
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Discord bot for Czech real estate market monitoring

Bc. Vojtěch Drška

Ing. Ondřej Guth, Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Design and implement software for periodically scraping real estate related data in the

Czech Republic from at least three web portals where one does not provide an API that

returns directly the data of interest. Design and implement a Discord Bot which will

provide its users with fresh data based on their interests and preferences. Deploy the

whole application into a cloud environment in a scalable way.

Electronically approved by Ing. Michal Valenta, Ph.D. on 26 February 2023 in Prague.

Master’s thesis

Discord bot for Czech real estate market
monitoring

Bc. Vojtěch Drška

Department of Software Engineering
Supervisor: Ing. Ondřej Guth, Ph.D.

June 29, 2023

Acknowledgements

I would like to thank Ing. Ondřej Guth, Ph.D. for supervising this thesis,
his time, his effort, his suggestions and overall for an amazing and pleasant
cooperation. I would also like to thank my parents for their endless support
throughout my studies for which I am eternally grateful.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 29, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Vojtěch Drška. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Drška, Vojtěch. Discord bot for Czech real estate market monitoring. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2023.

Abstrakt

Tato diplomová práce se věnuje návrhu a implementaci softwaru slouž́ıćıho
k źıskáváńı dat týkaj́ıćıch se nab́ıdek na českém realitńım trhu. Dále se tato
práce zabývá návrhem a implementaćı Discordového bota, slouž́ıćımu k noti-
fikováńı uživatel̊u o nab́ıdkách, které je zaj́ımaj́ı.

Kĺıčová slova Discord, bot, REST, API, Java, Python, nemovitosti, moni-
torováńı

Abstract

The subject of this master’s thesis is to design and implement software used
for extracting and parsing data related to Czech real estate market. Another
objective of this thesis is to design and implement a Discord bot, capable
of sending notifications to its users, containing information about real estate
listings of their interest.

Keywords Discord, bot, REST, API, Java, Python, real estate, monitoring

vii

Contents

Acknowledgments 1

1 Analysis 3
1.1 Analysis of existing solutions 3

1.1.1 Realitńı hĺıdaćı pes . 3
1.1.2 realitymon . 3
1.1.3 inforeality . 4
1.1.4 Conclusion . 5

1.2 Requirements engineering . 5
1.2.1 Functional requirements 6

1.2.1.1 F1: Subscribe to a location 6
1.2.1.2 F2: Subscribe to a location with filters 6
1.2.1.3 F3: Edit existing location subscription 7
1.2.1.4 F4: Cancel subscription 7
1.2.1.5 F5: List all user’s subscriptions 7
1.2.1.6 F6: Send notification about new listing to sub-

scribed users 7
1.2.1.7 F7: Send notification about price change to

subscribed users 7
1.2.1.8 F8: Send notification about listing removal to

subscribed users 7
1.2.1.9 F9: Manual scraper start 8
1.2.1.10 F10: Application health status 8
1.2.1.11 F11: Data updates 8
1.2.1.12 F12: Date & time of last update 8

1.2.2 Non-functional requirements 8
1.2.2.1 NF1: Responsiveness 9
1.2.2.2 NF2: User friendliness 9
1.2.2.3 NF3: Frequency of data scraping 9

ix

1.2.2.4 NF4: Ethical load on scraped servers 9
1.2.2.5 NF5: Secured access to scrapers 9
1.2.2.6 NF6: Availability 9
1.2.2.7 NF7: Cost efficiency 10
1.2.2.8 NF8: Deployment automation 10

1.2.3 Use cases . 10
1.2.3.1 UC1: Subscribe to location 11
1.2.3.2 UC2: Adding new subscription with filters . . 12
1.2.3.3 UC3: Updating an existing subscription 12
1.2.3.4 UC4: Removing existing subscription 13
1.2.3.5 UC5: Scraping new listings 13
1.2.3.6 UC6: Scraping price changes 14
1.2.3.7 UC7: Identifying removed listings 14
1.2.3.8 UC8: Manually triggering scraping of new data 15
1.2.3.9 UC9: Health status check 16
1.2.3.10 UC10: List active subscriptions 16

1.3 Domain model . 16
1.3.1 Subscription . 17
1.3.2 RealEstate . 17
1.3.3 Address . 18

1.3.3.1 Hidden location 18
1.3.3.2 Old listings . 18
1.3.3.3 Same real estate, different portals 19

1.3.4 Channel . 19

2 Design 21
2.1 Database . 21

2.1.1 Data model . 21
2.1.2 Real estate listings . 21

2.1.2.1 Address . 23
2.1.2.2 Suburb Prague 23

2.1.3 Database type . 23
2.1.4 RDBMS . 25

2.2 Scrapers . 25
2.2.1 Programming language 25

2.2.1.1 Python . 25
2.2.1.2 JavaScript (Node.js) 26
2.2.1.3 Ruby . 27
2.2.1.4 C/C++ . 27
2.2.1.5 Conclusion . 28

2.2.2 Architecture . 28
2.2.2.1 Server-less/Lambda functions 28
2.2.2.2 Cron jobs . 31
2.2.2.3 Discord bot . 32

x

2.2.2.4 Conclusion . 33
2.2.3 Commands . 33

2.3 Discord bot - client side . 34
2.3.1 Commands . 34

2.3.1.1 Creating a subscription 35
2.3.1.2 Updating a subscription 35
2.3.1.3 Deleting a subscription 36
2.3.1.4 Viewing subscription details 37
2.3.1.5 Health-check 37

2.3.2 Programming language 37
2.3.2.1 C/C++ . 37
2.3.2.2 Java . 37
2.3.2.3 Conclusion . 38

2.3.3 RESTful API . 38
2.3.3.1 Programming language & framework 38
2.3.3.2 Endpoints . 38

2.4 Cloud provider . 39
2.5 High-level architecture . 40

2.5.1 Deployment . 40
2.5.2 Managing listings - Scrappers and REST API 41
2.5.3 Managing subscriptions - Discord bot and REST API . 41
2.5.4 Obtaining user info - Discord bot and REST API 41
2.5.5 Reverse geocoding - Nominatim and Scrappers 41

3 Implementation 47
3.1 Scraping Bot . 47

3.1.1 Sreality scrapping . 47
3.1.2 Scraping new listings . 47

3.1.2.1 Scraping data from search results 47
3.1.2.2 Scraping data from listing details 48
3.1.2.3 Conclusion . 49

3.1.3 Address scraping . 49
3.1.3.1 httpx vs requests 49
3.1.3.2 Reverse engineering of the API 49

3.1.4 Reality Idnes scraping 50
3.1.4.1 Addresses . 50

3.1.5 Bezrealitky scraping . 51
3.1.5.1 Scraping listing’s details 51

3.1.6 Dependency Injection 51
3.1.7 SQLite as cache . 52

3.2 Client bot . 52
3.2.1 Sending images . 52
3.2.2 Modals vs Views . 53
3.2.3 Regions and municipalities 54

xi

3.3 REST API . 55
3.3.1 Architecture . 55
3.3.2 Model conversion placement 56
3.3.3 ModelMapper . 57
3.3.4 Hibernate Validator . 57
3.3.5 Access control . 57
3.3.6 Price change . 58
3.3.7 Deriving missing parts of addresses from existing data . 58

3.4 AWS . 59
3.4.1 Multiple SQS queues VS. Message Groups 59
3.4.2 ECS Task definition . 59
3.4.3 ECS Service . 60
3.4.4 Deployment . 60

4 Testing 63
4.1 Types of used tests . 63

4.1.1 Unit tests . 63
4.1.2 User tests . 63

4.2 Client bot . 63
4.2.1 User testing . 63

4.2.1.1 Create subscription 64
4.2.2 Update subscription . 65
4.2.3 View subscription details 65
4.2.4 Remove subscription . 65
4.2.5 Verify the bot is working 66

4.3 REST API . 66

5 Conclusion 67
5.1 Visions for the future . 68

Bibliography 69

A Acronyms 75

xii

List of Figures

1.1 realitymon - No results . 4
1.2 Domain model . 20

2.1 Data model . 24
2.2 Client bot - create form - basic . 35
2.3 Client bot - create form - filters . 36
2.4 Client bot - subscription embed . 42
2.5 Client bot - filled out forms . 43
2.6 Client bot - subscription selection 44
2.7 Client bot - command overview . 44
2.8 High-level architecture . 45
2.9 High-level architecture with S3 bucket 46

3.1 Sreality house search results . 50

xiii

List of Tables

1.1 Application features . 6
1.2 Relations between use cases and functional requirements 17

xv

Introduction

Nowadays, it is hard to buy a real estate at a reasonable price in the Czech
Republic [1]. Therefore, once a good offer appears, it is crucial to respond
fast as the demand for such offers is large and usually on the first come, first
served basis. Because of that, frequently monitoring real estate portals for
new offers is necessary, but at the same time very expensive time wise. That
is exactly where our application is supposed to step in.

The goal of this thesis is to design and implement an application that will
allow its users to efficiently monitor the Czech real estate market for their
desired properties. The application will be composed of multiple parts. These
parts are namely client bot, REST API and scrapers. The scrapers will be
responsible for fetching and parsing data from multiple real estate portals.
This data will then be sent to the REST API, which will save them to the
database. It will also send details of notification details to a queue. From this
queue, the notification details will be picked up by the client bot and trans-
formed to notifications in the form of Discord messages. These notifications
will then be sent to the interested users.

The thesis is split into five chapters. The first chapter 1 discusses the
existing solutions. It also defines the functional and non-functional require-
ments as well as the use cases. The second chapter 2 contains discussions
about selected technologies, designs of UI and the high-level architecture and
the use of cloud services. Chapter number three 3 is devoted to implementa-
tion and discusses the problems that we came across. It also describes some of
the solutions in a greater detail. The fourth chapter discusses the tests used
in different parts of the application and types of used tests in general. Finally,
the fifth chapter 5 concludes and discusses how we were able to achieve the
goals of this thesis and accomplish the requirements from chapter one 1. It
also describes some of the possibilities and directions in which the development
of the application might go in the future.

1

Chapter 1
Analysis

1.1 Analysis of existing solutions

1.1.1 Realitńı hĺıdaćı pes

Realitńı hĺıdaćı pes is an application that monitors real estate listings from
multiple different web portals. It allows the user to specify the town/city
of interest. The street may also be specified, but only for Prague and Brno.
The user may also specify the radius around the chosen locality. If new listing
appears the user is notified via an email.

The software notifies the users only about new listings, however it does
not notify them about events such as price changes or listings getting taken
down / properties being sold.

Looking at the pricing and the terms of different subscriptions the appli-
cations seems to be targeting mainly people and not real estate agencies. The
terms of the subscriptions are also rather strict. The cheapest subscription
costs 56,-Kč/month per monitor however to get this price you need to run
at least three monitors and run them all for a year. The most expensive op-
tion costs 99,-Kč/month per monitor and while it does not require you to run
multiple monitors it does require you to run the monitor for at least a three-
month period. Although the cost of the subscriptions is quite reasonable the
conditions and mainly the fixed time period is not very flexible and might
deter some users from using the application [2].

1.1.2 realitymon

realitymon [3] is a web application providing an overview of properties for sale
on different web portals all over the Czech Republic. The application states
that it supports the following web portals:

• Sreality

• Bezrealitky

3

1. Analysis

• Idnes

• Reality.cz

• viaReality

However, after examining and trying out the application it seems like only
data from Sreality and Reality.cz are available. If the user chooses any other
of the portals, the map displaying the listed properties is empty as we can see
in the figure 1.1. It is possible that the application will get fixed or will start
supporting the other portals in the future as the web application states that
it is still in the development, but at this point in time only the two mentioned
web portals seem to be working.

