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Abstract
The Master’s thesis deals with numerical simulations of atmospheric flows. First part of the work is
devoted to the physical description of the problem of flows in the atmospheric boundary layer. It is
followed by formulation of mathematical model and description of numerical methods. Thereafter,
the work contains results of simulations, based mainly on finite volume method and conducted
using a self-developed code. First, validation of the custom code on test cases is presented. After
validation, more complex cases are simulated and studied. The studied problems consist of two-
dimensional cases of flows over hills of different shapes in the atmospheric boundary layer. Apart
from discussion of the physical impacts of hills, flow regimes and density stratification, impacts of
different numerical approaches are also demonstrated. The investigation includes comparison of
the simulations with experimental data, comparison of different numerical methods and demon-
stration of the effects of different numerical parameters.

Keywords: numerical simulations, atmospheric flows, variable density, turbulence, finite volume
method, discretization

Abstrakt
Magisterská práce se zabývá numerickými simulacemi atmosférického proudění. První část práce
je věnována fyzikálnímu popisu problému proudění v mezní vrstvě atmosféry. Následuje formulace
matematického modelu a popis numerických metod. Dále práce obsahuje výsledky simulací, za-
ložených především na metodě konečných objemů a provedených pomocí vlastnoručně vyvinutého
kódu. Nejprve je představena validace vlastního kódu na testovacích případech. Po ověření jsou
simulovány a studovány složitější případy. Studované problémy se skládají z dvourozměrných pří-
padů proudění přes kopce různých tvarů v mezní vrstvě atmosféry. Kromě diskuse o fyzikálních
dopadech kopců, režimů proudění a hustotní stratifikace jsou demonstrovány i dopady různých
numerických přístupů. Zkoumání zahrnuje porovnání simulací s experimentálními daty, srovnání
různých numerických metod a demonstraci vlivu různých numerických parametrů.

Klíčová slova: numerické simulace, atmosférické proudění, proměnná hustota, turbulence, metoda
konečných objemů, diskretizace
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Latin symbols
a speed of sound
D tensor of deformation
f heat flux
F ,G vectors of inviscid fluxes
g gravity acceleration
h hill height
H height of the computational domain
k

T
thermal diffusion coefficient

L the length of the computational domain
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ℓ mixing length
ℓ∞ free stream mixing length
m mass
M Mach number
nt number of iterations
nx, ny number of cells in corresponding direction
p pressure
pin inlet pressure value
pout outlet pressure value
q heat flux
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Re Reynolds number
Ri Richardson number
R,S vectors of viscous fluxes
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∆t time-step
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u = (u, v, w) velocity
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ur norm of the difference of velocities
U internal energy
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xh location of the centre of the hill
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∆x,∆y,∆z spatial steps
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1 Introduction
1.1 Aim of the work
Aim of the work is to describe the physical aspects of flows in the atmospheric boundary layer
(ABL) and to provide results of numerical simulations that are intended to represent the real flow
in a simplified way. The atmospheric boundary layer represents a complicated physical problem
because of many aspects involved.

The situation in ABL is rarely simple and involves turbulent flows of a fluid with non-constant
density, which is, moreover, generally speaking compressible. In addition, the Earth’s surface adds
complexity to the problem with roughness of the surface and even more so with the many different
obstacles in the form of hills, trees, buildings etc.

Despite the complexity, the study of the nature of ABL is of great public interest, because
it is closely related to people’s daily lives. It is not only about the general weather conditions,
temperature changes, but also about wind situation or nowadays even more arising question of
air pollution and spread of the pollutants. A good understanding of the flow in the ABL can
lead to suitable siting and maximization of the efficiency of wind turbines, appropriate location of
buildings, power plants and industrial factories in order to improve human live and prevent and
avoid dangerous situations and disasters.

Unfortunately, it is very difficult and extremely resource-demanding to measure every aspect
of ABL and to conduct experiments correctly reflecting the reality may be even of the same level
of difficulty. Therefore, a great effort is made to try to simulate the flows and provide some
understanding of the nature with models as simple as possible. The aim of this work is not to offer
a solution to these largely complicated problems and resolve a concrete issue. This work follows
the path of trying to find the simplest possible way how to simulate flows close to reality and
provide valuable results in order to improve understanding of the atmospheric flows. The work
provides description of the physical aspects of fluid flows in ABL and presents results of numerical
simulations of simplified problems with a newly (from scratch) developed numerical solver using
mainly the Finite Volume Method.

The custom code is first validated on basic problems with analytical solutions and at each
subsequent step more complexity is added in order to reduce the gap with reality. The simplicity
of the problems go from laminar flow of incompressible fluid with density between two flat plates,
over flow of a fluid with varying density (stratified fluid) up to turbulent flows over hills of different
shapes.

The value of the work can also be found in the expression of the problems that were found
along the way and in the implementation and testing of many different approaches. The remarks,
conclusions, solutions as well as mistakes may serve well in order to improve the future work of
any author in the field of mathematical modelling a numerical simulations.
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1.2 Structure of the work
The work is divided to seven sections. The first section serves as introduction to the topic in
general and a description of the scope of the thesis.

Second section provides physical description of the topic. It focuses on describing the physical
phenomena associated with the atmospheric fluids flows. All the necessary physical properties are
introduced and their significance explained.

Following is the chapter of mathematical model. That provides mathematical formulation of
the problem, necessary simplifications involved in the model and brief derivation of the governing
equations.

Then directly follows the section with detailed description of the numerical methods used.
That involves Finite Difference Method, already used in previous work, and Finite Volume Method
as a more advanced method. In addition, the section provides the description and discussion of
the modelling of obstacles (reflecting e.g. hills) used in numerical solver.

Chapter five demonstrates Validation of the numerical solver. The methods described in the
previous section are set out to test on different well-known and commonly used physical problems
of fluid flows that have existing analytical solution for easy comparison.

After validation, more complicated problems are introduced and evaluated in the section
Numerical experiments. It involves several different set-ups that were numerically solved with
described methods in different conditions and using different in-put parameters.

In the final section Conclusion & Remarks everything above is summarized and discussed.
It involves general conclusions of the work, of the accomplishments, mistakes, contributions and
lessons learnt. In addition, possibilities for continuing work are described.
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2 Physical description
This section provides description of important terms, definitions and parameters in fluid flows with
further specification for the atmosphere.

2.1 Fluid flow
When a shear force is applied to the surface of a fluid, the fluid undergoes a continuous change
in shape (deformation) and the shear stress is usually proportional to the rate of change of the
deformation, see for example the classic book [1] from Anderson.

The ability of a fluid to transfer this shear stress, or in other words: the resistance to deformation
at a given rate, is called viscosity. Meaning, viscosity gives an information about the tendency of
a fluid to flow. There are two types of this important property of a fluid: kinematic and dynamic
viscosity. As it is stated, for instance, in [14], dynamic viscosity is formally defined through
Newton’s law of friction:

τ = µ
∂u

∂y
[N ·m−2], (2.1)

where τ is the shear stress, µ the dynamic viscosity [Pa · s] and ∂u
∂y is a shear rate of deformation,

given by a gradient of velocity in the direction perpendicular to the surface. Figure 1 shows an
example of velocity profile near the surface, where the proportionality of shear stress to velocity
gradient is illustrated.

Figure 1: Shear stress, velocity gradient from

Kinematic viscosity is closely linked to dynamic viscosity in relation:

ν =
µ

ρ
[m2.s−1], (2.2)

where ρ is the density of the fluid.
Viscosity and density, very well-known and important properties of a fluid, are generally non-

constant. In some cases, the neglect of the viscous forces can be justified due to their insignificance
in a given problem, however flow in ABL is certainly not one of them. Viscosity cannot be neglected
due to high importance of frictional forces at the Earth’s surface and the interactions of frictional
and inertial forces in the atmospheric flows of turbulent nature.

Density of a fluid can vary due to different reasons. First, the density change can be caused by
pressure. Flows where fluids change their volume (density) under pressure change are called com-
pressible flows. Most of the technical literature, as for example [1], refers to flows where the density
of the fluid does not change as incompressible. However, to be precise, the incompressibility implies
only that the pressure does not cause a significant change in density. In fact, incompressibility
refers only to the conservation of volume as the pressure changes. Constant density is actually
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an additional condition. In reality, the density of incompressible flows can vary, for example by
mixing fluids with different densities.

In nature, generally every fluid is compressible. However, there are a large number of aerody-
namic problems that can be modelled as being incompressible without significant loss of accuracy.
In fact, it is a common practice to safely treat the flow incompressible when the flow velocity
corresponds to Mach number M < 0.3. To be complete, Mach number is a dimensionless quantity
defined as the ratio of flow velocity u and the local speed of sound a:

M =
u

a
, (2.3)

At these velocity values the compression due to the flow is negligible. The compressible flows
are mainly relevant to high speed flows which are not the objective of this work. Therefore, the
approach in this work is to treat the flows as incompressible in all cases. However, given the
interpretation of incompressibility in the previous paragraphs, we include the option of variable
density to our model.

In addition, the studied fluid may consist of layers with different density (stratified fluid),
caused by temperature differences or presence of additional particles or fluids. This situation is
exactly what this work presents. The mathematical model is simplified by treating the flows as
incompressible, but the more advanced cases in the numerical simulations involve stratification of
the fluid in order to get closer to reality and to demonstrate the impacts of (commonly neglected)
non-constant density.

In general, the flow of a fluid is always governed, as any other mechanical system, by the general
laws of conservation. Specifically by the conservation of mass, momentum and energy. These laws
and the governing equations for our problem will be expressed in detail further on.

2.2 Stratification
General meaning of stratification has already been explained in the section above. Here are pre-
sented the types of stratifications and the consequences associated with it. In addition, we want
to clearly distinguish and express the limitation of the concept of stratification in this work only
to density stratification due to the effect of gravitational forces.

The types of stratification include: neutral, stable and unstable. Neutral stratification means,
that the fluid’s density actually does not vary and stays the same throughout the whole domain.
It can be referred to it as that the fluid is not stratified.

Stable stratification denotes that the density decreases with the distance in the opposite direc-
tion to the act of gravity, vertical direction. Each layer of fluid is thus less dense than the one
below it. As the gravity acts on the fluid, the layers remain stable, because the layer with the
greatest mass (density) already lies at the bottom. As the [33] states, stable boundary layers can
be generated by the advection of warm air over a colder surface, for example by flow of warm air
from land over colder coastal waters. However, according to another source [26], radiative cooling
of the ground surface, as occurs with nocturnal conditions under relatively clear skies, is the most
common source of stable boundary layers.

Unstable stratification indicates the exact opposite. The least dense layer lies at the bottom
and the density gradually increases in each layer above. Therefore, the gravitational force causes
movement, mixing of the layers in order to reach a stable state again. It evokes additional motion
of the fluid that has significant effects in the total flow. Unstable condition in the atmosphere may
occur as a result of local weather and is highly variable through distance and time, see [33].

The type of stratification can be described by the so-called Richardson number. It is a dimen-
sionless quantity, that in our case involves the ratio of density gradient and velocity gradient, as
reads:

Ri =
g

ρ∗
γ∑3

i=1(
∂ui

∂z )2
, (2.4)

where g is the standard gravity, ρ∗ the characteristic density, and γ = −∂ρ
∂z is a vector parallel

to gravity acceleration expressing the density gradient. In our cases, ρ∗ is usually the prescribed
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value at the ground, details will be provided in each individual case. The following Figure 2 shows
graphically the types of density stratification with the corresponding Richardson number.

(a) Neutral, Ri = 0 (b) Stable, Ri = 1 (c) Unstable, Ri = −1

Figure 2: Types of stratification

In the atmosphere, it is very common to witness all types of stratification. Usually, the density
changes in cycles during the day due to external influences such as solar radiation, nocturnal
cooling of the ground, the presence of snow, emissions emitted by humans. Usually, during the
day, when the Earth’s ground absorbs the solar energy and heats up the air from below, an unstably
stratified atmosphere slowly develops and vice versa at night when the Earth’s surface cools down
and the air becomes stably stratified. In reality, the situation is as always more complex with
additional influences involved. Nevertheless, the effect of stratification near the surface should not
be neglected in order to reflect reality more precisely. Therefore, this study includes stratification
and the consequent effects will be shown in further sections with numerical experiments.

2.3 Turbulence
One very important aspect of a flow was not yet discussed and that is the flow regime. The flow
can be either laminar or turbulent. Laminar flow, as explained for example in [38], is when the
particles of a fluid follow smooth path in layers with each layer moving smoothly past the adjacent
layers without mixing. Turbulent flow on the other hand, involves mixing, chaotic movement and
eddies. The difference can be observed in Figure 3. Again, the more complex turbulent flow is
more common in nature and the effects of turbulence cannot be neglected.

Figure 3: Flow regimes, adapted from [32]

The regime of the flow is commonly denoted by the so called Reynolds number. This dimen-
sionless quantity gives the ratio of inertial to viscous forces and is given by:

Re =
u∗ · L∗

ν
, (2.5)

12



where ν is previously defined kinematic viscosity, u∗ the characteristic velocity of the fluid and L∗

is the characteristic linear dimension. When Reynolds number reaches a certain critical number,
the laminar flow regime transforms to turbulent. As [38] describes, turbulence is a non-stationary
motion of a fluid that involves vorticity with whirls of different sizes, turbulent transport of mo-
mentum, mass and heat, non-deterministic changes in time and dissipation of kinetic energy.

Therefore, modelling turbulent flows is a very complicated and challenging task. Statistical
approaches and averaging of the turbulences are used to simplify the problem. However, the
main challenge is to find a model that is both accurate enough for the problem at hand and simple
enough to keep the computational cost reasonable. Later in this work, simple but elegant approach
to turbulence modelling will be described in detail.

2.4 Atmhospheric boundary layer
In the atmospheric context, it has never been easy to define precisely what the boundary layer is.
Nevertheless, a useful working definition, see [14], identifies the boundary layer as the layer of air
directly above the Earth’s surface in which the effects of the surface (friction, heating and cooling)
are felt directly on time scales less than a day, and in which significant fluxes of momentum, heat
or matter are carried by turbulent motions on a scale of the order of the depth of the boundary
layer or less.

In the atmospheric boundary layer, turbulence plays a crucial role. Not only that the flows
are chaotic (turbulences are generated) due to variation of wind speeds or changes in temperature
(density stratification), but the flows in ABL also interact with the mean flow caused by the
rotation of the Earth. This is the main difference between flows in nature and those created in
wind tunnels. Nevertheless, study of atmospheric flows, although simplified, in wind tunnels and
using numerical simulations provide valuable insight and useful results in well set up cases.

The ABL can be further divided, first into outer layer (or so-called Ekman layer), where Coriolis
force caused by Earth’s rotation plays an important role and is quite independent from the surface.
The other sublayer consist of inner region where the roughness of the Earth’s surface cannot be
neglected. The division of the sublayers can be seen in the following Figure 4. The inner sublayer

Figure 4: The Atmospheric Boundary Layer, adapted from [14]

is a case where the rotation of the Earth is of little importance. Different sources differ on the
exact region of influence, but for example [18] states that within 50-100m from the ground, the flow
is insensitive to Earth’s rotation. Turbulences arise in this region mainly due to friction caused
by roughness of the surface. Therefore, the inner sublayer can rather accurately be modelled and
studied in wind tunnels. In addition, as [14] describes, the inertial sublayer is the region within
which the velocity profile in neutrally buoyant conditions is logarithmic. Which provides useful
information about expected results for wind tunnel testing or numerical simulations.

