakce ke škrcení z dvoufázové směsi a výrazně se zvyšuje množství nezkapalněné frakce. Pro nastavení parametrů dle E6 se dostáváme z původní hodnoty plynné frakce 0,367 po škrcení pro simulaci s čistým CO₂ (proud 10, viz obr. 55) a na hodnotu 0,81 pro frakci bohatou na CO₂ (proud 14, viz obr. 59).

Výsledné čistoty proudu 15, viz obr. 58, vykazují trend rostoucí koncentrace oxidu uhličitého s klesajícím tlakem před škrtícím ventilem (proud 12, viz obr. 58) při konstantní teplotě proudu 12, viz tab. 41. Současně bylo zjištěno, že pro konstantní tlaky platí, že s rostoucí teplotou proudu 12, obr. 58, roste koncentrace CO₂ a zároveň klesají koncentrace metanu a kyslíku v proudu 15, viz tab. 42.

V případě, že by bylo požadavkem dosažení potravinářské kvality, resp. kvalitativních parametrů pro potravinářský oxid uhličitý stanovených asociací EIGA, je použití daných technologií nevhodné. Potravinářské kvality nebylo dosaženo při žádném z výše uvedených nastavení provozních parametrů procesu. Nejblíže potravinářské čistotě bylo nastavení E6, u kterého byla překročena pouze podmínka maximální koncentrace metanu v kapalném proudu.

Pro dosažení potravinářské čistoty kapalného proudu oxidu uhličitého by bylo nutné nahradit separátor s tangenciálním nátokem destilační kolonou, viz obr. 61. Již při zapojení malé destilační kolony není problém dosáhnutí potravinářské čistoty kapalného CO₂. Avšak výsledná linka a její ovládání by bylo s destilační kolonou daleko náročnější pro obsluhu, proto se nabízí přepravovat zkapalněný proud CO₂ (proud 15, viz obr. 59), z více malých úpraven oxidu uhličitého z bioplynu do jednoho místa s postavenou destilační kolonou, kde by docházelo k dočištění na potravinářskou kvalitu.

Limitem navržených technologií zkapalnění CO₂ je nutnost ponechání minimálního průtoku nezkapalněného plynu (10 obj. % průtoku vstupujícího na adsorpční sušení) pro regeneraci adsorpčního sušícího zařízení. Tento limit není splněn u variant C1, E11 a E12.

Při porovnání ekologické náročnosti provozu zařízení na zkapalnění CO₂ bohaté frakce a množství zachyceného oxidu uhličitého, který by byl vypouštěn do atmosféry, se technologie pohybuje v kladných číslech. Při hmotnostním toku 362 kg CO₂ na vstupu do zkapalňovací technologie při nastavení parametrů viz tab. 31 a 32 se poměr záchytu CO₂ vůči produkci CO₂ spotřebou elektrické energie pohyboval mezi 6,6 až 9. Ekonomická náročnost zkapalňování spočítaná ze spotřeby elektrické energie na provoz zařízení, s uvažováním ceny 1 kWh el. energie za 6 Kč, se pohybuje od 355 do 655 Kč/h pro nastavení E17 (nejlevnější provoz) až C2 (nejdražší provoz). Ekonomická náročnost zkapalněni CO₂ pro varianty s nejvyšším poměrem zachyceného CO₂ ku produkovanému neboli varianty E2, E2 a E26 se pohybuje v rozmezí 479,5 až 486,7 Kč/h. Cena zkapalnění 1 kg CO₂ vypočítána ze spotřeby elektrické energie se pro jednotlivé nastavení pohybuje v rozmezí 1,5 až 2,1 Kč.

8 Závěr

Cílem diplomové práce bylo navrhnout postup zušlechtění surového bioplynu, separace CO₂ frakce a jejího zkapalnění.

Literární rešerše byla zaměřena na výroby bioplynu, principy jednotlivých technologií zušlechťování bioplynu a jejich výhody a nevýhody, a to zejména se zaměřením na způsoby dočištění bioplynu a proudu bohatého na oxid uhličitý. Součástí rešerše je i přehled průmyslově používaných zušlechťovacích technologií nabízených významnými dodavateli, ze které vyplynulo, že nové zušlechťovací stanice bioplynu využívají membránovou technologii. Dále byla rešerše zaměřena na technologie zkapalňování oxidu uhličitého, jeho dočištění a způsoby následného transportu.

Na základě rešerše byla navržena linka pro separaci a zkapalnění oxidu uhličitého z bioplynu a následně byly provedeny analýzy energetických nároků jednotlivých zařízení. Současně byl kladen důraz na dosažení co možná nejvyšší čistoty kapalného proudu oxidu uhličitého při použití navržených technologií.

Pro rozdělení bioplynu na metanovou frakci a CO₂ frakci byla použita membránová technologie od společnosti MemBraine. Pro zkapalnění CO₂ bohaté frakce byly navrženy dvě varianty technologie zkapalnění: technologie izobarického zkapalnění vnějším chlazením a technologie kombinující vnější chlazení s vnitřním chlazením vzniklým při škrcení.

Pro návrh vhodných parametrů byly provedeny simulace v programu Aspen Plus pro čisté CO₂ a pro různá nastavení vstupních parametrů. Na základě zjištěných potřebných chladících kapacit byla zvolena konkrétní chladící zařízení a následně byly ve výpočtech použity hodnoty jejich provozních příkonů. Simulace byly následně vyhodnoceny z hlediska energetické náročnosti.

Technologie zkapalnění kombinující vnější a vnitřní chlazení vychází energeticky výhodněji oproti technologii izobarického zkapalňování vnějším chlazením. Nejnižšího množství elektrické energie 0,2526 kWh potřebné pro zkapalnění 1 kg CO₂ bylo dosaženo při nastavení provozních parametrů 20 bar (a) a -30 °C před škrtícím ventilem (varianta E2).

V další části výpočtů bylo v simulacích použito reálné složení CO₂ bohaté frakce. V případě reálného složení CO₂ bohaté frakce se mírně snižuje teplota zkapalnění při hodnotě tlaku 6 bar (a) z hodnoty -52,6 °C pro čisté CO₂ na hodnotu -53,7 °C pro CO₂ frakci. Simulace byla provedena pro technologii kombinující externí chlazení s vnitřním chlazením plynu a variantu E2, která v případě čistého CO₂ vykazovala nejmenší energetickou náročnost. Vzhledem k tomu, že za těchto podmínek nebylo dosaženo čistoty pro potravinářský kapalný oxid uhličitý, byly provedeny další simulace linky. Při srovnání výsledků jednotlivých simulací se stejnými teplotami před škrtícím ventilem, byl pozorován trend zvyšování koncentrace CO₂ v kapalném proudu s klesající hodnotou tlaku před škrtícím ventilem a klesající koncentrace CO₂ a klesají koncentrace minoritních složek pro simulace s nastavenými různými hodnotami teplot a shodnými hodnotami tlaků před škrcením.

Kvalita kapalného proudu oxidu uhličitého dosahuje u většiny nastavených podmínek čistotu CO₂ vyšší než 99,9 obj. %, ale koncentrace minoritních složek (CH₄ a O₂) překračují maximální požadované koncentrace vyžadované pro potravinářskou kvalitu. Proto se nabízí využít vyprodukovaný oxid uhličitý v jiných odvětvích, jako je svářečský průmysl, pro plnění hasících přístrojů, v zemědělství atp. Druhou možností je dočištění oxidu uhličitého na potravinářskou čistotu za použití destilační kolony.

Při všech nastavení simulací technologie zkapalnění oxidu uhličitého vyšel poměr záchytu vůči vyprodukování oxidu uhličitého v rozmezí 6,6 až 9 ku 1. Ekologicky nejperspektivnější nastavení parametrů bylo při tlaku 20 bar (a) a teplotě -30 °C před škrtícím ventilem. Při uvažování ceny 6 Kč za 1 kWh by se pohybovala energetická náročnost provozu technologie s těmito parametry v hodnotách okolo 480 Kč/h a bylo by produkováno 316,4 kg kapalného oxidu uhličitého.

U všech provedených simulací technologie zkapalnění oxidu uhličitého byl zjištěn poměr záchytu vůči vyprodukování oxidu uhličitého v rozmezí 6,6 až 9 ku 1. Ekologicky nejperspektivnější nastavení parametrů bylo při tlaku 20 bar (a) a teplotě -30 °C před škrtícím ventilem. Při uvažování ceny 6 Kč za 1 kWh by se pohybovala energetická náročnost provozu technologie s těmito parametry v hodnotách okolo 480 Kč/h a bylo by produkováno 316,4 kg kapalného oxidu uhličitého za hodinu. Cena zkapalnění 1 kg CO₂ odhadnutá na základě spotřeby elektrické energie je 1,52 Kč.