The application also does not enable the users to obtain notifications of
any kind so it only works as a sort of an aggregator of different web por-
tals. Therefore, it only eliminates the need for checking multiple different web
portals while the need for periodic manual check remains.

As for the frequency of updates, the data displayed by the application
are refreshed once a day. This could be an issue for some of the potential
users because, in the worst case, they could be informed about a newly listed
property with a 24 hour delay. This might allow someone else to show their
interest in the property sooner than them.

The use of the application is free and there are no paid options available [3].

Figure 1.1: realitymon - No results

1.1.3 inforeality

inforeality is a real estate listing monitoring software. It monitors tens of web
portals and provides fresh data every 1-3 minutes. The application allows
you to set filters based on age of listings, type of real estate, location and
a few more. The website which describes the software also states that the

4

1.2. Requirements engineering

information are available either through email or through an application. It
unfortunately does not state whether the application is in a form of web or
desktop application.

It was attempted to research this software further as the website that
represents it seems rather dated and so it is not sure whether the software
is actually still working, but to no avail. Trying the application is also not
an option as the only way of obtaining the free trial is requesting it through
a form which requires more personal information than we are comfortable
giving to the company.

Regarding the pricing, there are multiple different subscriptions which
range from roughly 1200,- Kč/month to 8500,-Kč/year.

It is also worth noting that the target audience of the software are mainly
real estate agencies and therefore it might not be suitable for individuals [4].

1.1.4 Conclusion

From the three described applications, the inforeality [4] seems to be the
closest one to the application that is going to be developed in this masters
thesis. The key differences are that inforeality focuses mainly on the real
estate agencies, is quite expensive for a ”casual user” and does not provide
discord support.

Realitńı hĺıdaćı pes [2] is similar to our application in terms that it is
affordable and targets casual users instead of real estate agencies. Where it
differs is the lack of the following features:

• flexibility regarding the already set up monitors

• notifications based on change of price or a listing being removed

• discord support

realitymon [3] seems to be only a listing aggregator which currently sup-
ports only two web portals. Apart from working with other web portals it does
not have much of a overlap with our application in terms of functionalities and
features.

The overview of supported features by different applications can be seen
in the table 1.1. There is one value regarding our application that should be
shortly addressed. The exact refresh rate of our application will be determined
later in the implementation chapter 3 as it will be affected by the behavior
of web portals when scraping as well as the method of scraping that will be
chosen.

1.2 Requirements engineering

This section will discus the functional and non-functional requirements that
the application must satisfy. The requirements will describe all important

5

1. Analysis

Table 1.1: Application features

Realitńı hĺıdaćı pes inforeality realitymon Our Application
Free version Yes No Yes Yes
Refresh rate n/a 1-3 min. 24h 5-15min.

Number of portals n/a 10+ 2 3
New listing notif. Yes Yes No Yes

Price change notif. No Yes No Yes
Removed listing notif. No Yes No Yes

Email notif. Yes Yes No No
Discord notif. No No No Yes

functionalities and features that must be available to the end users. Differ-
ent use cases and mapping of functional requirements to them will also be
described in this section [5][6].

1.2.1 Functional requirements

Functional requirements define what features have to be implemented in order
to allow the users achieve their goals. They typically describe the behavior
of an application. Stating functional requirements and keeping them in mind
during development also helps us make sure that the system is doing what it
is supposed to do and therefore brings the expected value to its users.

1.2.1.1 F1: Subscribe to a location

The application must allow the user to subscribe to a location using a Discord
command.

1.2.1.2 F2: Subscribe to a location with filters

The application must allow the user to subscribe to a location and add filters
for the following attributes:

• real estate type

• number of rooms

• land dimensions

• real estate dimensions

• energetic efficiency

• state of the real estate

• min. price

6

1.2. Requirements engineering

• max. price

using a Discord command.

1.2.1.3 F3: Edit existing location subscription

The application must provide user with the option of editing an existing sub-
scription to a location. This will allow the user to edit filters on all the
attributes specified in requirement F2 1.2.1.2.

1.2.1.4 F4: Cancel subscription

The application must allow the user to cancel an existing subscription.

1.2.1.5 F5: List all user’s subscriptions

The application must allow the users to list all the locations that they are
subscribed to. This listing must also include all filters described in the re-
quirement F2 1.2.1.2 that are active. As one of the reasons for listing the
active subscriptions is to perform some action on them, all the subscriptions
should include some form of ID, so they can be later referred to in Discord
bot commands.

1.2.1.6 F6: Send notification about new listing to subscribed
users

The application must send a notification that new listing appeared to all users
that have a subscription matching the newly found listing. In addition to that,
each separate notification must take into count the specific filters setup by each
user and adhere to them.

1.2.1.7 F7: Send notification about price change to subscribed
users

The application must send a notification when price changes for an existing
listing to all its subscribers. In addition to that, each separate notification
must take into count the specific filters setup by each user and adhere to
them.

1.2.1.8 F8: Send notification about listing removal to subscribed
users

The application must send a notification that listing was removed to all its
subscribers. In addition to that, each separate notification must take into
count the specific filters setup by each user and adhere to them.

7

1. Analysis

1.2.1.9 F9: Manual scraper start

The application must provide an option of manually starting data scraping.
This feature must be available exclusively to the administrator of the appli-
cation as its unsupervised and parallel usage could lead to issues as described
in the requirement NF5 1.2.2.5.

1.2.1.10 F10: Application health status

Any user must be able to check the health of the application at any point in
time. This may be done simply as a ping discord command.

1.2.1.11 F11: Data updates

The application must periodically refresh its data in order provide the users
with relevant information.

1.2.1.12 F12: Date & time of last update

The application should, on request, provide the users with last date and time
when the data was refreshed/updated.

1.2.2 Non-functional requirements

In contrast to functional requirements, non-functional requirements do not
describe the features or behavior of a system, but rather how these fea-
tures should be performed. Non-functional requirements are typically focused
around the following areas:

• Performance — speed, scalability, responsiveness

• Security — authorization, protection of sensitive data, detection of se-
curity breaches

• Usability — ease of accomplishing users goals, UI user friendliness

• Reliability — behavior is as expected, ability to function consistently
and reliably

• Maintainability — proper testing, code quality, easy to maintain

• Availability — percentage of successful requests, up-time

• Portability — compatibility with different environments, ease of deploy-
ment to new environment

Even though non-functional requirements do not define the behavior of
the system, they play a huge role in its success. This is mainly due to the fact
that the areas described above are all of great importance and they determine
the overall quality of the system [7][8].

8

1.2. Requirements engineering

1.2.2.1 NF1: Responsiveness

Even though Discord bot does not feature any GUI, the bot should still ”feel
responsive” by providing the users with clear and deterministic responses in-
dicating the status/success of their command.

1.2.2.2 NF2: User friendliness

The commands supported by the bot should be easy to use and intuitive. In
case any form needs to be filled out by the user, the fields and its contents
should be clearly explained to the user.

1.2.2.3 NF3: Frequency of data scraping

The data should be scraped as often as possible. This is important mainly
for the monitoring of newly added listings as infrequent updates could cause
the users to miss out on a deal. This requirement should, however, be in
compliance with requirement NF4 1.2.2.4.

1.2.2.4 NF4: Ethical load on scraped servers

The frequency of scraping data must be reasonable and not cause and ex-
cessive load on the scraped servers. Even though we want to keep the users
updated with fresh data as frequently as possible as described in the require-
ment NF3 1.2.2.3, behaving ethically correct and not causing any harm to the
scraped servers is of priority.

1.2.2.5 NF5: Secured access to scrapers

Manual access to the scrapers and their triggering should be an action reserved
only to the administrator of the application. Not restricting the access could
lead to issues such as:

• crashing the application when many users trigger the scrapers in parallel

• creating heavy load on the servers being scraped which would be against
the requirement NF4 1.2.2.4

1.2.2.6 NF6: Availability

The availability of the application must be ensured by using a reliable produc-
tion environment with stable internet connection. This is why the application
should be deployed to cloud as majority of cloud providers provide SLAs guar-
anteeing up-time north of 99% [9].

9

1. Analysis

1.2.2.7 NF7: Cost efficiency

The whole application should developed with cost efficiency in mind. This
applies not only to the architecture/design of the application, but also, and
mainly, to the choice of cloud provider and used cloud services. With that
said, the choices made in order to save resources should in no way hinder the
applications safety or usability.

1.2.2.8 NF8: Deployment automation

In order to make the process of deploying the application fast and reliable,
CI/CD pipelines should be created in order to automate the deployment. The
pipelines should be able to both deploy new version of application to existing
server as well as deploy the application to a new environment.

1.2.3 Use cases

Use cases are used to define goals that need to be accomplished in the system.
The main parts of each use case are typically the following:

• Actor — the entity that is going to be interacting with the system. This
may be a user as well as administrator or, in some cases time

• Goal — what is supposed to be achieved by completing the defined series
of operations described in the scenario

• Scenario — describes the sequence of operations and interactions that
need to be done in order to reach the goal of the use case

Each use case should also have a unique number/id and a unique name so it
can be easily referred to. There are also multiple optional components that
the use case may contain.

• Pre-conditions — Pre-conditions specify in which state the system has
to be (what needs to happen) before the scenario specified in the use
case can be executed

• Alternative path — The scenario included in the use case is usually
considered to be main success scenario. In some use cases, however, there
might be an alternative sequence of interactions with system which still
leads to the end goal. This sequence is then described as an alternative
path

• Exception — During the execution of a scenario, exceptions might hap-
pen. These can be in the form of user canceling a form or passing in an
incorrect input

10

1.2. Requirements engineering

• Post-conditions — As there may be multiple ways in which the use case
might end, there also can be multiple different states in which the system
may end up in, depending on how the execution of the use case ended

In addition to the previously discussed attributes, our use cases will also
contain the list of functional requirements, that are used in the scenario of the
respective use case.

An overview of all the relationships between the individual use cases and
functional requirements can be viewed in the following table 1.2.

The point of specifying different use cases is, that it helps us outline the
ways that the users will be interacting with the systems. It will also help us
understand and document the different dependencies between requirements
and the different states that the system might get into while being interacted
with [10][11][12].

1.2.3.1 UC1: Subscribe to location

Used requirements:
F1: Subscribe to a location 1.2.1.1
F2: Subscribe to a location with filters 1.2.1.2
F5: List all user’s subscriptions 1.2.1.5
Actor: Any user
Goal: Subscribing to location
Pre-conditions: The user is either in chat with the Discord bot, or is in
a channel that the bot is a member of.
Scenario:
The user enters a command, indicating that they want to create a new sub-
scription. The bot receives the command and responds with a message or
series of messages allowing the user to specify all the attributes upon which
the listings can be filtered. After receiving the response(s), the user specifies
only the location and sends it to the bot. The bot processes the response
and subscribes the user to the selected location. After that the bot sends
a response to the channel, from which it was contacted by the user, indicating
that the action was successful and listing all currently active subscriptions
including filters if applicable.

Exceptions:
The location specified by the user is invalid. The bot therefore sends a re-
sponse to the channel, from which it was contacted by the user, indicating
that the action was unsuccessful and listing all available locations.

Post-conditions:
In case the scenario took place and the action was completed successfully, the
user is now subscribed to the requested location.

11

1. Analysis

In case of the alternative path, the state of the system remains the same
as the passed in location was invalid and therefore no new subscription was
created.