It is the inner sublayer, that is also the main objective of this work. Moreover, the influence
of the roughness and the approach of modelling the surface will be thoroughly discussed in the
following sections and numerical experiments.
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3 Mathematical model
3.1 Governing equations
The flow of a fluid is commonly described by partial differential equations that are derived from
the general laws of conservation. Therefore, the governing equations include the laws of conserva-
tion of mass, momentum and energy.

Complete derivation of the equations is not the purpose of this text. The approach was also
already presented in bachelor’s thesis preceding this work [36]. For the more rigorous and specific
description you may, for example, go to [10], which is also the main source for this section. The
origin and the resulting form of the equations alongside with the assumptions made are described
in the following paragraphs. In addition, the specific used forms of equations are expressed and
discussed in each of the simulated problems presented later on in this work.

3.1.1 Conservation of mass

Following [10], the conservation of mass can be expressed in a differential form:

∂ρ

∂t
+

3∑
j=1

∂(ρuj)

∂xj
= 0 (3.1)

We can rewrite the equation (3.1) to more compact form using the vector notation:

∂ρ

∂t
+ div(ρu) = 0 (3.2)

The above equation is also called the Continuity equation. In this from, it is valid for
any fluid. However, in many cases it is possible to make simplifications. When we consider the
density ρ constant, the equation 3.2) reduces to:

divu = 0 (3.3)

3.1.2 Conservation of momentum

In general form, again following [10] and using vector notation, we can express the conservation of
momentum (ρu) in the conservative form as:

∂(ρu)

∂t
+ div(ρu⊗ u) = ρf − grad p+ grad(λ divu) + div(2µD(u)) (3.4)

On the left hand side, the first term desribes time-dependent acceleration, second term convection.
The terms on the right hand side express the external forces, where the vector f stands for volume
forces, p denotes pressure, λ viscosity coefficient, µ dynamic viscosity and D tensor of deformation
velocity defined as:

D = (di,j) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (3.5)

where i, j here and also in all the following expressions in this chapter denotes i, j = 1, 2, 3.
For greater clarity, the equations can be rewritten component-wise:

∂(ρui)

∂t
+

3∑
j=1

∂(ρujui)

∂xj
= ρfi −

∂p

∂xi
+

∂

∂xi

(
λ

3∑
j=1

∂uj

∂xj

)
+

3∑
j=1

∂

∂xj

(
µ

(
∂ui

∂xj
− ∂uj

∂xi

))
(3.6)

Assumption is made concerning the volume forces f . As it was described in the previous
section, for atmospheric boundary layer close to the ground we can neglect the Earth’s rotation.
Thus f will reduce only to gravitational forces g.

14



Moreover, if we take into account the assumption of incompressibility, that is the requirement
of divergence-free velocity field, the third therm on the right hand side (involving divergence of
velocity) will disappear along with part of the last term and we get the following form:

∂(ρui)

∂t
+

3∑
j=1

∂(ρujui)

∂xj
= ρgi −

∂p

∂xi
+

3∑
j=1

∂

∂xj

(
µ
∂ui

∂xj

)
(3.7)

When we apply the continuity equation (3.2) to the momentum equations (3.7) we can express the
moment conservation in the non-conservative form:

ρ
∂ui

∂t
+ ρ

3∑
j=1

uj
∂ui

∂xj
= ρgi −

∂p

∂xi
+

3∑
j=1

∂

∂xj

(
µ
∂ui

∂xj

)
(3.8)

In addition, it can be simplified by dividing the equation (3.8) by the density ρ

∂ui

∂t
+

3∑
j=1

uj
∂ui

∂xj
= gi −

1

ρ

∂p

∂xi
+

3∑
j=1

∂

∂xj

(
ν
∂ui

∂xj

)
, (3.9)

where ν represents previously defined kinematic viscosity.

3.1.3 Conservation of energy

In order to describe the flow in ABL with all real aspects, the law of conservation of energy has to
be included. However, for our purposes and the problems studied, we do not necessarily need the
equation. Since for incompressible flow, the energy equation is decoupled, solvable separately and
not tied up with the equations of motion. Nevertheless, to be complete we present the conservation
of energy in the form, following [20]:

ρ
∂U

∂t
+ ρ

3∑
j=1

vj
∂U

∂xj
= −pdivu+ λ(divu)2 + 1

2

3∑
j=1

(
∂ui

∂xj
+

∂uj

∂xi

)2

+ ρq − divq, (3.10)

where U denotes the internal energy and q the heat flux commonly described by Fourier’s law:

q = −ktgradT (3.11)

In this equation kt stands for thermal diffusivity coefficient and T for absolute temperature. In
our cases

3.1.4 Navier-Stokes equations

In this work, mathematical model of incompressible flow is used with small adjustments in each
case. The set of governing equations involving conservation of mass and momentum is often
referred to as Navier-Stokes equations. Proper study of this model and justifications of the
assumptions can be found in [23]. In our case, it consists of continuity equation (3.3) and equations
of motion, for example in the form of (3.9). Here for the greater clarity it is presented in component-
wise form with expressed equation for each component as follows:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.12)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= gx − 1

ρ

∂p

∂x
+

∂

∂x

(
ν
∂u

∂x

)
+

∂

∂y

(
ν
∂u

∂y

)
+

∂

∂z

(
ν
∂u

∂z

)
(3.13)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= gy −

1

ρ

∂p

∂y
+

∂

∂x

(
ν
∂v

∂x

)
+

∂

∂y

(
ν
∂v

∂y

)
+

∂

∂z

(
ν
∂v

∂z

)
(3.14)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= gz −

1

ρ

∂p

∂z
+

∂

∂x

(
ν
∂w

∂x

)
+

∂

∂y

(
ν
∂w

∂y

)
+

∂

∂z

(
ν
∂w

∂z

)
(3.15)
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Alternatively, in conservative form we get:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.16)

∂ρu

∂t
+

∂ρuu

∂x
+

∂ρuv

∂y
+

∂ρuw

∂z
= ρgx − ∂p

∂x
+

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)
(3.17)

∂ρv

∂t
+

∂ρuv

∂x
+

∂ρvv

∂y
+

∂ρvw

∂z
= ρgy −

∂p

∂y
+

∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
+

∂

∂z

(
µ
∂v

∂z

)
(3.18)

∂ρw

∂t
+

∂ρuw

∂x
+

∂ρvw

∂y
+

∂ρww

∂z
= ρgz −

∂p

∂z
+

∂

∂x

(
µ
∂w

∂x

)
+

∂

∂y

(
µ
∂w

∂y

)
+

∂

∂z

(
µ
∂w

∂z

)
(3.19)

This set of equations serves for solving 4 unknowns: pressure p and three velocity components:
u = (u, v, w) in the directions x, y, z. The density ρ and viscosity ν are here assumed not to
vary. However, as previously stated, the situation in atmospheric flows is more complex and
neither density nor viscosity are constants. In order to deal with the non-constant nature of these
variables we introduce the Boussinesq approximation.

3.1.5 Boussinesq approximation

The main idea behind the Boussinesq approximation, first described in [5], is based on the idea
that the density changes resulting from pressure changes are negligible. Therefore the non-constant
nature of density comes only from temperature changes as they directly affect buoyancy. That
allows us to use incompressible model = density not changing upon pressure changes.

In general, following [37], the density ρ and pressure p can be decomposed to large scale time-
independent components denoted by subscript 0 and a small scale perturbation components marked
with prime:

p(x, y, z, t) = p
0
(z) + p′(x, y, z, t) (3.20)

ρ(x, y, z, t) = ρ
0
(z) + ρ′(x, y, z, t) (3.21)

The background components denoted by 0 are assumed to vary only linearly in the vertical direction
z. The perturbation components of much smaller magnitude containing the changes over time and
in all directions. In addition, we assume the background components satisfying the hydrostatic
equality equation:

∇p
0
= ρ

0
g (3.22)

The more detailed explanation behind this approximation and its application can be found, for
example, in [37] or [6].

In the case of our system we apply the Boussinesq approximation of pressure and density to
simplify the equations of motion. When we take the relations (3.20), (3.21) and insert them in
(3.8) we result in:

(ρ
0
+ ρ′)

(
∂ui

∂t
+

3∑
j=1

uj
∂ui

∂xj

)
= ρ

0
gi + ρ′gi −

∂p
0

∂xi
− ∂p′

∂xi
+

3∑
j=1

∂

∂xj

(
µ
∂ui

∂xj

)
(3.23)

Applying the equation (3.22), we eliminate two terms on the right hand side. Now the next step is
to divide the equation by the term (ρ

0
+ ρ′). Assuming the density perturbation is much smaller,

i.e. ρ′ ≪ ρ
0
, we can replace the term by the background density ρ

0
alone. That leaves us with the

following:

∂ui

∂t
+

3∑
j=1

uj
∂ui

∂xj
=

ρ′

ρ
0

gi −
1

ρ
0

∂p′

∂xi
+

3∑
j=1

∂

∂xj

(
ν
∂ui

∂xj

)
(3.24)

In addition, in order to be able to solve the density variable we derive one additional equation by
applying the Boussinesq approximation on continuity equation. We take the equation expressing
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conservation of mass in the form (3.1) with additional term representing diffusion mass transfer:

∂ρ

∂t
+∇ · (ρu) = ∇ · (κ∇ρ), (3.25)

where κ is diffusion coefficient, which is part of corresponding source term, that is introduced to
represent the local mass balance.

Again, assuming the incompressible model with divergence-free (div u = 0) constraint and
applying the Boussinesq approximation we get:

∂ρ0

∂t
+

∂ρ′

∂t
+ u ·∆ρ0 + u ·∆ρ′ = ∇ · (κ∇ρ0) +∇ · (κ∇ρ′) (3.26)

The basis of the approximation is that the background density ρ
0

varies only linearly in the vertical
direction z. Therefore, the first terms on both sides will disappear. After a slight rearrangement
we can write:

∂ρ′

∂t
+ u ·∆ρ′ = ∇ · (κ∇ρ′) + u · ∇ρ

0
(3.27)

Considering the conservative form and following the same logic, we would get the equations:

∂ui

∂t
+

3∑
j=1

∂(ujui)

∂xj
=

ρ′

ρ0

gi −
1

ρ0

∂p′

∂xi
+

3∑
j=1

∂

∂xj

(
ν
∂ui

∂xj

)
(3.28)

∂ρ′

∂t
+∇ · (ρ′u) = ∇ · (κ∇ρ′) + u · ∇ρ0 (3.29)

Now we have included the consideration of density stratification in our model and additional
equation for computing the density perturbation ρ′. However, we have not yet addressed the
variable viscosity and diffusivity included in the equations (3.24) and (3.27) or alternatively (3.28)
and (3.29). In other words, the turbulence model has not yet been incorporated.

3.2 Turbulence modelling
The atmospheric flows are inevitably with the presence of turbulences, which are chaotic and thus
very hard to predict or simulate. Therefore, modelling a turbulence becomes a very difficult task.
Over the time several approaches to model turbulences were developed. The three basic methods
are the following:

• Direct Numerical Simulation (DNS)

• Large Eddy Simulasion (LES)

• Reynolds Averaged Navier-Stokes equations model (RANS)

DNS is the most complex and accurate approach. It computes the fluid’s motion at all temporal
and spatial scales with the basic set of governing equations with no additional turbulence model
involved. That leads to very high computational costs, which makes it unsuitable for the purpose
of this work.

The principal idea behind LES, as described in [35], is to ignore (filter) the smallest scales, which
are the most computationally expensive to resolve. Only the large scale eddies are resolved by the
model equations, which reduces the computational costs, but additional small scale parametrization
is necessary.

In RANS approach, originally proposed by [31], the flow quantities are decomposed into a
mean (time-averaged) and fluctuating (turbulent) component. Mean flow field is then obtained by
solving averaged equations and the turbulent fluctuations are resolved using suitable turbulence
model. This approach is widely used and for its simplicity alongside with solid accuracy it is very
well suited method for many application including problems studied in this work.
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3.2.1 RANS model

Following [31], we decompose ρ′, u and p′ into a mean flow component and a turbulent fluctuation,
namely

ρ′ = ρ′ + ρ′′, u = u+ u′′, p′ = p′ + p′′, (3.30)

where ρ ′, u and p′ represent the mean quantities, and ρ′′, u′′ and p′′ the turbulent components.
Plugging the decomposition (3.30) into (3.12), (3.24) and (3.27), averaging the equations, noting
that the average of the turbulent fluctuations are zero, using vector notation we can write the
following:

∇ · u =0, (3.31)
∂ρ′

∂t
+ u · ∇ρ′ =∇ ·

(
κ∇ρ′

)
−∇ · h− u · ∇ρ

0
, (3.32)(

∂u

∂t
+
(
u · ∇

)
u

)
=− ∇p′

ρ0

+∇ ·
(
ν∇u

)
−∇ · τ +

ρ′

ρ0

g, (3.33)

where hj = ρ′uj and τij = uiuj are turbulent mass and momentum fluxes, respectively. For a
detailed derivation see, for example, [14].

Furthermore, to completely determine the equations (3.31) - (3.33), we assume, as originally
described in [5], that the turbulent fluxes can be written in terms of the flux-gradient approxima-
tion:

τ = −ν
T
∇u, h = −κ

T
∇ρ, (3.34)

where the turbulent viscosity ν
T

and the turbulent diffusivity κ
T

are quantities to be determined,
for example, as functions of the average fields. This approximation leads to the following system
of equations:

∇ · u =0 (3.35)
∂ρ′

∂t
+ u · ∇ρ′ =∇ ·

(
(κ+ κ

T
)∇ρ′

)
+ u · γ (3.36)

∂u

∂t
+
(
u · ∇

)
u =− ∇p′

ρ
0

+∇ ·
((

ν + ν
T

)
∇u

)
+

ρ′

ρ
0

g, (3.37)

or in conservative form:

∇ · u =0 (3.38)
∂ρ′

∂t
+∇ ·

(
ρ′u

)
=∇ ·

(
(κ+ κ

T
)∇ρ′

)
+ u · γ (3.39)

∂u

∂t
+∇ ·

(
u⊗ u

)
=− ∇p′

ρ
0

+∇ ·
((

ν + ν
T

)
∇u

)
+

ρ′

ρ
0

g, (3.40)

where γ = (0, 0, γ), with γ = −∂ρ0

∂z being a constant vector parallel to the gravity acceleration.

3.2.2 Mixing length model

In order to be able to determine the turbulent viscosity ν
T

and the turbulent diffusivity κ
T

a suitable
turbulence model has to be introduced. There are many models existing with wide variety of
complexity and accuracy. To name a few: one-equation models such as Mixing length, Spalart-
Allmaras, or 2 equation models, namely κ− ω, κ− ϵ or Reynolds stress equation model. Detailed
description of the aforementioned is not the objective of this work. The focus will be only on the
selected model.

For the purposes of studied problems, one simple but elegant algebraic model is used - Mixing
length model. The main advantage is its plainness and the ease of implementation to the system.
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However, even with this simple model many promising and accurate results were already reached
by different authors, see for example [3] or [7].

The idea behind this model, originally proposed by [30], is that a parcel of fluid is keeping its
original momentum for a characteristic length ℓ before mixing with the surrounding fluid. The
velocities of the parcels arriving at the height z will be those of the neighbouring layers a distance ℓ
away. Thus the neighbouring parcels arriving at height z contribute to the turbulent (fluctuating)
velocity components of level z.

