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zákon).

Datum: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Podpis



Poděkováńı
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Abstract

Anotace

Diplomová práce se zabývá numerickou simulaćı zobecněných Newtonovských
tekutin se zaměřeńım na biomedićınské aplikace. Součást́ı práce je
odvozeńı základńıch rovnic popisuj́ıćıch prouděńı nestlačitelné tekutiny, definice
fyzikálńıch pojmů, které jsou v práci už́ıvány, a popis analytického řešeńı Navier-
Stokesových rovnic pro zjednodušené př́ıpady. K diskretizaci rovnic je užita
metoda konečných objemů umožňuj́ıćı aplikaci na složitěǰśı geometrie bez daľśıch
změn a k provázáńı tlakového pole a pole rychlost́ı jsou použity metody umělé
stlačitelnosti a tlakových korekćı. Tyto dvě metody jsou srovnány na rovném
kanále a kanále se stenózou pro nestacionárńı prouděńı. Následně je disku-
tována volba optimálńı viskozity pro simulace ne-Newtonovského chováńı po-
moćı zjednodušeného modelu Newtonovské tekutiny na r̊uzných geometríıch pro
r̊uzné tlakové spády.

Kĺıčová slova: numerická simulace, nestlačitelné prouděńı, metoda
konečných objemů, diskretizace, metoda umělé stlačitelnosti, MacCormackovo
schéma, metoda tlakových korekćı, power-law model, optimálńı viskozita

Abstract

The diploma thesis focuses on the numerical simulation of generalized New-
tonian fluids with a focus on biomedical applications. The work includes the
derivation of fundamental equations describing the flow of incompressible fluids,
definitions of relevant physical concepts used in the study, and the description of
analytical solutions to the Navier-Stokes equations for simplified cases. The dis-
cretization of equations is achieved through the finite volume method, allowing
for application to complex geometries without further modifications. The cou-
pling of pressure and velocity fields is realized using the artificial compressibility
and pressure correction methods. These two methods are compared on both a
straight channel and a channel with stenosis for unsteady flow scenarios. Sub-
sequently, the selection of optimal viscosity for simulations of non-Newtonian
behavior is discussed using a simplified model of Newtonian fluids on various
geometries under different pressure gradients.

Keywords: numerical simulation, incompressible flow, finite volume method,
discretization, artificial compressibility method, MacCormack scheme, pressure
correction method, Power-Law model, optimal viscosity
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1 Introduction

1.1 Aim of work

The primary objective of this work is to present numerical simulations of incompress-
ible non-Newtonian fluids, with a specific focus on their application in the field of
biomedicine. We will explore and compare two distinct methods for coupling pressure
and velocity within the context of Navier-Stokes equations: the artificial compressibil-
ity method and the pressure correction method. Through this comparison, we seek
to analyze and compare their respective outcomes in test cases driven by oscillating
pressure gradients, mirroring the flow characteristics observed within human veins.

To establish a comprehensive foundation, our approach encompasses two key as-
pects. Firstly, we undertake a validation exercise by examining the flow between two
parallel plates. This validation not only serves to assess the performance of both
methods but also allows for a direct comparison against an analytical solution. Sub-
sequently, we extend our investigation to encompass more intricate geometries, thus
demonstrating the methods’ efficacy in addressing complex flow scenarios.

Another important aspect of this study focuses on understanding the effects of non-
Newtonian fluids using the power law model. We aim to gain insights into how these
effects can be approximated by choosing the right viscosity parameters in simulations
involving Newtonian fluids.

To carry out our investigation, we conducted simulations on three vein-like geome-
tries that resemble those found in the human body. These simulations covered a range
of viscosities and explored six different pressure gradients. This approach helps us
better grasp how fluid properties interact with varying pressure conditions leading to
optimalization of viscosity choices in simulations of Newtonian fluids.

To establish the groundwork for our simulations, we will first delve into the charac-
teristics of different non-Newtonian fluids. We will then proceed to derive the Navier-
Stokes equations that govern fluid flow. Furthermore, we will showcase the analytical
solutions for simplified scenarios such as flow within a tube and between two parallel
plates. In addition to these, we will present an analytical solution for the flow of power
law fluids and we will provide a solution for fluid flow driven by oscillating pressure,
which will serve as a benchmark for comparing the outcomes of our numerical simu-
lations. To solve the Navier-Stokes equations, we will introduce discretization using
finite volumes method. This method allows us to transform the continuous govern-
ing equations into a discrete form that can be solved numerically and compared to
finite difference method, it allows us to use more complex geometries without addi-
tional changes. Finally, we will present discretization of said equations using artificial
compressibility method and pressure correction method.

1.2 Structure of work

The work is divided into four main logical sections: Physical model, Mathematical
model, Numerical model and Numerical experiments.

In Physical model section, we present classification of fluids depending on their
behavior of viscosity, we describe power-law fluids and mention key properties of blood.

Mathematical model section primarily familiarizes us with dimensionless numbers
such as Reynolds and Womersley number, introduces the fundamental system of equa-
tions and essential concepts that will be used in subsequent parts of the work. This
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section covers derivation of continuity equation and the Navier-Stokes equations for in-
compressible fluids and shows analytical solutions for simplified cases of flow in a tube
and between two parallel plates for Newtonian fluid driven by constant pressure, for
power-law model of fluid driven by constant pressure and for Newtonian fluid driven
by oscillating pressure.

The third section, Numerical model, seeks to explain discretization using finite
volumes method and shows us two ways of coupling pressure and velocity for incom-
pressible fluids, artificial compressibility method and pressure correction method.

In last section, Numerical experiments, we present two sets of experiments con-
ducted using solver in MATLAB. First set aims to show simulations driven by oscil-
lating pressure and their solution using artificial compressibility method and pressure
correction method and comparison of their results on straight channel, where we are
able to compare results with analytical solution, and on stenosed channel, to show ad-
vantage of finite volumes method to be easily used on complex geometries. Second set
of experiments aims to compare Newtonian and non-Newtonian fluids for steady cases
and to show optimal viscosity to describe non-Newtonian model as Newtonian. We
present three different cases: simulation on straight channel, simulation on stenosed
channel and simulation on curved channel. To compare the results, we present Eu-
clidian norm of difference between velocity fields of Newtonian and non-Newtonian
fluid.
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2 Physical model

The ”Physical model” section of our study delves into the foundational aspects of the
physical properties that define the behavior of non-Newtonian fluids, particularly fo-
cusing on the characteristics of power-law fluids and their relevance to the dynamics of
blood. By understanding the fundamental properties of these fluids, we can gain valu-
able insights into their intricate behavior and its implications for various applications.

In this section, we embark on a comprehensive exploration of non-Newtonian fluids,
a class of substances that deviate from the classic linear relationship between shear
stress and shear rate. We begin by delving into the concept of viscosity behavior,
which plays a pivotal role in describing how these fluids respond to external forces.
Understanding the nature of non-Newtonian fluids is crucial for accurate modeling and
prediction of their behavior in real-world scenarios.

2.1 Non-Newtonian fluids

Non-Newtonian fluids encompass a wide range of fluids that exhibit complex flow be-
havior and do not adhere to the linear relationship between shear stress and shear rate
observed in Newtonian fluids. Understanding the behavior of non-Newtonian fluids
requires classifying them based on their unique rheological characteristics. Various
classification schemes have been proposed to categorize non-Newtonian fluids, taking
into account different aspects of their flow behavior.

2.1.1 Viscosity behavior

Viscosity behavior is an essential characteristic that helps classify non-Newtonian fluids
into distinct categories. The classification scheme for non-Newtonian fluids is based on
their response to different levels of shear stress and time-dependent deformation. This
classification plays a fundamental role in understanding and characterizing the complex
rheological properties of these fluids. Moreover, it enables engineers and researchers
to design and optimize processes involving non-Newtonian fluids in various industries,
including polymer processing, food production, pharmaceuticals, and biotechnology.

Figure 1: Classification of
fluids with shear stress as
a function of shear rate
[29]

Newtonian fluids Newtonian fluids represent a funda-
mental class of fluids that exhibit a linear relationship be-
tween the applied shear stress and the resulting rate of
deformation. This characteristic behavior is encapsulated
by Newton’s law of viscosity, which states that the shear
stress is directly proportional to the velocity gradient. In
simpler terms, the viscosity of a Newtonian fluid remains
constant regardless of the magnitude of the applied shear
force. This distinctive property of Newtonian fluids makes
them particularly amenable to analysis and prediction us-
ing classical fluid dynamics principles. Their predictable
and linear response to shear forces simplifies the mathe-
matical modeling and simulation of fluid flow in a wide
range of scenarios. Despite their simplicity, Newtonian flu-
ids are a crucial reference point for understanding the more
complex rheological behaviors observed in non-Newtonian
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fluids. Water and most common gases, like air, are prime
examples of Newtonian fluids.

Shear-thinning (pseudoplastic) fluids Moving beyond Newtonian fluids, the sec-
ond class encompasses shear-thinning (pseudoplastic) fluids. In this category, the vis-
cosity decreases as the shear rate increases. These fluids are also known as pseudoplastic
fluids. Shear-thinning behavior is common in solutions containing long-chain polymers
or colloidal particles, where the macromolecules tend to align and slide past each other
under shear. The result is a reduced apparent viscosity at higher shear rates, allowing
for easier flow. This behavior is of significant interest in the formulation of paints,
cosmetics, and various industrial processes.

Shear-thickening (dilatant) fluids A contrasting behavior can be observed in the
third class, known as shear-thickening (dilatant) fluids. Here, the viscosity increases
as the shear rate rises. These fluids are also called dilatant fluids. Unlike shear-
thinning fluids, shear-thickening fluids exhibit resistance to flow under low shear rates
and suddenly become less viscous under high shear rates. An interesting example is
a mixture of cornstarch and water, known as ”oobleck.” Under low shear conditions,
it behaves like a fluid, but when subjected to high shear forces, it transforms into a
solid-like state.

Bingham plastic fluids The fourth class comprises Bingham plastic fluids. Bing-
ham plastics behave like rigid solids until a certain yield stress is exceeded. Once the
yield stress is surpassed, they flow as viscous liquids. Toothpaste and some mud-like
substances display Bingham plastic behavior. This behavior is particularly relevant
in engineering applications where materials need to be in a stable state when not in
motion but transition smoothly into a flowing state when subjected to sufficient force.

Thixotropic fluids Additionally, there are thixotropic fluids, which become less
viscous over time when subjected to constant shear stress. Once the shear stress
is removed, they recover their original viscosity. Thixotropic behavior is commonly
observed in certain paints, gels, and drilling fluids. It plays a crucial role in industrial
applications that require time-dependent changes in viscosity, such as inkjet printing
and adhesives [1].