1.2.3.2 UC2: Adding new subscription with filters

Used requirements:
F2: Subscribe to a location with filters 1.2.1.2
F5: List all user’s subscriptions 1.2.1.5
Actor: Any user
Goal: Creating a subscription with multiple options/filters
Pre-conditions: The user is either in chat with the Discord bot, or is in
a channel that the bot is a member of.
Scenario:
The user enters a command, indicating that they want to create a new sub-
scription. The bot receives the command and responds with a message or
series of messages allowing the user to specify all the attributes upon which
the listings can be filtered. After receiving the response(s), the user specifies
the filters that they are interested in an submits them. The bot processes the
messages and subscribes the user to the selected location with all the specified
filters. After that the bot sends a response to the channel, from which it was
contacted by the user, indicating that the action was successful and listing all
currently active subscriptions including filters if applicable.

Post-conditions:
In case the scenario took place and the action was completed successfully, the
user is now subscribed to the requested location.

1.2.3.3 UC3: Updating an existing subscription

Used requirements:
F3: Edit existing location subscription 1.2.1.3
F5: List all user’s subscriptions 1.2.1.5
Actor: Any user
Goal: Updating an existing subscription
Pre-conditions:
The user has an existing subscription
The user is either in chat with the Discord bot, or is in a channel that the bot
is a member of.
Scenario:
The user enters a command, indicating that they want to update an existing
subscription. The bot receives the command and responds with a drop-down

12

1.2. Requirements engineering

menu containing all the currently active subscriptions. After receiving the
drop-down menu, the user selects the subscription that they want to update.
The bot processes the response and sends the user a message or series of
messages similar to the one in UC2 1.2.3.2. Compared to the responses sent
in UC2 1.2.3.2 there is one small difference. That is, all the messages (modals,
drop-downs, forms) that are sent to the user are already pre-filled with the
values of the already existing subscription. After the user sends the filled out
messages back to the bot, they are processed and the existing subscription is
updated.

Post-conditions:
In case the scenario took place and the action was completed successfully, the
user is now subscribed to the requested location.

1.2.3.4 UC4: Removing existing subscription

Used requirements:
F4: Unsubscribe from a location 1.2.1.4
F5: List all user’s subscriptions 1.2.1.5
Actor: Any user
Goal: Removing an existing subscription
Pre-conditions: The user must have an existing subscription
Scenario:
The user enters a command, indicating that they want to remove/cancel an ex-
isting subscription. The bot receives the command and responds with a drop-
down menu, containing all the active subscriptions of the respective user. The
user picks the subscription that they want to cancel from the drop-down menu,
which passes it back to the discord bot. Once the bot receives the subscrip-
tion, it removes it from the system. After doing so, it sends a response to the
channel of origin, indicating the successful cancellation of given subscription
and listing all the remaining subscriptions.

Post-conditions:
In case the scenario was completed successfully, the subscription selected by
the user is now removed from the system.

1.2.3.5 UC5: Scraping new listings

Used requirements:
F7: Send notification about new listing to subscribed users 1.2.1.6
F12: Data updates 1.2.1.11
Actor: Time
Goal: Finding newly added listings to portals

13

1. Analysis

Scenario:
Once the scrapers are triggered after a specified duration, they scrape all the
supported portals for newly added listings. In case new listing was found,
its details are scraped and saved to the database. At the same time, the
information that new listing was found is passed to the bot alongside with its
details. The bot then checks which users are interested in this listing, based
on the existing subscriptions. After determining which users are interested,
the bot sends a message to each one of them, stating that a new listing was
found as well as details of the listing.

Post-conditions:
In case the scenario was completed successfully, the system database now
contains the most recently added listings to the supported portals. Also,
a message to the subscribed users was sent.

1.2.3.6 UC6: Scraping price changes

Used requirements:
F8: Send notification about price change to subscribed users 1.2.1.7
F12: Data updates 1.2.1.11
Actor: Time
Goal: Finding for which listings has the price changed
Scenario:
Once the scrapers are triggered after a specified duration, they scrape all the
supported portals in order to determine for which listings the price changed.
In case a price change is found, the scrapers save it to the database. At the
same time, the information that the price changed for some listing is passed
to the bot alongside with the updated listing details. The bot then checks
which users are interested in this listing, based on the existing subscriptions.
After determining which users are interested, the bot sends a message to each
one of them, stating that price was changed as well as updated details of the
listing.

Post-conditions:
In case the scenario was completed successfully, the system database now
contains up to date information regarding the price changes. Also a message
describing the price change was sent to subscribed users

1.2.3.7 UC7: Identifying removed listings

Used requirements:
F9: Send notification about listing removal to subscribed users 1.2.1.8
F12: Data updates 1.2.1.11

14

1.2. Requirements engineering

Actor: Time
Goal: Identifying which listings were removed
Scenario:
Once the scrapers are triggered after a specified duration, they scrape all the
supported portals in order to determine which listings were removed. In case
some listing is missing, compared to the previous scraping run, the scrapers
save that information to the database. At the same time, the information
that some listing was removed is passed to the bot alongside with its details.
The bot then checks which users are interested in this listing, based on the
existing subscriptions. After determining which users are interested, the bot
sends a message to each one of them, stating that an existing listing was
removed, alongside with its details.

Post-conditions:
In case the scenario was completed successfully, the system database now
contains up to date information regarding which listings were removed. Also
a message notifying that a listing was removed is sent to all interested users.

1.2.3.8 UC8: Manually triggering scraping of new data

Used requirements:
F10: Manual scraper start 1.2.1.9
Actor: System administrator
Pre-conditions: The system administrator is either in chat with the Discord
bot, or is in a channel that the bot is a member of.
Goal: Manually starting the scraping process
Scenario:
The system administrator sends a command, indicating that they want to
scrap the real estate portals to the scrapper bot. Once the bot receives the
command it checks that the user sending the command is actually the system
administrator a therefore is authorized to perform the command. Once that
it is verified, the bot responds with a modal that allows the administrator to
pick which portals and what data (new listings, changed prices, removed list-
ings) do they want to scrap. Once the administrator submits the modal, the
bot starts scraping the requested portals for specified data. The bot will also
inform the administrator about the starts and ends of the requested scraping
jobs via a series of messages.

Post-conditions:
In case the scenario was completed successfully, the system database now con-
tains up to date information regarding the data specified by administrator.
Also a message notifying that a change in data was found is sent to all inter-

15

1. Analysis

ested users.

1.2.3.9 UC9: Health status check

Used requirements:
F11: Application health status 1.2.1.10
F13: Date & time of last update 1.2.1.12
Actor: Any user
Pre-conditions: The user is either in chat with the Discord bot, or is in
a channel that the bot is a member of.
Goal: Checking whether the bot is running
Scenario:
The user send a ping to the bot. After the bot receives the command, it
responds with a message, indicating that it is alive and ready to take any
commands, and stating the last time when the data was refreshed.

1.2.3.10 UC10: List active subscriptions

Used requirements:
F5: List all user’s subscriptions 1.2.1.5
Actor: Any user
Pre-conditions: The user is either in chat with the Discord bot, or is in
a channel that the bot is a member of.
Goal: Retrieving list of all active subscriptions
Scenario:
The user sends a command, indicating that they want a list of existing sub-
scriptions as the response, to the bot. After the bot receives the command, it
responds with a message containing the list of all the user’s active subscrip-
tions alongside with their filters if applicable.

1.3 Domain model

Domain model is a type of class diagram. Its purpose is to represent differ-
ent entities present in the concerned domain and the relationships between
them. Domain model should also be platform independent. Entities in the

16

1.3. Domain model

Table 1.2: Relations between use cases and functional requirements

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
UC1 X X X
UC2 X X
UC3 X X
UC4 X X
UC5 X X
UC6 X X
UC7 X X
UC8 X
UC9 X X
UC10 X

domain model are represented as classes which are usually composed of name,
attributes and methods.

In case of our domain model, the attributes and methods are missing. The
reason for that is, that while we now with a great level of certainty what the
entities in our domain are, their attributes are mostly dependent on the data
sources that the data are scraped from and thus may be a subject to change.
Also, determining the attributes that will be stored by our application is
a significant part of the design process and therefore will be further discussed
in the Chapter 2.

The domain model of our application can be seen in the figure 1.2. There
are multiple classes and relationships in the domain model that might benefit
from further explanation.

1.3.1 Subscription

Subscription essentially represents a ”watch dog”, that sends the user a mes-
sage to the specified channel once some change related to the specified region
and district occurs. The subscriptions are not bound to particular addresses
but rather to regions and districts. This is mainly due to the fact, that mon-
itoring an address would be too specific while also being hard and costly to
implement. Even though some users actually might want to only monitor
a specific address, this is not the primary purpose of the application. It, how-
ever, definitely can be considered as a feature some time in the future if there
is a demand for it.

1.3.2 RealEstate

RealEstate represents a listing of some real estate such as house or apartment.
Our main use of the data will be sending notifications to subscribed users.
This means that the scraped data from all the portals must conform to one

17

1. Analysis

structure, as we want the notifications look uniform for all portals. Therefore,
RealEstate model will contain only the portal non-specific information, that
we can expect to be present in all listings. Examples of such information may
be the type of estate, area of the land, price, url of listing etc. There are
many more information present in the individual real estate portals, however
these are of no use to us at the given moment. Therefore, such data will no be
included in the database and as such has no place in the domain model also.

1.3.3 Address

Even though the class Address is rather self-explanatory, its relationship with
RealEstate is slightly more complicated than it might seem. As the domain
model states, each instance of RealEstate has exactly one Address instance
related to it and one Address might have zero or more RealEstate instances
related to it. This might sound like an error as in real world, it is not possible
to have two properties with identical addresses. In our case, however, there
are multiple good reasons for it.

1.3.3.1 Hidden location

When posting the real estate listing, its creator may choose to hide the exact
location of the real estate. If this is the case, some portals will provide us
with GPS coordinates that do not point to the specific real estate, but rather
to some location in its proximity. This usually is the main square of the city
or its town hall.

Imagine that we have two real estates, A and B. Let’s also say that the
following statements are true:

• The exact location of A and B was hidden by the creators of the listings

• In real world, A and B are located in the same street

In the case described above, the location that the portal is going to give us
will be identical for both of these real estates as their real location is hidden
and they are in proximity of each other. This means that we now have two
real estates with the same address in our system.

1.3.3.2 Old listings

When sellers list a real estate for sale they might do it multiple times, even on
one portal. The main reason for doing so is, that relisting the real estate will
”bump” it to the top of all listings and make it more visible to the potential
buyers. The sellers tend to do this either on periodic basis or when, for
example, changing the price. In some cases, however, they also forget to
remove the old listing prior to adding the new one. In this situation, our
application will see two active listings that point to the same address and will

18

1.3. Domain model

have the need to store them both. Therefore, limiting the maximum number
of real estates per address would cause errors in this case.

1.3.3.3 Same real estate, different portals

In this case, we have one real estate listed on multiple different portals. As
specified by our domain model, one real estate can be, in theory, linked to
more than one portal’s specific details. The process of identifying one real
estate across multiple portals might be quite difficult, especially considering
the issue described in previous subsection 1.3.3.1.

Even if we consider the implementation of the process above to be success-
ful, we still expect it to not be perfect as matching all the listings perfectly,
100% of the time, is more or less an impossible task, even for some more
advanced machine learning models which could be used to tackle this task.
It seems to be much more sensible to not add unnecessary complexity to the
application and rather slightly relax the relations in the domain model as the
performance impact caused by this change most probably will not be notice-
able.

1.3.4 Channel

When user sends a command to the bot, it always has an origin to which the
bot’s response is going to be sent. This origin is in Discord’s realm called
a channel. Essentially, channel is a chat in which conversation among two or
more users takes place. Storing some information about the channel, such as
its ID, from which the command that created the subscription originated, is
therefore crucial to us as without it, we would not know where to send the
response.

To further elaborate on Discord’s architecture, there are also servers, which
are basically groups with many users. Inside of these servers, multiple channels
through which the users can communicate may exist.