A relation between the turbulent viscosity and the mixing length ℓ has been originally proposed
by [2]. It is based on the idea of replacing the velocity fluctuations by gradients of mean velocity
components rescaled with ℓ. It takes into account the influence of changes in momentum in different
directions. However, assumptions are made, that in ABL horizontal velocity gradients are omitted
as negligible and that vertical velocity tends to zero, thus its gradients also negligible. That leaves
us with the following formula for the turbulent viscosity ν

T
:

ν
T
= ℓ2

[(
∂u

∂z

)2

+

(
∂w

∂z

)2
]1/2

, (3.41)

with mixing length defined as:

ℓ =
κz

1 + κz
ℓ∞

, (3.42)

where z is the distance from the ground, κ is von Kármán’s constant and ℓ∞ is a suitable asymptotic
value such that ℓ ≈ ℓ∞ at large distances from the ground.

Nevertheless, in order to take into account the effects of the stratification, the above model was
generalized by [9] introducing a stability function G such that:

ν
T
= ℓ2

[(
∂u

∂z

)2

+

(
∂w

∂z

)2
]1/2

· G, (3.43)

where

G =(1 + 3Ri)−2, for Ri > 0,

G =(1− 3Ri)2, for Ri ≤ 0. (3.44)

The Figure 5 shows the dependency of the stability function G on the Richardson number Ri
with marking of the three specific values, used in simulations. Thus it is obvious, how the choice of
Ri increases or lowers the magnitude of turbulent kinematic viscosity. For our purposes of density
stratification Ri is determined by the formula (2.4).

Figure 5: Graph of the stability function G versus the Richardson number
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Finally, the turbulent diffusivity is expressed through the turbulent Prandtl number Pr
T

as:

κ
T
=

ν
T

Pr
T

. (3.45)

The above mentioned relations contain several constants that were not yet discussed. Due to
the reason that they may differ in individual cases, we will discuss the specific value in each case,
where its necessary, separately in section of numerical experiments.
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4 Numerical methods
In this section, all the numerical approaches used in order to discretize and solve the set of equa-
tions are described. Apart from the discretization provided by the numerical methods, additional
Artificial Compressibility Method is used in order to be able to solve equation for necessary
variable - pressure.

In regards of discretization, two basic and commonly used methods in CFD were used to study
atmospheric flows. This work is a continuation of the previous bachelor’s theses [36], where only
the Finite Difference Method was used. On one hand, the method is straightforward and easy
to implement. On the other hand, has its limits in terms of accuracy. Consequently, in this current
work, more robust, versatile and powerful Finite Volume Method is incorporated in order to
solve the more complex problems. This method is the most commonly used for the application of
simulating fluid flows.

Finite Volume Method is the main objective of this work, however throughout the studied
problems, obtained results and comparisons with the Finite Difference Method will be provided.
For brevity and clear distinction, we introduce abbreviations for the two methods, which will be
used in the rest of the work. DIF denotes the Finite Difference method and FVM the Finite
Volume Method. In both methods, the MacCormack scheme plays crucial role. Although, the
numerical scheme is the same, the implementation differs and will be explained for both cases.
One other scheme and several modifications of the two were studied and tested. However, for the
lack of improvement with the modifications, the results will not be presented within this work.

This section also contains the description of different approaches of meshing the computational
domain and modelling an obstacle. The different ways of refining the domain are discussed along
with differing approaches to represent obstacles within the domain. Naturally, many obstacles
(such as hills, buildings, trees, ...) occur close to the ground. In this work, we study the flows over
hills (=obstacles) that have to be modelled a certain way. Different meshing of the computational
domain are studied in order to reflect reality as closely as possible. Again, comparison of simple
approach of Immersed Boundary method used in the preceding work and more advanced Wall
Fitted Mesh will be discussed.

In addition, last simplification involved will be made in terms of considered dimensions. Primar-
ily to reduce the computational complexity, all the problems studied in this work were simplified
to two dimensions. This approach will be justified and discussed in more detail later on specific
cases. Nevertheless, due to this simplification the discretization in this section will also be shown
only for two dimensions, which will add clarity to the explanation.

Therefore, from now on, we will only be using the horizontal direction x with corresponding
velocity component u and vertical direction z with corresponding velocity component w. Corre-
spondingly we introduce the discretization description and notation. Figure 6 shows the layout
graphically,

Figure 6: Stencil for numerical discretization
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where i indicates the position in the x direction and j the position in the z direction.

4.1 Artificial Compressibility Method
In order to complete our model, additional method is necessary to be able to numerically solve for
an indispensable variable - pressure. Artificial Compressibility Method, originally described in [8],
is the method used in this work.

It is widely used approach to address the pressure in Navier-Stokes equations. More details
about its derivation and application can be also found in [20] or [16]. The method is based on
expanding the Continuity equation (3.3) to the form:

1

β2

∂p

∂t
+∇ · u = 0, (4.1)

where β is the artificial compressibility coefficient. It has the dimension of speed and it can be also
understood as the artificial speed of sound. It affects the course of the solution method but not
the final result. In case, the solution converges to steady solution, the time derivative of pressure
will become zero, thus the original form of continuity equation will be solved, see [3].

With the Artificial Compressibility Method implemented, we have the complete set of equations
to be discretized and solved for every necessary variable.

4.2 Finite Difference Method (DIF)
Method of finite differences approximates the original set of differential equations itself. DIF is
the oldest and most traditional method, which remains the reference for all studies of numerical
discretization, although it is only applicable in practice to structured grids. [15]

The computational domain is discretized into mesh consisting of finite number of points in each
direction and the derivatives are approximated with suitable proportional finite differences of the
values at the neighbouring grid points. In addition, the boundary conditions are directly applied
to the grid points located at the boundary of the computational domain. The finite differences
approximating derivatives are based on Taylor series expansion with omitting the terms that are
assumed to be negligible.

DIF was thoroughly explained with provided examples in the preceding thesis [36]. Therefore,
it will not be here again studied in detail. Only general description of the differences replacing
derivatives in the equations and the used numerical scheme is explained as follows.

For illustration, we provide the overview of the finite difference applied only to one spatial
derivative. However, the exact same discretization can be made other space coordinates and for
time. The basic approximations of the derivatives that occur in our mathematical models can be
summarized, following [20] as:
Forward difference (First Order):

∂u(x, t)

∂x
≈ ui+1 − ui

∆x
(4.2)

Backward difference (First Order):
∂u(x, t)

∂x
≈ ui − ui−1

∆x
(4.3)

Central difference (First Order):
∂u(x, t)

∂x
≈ ui+1 − ui−1

2∆x
(4.4)

Central difference (Second Order):

∂2u(x, t)

∂x2
≈ ui+1 − 2ui + ui−1

∆x2
(4.5)

where u, in this case, represents an arbitrary general quantity and i the position of the point in
the direction x .
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4.2.1 Numerical schemes

Lax-Friedrichs, described for example in [22], is a simple explicit scheme that uses central dif-
ferences (4.4), (4.5) to discretize spatial derivatives and forward difference (4.2) for time with
replacement of previous value un

i by the average of the surrounding points un
i = 1

2 (u
n
i+1 + un

i−1).
This method is of first order of accuracy. It was previously used in order to test the setup of the

problems and to provide first quick results. However, due to its accuracy limitations, the scheme
was further left out and not used in the more complex problems involving turbulence flow. Thus,
more accurate scheme was preferred and the results obtained with the use of Lax-Friedrichs will
not be shown in this work.

MacCormack scheme, first published in 1969 by [25], belongs to the group of Lax-Wendroff
schemes of second-order accuracy in both space and time. Lax-Wendroff schemes use central
differences (4.4), (4.5) to discretize derivatives. However, the speciality of MacCormack scheme
is a two-step approach. In the first step - predictor - it uses forward differencing (4.2), and in
the second step - corrector - it follows with backward differencing (4.3), which together results in
central difference.

This approach provides more accurate solution, than for example the Lax-Friedrichs. In addi-
tion, the scheme can be controlled and modified during each step of the computation, which offers
various options for improving the simulations.

Since MacCormack scheme plays crucial role in our simulations, its application is provided for
greater clarity. Following [21], we apply MacCormack scheme on the equation of motion (3.37) for
the horizontal velocity component u, namely:

Predictor:

u
n+1/2
i,j = un

i,j −∆t

[
pni+1,j − pni,j

ρ0∆x
+ un

i+1/2,j

un
i+1,j − un

i,j

∆x
+ wn

i,j+1/2

un
i,j+1 − un

i,j

∆z
−

−
(
νni+1/2,j ·

(
un
i+1,j − un

i,j

)
− νni−1/2,j ·

(
un
i,j − un

i−1,j

)
∆x2

+

+
νni,j+1/2 ·

(
un
i,j+1 − un

i,j

)
− νni,j−1/2 ·

(
un
i,j − un

i,j−1

)
∆z2

)]
(4.6)

Corrector:

un+1
i,j =

un
i,j + u

n+1/2
i,j

2
− ∆t

2

[
pni,j − pni−1,j

ρ0∆x
+ u

n+1/2
i−1/2,j

u
n+1/2
i,j − u

n+1/2
i−1,j

∆x
+ w

n+1/2
i,j−1/2

u
n+1/2
i,j − u

n+1/2
i,j−1

∆z
−

−
(
ν
n+1/2
i+1/2,j ·

(
u
n+1/2
i+1,j − u

n+1/2
i,j

)
− ν

n+1/2
i−1/2,j ·

(
u
n+1/2
i,j − u

n+1/2
i−1,j

)
∆x2

+

+
ν
n+1/2
i,j+1/2 ·

(
u
n+1/2
i,j+1 − u

n+1/2
i,j

)
− ν

n+1/2
i,j−1/2 ·

(
u
n+1/2
i,j − u

n+1/2
i,j−1

)
∆z2

)]
. (4.7)

Here the over bars for Reynolds averaged values and primes for perturbations already left out.
Nevertheless, we still bear in mind all the approximations made in chapter 3. Moreover, to stay
consistent with the (3.40), we consider the values of viscosity ν involving both the laminar and
turbulent part.

4.3 Finite Volume Method (FVM)
Finite Volume Method is more versatile method that can be used on any type of mesh. The main
part is to divide the computational domain into finite number of volumes (for instance hexahedral
cells in 3D or quadrilateral cells in 2D). Regardless the number of dimensions, in FVM we always
refer to these cells as volumes. Moreover, we do not have to limit ourselves only to structured grids
and can even use unstructured grids (e.g. triangular shapes). Nevertheless, in this work we stay
with the quadrilateral shapes to represent the domain.
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In addition, there are also two main approaches to where to store the unknowns in the control
volume. First, cell-centred approach, where the unknowns are stored at the centres and the grid
lines define the finite volumes and surfaces. Second, the vertex-centred, where the unknowns are
defined at the vertices (corners), thus the variables are attached to the mesh points. In this work,
we strictly follow the cell-centred approach, therefore any mention of Finite Volume Method further
on, is considered with unknowns located in the centre of the control volume.

The strength of FVM is its direct connection to the physical flow properties. As it is thoroughly
described and derived in [15], the basis of the method relies on the direct discretization of the
integral form of the conservation law. In contrast to DIF, where the differential form of the
equations is discretized and the nodal values are used, in Finite Volume Method the terms are
evaluated as fluxes at surfaces of each volume.

In order to clarify the discretization using the Finite Volume Method, let us rewrite the set
of equation into a different vector form. First, we shorten the notation of partial derivatives as
follows:

ut =
∂u

∂t
, ux =

∂u

∂x
, uz =

∂u

∂z
(4.8)

In addition we denote the meaning of newly defined vectors. First, vector W contains the computed
quantities and P multiplying constants:

W =


p
ρ′

u
w

 , P =


1
β2

1
1
1

 , (4.9)

inviscid flux vectors are defined as:

F =


u
ρ′u

u2 + p
ρ0

uw

 , G =


w
ρ′w
uw

w2 + p
ρ0

 (4.10)

Viscous fluxes are the following:

R =


0

(ν + ν
T
)ρ′x

(ν + ν
T
)ux

(ν + ν
T
)wx

 , S =


0

(ν + ν
T
)ρ′z

(ν + ν
T
)uz

(ν + ν
T
)wz

 (4.11)

Lastly, the vector representing the force effects in a stratified fluid:

f =


0

w · γ
0

− ρ′

ρ
0
g

 (4.12)

Then we can express our system of non-homogenous, two-dimensional Navier-Stokes equations
in conservative form to model variable density incompressible flow, as follows:

PWt + Fx + Gz = Rx + Sz + f (4.13)

This is the system used for Finite Volume Method in numerical simulations presented in this thesis.
Next we approach to the discretization of this system. In the derivation, we mostly follow [16].

First step is to integrate the set of equations over the control volumes. Each and individual control
volume has its own corresponding set of equations. Since we consider only two dimensions, we will
refer to the control volume as a 2D cell D = Di,j .

Starting with rearrangement of the system (4.13):

PWt + (F −R)x + (G − S)z = f (4.14)
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after integrating over the cell D we get:

P
∫
D

WtdS +

∫
D

(F −R)xdS +

∫
D

(G − S)zdS =

∫
D

f dS (4.15)

We can also combine the two integrals with spatial derivatives:

P
∫
D

WtdS +

∫
D

[
(F −R)x +

∫
D

(G − S)z
]
dS =

∫
D

f dS (4.16)

Next step is to apply Green’s theorem, establishing a relationship between a line integral around
a simple closed curve in a two-dimensional plane and a double integral over the region enclosed by
that curve. For our given situation with structured grid and dS = dxdz, we replace the surface
integral by line integral over the cell boundary ∂D and obtain:

P
∫
D

WtdS +

∮
∂D

(F −R)dz + (G − S)dx =

∫
D

f dS (4.17)

Furthermore, if we denote Wi,j = 1
|D|

∫
D
WdS as the cell average of W over the cell Di,j , we can

then rewrite (4.17) as:

P
∂Wi,j

∂t
+

1

|D|

∮
∂D

(F −R)dz + (G− S)dx =
1

|D|

∫
D

f dS (4.18)

Now to obtain fully discrete system we have to address the infinitesimal integrals and deriva-
tions. As it was proposed earlier in this work, we deal with it using MacCormack scheme. Thus,
we choose the discrete approach. Meaning the integrals both in space and time are approximated
simultaneously into discrete form. However, in order to discretize both inviscid and viscous forces
(involving additional derivation), we are forced to construct two adjoint finite volume meshes as it
is depicted in the Figure 7, where solid lines represent the primary grid and dashed lines are used
for dual cells.

Figure 7: Discretization of the viscous fluxes, retrieved from [3]
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4.3.1 MacCormack scheme

The approach of using MacCormack scheme in FVM follows the same as in the Finite Differ-
ence Method (see section 4.2). The discretization if performed in two steps: predictor-corrector,
combining forward with backward discretization. Moreover, in contrast to DIF, the integrals are
approximated by sums of the fluxes over the faces (edges) of the control volumes. The values of
the fluxes at the faces are computed as average of the values in the centre of the cells adjacent
to the face. This evaluation of fluxes, following the MacCormack logic, is again performed in two
steps. In general the MacCormack scheme for Finite Volume Method can be formulated as follows:

Predictor:

W
n+ 1

2
i,j = Wn

i,j −
∆t

|Di,j |

( 4∑
k=1

[
(Fn

k −Rn
k )∆zk − (Gn

k − Sn
k )∆xk

]
+ fi,j

)
(4.19)

Corrector:

Wn+1
i,j =

1

2

(
Wn

i,j +W
n+ 1

2
i,j − ∆t

|Di,j |

( 4∑
k=1

[
(F

n+ 1
2

k −R
n+ 1

2

k )∆zk − (G
n+ 1

2

k − S
n+ 1

2

k )∆xk

]
+ fi,j

))
(4.20)

with fi,j being directly evaluated as a cell average of f :

fi,j =

∫
Di,j

f dS (4.21)

Now we proceed to discretization of the fluxes. First we address the inviscid terms. Following
Figure 8 illustrates the process.