Rheopectic fluids Another intriguing category is rheopectic fluids, which demon-
strate the opposite behavior to thixotropic fluids. Rheopectic fluids show an increase
in viscosity with time under constant shear stress. However, upon stress removal, they
exhibit a decrease in viscosity. Certain colloidal suspensions and printing inks demon-
strate rheopectic properties. Rheopectic fluids are employed in applications where
gradual changes in viscosity are necessary to optimize processes and material perfor-
mance. [2], [14]

2.2 Power-law fluids

Power-law fluids, also known as Ostwald-de Waele fluids, are a class of generalized
Newtonian fluids that exhibit a non-linear relationship between shear stress and shear
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rate. They are characterized by the Power-law model, which describes this relationship
as a power-law equation:

τ = K ·
∣∣∣∣∂u∂y

∣∣∣∣κ = K · γ̇κ (1)

where τ is the shear stress, γ̇ is the shear rate, K is the flow consistency index, and
κ is the flow behavior index.

Apparent or effective viscosity µeff is then obtained as

µeff = K ·
∣∣∣∣∂u∂y

∣∣∣∣κ−1

= K · γ̇κ−1 (2)

The flow consistency indexK represents the fluid’s resistance to flow and determines
the magnitude of the shear stress for a given shear rate. A higher value of K indicates
a more viscous fluid, while a lower value indicates a less viscous fluid.

The flow behavior index κ characterizes the non-Newtonian behavior of the fluid.
For κ < 1, the fluid exhibits shear-thinning behavior, where the apparent viscosity
decreases as the shear rate increases. This behavior is commonly observed in many
fluids, including polymer solutions and suspensions. On the other hand, for κ > 1, the
fluid exhibits shear-thickening behavior, where the apparent viscosity increases with
increasing shear rate. Shear-thickening behavior is less common but can be observed
in certain complex fluids.

The Power-law model provides a simple yet effective means of describing the flow
behavior of Power-law fluids over a wide range of shear rates. It is widely used in
various industries and applications, including polymer processing, food processing, oil
and gas, and biomedical engineering.

It is important to note that the Power-law model is an empirical model that does
not capture all the complexities of real fluids. In some cases, more advanced rheolog-
ical models, such as the Powell-Eyring model or the Carreau-Yasuda model, may be
required to accurately describe the flow behavior of certain fluids. These models and
constants for simulation of blood behavior can be seen in Tab. 1.

When working with Power-law fluids, it is crucial to determine the appropriate
values of the flow consistency index K and the flow behavior index κ based on exper-
imental measurements or empirical correlations specific to the fluid of interest. These
parameters play a crucial role in accurately predicting the flow characteristics and
designing processes involving Power-law fluids.

2.3 Properties of blood

Blood is a complex non-Newtonian fluid that plays a crucial role in the human body’s
circulatory system. It exhibits unique rheological properties that are essential for its
physiological functions. Understanding the properties of blood is of great significance
in medical and biological research. Here are some key properties of blood:

2.3.1 Viscosity

Blood exhibits a shear-thinning behavior, meaning its viscosity decreases with increas-
ing shear rate. This property is attributed to the presence of red blood cells, plasma
proteins, and other components in the blood. At low shear rates, the impact of blood
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Model Name Model Equation Model Coefficients

Modified Cross µ = µ∞ + (µ0 − µ∞)
[

1
[1+(λγ̇)K ]α

] µ0 = 0.056Pa · s,
µ∞ = 0.00345Pa · s,
λ = 3.736 s,
K = 2.406, α = 0.254

Powell-Eyring µ = µ∞ + (µ0 − µ∞)
[
sinh−1 αγ̇

λγ̇

] µ0 = 0.056Pa · s,
µ∞ = 0.00345Pa · s,
λ = 5.383 s

Modified Powell-Eyring µ = µ∞ + (µ0 − µ∞)
[
ln(λγ̇+1)

[λγ̇]K

] µ0 = 0.056Pa · s,
µ∞ = 0.00345Pa · s,
λ = 2.415 s,
K = 1.089

Cross µ = µ∞ + (µ0 − µ∞)
[

1

[1+λγ̇]K

] µ0 = 0.056Pa · s,
µ∞ = 0.00345Pa · s,
λ = 1.007 s,
K = 1.028

Simplified Cross µ = µ∞ + (µ0 − µ∞)
[

1
1+λγ̇

] µ0 = 0.13Pa · s,
µ∞ = 0.005Pa · s,
λ = 8.0 s

Carreau µ = µ∞ + (µ0 − µ∞)
[
1 + (λγ̇)2

]κ−1
2

µ0 = 0.056Pa · s,
µ∞ = 0.00345Pa · s,
λ = 3.313 s,
κ = 0.3568

Carreau-Yasuda µ = µ∞ + (µ0 − µ∞) [1 + (λγ̇)α]
κ−1
α

µ0 = 0.056Pa · s,
µ∞ = 0.00345Pa · s,
λ = 1.902 s,
κ = 0.22, α = 1.25

Power-Law µ = Kγ̇κ−1

µmin = 0.00345Pa · s,
µmax = 0.056Pa · s,
κ = 0.60, K = 0.35

Table 1: More advanced models and their parameters for simulation of blood according
to [5]

hematocrit on viscosity is higher, while at high shear rates, it flows more easily due to
the alignment and deformation of red blood cells. The viscosity of blood is typically
measured in centipoise [cP] or millipascal-seconds [mPa·s] and can range from 3 to 4.5
cP (0.003 to 0.0045 Pa·s) for whole blood [3].

2.3.2 Elasticity

Blood shows viscoelastic behavior, which means it possesses both viscous and elastic
properties. This property allows blood to deform under stress and recover its origi-
nal shape when the stress is removed. The elasticity of blood is primarily due to the
presence of red blood cells, which can undergo reversible changes in shape and deforma-
bility. The elastic modulus of blood, a measure of its elasticity, can vary depending on
factors such as hematocrit and shear rate, but typical values range from 1 to 5 Pascal.
[24].
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2.3.3 Yield Stress

Blood exhibits a yield stress, which is the minimum stress required to initiate flow.
Below the yield stress, blood behaves as a solid-like material and resists deformation.
The yield stress of blood is crucial in maintaining the integrity of blood vessels and
preventing excessive bleeding. The yield stress of blood is estimated to be in the range
of 0.05 to 0.3 Pascal [Pa], depending on factors such as hematocrit and temperature
[24].

2.3.4 Density

The density of blood refers to its mass per unit volume. The average density of blood
is around 1060 kilograms per cubic meter [kg/m³] or 1.06 grams per cubic centimeter
[g/cm³] [17]. The density of blood may vary slightly depending on factors such as
hematocrit and the presence of dissolved substances.

2.3.5 Thixotropic Behavior

Blood also displays thixotropic behavior, where its viscosity decreases over time under
constant shear stress. This property is related to the reversible breakdown of blood
clots or aggregates under continuous shear, allowing blood to flow more freely. Once the
shear stress is removed, the viscosity of blood recovers, preventing excessive bleeding
[27].
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3 Mathematical model

The ”Mathematical Model” section serves as the cornerstone of our study, providing a
vital framework for analyzing fluid dynamics in the context of non-Newtonian behavior.
It encompasses essential concepts and equations that underpin our investigation.

We begin by introducing dimensionless numbers, particularly the Reynolds number,
which offers insights into the relative importance of inertial and viscous forces. This
fundamental concept provides a universal basis for fluid behavior analysis.

Moving forward, we delve into the equations of fluid dynamics, starting with the
description of flow and the transport theorem. These concepts provide tools to under-
stand how fluids interact and how properties are transported within them.

The continuity equation is then explored, shedding light on mass conservation
within fluid systems. This equation is pivotal in grasping the fundamental principles
governing fluid motion.

The core of fluid dynamics—the Navier-Stokes equations—takes center stage, elu-
cidating the intricate relationship between pressure, velocity, and viscous forces. These
equations offer a comprehensive view of fluid behavior.

Furthermore, we investigate analytical solutions for the Navier-Stokes equations,
providing insights into fluid dynamics under various conditions. This includes scenarios
involving power-law model fluids and oscillating pressure.

Together, these sections establish a robust mathematical foundation for our sub-
sequent analyses and simulations. The integration of dimensionless numbers, gov-
erning equations, and analytical solutions empowers us to comprehensively explore
non-Newtonian fluid dynamics, yielding valuable insights into their behavior across
different contexts.

3.1 Dimensionless numbers

3.1.1 Reynolds number

The Reynolds number (Re) is a dimensionless parameter that characterizes the flow
regime of a fluid within a given system. It quantifies the relative importance of inertial
forces to viscous forces and provides insights into the dominant mechanisms at play.
The Reynolds number is calculated by dividing the product of the characteristic length
scale (L), the flow velocity (U), and the fluid density (ρ) by the dynamic viscosity (µ):

Re =
ρ · U · L

µ

where ρ represents the fluid density, U is the characteristic flow velocity, L denotes
the characteristic length scale, and µ is the dynamic viscosity of the fluid.

The Reynolds number serves as a key parameter for characterizing the flow behav-
ior. At low Reynolds numbers, the flow is typically laminar, characterized by smooth
and predictable motion. As the Reynolds number increases, the flow becomes more
turbulent, exhibiting chaotic and random motion. The transition from laminar to tur-
bulent flow depends on various factors, including fluid properties, geometry, and flow
conditions.

In the field of fluid dynamics, the Reynolds number has significant implications.
It aids in the classification of flow regimes and guides the selection of appropriate
mathematical models. [23], [28]
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3.1.2 Womersley number

The Womersley number Wo is a dimensionless parameter that characterizes the pul-
satile flow behavior in fluid dynamics. It is defined as the product of the pulsatile flow
frequency ω and the characteristic length scale L, divided by the dynamic viscosity µ.
Mathematically, it can be expressed as:

Wo =
H

2

√
ω · ρ
µ

where ω represents the pulsatile frequency, H is the characteristic length scale of
the system, µ denotes the dynamic viscosity of the fluid, and ρ is the density of the
fluid.

The Womersley number provides valuable information about the relative impor-
tance of inertial effects to viscous effects in pulsatile flow. A low Womersley number
indicates that the flow is dominated by viscous effects, while a high Womersley number
suggests a significant influence of inertial forces.

When theWomersley numberWo < 1, the fluid behaves in a ”quasi-steady” manner,
meaning that the instantaneous flow rate is determined by the instantaneous pressure
gradient. In this regime, the fluid responds relatively quickly to changes in pressure.
However, it is essential to note that ”quasi-steady” does not imply that the flow is
not changing over time. Instead, it refers to the fluid’s ability to keep up with rapidly
changing pressure gradients, even if the flow exhibits significant oscillations.

On the other hand, when the Womersley number Wo > 1, the fluid’s behavior
deviates more and more from quasi-steady behavior. In this regime, the fluid responds
less promptly to changes in pressure, and its flow behavior becomes more influenced
by inertial effects. [18], [30]

Table 2: Fluid Flow Parameters in Various Blood Vessels [19]

Blood Circulatory System Wo Average Velocity v [m/s] Re
Systemic Circulation
Ascending Aorta 21 0.18 1500
Abdominal Aorta 12 0.14 640
Renal Artery 4 0.40 700
Femoral Artery 4 0.12 2200
Femoral Vein 7 0.04 104
Superior Vena Cava 15 0.09 550
Inferior Vena Cava 17 0.21 1400
Pulmonary Circulation
Pulmonary Artery 20 0.19 1600
Pulmonary Vein 10 0.19 800

3.2 Equations of fluid dynamics

3.2.1 Description of flow

We describe fluid motion in two ways:
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The Lagrangian approach We describe trajectories of each individual particles by
the equation

x = φ (X, t) (3)

Or in detailed notation
x = φ (X, t0, t) , (4)

which describes position x at the time t of the particle passing through the point X at
time t0.