9 Seznam symbolů

C(i)	Objemová koncentrace i-té složky	[obj. %]
Μ	Molární hmotnost	[kg/kmol]
\dot{m}_i	Hmotnostní tok složky i	[kg/h]
$\dot{n}_{(H_2O)kond.}$	Látkový tok zkondenzované vody	[kmol]
\dot{n}_i	Látkový tok složky i	[kmol]
$\dot{n}_{(i)comp.}$	Látkový tok složky i ve stlačené CO2 frakci	[kmol]
р	Tlak	[Pa]
p''	Tlak nasycených par	[Pa]
t	Teplota	[°C]
y(i)	Koncentrace složky plynu	[%]
y(i)comp.	Koncentrace suché stlačené složky plynu	[-]
${\Phi}$	Relativní vlhkost	[%]

10 Seznam zkratek

AEEA	Aminoetyletanolamin
Al_2O_3	Oxid hlinitý
Ar	Argon
bar (a)	Absolutní tlak v jednotkách bar
bar (g)	Přetlak v jednotkách bar
bioCNG	Stlačený biometan
BP	Bioplyn
CaCl ₂	Chlorid vápenatý
CNG	Stlačený zemní plyn
CO_2	Oxid uhličitý
DETA	Dietylentriamin
EIGA	Evropská asociace průmyslových plynů
EOR	Enhanced oil recovery – zvýšená regenerace ropy
Gt	Gigatuna
GWP	Potenciál globálního oteplování
H_2	Vodík
H ₂ O	Voda
H_2S	Sirovodík
JT	Joule-Thomson efekt
LBM	Kapalný biometan
LCO_2	Zkapalněný oxid uhličitý
LNG	Zkapalněný zemní plyn
LT	Nízké teploty
MDEA	Metyldietanolamin
MEA	Monoetanolamin
MOF's	Metal organic framework – kovovo-organická struktura
Mt	Megatuna
MT	Středně vysoké teploty
N_2	Dusík
Ne	Neon
NH ₃	Amoniak
PEI	Polyetylenamin
ppm	Počet dílů na jeden milion
ppmv	Počet dílů na milion dílů objemu
PSA	Pressure swing adsorption – adsorpce s kolísáním tlaku
R23	Chladivo trifluormetan
R404A	Směsné chladivo fluorovaných uhlovodíků
R744	Oxid uhličitý použitý jako chladivo
SG	Suchý plyn
TS	Total solids – celkové pevné látky
TSA	Temperature swing adsorption – adsorpce s kolísáním teploty
v/v	Poměr objemu rozpuštěné látky k celkovému objemu roztoku
VTL	Vysokotlaký plynovod
WG	Mokrý plyn

11 Seznam obrázků

Obr. 1: Srovnání lidské produkce CO2 a rostoucí koncentrace CO2 v atmosféře – převzato,
upraveno [5]12
Obr. 2: Globální spotřeba CO ₂ (vlevo) a rozdělené poptávky po CO ₂ v jednotlivých
odvětvích (vpravo) – převzato, upraveno [9]13
Obr. 3: Poloha bioplynových stanic v České republice [11]13
Obr. 4: Potenciálně vhodné bioplynové stanice pro vtláčení biometanu do sítě zemního
plynu [12]14
Obr. 5: Funkční schéma bioplynové stanice agriKomp [13] 15
Obr. 6: Přehled vhodnosti vstupních surovin pro různé technologie zpracování – převzato,
upraveno [14],16
Obr. 7: Schéma procesu anaerobní degradace organické hmoty – převzato, upraveno [17]
Obr. 8: Závislost doby fermentace na teplotě – převzato, upraveno [15]20
Obr. 9: Závislost relativního množství plynu vznikajícího ve fermentoru na teplotě –
převzato, upraveno [23]
Obr. 10: Simulace optimální kumulativní produkce bioplynu v závislosti na pH $-$
převzato, upraveno [24]
Obr. 11: Primární odsíření bioplynu prostřednictvím mikroaerace – převzato, upraveno
[31,34]
Obr. 12: Produkce bioplynu a obsah biometanu při spouštění fermentace – převzato,
upraveno [15]25
Obr. 13: Schématické znázornění absorpce CO ₂ z biometanu – převzato, upraveno [36]
Obr. 14: Zjednodušený proces PSA s předúpravou – převzato, upraveno [40]28
Obr. 15: Zjednodušený proces TSA – převzato, upraveno [41]
Obr. 16: Adsorpční kapacita adsorbentu jako funkce složení plynu při tlacích p_1 a p_2 (p_1
> p ₂) – převzato, upraveno [37]
Obr. 17: Závislost adsorpční kapacity na tlaku při různých teplotách – převzato, upraveno
[44]
Obr. 18: Teplotní průběh během procesu adsorpce a regenerace – převzato, upraveno [37]

Obr. 19: Schématické znázornění membránové separace bioplynu – převzato, upraveno
[82]
Obr. 20: Relativní rychlost permeace rozdílných složek bioplynu membránou ze skelného
polymeru – převzato, upraveno [44]
Obr. 21: Schéma A) jednostupňová, B) dvoustupňová, C) třístupňová membránové
separace biometanu z bioplynu – převzato, upraveno [51]
Obr. 22: Zjednodušené schéma kryogenní destilace – převzato, upraveno [56]35
Obr. 23: Porovnání investičních nákladů metod zušlechťování bioplynu v závislosti na
průtoku bioplynu – převzato, upraveno [57]
Obr. 24: Schématické zobrazení základních kombinací čištění a zušlechťování bioplynu
– převzato, upraveno [34]
Obr. 25: Relativní využití rozdílných metod zušlechťování bioplynu v Evropě v roce
2020 – převzato, upraveno [7]
Obr. 26: Ochranný strop fermentoru z dřevěných trámů [13]40
Obr. 27: Konvenční odstraňování vody z plynu metodou absorpce trietylenglykolem -
převzato, upraveno [75]42
Obr. 28: Přehled oblastí vhodných pro aplikaci metody cílové dehydratace – převzato,
upraveno [76]43
Obr. 29: Blokové schéma a schéma se znázorněnými zařízeními pro úpravy bioplynu
firmou Hochreiter [82]45
Obr. 30: Blokové membránové separace – převzato, upraveno [82]
Obr. 31: Schéma třístupňové membránové separace systému SEPURAN – převzato,
upraveno [88]47
Obr. 32: PFD schéma zkapalňování CO ₂ – převzato, upraveno [89]47
Obr. 33: Schéma se znázorněnými zařízeními pro zušlechťování bioplynu firmou Bright
Biometane [84]
Obr. 34: Schéma vtláčení biometanu do plynárenské sítě a zkapalňování CO ₂ [90] 49
Obr. 35: Znázornění linky na zušlechťování bioplynu i s předúpravami společností Air
Products – převzato, upraveno [91]
Obr. 36: Membránový PB separátor od společnosti Prism se znázorněnou separací
jednotlivých složek bioplynu – převzato, upraveno [91]50
Obr. 37: Schéma třístupňového membránového systému Evonik – převzato, upraveno
[93, 94]

Obr. 38: Schéma zkapalňovacího procesu se dvěma vnějšími chladícími cykly [96]52
Obr. 39: Joule-Thomsonova inverzní křivka pro CO2. Plná čára znázorňuje prognózu dle
stavové rovnice od Spana a Wagnera [97], kroužky jsou výsledky simulace technikou
Monte Carlo pro intermolekulární potenciál CO2 [98] a trojúhelníky jsou výsledky
simulace technikou Monte Carlo pro Lenardův-Jonesův potenciál CO2 [99] 53
Obr. 40: Schéma zkapalňovacího procesu CO2 využívající expanzní chlazení [96] 54
Obr. 41: Systém dočištění oxidu uhličitého do potravinářské kvality firmou Pentair –
převzato, upraveno [104, 114]56
Obr. 42: Znázornění závislosti hustoty oxidu uhličitého jako funkce tlaku – převzato,
upraveno [113]
Obr. 43: Blokové schéma návrhu úpravy bioplynu59
Obr. 44: Schéma třístupňové membránové technologie na zušlechťování bioplynu od
MemBrain [116]
Obr. 45: Technologie Membrain: propustnost membrán pro jednotlivé složky – převzato,
upraveno [116]60
Obr. 46: Adsorpční izotermy vody molekulového síta 3A – převzato, upraveno [122]. 67
Obr. 47: Ukázka chladící jednotky poskytované společností Hitema [130]69
Obr. 48: Externí chladící zařízení MiniCO2OLcompact od společnosti Carrier
Obr. 49: Kompresor Haug.Sirius vhodný pro kompresi oxidu uhličitého od společnosti
Sauer [132]70
Obr. 50: Schéma zkapalnění CO ₂ vnějším chlazením71
Obr. 51: Schéma procesu zkapalnění oxidu uhličitého kombinací expanze plynu a
vnějšího chlazení
Obr. 52: Zkapalňovací proces se škrcením: p-h diagram73
Obr. 53: Schéma procesu zkapalnění oxidu uhličitého kombinací expanze plynu a vnějším
chlazením s recyklem73
Obr. 54: Schéma zkapalnění CO ₂ – externí chladící zařízení
Obr. 55: Schéma zkapalnění CO ₂ – kombinace expanze plynu a vnějšího chlazení 76
Obr. 56: Schéma chladícího oběhu externího chladícího zařízení MiniCO ₂ OL _{compact} [136]
Obr. 57: Schéma první části úpravy CO2 bohatého plynu, před zkapalňováním
Obr. 58: Schéma technologie zkapalnění CO_2 frakce vnějším a vnitřním chlazením 89