(a) Predictor: backward step (b) Corrector: forward step

(c) Predictor+Corrector

Figure 8: Discretization using MacCormack scheme, retrieved from [29]
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The fluxes discretization using MacCormack scheme goes as follows:
Predictor:

F1 = Fi,j , F2 = Fi,j , F3 = Fi−1,j , F4 = Fi,j−1 (4.22)
G1 = Gi,j , G2 = Gi,j , G3 = Gi−1,j , G4 = Gi,j−1 (4.23)

Corrector:

F1 = Fi+1,j , F2 = Fi,j+1, F3 = Fi,j , F4 = Fi,j (4.24)
G1 = Gi+1,j , G2 = Gi,j+1, G3 = Gi,j , G4 = Gi,j (4.25)

In order to discretize viscous fluxes, we need dual volumes to evaluate the velocity gradients, as
it is depicted in the Figure 9. After evaluation of the additional derivatives over the dual volumes,
the vectors R, S are then discretized similarly to inviscid fluxes in (4.22)-(4.25).

Figure 9: Discretization of the viscous fluxes, retrieved from [29]

The approximation of the gradients in viscous terms begins with replacing of the partial deriva-
tive by line integral over the dual cell boundary ∂D̃:

ux ≈ 1

|D̃|

∮
∂D̃

uνxdxdy, (4.26)

where D̃ is the area of the appropriate dual cell and νx represents the outer normal to the dual
cell boundaries. That is followed by approximation of the line integral by discrete sum over the
dual cell faces:

ux ≈ 1

|D̃|

∮
∂D̃

uνxdxdy ≈ 1

|Dm|

4∑
m=1

umνxlm, (4.27)

where um is the value in the centre of m-th dual cell face and lm is the length of the given face
(edge). Computed as average of the value in the centre and corresponding vertex of the primary
cell, with the vertex value being evaluated as average of the four surrounding cell-centred values.
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4.4 Meshing of the domain
This section deals with meshing of the computational domain and addressing the problem of
modelling an obstacle within the domain.

In the preceding thesis, only structured and uniform (orthogonal and equidistant) grid was
used. However, when refining the mesh in order to achieve better accuracy, the computational
cost gradually increases, due to the reason that the whole domain is refined. This approach may
be sufficient for simple problems, such cases will be presented in the Validation chapter, where
the mesh can be relatively coarse. As the complexity of the problems increases, the practicality of
simple uniform mesh declines rapidly.

In general, results of numerical simulations strongly depend on the mesh used. Therefore,
more sophisticated approach is introduced in this work. Structural grid still holds, primarily to
maintain the ability to build on the previous work and to easily present comparison of the different
approaches. The improvement lies in refining the mesh only locally in the expected areas of large
or sudden changes in values of computed quantities. In the studied problems of this work, it is
exclusively the area close to the ground, to correctly resolve the boundary layer.

In addition, we will perform the refinement gradually. The main idea of the gradual refinement
(and coarsening) is based on refining by reducing the size of the cells to minimum in the area of
interest along with coarsening (increasing the size of cells) further in the domain. Since we expect
the largest velocity gradients close to the ground and more uniform flow in the top of the domain,
this approach suits perfectly for our purposes. In this way, the same number of cells is kept while
the accuracy is improved. The grid created using this approach will be referred to as gradually
refined mesh. The following Figure 10 shows the comparison of uniform and gradually refined
mesh (in the vertical direction) with the same number of cells.

(a) Uniform mesh (b) Gradually refined mesh

Figure 10: Mesh refinement

However, this approach may be accompanied by several problems. Besides the need to pay
attention to the choice of time step, it is necessary to guarantee a smooth change in size of the
cells. In case, we increase (decrease) the size unduly or choose too big of time-step not respecting
the smallest of cells, the stability of the numerical method will not be maintained. The choice
of the time step will be discussed later in the numerical simulations chapter. In case of gradual
refinement, we maintain the procedure of increasing (decreasing) the cell sizes by maximum of 3%.
Moreover, to sustain the most stability and accuracy close to the ground, we keep the first few
cells at the bottom constant in the smallest size before proceeding to smooth increase in size.

4.4.1 Immersed boundary method

Building on the previous work, we first present simple but elegant approach to implement an
obstacle inside the computational domain. It is called Immersed boundary method, first
introduced in [27]. The method is based on meshing the whole domain regardless of the obstacle
and then enforcing zero values for all velocity components inside of the computation domain where
the obstacle lies. Thus, the boundary is immersed into the domain by zeroing velocity to represent
the interaction of fluid with solid boundary.
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The main advantage of this method is its simplicity. It does not require any complex inter-
vention to the mesh or code, only enforcing zero velocity at desired location. Application of the
method is shown in the Figure 11, where black colour represents the mesh area where the fluid
flows freely and red shows the immersed boundary, where velocity is forced to be zero.

Figure 11: Immersed boundary method

The accuracy of this method is mesh-dependent again. It may result in incorrectly high gradient
of velocity in the area around the obstacle, because the transition between solid boundary (obstacle)
and the flow is not otherwise resolved and depends only on the appropriate position and number
of grid points in that area.

4.4.2 Wall fitted mesh

Other, more realistic approach is so called Wall fitted mesh. The meshing is performed only in
the area where the fluid flows, thus copies the solid boundary. The mesh is therefore curved along
the obstacle by moving the corresponding grid points to desired location. Such meshing is shown
in Figure 12.

Figure 12: Wall fitted mesh

Wall fitted mesh represents the more intuitive and closer to reality approach of representing the
domain. Additionally, higher accuracy can be achieved due to better control over the position of
the grid points and imposition of the proper boundary conditions at the edge of the obstacle. On
the other side, this approach is more complicated to implement. The mesh has to be additionally
curved, grid points above the obstacle gradually shifted and the sizes of the cells and its faced
recalculated in order to use the correct values in the equations.

Selecting and constructing the suitable mesh for a given problem may become a very challenging
task. Therefore, we will elaborate on it more later in this work. The specific mesh and obstacle
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modelling approach will be presented in each case and the study of mesh dependency will be
discussed in the chapter of numerical simulations.

4.5 Implementation and monitoring
Implementation of the numerical methods takes place in the programming environment MATLAB.
The code consists exclusively of self-developed scripts. This custom solver includes: meshing of the
domain, declaring all the necessary variables, computing of the discretized equations and processing
basic graphical visualizations of the results. Although MATLAB is suitable for numerical comput-
ing, for the purpose of better quality visualization, more powerful tool - Paraview - is additionally
used. Therefore, data obtained from conducted simulations in MATLAB are then post-processed
in Paraview. These graphical outputs are then presented in this work.

In order to track the convergency of the numerical solutions, i. e. reaching a steady-state
solution, we introduce the residues. Residues represent the difference between the values in the
current and the previous iteration. We use the information to map the rate of the convergence and
to check the achievement of a steady-state solution.

For the purposes of this work, we define residues using the Euclidean norm of the difference of
the two consequent iterations related to the size of the computational field. This way of tracking
convergence is propagated for example in [20]. Mathematically speaking it can be written as
follows:

Rez (W ) =
∥Wn+1 −Wn∥2

nx · nz
=

√∑
i,j

(
Wn+1

i,j −Wn
i,j

)2
nx · nz

(4.28)

In addition, to more thoroughly compare the results of numerical simulations with analytical
solution, we introduce another quantity to track the accuracy during simulation. It is a quantity
evaluating the norm of the difference between the horizontal velocity of numerical u and analytical
ua solution related to the average in one cell. The determination of is similar to the calculation
of residues ()4.28) except the difference of two iterations is substituted with difference of the two
solutions, as reads:

ur =
∥ ua −u∥2
nx · nz

=

√∑
i,j

(
uai,j −ui,j

)2
nx · nz

(4.29)
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5 Validation
The mathematical model representing and approximating the physical reality was presented in
chapter 3. It was followed by numerical methods providing discretization in order to implement
the set of equations in code and conduct simulations of the fluid flows. In this section a validation
of this code is presented. It contains two classic problems with existing analytical solution. First,
we take the well-known and widely used validation case - laminar channel flow in two dimension,
to simply test the basic function of the methods. Then we test the solver on a problem of stratified
fluid flow on a slope.

5.1 Laminar channel flow
First test case consists of commonly used problem, that can be imagined either as a flow between
two plates or a channel flow. In each case, in 2D, the setup is identical. At the top and bottom
a solid boundary is considered, following the so called no-slip condition, where the velocity at the
wall equals zero and the fluid flows from inlet to outlet due to existing pressure gradient. Figure ??
shows the setup of the case, where the flow in the direction x is caused by the difference between
the inlet pressure p1 and the outlet pressure p2.

Figure 13: Channel flow setup

The flow is simplified to be steady, laminar and incompressible with constant density ρ. That
leads to the system of Navier-Stokes equations in the following (conservative) form:

0 =
∂u

∂x
+

∂w

∂z
(5.1)

∂u

∂t
= −∂(uu)

∂x
− ∂(uw)

∂z
− 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂z2

)
(5.2)

∂w

∂t
= −∂(uw)

∂x
− ∂(ww)

∂z
− 1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+

∂2w

∂z2

)
, (5.3)

This system of equation describes the laminar channel flow fully. Next we approach to solving this
system both analytically and numerically.

5.1.1 Analytical solution

Analytical solution of this setup can be obtained with the help of few simple considerations.
Nevertheless, it was already derived in the preceding work [36]. Thus, only the result is provided
here.

Considering only two-dimensional domain, constant density, steady state and fully developed
one-dimensional flow, it simplifies to horizontal velocity equation:

u(z) =
pout − pin

L

z
(
z −H

)
2µ

, (5.4)

where the velocity depends on vertical direction z and the pressure gradient caused by the difference
of inlet pin outlet pressure pout. From the equation (5.4) it is apparent that the maximum velocity
occurs in the middle of the channel, namely:

umax = u

(
H

2

)
=

pin − pout
L

H2

8µ
. (5.5)
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The resulting parabolic velocity profile is presented in Figure (14).

Figure 14: Velocity profile - analytical solution

5.1.2 Numerical solution

The validation was performed for both Finite Difference Method and Finite Volume Method (dis-
cretization described in the previous chapter). The solutions by both methods were carried out
on the same uniform mesh, using artificial compressibility method and MacCormack scheme. The
parameters defining the settings of the case are the subject of the following paragraphs.

Mesh

Computational domain has length L and height H and is covered by mesh of nx number of points
in the x direction and nz number points in z direction. Thus the equidistant distances between
the grid points (size of the cells) are determined by ∆x = L/nx and ∆z = H/nz. The specific
numbers used in this case are:

• L = 3.0

• H = 1.0

• nx = 30

• nz = 100

• ∆x = 0.1

• ∆z = 0.01

We assume a fully developed flow with parabolic velocity profile in z and no significant changes in
the x. Thus small number of points nx in horizontal direction is justified, because only the vertical
direction needs to be resolved in detail.

Initial parameters

The test case is designed for laminar flow. The flow regime is controlled by Reynolds number
Re < 2300. The following parameters meet the condition. The simulation always runs until the
prescribed number of iterations nt.

• ρ = 1000 kg ·m−3

• ν = 1.0 · 10−3 m2 · s−1

• β = 5.0m · s−1

• pin = 10.0 Pa

• pout = 0.0 Pa

• ∆t = 5.0 · 10−3

• nt = 1.0 · 106

The above mentioned parameters are the ones used to obtain the presented results. Simulations
testing other setups and mesh refinements were undertaken. These, however, present the best
practice for the given situation and code.

Initial conditions were always chosen uniformly for the whole velocity and pressure fields. Specif-
ically in this test case as:

u
0
= 0, w

0
= 0, p

0
= pin
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Boundary conditions

Next, values at the boundaries need to be prescribed. In case of velocity components, the values
represent the physical reality at the given domain (e.g the zero velocity at the wall). For pressure
the boundary conditions are not in the traditional physical meaning. However, to be able to
numerically compute the pressure field from the modified continuity equation (4.1), the boundary
conditions for pressure have to be imposed. Nevertheless, in order to be completely transparent
about how the numerical simulation was set up, we present the so-called boundary conditions in
each case in this work.

Boundary conditions for both methods were set up in following manner. On the inlet (left)
boundary are for both velocity components prescribed homogenous Neumann conditions and
Dirichlet condition for inlet pressure.

∂u

∂x
= 0,

∂w

∂z
= 0, p = pin

Oulet boundary is resolved in similar manner:
∂u

∂x
= 0,

∂w

∂z
= 0, p = pout

Top and bottom boundaries have the exact same conditions prescribed. Velocity components follow
the no-slip condition and homogenous Neumann condition is used for pressure.

u = 0, w = 0,
∂p

∂z
= 0

Numerical results

The Figure 15 presents the contours of the velocity. That represents the horizontal velocity fields
across the whole computational domain, where the maximum value is reached in the middle of the
channel. On the left hand side is the result of DIF solution and the sub-figure on the right belongs
to FVM.

(a) Finite Diference Method (b) Finite Volume Method

Figure 15: Canal - horizontal velocity fields
The next Figure 16 shows the comparison of velocity profiles in the middle of the channel

obtained from analytical solution (red line) and numerical simulation (blue markers).

(a) Finite Diference Method (b) Finite Volume Method

Figure 16: Canal - horizontal velocity profiles
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It is obvious that from both methods we have obtained accurate results matching the analytical
solution. Therefore, validation of the code on this simple test case was successful.

The convergence can be reviewed in the Figure 17. Residues are shown for both methods and all
computed quantities: u, w, p. Both solutions reached a steady state solution, where both solutions
did not change significantly after 4 · 105 iterations. However, in case of DIF, the residues are still
chaotically changing for another three hundred thousand iterations, after which the values stabilize
and become constant. FVM converges surely after 4·105 iterations with residues slightly oscillating
the whole time of the simulation. Nevertheless, we let both of the solutions run significantly longer,
up to 1 million iterations, to ensure that no further changes occur.

(a) Finite Diference Method (b) Finite Volume Method

Figure 17: Channel flow - residues

Figure 18: Horizontal velocity difference

To further compare the methods in terms of accuracy, we present the Figure 18 that maps
the norm of the difference ur between the numerical solutions and analytical solution during the
simulation. Both solutions have very similar course with steep decline in the first three hundred
thousand iterations. After that DIF reaches constant value for the rest of the simulation. FVM
achieves lower values by approximately one degree of magnitude, but it is accompanied by a steady
slight oscillations of the values.

Therefore, FVM provides higher accuracy, but needs to be carefully implemented in other cases
to avoid the increase in oscillations of values. Nevertheless, both methods have provided convincing
accuracy.
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5.2 Stratified fluid flow on a slope
Second test case consists of more complex problem, flow of a stratified fluid on a slope. More
specifically, we consider a stable stratification with density decreasing with distance from the wall
in the direction opposite to the act gravity.