We can obtain velocity and acceleration of the fluid particle as derivatives of relations
(3) and (4) (given the derivatives exist) respectively

v̂ (X, t) =
∂φ

∂t
(X, t)

â (X, t) =
∂2φ

∂2t
(X, t)

(5)

[9]

The Eulerian approach We describe the flow of fluid by determining the velocity
v(x, t) of fluid particle passing through the point x at time t. Using (3) and (5), we
can write

v (x, t) = v̂ (X, t) =
∂φ

∂t
(X, t) (6)

where x = φ (X, t). The acceleration is then expressed as

a (x, t) =
∂v

∂t
(x, t) + (v (x, t) · grad)v (x, t)

=
∂v

∂t
(x, t) + (v (x, t) ·∇)v (x, t)

(7)

If we define material derivative with respect to time

D

Dt
=

∂

∂t
+ v · grad =

∂

∂t
+ v ·∇ (8)

we can rewrite acceleration as

a =
Dv

Dt
:=

∂v

∂t
+ (v · grad)v (9)

[9]

3.2.2 Transport theorem

Let a function F = F (x, t) : M → R be representation of physical quantity trans-
ported by fluid particles and described by Eulerian approach, we consider a system of
fluid particles filling a bounded domain V (t) ⊂ Ωt at time t. We can obtain the total
amount of the quantity in the volume V (t) at time t given by the function F by the
integral

F (t) =

∫
V(t)

F (x, t) dx (10)
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We are interested in the rate of change of the quantity F , in derivative in other words

dF (t)

dt
=

d

dt

∫
V(t)

F (x, t) dx (11)

Let the function F = F (x, t) have continuous and bounded first order derivatives on set
{(x, t) ; t ∈ (t1, t2) , x ∈ V (t)}, then for each t ∈ (t1, t2), there exists a finite derivative

dF
dt

(t) =
d

dt

∫
V(t)

F (x, t) dx

=

∫
V(t)

[
∂F

∂t
(x, t) + v (x, t) · gradF (x, t) + F (x, t) divv (x, t)

]
dx

=

∫
V(t)

[
∂F

∂t
(x, t) + div (Fv) (x, t)

]
dx

(12)

For further and more detailed explanation, see [9], [8] or [6].

3.2.3 The continuity equation

Mass m (V ; t) of the fluid contained in any subdomain V (t) ⊂ Ωt can be determined
by integral

m (V ; t) =
∫
V

ρ (x, t) dx, (13)

where ρ is function of fluid density

ρ : M = {(x, t) ; t ∈ (0, T ) , x ∈ Ωt} → (0,+∞) (14)

The domain V (t) contains same particles at each time instant, that filled a bounded
domain called a control volume V (t0) at the time t0 ∈ (0, T ), therefore the mass of
piece of fluid represented by domain V (t) does not depend on time t.

This can be expressed by the equation

dm (V (t) ; t)

dt
= 0, t ∈ (t1, t2) (15)

where t ∈ (t1, t2) is sufficiently small time interval.

Using transport theorem and F = ρ, we get the identity∫
V(t)

[
∂ρ

∂t
(x, t) + div (ρv) (x, t)

]
dx = 0, t ∈ (t1, t2) (16)

We can now substitute t := t0 and V (t0) = V and for an arbitrary t0 ∈ (0, T ) and an
arbitrary control volume V in Ωt0 we obtain∫

V

[
∂ρ

∂t
(x, t0) + div (ρv) (x, t0)

]
dx = 0 (17)
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Expecting continuity of the integrand 17 and relabeling t0 as t, we get the differential
form of the law of conservation of mass also called the continuity equation:

∂ρ

∂t
(x, t) + div (ρ (x, t)v (x, t)) = 0, t ∈ (0, T ) , x ∈ Ωt. (18)

[9]

3.2.4 The equations of motion

The total momentum of particles contained in V (t) is given by

H (V (t)) =

∫
V(t)

ρ (x, t)v (x, t) dx. (19)

Denoting by F (V (t)) the force acting on volume V (t), the law of conversation of
momentum states the rate of change of the total momentum of a piece of fluid formed
by the same particles at each time, is equal to the said force:

dH (V (t))

dt
= F (V (t)) , t ∈ (t1, t2) (20)

Using transport theorem we get∫
V(t)

[
∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t)v (x, t))

]
dx = Fi (V (t)) ,

i = 1, 2, 3, t ∈ (t1, t2)

(21)

By taking into account arbitrary time instant t and arbitrary control volume V we can
rewrite 21 as∫

V

[
∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t)v (x, t))

]
dx = Fi (V ; t) ,

i = 1, 2, 3, for arbitrary t

(22)

We distinguish two types of force F (V ; t) acting in fluids:

The volume force also called outer or body force expressed by its density f :

Fv (V ; t) =
∫
V
ρ (x, t)f (x, t) dx. (23)

The surface force or inner force, by which the fluid outside of V acts on a set
S ⊂ ∂V , expressed by stress vector T (x, t,n).

F S =

∫
S

T (x, t,n (x)) dS. (24)

To express the stress vector, we choose normals parallel to the coordinate axes and set

τij = Ti (x, t, ej) , i, j = 1, 2, 3,

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)
(25)

19



Then

Ti (x, t,n) =
3∑

j=1

njτij (x, t) , i = 1, 2, 3. (26)

For general fluid we obtain equation∫
V

[
∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t)v (x, t))

]
dx

=

∫
V
ρ (x, t)f (x, t) dx+

∫
∂V

3∑
j=1

τij (x, t)nj (x) dS, i = 1, 2, 3,

(27)

for each t ∈ (0, T ) and arbitrary control volume V in Ωt.

By applying Green’s theorem, we can rewrite equation 27 as

∂

∂t
(ρvi) + div (ρviv) = ρfi +

3∑
j=1

∂τij
∂xj

, i = 1, 2, 3, (28)

or
∂

∂t
(ρv) + div (ρv ⊗ v) = ρf + divT (29)

[9]

3.2.5 The Navier-Stokes equations

Under conditions further described in [10], the stress tensor can be expressed as T

T = (−p+ λ div v) I+ 2µD (v) , (30)

where µ, λ are first and second viscosity coefficients, respectively, I is unit tensor and
D is deformation velocity tensor:

D = D (v) = (di,j)
3
i,j=1 , di,j =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (31)

We can substitute relation (30) into the general equations of motion (29) and get
so-called Navier-Stokes equations

∂

∂t
(ρv) + div (ρv ⊗ v) = ρf − grad p+ grad (λ div v) + div (2µD (v)) (32)

Provided the continuity equation (18) is satisfied and considering incompressible vis-
cious fluid with constant density in three dimensional case, we can express (32) and
(18) as

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)
+ f1

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+

∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
+

∂

∂z

(
µ
∂v

∂z

)
+ f2

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+

∂

∂x

(
µ
∂w

∂x

)
+

∂

∂y

(
µ
∂w

∂y

)
+

∂

∂z

(
µ
∂w

∂z

)
+ f3

(33)
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The external volume forces fi are considered to be equal to 0 in this work. The
equations (33) can be rewritten in conservative vector form

PWt + Fx +Gy +Hz = Rx + Sy + Tz (34)

which can be simplified for the two-dimensional case to

PWt + Fx +Gy = Rx + Sy (35)

where P is a diagonal matrix, the significance of which will be mentioned in 4.7.
The vector W represents the unknowns, while F and G are the vectors for inviscid
(convective) fluxes, and R and S are the vectors for viscous (diffusive) fluxes.

P = diag(0, 1, 1) (36)

W = (p, u, v)T (37)

F = (u, u2 + p, uv)T (38)

G = (v, uv, v2 + p)T (39)

R = (0, νux, νvx)
T (40)

S = (0, νuy, νvy)
T (41)

where ν is the kinematic viscosity defined as

ν =
µ

ρ
(42)

Transformation into cylindrical coordinates We can express equations (33)
given in Cartesian coordinates (x, y, z) in terms of the cylindrical coordinates (r, θ, x)
using expressions

x = x (43)

y = r sin(θ) (44)

z = r cos(θ) (45)

Continuity equation becomes

∂ur

∂r
+

1

r

∂(ruθ)

∂θ
+

∂ux

∂x
= 0 (46)

and momentum equations

ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+ ux

∂ur

∂x
− u2

θ

r

)
=

= −∂p

∂r
+ µ

[
1

r

∂

∂r

(
r
∂ur

∂r

)
+

1

r2
∂2ur

∂θ2
+

∂2ur

∂x2
− ur

r2
− 2

r2
∂uθ

∂θ

]
+ f1

ρ

(
∂uθ

∂t
+ uθ

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+ ux

∂uθ

∂x
− uruθ

r

)
=

= −1

r

∂p

∂θ
+ µ

[
1

r

∂

∂r

(
r
∂uθ

∂r

)
+

1

r2
∂2uθ

∂θ2
+

∂2uθ

∂x2
− uθ

r2
+

2

r2
∂ur

∂θ

]
+ f2

ρ

(
∂ux

∂t
+ ur

∂ux

∂r
+

uθ

r

∂ux

∂θ
+ ux

∂ux

∂x

)
=

= −∂p

∂x
+ µ

[
1

r

∂

∂r

(
r
∂ux

∂r

)
+

1

r2
∂2ux

∂θ2
+

∂2ux

∂x2

]
+ f3

(47)

where ur is radial velocity, uθ is tangential velocity and ux is axial velocity.
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3.2.6 Analytical solution for N-S equations

Analytical solution for Navier-Stokes equations is also known as the Hagen–Poiseuille
equation can be derived for the laminar flow through uniform pipe with radius R.