Obr. 59: Schéma technologie zkapalnění CO ₂ frakce vnějším a vnitřním chla	azením s
využitím nezkapalněné frakce pro regeneraci adsorbéru	92
Obr. 60: Blokové schéma celkové navržené technologie úpravy CO ₂ bohaté frak	cce 94
Obr. 61: Zkapalnění CO2 frakce se zapojením destilační kolony	95
Obr. 62: Vnější cirkulační reboiler	96
12 Seznam tabulek

Tab. 1: Vznik biometanu během metanogeneze při anaerobní fermentaci [15]19
Tab. 2: Maximální výtěžnost plynu a procentuální obsah majoritních složek [27] 22
Tab. 3: Materiálové vlastnosti jednotlivých substrátů s výtěžností bioplynu [28, 29] 23
Tab. 4: Absorpční materiály používané k záchytu CO ₂ z bioplynu – [58]27
Tab. 5: Adsorpční kapacity pro oxid uhličitý při použití různých typů adsorbentů [47, 48,
58]
Tab. 6: Tabulka vybraných membránových materiálů a jejich vlastností [53]
Tab. 7: Porovnání parametrů nejvýznamnějších technologií zušlechťování bioplynu [59,
60, 62]
Tab. 8: Výhody a nevýhody používaných technologií na zušlechtění bioplynu [125, 126]
Tab. 9: Závislost rozpustnosti sulfanu ve vodě na tlaku [70]41
Tab. 10: Porovnání adsorbentů používaných pro odstranění vody ze zemního plynu a
bioplynu [77, 78]
Tab. 11: Možnosti optimalizace separačního zařízení od firmy Air Products [91]51
Tab. 12: Stupně čistoty oxidu uhličitého [100]54
Tab. 13: Specifikace oxidu uhličitého pro použití v nápojovém a potravinářském
průmyslu [102, 103]55
Tab. 14: Parametry systému dočištění oxidu uhličitého firmou Pentair [104]56
Tab. 15: Orientační ceny za přepravu oxidu uhličitého na vzdálenost 200 km pro rok 2008
a 2019 [112]
Tab. 16: Vstupní parametry procesu
Tab. 17: Technologie Membrain: parametry proudů (číslování proudů dle obr. 44) dle
nabídky [116]60
Tab. 18: Technologie Membrain: parametry proudů pro navržený výkon linky61
Tab. 19: Technologie zušlechtění bioplynu – parametry CO ₂ frakce (proud 6)63
Tab. 20: Množství vody v proudu bioplynu vstupující na membránovou jednotku 64
Tab. 21: Vliv výstupního tlaku po druhé kompresi na množství zbytkové vody v CO2
frakci
Tab. 22: Hodnoty koncentrací a hmotnostních toků vodní páry v CO2 frakci pro různé
teploty rosného bodu
Tab. 23: Velikost molekul a pórů vybraných adsorbentů [119, 120, 121]67

Tab. 24: Popis jednotlivých zařízení technologie izobarického zkapalnění vnějším
chlazením
Tab. 25: Popis proudů technologie zkapalnění s vnějším chlazením
Tab. 26: Popis jednotlivých zařízení technologie zkapalnění 76
Tab. 27: Popis proudů technologie zkapalnění s vnějším i vnitřním chlazení
Tab. 28: Charakteristika vstupního proudu77
Tab. 29: Nastavení jednotlivých bloků simulace v programu Aspen Plus
Tab. 30: Nastavení jednotlivých bloků simulace v programu Aspen Plus
Tab. 31: Výsledky simulace technologie externího chlazení
Tab. 32: Výsledky energetických nároků simulace technologie externího a vnitřního
chlazení
Tab. 33: Příkony zvolených vodních chladičů [130, 135] 82
Tab. 34: Potenciál globálního oteplování chladiv externího chladiče od společnosti Ineya
[137]
Tab. 35: Příkony externích chladících zařízení MiniCO2OL [136]
Tab. 36: Energetická náročnost zkapalnění CO2 87
Tab. 37: Vypočítané hodnoty složení jednotlivých proudů
Tab. 38: Výsledky ekonomicky nejvýhodnější simulace technologie zkapalňování CO2
s parametry E2
Tab. 39: Porovnání kvality kapalného oxidu uhličitého [102, 103]90
Tab. 40: Složení zkapalněného média pro škrcení z 40 bar při 5 °C
Tab. 41:Porovnání dosažených koncentrací složek při zkapalňování z teploty před
škrcením -20 °C
Tab. 42: Porovnání dosažených koncentrací složek při zkapalňování z tlaku před
škrcením 40 bar (a)
Tab. 43: Parametry nastavení destilační kolony
Tab. 44: Složení kapalné frakce 15 vycházející z destilační kolony
Tab. 45: Uhlíková stopa technologie zkapalnění CO298

13 Seznam zdrojů a použité literatury

 ČESKÁ REPUBLIKA. Zákon č. 165 ze dne 31. ledna 2012 o podporovaných zdrojích energie a o změně některých zákonů. In: Sbírka zákonů České republiky, ročník 2012, částka 59, s. 2482-2513. ISSN 1211-1244. Dostupné také z: https://www.zakonyprolidi.cz/cs/2012-165?text=%C4%8D.165%2F2012

[2] JEŘÁBKOVÁ, Julie. Metody čištění bioplynu na biometan. *Biom.cz* [online]. 10.9.2019 [cit. 2023-04-22]. ISSN 1801-2655. Dostupné z: https://biom.cz/cz/odborne-clanky/metody-cisteni-bioplynu-na-biometan

[3] Carbon dioxide: Application areas. IJSFABRIEK STROMBEEK n.v [online].Meise,Belgium[cit.2023-04-22].Dostupnéz:https://www.ijsfabriekstrombeek.be/nl/producten/koolstofdioxide/

[4] Paris agreement: on climate change. In: UNITED NATIONS, 12 December 2015,Dostupné také z: https://unfccc.int/sites/default/files/english_paris_agreement.pdf

 [5] LINDSEY, Rebecca. Climate Change: Atmospheric carbon dioxide amounth and annual emissions (1750-2021). In: *Climate*.gov [online]. 13. 06. 2022 [cit. 2023-04-22].
 Dostupné z: https://www.climate.gov/media/14596

[6] JAIN, Sarika. World biogas association: Global potencial of biogas [online]. Červen 2019. worldbiogasassociation.org, 56 s. [cit. 2023-04-24]. Dostupné z: https://www.worldbiogasassociation.org/wp-content/uploads/2019/09/WBAglobalreport-56ppa4_digital-Sept-2019.pdf

[7] EBA, Working Group on Biogenic CO2 Valorisation, Anthony LORIN, Dominique HÉLEINE, et al. Biogenic CO2 from the biogas industry: A mature business opportunity to enhance sustainable carbon cycles and untap the circularity and climate benefits of biogas production [online]. Brusel: European Biogas Association, Září 2021, 40 s. [cit. 2023-04-20]. Dostupné z: https://www.europeanbiogas.eu/wpcontent/uploads/2022/10/Biogenic-CO2-from-the-biogas-industry_Sept2022-1.pdf

[8] ALBERIC, Sacha, Paul NOOTHOUT, Michiel STORK, Frank WIERSMA, Niall MAC DOWELL, Nilay SHAH, Paul FENNELL a Goher Ur Rehman MIR. Assessing the potential of CO2 utilisation in the UK: Final report [online]. Ecofys, a Navigant company, 2017, 138 s. [cit. 2023-04-24]. projektové číslo: SISUK17099. Dostupné z:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment _data/file/799293/SISUK17099AssessingCO2_utilisationUK_ReportFinal_260517v2_____1_.pdf

[9] IEA (2019). Putting CO2 to Use: Creating value from emissions. Iea.org [online].
Paříž, září 2019, 86 s. [cit. 2023-04-24]. Dostupné z: https://iea.blob.core.windows.net/assets/50652405-26db-4c41-82dc-

c23657893059/Putting_CO2_to_Use.pdf,https://www.iea.org/reports/putting-co2-to-use

[10] Národní technologická platforma pro bioplyn. Česká bioplynová asociace [online]. České Budějovice, 22.06.2022 [cit. 2023-04-24]. Dostupné z: https://www.czba.cz/

[11] CZ BIOM. Mapa bioplynových stanic. Biom.cz [online]. 2009 [cit. 2023-04-24].
 Dostupné z: https://biom.cz/cz/produkty-a-sluzby/bioplynove-stanice. © Copyright CZ
 Biom 2008 - 2009. Data map ©2023GeoBasis-DE/BKG (©2009), Google

[12] HODBOĎ, Josef a Hana ŠŤOVÍČKOVÁ. Biometan jako náhrada zemního plynu pro vytápění v ČR. TZB-info [online]. 28.02.2020 [cit. 2023-04-24]. Dostupné z: https://vytapeni.tzb-info.cz/vytapime-plynem/20293-biometan-jako-nahrada-zemnihoplynu-pro-vytapeni-v-cr

[13] AGRIKOMP BOHEMIA. Bioplynové stanice [online]. Brno: AgriKomp
Bohemia s.r.o, 16 s. [cit. 2023-04-24]. Dostupné z:
https://www.sunfin.cz/file/agriKomp_prospekt_maly-cs-CZ.pdf

[14] DROSG, Bernhard, Rudolf BRAUN, Günther BOCHMANN a Teodorita AL
 SAEDI. Analysis and characterisation of biogas feedstocks. In: The Biogas Handbook.
 Woodhead Publishing Series in Energy. 2013, s. 52-84. ISBN 9780857094988. Dostupné
 z: doi:10.1533/9780857097415.1.52.