The computational domain is simplified to two-dimensional region on an infinite inclined flat
plate. For an easier description of the case, the physical coordinates of horizontal and vertical
directions are transformed by the plate tilt angle α. The coordinate x is thus parallel with the plate
and the expected flow direction and z is perpendicular to the plate and indicates the distance from
the wall. The setup is shown in the Figure 19, where the blue region highlights the computational
domain, that is filled by stratified fluid.

Figure 19: Stratified fluid flow on a slope setup, adapted from [3]

Due to the transformed coordinates x, z, the gravity acceleration from the original system
g = (0,−g) is also transformed to g = (gx, gz) = (g sinα,−g cosα). The stratification is assumed
to be constant and stable. Density is thus changing only linearly in the opposite direction to
gravity acceleration g from the highest to the lowest. Therefore, the density gradient γ must also
be expressed in the new coordinate system as γ = (γ sinα,−γ cosα). The background density of
the fluid can be thus described as follows:

ρ0 = ρ∗ + γx sinα− zγ cosα. (5.6)

where ρ∗ is the density at the origin of the coordinates.
The case is again assumed to be steady, laminar and incompressible. The flow is induced by

setting density perturbation ρ′w on he wall. The expected results are the velocity u and density
perturbation ρ′ profiles changing only with the distance from the wall. Navier-Stokes equations
describing this fluid problem can be written in the (conservative) form as follows:

0 =
∂u

∂x
+

∂w

∂z
(5.7)

∂ρ′

∂t
= −∂(ρ′u)

∂x
− ∂(ρ′w)

∂z
+ κ

(
∂2ρ′

∂x2
+

∂2ρ′

∂z2

)
− uγ sinα+ wγ cosα (5.8)

∂u

∂t
= −∂(uu)

∂x
− ∂(uw)

∂z
− 1

ρ∗
∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂z2

)
+

ρ′

ρ∗
g sinα (5.9)

∂w

∂t
= −∂(uw)

∂x
− ∂(ww)

∂z
− 1

ρ∗
∂p

∂z
+ ν

(
∂2w

∂x2
+

∂2w

∂z2

)
− ρ′

ρ∗
g cosα, (5.10)

Again, analytical solution is available for this setup. In the following sections, we will show the
analytical and numerical solutions for the system above.

5.2.1 Analytical solution

Analytical solution of this problem was also already derived in the preceding work [36]. After
including consideration of time-steady, fully-developed flow and linearly stratified fluid and using
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basic differential and integral calculus, we can, from the set of equations (5.7)-(5.10), arrive at
equations for velocity and density perturbation as follows:

ρ′(z) = ρ′w exp

(
− z

l

)
cos

(
z

l

)
(5.11)

u(z) = ρ′w

√
gκ

γµ
exp

(
− z

l

)
cos

(
z

l

)
(5.12)

where ρ′w is the density perturbation at the wall and the length l is determined by:

l = 4

√
4µκ

gγ sin2 α
(5.13)

Dependencies of the quantities on the distance from the wall, obtained analytically, are shown
in the Figure 20 on the logarithmic scale.

(a) Velocity u profile (b) Density perturbation ρ′ profile

Figure 20: Analytical solution - velocity and density perturbation profiles

5.2.2 Numerical solution

As in the previous case, validation was performed for both Finite Difference Method and Finite
Volume Method. Again, both solutions were carried out on the same uniform mesh with artificial
compressibility method and MacCormack scheme. We also keep the same notation for the following
parameters, that represent the best practice for the given case and solver.

Mesh

• L = 3.0

• H = 1.0

• nx = 100

• nz = 100

• ∆x = 0.03

• ∆z = 0.01

In this case, due to the increase of complexity, the number of cells also increased in comparison to
the previous problem.

Initial parameters

Initial parameters were chosen to maintain laminar flow. Moreover, it is necessary to prescribe
additional parameters for the stratified fluid, which were explained in the previous sections.

• ρ′w = 1 kg ·m−3

• ν = 1.0 · 10−3 m2 · s−1

• κ = 1.0 · 10−3 m2 · s−1

• β = 15.0m · s−1

• g = 10.0m · s−2

• γ = 1.0 · 10−2 kg ·m−4

• α = 30

• ∆t = 5.0 · 10−4

• nt = 5.0 · 106
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Initial conditions, inducing the flow, are represented by setting the density perturbation at the
wall ρ′w = 1 kg ·m−3. All the other values: velocity components u

0
, w

0
, pressure p

0
and the rest

of the density perturbation field ρ′
0

are set to zero.

Boundary conditions

On the wall (inclined plate) the velocity components follow the no-slip condition, density per-
turbation keeps the the value ρ′w and pressure at the solid boundary is determined by quadratic
extrapolation. That can be summarized as:

u = 0, w = 0, pi,j = 3 · pi,j+1 − 3 · pi,j+2 + pi,j+3, ρ′ = ρ′w

The top is considered as an open boundary, thus the conditions are prescribed as follows:

∂u

∂z
= 0,

∂w

∂z
= 0, p = 0,

∂ρ′

∂z
= 0.

The computational domain is considered as a part of a larger region consisting of steady developed
flow in one direction parallel to the ground. Therefore, only homogenous Neumann conditions are
imposed on the inlet and outlet:

∂u

∂x
= 0,

∂v

∂x
= 0,

∂p

∂x
= 0,

∂ρ′

∂x
= 0.

Numerical results

Results obtained from both methods (DIF, FVM) are shown in the following figures. Again, we
follow the order of DIF being on the left hand side and FVM on the right hand side.

First the profiles of fully developed horizontal velocity (parallel to the ground) and density
perturbation are shown in Figure 21 and Figure 22 respectively. The profiles are depicted depending
on the distance from the wall (z coordinate in this setup) on a logarithmic scale in comparison
with the analytical solution. Blue markers represent the values obtained from numerical solutions
and red line the analytical result.

(a) Finite Diference Method (b) Finite Volume Method

Figure 21: Stratified flow on a slope - horizontal velocity profiles
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(a) Finite Diference Method (b) Finite Volume Method

Figure 22: Stratified flow on a slope: density perturbation profiles

It is worth noting that the logarithmic scale does not show the exact value on the wall where
z = 0. However, both solutions asymptotically reach to the value prescribed on the wall by
boundary conditions. In this form the results are presented mainly to illustrate the dependency
on the z as clearly as possible.

Additionally, the following Figures 23 and 24 show the contours of u and ρ′, obtained by both
methods, to display the values across the computational domain. One can see that the values
of both quantities are constant along the x coordinate in the whole domain. That means, fully-
developed steady flow is indeed achieved.

(a) Finite Diference Method (b) Finite Volume Method

Figure 23: Stratified flow on a slope - horizontal velocity fields

(a) Finite Diference Method (b) Finite Volume Method

Figure 24: Stratified flow on a slope - density perturbation fields

The residues do not provide any distinction between the methods. For that reason, we excluded
them from this section to avoid redundancy. Both solutions however, reached a developed steady-
state flow and are consistent with the analytical solution, as demonstrated above. To compare
the course of the simulations, the Figure 25 shows the norm of the difference of velocity between
numerical and analytical solutions depending on the number of iterations. FVM takes longer to
obtain a constant value. During the course of the simulation the FVM solution oscillates more
around the exact seeking value, but eventually arrives closer to the exact analytical solution.
Nevertheless, the final value of the difference is lower than in DIF. Therefore we may state, that
the solution from FVM is again slightly more accurate.
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Figure 25: Horizontal velocity difference

We have presented the results of flow of stratified fluid on the slope. Results obtained from
our simulations using both methods convincingly correspond with the analytical solution, as it was
demonstrated on the velocity and density perturbation profiles. However, FVM provided more
accurate results in terms of smaller difference between horizontal velocity. On the other hand, DIF
possesses the advantage of less computational effort. Nevertheless, we can state that the solver,
with 2 different methods included, was validated even for the case of stratified fluid flow.
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6 Numerical experiments
In this chapter, numerical experiments conducted by custom validated code are presented. The
dealt problems are no longer possible to be simply solved analytically. The aim is to provide
results closer to real atmospheric flows while sustaining relative simplicity in numerical simulations.
Therefore, in all following cases we consider flows in the atmospheric boundary layer and introduce
obstacles in the computational domain, that represent hills in the real nature.

First, we introduce a case where only laminar flow is considered and a very simple form of an
obstacle. Next, turbulence model, described in Chapter 3, is incorporated. Afterwards the main
objective will be presented - atmospheric turbulent flow over various hills, where the simulations
will be compared with wind tunnel experiments performed by other authors.

In connection with this case, thorough discussion of mesh-dependency, boundary conditions,
accuracy and applicability of the methods will be provided. Furthermore, the studied case will be
extended to stratified fluid flow.

Results will be again presented from both numerical methods used. The main emphasis is on
the Finite Volume Method with the use of wall fitted mesh. However, to expand the discussion and
to highlight differences and shortcomings, the Finite Different Method with immersed boundary
method to model obstacles is also included.

All the following cases have similar general setups. The computational domain is considered
to reflect part of a flow region close to the ground and represents the atmospheric flow in reduced
scale, similar to wind tunnel experiments. In addition, all systems are again simplified to two
dimension, mainly to reduce computational effort. The initialization, obstacle shape and the flow
regime and other parameters differ in each case.

Generally, all the cases can be described by the same set of Navier-Stokes equations, namely
(3.38), (3.39) and (3.40), which includes all possible aspects of the mathematical model presented
in Chapter 3. In each case, the individual simplifications and parameters will be mentioned. The
main differences between the cases lie in the geometry of the hill and whether or not we consider
the fluid to be densely stratified. From now on, however, we will refer only to this complete system
of governing equations in all cases.
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6.1 Laminar flow of stratified fluid over a hill
6.1.1 Setup

This particular case serves as an introduction to atmospheric flow over a hill. It includes a very
simple geometry, the hill is represented as part of a circle of radius r = 0.2m. Height of the hill
h is determined as a proportion of the height of the computational domain h = H

10 . The location
of the hill is also also proportionally determined as xh = 9 h = 9

10H. The setup is depicted in the
Figure 26 even with boundary conditions.

To add simplicity, the flow regime is also maintained laminar. Therefore, turbulence properties
νT and κT included in equations (3.39) and (3.40) are set to zero in this case. Nevertheless, the
fluid is considered to be stably stratified.

Figure 26: Laminar flow over a hill setup
In case of DIF, the hill is modelled with the Immersed boundary method, whereas in FVM the

wall fitted mesh approach is used. The mesh is uniform in both cases except for the wall-fitted
mesh above the hill, where the points are shifted upwards and the grid gradually smoothed up
to the top of the domain. Nevertheless, for both methods the same number of grid points on the
same computational domain is used, namely:
Mesh

• L = 3.0

• H = 1.0

• nx = 100

• nz = 100

• ∆x = 0.03

• ∆z = 0.01

Due to the increase of complexity, the number of cells also increased.
Initial parameters
The parameters were chosen in connection with a number of related laboratory experiments, for
example [24] and [28], that study densely stratified water-based liquid in a tank. In addition, to
maintain laminar flow the following input values are used:

• ρ∗ = 1000 kg ·m−3

• ν = 1.0 · 10−3 m2 · s−1

• κ = 1.0 · 10−3 m2 · s−1

• β = 5.0m · s−1

• g = 10.0m · s−2

• γ = 100 kg ·m−4

• u = u(z)m · s−1

• umax = 0.25m · s−1

• ∆t = 1.0 · 10−3

• nt = 1.0 · 106

The flow is initialized by inlet velocity profile. Horizontal velocity component is set as a function
of vertical coordinate z (distance from the ground) assuming parabolic shape up to the half of the
domain and fully developed flow above, namely:

u(z) =
4umax

H2
· z

(
H − z

)
for z ∈

〈
0,

H

2

)
u(z) = umax for z ∈

〈
H

2
,H

〉
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Other quantities are set to zero, therefore the initial conditions can be summarized as follows:

u0 = u(z), w0 = 0, p0 = 0, ρ′
0
= 0.

The background density changes again only linearly depending on the type of stratification, that
is according to density gradient γ

ρ0 = ρ∗ − γz, (6.1)

where ρ∗ is the density at the ground.

Boundary conditions

As previously demonstrated, on the wall the velocity components follow the no-slip condi-
tion. Pressure and density perturbation are on the boundary prescribed by Neumann homogenous
conditions:

u = 0, v = 0,
∂p

∂y
= 0,

∂ρ′

∂y
= 0.

The top is considered as free stream boundary, therefore Neumann homogenous conditions is
applied to all computed quantities:

∂u

∂z
= 0,

∂w

∂z
= 0,

∂p

∂z
= 0,

∂ρ′

∂z
= 0.

On the inlet boundary the velocity profile is kept for horizontal velocity component and other
conditions are set as follows:

u = u(z), w = 0,
∂p

∂x
= 0, ρ′ = 0.

Pressure is held at a fixed value on the outlet along with Neumann homogenous conditions for the
other quantities:

∂u

∂x
= 0,

∂w

∂x
= 0, p = 0,

∂ρ′

∂x
= 0

6.1.2 Numerical results

As previously mentioned, this case serves as an introduction to the problem of flow over hill.
Therefore, only a brief summarization of the results is presented. Figure 27 shows a comparison of
Finite Difference and Finite Volume methods, where horizontal velocity components are depicted
as contours in the whole domain. Same as before, DIF is on the left and FVM on the right.

In the immersed boundary method (used only in DIF), the hill is not physically created in the
domain, only the velocity components are enforced to be zero. For that reason, the hill is only
marked by white line in Figure 27a and the hill is in blue colour representing zero velocity. In
FVM on the other hand, the hill is not part of the computed field, due to the use of wall-fitted
mesh.

Nevertheless, the resulting velocity fields results very similar regardless of the method used.
For a closer look, the comparison of vertical velocity components is provided in Figure 28. We can
again see many similarities in the results from both methods.

In general, a visible vertical movement is present due to the interaction of the flow with the
obstacle. That is an expected outcome. The flow is deflected upwards by the hill presence and
then it again tends to fill the bottom part of the domain. However, the flow does not return to its
original form, but the effect of the obstacle persists through the whole domain and we can observe
waves in the flow behind the hill.
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(a) Finite Diferences: u (b) Finite Volumes: u

Figure 27: Laminar flow over hill - horizontal velocity component

(a) Finite Diferences (b) Finite Volumes

Figure 28: Laminar flow over hill - vertical velocity component

The effect is further enhanced by the stratification of the fluid. That causes the wave patterns
of vertical velocity component values in the whole domain. The flow without stratification would
result in visible changes only in close vicinity of the hill, as it was demonstrated on similar case in
[36]. In addition, the flow velocity would return to its original profile more easily. Therefore, this
case provides first indication, that stratification should not be overlook, although this is rather an
extreme case.

Due to the strong correlations between the methods using very different approaches, we as-
sume the results to be accurate for this setup. In addition, both approaches of hill modelling are
acceptable. We will now proceed to the cases involving turbulent flow.
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6.2 Turbulent flow over sinusoidal hills
In this section, simulations of turbulent flows over hills are presented. The mixing length model
is implemented to calculate the turbulence properties in each iteration using the equations (3.43)
and (3.45).