Assuming Navier-Stokes equations in three dimensional radial coordinates (r, θ, x)
and steady, axisymmetric and fully developed flow with radial and azimuthal compo-
nents of the fluid velocity equal to zero, we can simplify axial momentum equation
to

1

r

∂

∂r

(
r
∂u (r)

∂r

)
=

1

µ

∂p

∂x
(48)

where µ is dynamic viscosity of fluid.
We can now substitute

−∂p

∂x
=

p2 − p1
L

= G (49)

into (48) and integrate according to r to obtain

u (r) = −Gr2

4µ
+ A ln r +B (50)

In order for u to be finite at r = 0, we eliminate A = 0. To obtain constant B, we
apply no-slip boundary condition u(r = R) = 0 and solve to get

B =
GR2

4µ
(51)

We now get the solution for parabolic velocity profile in radial coordinates

u (r) =
G

4µ

(
R2 − r2

)
(52)

Poiseuille flow To obtain Poiseuille flow between two infinitely long parallel plates,
separated by a distance H with a constant pressure gradient

G = −∂p

∂x
(53)

we assume unidirectional flow in x direction. The Navier-Stokes equations then simplify
to

∂2u

∂y2
= −G

µ
(54)

By integrating twice, we obtain

u(y) = − G

2µ
y2 + Ay +B (55)

No slip boundary condition
u(0) = u(H) = 0 (56)

we can get constants B = 0 and A = G
2µ
H and the velocity profile

u(y) = − G

2µ
y (H − y) (57)
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3.2.7 Analytical solution for N-S equations for Power-law model fluids

We assume Navier-Stokes equations in three dimensional radial coordinates (r, θ, x) and
steady, axisymmetric and fully developed flow with radial and azimuthal components
of the fluid velocity equal to zero, we can simplify axial momentum equation to

µeff

r

∂

∂r

(
r
∂u (r)

∂r

)
=

∂p

∂x
(58)

where u is axial velocity in x-direction µeff is dynamic viscosity of fluid given by relation

µeff = K ·
∣∣∣∣∂u (r)∂r

∣∣∣∣κ−1

= K · γ̇κ−1 (59)

where γ̇ is the shear rate, K is the flow consistency index, and κ is the flow behavior
index as described in 2.2. We can substitute µeff to obtain

1

r

∂

∂r

[
Kr

(
∂u (r)

∂r

)κ]
=

∂p

∂x
(60)

We assume

−∂p

∂x
=

p2 − p1
L

= G (61)

and integrate (60) with respect to r to obtain

Kr

(
∂u (r)

∂r

)κ

= G
r2

2
+ A (62)

This equation can be rearranged to

τrx = G
r

2
+

A

r
(63)

and in order for τrx to be finite, we get A = 0. We can now write

∂u (r)

∂r
=

(
G

K

r

2

) 1
κ

(64)

and integrate with respect to r to get equation

u (r) =
κ

κ+ 1

(
G

2K

) 1
κ

r
κ+1
κ +B (65)

Applying no slip boundary condition u(r = R) = 0, we can express integration constant
B as

B = − κ

κ+ 1

(
G

2K

) 1
κ

R
κ+1
κ (66)

Finally, we can write analytical solution for power law fluid as

u (r) =
κ

κ+ 1

(
G

2K

) 1
κ (

R
κ+1
κ − r

κ+1
κ

)
(67)
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Poiseuille flow To obtain Poiseuille flow of Power-law model fluid between two
infinitely long parallel plates, separated by a distance H with a constant pressure
gradient

G = −∂p

∂x
(68)

we assume unidirectional flow in x direction. The Navier-Stokes equations then simplify
to

∂

∂y

(
µeff

∂u

∂y

)
= −G (69)

where u is velocity in x-direction µeff is dynamic viscosity of fluid given by relation

µeff = K ·
(
∂u (y)

∂y

)κ−1

= K · γ̇κ−1 (70)

where γ̇ is the shear rate, K is the flow consistency index, and κ is the flow behavior
index as described in 2.2.

We can substitute µeff to obtain

∂

∂y

[
K ·

(
∂u

∂y

)κ]
= −G (71)

By integrating with respect to y, we obtain

K ·
(
∂u

∂y

)κ

= −Gy + A (72)

which stands for shear stress τxy. Assuming the shear stress has to be zero at the axis
of the channel, we can eliminate integral constant A. We can rearrange the equation
as

∂u

∂y
=

(
−Gy

K

) 1
κ

(73)

and integrate again to obtain

u (y) = − κ

κ+ 1

K

G

(
−Gy

K

) 1+κ
κ

+B (74)

Using no slip boundary condition

u

(
H

2

)
= u

(
−H

2

)
= 0 (75)

we can get constant

B =
κ

κ+ 1

K

G

(
−GH

2

K

) 1+κ
κ

(76)

and the velocity profile is

u (y) = − κ

κ+ 1

(
G

K

) 1
κ

[(
H

2

)κ+1
κ

− y
κ+1
κ

]
(77)

We can notice, using κ = 1 for flow behavior index in (77) leads to equation for velocity
profile for Newtonian fluid as equation (57). [12]
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3.2.8 Analytical solution for N-S equations under oscillating pressure

We consider homogenous, incompressible Newtonian fluid with density ρ and dynamic
viscosity µ through circular tube with radius R with rigid walls. The flow is one-
dimensional laminar and axisymetric to the axis of the tube.

Navier-Stokes equation then becomes

ρ
∂u (r, t)

∂t
= −∂p

∂x
+ µ

(
∂2u (r, t)

∂r2
+

1

r

∂u (r, t)

∂r

)
(78)

and continuity equation
∂u (r, t)

∂x
= 0 (79)

where u (r, t) represents velocity in x-direction and ∂p
∂x

is the pressure gradient, periodic
in time, defined as Fourier series

∂p

∂x
(t) =

N∑
n=0

P
′

ne
inωt (80)

where ω is the angular frequency of the first harmonic n = 1 defined in Section 3.1.2,
P

′
n are the amplitudes of each harmonic n and i =

√
−1. P

′
0 is the steady-state pressure

gradient.
The velocity can be decomposed as Fourier series as

u (r, t) =
N∑

n=0

Une
inωt (81)

where Un are the amplitudes of each harmonic of the periodic function, and the steady
component n = 0 refers to Poiseuille flow derived in 3.2.6

U0 = −P
′
0

4µ

(
R2 − r2

)
(82)

The Navier-Stokes equation for each harmonics can be written as

iρnωUn = −P
′

n + µ

(
∂2Un

∂r2
+

1

r

∂Un

∂r

)
(83)

The boundary condition is set as no-slip condition:

Un (−R, t) = Un (R, t) = 0 (84)

for all t and axisymmetry
∂Un (0, t)

∂r
= 0 (85)

For n ≥ 1, we obtain general solution of this ordinary differential equation for the
oscillatory part

Un (r) = AnJ0

(
Wo

r

R
n1/2i3/2

)
+NnY0

(
Wo

r

R
n1/2i3/2

)
+

iP
′
n

ρnω
(86)
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where J0 (·) is the Bessel function of first kind and order zero, Y0 (·) is the Bessel
function of second kind and order zero, An and Bn are arbitrary constants, and Wo =

R
√

ω·ρ
µ

is the dimensionless Womersley number defined in 3.1.2.

Applying axisymetric boundary condition (85) ∂u(0,t)
∂r

= 0, we eliminate Bn = 0 as

derivatives of Bessel functions J
′
0 (·) and Y

′
0 (·) approach infinity.

To obtain An, we apply no-slip boundary condition (84) resulting in

An = − iP
′
n

ρnω

1

J0 (Wo · n1/2i3/2)
(87)

and thus the amplitudes of the velocity profile of the harmonic n becomes

Un(r) =
iP

′
n

ρnω

[
1−

J0
(
Wo r

R
n1/2i3/2

)
J0 (Wo · n1/2i3/2)

]
(88)

Velocity profile is obtained by taking the real part of the complex function resulted
from the summation of all harmonics of the pulse as

u(r, t) =
P

′
0

4µ

(
R2 − r2

)
+Re

{
N∑

n=1

iP
′
n

ρnω

[
1−

J0
(
Wo r

R
n1/2i3/2

)
J0 (Wo · n1/2i3/2)

]
einωt

}
(89)

Two dimensional case We consider Poiseuille flow with constant viscosity µ driven
by oscillating pressure

−1

ρ

∂p

∂x
= −G− C cosωt (90)

where ω is angular frequency and C is the amplitude of pressure oscillation and G is
steady pressure gradient. We will rewrite this equation in Fourier representation

−1

ρ

∂p

∂x
= −G− Re(Ceiωt) (91)

We expect velocity as complex function

u = uP +Re
(
U(ω, y)eiωt

)
. (92)

where uP represents the Poiseuille solution for constant pressure gradient and U is
amplitude of velocity. We can then write momentum equations as

∂u

∂t
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
(93)

and substituting for u and p

iω U = −C + ν
∂2U

∂y2
. (94)

For boundary conditions

U

(
H

2

)
= 0

∂U

∂y
(0) = 0

(95)
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we can solve (94) as

U = Re

iC
ω

1−
cosh

√
iω
ν
y

cosh
√

iω
ν

H
2

 (96)

Using
√
i = (1+i)√

2
, we obtain real part of (96)

u = uP − C

ω

[(
1− f1(ω, y)

f3(k
H
2
)

)
sinωt− f2(ω, y)

f3(k
H
2
)
cosωt

]
, (97)

where the various notations are defined as follows

k =

√
ω

2ν

cc(ξ) = cos(ξ) cosh(ξ)

ss(ξ) = sin(ξ) sinh(ξ)

f1(ω, y) =cc(ky)cc(kH) + ss(ky)ss(kH)

f2(ω, y) =cc(ky)ss(kH)− ss(ky)cc(kH)

f3(ω) =cc2(ξ) + ss2(ξ) .

In this case, Womersley number is Wo =
√
2
4
kH.

Flow rate is obtained by integrating the velocity field on the cross-section and its
derivation is further described in [22], [13], [15] or [16] as well as derivation of wall-shear
stress. [7], [30]
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4 Numerical model

The ”Numerical Model” section represents a pivotal aspect of our research, enabling us
to bridge theoretical insights with practical simulations. Among the various methods
available, we have opted for the finite volume approach due to its proven effectiveness
in simulating fluid dynamics.

Incorporating the finite volume method, we initiate our exploration by delving into
its fundamental principles. This approach involves discretizing the computational do-
main into finite volumes or control volumes, each of which is evaluated to approximate
the behavior of the fluid. This step involves breaking down the governing equations
into discrete forms that can be solved numerically. This discretization paves the way
for detailed simulations of fluid behavior.

The MacCormack scheme emerges as another key component of our numerical
model. By embracing this two-step predictor-corrector approach, we unlock the poten-
tial to simulate complex fluid dynamics scenarios with improved accuracy.

We then delve into the discretization of both inviscid and viscous fluxes, essential
steps in capturing the intricate interplay between flow properties.

We then investigate the artificial compressibility method. Simple method of cou-
pling velocity and pressure.

Further, we describe another method of coupling velocity and pressure to be able
to simulate cases with oscillating pressure.

While several methods exist for fluid dynamics simulations, our deliberate choice
of the finite volume method arises from its proven suitability for our study. Its ability
to capture the intricacies of fluid behavior, coupled with its compatibility with non-
Newtonian fluids, positions us to unveil valuable insights into this complex realm.

4.1 Finite volume method

The finite volume method involves dividing the computational domain into a finite
number of cells (control volumes) Di,j, for which the integral form of the equations is
used, allowing us to transform partial differential equations into a system of algebraic
equations with a finite number of unknowns. Unlike the finite difference method, where
the variable field is replaced by values at grid points, the finite volume method uses
the average values for the given control volumes.

Its advantage lies in its simple application to general (non-orthogonal) grids, which
can better mimic complex geometries but require more data organization.