19

1.
A

nalysis

Figure 1.2: Domain model

20

Chapter 2
Design

2.1 Database

As we need a place to store the data, running a database is necessary. The
database will be used to store not only the data scraped from web portals,
but also information on users, channels, subscriptions and more.

2.1.1 Data model

The data model / database scheme shown in the figure 2.1 depicts the rela-
tionships between different entities in our database. Each entity is represented
by a standalone table in our database. It also shows the different attributes
of different entities which translate to table columns in our database.

As all the relationships that are not intuitive or are in some way interesting
were discussed in the section 1.3 dedicated to domain model, only some of the
entities’ attributes will be discussed here.

2.1.2 Real estate listings

In order to develop a data model that describes the data that the application is
working with, we first need to analyze the data provided to us by the different
web portals that are going to be scraped. This will help us determine which
data related to real estates we can consider common between the portals and
thus place them into the RealEstate table. The original thought was that the
rest of the data will then be deemed web portal specific and will be placed
into the table containing respective portal’s details (SrealityDetail, Bezreal-
itkyDetail, RealityIdnesDetail). While designing the data model, however, we
realized that having the standalone tables for portal specific details does not
make much sense. To elaborate, there are two main reasons for persisting the
portal specific data, the first one being that we would like to create statistics
on the gathered data at some point in the future and we are of the opinion

21

2. Design

that some of the data, that might not necessarily be important to our users,
or at least are not important enough to be parts of the notifications received
by the users, could play an important statistical role while analyzing the data.
An example of such data might be the points of interest, eg. distance from
nearest hospital, school, post office etc., whether the listing was in any way
promoted on the real estate portal or which agency/agent is responsible for
offering of the given real estate. As there is many data of this nature present
in the responses, it is essentially impossible to prioritize between them at this
point in time. Therefore, creating a large data structure simply to store the
data without actually knowing whether they will be useful is, in our opinion,
an unwise investment of our resources.

The second reason as to why we want to persist said data is the fact, that
purging potentially valuable and definitely interesting data seems like a waste.

Because of the reasons above, we decided to use AWS’s service called
Simple Storage Service, or as we will be calling it from now on, S3. S3 allows
us to store objects such as .json or .xml files at a reasonable cost of 0.023$ per
GB/month [13]. This will allow us to store all the data that we request from
the real estate portals for a low cost and parse them only once we are certain
that we have a use of them, thus ridding us of the uncertain investment of
resources at this point in time.

A great ”side-effect” that this approach creates is, that if any serious issues
with database happen and we end up losing the data, or we perhaps realize
that there are some important data in the answers that we managed to miss
during the scraping (especially the initial one), we can simply re-parse the
answers from the files saved in the S3 and avoid scrapping the real estate
portals again.

Going back to the creation of data model, some common attributes of real
estates are expected to be part of the RealEstate table even before starting
analysis of the data provided by portals. These are namely:

• title

• price

• location

• real estate type (house/apartment)

• land dimensions

• real estate dimensions

The attributes mentioned above are also expected to be part of all the notifi-
cations related to real estates that the users will receive. However, there are
many important attributes that might not be part of the notifications, but

22

2.1. Database

will be used for filtering purposes when creating subscriptions to provide the
users only with notifications, that are relevant to their preferences.

After taking multiple sample responses from the scrapped real estate por-
tals, we arrived at a list of attributes that are relevant for either notifications,
or filtering, or both. As the list is quite exhaustive and the attribute names
are quite self-explanatory, we will not list them all in this text as we did with
the expected attributes and will rather refer to the figure 2.1 displaying the
data model itself.

2.1.2.1 Address

The names of different attributes of the address may feel slightly odd or
counter intuitive. As we are using Nominatim for reverse geocoding, it made
sense to structure the table according to the output format of Nominatim’s
response to our geocoding request 2.1.

2.1.2.2 Suburb Prague

The table suburb prague contains the mapping of Prague’s suburbs to its dis-
tricts 2.1. Why this table was created and how it is used is described in greater
detail in the section 3.3.7.

2.1.3 Database type

There are multiple types of databases that we can pick from when choosing
the database that we will use. We are deciding between the following ones:

• SQL

• NoSQL - Document

• NoSQL - Graph

The reason why we chose the three mentioned database types is mainly be-
cause SQL and document databases are the most frequently used types of
databases [14]. Graph databases were chosen mainly due to personal prefer-
ence as they seem like an interesting concept to us.

The data that we will be storing have a clear structure and follow it vast
majority of time (all the time if we do not take errors and malformed data
into the equation). There is also quite a lot of relationships present in the
data structure and data related to users, channels and addresses are often
repetitive. Due to these reasons, it does not make sense to use document
database as it performs best when dealing with non-structured data and little
relationships [15].

Both SQL and graph databases can be used for the data structure that
our application will be working with. We decided to use an SQL database for
multiple reasons, the first one being popularity [14].

23

2. Design

Figure 2.1: Data model

As SQL databases are much more popular and widely adopted than graph
databases, there is a lot of content, libraries, support etc. regarding them.
This makes it much easier to address any issues that occur throughout the
development [14].

Another reason for choosing SQL database is the price of running it in the
cloud. AWS provides a service called AWS Neptune, which is a fully managed
graphed database. Its cost starts at 68 dollars per month due to the smallest
supported instance being the ml.t3.medium which is unnecessarily powerful
for our use case. Considering the fact, that the price of PostgreSQL managed
instance starts at 12 dollars per month which is significantly less than the
price of AWS Neptune, using an SQL database such as PostgreSQL is cost-wise
much more sensible for our use [16].

24

2.2. Scrapers

2.1.4 RDBMS

There are many relational database management systems available. Some
of the most used ones are Oracle, MySQL, PostgreSQL and Microsoft SQL
Server [14]. All of these systems could without any issues be used to store the
data of our application. We decided to use PostgreSQL as it is a RDBMS that
we are familiar with from previous projects, is supported by all major cloud
providers (AWS, Azure, GCP) and tends to be one of the cheaper options
[17][18][19].

2.2 Scrapers

2.2.1 Programming language

There are many languages that can be used for web scraping. Ideally, we want
to use a language that is very popular for this use case, because if we run into
any problems it will be easier to find a solution to them. Also, a language
that either has a shallow learning curve or a language that we already have
an experience with is preferred. After doing some research, we will focus on
the following languages as they seem to be the most popular ones for given
purpose:

• Python

• JavaScript (Node.js)

• Ruby

• C/C++

2.2.1.1 Python

According to the TIOBE index [20], Python is currently the most used lan-
guage in the world, thus checking our popularity requirement. According to
multiple resources, it also appears to be one of the most popular languages
for web scraping.

The first reason for that is its overall simplicity and very shallow learning
curve as Python is often quoted as the most beginner friendly language [21].
Even though we already have experience with Python, having a simple lan-
guage for web scraping is certainly taken as an advantage, because it will allow
us to focus more on ”what we want to do” instead of focusing on technical
aspects of the language itself.

The fact that Python is a popular language for web scraping is noticeable
just considering the amount of web scraping related packages that exist. Some
of the most important packages are:

• requests

25

2. Design

• beautiful soup

• Selenium

• lxml

These packages help with sending requests, parsing the received data,
traversing it and much more and make the process of web scraping easier.

Python also has it challenges, with the most significant one being its speed.
This is not much of an issue in our case, as there will have to be pauses between
the individual requests that will be made so the scraped web portals are not
saturated by our requests. Given the fact that the planned delay between
requests is ∼3 seconds, that gives Python more than enough time to perform
all the operations needed.

One more thing to note, is that since we are implementing the scrapers
in the form of a Discord bot, as discussed in subsection 2.2.2, we can use the
discord.py library which, compared to its JavaScript counterpart, has feature
called task loops that allows us to easily set up periodic executions of chosen
methods [22][23][24][25].

2.2.1.2 JavaScript (Node.js)

JavaScript itself may not be ideal for web scraping, however this is solved by
Node.js runtime environment. This due to the fact that JavaScript’s original
purpose was to be used for client-side development. Node.js changes that and
allows developers to write server-side code using JavaScript.

One of the greatest advantages of Node.js is its rich ecosystem, that offers
many third-party libraries and modules. Combined with JavaScript being
a popular language for scraping, Node.js’s ecosystem offers many modules
and libraries that can be used while scraping and will save us a lot of time.
Some of these modules are namely [26]:

• Axios - working with requests

• Cheerio - web page traversing

• Pupeteer - automating browser actions

• Playwright - automating browser actions

Another plus of using Node.js is the fact that it is backed by a strong
community and there are lots of content regarding all the issues one can come
across when working with it. This makes the whole experience of writing and
fixing the code easier and faster.

Even though JavaScript paired with Node.js has many great features there
are also some cons, the first one being that Node.js has very limited standard
library. That is an issue as we are forced to use third-party libraries for the

26

2.2. Scrapers

majority of operations that we need to perform. This introduces a greater risk
of ending up with and unreliable code. We must also be careful when picking
the libraries so they do not bring any vulnerable or in any way defected code
into our projects.

Another weak point of Node.js is that the API’s are callback based. This
can lead to code which is hard to understand and unnecessarily complex,
especially when nesting multiple callbacks. This can introduce a so-called
callback hell, which is further described here [27].

One issue with Node.js is that the learning curve can be rather steep
even when the developers have experience with JavaScript. That is probably
going to be the case for us as we do not have much experience working with
JavaScript [22][23][24][25].

2.2.1.3 Ruby

Out of the selected languages, Ruby has the disadvantage of being the least
used one according to the TIOBE index [20]. This results in much smaller
community and support compared to languages such as Python or JavaScript
which in turn can make it harder to solve issues that we encounter during
development.

Another issue when working with Ruby is its high memory consumption.
This might be an issue because we try to use as small server instances as
possible in order to make our application cost efficient [28].

Even though Ruby is often described as a language that is easy to learn,
the syntax contains some specific and inconsistent ”quirks”. This sometimes
makes it harder to write clean and maintainable code, especially for developers
that are starting out with the language such as us [29].

One great advantage of using Ruby lies in the Nokogiri library, which is
often used when scraping. The reason why Nokogiri is so popular is that it is
able to deal with and parse broken HTML code. From a personal experience,
when scraping web pages, the extracted code can often present itself as slightly
broken, at least in the eyes of the scraping libraries. Therefore, having a library
that is able to deal with such code is a huge plus and can save a lot of data
from being discarded [22][23][24][25].

2.2.1.4 C/C++

C/C++ is a language that also came out as one of the most used languages
for web scraping. Its main strength is performance, as C/C++ is significantly
faster than Python, JavaScript and Ruby, however as mentioned in 2.2.1.1,
speed is not of much importance in our case. Other than that, C/C++ is
a complex language with a very low level approach and absence of proper
web scraping libraries. Due to the stated reasons, we deem it not suitable for
implementation of scraping bot.

27

2. Design

2.2.1.5 Conclusion

In this section, we discussed multiple programming languages that can be
potentially used for web scraping. The language that was discarded right
away was C/C++ as using it for implementation of scrappers would be too
complex and not necessary in our case.

Another language that was eliminated was Ruby. Even though Ruby is
a great language for web scraping and the Nokogiri library is very powerful,
picking it instead of Python or JavaScript would not make sense in our case,
mainly due to its lower popularity and therefore smaller amount of resources
and support.

Both Python and JavaScript have their pros and cons and can be used
to implement scrapers comfortably and in our eyes are equally suitable for
implementing web scrapers. In case of our scrappers we decided to go with
Python due to multiple reasons.

First of all, Python is a language that we have a lot of experience with
and are comfortable working with. This is quite the opposite to JavaScript
and Node.js as we have very little experience with these technologies and the
learning curve would therefore be quite steep for us.