[15] DEUBLEIN, Dieter a Angelika STEINHAUSER. Biogas from Waste and Renewable Resources. 1. Weinheim: WILEY-VCH Verlag GmbH & Co., 2008, 448 s. ISBN 978-3-527-31841-4. Dostupné také z: https://chemistry.pixelonline.org/files/ed_pack/04/further03/Deublein%20D.%20Steinhauser%20A.-Biogas%20from%20Waste%20and%20Renewable%20Resources.pdf [16] GHODRAT, Alireza Ghasemi, Meisam TABATABAEI, Mortaza AGHBASHLO
a Solange I. MUSSATTO., BIOFUEL AND BIOREFINERY TECHNOLOGIES
6. Biogas: Fundamentals, Process, amd Operation. Springer, 2018, 33 s. vol. 6. ISBN 978-3-319-77334-6. Dostupné z: doi:10.1007/978-3-319-77335-3_1

[17] ZUPANČIČ, Gregor D. a Viktor GRILC. Anaerobic Treatment and Biogas Production from Organic Waste: Management of Organic Waste (Chapter 1) [online].
2012. InTech, 28 s. [cit. 2023-04-25]. ISBN 978-953-307-925-7. 10.5772/32756. Dostupné z: doi:10.5772/32756

[18] PROFI PRESS a Jiří TRNAVSKÝ. Energie21, časopis o obnovitelných zdrojích energie: Bioplynové stanice, Hydrolytické enzymy zlepšují efektivitu [online]. 1. Praha: Profi Press, 2012, 58 s. [cit. 2023-04-25]. č. 3. ISBN 9771803039009. ISSN 1803-0394. Dostupné z: https://energie21.cz/hydrolyticke-enzymy-zlepsuji-efektivitu/

[19] Anaerobní technologie. Bioprofit [online]. Lišov: Bioprofit s.r.o, 2007 [cit. 2023-04-25]. Dostupné z: http://www.bioplyn.cz/at_popis.htm

[20] ČERVENÁ, Kristýna, Barbora LYČKOVÁ, Lucie KUČEROVÁ, Markéta BOUCHALOVÁ a Taťána BARABÁŠOVÁ. Biologické metody zpracování odpadů: Fáze anaerobní digesce [online]. VŠB-TU Ostrava [cit. 2023-04-25]. Dostupné z: http://hgf10.vsb.cz/546/bmzo/pages/Faze_anaerobni_digesce.html

[21] AL SEADI, TEODORITA, BIOSANTECH, Rainer JANSSEN a Bernhard DROSG. Biomass resources for biogas production. In: The Biogas Handbook: Science, Production and Applications. Woodhead Publishing Series in Energy, 2013, s. 19-51. ISBN 978-0-85709-498-8. Dostupné z: doi:10.1533/9780857097415.1.19

[22] VINDIS, Peter, B MURSEC a Marjan JANZEKOVIC. The impact of mesophilicand thermophilic anaerobicdigestion on biogas production [online]. 2009. Journal of Achievements in Materials andManufacturing Engineering, vol. 36, issue 2, 6 s. [cit. 2023-04-25]. ISSN 1734-8412. Dostupné z: https://www.researchgate.net/publication/44385706_The_impact_of_mesophilic_and_t hermophilic_anaerobic_digestion_on_biogas_production

[23] SCHULZ, Heinz a Barbara EDER. *Bioplyn v praxi: Základy, plánování, stavba zařízení, příklady*. Ostrava: HEL, 2004, 167 s. ISBN 80-86167-21-6.

[24] LIU, Cun-Fang, Xing-Zhong ZENG, Wen-Wei LI, Jing LI a Guang-Ming ZENG. Prediction of metane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. *Bioresource technology* [online]. 21,03,2007, (4), 882-888 [cit. 2023-04-28]. ISSN 1873-2976. Dostupné z: doi:10.1016/j.biortech.2007.01.013

[25] LIU, Yan, Steve A. MILLER a Steven I. SAFFERMAN. Screening co-digestion of food waste water with manure for biogas production. Biofuels, Bioproducts and Biorefining [online]. Wiley, 23.12.2008, (vol. 3, 1), 11-19 [cit. 2023-04-28]. ISSN 1932-1031. Dostupné z: doi:10.1002.bbb.120

[26] ČERMÁKOVÁ, Jiřina. Nové trendy ve využití bioplynu: Sborník příspěvků ze semináře "Energie z biomasy X" [online]. VUT v Brně, 2009 [cit. 2023-04-28]. ISBN 978-80-214-4027-2. Dostupné z: https://biom.cz/cz/odborne-clanky/nove-trendy-ve-vyuziti-bioplynu

[27] BASERGA, Urs. Landwirtschaftliche Co-Vergärungs-Biogasanlagen. FAT-Berichte [online]. Tänikon, Switzerland: FAT, 1998, (512), 11 [cit. 2023-04-28]. ISSN 1018-502X. Dostupné z: https://www.infothek-biomasse.ch/images//1998_FAT_Landwirtschaftliche_Biogasanlagen.pdf

[28] KRATOCHVÍLOVÁ, Zuzana, Jan HABART, Václav SLADKÝ, František JELÍNEK, STUPAVSKÝ Tomáš ROSENBERG, Vladimír Tomáš а DVOŘÁČEK. Průvodce výrobou a využitím bioplynu [online]. 3. Praha: CZ Biom -České sdružení pro biomasu, 2010, 160 s. [cit. 2023-04-28]. ISBN 978-80-903777-5-2. Dostupné z: https://www.mpoefekt.cz/upload/7799f3fd595eeee1fa66875530f33e8a/Pruvodce vyrobou vyuzitim bio plynu_2.pdf

 [29] BASERGA, Urs. Vergärung organischer Reststoffe in landwirtschaftlichen Biogasanlagen: Stoffdaten, Gärtechnik und gesetzliche Grundlagen. Eidgenössische Forschungsanstalt für Agrarwirtschaft und Landtechnik [online]. Tänikon, Schwitzerland: FAT-Berichte, 2000, (546), 12 [cit. 2023-04-28]. ISSN 1018-502X.
 Dostupné z: https://www.infothekbiomasse.ch/images//2000_FAT_Vergaerung_landw_Biogasanlagen.pdf

[30] JENÍČEK, Pavel a Josef HOREJŠ. PROVOZNÍ ZKUŠENOSTI S BIOLOGICKÝM ODSIŘOVÁNÍM BIOPLYNU. 2013. Vysoká škola chemickotechnologická Praha, Ústav technologie vody a prostředí, K&K TECHNOLOGY a.s., Klatovy. Dostupné také z: http://www.kk-technology.cz/download/prednaska_2013.pdf

[31] AZIZI, Seyed Mohammad Mirsoleimani, Basem S. ZAKARIA, Nervana HAFFIEZ, Parisa NIKNEJAD a Bipro Ranjan DHAR. A critical review of prospects and operational challenges of microaeration and iron dosing for in-situ biogas desulfurization. Bioresource technology reports [online]. 12.2022, s. 20 [cit. 2023-04-28]. ISSN 2589-014X. Dostupné z: doi:org/10.1016/j.biteb.2022.101265

[32] POKORNA-KRAYZELOVA, Lucie, Jan BARTACEK, Shelmith Nyawira THEURI, Camilo Andres Segura GONZALEZ, Jindrich PROCHAZKA, Eveline I.P. VOLCKE a Pavel JENICEK. Microaeration through biomembrane for biogas desulfurization: lab-scale and pilot-scale experiences. Environmental Science Water Research & Technology [online]. The Royal Society of Chemistry, 2018, 02.07.2018, (8), 1-30 [cit. 2023-04-28]. ISSN 2053-1419. Dostupné z: doi:10.1039/C8EW00232K