4.2 Finite volumes method discretization

We can rewrite Equation (35) as

PWt + (F −R)x + (G− S)y = 0 (98)

After performing surface integration, we get

P

∫
Di,j

WtdS +

∫
Di,j

[(F −R)x + (G− S)y] dS = 0 (99)
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We can use Green’s theorem on the second integral

P

∫
Di,j

WtdS +

∮
∂D

[(F −R)dy − (G− S)dx] = 0 (100)

Now, we can replace the vector of unknowns Wi,j =
1
|D|

∫
D
WdS with the average values

of unknowns in the cell Di,j to obtain

P
∂Wi,j

∂t
+

1

|D|

∮
∂D

[(F −R)dy − (G− S)dx] = 0 (101)

4.3 MacCormack scheme

The MacCormack Scheme is a two-step scheme based on the two-stage Lax-Wendroff
scheme and works on the predictor-corrector principle. In the first step, the predictor
is computed, and the values obtained are used in the corrector, followed by adding the
artificial viscosity term. Then next iterating step follows

Predictor

W
n+ 1

2
i,j = W n

i,j − P−1 ∆t

|Di,j|

4∑
k=1

[(F n
k −Rn

k)∆yk − (Gn
k − Sn

k )∆xk] (102)

Corrector + predictor

[
W n+1

i,j

]
=

1

2

(
W n

i,j +W
n+ 1

2
i,j − P−1 ∆t

|Di,j|

4∑
k=1

[(
F

n+ 1
2

k −R
n+ 1

2
k

)
∆yk −

(
G

n+ 1
2

k − S
n+ 1

2
k

)
∆xk

])
(103)

Corrector + predictor + artificial viscosity

W n+1
i,j =

[
W n+1

i,j

]
+DW n

i,j (104)

[26], [20]

4.4 Discretization of inviscid fluxes

Predictor
F1 = F2 = Fi,j, F3 = Fi−1,j, F4 = Fi,j−1 (105)

Corrector
F1 = Fi+1,j, F2 = Fi,j+1, F3 = F4 = Fi,j (106)

Similarly for G,
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Figure 2: Stencil for Finite Volume Method computation
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4.5 Discretization of viscous fluxes

The derivatives in velocities for viscous fluxes are obtained by integrating over the
boundary of dual cells (indicated by the red boundary in Fig. 2).

ux ≈ 1

Dm

∮
∂D

uνxdl (107)

And this integral can be replaced by a sum over the edges of dual cells:

ux ≈ 1

Dm

4∑
m=1

umν
x
mlm (108)

where um is the velocity at the center of the m-th edge, νx
m is the unit outward normal

of the edge, lm is the length of the edge, and Dm is the area of the dual cell. The values
of variables at the centers of dual cells are approximated as averages of neighboring
values. [26]

4.6 Discretization of pressure derivatives

The derivatives of pressure are obtained by integrating over the boundary of dual cells
(indicated by the red boundary in Fig. 2).

px ≈ 1

Dm

∮
∂D

pνxdl (109)

And this integral can be replaced by a sum over the edges of dual cells:

px ≈ 1

Dm

4∑
m=1

pmν
x
mlm (110)

(a) Predictor (b) Corrector

Figure 3: Stencil for computation of inviscid fluxes
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where pm is the pressure at the center of the m-th edge, νx
m is the unit outward normal

of the edge, lm is the length of the edge, and Dm is the area of the dual cell. The values
of variables at the centers of dual cells are approximated as averages of neighboring
values.

4.7 Artificial compressibility method

The artificial compressibility method allows us to add pressure p to the vector of
unknowns for steady flow of incompressible fluid. By adding the time derivative of
pressure to the continuity equation (18), we obtain the equation

1

β2

∂p

∂t
+

∂u

∂x
+

∂v

∂y
= 0 (111)

where β is the artificial compressibility coefficient representing the artificial sound
speed. The added time derivative of pressure becomes zero for a steady solution. The
system of equations (35) is then modified to:

P̃Wt + Fx +Gy = Rx + Sy (112)

where

P̃ =

 1
β2 0 0

0 1 0
0 0 1

 (113)

The parameter β is recommended to be chosen as:

β = umax ·
√
ρ (114)

where umax is the maximum velocity of the fluid and ρ is the fluid density.

4.8 Pressure equation

Using equations (32) and considering two dimensional case with outer forces fi equal
to zero

∇ · v = 0

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v

(115)

we can rewrite the momentum equations in x and y components

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

) (116)

and continuity equation
∂u

∂x
+

∂v

∂y
= 0 (117)
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We can rearrange the momentum equations, and derivate x-momentum equation with
respect to x and y-momentum equation with respect to y to obtain

∂2p

∂x2
= ρ

[
ν
∂

∂x
(∆u)−

(
∂

∂t

(
∂u

∂x

)
+

∂u

∂x

∂u

∂x
+ u

∂2u

∂x2
+

∂v

∂x

∂u

∂y
+ v

∂2u

∂x∂y

)]
∂2p

∂y2
= ρ

[
ν
∂

∂y
(∆v)−

(
∂

∂t

(
∂v

∂y

)
+

∂u

∂y

∂v

∂x
+ u

∂2v

∂x∂y
+

∂v

∂y

∂v

∂y
+ v

∂2v

∂y2

)] (118)

To get Poisson equation, we sum equations (118) and use continuity equation to cancel
terms equal to zero

∂2p

∂x2
+

∂2p

∂y2
= ρν

∂2u

∂x2

(
∂u

∂x
+

∂v

∂y

)
︸ ︷︷ ︸

=0

+
∂2u

∂y2

(
∂u

∂x
+

∂v

∂y

)
︸ ︷︷ ︸

=0

− ∂

∂t

(
∂u

∂x
+

∂v

∂y

)
︸ ︷︷ ︸

=0

−

− ∂u

∂x

∂u

∂x
− 2

∂v

∂x

∂u

∂y
− ∂v

∂y

∂v

∂y
− u

∂

∂x

(
∂u

∂x
+

∂v

∂y

)
︸ ︷︷ ︸

=0

−v
∂

∂y

(
∂u

∂x
+

∂v

∂y

)
︸ ︷︷ ︸

=0

(119)

which leaves us with

∂2p

∂x2
+

∂2p

∂y2
= −ρ

(
∂u

∂x

∂u

∂x
+ 2

∂u

∂y

∂v

∂x
+

∂v

∂y

∂v

∂y

)
(120)

This equation is called Poisson equation and it is commonly written as

∆p = b (121)

where b stands for right hand side of Poisson equation for pressure. [12]

4.9 Pressure correction method

Basic principle of pressure correction method stands in separation of calculation of
pressure and velocity field. Using equations (32) and considering two dimensional
incompressible flow with outer forces fi equal to zero

∇ · v = 0

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v

(122)

with unknowns v and p.
To obtain pressure p, we are using (120) that is derived by using divergence of

momentum equations as described in 4.8.
For simplicity, let us assume a backward Euler scheme with time step ∆t, we obtain

v∗ − vn

∆t
= −∇ · (v ⊗ v)n − 1

ρ
∇pn + ν∆vn (123)

and we can obtain intermediate velocity field v∗, that does not fulfill the continuity
equation. We apply pressure correction p′ and velocity correction v′ to obtain values
in new time step

vn+1 = v∗ + v′, pn+1 = p∗ + p′ (124)
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and then
vn+1 − vn

∆t
= −∇ · (v ⊗ v)n − 1

ρ
∇pn+1 + ν∆vn

∇vn+1 = 0

(125)

To obtain equation for velocity correction, we substitute (124) to (123)

vn+1 − v′ − vn

∆t
= −∇ · (v ⊗ v)n − 1

ρ
∇
(
pn+1 − p′

)
+ ν∆vn (126)

and subtracting first equation of (125), we are left with

v′ = −∆t

ρ
∇p′ (127)

Using velocity correction, continuity equation becomes

∇ · (v∗ + v′) = 0 (128)

and using (127)

∇ ·
(
v∗ − ∆t

ρ
∇p′
)

= 0 (129)

We can then express pressure correction as

∆p′ =
ρ

∆t
∇ · v∗ (130)

Discretization Left hand side of the equation (130) can be expressed as

∆p′ ≈ 1

|Di,j|

4∑
k=1

[
p′x,k∆yk − p′y,k∆xk

]
(131)

where p′x and p′y is obtained using same method as described in Section 4.6, but using
pressure corrections p′ instead of actual pressure p and index k refers to faces of spatial
discretization.

Right hand side can be expressed as

ρ

∆t
∇ · v∗ ≈ ρ

∆t |Di,j|

4∑
k=1

[u∗
k∆yk − v∗k∆xk] (132)

To obtain pressure correction in time n, we add term p′ϕ+1−p′ϕ

∆τ
to left hand side, where

τ is computational pseudotime and index ϕ refers to this pseudotime. This term should
approach zero, as our solution approaches to correct pressure field. We get the equation
for pressure correction as

p′ϕ+1 − p′ϕ

∆τ
+

1

|Di,j|

4∑
k=1

[
p′ϕx,k∆yk − p′ϕy,k∆xk

]
=

ρ

∆t |Di,j|

4∑
k=1

[u∗
k∆yk − v∗k∆xk] (133)

and rearranging to

p′ϕ+1 = p′ϕ +
ρ∆τ

∆t |Di,j|

4∑
k=1

[u∗
k∆yk − v∗k∆xk]−

∆τ

|Di,j|

4∑
k=1

[
p′ϕx,k∆yk − p′ϕy,k∆xk

]
(134)
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4.9.1 Solving algorithm for pressure correction method

We start with pressure field from previous iteration with updated boundary condition
to calculate intermediate velocity field v∗ in a form

u∗ = un − ∆t

|Di,j|

4∑
k=1

[(
(un

k)
2 + pnk − ν

(
un
x,k

))
∆yk −

(
(un

kv
n
k )− ν

(
un
y,k

))
∆xk

]
v∗ = vn − ∆t

|Di,j|

4∑
k=1

[(
(un

kv
n
k )− ν

(
vnx,k
))

∆yk −
(
(vnk )

2 + pnk − ν
(
vny,k
))

∆xk

] (135)

We use intermediate velocities to express equation for pressure correction as

p′ϕ+1 = p′ϕ +
ρ∆τ

∆t |Di,j|

4∑
k=1

[u∗
k∆yk − v∗k∆xk]−

∆τ

|Di,j|

4∑
k=1

[
p′ϕx,k∆yk − p′ϕy,k∆xk

]
(136)

We repeatedly solve this equation until term p′ϕ+1−p′ϕ

∆τ
approaches desired accuracy.

We then adjust pressure field using p′ and calculate velocity correction using pressure
correction and then adjust velocity field. This velocity field should fulfill continuity
equation to a desired level and we step into another real time step. To approximate
values at boundaries of cells, we use average between two neighboring cells and for
simplicity, we use ∆t = ∆τ .
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5 Numerical experiments

5.1 Used geometries

Three different geometries are being used:

Straight channel This geometry is mainly used for validation as we are able to
obtain analytical solution for steady flow of Newtonian and non-Newtonian fluid (see
Section 3.2.6 and 3.2.7). Its dimensions should still resemble a larger vein in human
body, therefore length in x-direction is set as L = 25 · 10−3 m and distance of the walls
in y-direction resemble diameter of the vein and is given as H = 5 · 10−3 m. Example
of mesh with 50 cells in both directions can be seen in Fig. 4.

Stenosed channel Initial dimensions are same as in case of straight channel, resem-
bling larger vein in human body, only the middle 1

5
is gradually compressed to 0.7 of

its original diameter using cosine function, simulating stenosis of vein. In this case

0 0.005 0.01 0.015 0.02 0.025
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y
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Figure 4: Mesh of straight channel with 50 cells in both directions
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Figure 5: Mesh of stenosed channel with 50 cells in both directions
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we expect higher velocities in stenosed part as well as flow in y-direction. Example of
mesh with 50 cells in both directions can be seen in Fig. 5.