Another reason for choosing Python is, that we decided to implement
the scrapers as a Discord bot, as discussed in subsection 2.2.2. In order to
do so, we need to be able to implement an equivalent of Cron jobs in the
Discord bot, in other words, we need to be able to implement tasks that
run periodically. Implementing Discord bot is possible in both Python and
JavaScript as both of these languages also have Discord libraries, discord.py
and discord.js respectively. These libraries differ quite a bit and some features
implemented in one of them do not necessarily have to be implemented in the
other one. That is exactly the case of task loops, which exist in discord.py and
do not exist in discord.js. Task loops are an essential feature, because they
allow us to implement periodically repeating tasks in a very elegant manner,
which is exactly what we need for our scrapers.

2.2.2 Architecture

There are multiple options as to how the scrapers can be implemented. This
subsection will discuss and compare the different options with the goal of
choosing the most appropriate one for the purpose of our application.

2.2.2.1 Server-less/Lambda functions

The first way the scrapers may be implemented is as server-less functions. This
way of implementing the scrapers is available to us thanks to using a cloud
provider to host our application. The term server-less functions describes
functions, that do not require some specific instance of server. This means,
that when the functions are executed, the cloud provider lends us a server

28

2.2. Scrapers

from their pool of servers.

Costs
The fact that the server is being lent to us can be cost efficient, as we do not
have to run our own instance, but we can just borrow an existing instance
from the cloud provider’s pool and be billed just for the execution time, typ-
ically in milliseconds, of our functions. This statement holds mainly in the
scenarios where the functions are either called infrequently or are very short.
In case of our application, the functions that scrap new listings are called
roughly every 5 - 15 minutes and the functions that look for deleted listings
and price changes run twice a day. The estimated time for each execution of
the functions that scrap new listings is 30 seconds because there will only be
a few new listings during each run as the scrapers run quite frequently. On the
other hand, the functions used to scrap removed and changed listings need to
go through all the existing listings. Expecting to have roughly 50,000 listings
at 60 listings per page, this equals to ∼850 requests each time the function is
ran. Considering the fact that we want to wait 3 seconds between requests on
average, this gives us the total execution time of ∼45 minutes. The sum of all
executions during one day totals out to roughly 14,000 seconds. Calculating
this for AWS Lambda functions gives us a total monthly cost of ∼7 dollars,
which is slightly more than running an equivalent AWS EC2 t4g.micro in-
stance at ∼6 dollars per month.

Configuration
Another feature of server-less functions is that they can be easily configured
to run periodically, thanks to the serverless framework. Serverless framework
is a solution allowing us to easily deploy and schedule server-less functions.
It supports many of the largest cloud-providers [30] such as Amazon AWS,
Microsoft Azure or Google Cloud [31]. Also, serverless supports multiple lan-
guages including Python, which we are using to implement the scrapers [32].

As we will want to scrap the data on a periodic basis, the ease of config-
uring the functions is definitely important to us.

Persistent storage
One of the weak points of server-less functions is the inability of storing data
directly on the servers. As the instance of server on which the server-less
function runs changes each times, it is not possible to store any data there.
Therefore, most cloud providers provide a solution that allows the server-less
functions to persistently store data. Using these solutions, however, can be
more complicated as setting up the storage and connecting it to the server-less
functions takes more time than directly working with file system. An example
of this can be using AWS Lambda functions with AWS EFS [33]. On the other
hand, some providers such as Microsoft Azure, run the server-less functions

29

2. Design

with a persistent storage attached by default [34].

Availability
Reason why server-less functions may not be the ideal solution for us, is that
the application is available only when it is being run. This would make the
process of manually starting the scrapers 1.2.1.9 more complicated as instead
of just starting the scraping process inside the application, we would have to
manually start the whole server-less function. This means that we would have
to deal with authentication towards the account that we would have with the
chosen cloud provider and also would not be able to start the scrapers directly
from the Discord application, which would be preferred.

Internet access
One issue that comes with using server-less functions is when trying to access
the internet. As we want to keep our application safe, we plan to have all its
parts enclosed in a private network. This creates an issue, as when we add
server-less functions to a private network, we have to create a NAT Gateway,
which is used to route the outbound traffic from server-less functions to the
internet. Running a NAT Gateway is, however, quite expensive, as it requires
a standalone instance of virtual server, which increases the cost of running
the application significantly [35][36][37]. If we take a look at AWS, the cost
of running NAT Gateway is ∼32 dollars per month, which is much more com-
pared to running a t4g.micro instance.

Time limit
Server-less functions solutions typically have a limit that prohibits the func-
tions from executing for long time. In case of AWS and Azure, these time
limits are 15 minutes and 10 minutes respectively [38][39]. This is an issue, as
some of our scrapers will most certainly exceed the 10/15 minute limit. This
issue can be tackled by making the scraping functions more granular and call-
ing them with parameters, specifying exactly which smaller part of the web
portal are the functions supposed to scrap. That would allow us to scrap the
web portals using timewise shorter executions of the functions and therefore
not exceeding the time limit.

The issue that may come up with this approach is that scheduling the
functions will become more complicated, as we cannot allow multiple execu-
tions to run in parallel because it could cause an excessive load on the servers
that they would be scraping.

It is worth noting that when using Azure Functions Premium plan, the
execution time of function is unlimited. The premium plan, however, comes at
a cost, which in our case exceeds the cost of running an instance of a standalone
virtual server with equivalent hardware [40][41].

30

2.2. Scrapers

Scalability
One of the features that the server-less functions offer is great scalability. It is
very easy to configure how much resources can each function use as well as how
many instances can run in parallel. The scalability is perfect for use cases such
as APIs, where the usage of the functions may be unbalanced and the number
of calls may spike throughout the day as there is no need to deploy new servers
and wait for them to load and therefore the scaling happens instantly.

In our case, the time complexity of the scrapers is and will remain more or
less constant, as the amount of scraped data is not dependent on the number
of users that the application has. Therefore, we do not expect the scrapers to
require scaling.

2.2.2.2 Cron jobs

Another option as to how the scrapers can be implemented are Cron jobs.
Cron job is a term for a job created by a scheduling tool called Cron that is
present in Unix-like operation systems. Cron jobs can be configured to run at
a specific time, date or frequency, which is perfect for our use [42].

In case we were to implement the scrapers as Cron jobs, each of them
would be implemented as a standalone application and would be configured
to run periodically using the Cron tool.

Configuration
As we plan to use Docker to containerize all parts of our application to simplify
the deployment, we can simply define the Cron jobs in the Docker file of the
respective Docker container inside which the scrapers will be running [43].

Costs
The scrappers do not require much hardware resources and their complexity
does not scale alongside with the number of users and stays more or less
constant throughout the time. Therefore, it is expected that instances with
1GB of RAM, and 2 vCPU cores will be sufficient in the worst case scenario.
If we were to use AWS as our cloud provider, the cost of running such instance
of a server would be ∼6 dollars per month.

Availability
Availability of the scrapers might be an issue with this approach. As with
server-less functions, the application could be communicated with only when it
is running, which would be only during the times specified in Cron. Manually
starting the applications would be quite complicated as it would be needed to
allow an ingress to the instance of server that the scrapers are running on and
from it to our Docker container. Therefore, we would always have to know the
IP address of the server when communicating with scrapers. Also, in order to

31

2. Design

start the scrapers in the Docker container, we would have to create an API,
that would be able to start the scrapers on command which would add further
complexity to our application.

2.2.2.3 Discord bot

At this point there are two options of implementing the scrapers, server-less
functions and Cron jobs. Neither of these options seem to be ideal in our case.

The server-less functions can be easily configured and manually triggering
them can be implemented with reasonable additional complexity. Unfortu-
nately, when running the functions inside a VPC, NAT Gateway is required,
which in case of AWS costs ∼32 dollars per month.

The Cron jobs have a low cost of running and can be easily configured when
using Docker [43], however manually triggering them is not easily doable and
would require the development of another API.

At this point, we are looking for a solution that would allows us to manually
trigger the scrapers without the need for an API whilst remaining cost efficient
and easily configurable.

A potential solution for this would be another Discord bot.

Configuration
As we are using Python to implement the scrapers, we can also make use of the
discord.py package. One of the things that discord.py package allows its users
to implement are task loops. Task loops are basically an equivalent of Cron
jobs as we know them in Unix-like systems, allowing us to run some method
at specified time, date or frequency. Thanks to this feature, it is simple to
configure the scraping functions to run when needed [44].
Costs
This Discord bot will also run in a Docker container, allowing us to simply
deploy it to an instance of virtual server. As previously stated in subsec-
tion 2.2.2.2, the cost of server, matching the hardware requirements of the
scrapers, is estimated at ∼6 dollars per month which is acceptable.

Availability
As the scrapers are implemented as task loops in Discord bot, it is possible to
add commands to the bot, which, when called, execute the scraping function.
This approach is very simple as it does not require implementation of another
API (Cron jobs) nor access to the cloud platform itself (server-less functions).
Instead, the scrapers can be communicated with through a Discord chat and
are available at all times.

32

2.2. Scrapers

2.2.2.4 Conclusion

In this subsection, three different options as to how the scrapers can be imple-
mented were discussed. From these options, Discord bot came out as a clear
winner.

Its main advantage compared to both server-less functions and Cron jobs,
is the ease of implementing the manual execution of the scrapers and overall
the communication with them such as health checks.

One thing that was not discussed earlier is the ”client side” when com-
municating with scrapers. If we were to implement the scrapers as server-less
functions or Cron jobs, we would also have to implement some simple web
application that we would use to communicate the scrapers. This would also
require implementing some form of authorization as we would not want other
people to manually trigger the scrapers as discussed in 1.2.2.5. When imple-
menting the scrapers as Discord bot, all these responsibilities are taken care
of by the Discord application as it will be used for communication.

Also, compared to server-less functions, the costs of running a Discord bot
are significantly lower while the ease of configuration remains.

2.2.3 Commands

As the scrappers will be implemented in the form of Discord Bot, it allows us
to create commands to communicate with them. These commands as well as
the bot itself will be only available to the administrator of the application, as
this part of the application is not meant to be client facing.

In case of this bot, we will implement only two commands.
The first command will have the responsibility of checking the health of

the Discord bot, eg. if it is running. The command will be in the form ping
and when called will simply respond with text, indicating that it is working.

Another command that we implemented is in the following format: !scrap
*{type} {portal}. The type allows three different values:

• price - will check price changes

• new - will check newly added listings

• removed - will check removed listings

The portal argument is used to specified the targeted portal. The allowed
values are:

• sreality

• idnes

• bezrealitky

33

2. Design

Whilst running the bot in a development environment and working with it,
we realised that we are able to check for changes every 5 minutes or even more
often as the load imposed on the scraped servers is minimal. This rendered
the command obsolete, as the scraping frequency is so high that there is no
possibility of our data being outdated and needing a manual refresh. This
command was therefore removed from the bot during one of the development
iterations and is no longer available.

2.3 Discord bot - client side

This Discord bot will be the UI of our application. It will allow the users to
create, update and remove their subscriptions as well as inform them about
listing changes that they are interested in and more.

In this section, we will discuss the commands that can be used to commu-
nicate with the Discord bot and the choice of programming language that the
Discord bot is going to be implemented in.

2.3.1 Commands

The only way the users can communicate with bot is through commands.
Commands are created the same way any other message in a channel is created,
however they also have to follow a specific format. In our case, each message
that is preceded with a backslash (\) is considered a slash command by the
Discord bot. Slash commands differ from standard commands in the way
they communicate with the user. When using standard commands, we cannot
really interact with user. In case of slash commands, we can edit, delete and
create messages and follow-up on them.