[33] DOHÁNYOS, Michal. ČESKÁ BIOPLYNOVÁ ASOCIACE. Problematika řízení a kontroly bioplynových stanic [online]. 23.-24.4.2007. České Budějovice: Předneseno na Mezinárodní konferenci BIOPLYN 2007 [cit. 2023-04-27]. Dostupné z: https://www.czba.cz/problematika-rizeni-a-kontroly-bioplynovych-stanic.html

[34] PETERSSON, Anneli. Biogas cleaning. In: The Biogas Handbook: Science,
Production and Applications [online]. 1. Woodhead Publishing Series in Energy, 2013, s.
329-341 [cit. 2023-04-29]. 1. ISBN 9780857097415. Dostupné z:
doi:10.1533/9780857097415.3.329

[35] ABDEEN, Fouad R.H., Maizirwan MEL, Mohammed Saedi JAMI, Sany Izan
IHSAN a Ahmad Faris ISMAIL. A review of chemical absorption of carbon dioxide for
biogas upgrading. *Chinese Journal of Chemical Engineering* [online]. 2016, 24(6), 693702 [cit. 2023-04-30]. ISSN 10049541. Dostupné z: doi:10.1016/j.cjche.2016.05.006

[36] KAPOOR, Rimika, Pooja GHOSH, Madan KUMAR a Virendra Kumar VIJAY. Evaluation of biogas upgrading technologies and future perspectives: a review. *Environmental Science and Pollution Research* [online]. Springer Nature, 15.03.2019, (26 (2), 31 s. [cit. 2023-04-29]. ISSN 1614-7499. Dostupné z: doi:10.1007/s11356-019-04767-1 [37] KIDNAY, Arthur J., William R. PARRISH a Daniel G. MCCARTNEY. Fundamentals of Natural Gas Processing: Third edition. CRC Press, 2019, 498 s. ISBN 9781138612792.

[38] NTIAMOAH, Augustine, Jianghua LING, Penny XIAO, Paul A. WEBLEY a Yuchun ZHAI. CO2 Capture by Temperature Swing Adsorption: Use of Hot CO2-Rich Gas for Regeneration. Industrial & Engineering Chemistry Research [online]. ACS Paragon Plus Environment, 27.01.2016, (3), 703-713 [cit. 2023-04-30]. ISSN 1520-5045. Dostupné z: doi:10.1021/acs.iecr.5b01384

[39] CHEAH, SM. Separation Processes: Temperature Swing Adsorption
(TSA) [online]. 2000. SM's e-HOME. Dostupné také z: http://www.separationprocesses.com/Adsorption/AD_Chp02b2.htm#TopPage

[40] BAUER, Fredric, Tobias PERSSON, Christian HULTEBERG a Daniel TAMM.
Biogas upgrading - technology overview, comparison and perspectives for the future. *Biofuels, Bioproducts and Biorefining* [online]. 2013, 7(5), 499-511 [cit. 2023-04-30]. ISSN 1932104X. Dostupné z: doi:10.1002/bbb.1423

[41] NASTAJ, J.F., B. AMBROŻEK a J. RUDNICKA. Simulation studies of a vacuum and temperature swing adsorption process for the removal of VOC from waste air streams. *International Communications in Heat and Mass Transfer* [online]. 2006, 33(1), 80-86 [cit. 2023-04-30]. ISSN 07351933. Dostupné z: doi:10.1016/j.icheatmasstransfer.2005.08.005

[42] PURCELL, Patrick. PSA vs TSA: What's the Difference?. ZEOCHEM [online]. 20.03.2019 [cit. 2023-04-30]. Dostupné z: https://www.zeochem.com/news/psa-vs-tsa-whats-the-difference

[43] FAKHROLESLAM, Mohammad. Comparative simulation study of PSA, VSA, and TSA processes for purification of metane from CO 2 via SAPO-34 core-shell adsorbent: Use of Hot CO2-Rich Gas for Regeneration. Separation Science and Technology [online]. 2016, 51(14), 2326-2338 [cit. 2023-04-30]. ISSN 0149-6395. Dostupné z: doi:10.1080/01496395.2016.1210640

[44] BAUER, Fredric, Christian HULTEBERG, Tobias PERSSON a Daniel TAMM. Biogas upgrading: Review of commercial technologies. In: SGC Rapport [online]. Svenskt Gastekniskt Center AB, 2013, 82 s. [cit. 2023-04-30]. 270. Dostupné z: https://lup.lub.lu.se/search/files/5465492/4580054.pdf

[45] ÜNVEREN, Elif Erdal, Bahar Özmen MONKUL, Şerife SARIOĞLAN, Nesrin KARADEMIR a Erdoğan ALPER. Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum [online]. 2017, 3(1), 37-50 [cit. 2023-04-30]. ISSN 24056561. Dostupné z: doi:10.1016/j.petlm.2016.11.001

[46] CRISTINA. MOFs vs. other porous materials for carbon capture: Best features of porous absorbents. NovoMOF [online]. 03.11.2022 [cit. 2023-04-30]. Dostupné z: https://blog.novomof.com/mofs-vs.-other-porous-materials-for-carbon-

capture#comments-listing

[47] MESFER, Mohammed K. Al, Mohd DANISH, Mohammed Ilyas KHAN, Ismat Hassan ALI, Mudassir HASAN a Atef El JERY. Continuous Fixed Bed CO2 Adsorption: Breakthrough, Column Efficiency, Mass Transfer Zone. Processes [online]. 2020, 8(10)
[cit. 2023-04-30]. ISSN 2227-9717. Dostupné z: doi:10.3390/pr8101233

[48] GHEYTANZADEH, Majedeh, Alireza BAGHBAN, Sajjad HABIBZADEH, Amin ESMAEILI, Otman ABIDA, Ahmad MOHADDESPOUR a Muhammad Tajammal MUNIR. Towards estimation of CO2 adsorption on highly porous MOF-based adsorbents using gaussian process regression approach. Scientific Reports [online]. 2021, 11(1) [cit. 2023-04-30]. ISSN 2045-2322. Dostupné z: doi:10.1038/s41598-021-95246-6

 [49] BEIL, Michael a Wiebke BEYRICH. Biogas upgrading to biometane. *The Biogas Handbook* [online]. Elsevier, 2013, 342-377 [cit. 2023-04-30]. ISBN 9780857094988.
 Dostupné z: doi:10.1533/9780857097415.3.342

[50] BAENA-MORENO, Francisco M., Estelle LE SACHÉ, Laura PASTOR-PÉREZ
a T. R. REINA. Membrane-based technologies for biogas upgrading: a review. *Environmental Chemistry Letters* [online]. 2020, 18(5), 1649-1658 [cit. 2023-04-30]. ISSN 1610-3653. Dostupné z: doi:10.1007/s10311-020-01036-3

[51] HAIDER, Shamim, Arne LINDBRÅTHEN a May-Britt HÄGG. Technoeconomical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology [online]. 2016, 1(3), 222-234 [cit. 2023-04-30]. ISSN 24680257. Dostupné z: doi:10.1016/j.gee.2016.10.003 [52] ZHANG, Yuan, Jaka SUNARSO, Shaomin LIU a Rong WANG. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control [online]. 2013, 12, 84-107 [cit. 2023-05-01]. ISSN 17505836. Dostupné z: doi:10.1016/j.ijggc.2012.10.009

[53] FAVVAS, Evangelos P., Alberto FIGOLI, Roberto CASTRO-MUÑOZ, Vlastimil FÍLA a Xuezhong HE. Chapter 1: Polymeric Membrane Materials for CO2 Separations. In: Current Trends and Future Developments on (Bio-) Membranes: Carbon Dioxide Separation/Capture by Using Membranes [online]. Elsevier Science Publishing Co, 2018, s. 3-50 [cit. 2023-05-01]. ISBN 978-0-12-813645-4. Dostupné z: doi:10.1016/B978-0-12-813645-4.00001-5

[54] Česká membránová platforma, Separace plynů a par. Czemp [online]. 2020 [cit.
2023-05-01]. Dostupné z: http://www.czemp.cz/cs/membranove-procesy/separace-plynu-a-par

[55] ANDRIANI, Dian, Arini WRESTA, Tinton Dwi ATMAJA a Aep SAEPUDIN.
A Review on Optimization Production and Upgrading Biogas Through CO2 Removal Using Various Techniques. Applied Biochemistry and Biotechnology [online].
2014, 172(4), 1909-1928 [cit. 2023-05-01]. ISSN 0273-2289. Dostupné z: doi:10.1007/s12010-013-0652-x

[56] BAENA-MORENO, Francisco M., Mónica RODRÍGUEZ-GALÁN, Fernando VEGA, Luis F. VILCHES, Benito NAVARRETE a Zhien ZHANG. Biogas upgrading by cryogenic techniques. Environmental Chemistry Letters [online]. 2019, 17(3), 1251-1261 [cit. 2023-05-01]. ISSN 1610-3653. Dostupné z: doi:10.1007/s10311-019-00872-2