Stratification is controlled via the Richardson number Ri defined by the relation (2.4). Along
with other initial parameters, Ri is chosen as an input value and the density gradient γ is then
determined according to this relation. Richardson number Ri > 0 defines stable stratification with
γ consequently also positive. Ri = 0 implies γ = 0 and neutral (no) stratification and lastly Ri < 0
results in negative density gradient γ and unstable stratification.

6.2.1 Setup

In addition, we introduce more precise representation of a hill. Instead of a circle shape, sinusoidal
profile is implemented. It represents smooth transition between the horizontal ground and the
obstacle. Sinusoidal shape is commonly used in many numerical and experimental studies. The
profile is given by the following expression:

zs(x) =
h

2

[
1 + cos

(
πx

2L1

)]
(6.2)

The height of the sinusoidal hill zs with respect to the ground is depending on the horizontal
direction x, where h is the maximum height of the hill, L1 is the half-length of the hill.

For the purpose of comparison of our simulations and wind tunnel experiments, we chose
the study [19], where the flows over sinusoidal hills are measured. In addition, the mentioned
study also involved numerical simulations, where the authors used more complicated approaches
to resolve turbulences: the κ− ϵ model and low-Re-number model. Thus the goal is to reproduce
the case setup and conduct simulations with the validated custom code using simple mixing length
turbulence model to compare and discuss the results. The schematic setup of the studied problem
with the hill properties is presented in the Figure 29.

Figure 29: Sinusoidal hill setup, reprinted from [19]

The experiment of [19] was conducted in an open circuit boundary layer wind tunnel with a
test section of width, height and length of 1.2m, 1.2m and 6m. The flow was induced by inlet
velocity creating well-developed boundary layer of zd = 0.25m depth, developed wind speed above
the boundary layer umax = 7m · s−1 and logarithmic velocity profile fitting the function:

u
0
(z) =

u∗

κ
ln

z

z0
, (6.3)

where u∗ = 0.33m · s−1 is friction velocity, κ = 0.41 von Kármán’s constant, z0 = 0.05mm rough-
ness parameter and z distance from the ground. It is worth noting that von Kármán’s constant
is usually mentioned in literature under κ, however we already used it for diffusion coefficient.
Therefore, for the purposes of this work, we allow ourselves to denote it by κ. The velocity profile
u

0
(z) can be also seen in the Figure 29 along with the projected profile above the hill.
In our simulations we use the exact same hill shapes and inlet velocity profile as in the afore-

mentioned study [19]. The whole computational domain is represented in the following Figure 30.
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In our simulations, the centre of the hill is located at 30% of the length of the whole computational
domain xh = 0.3L. Since are imposing the already developed velocity profile right on the inlet,
only smaller part of the domain is required upstream of the windward side. Thus we can leave
the major region of the domain behind the hill in order to better map the flow on the lee side and
further downwind.

Figure 30: Flow over sinusoidal hill setup

The hills investigated in this case consist of 4 different types differing in the maximum height
h and the length L1, or in other words the slope of the hill s = (h/2)

L1
. An additional complication

in the small scale wind tunnel testing is resolving the small scale turbulences. Particularly, the
calculation of the mixing length ℓ strongly depending on the choice of the asymptotic value ℓ∞, as
(3.42) shows. Consequently, the parameter has strong influence on the numerical results. Therefore,
it must be chosen adequately. For our simulations we used values suitable for this setup, based
on [3], where one can also find thorough explanation behind the choice. The following Table 1
summarizes the hills parameters along with the corresponding ℓ∞.

Hill slope s height h length L1 ℓ∞
S3H4 0.3 4 cm 6.67 cm 7.943mm
S5H4 0.5 4 cm 4.0 cm 11.44mm
S3H7 0.3 7 cm 11.76 cm 5.756mm
S5H7 0.5 7 cm 7.0 cm 8.19mm

Table 1: Hill parameters

Mesh

The computational domain, simplified to 2D, remains the same for every hill shape and for both
numerical methods. The meshing of the domain differs from the previous cases. Wall-fitted mesh
with gradual refinement in the vertical direction is implemented. This meshing approach is exactly
illustrated in the Figure 12. Additionally, to correctly resolve the area closest to the ground, several
first points near the ground are kept equidistant at the minimum distance zmin and then gradually
increased by 3% up to the top of the domain.

Horizontal refinement was also tested, but did not provide any significant improvement or
change in the results. Mesh-dependency of this setup was thoroughly tested and will be shown
later in this chapter. For the purpose of simulate the wind tunnel experiment and achieve matching
results following wall-fitted mesh parameters were used:

• L = 2.0m

• H = 0.5m

• nx = 200

• nz = 100

• ∆xuni = 1 · 10−2 m

• ∆zmin = 1 · 10−3 m
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Initial parameters

The turbulent flow of this case is characterized by the Reynolds number, which is in the experiment
based on the depth of the boundary layer:

Reδ =
δ · umax

ν
= 1.17 · 105.

Therefore, the summarization of our corresponding initial parameters reproducing the case reads:

• ρ∗ = 1.225 kg ·m−3

• ν̃ = 1.5 · 10−5 m2 · s−1

• κ̃ = 1.5 · 10−5 m2 · s−1

• β = 2.0m · s−1

• g = 10.0m · s−2

• u = u(z)m · s−1

• umax = 7m · s−1

• u∗ = 0.33m · s−1

• κ = 0.41

• z0 = 5 · 10−5 m

• zd = 0.25m

• Pr
T
= 0.74

• ∆t = 2.0 · 10−5

• nt = 5.0 · 106

where the parameters with tilde, namely ν̃ and κ̃ denote only the constant (laminar) part of the
quantities. Turbulent components are determined based on the mixing length turbulence model.

The experiment in [19] was designed to reflect the atmospheric boundary layer, however con-
sidering only neutrally stratified fluid. Therefore, the density is constant ρ = ρ∗ in the whole
computational domain and density perturbation ρ′ is then not computed.

The flow is initialized by setting horizontal velocity profile, that follows the function (6.3). In
order to run a stable simulation, the velocity profile is initially set in the whole domain, as it is
expected that the final solution will not differ dramatically in the vast majority of the domain.
Other quantities are again set to zero. Initial conditions can thus be written as summarized as
follows:

u
0
= u(z), w

0
= 0, p

0
= 0

Boundary conditions

Boundary conditions are again based on the study [19]. The experiment was performed in a wind
tunnel, where the top boundary is solid wall. However, in order to reflect reality more closely,
the actual measurement of velocity is performed only up to certain height, where the velocity is
fully developed and maintains constant value umax along the measured domain. Therefore, also in
their numerical simulations, the velocity values are prescribed using Dirichlet conditions at the top
boundary. We follow the setup in order to match the results with our own simulations. However,
the approach in modelling real atmospheric flows would be different. Boundary conditions and
the influence of their choice will be discussed later in this work. The settings for the purposes of
comparison with experimental data is the following.

On the wall, no-slip condition is imposed for the velocity components and homogenous Neumann
condition for pressure:

u = 0, v = 0,
∂p

∂y
= 0

As mentioned, the top is considered as solid boundary, specific values used are:

u = umax, w = 0,
∂p

∂z
= 0.

On the inlet boundary the velocity profile is kept for horizontal velocity component and other
conditions are set as follows:

u = u(z), w = 0,
∂p

∂x
= 0

Finally, pressure is held at a fixed value on the outlet along with Neumann homogenous conditions
for velocity components:

∂u

∂x
= 0,

∂w

∂x
= 0, p = 0
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6.2.2 Comparison with experimental data

Here we present the numerical results and compare them with experimental data. The flows over
different hills differ in each case. The main distinction in characteristics is the attachment or
separation behind the hill. As expected, the separation occurs when the hill is steeper. On the
contrary, when the slope is lower, the flow has more tendency to attach to the wall. Moreover, the
higher the height of the hill, the larger the area of recirculation behind the hill. These conclusions
are based on the experimental study [19]. Nevertheless, our simulations correctly achieve the same
results. The Figure 31 presents the resulting velocity fields of flows over the four hill types obtained
from the Finite Volume method.

(a) S3H4

(b) S5H4

(c) S3H7

(d) S5H7

Figure 31: Turbulent flow over hills - velocity fields
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The whole computational domain is depicted with total velocity contours and streamlines. The
flow is completely attached over the S3H4 hill and separation with recirculation zones are visible
behind all the other hills. The biggest difference can be observed between the smaller hills. With
the same height only by changing the slope it goes from smooth attached flow over S3H4 to visible
separation of significant length behind the S5H4. The separation is caused by more sudden change
in flow direction, which is induced by the steepness of the hills S5H4 and S5H7.

To demonstrate the recirculation zones more clearly, domain-wide streamlines are shown for
each hill. In the first case, over S3H4, streamlines demonstrate completely attached flow. On the
contrary, S5H4, shows the circulating fluid behind the hill. As demonstrated in 32, recirculation
grows with the height of the hills and tends to be larger behind the steeper hills. In flow over
S3H7 the recirculation forms but only closely to the ground and does not significantly affect the
over-going flow. Finally, the largest region of recirculation is behind the hill S5H7.

(a) S3H4

(b) S5H4

(c) S3H7

(d) S5H7

Figure 32: Turbulent flow over hill - streamlines
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This general description provide expected and meaningful results that are consistent with the
conclusions drawn in the study [19]. Nevertheless, in order to properly compare the results from
simulations with experimental data, we will discuss the separation regions in more detail. The
following two figures show details of the two distant flow regimes over hills S3H4 and S5H4 from
the mentioned wind tunnel study in Figure 33 and our simulations in Figure 34. Each sub-figure
always depicts only part of the domain in the close vicinity of the hill. In the Figure 33 the axes are
described in the relative scale to the hill’s properties and the markers ° express the experimental
data and solid lines show the results from the simulations conducted in the same study.

(a) S3H4

(b) S5H4

Figure 33: Turbulent flow over hills - velocity profiles from experiment, reprinted from [19]

Flow over S3H4 remains attached and no separation occurs. Only change of velocity profile
over the hill is visible. The change in profile is expected, because the mass flow must remain the
same in the region of the closed wind-tunnel. Therefore, the same amount of fluid mass must flow
in each vertical section. Figure 33b with flow over S5H4 shows detail of the separation region. The
point of reattachment is measured from the the centre of the hill xh. In this case the reattachment
point is at the position 5.25 · L1 from xh, as the line in the figure indicates. Thus, for S5H4 with
L1 = 4 cm, the flow in the wind tunnel is reattached after 0.21m.

Figure 34, containing results from our simulations, presents similar detail of the separation
region, but only in the original coordinate system. However, great effort was made to reproduce
the detailed view as close as possible. The centre of the hill is positioned xh = 0.6m and the
separation and reattachment points are marked by red arrows.
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(a) S3H4

(b) S5H4

Figure 34: Turbulent flow over hills - velocity profiles from simulations using FVM

Similarities are evident in both results. Velocity profiles follow the same patterns. However, in
our simulations small separation occurs even over the S3H4 hill. Minor but traceable detachment
is marked by the arrows in 34a. In contrast, the authors of the experiment declare no separation
in their flow over the S3H4. However, the presented results do not show any visible velocity profile
near the downwind foot of the hill, where the very small separation is present in our simulation.
Therefore, the minor discrepancy may also be due to the measurement method having difficulty
detecting such thin separation. The inaccuracy on our side could be caused by the non-optimal
choice of ℓ∞ influencing the turbulent component of viscosity.

The flow over the second and steeper hill S5H4 results in significant separation region. On the
first sight, the velocity profiles coincide. As already stated, the separation in the experiment occurs
along the length re = 5.25 · L1 = 0.21m behind the hill, where the flow again reattaches. In the
results obtained from our simulations, the point of reattachment is at rs = 0.2m = (5.0) · L1 from
the hill centre xh. In addition, the experiment always operates with a certain degree of uncertainty.
The point of reattachment in the [19] was given as re = (5.25± 0.5) ·L1. The results are thus in a
good agreement and we can confirm our data reliable.

Additionally, in order to improve clarity, we provide the velocity contours with streamlines in
this detailed view in the Figure 35. The dark blue contours depict the separation areas, small
and thin region at the downwind foot of S3H4 not affecting the general flow and larger significant
region behind S5H4.
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(a) S3H4

(b) S5H4

Figure 35: Detail of smaller hills regions - contours of velocity with streamlines

After demonstration of the results and discussion over the comparison, we can conclude, that
we achieved sufficiently matching results with the experimental data. Therefore, we can state
that our FVM simulations provide meaningful and accurate results even for turbulence flows and
realistic geometries. All that only with the use of simple turbulence model. It allows us to study
the problem in more detail and discuss other approaches. We will now leave the comparison and
continue with further investigation of the flows over different hills and discussion of other aspects
and influences of the parameters in the numerical simulations.

6.2.3 Investigation of the flows

Similarly as in the previous cases of smaller hills, that were used for comparison with experimental
data, we now provide the detailed view of the separation region for the hills S3H7 and S5H7 in
Figure 36.

As we can see from the marking arrows, both hills have a significantly long separation region.
The reattachment point for both cases lies at the position 0.4m from the centre of the hill xc.
However, that corresponds to 3.4 · L1 for S3H7 and 5.7 · L1 for S5H7. Thus, o relative scale, the
separation region of S5H7 is substantially (1.7 times) larger the the one of S3H7. In addition, the
Figure 37 containing velocity contours with streamlines shows the recirculation zone of S5H7 being
larger and more interacting with the over-going flow. The immense influence of the steepness of
the hill is thus again demonstrated.
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(a) S3H7

(b) S5H7

Figure 36: Turbulent flow over hills - velocity profiles over higher hills

(a) S3H7

(b) S5H7

Figure 37: Detail of higher hills regions - contours of velocity with streamlines
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Other than the horizontal velocity u, that represents the dominant component of the total ve-
locity displayed in the figures above, we also compute and measure the vertical velocity component
w and pressure p. Figure 38 shows the vertical flow velocity fields over different hills in the whole
computational domain. In all cases, the same and expected pattern is visible. Significant increase
of w on the windward side of the hill occurs as the flow is forced upwards, followed by negative
values of w (blue regions) on the leeward side indicating a downward direction of the flow.

(a) S3H4

(b) S5H4

(c) S3H7

(d) S5H7

Figure 38: Turbulent flow over hills - vertical velocity w fields

However, the magnitude of downward flow varies considerably. In the case of S3H4, where no
separation occurs the values of w are almost symmetric around the centre of the hill and closely
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attached to it. For the the steeper hill S5H4, however, the flow is not directed downward adjacent
to the hill, but slowly slopes further until it reaches the reattachment point at 0.8m. In addition,
the positive values of w in the close proximity of the hill on the lee side confirm the presence of
recirculation zone behind the hill.

The situation is essentially the same in case of higher hills, only the magnitude of vertical
movement increases. The flow over S3H7 is attached more closely to the hill with only small
separation at the downwind foot of the hill and big separation with slow reattachment occurs
behind the S5H7.

We can also observe the shortcomings of our simulations in the form of oscillations above the
steeper hills S5H4 and S5H7. As the contours demonstrate, values of vertical velocity component
w do not vary uniformly in space as expected. Due to the steeper hills and more sudden changes
in the flow directions, oscillations in this quantity are visible. We have tried to make sure, that
these small irregularities are not caused by unsteadiness. In all the presented cases we reached a
steady solution. It is demonstrated in the Figure 39, where the residues of numerical solution of
flow over the S5H7 hill are depicted.