In the following text, text in italics signifies a command. Each command
will also be preceded, as noted earlier, with a backslash (\). An example of
command might look like this: \command

Based on the functional requirements, we need to design commands that
will allow the users perform all the described actions. These actions are
namely:

• Create subscription

• Create subscription with filters

• Update subscription

• Delete subscription

• Show subscription details

• Check health status

34

2.3. Discord bot - client side

In general, we want the commands to be short, easy to remember and as intu-
itive and self explanatory as possible. This will help the users when learning
to interact with the Discord bot and therefore can have a significant impact
on the success of the whole application.

2.3.1.1 Creating a subscription

Creating a subscription with and without filters share the same command in
the form of: \sub. After sending in this command, a response containing
a form will appear. This form is prompting the user to fill in the basic sub-
scription parameters, as can be seen in the figure 2.2. It also contains two
buttons, one is for submitting the form with the filled data, the other one is
to show more parameters, voluntary and more detailed ones, that belong to
the subscription. This form can be seen in the figure 2.3. After filling some
more details, the user can submit the filled in form using the submit button.
This will conclude the process of creating a subscription and will print out
and embed containing information about the newly created subscription. The
embed can be seen in the following figure 2.4. The forms used to the create
the subscription will be deleted. The whole form with all the parameters filled
out can be seen in the figure 2.5.

Figure 2.2: Client bot - create form - basic

2.3.1.2 Updating a subscription

Updating a subscription is done through the following command \sub update.
As a response to this command a select menu containing all the user’s sub-

35

2. Design

Figure 2.3: Client bot - create form - filters

scriptions is returned. This response can be seen in the figure 2.6. After
picking an option from the select menu, the same process and therefore the
same responses take place as when creating a subscription. The only difference
is that the form data a re pre-filled with the data of the selected subscription.

2.3.1.3 Deleting a subscription

Deleting a subscription is done through the following command \sub delete.
As a response to this command a select menu containing all the user’s subscrip-
tions and a confirmation button are returned. After picking a subscription to
delete from the select menu, the user confirms his choice by clicking the con-
firmation button. After that a simple text message confirming the operation
is returned.

36

2.3. Discord bot - client side

2.3.1.4 Viewing subscription details

Viewing subscriptions details is done using the following command \sub detail.
As a response to this command a select menu containing all the user’s subscrip-
tions is returned. After picking a subscription to view from the select menu,
the bot will respond with and embed containing the details of the selected
subscription. The embed can be seen in the figure 2.4.

2.3.1.5 Health-check

In order to check the health of the Discord bot, eg. if it is running, the users
can use command: \ping. This command returns simple text message, just to
indicate that it is running.

When using commands of the client bot, the users also get an overview
of all the existing commands after typing in / into the chat. This overview
displays the names thorugh witch the commands may be called as well as their
decriptions. The overview can be seen in the figure 2.7.

2.3.2 Programming language

Discords bots can be implemented using multiple languages. These are namely:

• Python

• JavaScript

• Java

• C/C++

2.3.2.1 C/C++

Even though implementing a Discord bot using C/C++ is possible it tends
to be quite complicated and is not done very often as the vast majority of
developers picks either Python or JavaScript for their implementations [45].

2.3.2.2 Java

It is possible to implement the bot in Java and some packages such as Java-
Cord or Discord4J that simplify the development are available. Despite that,
the majority of Discord bots are nowadays implemented using Python or
JavaScript. Because of that, there is not as much resources available regarding
development of Discord bots in Java as there is for development in Python or
JavaScript. That is why for our Discord bot, we will also be deciding mainly
between Python and JavaScript.

37

2. Design

2.3.2.3 Conclusion

JavaScript and Python are frequently used to develop Discord bots and feature
their own libraries that make the development significantly easier, namely dis-
cord.py and discord.js. Both of these languages seem to be a great choice, with
Python being seemingly slightly more popular for this purpose and therefore
the choice comes to personal preference.

For our client-side Discord bot we decided to use Python. The main reason
for doing so is that we will already be implementing the scrappers as Discord
bot in Python and picking Python also for the client-side Discord bot will
allow us to reuse parts of the code such as the model classes.

Also, we do not have much experience with JavaScript which could make
implementing the Discord bot quite challenging. By using Python, we elimi-
nate the need of learning and on-boarding more technologies to our applica-
tion, thus keeping the application more simple and allowing us to reuse the
knowledge gained by implementing the scrapers [46][47].

2.3.3 RESTful API

2.3.3.1 Programming language & framework

There are many different frameworks for various programming languages that
are used for API development nowadays. The most used ones are namely
[48][49][50]:

• Spring Boot

• Django REST

• Express.js

• Flask

• Ruby on Rails

All of these frameworks are popular, have a large community behind them,
are actively maintained and in our opinion are all suitable for the develop-
ment of our API. The choice therefore comes down to a personal preference.
We decided to go with Spring Boot as we are used to it and have previous
experience working with it. We are also more comfortable working with Java
compared to Ruby, Python and JavaScript, as it is the only statically typed
language of them and also features checked exceptions which, in our opinion,
is a good functionality to have as it makes the code more reliable.

2.3.3.2 Endpoints

In our API, there will not be many endpoints that will support GET re-
quests. This is due to the reason, that the data provided by the API will be

38

2.4. Cloud provider

transmitted using AWS SQS. The main purpose of the endpoints will be the
following:

• create and update real estate listings

• create, retrieve, update and delete subscriptions

• create new users

• create new addresses

• create new objects representing price changes

All the endpoints described below will return data in the JSON format.
The supported MIME type will be application/json.

GET /users/{user id}/subscriptions - returns all existing subscrip-
tions of user specified by user id

POST /subscriptions - creates new subscription
GET /subscriptions/{subscription id} - returns the subscription spec-

ified by subscription id
PUT /subscriptions/{subscription id} - updates the subscription spec-

ified by subscription id
DELETE /subscriptions/{subscription id} - deletes the subscription

specified by subscription id
POST /users - creates new user
POST /addresses - creates new address
POST /price changes - creates new price change object
POST /real estates - creates new listing
PUT /real estates/{real estate id} - update the real estate listing

specified by real estate id

2.4 Cloud provider

One of the goals of this thesis is to deploy and run the application in a cloud
environment. This will ensure that the application is available and can be
easily scaled when needed. This means that a cloud provider, that is suitable
for our application, has to be chosen.

Our priority when choosing the cloud provider is for it to be as frequently
used in companies as possible, thus making the newly acquired skills reusable
in the future. For this reason, we are considering these three cloud providers,
as they are at the moment the most used ones in the world [30][51]:

• Amazon Web Services (AWS)

• Microsoft Azure

39

2. Design

• Google Cloud Platform (GCP)

In the past, we have worked with all the aforementioned cloud providers
and therefore already posses some experience regarding them. As our expe-
rience with GCP was not one of the best and we did not find using its UI
satisfactory, the decision lies between AWS and MS Azure. Both of these
providers offer similar services and we have good experience working with
them. The provider that we slightly favor is AWS, as it features much larger
market share compared to MS Azure, especially among the companies [30][51].
Another reason why we prefer AWS over MS Azure is because we have more
experience working with it and we would also like to broaden the skills we
already have.

2.5 High-level architecture

This section will describe the high-level application architecture. It will also
briefly describe the relations between the different parts of the application.
The description of the application parts / services will be provided in their
respective sections.

Diagram depicting the original high-level architecture can be seen in the
figures 2.8. This diagram represents both the architecture when scraping the
data for the first time and when scraping it periodically. The only differences
in those cases will be the location of the Nominatim server. That is because
in the initial stage, when we will be scraping a large amount of data from
the web portals, we would be bottle-necked by the Nominatim public API’s
limit of 1 request per second [52]. That is why we will at first deploy our own
instance of Nominatim service locally and after the initial scraping of data
switch to the public one.

However, during the development of data model in the section 2.1.1, we
arrived at a conclusion, which slightly changes the overall architecture. The
updated high-level architecture schema shown in the figure 2.9 contains and
additional AWS S3 bucket. The reason as to why the S3 bucket was used is
explained in the section 2.1.1

2.5.1 Deployment

We decided to containerize all the application using Docker. This will allow
us to easily scale different parts of the applications independently whenever
needed. The docker images of each part get built using a GitHub Action and
are then pushed to AWS ECR. After that, we use AWS ECS to run the images.
We decided to use AWS ECS as it is free, easy to configure and able to deploy
containers to EC2 instances in selected auto-scaling groups.

40

2.5. High-level architecture

2.5.2 Managing listings - Scrappers and REST API

When scrappers obtain and parse data, they need to persist the newly ac-
quired information. This is done through communication with the REST
API, namely its listings related endpoints. One could argue that the scrap-
pers could access the database directly, however this could cause various issues.
The main issue is, that as there might be some more complex integrity con-
straints that need to be met by the inserted data, the code that represents
them would have to be reimplemented/reused throughout all the scrappers.
By allowing only the instances of this API to perform write operations on the
database, we only need to have the integrity constraints in one place.

2.5.3 Managing subscriptions - Discord bot and REST API

When users create new subscriptions, we need to persist them in our database.
Due to very same reasons as mentioned above, we deem it suitable to write
this data into the database through the subscription related endpoints of the
REST API.

2.5.4 Obtaining user info - Discord bot and REST API

When the Discord bot receives messages from queue, it needs to distribute
them among the users that are interested in them. In order to do so, it needs
to obtain data related to subscriptions. This is also done through the REST
API as it already writes subscription related data into the database.

2.5.5 Reverse geocoding - Nominatim and Scrappers

Nominatim is a service that allows us to perform reverse geocoding. In other
words, it allows us to take GPS coordinates, pass the coordinates to Nom-
inatim and in return get address of the location closest to the given GPS
coordinates. As most of the real estate portals do not share the exact address
of the real estate, but do share GPS coordinates, our scrappers are only able
to gather GPS coordinates of listings. Nominatim allows us to convert this
information into address, which is very convenient in our case as the user will
be subscribing to regions or municipalities, not GPS coordinates.

41

2. Design

Figure 2.4: Client bot - subscription embed

42

2.5. High-level architecture

Figure 2.5: Client bot - filled out forms

43

2. Design

Figure 2.6: Client bot - subscription selection

Figure 2.7: Client bot - command overview

44

2.5. High-level architecture

Fi
gu

re
2.

8:
H

ig
h-

le
ve

la
rc

hi
te

ct
ur

e

45

2. Design

Figure
2.9:

H
igh-levelarchitecture

w
ith

S3
bucket

46

Chapter 3
Implementation

3.1 Scraping Bot

3.1.1 Sreality scrapping

One of the web portals that is going to be scraped is Sreality [53]. The two
main categories that will be scraped are apartments and houses which totals
out to roughly 40000 listings. There are two different approaches to scraping
this data which both have their pros and cons

3.1.2 Scraping new listings

3.1.2.1 Scraping data from search results

With this approach only the data present in the search results would be
scraped. As we can see in the figure 3.1 some important listing attributes
are missing, namely:

• Energetic efficiency

• Layout of the property (number of rooms)

• State of the property

Also we can see that the dimensions of the property and the land as well
as the type of the property are not explicitly stated anywhere, except for
being part of the listing title. There is now way to be certain whether the
listing title is machine generated or not, however based on manually reviewing
a couple hundreds of results it will be considered to be machine generated.
This implies that dimensions of land and property and the type of the property
can be determined by parsing the title of listing.

There also is a way to obtain the energetic efficiency, layout of the property
and property type without viewing the details of each of the listings. Sreal-
ity[53] has search options, which allow us to filter the listing by exactly the

47

3. Implementation

attributes that we are missing. Therefore when, for example, searching for
a house in very good condition, with 6 rooms and energetic efficiency rating
of A, all the results will have exactly these values of the missing attributes
and therefore we will know them.

The main benefit of this method is, that running the application and ob-
taining all the data for the first time would be fairly lightweight as it would
not require more requests that the following scrapings of newly added listings.