[57] BAUER, Fredric, Tobias PERSSON, Christian HULTEBERG a Daniel TAMM. Biogas upgrading - technology overview, comparison and perspectives for the future. Biofuels, Bioproducts and Biorefining [online]. 2013, 7(5), 499-511 [cit. 2023-05-01]. ISSN 1932104X. Dostupné z: doi:10.1002/bbb.1423

[58] ZHOU, Kui, Somboon CHAEMCHUEN a Francis VERPOORT. Alternative materials in technologies for Biogas upgrading via CO2 capture. *Renewable and Sustainable Energy Reviews* [online]. 2017, 79, 1414-1441 [cit. 2023-05-02]. ISSN 13640321. Dostupné z: doi:10.1016/j.rser.2017.05.198

[59] ANDRIANI, Dian, Arini WRESTA, Tinton Dwi ATMAJA a Aep SAEPUDIN.
A Review on Optimization Production and Upgrading Biogas Through CO2 Removal
Using Various Techniques. Applied Biochemistry and Biotechnology [online].
2014, 172(4), 1909-1928 [cit. 2023-05-02]. ISSN 0273-2289. Dostupné z:
doi:10.1007/s12010-013-0652-x

[60] NIESNER, Jakub, David JECHA a Petr STEHLÍK. Biogas Upgrading Technologies: State of Art Review in European Region [online]. CHEMICAL ENGINEERING TRANSACTIONS. AIDIC, 2013, 6 s. [cit. 2023-05-02]. ISBN 978-88-95608-26-6. ISSN 1974-9791. Dostupné z: https://doi.org/10.3303/CET1335086

[61] BACCIOLI, A., M. ANTONELLI, S. FRIGO, U. DESIDERI a G. PASINI. Small scale bio-LNG plant: Comparison of different biogas upgrading techniques. Applied Energy [online]. 2018, 217, 328-335 [cit. 2023-05-02]. ISSN 03062619. Dostupné z: doi:10.1016/j.apenergy.2018.02.149

[62] CHEN, Xiao Yuan, Hoang VINH-THANG, Antonio Avalos RAMIREZ, Denis RODRIGUE a Serge KALIAGUINE. Membrane gas separation technologies for biogas upgrading. RSC Advances [online]. 2015, 5(31), 24399-24448 [cit. 2023-05-03]. ISSN 2046-2069. Dostupné z: doi:10.1039/C5RA00666J

[63] WEILAND, Peter. Biogas production: current state and perspectives. Applied Microbiology and Biotechnology [online]. 2010, 85(4), 849-860 [cit. 2023-05-03]. ISSN 0175-7598. Dostupné z: doi:10.1007/s00253-009-2246-7

[64] HÅKANSSON, Anna. Preventing microbial growth on pall-rings when upgrading biogas using absorption with water wash: Rapport SGC 166 [online]. 26.07. 2006.
Linköping: SGC, 56 s. [cit. 2023-05-03]. ISSN 1102-7371. ISRN SGC-R-166-SE.
Dostupné z: http://www.sgc.se/ckfinder/userfiles/files/SGC166.pdf

[65] BAUER, Fredric, Christian HULTEBERG, Tobias PERSSON a Daniel TAMM. Biogas upgrading: Review of commercial technologies. SGC Rapport 2013:270.
Malmö: Swedish Gas Technology Centre-SGC, 2013. Dostupné také z: http://www.sgc.se/ckfinder/userfiles/files/SGC270.pdf

[66] BECKER, C.M., M. MARDER, E. JUNGES a O. KONRAD. Technologies for biogas desulfurization - An overview of recent studies. Renewable and Sustainable

Energy Reviews [online]. 2022, 159 [cit. 2023-05-03]. ISSN 13640321. Dostupné z: doi:10.1016/j.rser.2022.112205

[67] PECHANEC, Jiří. Konzultace při prohlídce bioplynové stanice [ústní sdělení].
 Litomyšl: Zemědělské družstvo chovatelů a pěstitelů Litomyšl [cit. 2023-03-21].
 Dostupné z: zdchp@unet.cz

[68] POURZOLFAGHAR, Hamed, Mohd Halim-Shah Ismail ISMAIL, Shamsul IZHAR a Zahra MAGHAREHESFAHAN. Review of H2S sorbents at low-temperature desulfurization of biogas [online]. Malaisie: International Journal of Chemical and Environmental Engineering, 02.2014, (vol. 5, 1), 22-28 [cit. 2023-05-03]. Dostupné z: https://www.researchgate.net/publication/287657167_Review_of_H2S_sorbents_at_lo w-temperature_desulfurization_of_biogas#fullTextFileContent

[69] OKORO, Oseweuba Valentine a Zhifa SUN. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. ChemEngineering [online]. 2019, 3(3) [cit. 2023-05-03]. ISSN 2305-7084. Dostupné z: doi:10.3390/chemengineering3030076

[70] AKINFIEV, Nikolay N., Vladimir MAJER a Yuri V. SHVAROV. Thermodynamic description of H2S–H2O–NaCl solutions at temperatures to 573 K and pressures to 40 MPa. Chemical Geology [online]. 2016, 424, 1-11 [cit. 2023-05-03]. ISSN 00092541. Dostupné z: doi:10.1016/j.chemgeo.2016.01.006

[71] ZHU, Hua Lun, Davide PAPURELLO, Marta GANDIGLIO, et al. Study of H2S Removal Capability from Simulated Biogas by Using Waste-Derived Adsorbent Materials. Processes [online]. 2020, 8(9) [cit. 2023-05-03]. ISSN 2227-9717. Dostupné z: doi:10.3390/pr8091030

[72] GEORGIADIS, Amvrosios G., Nikolaos D. CHARISIOU, Safa GABER, Kyriaki POLYCHRONOPOULOU, Ioannis V. YENTEKAKIS a Maria A. GOULA. Adsorption of Hydrogen Sulfide at Low Temperatures Using an Industrial Molecular Sieve: An Experimental and Theoretical Study. ACS Omega [online]. 2021, 6(23), 14774-14787 [cit. 2023-05-03]. ISSN 2470-1343. Dostupné z: doi:10.1021/acsomega.0c06157

[73] TECHNISCHE UNIVERSITÄT OF WIEN. BIOGAS TO BIOMETANE TECHNOLOGY REVIEW: Promotion of bio-metane and its market development through local and regional partnerships [online]. Vienna (Austria), 2012, 15 s. [cit. 2023-06-12]. Dostupné z:

https://www.membran.at/downloads/2012_BioRegions_BiogasUpgradingTechnologyR eview_ENGLISH.pdf

[74] BAHRAMINIA, Soheil, Mansoor ANBIA a Esmat KOOHSARYAN.
Dehydration of natural gas and biogas streams using solid desiccants: a review. Frontiers of Chemical Science and Engineering [online]. 2021, 15(5), 1050-1074 [cit. 2023-06-12].
ISSN 2095-0179. Dostupné z: doi:10.1007/s11705-020-2025-7

[75] RAHIMPOUR, Mohammad Reza, Seyyed Mohammad JOKAR, Pouyan FEYZI a Raheleh ASGHARI. Investigating the performance of dehydration unit with Coldfinger technology in gas processing plant. Journal of Natural Gas Science and Engineering [online]. 2013, 12, 1-12 [cit. 2023-06-12]. ISSN 18755100. Dostupné z: doi:10.1016/j.jngse.2013.01.001

[76] NETUSIL, Michal a Pavel DITL. Natural Gas Dehydration. In: Natural Gas Extraction to End Use. InTech, 2012, 2012-10-31, s. 3-22. ISBN 978-953-51-0820-7.
Dostupné z: doi:10.5772/45802

[77] GANDHIDASAN, P, Abdulghani A AL-FARAYEDHI, A AL-MUBARAK, ALI A a Ali A AL-MUBARAK. Dehydration of natural gas using solid desiccants. Energy [online]. 2001, 26(9), 855-868 [cit. 2023-06-14]. ISSN 03605442. Dostupné z: doi:10.1016/S0360-5442(01)00034-2

[78] TAGLIABUE, Marco, David FARRUSSENG, Susana VALENCIA, Sonia AGUADO, Ugo RAVON, Caterina RIZZO, Avelino CORMA a Claude MIRODATOS. Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal [online]. 2009, 155(3), 553-566 [cit. 2023-06-14]. ISSN 13858947. Dostupné z: doi:10.1016/j.cej.2009.09.010

[79] HEAT REACTIVATED TYPE AIR DRYERS. Sam gas Pojects [online]. 2019 [cit. 2023-06-14]. Dostupné z: https://samgasprojects.com/detail/heat-reactivated-typeair-dryers.html

[80] AGRIKOMP. OD BIOPLYNU K BIOMETANU: AGRIPURE®CUBE SYSTÉM PRO ÚPRAVU BIOPLYNU [online]. [cit. 2023-06-15]. Dostupné z: https://agrikomp.com/cs/vyuzti/biometanu/ [81] DEDINSKÝ, Tomáš. Biometan budoucnost bioplynu [online]. agriKomp Bohemia [cit. 2023-06-15]. Dostupné z: www.agrikomp.cz