Curved channel Example of mesh for curved channel with 50 cells in both directions
can be seen in Fig. 6.

5.2 Validation of artificial compressibility method for oscillat-
ing pressure gradient

In this section, we aim to compare the analytical solution obtained for the flow
between two parallel plates, as described in Section 3.2.8, with the numerical simulation
using the artificial compressibility method. The numerical simulation is conducted on
a mesh depicted in Fig. 4, and the pressure gradient at the inlet is set as follows:

δp = 4.08 · (1 + 0.2 · sin(2π · (7/6) · t)) (137)

where t represents the current time in the simulation. Visual representation can be
seen in Fig. 7.

To closely resemble the behavior of blood, the simulated fluid properties are set as
follows: density ρ = 1060, kg ·m−3, viscosity ν = 3·10−6m2/s, artificial compressibility
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Figure 6: Mesh of curved channel with 50 cells in both directions
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coefficient β2 = 1060, and the time step ∆t = 2 · 10−5s.
In order to quantify the difference between the analytical and numerical solutions,

we will utilize the Euclidean norm of the difference between the two velocity fields.
The Euclidean norm is defined as follows:

∥vanalytical − vnumerical∥2 =
1

N

(
N∑
i=1

(
v
(i)
analytical − v

(i)
numerical

)2) 1
2

where vanalytical and vnumerical represent the velocity fields of the Newtonian and
non-Newtonian fluids, respectively. The terms v

(i)
analytical and v

(i)
numerical denote the ve-

locity components at each grid point or spatial location, and N represents the total
number of cells. This normalization ensures that the results of the norm remain inde-
pendent of the chosen grid size.

For given values
r = 2.5 · 10−3m

ν = 3 · 10−6m2/s

ω =
7

3
π rad/s

(138)

The Womersley number can be calculated as follows:

Wo = r ·
√

ω

ν
= 2.5 · 10−3

√
7
3
π

3 · 10−6
≈ 3.91 (139)

The value of the Womersley number, approximately 3.91, corresponds to the renal
artery according to the table 2.

In Fig. 8, we present the Euclidean norm of the difference between the analytical
and numerical solutions obtained through simulation over seven periods, ending at t = 6
seconds. In the initial stages of the simulation, there is a decrease in the error due to the
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Figure 7: One period of pressure gradient
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influence of unrealistic initial conditions. However, this initial error reduction stabilizes
after the third period of simulation, where the error becomes periodic, depending on
the pressure gradient set on the inlet. The maximal error observed after third period
is 0.5 · 10−3, indicating that the numerical solution closely approximates the analytical
solution with a high level of accuracy.

In Fig. 9, we see pressure fields for several notable times on sine wave in last period
of simulation. We don’t see any unusual behavior compared to the simulation with
constant pressure. We can note the pressure is equally distributed along the y-axis
from the initial value set at the inlet δp to the 0 set on the outlet.

Values of velocity in the y-direction show a steady and expected behavior. Initially,
they drop to around 10−6 during the first period and gradually decrease and stabilize
at values close to 10−14 in the last three periods. This behavior is in line with our
expectations for flow in only one direction, and it indicates that the flow is well-
established.

The most crucial aspect to analyze is the velocity in the x-direction, as depicted
in Fig. 10 for various notable times. From the comparison between the numerical
simulation and the analytical solution, we observe that the numerical results closely
match the analytical solution at times ’3’, ’4’, ’7’, and ’8’, which corresponds to data
shown in Fig. 8. However, it is essential to note that throughout the simulation, there
is a slight delay in the numerical results compared to the analytical solution. This
delay becomes more prominent during larger pressure gradient shifts between time
steps, resulting in higher discrepancies between the analytical and numerical solutions
at times ’1’, ’2’, ’5’, and ’6’.
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Figure 8: Euclidian norm of difference between analytical and numerical solution
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(b) Velocity u in time 1
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(c) Velocity u in time 2
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(d) Velocity u in time 3
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(e) Velocity u in time 4
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(f) Velocity u in time 5
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(g) Velocity u in time 6
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(h) Velocity u in time 7
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(i) Velocity u in time 8

Figure 10: Horizontal velocity profiles for different time instants of pressure sine in last
period
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5.2.1 Conclusion

The pressure correction method offers a straightforward implementation and can effec-
tively simulate the flow between two plates driven by oscillating pressure. However, it
may encounter challenges in accurately capturing rapid shifts in pressure, leading to
delayed velocity fields compared to the analytical solution. To enhance the method’s
performance, several improvement strategies can be considered, including the imple-
mentation of dual time stepping, exploration of alternative choices for the artificial
compressibility coefficient, and other innovative approaches.

Dual time stepping, as a potential enhancement, introduces an additional time step
that is significantly smaller than the main time step used for advancing the solution. By
doing so, the method can better handle fast transient behavior and reduce numerical
errors stemming from abrupt pressure changes. Such an adaptation may enhance the
stability and accuracy of the simulation, particularly in situations with rapidly varying
pressures. While this method may not prioritize absolute accuracy, speed remains a
key advantage.

In conclusion, the pressure correction method holds promise for simulations with
oscillating pressure, particularly when speed is of utmost importance. By incorporating
dual time stepping, judiciously selecting the artificial compressibility coefficient, and
considering other enhancement approaches, the method’s performance can be notably
improved to better handle shifts in pressure and achieve results closer to the analytical
solution.

5.3 Validation of pressure corrections method for oscillating
pressure gradient

In this section, we aim to compare the analytical solution obtained for the flow be-
tween two parallel plates, as described in Section 3.2.8, with the numerical simulation
using the pressure correction method. Setting of the numerical simulation is similar to
validation of artificial compressibility method. The numerical simulation is conducted
on a mesh depicted in Fig. 4, and the pressure gradient at the inlet is set as follows:

δp = 4.08 · (1 + 0.2 · sin(2π · (7/6) · t)) (140)

where t represents the current time in the simulation. Visual representation can be
seen in Fig. 7.

To closely resemble the behavior of blood, the simulated fluid properties are set
as follows: density ρ = 1060 kg · m−3, viscosity ν = 3 · 10−6m2/s and the time step
dt = 2 · 10−5s. Moreover, pressure will be corrected, until the value od divergence will
be smaller than 10−6 or 100 times.

For given values
r = 2.5 · 10−3m

ν = 3 · 10−6m2/s

ω =
7

3
π rad/s

(141)

The Womersley number can be calculated as follows:

Wo = r ·
√

ω

ν
= 2.5 · 10−3

√
7
3
π

3 · 10−6
≈ 3.91 (142)
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The value of the Womersley number, approximately 3.91, corresponds to the renal
artery according to the table 2. In Fig. 11, we present the Euclidean norm of the
difference between the analytical and numerical solutions obtained through simulation
over seven periods, ending at t = 6 seconds. In the initial stages of the simulation, there
is a decrease in the error due to the influence of unrealistic initial conditions. However,
this initial error reduction stabilizes after the second period of simulation, where the
error becomes periodic, depending on the pressure gradient set on the inlet. The
maximal error observed after second period is 4 · 10−6, indicating that the numerical
solution closely approximates the analytical solution with a high level of accuracy.
Compared to simulation using artificial compressibility method, pressure corrections
method converges faster to the solution and shows more accurate solution.

In Fig. 12, we see pressure fields for several notable times on sine wave in last
period of simulation. We don’t see any unusual behavior compared to the simulation
using artificial compressibility method with constant pressure nor oscillationg pressure.
We can note the pressure is equally distributed along the y-axis from the initial value
set at the inlet δp to the 0 set on the outlet.

Values of velocity in the y-direction show a steady and expected behavior. Initially,
they drop to around 10−9 during the first period and gradually decrease and stabilize
at values close to 10−15 in the last four periods. This behavior is in line with our
expectations for flow in only one direction, and it indicates that the flow is well-
established.

The most crucial aspect to analyze is the velocity in the x-direction, as depicted
in Fig. 13 for various notable times. From the comparison between the numerical
simulation and the analytical solution, we observe that the numerical results closely
match the analytical solution and although the difference between analytical solution
and numerical solution can be seen, it seems consistent in all velocity profiles
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Figure 11: Euclidian norm of difference between analytical and numerical solution
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Figure 13: Horizontal velocity profiles for different time instants of pressure sine in last
period
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5.3.1 Conclusion

The pressure correction method presents a viable option for simulating the flow be-
tween two plates driven by oscillating pressure, particularly when dealing with fluid
properties similar to blood. Notably, this method yields more accurate results com-
pared to simulations using the artificial compressibility method. The higher precision
in capturing the flow behavior makes it a preferred choice in scenarios where accuracy
is of paramount importance.

However, it is essential to acknowledge that the pressure correction method de-
mands a more involved implementation in code.Furthermore, the precision achieved by
the pressure correction method comes at the cost of increased computational time. In
comparison, simulations conducted using the artificial compressibility method demon-
strate substantially faster execution, taking only about one-fifth of the time required
by the pressure correction method.

Given the trade-off between accuracy and computational efficiency, the choice be-
tween the two methods depends on the specific requirements of the simulation. For
applications where utmost precision is critical, the pressure correction method is the
recommended approach despite the longer computational time. On the other hand,
if computational speed is a priority and the level of accuracy can be compromised to
some extent, the artificial compressibility method may be the more suitable option.

Ultimately, the decision should be based on the specific objectives of the simulation
and the available computational resources. It is crucial to evaluate the benefits and
limitations of each method carefully to ensure that the chosen approach aligns with
the goals of the study and meets the desired level of accuracy and efficiency.

5.4 Simulation driven by oscillating pressure in stenosed chan-
nel

This simulation serves as a demonstration of the pressure corrections method solver’s
capability to handle scenarios involving irregular geometries and its comparison with
solver using artificial compressibility method. The same initial conditions and settings
as those employed in the validation case were utilized. The objective was to simulate
blood behavior through a stenosed vein, where the geometry gradually narrows in
middle 1

5
to 0.7 of its original diameter, adopting a cosine function profile as detailed

in Section 5.1. In this particular geometry, we anticipate flow acceleration within the
constriction region and the emergence of velocity in the y-direction.

5.4.1 Results for oscillating pressure in stenosed channel

Fig. 14 illustrates the pressure distribution within the stenosed channel at various time
points during the final period of the simulation under oscillating pressure conditions
computed by solver using pressure corrections method. Notably, the pressure drop
within the constricted region of the geometry is observable, akin to the findings ob-
served in the simulation with constant pressure. This alignment in pressure behavior
underscores the solver’s consistent performance across varying pressure scenarios.