This method also comes at a cost. In order to scrap new listings and get
all the attributes that we are interested in, we have to try all the combinations
of the values of the filters that we are interested in. As there are:

• 6 types of property layouts

• 10 options regarding the property state

• 7 options regarding the energetic efficiency of property

All combinations of these options total out to 420. This means that each
and every time new listings would be scraped, 420 requests would have to be
performed. Even though 420 requests is not that many, it certainly would
prevent us from refreshing the data frequently as scraping the listings, for
example, four times per hour would impose quite a big load to the Sreality
API server of over 1000 requests.

3.1.2.2 Scraping data from listing details

This approach slightly differs from the approach described in the subsec-
tion 3.1.2.1. As the name suggests, the listings data are not extracted from
the list of listings returned as a search result, however the search result still
plays an important role as it is used to obtain the links to details of all listings.
Once we get all the links to listings details we have to scrap them one by one.

The main advantage of this approach is that we will not be missing any
attributes such as the previously mentioned energetic efficiency, property lay-
out and state of the property as the details page contains all the attributes
stored by Sreality. Therefore, when scrapping newly added listings, it is not
necessary to try all the combinations of missing attribute values. This allows
us to scrap/look for newly added listings more frequently as we will not put
the load of hundreds of requests on the server every time, but we will only
need one request per newly added listing plus one request per a page of listings
(usually 60 listings per page).

The con of this approach is that the first time the application is ran, it will
need to scrap all of the listings details, thus performing tens of thousands of
requests. This is not much of a complication as this has to happen only once
during the whole lifetime of the application and therefore the process of the
initial scraping can be dragged across multiple days, thus lowering the load
on the scrapped servers.

48

3.1. Scraping Bot

3.1.2.3 Conclusion

For the reasons mentioned in the subsections 3.1.2.1 and 3.1.2.2, we decided
to scrap the listings both initially and periodically from the details of each
individual listing. In general, these approaches were available not only for
Sreality, but for all the real estate portals that we scraped. Therefore, the
decision of scraping the data from listing’s details and not from the page of
listings holds for all the selected real estate portals.

3.1.3 Address scraping

At this point it might also seem like we are missing a crucial attribute of the
property which is its address, as it can not be seen in the search results in
figure 3.1. Even though the exact address is not visible in UI of the web-
site, each of the Sreality API responses containing the listings also contain
GPS coordinates for each of the listings. These coordinates then can be used
to determine the address of the property. The process of obtaining the ad-
dress from coordinates is called reverse geocoding and will be discussed in the
section 2.5.5. Important thing to mention is that the creator of the listing
may choose to hide the exact location of the property. That is not an issue as
the defined use-cases do not require it. Also, even though the exact location
is hidden, the GPS coordinates will still be present in the API response. In
this case, the coordinates will be pointing to a random address which is in
proximity to the listed property.

3.1.3.1 httpx vs requests

Initially we tried to use requests package to communicate with API of Sreality.
After a while, it became apparent, that the data in the responses are dated,
malformed and inconsistent. Through the method of trial and error, we arrived
at the conclusion, that the used version of HTTP is to be blamed. From the
sent requests by the requests package, it seems like the version HTTP 1.1 was
used, however when using a newer package called httpx, the HTTP 2.0 version
was used. For a reason unbeknownst to us, the responses started coming back
without any error once the HTTP version 2.0 was used and trying to state
a reason for that would be pure guessing and speculation. None the less,
the used HTTP version affecting the data in responses is a rather interesting
observation.

3.1.3.2 Reverse engineering of the API

As the API that we are working with has no documentation, we have to figure
out a way to use it. In order to do so, a combination of developer tools,
PyCharm IDE and Burp Suite were used. First, we logged the network traffic
through the developer tools of the browser to get the gist of how the website

49

3. Implementation

Figure 3.1: Sreality house search results

is behaving. After narrowing the scope and figuring out which requests are
of importance we moved to Burp Suite in order to intercept the requests and
learn more information about them, such as how to modify them in order
to obtain the data we want. As the responses were often lengthy, we used
PyCharm IDE to locate the elements that we were interested in and figure
out how to extract them from the responses.

This process was more or less the same for all the real estate portals that
were scraped. Therefore, it will not be repeated again in the sections devoted
to the other real estate portals.

3.1.4 Reality Idnes scraping

3.1.4.1 Addresses

One of the main issues with the Reality Idnes portal is that the addresses have
no standardized format in which they are presented on the website. Also, only
part of the address tends to be visible to the website user and information such
as the region in which the estate is located tends to be missing.

This is a problem as we rely on the location of real estates in our subscrip-
tions as the users specify which localities they are interested in. Therefore,
we have to figure out a way to obtain a complete address of each listing

50

3.1. Scraping Bot

The first option we tried was using OpenAI’s model such as Ada, DaVinci
or GPT-3.5. We sent the available part to the models and task them with
completing given address. This was not a solution as the responses were often
wrong, not following any structure and hard to work with in general.

After thoroughly examining the source code of the website we noticed that
in every listings detail there is a small map showing a tag in the location of
the given real estate. Looking at the code which was used to render this map
onto the website, we noticed that GPS coordinates are being used to tell the
website where to draw the tag. We were able to extract these coordinates and
pass the to Nominatim instance for reverse geocoding which responded with
perfectly formatted full address.

3.1.5 Bezrealitky scraping

3.1.5.1 Scraping listing’s details

In order to scrap the details of individual listings, we wanted to send a request
to the API of Bezrealitky asking for the respective linking and hoped to receive
a JSON response which would be great to work with. However, When calling
the API directly there is token that needs to be part of the URL for each
request. After examining the websites behavior and mainly the requests it
sends, we were able to see that the token is generated by a JavaScript function
which was not very readable as it was obfuscated.

In order to get the token which we could use for calling the API, we ran
a headless Firefox browser using Selenium. Even though we were able to
actually obtain the token, we had issues related to performance, as running
even headless instance of Firefox requires a lot of CPU power and RAM.
This raised our costs and lowered our performance significantly enough to be
a reason to purge this solution.

Even though without Selenium we were not able to obtain the token and
therefore not able to call the API, we were able to obtain the HTML rep-
resenting the website with listing’s details by using only the httpx package
and no tokens. The responses returning from the requests seemed to be more
lengthy than we were expecting which prompted us to carefully investigate
them. After a while, we figured that the HTML in the responses does not
contain only the data showed on the web page, but also the raw API response
in JSON.

In the end, we were able to extract the raw JSON response from the
HTML, parse it and extract the respective listing’s data from it.

3.1.6 Dependency Injection

Throughout the scraping bot’s code, we wanted to use the DI design pattern
for a multitude of reasons:

51

3. Implementation

• helps to decouple the dependencies between components

• tends to result in a modular and reusable code

• improves the overall testability

• reduces the rippling effect of changes

In order to use DI throughout the whole code in a maintainable fashion, we
decided to use a DI framework. We picked the dependency injector python
package, as it seemed to be popular based on multiple articles and also the
number of stars its repository on GitHub got [54][55].

We used dependency injector to create own class representing a DI con-
tainer. Inside this container, we created all the singletons, factories etc. of
classes that we wanted to use in the application and hid the injections and
thus the dependencies inside it. This allowed us to maintain all the relation-
ships between the classes and constructions of objects in one place, therefore
making it easy to change the code without causing rippling effects throughout
the application.

3.1.7 SQLite as cache

When we scrap new listings, check for price changes or mark listing pres-
ence/absence, we need to access already existing data that we have on the
listings. These operations tend to happen quite frequently, quite often tens
or hundreds of times per second. If we were to send a request, for example,
each time we need to check if a listing with given id exists in our database, we
would make possibly hundreds of requests per second. This could potentially
slow down the API or even DOS it, as the used HW tends to be not very
powerful as we are trying to keep the project as cost-efficient as possible.

That is why we created a SQLite DB which is an in-memory DB and
therefore does not need a standalone server or even a running instance. This
DB is used as a cache. When starting a new container with instance of scraping
bot, the DB is created and loaded with IDs and prices of existing listings which
are obtained from the API. After that, we maintain the cache throughout the
run of the scraping bot and use it to check for existence of IDs and known
listing prices. This results in a much smaller amount of requests main towards
the API as we only need to communicate with it when finding a price change
or adding/removing a listing.

3.2 Client bot

3.2.1 Sending images

When sending the notifications in form of embeds, we have the option to also
send an image as part of the modal. This is very convenient as visuals play

52

3.2. Client bot

a significant role when choosing a property. Therefore, we certainly do want
to embrace this option and provide the users also with the image of property
that is represented by the notification. When sending and image inside an
embed, we pass in an image file in the form of stream of bytes. This data gets
then stored at one of Discord’s servers. This is optimal as we do not need to
host the individual images and provide the embed with links to them.

At first, we wanted to use the image URL, that is part of the listing object,
to fetch the image from a real estate portal. This approach worked fine until
we needed to notify the user about a removal of listing. That is because at
that point in time, the listing was no longer available at the real estate portal’s
website and therefore the link to the image we saved previously was no longer
available either.

This led us to a different solution. We decided to download the images
when scraping the listings’ details and save them to an S3 bucket. The name
under which we save the pictures is identical to the ID that the listing has in
our database. Therefore, once a client bot receives a notification, it fetches
the image not from the real estate portal’s website, but rather from the S3
bucket. This allows us to provide the users with estate images even after the
listing is removed.

One thing to consider is the cost of implementing the solution described
above. For a model case, lets say that our application stores data on roughly
100k listings. That means we have to store 100k images in the S3 bucket. As
the images we scrap tend to be smaller, their size is usually about 250KB.
This totals out to about 25GB of storage needed to store said images. Using
the AWS calculator [16] we can see that the price for storing such amount of
data is roughly 0.5 dollars per month which is very little. This solution will
therefore make little impact to our budget and is usable.

3.2.2 Modals vs Views

There are two ways that we can go about when collecting form data from users,
modals and views. The original idea was to use modals as they feature a rather
modern and simple look. In our opinion, working with modals is also more user
friendly as they present themselves as a pop-up and once submitted disappear,
thus not “spamming” the channel with unnecessary messages. Unfortunately,
as modals are quite new to Discord, they at the moment support only simple
text fields as the form of input. That means we are not able to add any
buttons, suggestions, select menus or check-boxes. This is an issue as some of
the information we need to collect from the user are for example the names
of regions or counties that the subscription is supposed to be monitoring.
Obtaining only valid values in those cases would be next to impossible and
very error prone.

Due to the reasons above we decided to use views. Views are a more sea-
soned feature in Discord and allow buttons and select menus. They, however,

53

3. Implementation

do not allow text inputs. That slightly complicates the implementation as we
somehow need to obtain numerical information such as min/max prices and
areas of estates that are supposed to be monitored. Such options have many
possible values and it would impossible to add them all to a select menu.
Therefore, we created select menus that contain only some values that are
sensible in given domain. For example, when filtering through houses, we ex-
pect that picking from area being smaller than 20 or 40 square meters will
be granular enough for the vast majority of users. This is however something
that will definitely be an important part for user testing.

With views there are also some drawbacks, the first one being only able to
send five rows of elements in each view. This was solved by sending multiple
views to the user as followups to the first one.

Another issue with views is, that they stay in channel even after they
have been filled out and sent. We were able to solve this issue by saving the
message which contains the view for each view and deleting these messages
after successful completion of the form.

We also thought about combining modals and views. We would let users
pick from the strictly defined options, such as region or county, using a select
menu in view. For the other options with many possible values we would send
the users a modal which they would fill out. In the end, we were not able to
come up with a solution that would not feel confusing and unnatural, so we
decided to stick with the views and predefined sets of values.