[82] HOCHREITER, Johann. Biometan z vaší bioplynové stanici: hochreiter [online]. Praha-5: NovaEnergo, 8 s. [cit. 2023-06-15]. Dostupné z: https://www.johannhochreiter.cz/

[83] HITACHI ZOSEN INOVA. Technologie výroby biometanu a zpětného získávání
 CO2: Energetické koncepty pro budoucnost [brožura]. Praha, 9 s. [cit. 2023-06-17].
 Dostupné z: www.novaenergo.cz

[84] BRIGHT BIOMETANE. Systémy pro zušlechťování bioplynu [brožura]. 4 s. [cit.2023-06-17]. Dostupné z: www.brightbiometane.com

[85] PRODEVAL RNG PROCESS TECHNOLOGIES. Specialista na technologii výroby biometanu [brožura]. Praha 7, 4 s. Dostupné také z: www.prodeval.com

 [86] Prodeval: RNG Process Technologies. Valodor: Odorizace biometanu [online].
 [cit. 2023-06-17]. Dostupné z: https://www.prodeval.com/cz/vyrobabiometanu/odorizace-biometanu-valodor

[87] Prodeval: RNG Process Technologies. VALOPUR: Výroba biometanu pomocí membránové technologie [online]. [cit. 2023-06-17]. Dostupné z: https://www.prodeval.com/cz/vyroba-biometanu/membranova-separace-valopur

[88] FROM HIGH PERFORMANCE POLYMERS TO MODULAR BIOGAS UPGRADER. BRIGHT BIOMETANE. A 'BRIGHT' 3-STAGE PROCESS [online]. 2023 [cit. 2023-06-17]. Dostupné z: https://www.bright-renewables.com/from-highperformance-polymers-to-modular-biogas-upgrader/

[89] HOLTKAMP, M. BRIGHT BIOMETANE. Budget Offer: Carbon Dioxide Liquefaction Plant 1300 kg/h [výkresová dokumentace]. Nizozemsko, 27 s. [cit. 2023-06-17]. PFD CO2 liquefaction.

[90] HUTIRA. Biometan: Vtláčecí stanice [online]. Ivančice [cit. 2023-06-17].Dostupné z: https://www.hutira.cz/cs/obory/biometan/

[91] AIR PRODUCTS. PRISM[®] Membrane Separators for biogas upgrading, Biogas upgrading overview, Prism membranes: PB membrane family [brožura]. 2017, 8 s. [cit.

2023-06-17]. Dostupné z: https://www.airproducts.com/supply-modes/prismmembranes/prismmembraneseparators, dostupné také z: https://www.airproducts.com/-/media/files/en/523/523-12-004-glb-biogas-upgrading-brochure.pdf

[92] LINDE-ENGINEERING. Carbon capture, storage and utilisation: Linde & BASF team up to innovate carbon capture [brožura]. 2023, 8 s. [cit. 2023-06-18]. Dostupné z: https://www.linde-engineering.com/en/images/Carbon-capture-storage-utilisation-Linde-BASF_tcm19-462558.pdf. Značení: 41280 LCS 0719.

[93] EVONIK CORPORATION. SEPURAN® Green: Membrane technology for efficient biogas upgrading [brožura]. United States, 16 s. [cit. 2023-06-18]. Dostupné z: https://products.evonik.com/assets/44/34/Asset_684434.pdf

[94] UNGERANK, Markus a Harald ROEGL. EVONIK FIBRES GMBH. Control of gas composition of a gas separation system having membranes. 2013.
US000009770687B220170926. United States. 14/442, 804. Uděleno 25.08.2020.
Zapsáno 09.10.2013. Dostupné také z: https://patentimages.storage.googleapis.com/ad/05/b4/6e5b620750989e/US9770687.pdf

[95] ALABDULKAREM, Abdullah, Yunho HWANG a Reinhard RADERMACHER. Development of CO2 liquefaction cycles for CO2 sequestration. Applied Thermal Engineering [online]. 2012, 33-34, 144-156 [cit. 2023-06-20]. ISSN 13594311. Dostupné z: doi:10.1016/j.applthermaleng.2011.09.027

[96] ØI, Lars Erik, Nils ELDRUP, Umesh ADHIKARI, Mathias Håvåg BENTSEN, Jayalanka Liyana BADALGE a Songbo YANG. Simulation and Cost Comparison of CO2 Liquefaction. Energy Procedia [online]. 2016, 86, 500-510 [cit. 2023-06-20]. ISSN 18766102. Dostupné z: doi:10.1016/j.egypro.2016.01.051

[97] SPAN, Roland a Wolfgang WAGNER. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data [online]. 1996, 25(6), 1509-1596 [cit. 2023-06-20]. ISSN 0047-2689. Dostupné z: doi:10.1063/1.555991

[98] CHACÍN, A., J.M. VÁZQUEZ a E.A. MÜLLER. Molecular simulation of the Joule–Thomson inversion curve of carbon dioxide. Fluid Phase Equilibria [online].

1999, 165(2), 147-155 [cit. 2023-06-20]. ISSN 03783812. Dostupné z: doi:10.1016/S0378-3812(99)00264-2

[99] JOHNSON, J. Karl, John A. ZOLLWEG a Keith E. GUBBINS. The Lennard-Jones equation of state revisited. Molecular Physics [online]. 2006, 78(3), 591-618 [cit. 2023-06-20]. ISSN 0026-8976. Dostupné z: doi:10.1080/00268979300100411

[100] Carbon Dioxide (CO2) Purity Grade Chart. *CO2meter.com: CO2 measurement specialists* [online]. USA, 20. 09.2022 [cit. 2023-06-19]. Dostupné z: https://www.co2meter.com/blogs/news/co2-purity-grade-charts

[101] REGULATIONS: laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council. In:. Official Journal of the European Union, 2012, číslo 231, s. 295. Dostupné také z: https://faolex.fao.org/docs/pdf/eur111209.pdf

[102] CARBON DIOXIDE FOOD AND BEVERAGES GRADE, SOURCE QUALIFICATION, QUALITY STANDARDS AND VERIFICATION. In:. EIGA WG-8 Food Gases and Carbon Dioxide, 2017, s. 18. DOC 70/17. Dostupné také z: https://www.eiga.eu/uploads/documents/DOC070.pdf

[103] MINIMUM SPECIFICATIONS FOR FOOD GAS APPLICATION. In:. EIGS 2020-WG-8 Food Gases and CO2, 2020, s. 7. Doc 126/20. Dostupné také z: https://www.eiga.eu/ct_documents/doc126-pdf/

[104] PENTAIR. BIOGAS UPGRADING SOLUTIONS: PENTAIR® CO2BOLT-ON
 CO2 Recovery Technology [online]. Netherland, 2022, 2 s. [cit. 2023-06-24]. Dostupné
 z: https://biogas.pentair.com/~/media/websites/biogas/downloads/biogas-upgrading-plant-co2bolt-on/pen-ss-co2-bolt-on-2250-en.pdf

[105] ATLAS COPCO. CO2 recovery from fermentation in breweries [online]. [cit. 2023-06-24]. Dostupné z: https://www.atlascopco.com/en-sg/compressors/industry-solutions/brewery-air-compressor/co2-recovery-brewery

[106] XU, Gang, Feifei LIANG, Yongping YANG, Yue HU, Kai ZHANG a Wenyi LIU. An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory. Energies [online]. 2014, 7(5), 3484-3502 [cit. 2023-06-24]. ISSN 1996-1073. Dostupné z: doi:10.3390/en7053484

[x5] BROWNSORT, Peter. Ship transport of CO2 for Enhanced Oil Recovery – Literature Survey [online]. In:. Edinburgh: Scottish Carbon Capture & Storage, leden 2015, s. 43 [cit. 2023-06-19]. Dostupné z: https://era.ed.ac.uk/bitstream/handle/1842/15703/SCCS-CO2-EOR-JIP-WP15-Shipping.pdf?sequence=1&isAllowed=y

[108] ASPELUND, A. Gas purification, compression and liquefaction processes and technology for carbon dioxide (CO2) transport. *Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology* [online]. Elsevier, 2010, 2010, 383-407
[cit. 2023-06-19]. ISBN 9781845695330. Dostupné z: doi:10.1533/9781845699574.4.383

[109] LINDE GMBH. Carbon Dioxide: Safety advice [online]. 4 s. [cit. 2023-06-19]. Dostupné z:

https://www.linde-gas.com/en/images/LMB_Safety%20Advice_01_66881_tcm17-165650.pdf