Fig. 15 presents the horizontal velocity u at corresponding time points for both
solvers. Consistent with the simulation conducted under steady pressure conditions at
the inlet, an evident augmentation in velocity emerges within the constricted region.
This localized alteration in velocity propagates to the inlet and outlet sections, inducing
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Figure 14: Pressure fields for different time instants of pressure sine in last period for
stenosed channel
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Figure 15: Horizontal velocity u fields for different time instants of pressure sine in
last period for stenosed channel for pressure correction method on left, for artificial
compressibility method on right
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Figure 16: Vertical velocity v fields for different time instants of pressure sine in last
period for stenosed channel for pressure correction method on left, for artificial com-
pressibility method on right

deviations from the anticipated parabolic profile. Notably, the velocity within the
constricted segment attains levels akin to those within an unobstructed channel, albeit
marginally attenuated. This observation, as depicted in the comparison with Fig. 13,
remains congruent with the outcomes obtained from the simulation involving steady
inlet pressure. As anticipated, the maximal values of horizontal velocity occur during
time 2, coinciding with the period of highest inlet pressure. The comparison between
the two solvers reveals that the artificial compressibility method exhibits limitations in
accurately responding to variations in pressure, resulting in a delayed adjustment of the
velocity field, in contrast to the more responsive behavior demonstrated by the pressure
correction method. Fig. 16 presents the spatial distribution of vertical velocity v across
the channel. As expected, the vertical velocity remains nearly constant at the inlet and
gradually becomes pronounced as the flow progresses towards the constriction. In this
narrowed region, the fluid exhibits a distinct behavior, converging toward the axis of
the channel. Subsequent to the apex of the constriction, the fluid diverges from the
channel center, moving towards its periphery, albeit at a more subdued rate compared
to its entrance into the constriction. Notably, the magnitude of the vertical velocity
attains levels an order of magnitude lower compared to that of the horizontal velocity.
Analogous to the horizontal velocity, the vertical velocity attains its maximum values
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during the temporal instance denoted by time 2 in Fig. 14, coinciding with the phase
of highest inlet pressure.

5.4.2 Conclusion

The primary objective of this section was to demonstrate the proficiency of the pres-
sure corrections method solver in addressing intricate geometries. This capability was
showcased through the utilization of a mesh simulating a stenosed vein, wherein we con-
ducted an analysis of pressure and velocity fields at various temporal intervals within
the oscillatory pressure regime. Remarkably, the attained outcomes exhibited notable
parallels with the findings of simulations conducted under steady pressure conditions
at the inlet.

It is important to note that while our investigation has yielded compelling insights,
the absence of an analytical solution for this particular scenario underscores the need
for further exploration. Specifically, a comprehensive study encompassing the influence
of temporal and spatial discretization steps, as well as the initial simulation parameters,
would greatly contribute to a more nuanced understanding of the system’s behavior.

Comparison with artificial compressibility method shows the results are similar and
given insight from comparison with analytical solution, we can expect the pressure cor-
rections method yields results with higher degree of accuracy. It is important to note,
however, that achieving this heightened accuracy entails an additional computational
time investment.

5.5 Choosing optimal viscosity

The goal of this simulation is to determine an optimal viscosity value that can be
used to approximate non-Newtonian fluids as Newtonian fluids. By employing this
approximation, we aim to simplify the modeling process and reduce computational
time, while still maintaining reasonable accuracy in the simulation results. Addition-
ally, another objective of this research is to define a non-Newtonian equivalent of the
Reynolds number, which can serve as a useful parameter for characterizing the flow
regime in non-Newtonian fluid simulations. It is worth noting that previous studies
[11]; [25]; [4]; [21]) have proposed various approaches in this field, but a consistent and
experimentally validated definition of the Reynolds number for non-Newtonian fluids
is still lacking. Thus, this research aims to contribute to the existing knowledge by
exploring the optimal viscosity and establishing a meaningful non-Newtonian Reynolds
number that can enhance the understanding and analysis of non-Newtonian fluid flow
behavior.

5.5.1 Problem setting

The solver utilized in previous sections, employing the artificial compressibility
method, will be used for the simulation on the three geometries described in 5.1. The
simulations will be performed using various test viscosities, ranging from µ0 to µinf .
To assess the impact of non-Newtonian behavior, a power-law model will be employed,
with the fluid properties set to resemble human blood. Specifically, the density ρ will
be set to 1060kg ·m−3, the flow consistency index K will be set to 29.3 · 10−3Pa · sκ,
and the flow behavior index κ will be set to 0.628.
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To initialize the simulations, six different pressure differences will be imposed as
initial conditions at the inlet. The initial pressure difference δp will be set to 5.1 Pa,
which, for a Newtonian fluid with properties similar to blood, yields a velocity in the
x-direction of 0.2, which is representative of flow velocities in larger human veins. The
other pressure differences will be set as 0.5, 1.5, 2, 3, and 4 times δp.

For the curved channel geometry, the reference pressure difference will be set to
δp = 1 Pa to ensure the stability of the numerical method employed.

To evaluate and compare the results between the Newtonian and non-Newtonian
fluid simulations, the Euclidean norm (| · |2) of the difference in velocity fields will be
calculated. The Euclidean norm is defined as follows:

∥vNewtonian − vnon-Newtonian∥2 =
1

N

(
N∑
i=1

(
v
(i)
Newtonian − v

(i)
non-Newtonian

)2) 1
2

where vNewtonian and vnon-Newtonian represent the velocity fields of the Newtonian and
non-Newtonian fluids, respectively, and v

(i)
Newtonian and v

(i)
non-Newtonian are the velocity

components at each grid point or spatial location and N represents number of cells, to
make the results of this norm independent on chosen grid.

By following this methodology, we aim to determine the optimal viscosity value
that approximates the non-Newtonian behavior as Newtonian, facilitating the use of
simplified models and saving computational time. Additionally, the evaluation of the
velocity field differences using the Euclidean norm will provide insights into the impact
of non-Newtonian characteristics on the flow behavior.

5.5.2 Simulation in straight channel

In the case of the straight channel, we can leverage certain assumptions to de-
rive analytical solutions for the Navier-Stokes equations for both Newtonian and non-
Newtonian fluids. These analytical solutions, as discussed in detail in Section 3.2.6 and
Section 3.2.7, provide valuable insights into the flow behavior in the straight channel
geometry. By obtaining analytical solutions, we can establish a baseline for compari-
son with the simulation results, thereby validating the accuracy and reliability of the
simulation approach for different viscosities.

5.5.3 Results of simulations in straight channel

In Fig. 17, we present the velocity fields resulting from the simulation of non-
Newtonian fluid in the straight channel, along with the corresponding viscosity field
µ. These visualizations offer insights into the flow behavior and the distribution of
viscosity within the channel.

The velocity field illustrates the flow patterns within the straight channel. We
observe the expected parabolic velocity profile, where the flow is faster near the center
and slower near the walls. This velocity distribution is characteristic of laminar flow in
a straight conduit. Additionally, the velocity field confirms the presence of flow in the
x-direction, which is the primary direction of flow in the straight channel, and values
of velocity in y-direction are reaching numerical zero.
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Figure 17: Results of simulation for Newtonian fluid on straight geometry for δp = 5.1
Pa
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The viscosity field µ provides information about the distribution of viscosity within
the channel. In this simulation, the viscosity remains relatively constant throughout
the channel due to the absence of significant geometric variations or flow disturbances.
This behavior is consistent with the Newtonian fluid assumption, where the viscosity is
independent of the shear rate. However, in the center of the channel, viscosity suddenly
peaks and reaches limiting viscosity µlim. Without this limitation, the theoretical
viscosity would reach infinity.

The limitation of the viscosity field by the µlim value is crucial to maintain physically
meaningful results. In non-Newtonian fluids, the viscosity can exhibit extremely high
values at low shear rates or in regions of high deformation. However, by imposing the
µlim constraint, we ensure that the viscosity values remain finite and realistic within
the simulation. This approach allows us to accurately capture the flow behavior while
avoiding unphysical or unrealistic viscosity values.

Fig. 18 illustrates the variations in velocity magnitudes for four selected viscosities
that closely approximate the desired flow behavior of the non-Newtonian fluid in the
straight channel. In these simulations, we observed a consistent pattern across all
viscosities, with the most significant differences occurring in the center of the channel,
where the velocity reaches its maximum. This observation aligns with our expectations
based on the distinct velocity profiles exhibited by Newtonian and non-Newtonian
fluids. For a detailed comparison of these velocity profiles, please refer to Fig. 19.

The observed pattern in the velocity magnitudes can be attributed to the differences
in rheological properties between Newtonian and non-Newtonian fluids. Newtonian
fluids exhibit a parabolic velocity profile, while non-Newtonian fluids, depending on
their rheological behavior, may display altered velocity distributions.

5.5.4 Simulation in stenosed channel

The simulation was performed with the same set of initial conditions on a geometry,
that has been gradually stenosed in the middle 1

5
to 0.7 of its original diameter using

cosine function as described in 5.1 simulating stenosis of vein. For this geometry, we
expect the flow to accelerate in the constriction as well as appearance of velocity in
y-direction.

5.5.5 Results of simulations in stenosed channel

An example of reference overall velocity field of non-Newtonian fluid for δp = 5.1 Pa
can be seen in Fig. 20.

As expected, the flow exhibited a noticeable acceleration within the stenosed section
of the channel. This acceleration can be attributed to the reduced cross-sectional area,
resulting in higher flow velocities in comparison to the wider regions of the geometry.

In addition to the accelerated flow in the narrowing region, a non-negligible velocity
component in the y-direction (transverse to the main flow direction) was observed. This
phenomenon can be attributed to the asymmetric geometry of the stenosed channel,
causing a pressure difference that induces fluid motion perpendicular to the primary
flow direction.

The simulation results indicated a significant pressure decay across the stenosed
section of the channel. This pressure decay can be attributed to the increased fluid
velocity and the restricted cross-sectional area.
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Figure 18: Difference in velocity magnitudes (vNewtonian − vnon-Newtonian) for selected
viscosities for δp = 5.1 Pa for straight channel
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In the viscosity field within the stenosed part of the channel, we observe a charac-
teristic shear-thinning behavior, which is typical for non-Newtonian fluids like blood.
This phenomenon occurs as the shear rate increases, leading to a reduction in viscos-
ity. This shear-thinning behavior is prominent within the stenosed section due to the
higher flow velocities experienced in this region.

In the inlet and outlet the viscosity field closely resembles the viscosity field observed
in the straight channel simulation shown in Fig. 17. The viscosity values in these
regions are limited by the limiting viscosity (µlim), preventing the theoretical viscosity
from reaching infinity.

Fig. 21 illustrates the variations in velocity magnitudes for four selected viscosities
that closely approximate the desired flow behavior of the non-Newtonian fluid in the
straight channel. In these simulations, we observed a consistent pattern across all
viscosities, with the most significant differences occurring in the constriction of the
channel, where the velocity reaches its maximum. For a detailed comparison of velocity
profiles at the inlet and outlet of stenosed channel, please refer to Fig. 22. Upon closer
examination, we observe that for a viscosity value of µ = 0.006725Pa·s, the simulation
of the Newtonian fluid closely replicates the profile of the non-Newtonian fluid near
the edges of the channel. However, it is important to note that the maximum velocity
difference between the two simulations is higher in this case.

In Fig. 23, we present the Euclidean norm of the difference between the velocity
magnitudes of the Newtonian and non-Newtonian fluids for various pressure differences.
This norm provides an overall measure of the discrepancy between the two simulations.