Figure 39: Turbulent flow over a hill - Residues FVM

Ideally, a damping numerical method should be implemented in order to smooth out the oscil-
lations. Since, the main focus was to obtain reasonable overall results and present comparison of
different approaches, the numerical damping was not yet implemented in our code. However, ad-
dressing this deficiency should be one of the first steps in any subsequent work in order to improve
the numerical results.

The numerical oscillations are more obvious in the Figure 40, where pressure distributions
around each hill are presented. It is worth reminding, that the pressure field represents the com-
puted values of pressure perturbation component, as it was described in the section concerning
mathematical model.

The distributions correspond with the velocity profiles. Above the hill the pressure decreases as
the velocity increases due to the conservation of mass in the enclosed space. Consequently in flows
above higher hills the low pressure areas are significantly larger as the velocity increases more. In
addition, the low pressure extends to the lee side in cases, where the separation occurs. In case of
steeper hills, dark blue region of high negative pressure values is extended even to the downwind
foot of the hill. Whereas for S3H4 the pressure distribution is again almost symmetrical around
the centre of the hill.

Nevertheless, the oscillations are again visible in the flows over steeper hills. Reasonable imple-
mentation to suppress the oscillations would be to directly change the computation of new pressure
values between predictor and corrector of the MacCormack scheme. The current approach is to
calculate the next value of pn+1

i,j using the values from previous step p̃
n+1/2
i,j in the centre of the

cells. What could help to smoothen the oscillations is to not take the centre values, but to calculate
the average from the four vertices surrounding it. In this way, we suppress the sudden changes in
values in neighbouring cells. Implementation to only pressure field will not aggressively effect the
solution in general, but still could help to damp the oscillations. It is a damping method that was
used in similar in the Lax-Friedrichs scheme in the preceding work. However, as already stated
before, numerical damping of any sort in the FVM was not yet properly tested for the presented
problem.
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(a) S3H4

(b) S5H4

(c) S3H7

(d) S5H7

Figure 40: Turbulent flow over hills - pressure p fields

6.2.4 Mesh dependency

In this section, the mesh dependency of the results is presented. First, we focus on the influence
of number of grid points used in the vertical direction of gradually refinement mesh. We stay with
the same problem of atmospheric flow over a sinusoidal hill. Although, for the discussion of mesh
dependency we only show the results for hill S5H4.

Many meshes were tested in order to find the optimal mesh for all the simulations. For brevity,
only a subset of the results is presented. Testing of the mesh dependency of gradual refinement
was performed by changing the number of grid points in the vertical direction along with a corre-
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sponding change of the minimum cell size. In doing so, we kept the rate of change constant and
eliminated the inaccuracy due to the lack of smoothness. The following results concern meshes
varying at the scale of 2. Figure 41 displays the velocity fields of results obtained on different
meshes. It proceeds from the top from the coarsest to the finest mesh. The label always states the
number of points in horizontal and vertical directions as nx × nz.

(a) 200x50

(b) 200x100

(c) 400x200

Figure 41: Mesh dependency - velocity fields

The mesh in the middle represents the one, that was finally selected and whose results were
validated against experimental data in the previous section. We can see that on the mesh 200x50
the separation region behind the hill is overestimated. This means the mesh does not sufficiently
resolve the near wall reagion correctly. Rest of the domain seems to be indistinguishable. Therefore,
we present the detailed section around the hill with velocity profiles.
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(a) 200x50

(b) 200x100

(c) 400x200

Figure 42: Mesh dependency - velocity profiles

Figure 42 confirms the first conclusion of excessive separation region on the coarsest mesh.
The reattachment point is further downwind from the hill as the arrow indicates. In addition, the
velocity profile above the hill does not match the expected profile with higher velocity near the
ground. Therefore, it had to be refined in order to accurately capture it.

On the other hand, further refinement had no significant effect. The results are totally consis-
tent, as can be seen in both Figure 41 with velocity contours in the whole domain and 42, where
the points on velocity profiles (number of arrows with velocity magnitude) were deliberately set
the same in the post-processing to demonstrate the similarities. Moreover, the double refinement
was carried out not only in the vertical direction but also in the horizontal direction. However,
that did not bring any improvement. Thus, no further refinement is necessary and the 200x100
grid can be declared optimal for our purposes.

Nevertheless, due to the existing oscillations in some of the results, as it was demonstrated
in the previous section, for every subsequent work it would be reasonable to consider less radical
coarsening in the upper parts of the domain. Slower coarsening of the mesh or using equidistant
cells in the upper region may also help to mitigate the oscillations and improve the numerical
results in general.

Apart from that, in order to demonstrate the advantages of gradually refined mesh we present
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the following Figure 43 with comparison of gradually refined mesh and equidistant (in each direction
separately) mesh. Due to the reason that the main differences occur in the close vicinity of the
hill, we show only the detailed section with velocity profiles.

(a) Equidistant mesh - 200x100

(b) Gradually refined mesh - 200x100

Figure 43: Mesh comparison: velocity profiles

Both meshes consist of the same number of points 200x100 in horizontal and vertical directions
respectively. However, the differences in the results are significant. Similarly to the previous case,
equidistant mesh does not resolve the region near the ground correctly. The reattachment point
is 1.5 times farther downwind than when using gradually refined mesh. The velocity profiles over
the hill also do coincide.

The situation is even worse than in case of 200x50 gradually refined mesh. It is so, due to the
different smallest size of the cell edge length in vertical direction ∆zmin, located near the ground.
For the gradually refined mesh with 200x100 points the value ∆zmin = 1 · 10−3 m is set. Whereas
for the equidistant mesh the size of the cell near the ground equal to the size of all the other cells,
which is 5 times larger.

In this mesh-dependency section we validated our choice of the computational mesh. Any
further results presented in this work are also conducted on this mesh without explicitly stating
so.

6.2.5 Comparison of numerical methods

Further we approach to discussion about the accuracy and practicality of the numerical methods.
We present the comparison of DIF and FVM side by side of all the hills studied. The following
Figure 44 contains velocity fields with streamlines of the whole computational domain. Finite
Difference Method is again presented on the left side and Finite Volume Method on the right.
The setup and initial parameters are exactly same in both cases. Simulations using FVM were
conducted on the wall-fitted gradually refined mesh discussed in the previous section. DIF sim-
ulations on the other hand, due to simpler implementation in existing code, were conducted on
equidistant mesh (of corresponding size to match the ∆zmin) with the use of immersed boundary
method. Thus, the hill is actually part of the computational domain and is only marked by white
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line in the figure. Blue colour in the area of the hill reflects the enforced zero velocity instead of
real obstacle.

(a) DIF: S3H4 (b) FVM: S3H4

(c) DIF: S5H4 (d) FVM: S5H4

(e) DIF: S3H7 (f) FVM: S3H7

(g) DIF: S5H7 (h) FVM: S5H7

Figure 44: Comparison of methods - velocity fields

At a first glance, significant differences are clearly visible. DIF, where the separation is vastly
larger than in the validated FVM case. Even for the least disruptive hill S3H4 a significant
separation occurs. In the case of higher hills S3H7 and S5H7 we can even observe recirculation
zones of three times the size of the hills themselves. That is clearly demonstrated in Figure 45.

As the methods were used on the exact same setup and under the exact same conditions,
it is difficult to explain the significant differences only by one cause. We already discussed the
reasonable accuracy of the FVM. Therefore, we consider the solutions from DIF as incorrect.
Some of the inaccuracy probably falls on the approach of modelling the obstacle. The method of
simple immersed boundary, where the hill is part of the meshed domain and only the velocity is
enforced zero may not be sufficient enough for simulations of turbulent flows. The zero velocity
persists behind the hill are much longer than it should. The flow in DIF simulations is too deflected
upwards, creating an overestimating recirculation region delaying the flow reattachment.

The advantage of FVM with wall-fitted mesh is also that the shape of the hill and the position
of the grid points are specifically controlled. It is determined in the meshing process, as the mesh
follows the shape given by the expression 6.2. In contrast, when using the immersed boundary
method, the hill is part of meshed domain and only in the points located under or on the curve
of the hill the velocity is enforced zero. Which may result in sharp corners, causing additional
separation. In addition, these imperfections are exposed more in the turbulent flow regime.
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(a) DIF: S3H4 (b) FVM: S3H4

(c) DIF: S5H4 (d) FVM: S5H4

(e) DIF: S3H7 (f) FVM: S3H7

(g) DIF: S5H7 (h) FVM: S5H7

Figure 45: Comparison of methods - streamlines

However, the results are too distant to account the differences only to the immersed boundary
method or the form of discretization in DIF method. At least part of the problem lies in the
implementation of the turbulence model to the code with finite differences. In the laminar case,
earlier in this section, we found solid correlations between the methods. However, the modelling
of the turbulence is clearly not accurate in this case.

In the problem of laminar flow over a hill, a stably stratified fluid could have had additional
influence on suppressing the differences between the methods. The stratification used was rather
strong, therefore the induced vertical movement could outweigh other influences. Nevertheless, in
this case of neutrally stratified fluid in turbulent regime, we are witnessing clearly non-matching
results. The problem probably lies in some mistake in the code development, which has not yet
been found, but will certainly be the objective of any further work on the custom code.

6.2.6 Boundary conditions discussion

In this section, we differ from the study [19] in regards to boundary conditions. The experiment
was performed in an wind tunnel, where they have stated maximum developed velocity at a certain
height from the ground. The enclosed space of a wind tunnel has its limitations and do not precisely
match the open region of real flow in ABL.

Nevertheless, we achieved matching results from our simulations using corresponding boundary
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conditions. On the top the following Dirichlet boundary conditions were imposed:

u = umax, w = 0.

With respect to studying atmospheric flows, a wind tunnel has the limitations of confined space.In
nature, there are no solid top boundaries that limit the space in which the fluid flows. However,
numerical simulations do not have to be constrained by these limitations. We can simply use
different, however appropriate boundary conditions. The approach to more real atmospheric flow
in open area is to consider the top boundary as a free stream. In the simulations we therefore
impose the homogenous Neumann conditions, namely:

∂u

∂z
= 0,

∂w

∂z
= 0,

∂p

∂z
= 0.

Many tests and simulations over all the different hill shapes were performed. We provide the
summarization of the results in the following figures to clearly show differences and impacts of the
boundary conditions described above.

First, the Figure 46 displays the general overview of velocity contours with streamlines in the
whole domain. On the left we can find the results using Dirichlet conditions for velocity components
on the top boundary and on the right the results with Neumann homogenous conditions. We can
clearly see that when the conditions are set up to reflect wind tunnel testing, the separation regions
behind the hills are smaller than in the case of free stream top boundary.

(a) Dirichlet conditions: S3H4 (b) Neumann conditions: S3H4

(c) Dirichlet conditions: S5H4 (d) Neumann conditions: S5H4

(e) Dirichlet conditions: S3H7 (f) Neumann conditions: S3H7

(g) Dirichlet conditions: S5H7 (h) Neumann conditions: S5H7

Figure 46: Comparison of boundary conditions - velocity fields
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Across the free stream boundary, the flow is allowed to escape the computational domain, which
we assume to be only a part of open space above the ground. For that reason, the streamlines are
deflected upwards when encountering the obstacle, especially in the case of higher hills. Since the
flow is not pushed downwards due to existing solid boundary, bigger recirculation zone is created
behind the hill. Figure 47 shows the streamlines alone to depict the situation more clearly.

We can observe that even for the least disruptive hill S3H4 a small recirculation zone is formed.
For the higher hills it is even more significant, as the recirculation is considerably larger and the
reattachment of the flow is farther downwind.

(a) Dirichlet conditions: S3H4 (b) Neumann conditions: S3H4

(c) Dirichlet conditions: S5H4 (d) Neumann conditions: S5H4

(e) Dirichlet conditions: S3H7 (f) Neumann conditions: S3H7

(g) Dirichlet conditions: S5H7 (h) Neumann conditions: S5H7

Figure 47: Comparison of boundary conditions - streamlines

For better visibility, we provide the Figure 48 with detailed region around two of the hills
showing the biggest differences. It demonstrates the significant increase in the recirculation zones
on the lee side of the hills. The possibility for the flow to expand through the top boundary has
thus non-negligible impact on the flow near to the ground.

62



(a) Dirichlet conditions: S3H7 (b) Neumann conditions: S3H7

(c) Dirichlet conditions: S5H7 (d) Neumann conditions: S5H7

Figure 48: Comparison of boundary conditions - velocity detail fields

To be complete in the velocity description, we additionally present the vertical component in
Figure 49. The contours just confirm the above stated conclusions. We can observe a decrease in
te blue regions representing smaller downward movement. Dirichlet conditions cause the flow to
be more attached to the ground. Neumann conditions on the other hand allow the flow to continue
upwards, therefore the downward movement behind the hill is less and the reattachment occurs
more slowly.

In addition, we can see an improvement in terms of oscillations. Using Dirichlet conditions
has led to generally reasonably accurate results, but some quantities, including vertical velocity
component w, showed visible numerical oscillations. We already provided some suggestions, how to
numerically dampen the irregularities. Nevertheless, the choice of Neumann homogenous conditions
visibly helped to smooth the contours of w.

It is worth reminding that both solutions were conducted on the very same gradually refined
mesh and differed only in the boundary conditions. We can then interpret it as that the free stream
boundary does not aggressively prescribe exact values along the entire boundary, but uses values
in neighbouring cells. That allows for the values in the domain to change gradually instead of
oscillating between values of neighbouring cells.
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(a) Dirichlet conditions: S3H4 (b) Neumann conditions: S3H4

(c) Dirichlet conditions: S5H4 (d) Neumann conditions: S5H4

(e) Dirichlet conditions: S3H7 (f) Neumann conditions: S3H7

(g) Dirichlet conditions: S5H7 (h) Neumann conditions: S5H7

Figure 49: Comparison of boundary conditions - vertical velocity components

In conclusion, the importance and influence of the boundary conditions should certainly not
be underestimated. Our effort was made to develop a setup, that more closely approximates real
atmospheric flows. The change of boundary conditions is again one small step in that direction.
Therefore, with many simplifications made still in mind, we will continue to further study of
the flows with the free stream boundary conditions. In the next section, we will proceed with
implementation of the commonly neglected density stratification.

6.2.7 Stratification impact

Now we approach to the influence of stratification. So far, we have presented and discussed the
problem of turbulent flows over hills in neutrally stratified fluid medium. As explained previously
in the work, assumption of constant density ρ is a common simplification, but does not fully corre-
spond to real atmospheric flows. Therefore, in this section we present the results and comparison
of neutral, stable and unstable stratification.

We then use the full system of equations (3.38), (3.39) and (3.40). The implementation and
calculation of the density perturbation ρ′ was already validated in the previous section. The
stratification is controlled via the Richardson number Ri. We use the the values Rin = 0, Ris = 1
and Riu = −1 for neutral, stable and unstable stratification respectively. The values represent
rather stronger in order to demonstrate the effects of stratification.

The setup is the same as in the previous cases, with the chosen gradually refined mesh. For
boundary conditions the variant including free stream at the top boundary is imposed, as the
computational domain represents part of open space in the atmospheric boundary layer. Moreover,
we present the results again only on the flow over the S5H4 hill.

Figure 50 shows the contours of velocity with streamlines. The neutral stratification, inves-
tigated in all previous sections is at the top, followed by stable and unstable stratification. The
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impact of stable stratification is not as significant as unstable stratification, which completely
changes the nature of the flow. However, even when the general flow in stable stratified fluid is
maintained, the increase in recirculation zone occurs.