[110] JOHANSSON, Emma a Vilborg PÉTURSDÓTTIR. KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT. Evaluation of onshore transportation methods for captured CO2 between facility and 2 harbour in Stockholm [online]. Stockholm, Sweden, 2021, 102 s. [cit. 2023-06-19]. Dostupné z:

http://www.diva-portal.org/smash/get/diva2:1570049/FULLTEXT01.pdf

[111] KLEMETSRUDANLEGGET. Fortum Oslo Varme: Concept Study Report -Carbon Capture Oslo. [online]. Rep. 3. 2018, 137 s. [cit. 2023-06-19]. Dostupné z: https://ccsnorway.com/app/uploads/sites/6/2019/09/fortum_oslo_varme.pdf

[112] STOLAROFF, Joshuah K., Simon H. PANG, Wenqin LI, Whitney G. KIRKENDALL, Hannah M. GOLDSTEIN, Roger D. AINES a Sarah E. BAKER. Transport Cost for Carbon Removal Projects With Biomass and CO2 Storage. Frontiers in Energy Research [online]. 2021, 9 [cit. 2023-06-19]. ISSN 2296-598X. Dostupné z: doi:10.3389/fenrg.2021.639943

[113] ASPELUND, A., M.J. MØLNVIK a G. DE KOEIJER. Ship Transport of CO2. Chemical Engineering Research and Design [online]. 2006, 84(9), 847-855 [cit. 2023-06-20]. ISSN 02638762. Dostupné z: doi:10.1205/cherd.5147

[114] PENTAIR UNION ENGINEERING. CO2 PURIFICATION UNIT - Food and Beverage Pentair [online]. 2017, 2 s. [cit. 2023-06-24]. Dostupné z: https://foodandbeverage.pentair.com/~/media/websites/carboncapture/downloads/co2purification-unit/co2-purification-unit-union-engineering-leaflet-v2017-en.pdf

[115] POUDEL, Ram Chandra. Small Scale Biogas Production. Biogas [online]. Cham: Springer International Publishing, 2018, 2018-04-20, 437-448 [cit. 2023-06-25]. Biofuel and Biorefinery Technologies. ISBN 978-3-319-77334-6. Dostupné z: doi:10.1007/978-3-319-77335-3_17

[116] MEMBRAIN. Chart Ferox: Data pro separaci a zkapalnění CO2 [interní dokument]. 2021, 3 s. [cit. 2023-06-15].

[117] KLIMEŠ, L. FAKULTA STROJNÍHO INŽENÝRSTVÍ. Tabulky a diagramy: Termomechanika - Vlastnosti syté kapaliny a syté páry H2O [online]. září 2018, 28 s. [cit. 2023-06-26]. Dostupné z:

https://eu.fme.vutbr.cz/userfiles/Mauder/files/6TT_tab_diag.pdf. Hodnoty dostupné z: https://xsteam.sourceforge.net/.

[118] BALNAR, Antonín. Vlhkost vzduchu. Meteorologie: Meteorologické prvky [online]. Ostrava, 2001 [cit. 2023-06-27]. Dostupné z: http://artemis.osu.cz/Gemet/meteo2/vlhkost.htm

[119] LI, Shijie, Tao XING, Yilin WANG, Pengwei LU, Weixue KONG, Shenao LI, Xiaomin SU a Xinkuan WEI. Pore Structure Regulation and Electrochemical Performance Characterization of Activated Carbon for Supercapacitors. Frontiers in Energy Research [online]. 2021, 9 [cit. 2023-06-27]. ISSN 2296-598X. Dostupné z: doi:10.3389/fenrg.2021.680761

[120] OIMCHEM. Products: Adsorbents-MS Series: Technical data [online]. China[cit. 2023-06-27]. Dostupné z: https://www.oimchem.com/adsorbents-ms-series/

 [121] DENG, Shuguang. Sorbent Technology [online]. New Mexico, U.S.A.: Chemical Engineering Departmen, 2006, 2825-2847 [cit. 2023-06-27]. Dostupné z: https://www.researchgate.net/publication/267778978 [122] 3A MOLECULAR SIEVE: mSORB 3A Molecular Sieve Beads, Type A. InterraGlobal [online].[cit.2023-06-27].Dostupnékttps://www.interraglobal.com/products/molecular-sieve/3a-molecular-sieve/

[123] MolecularSieves:Regeneration(Activation).SIGMAALDRICH. Merck [online].2023[cit.2023-06-27].Dostupnéz:https://www.sigmaaldrich.com/CZ/en/technical-documents/technical-article/chemistry-and-synthesis/reaction-design-and-optimization/molecular-sieves

[124] Molecular Sieve 3Å: Regeneration. 889globalsolutions [online]. 2023 [cit. 2023-06-27]. Dostupné z: https://www.889globalsolutions.com/our-capabilities/molecular-sieve-3a

[125] KHAN, Muhammad Usman, Jonathan Tian En LEE, Muhammad Aamir BASHIR, et al. Current status of biogas upgrading for direct biometane use: A review. Renewable and Sustainable Energy Reviews [online]. 2021, 149 [cit. 2023-07-13]. ISSN 13640321. Dostupné z: doi:10.1016/j.rser.2021.111343

[126] ALLEGUE, Laura Bailón a Jørgen HINGE. Report: Biogas and bio-syngas upgrading [online]. Danish Technological Institute, 2012, 97 s. [cit. 2023-07-13].
Dostupné z: http://www.teknologisk.dk/_root/media/52679_Report-Biogas%20and%20syngas%20upgrading.pdf

[127] BANSAL, Pradeep. A review – Status of CO2 as a low temperature refrigerant. Applied Thermal Engineering [online]. 2012, 41, 18-29 [cit. 2023-07-13].
ISSN 13594311. Dostupné z: doi:10.1016/j.applthermaleng.2011.12.006

[128] CO2 refrigeration: R744 refrigerant [online]. INTARCON. [cit. 2023-07-13].Dostupné z: https://www.intarcon.com/en/r744-refrigerant/

[129] CARRIER. Mechanical systems 2022 [brožura]. 66 s. [cit. 2023-07-12].
Dostupné z: https://www.shareddocs.com/hvac/docs/2000/Public/0E/CS-MS-017-EN-0121.pdf. Ref. No. CS-MS-017-EN-0122.

[130] JANUŠKA, Radim. Chladící jednotky. Kompresor.cz [online]. 2023 [cit. 2023-07-19]. Dostupné z: https://www.kompresor.cz/chladici-jednotky-2/?pv320=1658

[131] ATLASCOPCO. 5 tips for choosing carbon dioxide compressor manufacturers [online]. [cit. 2023-07-18]. Dostupné z: https://www.atlascopco.com/ensi/compressors/air-compressor-blog/carbon-dioxide-compressor-manufacturers

[132] HAUG A SAUER COMPRESSORS. HAUG.Sirius Kompressoren - ölfrei und gasdicht (7.5 - 30 kW) [online]. 2023 [cit. 2023-07-18]. Dostupné z: https://www.haug.ch/de/produkte-service/gas-kompressoren/haugsirius-75-30-kw.html

[133] HAYDARY, Juma. Chemical process design and simulation: Aspen Plus and Aspen Hysys applications. Hoboken, New Jersey: American Institute of Chemical Engineers, 2019, 418 s. ISBN 9781119089117. Dostupné také z: 10.1002/9781119311478

[134] Heat Exchangers - Heat Transfer Coefficients: Overall heat transfer coefficients
in common heat exchanger designs - tubular, plate or spiral. The engineering
toolbox [online]. 2003 [cit. 2023-07-20]. Dostupné z:
https://www.engineeringtoolbox.com/heat-transfer-coefficients-exchangers-d_450.html

[135] OMI. LIQUID REFRIGERATION: Technical specifications [online]. MASTER CATALOGUE, 2021, 16 s. Dostupné také z: https://www.ynna.cz/obrazky-soubory/liquid_refrigeration_catalogue_2021-3d750.pdf?redir

[136] CARRIER. MiniCO2OLcompact: CO₂ transcritical refrigeration systems [brožura]. 2022, 11 s. [cit. 2023-07-20]. Dostupné z: https://www.shareddocs.com/hvac/docs/2000/Public/03/Carrier-MiniCO2OL-compact-brochure-270422-EN.pdf

[137] Global warming potential values of hydrofluorocarbon refrigerants. Australian government: Department of Climate Change, Energy, the Environment and Water [online]. 01.11.2021 [cit. 2023-07-21]. Dostupné z: https://www.dcceew.gov.au/environment/protection/ozone/rac/global-warmingpotential-values-hfc-refrigerants

[138] INEYA. Chillers: LN-60°C~-10°C, Ultra Low Temperature Chiller [online]. [cit. 2023-07-22]. Dostupné z: https://www.lneya.com/industrial-chiller/low-temperature-chiller-ln-60-10.html

[139] Electricity Maps: Emise CO2 ze spotřeby elektřiny v reálném čase 23.6. až23.7. [online]. [cit. 2023-07-23]. Dostupné z: https://app.electricitymaps.com/zone/CZ

[140] Teplota vody ČR: Teploty vody v českých nádržích. *Meteocentrum* [online]. 20.07.2023 [cit. 2023-07-20]. Dostupné z: https://www.meteocentrum.cz/teplota-vody-cr