Upon examination, we observe that as the pressure difference increases, the veloci-
ties and shear rates in the channel also increase. Consequently, to accurately simulate
this behavior, the optimal viscosity for the Newtonian approximation should be closer
to the limiting viscosity µ∞. This choice accounts for the higher velocities and shear
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Figure 19: Velocity profiles for selected viscosities for δp = 5.1 Pa
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Figure 20: Results of simulation for Newtonian fluid on stenosed geometry for δp = 5.1
Pa

56



0.0000 0.0050 0.0100 0.0150 0.0200 0.0250

x

-0.0020

0.0000

0.0020

y

(a) µ = 0.006725Pa · s

0.0000 0.0050 0.0100 0.0150 0.0200 0.0250

x

-0.0020

0.0000

0.0020

y

(b) µ = 0.010000Pa · s

0.0000 0.0050 0.0100 0.0150 0.0200 0.0250

x

-0.0020

0.0000

0.0020

y

(c) µ = 0.016588Pa · s

0.0000 0.0050 0.0100 0.0150 0.0200 0.0250

x

-0.0020

0.0000

0.0020

y

(d) µ = 0.023156Pa · s0 0.005 0.01 0.015 0.02 0.025

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10
-3

-0.02 -0.01 0 0.01 0.02 0.03 0.04

Figure 21: Difference in velocity magnitudes (vNewtonian − vnon-Newtonian) for selected
viscosities for δp = 5.1 Pa for stenosed channel

57



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

10
-3 Velocity profiles

Non-Newtonian fluid

 = 0.006725

 = 0.010000

 = 0.016588

 = 0.023156

(a) Inlet

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

10
-3 Velocity profiles

Non-Newtonian fluid

 = 0.006725

 = 0.010000

 = 0.016588

 = 0.023156

(b) Outlet

Figure 22: Velocity profiles of stenosed channel for selected viscosities for δp = 5.1 Pa
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rates associated with larger pressure differences.
Conversely, as the pressure differences decrease, the optimal Newtonian viscosity

moves closer to the viscosity at low shear rates µ0. This adjustment considers the lower
velocities and shear rates associated with smaller pressure differences.

It is important to note that as we deviate further from the optimal viscosity values,
specifically towards µ∞, the error in our simulation results increases more rapidly
compared to using viscosities closer to µ0.

Described behavior of the optimal viscosity and the associated error trends align
with the characteristics typically observed in shear-thinning fluids.

5.5.6 Simulation in curved channel

To simulate the flow in the curved channel, we will employ the same solver used in
the previous sections, utilizing the artificial compressibility method. The simulated
geometry should resemble real-world scenario, such as blood vessels with bends or
arteries with curvatures.

The mesh is generated in MATLAB and is set to have same length as the straight
and stenosed channel, but is bent by π

2
radians (90◦).

To maintain stability during the simulation, the reference pressure difference δp
will be set to 1 Pa. This choice ensures accurate and reliable simulation results in
reasonable computational time without compromising stability.

The simulation will be performed for various test viscosities, ranging from µ0 to
µ∞, while employing the power-law model to represent the non-Newtonian behavior
of the fluid. To mimic human blood properties, the fluid properties will be set to a
density ρ = 1060 kg ·m−3, a flow consistency index K = 29.3 · 10−3Pa · sκ, and a flow
behavior index κ = 0.628Pa · s for simulation of non-Newtonian fluid.

5.5.7 Results on simulations in curved channel

In Fig. 24, we present the results obtained from the simulation of non-Newtonian fluid
in the curved channel, along with the corresponding viscosity field µ.

As anticipated, the flow within the channel exhibits an increase in velocity towards
the center, while maintaining zero velocity at the edge of the computational domain to
fulfill the boundary conditions. This behavior is consistent with the observations made
in the straight canal simulation. However, it is worth noting that the velocity field is
not entirely symmetric, with the peak velocity occurring closer to the inner wall of the
curvature. This asymmetry is an interesting characteristic that distinguishes the flow
behavior within the curved channel from that in a straight canal.

Analyzing the viscosity field µ, we observe minimal variations along the curvature
of the canal. The viscosity reaches its maximum near the center of the channel, closer
to the inner wall of the curved channel, where it reaches the maximum viscosity value
µmax. This viscosity asymmetry follows the velocity field and is a typical behavior
observed in non-Newtonian fluids, such as blood.

The pressure field exhibits a regular, almost linear distribution along the length
of the channel. This observation indicates a gradual pressure decay as the fluid flows
through the curved channel, conforming to the expected behavior in such geometries.

Fig. 25 illustrates the variations in velocity fields for four selected viscosities that
closely approximate the desired flow behavior of the non-Newtonian fluid in the curved
channel. In these simulations, we observed a consistent pattern across all viscosities,
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Figure 24: Results of simulation for Newtonian fluid in curved channel for δp = 1 Pa
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Figure 25: Difference in velocity magnitudes (vNewtonian − vnon-Newtonian) for selected
viscosities for δp = 1.0 Pa for curved channel
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with the most significant differences occurring where the velocity reaches its maximum.
For a detailed comparison of velocity profiles, please refer to Fig. 26. Upon closer
examination, we observe that for a viscosity value of µ = 0.023156Pa·s, the simulation
of the Newtonian fluid closely replicates the profile of the non-Newtonian fluid reaching
same maximal velocity. Furthermore, in this figure, we can observe the offset of the
peak velocity towards the inner wall of curvature. In Fig. 27, we present the Euclidean
norm of the difference between the velocity fields of the Newtonian and non-Newtonian
fluids for various pressure differences, with exclusion of certain peak values approaching
µ∞. This norm provides a comprehensive measure of the discrepancy between the two
simulations and serves as a quantitative assessment of the simulation accuracy.

Upon examination of the norm values, we observe a clear relationship between the
pressure differences and the resulting velocities and shear rates within the channel. As
the pressure difference increases, the velocities and shear rates also increase accord-
ingly. Consequently, to accurately capture this behavior, the optimal viscosity for the
Newtonian approximation should be closer to the asymptotic viscosity µ∞. This choice
takes into account the higher velocities and shear rates associated with larger pressure
differences, ensuring a more faithful representation of the flow dynamics.

Conversely, as the pressure differences decrease, the optimal Newtonian viscosity
moves closer to the viscosity at low shear rates µ0. This adjustment is necessary to ac-
count for the lower velocities and shear rates observed with smaller pressure differences,
maintaining accuracy in simulating the flow behavior.

Importantly, it should be noted that as we deviate further from the optimal vis-
cosity values, particularly towards µ∞, the error in our simulation results increases
more rapidly compared to using viscosities closer to µ0. This highlights the sensitiv-
ity of the simulation accuracy to the choice of viscosity approximation, emphasizing
the importance of selecting viscosities within an appropriate range to achieve reliable
results.
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The observed behavior of the optimal viscosity and the associated error trends align
with the characteristics typically observed in shear-thinning fluids. Furthermore, these
findings are consistent with the trends identified in previous simulations, which also
demonstrated similar values of the Euclidean norm approaching µ0.

5.5.8 Conclusion

By considering the relationship between pressure differences, velocity fields, and the
optimal viscosity, we gain valuable insights into the behavior of non-Newtonian fluids.
These insights contribute to the development of accurate simulation methodologies for
shear-thinning fluids, enabling more reliable predictions of flow behavior and enhancing
our understanding of fluid dynamics in complex geometries.

The simulation results align with the characteristics of shear-thinning fluids ex-
pected from simulations of blood. The choice of optimal viscosity depends on the
specific properties of the simulation. In cases where higher maximal velocities are
observed, the optimal viscosity tends to be closer to the asymptotic viscosity µ∞. Con-
versely, as the velocity decreases, the optimal viscosity tends to move towards the
viscosity at low shear rates µ0.

However, it is generally more favorable to choose a viscosity approximation closer to
µ0 as the difference in velocities between the Newtonian and non-Newtonian simulations
is lower. This choice minimizes the error in the simulation results and provides a closer
approximation to the behavior of the non-Newtonian fluid.

It is important to note that the evaluation of the results was based on the difference
in velocity fields, which can be related to the difference in flow rate. However, it is
crucial to consider that the choice of the optimal viscosity can vary depending on the
desired criteria. Different criteria, such as pressure drop, flow rate, wall shear stress,
or other flow characteristics, may lead to different optimal viscosity selections.

By acknowledging the influence of simulation properties and the trade-off between
accuracy and computational efficiency, we can make informed decisions regarding the
optimal viscosity approximation for the simulation of shear-thinning fluids. These
considerations enhance our understanding of the flow behavior and contribute to the
development of reliable simulation methodologies for non-Newtonian fluids.
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6 Conclusion

The primary objective of this work was to present numerical simulations of incom-
pressible Newtonian fluids, with a specific focus on their application in the field of
biomedicine. These results were presented in section Numerical experiments. How-
ever, the background for these simulations was laid in previous sections. For clearer
presentation of aims of this work, we will provide conclusion for each section.

Physical model Section Physical mode fulfills first objective of this work. We pre-
sented generalized Newtonian fluids and key properties of blood and described power-
law model fluid, that was later used to describe non-Newtonian behavior of blood
during simulations.

Mathematical model At the beginning of this section, we introduced Reynolds
number and Womersley number, dimensionless number used to describe flow charac-
teristics. We then derived basic equations of fluid dynamics, mainly continuity equation
and Navier-Stokes equations. We presented analytical solution of these equations for
three dimensional flow in tube in radial coordinates and for two dimensional flow in
cartesian coordinates for three simplified cases of Newtonian fluid driven by constant
pressure, power-law model fluid driven by constant pressure and Newtonian fluid driven
by oscillating pressure. This answers second task of this work.

Numerical model In this section, we have outlined the process of discretizing the
Navier-Stokes equations in a two-dimensional case using finite volumes method. We
presented coupling of pressure and velocity using artificial compressbility method and
derived pressure equation for pressure correction method with equations using finite
volumes method to express poisson equation.

Numerical experiments We implemented obtained equations into own numerical
code in MATLAB and performed various simulations of fluid with blood-like properties
with different aims. First set of simulations aimed to show results for non-stationary
flow and to compare artificial compressbility method and pressure correction method.
First simulation case on straight channel was used to compare results with analytical
solution derived earlier in this work, as well as compare the two used methods. in second
test case, flow through stenosed channel, we showed ability to simulate more complex
geometry and we presented results for both methods. For second set of simulations, we
used solver using artificial compressbility method and we presented difference between
flow of non-Newtonian and Newtonian fluid. Power-law model with constants set to
fit behavior of blood was used and we performed simulations for three different two
dimensional geometries with six pressures set on the inlet and various viscosities for
Newtonian fluid. We discussed optimal choice of viscosity to use in simulations of
Newtonian fluid in order to simulate non-Newtonian fluid, when aim of the simulation
is similar velocity profile. More detailed conclusion follows each test case in section
Numerical experiments. These simulations answer the rest of tasks for this work.

This work could be further developed by expanding for three dimensional cases,
implementation of power-law model in solver using pressure correction method, rewrit-
ing the solver in different language and improving its performance, implementing of
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two-step method into pressure correction method, improving performance of artificial
compressibility method in simulations with oscillating pressure by using dual time
stepping method.
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