(a) Neutral

(b) Stable

(c) Unstable

Figure 50: Stratification influence - velocity fields

Unstable stratification provides visibly different results. The general flow slows considerably as
it interacts with the obstacle. The velocity profile behind the hill does not return to its original
form. It shows quite the contrary. The depth of the boundary layer increases steadily throughout
the domain. Thus, we can see significant consequences even far from the hill itself.

Following figure 51 with streamlines demonstrates increase of the recirculation zone behind
the hill in the stably stratified fluid. In contrast, no recirculation zone is formed in the unstable
stratification. The horizontal velocity decreases while the vertical movement is gaining importance,
deflecting the flow upwards but at the same time the fluid fills the region behind the hill. That
results in the streamlines passing through the top free stream boundary and no recirculation zone
is formed.
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(a) Neutral

(b) Stable

(c) Unstable

Figure 51: Stratification influence - streamlines

In the Figure 52 shows the vertical velocity component. It again confirms the above conclusions.
A significant vertical movement is visible on the windward side with slower sloping behind the hill
in stable stratification and the spread of the vertical movement along the whole domain can be
seen in unstable stratification.

66



(a) Neutral

(b) Stable

(c) Unstable

Figure 52: Stratification influence - vertical velocity component w

To illustrate changes in turbulence properties due stratification, we present the kinematic vis-
cosity ν fields. The contours of ν, including the constant laminar component ν̃ and turbulent
component ν

T
, are depicted in Figure 53.

It is important to note that the kinematic viscosity of unstably stratified fluid is shown on
different scale, that is 10 times higher than the scale used for neutral and stable stratification.
Therefore, the turbulent viscosity ν

T
of unstably stratified fluid is much larger than in the other

cases. In the case of stable stratification, the increase in viscosity in slightly smaller than in the
case of constant density. The cause of the differences is the impact of stabilization function G in
the mixing length turbulence model. The verified and tested function increases or decreases the
effect of the turbulence viscosity based on the type of stratification.
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(a) Neutral

(b) Stable

(c) Unstable

Figure 53: Stratification influence - kinematic viscosity ν fields, different scale

Kinematic viscosities on the same scales are shown in Figure 54. We see that at this scale the
viscosity of neutral and stably stratified fluid appears almost constant. The turbulent component
viscosity is negligible compare to the unstable stratified case.
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(a) Neutral

(b) Stable

(c) Unstable

Figure 54: Stratification influence - kinematic viscosity ν fields, same scale

To complete the description of stratified fluid flows, density perturbations for each of the strat-
ification types are depicted in Figure 55. In case of neutral stratification, the density perturbation
is of course zero by definition, since the total density remains constant. On the contrary, stratified
fluids both show visible but opposite action. In both cases, the density perturbation moves from
the area of higher values of background density to the area of lower values.
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(a) Neutral

(b) Stable

(c) Unstable

Figure 55: Stratification influence - density perturbation ρ′ fields, different scale

Again, the scales of stable and unstable stratification differ by a factor of ten. For a better
comparison, Figure 56 is presented, that highlights the significantly larger density perturbation in
unstable stratification than in stable stratification where the perturbations are relatively negligible.
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(a) Neutral

(b) Stable

(c) Unstable

Figure 56: Stratification influence - density perturbation ρ′ fields, same scale

We have again provided some demonstrations of the effects of stratification. Although in many
cases, the density gradient would be much smaller, the impacts should not be neglected, but rather
be kept in mind when studying atmospheric flows.

In real nature, all types of stratification periodically occur in the atmosphere. All the situations
and effect discussed above eventually combine. Therefore, the real situation is, as always, even
more complex. However, by validating, comparing with experimental data, investigating and
discussing the additional influences of numerical methods as well as effects of non-constant density,
we have once again come a little closer to an accurate description of the atmospheric flows using
mathematical modelling and numerical methods.

71



7 Conclusion & Remarks
This work has dealt with the subject of numerical simulations of atmospheric flows. All simulations
have been conducted in a self-developed code from the ground up with all the described numerical
methods implemented. It is a continuation of the preceding Bachelor’s thesis. Therefore, it is a
result of several years of work, which involved the theoretical study of the problem, pursuit of a
deeper understanding of the physical phenomena in the atmospheric boundary layer, along with the
efforts to derive and implement the mathematical model and apply the numerical methods. Not to
mention the long hours of developing the custom code and resolving issues associated with it, and
finally processing the results and the effort to present them in a structured and understandable
way.

The beginning of the work has been devoted to the description of physical aspects of the
atmospheric flows. Involving all complexities of the real nature situation and introducing the first
simplifications made in order to model the problem virtually while maintaining practicality of the
approach. Special attention has been given to the phenomenon of density stratification, that occurs
in reality, but is commonly neglected in the literature and other simulations or experiments.

It has been followed by the mathematical description of the fluids flows with respect to the
specifics of atmospheric boundary layer. Appropriate mathematical model involving the complete
description of flows with modelling of turbulence and accounting even for the density stratification
has been derived. The turbulence regime of the atmospheric flows was resolved using simple but
elegant mixing length model, that when correctly implemented in the self-developed code has
provided reasonably accurate and meaningful results.

The mathematical description has been extended by the section of numerical methods. That
has provided explanation of the methods used: Finite Volume Method, Finite Difference Method
for discretization and Artificial Compressibility Method to numerically resolve the equations. De-
scription of the first mentioned involved a complete derivation of the discretization of the governing
equations.

In the following sections, the results obtained from the simulations have been presented. First,
validation of the solver has taken place. It involved two test cases, simple laminar channel flow
and stratified fluid flow on a slope. The custom code has been successfully validated on both cases
with different numerical methods. All performed simulations resulted in fully developed flows with
velocity and density profiles consistent with the analytical solutions.

Therefore, the next section has approached more complex problems. An obstacle, representing a
hill, has been introduced. Initially, the hill of simple geometry has been implemented in the laminar
flow. Then, after demonstrating solid correlations between solutions using different numerical
methods, a turbulent flow regime has been set up. Which has led to the main objective of the work:
simulations of turbulent flows over various types of sinusoidal hills, representing simplified flow
problems in the atmospheric boundary layer. The simulations have been compared to experimental
data from wind-tunnel study of atmospheric flows.

Simulations using Finite Volume Method have accomplished a good agreement with the exper-
imental data. After achieving corresponding results with the measurements, deeper investigation
of the flows and numerical methods has been presented. It involved complete description of the
computed fields, mesh-dependency discussion, study of boundary conditions influence and compar-
ison of methods. Finally, the impacts of density stratification have been demonstrated to reflect
the importance of wise choice of simplifications.

On the brighter side, apart from successful simulations using FVM, the effects of different hill
shapes have been described in detail and the choice of the optimal mesh has been thoroughly
discussed. In addition, more reality reflecting boundary conditions have been presented and the
non-negligible impacts of stratification have been demonstrated. On the other hand, lack of success
has occurred in the implementation of Finite Difference Method in turbulence flows, strongly
different from other results. Moreover, numerical oscillations occurred in some cases. However,
suggestions to resolve these problems have been provided and their implementation is considered
to be high priority for any future work.

Nevertheless, to point out the progress from the preceding thesis, the work has been expanded
by the turbulence modelling, Finite Volume Method, wall-fitted meshing, more sophisticated and
realistic geometries and comparison with experimental data. Thus, a significant number of advances
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and achievements have been made. Moreover, this work may serve as an inspiration for future works
and authors to wisely choose simplifications and what approaches and mistakes to avoid.

Nevertheless, the main achievement is the good agreement with the experimental data. The
numerical simulations performed with the self-developed code have provided accurate results that
agree with the measurements and have lead to corresponding and meaningful conclusions. In
addition, the significant impacts of density stratification in the atmospheric boundary layer have
been demonstrated, as well as the emphasis on the suitable choice of parameters of numerical
simulations.

In any case, the presented work also contains certain inadequacies that should be the objective
of any future work. That concerns implementation of the dampening of the numerical simulations
occurring in some of the results. Additional possible improvements could be to introduce more
complex geometries, combination of hills with other obstacles, such as buildings or trees and
extension of the simulations to three dimensions. In connection with that, more complex turbulence
model could be introduced in order to compare the results or to correctly resolve more complicated
problems. The use of commercial software for CFD simulations, could also be incorporated for
comparison with the custom code to highlight the advantages and disadvantages of each approach.

The thesis, with its comprehensive physical description of atmospheric flows, formulation of
mathematical model, description of numerical methods, validation of self-developed code and pre-
sentation of many numerical results fully meets the requirements of the assignment. All in all, the
presented thesis has reached its goals and has served for the author as a tremendously valuable
tool to obtain much deeper understanding of the fluid flows and helped to develop many useful
skills applicable in engineering future.

73



References
[1] ANDERSON, J. D. Fundamentals of Aerodynamics atmosphere. Sixth edition. New York:

McGraw-Hill Education. 2017, ISBN: 978-1-259-12991-9.

[2] BLACKADAR, A.K. The vertical distribution of wind and turbulent exchange in a neutral
atmosphere. Journal of Geophysical Research, 67(8), 3095–3102, 1962.

[3] BODNÁR, T. Numerical Simulation of Flows and Pollution Dispersion in Atmospheric Bound-
ary Layer. Thesis, Czech Technical University in Prague, 2003.

[4] BODNÁR, T. Mathematical Modelling and Numerical Simulation of Mountain Canyon Flows.
Thesis, Czech Technical University in Prague, 2003.

[5] BOUSSINESQ, J. Essai sur la théorie des eaux courantes, volume Tome XXIII of Mem-
oires presentes par divers savants a l’Academie des Sciences de l’Institut National de France.
Imprimerie Nationale, Paris., 1877.

[6] CHASSAING, P., ANTONIA, R.A. ANSELMET, F. JOLY, L. and SARKAR, S. Variable
Density Fluid Turbulence. Springer, 2002.

[7] CHENG, W.-CH., PORT’E-AGEL, F. A Simple Mixing-Length Model for Urban Canopy
Flows Boundary-Layer Meteorology, 181, 1–9, 2021.

[8] CHORIN, A.J. A numerical method for solving incompressible viscous flows problems. Journal
of Computational Physics, 2(1), 12–26, 1967.

[9] ESTOQUE, M. A., BHUMRALKAR, C. M. Flow over a localized heat source. Monthly
Weather Review, 97(12), 850–859, 1969.

[10] FEISTAUER, M. and FELCMAN, J. and STRAŠKRABA, I. Mathematical and Compu-
tational Methods for Compressible Flow atmosphere. New York: Oxford University Press,
Numerical mathematics and scientific computation, 2003, ISBN: 0-19-850588-4.

[11] FERREIRA, A. D., LOPES, A. M. G., VIEGAS, D. X. & SOUSA, A. C. M. Expermental
and numerical simulation of flow around two-dimensional hills. Journal of Wind Engineering
and Industrial Aerodynamics, 54/55, 173–181, 1995.

[12] FERREIRA, A. D., G., SILVA, M. C. G., VIEGAS, D. X. & LOPES, A. M. Wind tunnel sim-
ulation of the flow around two-dimensional hills. Journal of Wind Engineering and Industrial
Aerodynamics, 38, 109–122, 1991.

[13] FLETCHER, C. A. J. Computational Fluid Dynamics - The Basics with Applications.
McGraw-Hill, 1995.

[14] GARRATT, J. R. The atmospheric boundary layer. Cambridge atmospheric and space series.
Cambridge University Press, 1992.

[15] HIRSCH, C. Numerical computation of internal and external flows, Volume 1: Fundamentals
of Numerical Discretization. John Willey & Sons, 1988.

[16] HIRSCH, C. Numerical computation of internal and external flows, Volume 2: Computational
Methods for Inviscid and Viscous Flows. John Willey & Sons, 1990.

[17] HUNT, J. C. R. & SNYDER, W. H. Experiments on stably and neutrally stratified flow over
a model three-dimensional hill. Journal of Fluid Mechanics, 96(4), 671–704, 1980.

[18] KAIMAL, J. C. & FINNIGAN, J. J. Atmospheric Boundary Layer Flows: Their Structure
and Measurement Oxford University Press, 1994.

[19] KIM, H. G, LEE, C. M., LIM, H. C. & KYONG, N. H. An experimental and numerical
study on the flow over two-dimensional hills. Journal of Wind Engineering and Industrial
Aerodynamics, 66, 17–33, 1997.

74



[20] KOZEL, K. & DVOŘÁK, R. Matematické modelování v Aerodynamice (in Czech) Mathemat-
ical modelling in Aerodynamics Vydavatelství ČVUT, 1996.

[21] KOZEL, K. Numerické řešení parciálních diferenciálních rovnic (in Czech). Numerical solution
of partial differential equations Vydavatelství ČVUT, 2000.

[22] LEVEQUE, R. J. Finite Difference Methods for Ordinary and Partial Equations. Steady-State
and Time-Dependent Problems Society for Industrial and Applied Mathematics, 2007, ISBN:
978-0-898716-29-0

[23] LIONS, P. L. Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models,
Oxford Lecture Series in Mathematics and Its Applications Oxford University Press, 1996,
ISBN: 0-19-851487-5

[24] LONG, R. R, The motion of fluids with density stratification. Journal of Geophysical Research,
64(12), 2151–2163, 1959.

[25] MACCORMACK, R. W. The Effect of Viscosity in Hypervelocity Impact Cratering. AAIA
Paper, 69–354, 1969.

[26] MAHRT, L. Stably Stratified Atmospheric Boundary Layers Annual Reviews of Fluid Me-
chanics, 46, 23-45, 2014.

[27] PESKIN, CH. S. Numerical analysis of blood flow in the heart. Journal of Computational
Physics, 25(3), 220–252, 1977.

[28] PHILLIPS, O. M. On fluids induced by diffusion in a stably stratified fluid. Deep Sea Research,
17, 435–443, 1970.

[29] PIRKL, L. Numerical Simulation of Incompressible Flows with Variable Viscosity. Thesis,
Czech Technical University in Prague, 2007.

[30] PRANDTL, L. The mechanics of viscous fluids. In W. F. Durand, editor, Aerodynamic
Theory, volume III., chapter G., pages 35–208. Julius Springer, 1935.

[31] REYNOLDS, O. On the dynamical theory of incompressible viscous fluids and the determi-
nation of the criterion. Philosophical Transactions of the Royal Society of London. (A.), 186,
123–164, 1895.

[32] SCHETZ, J. A. & FUHS, A. E. Fundamentals of fluid mechanics. John Wiley & Sons, 1999.

[33] SMEDMAN, AS. TJERNSTRÖM, H. & HÖGSTRÖM U. Analysis of the turbulence structure
of a marine jet. Boundary Layer Meteorology, 66, 105–126, 1993.

[34] SPIEGEL, E.A. & VERONIS, G. On the boussinesq approximation for a compressible fluid.
Astrophysical Journal, 131, 442–447, 1960.

[35] SULLIVAN, P. P. MCWILLIAMS, J. C. & MOENG, C.-H. A subgrid-scale model for large-
eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorology, 71(3), 247–
276, 1994.

[36] UHLÍŘ, V. Numerical solution of stratified fluids flows. Bachelor’s thesis, Czech Technical
University in Prague, 2021. (in Czech).

[37] VIOLLET, P.-L. Méchanique des fluides à masse volumique variable. Paris: Presses de l’Ecole
Nationale des Ponts et Chaussées, 1997.

[38] WYNGAARD, J.C. Turbulence in the Atmosphere. Cambridge University Press, 2010.

75