3.2.3 Regions and municipalities

When sending the users forms to fill out to create/update a subscription, we
arrived at an issue related to the region and county select menus. In these
menus, we need to offer the users values to pick from, however we do not really
know which are the options that Nominatim can respond with. We would also
like to have the regions and counties in exactly the same format as returned
by Nominatim as it will allow us to match subscriptions to listings reliably
and simply by string comparison. Therefore, we had find a way to get all
these options so we can offer them to the users.

At first, we tried to run a local instance of Nominatim server. In order to do
so we used a containerized version available in this GitHub repository. After
that, we connected inside the docker container using the Docker command
line tool. Inside this container we were able to find the Postgres database
which Nominatim’s software uses to provide requested data. Unfortunately,
the database was difficult to orient in and we were not able to obtain the data
we were looking for.

Another option that we tried was downloading the OSM data of Czech
republic from here. After downloading said data, we used a Postgres database
with extension called PostGIS which allows us to work with geographic data [56]
and loaded the data into it using osm2pgsql tool. Using this database we were

54

https://github.com/osm-search/Nominatim
http://download.geofabrik.de/europe.html

3.3. REST API

able to fetch all the regions and all the counties, however we were not able to
get the relationships between them.

At last, we tried a different option. We went to the website of state
administration and pulled a list of all counties in Czech republic from there.
We took the list and asked ChatGPT to parse it and provide us with GPS
coordinates of one random point in each county. We took these points and
passed them to a Python script which used Nominatim’s reverse geocoding to
get address for each of the points. From these addresses we were then able
to pull all the counties, regions and their relationships and store them all in
a database, thus allowing us to reuse them as needed.

3.3 REST API

3.3.1 Architecture

The API is split into multiple layers in order to properly separate the different
concerns in the application. These layers are namely:

• Presentation layer

• Business layer

• Data-Access layer

As the name suggests, presentation layer is responsible for presenting infor-
mation to users. Its another responsibility is to handle the user interactions
and respond to them. In our API, the presentation layer is represented by
controllers. The controllers consist of different endpoints which other appli-
cations use to communicate with the API. The controllers also convert the
data in requests sent by other applications to the DTOs and call appropriate
methods of classes from the business layer to accomplish the promised actions.

Business layer is where the logic of the application takes place. Some of
its responsibilities tend to be data validations and calculation of all sorts.
Business layer uses data-access layer to obtain and manipulate data in the
database as it should not communicate with the database directly. In our
case, the business layer consists of multiple different types of classes. These
classes are services, assemblers, sender (classes responsible for sending message
to AWS SQS queues). The classes which make use of rest of the classes in out
business logic layer are services. They are the core classes that are commu-
nicated with by the controllers from presentation layer and also communicate
with repositories from data-access layer.

Another layer of our API is the data-access layer. This layer is responsible
for directly communicating with the database, requesting and saving data
from/to it. It is communicated with by the classes from business layer. In our
API, the data-access layer is in the form of repository interfaces.

55

https://www.statnisprava.cz/rstsp/redakce.nsf/i/kraje_okresy_obce

3. Implementation

3.3.2 Model conversion placement

One of the choices that had to be made is where to convert the entities to
DTOs and vice-versa. Based on the architecture of our API, there were two
options:

• Controllers

• Services

When researching which option is the preferred one, we were able to see that
some sources prefer performing the conversion in controllers [57][58] while
others prefer to do so in services [59][60]. Based solely on the amounts of
opinions we went through, it seems like the topic of placing model conversions
is quite controversial, yet placing it in controllers is usually preferred. At this
point, we should also mention that the conversion logic is placed in completely
separate classes. In this sections, placement of conversion simply discusses the
place where methods of dedicated classes used for conversion are called.

Despite controllers being the more favored choice, we decided to perform
the conversions in service for a multitude of reasons. Firstly, we feel like
entities are parts of business layer and should not be shared outside of it to
presentation layer which is exactly what would happen when performing the
conversions in controllers. Even though it appears like this argument could
also be made about DTOs not belonging to business layer, it might not be
necessarily true. The DTOs always contain the data that we are comfortable
sharing with the users. Therefore, passing such data to business layer does
not cause any harm. On the other hand, entities might include sensitive
information, such as database IDs and other information, which should not
be shared with the users. Because of the stated reasons, sending entities with
sensitive data out of the business layer of out application feels like ”pulling
the guts out” of our application.

Another reason as to why place the conversions into the service layer is
to prevent cyclical dependencies. To elaborate, when placing the conversions
into controllers, the services return, take in and work with entities only. This
allows us to easily use one service inside another one. While this necessarily
isn’t a bad practice, it can lead to cyclical dependencies in the application
which might require much refactoring to fix. This is why we decided to put
the complex logic such as conversions, matching of listings to subscriptions or
communication with AWS SQS into separate classes. Then we auto-wired said
classes into the services and accomplished our goals using them. Therefore, our
services themselves do not contain much detailed logic, but rather accomplish
more complex tasks using methods/functionalities of said auto-wired classes.
This allows us to perform changes to our application without causing much
rippling effects. It also makes the whole process of writing tests much easier
as different concerns are properly separated.

56

3.3. REST API

3.3.3 ModelMapper

Throughout the API we need to convert DTOs to entities and vice-versa. We
can do this either manually or use a framework to help us. We decided to use
a combination of these approaches. When converting DTOs to entities or the
other way around, we use ModelMapper to map the simple attributes with
identical names for us. By simple attributes we mean values that are of type
Integer, String etc.

ModelMapper is a Java framework that is used for object mapping. We
decided to use it mainly due to its good integration with Spring and also
because it is very easy to use [61]. Model mapper saves us a many lines of
code that is very prone to being affected by any changes made to the entities
and DTOs. Even though once the application is release ready, changes in
entities and DTOs do not happen very often, during the development, testing
and beta phases of the project they can be quite frequent.

After that we also have to map some of the attributes manually as they are
more complex. When mapping DTOs to entities, the DTOs tend to contain
the IDs of objects that are nested in the entities. Therefore, we are using
repositories of the nested objects’ classes to get the instances of said objects
that feature the looked for IDs. We then set these instances as attributes to
the entity we are converting DTO to.

When mapping entities to DTOs, the manual mapping is simpler as it does
not require us to use repositories. In order to set the attributes of DTOs that
contain IDs, we simply use ID getters of the corresponding entities’ attributes.

3.3.4 Hibernate Validator

When creating or updating entities, we need to check that the entities match
certain constraints, such as attributes being not null. In order to do so, we
decided to use Hibernate Validator. Hibernate Validator is library that allows
us to validate entities in a standardized manner using annotation-based con-
straints. It therefore helps us ensure data integrity and consistency. Using
Hibernate Validator rids us of the responsibility of creating validation classes
and manually checking whether entities match all constraints [62].

3.3.5 Access control

The API is supposed to be used solely by other parts of our application,
namely the scraping bot and the client bot. Therefore, it should not be directly
accessible by the public at all. At first we planned to use Spring Security and
some form of authentication such as credentials or certificates. This would
add more complexity to the API and would also require us to manage said
secrets.

That is why we came up with a simpler solution. As we are using AWS to
host our application we can create a VPC in which all our resources will be

57

3. Implementation

running. We can also assign security groups to resources, that dictate which
traffic is allowed to access the given resource and which is not. That is exactly
what we did with the resources, that are running our API. We assigned them
all a security group that is set to not allow any inbound traffic that did not
originate in our VPC. This way, we do not need to manage any credentials
or certificates and can also be certain, that no one outside of our VPC can
access the API.

3.3.6 Price change

At first we planned to create a POST endpoint for creating PriceChange
entities and saving them into the database. While implementing the endpoint,
we realised that if when price change is registered, it also means that the price
of the related RealEstate entity should be changed. As RealEstate entities
can be manipulated using appropriate endpoints, doing so as a side-effect
when creating a different object seemed inappropriate to us. That is why it
was decided to purge the endpoint used for creating PriceChange entities and
create them when the price is updated using the RealEstate entity’s PUT
endpoint. This seemed to be a better solution as the PriceChange is not an
entity deemed for users, but rather for our analytical purposes.

3.3.7 Deriving missing parts of addresses from existing data

When scraping the real estate listings, we can see that the addresses miss the
county or even the municipality attributes at times. We tried to analyse the
addresses that miss said attributes and were able to see a pattern which these
addresses tend to follow.

The most important pattern we were able to spot, is that all the addresses
located in Prague always miss both the municipality and the county. The state
of these addresses, however, was always Prague and therefore the solution of
missing county was simply also setting it to Prague. It makes sense that
for Prague the municipality may be missing, however it would be nice to
always have there the respective district, such as Prague 1, Prague 2 etc.
Thankfully, we were able to see that the suburb of said addresses is always set
and it is always possible to tell which district it belongs to. Based on these
information, we pulled a list of districts with their respective suburbs from the
web page of the Prague capital city. The we proceeded to parse this raw data
using OpenAI’s ChatGPT and created a database table containing mapping
of suburbs to districts. Afterwards, we were able to use this table to set the
correct district as the addresses municipality in our code.

There were two more scenarios in which the county was missing. In these
scenarios, the attribute state was always set to either středńı čechy or ji-
hozápad. For středńı čechy we set the county value to Středočeský kraj. After
analysing the data further, we were able to figure out that when the state

58

https://www.praha.eu/jnp/cz/o_meste/mestske_casti/index.html

3.4. AWS

attribute is set to jihozápad and the county attribute is blank, the missing
value is always Jihočeský kraj.

Thanks to completing the missing values the way described above, we
are now able to match more real estate listings to subscriptions and can also
provide the users with greater granularity in Prague region when creating
subscriptions.

3.4 AWS

3.4.1 Multiple SQS queues VS. Message Groups

There are two ways as to how we can use AWS SQS when sending/consuming
messages:

• Multiple queues, one message group per queue

• Single queue, multiple message groups per queue

Having multiple queues does not incur additional costs, as AWS SQS is a
pay-as-you go model. Therefore, we pay only for the amount of operations
we perform towards AWS SQS, but do not pay a fee per existing queue. The
drawback of this approach is, that we need to store and update multiple queue
ARNs.

The other option is to have only a single queue, that will feature multiple
message groups. This means that we only have to take care of one queue and
thus only of one ARN. It also means, that we do not have to check multiple
queues, but only one. This will save us a lot of operations and therefore a lot
of resources. This will allow us to check for new messages/notifications much
more frequently at the same price. The only drawback is, that we need to store
a list of message group IDs between two applications. One option would to
create a table or enumerable in database and fetch this information from there.
This would be a great solution as the message groups could be updated just
from one place and change would propagate to all the applications. However,
as there are only two applications, REST API and Client bot, that work with
this queue and only three message groups, we decided to create enumerable
in each of the applications and keep them in check through versioning. This
approach will also save us some resources as we will make less requests to
database/API.

3.4.2 ECS Task definition

When setting up an ECS Task definition, there are multiple things that we
need to carefully configure in order for out application to behave the way we
want it to.

59

3. Implementation

First of all, it is very important to set up the network mode to Bridge
instead of VPC. In our case, the inbound/outbound setting of the VPC are
very strict, as we do not want the API endpoints to be accessible outside
of VPC. By setting the network mode to bridge, we allow the containerized
instance to use the network of the EC2 instance that it is running on.

Second of all, we need to pass the scraping and client bot a Discord bot
token, that will allow them to act as the respective bots. As this is a secret
value, we do not want it featured inside the code or the repository. ECS Task
definition allows us to solve this issue by passing it an ARN of the secret
stored in AWS Secret Manager that hides the value of the tokens. However,
the ARN has to be passed during the creation of ECS Task definition as there
is no option to later pass it to individual tasks.

3.4.3 ECS Service

When setting up an ECS service, we have to carefully adjust some parameters
in order to allow deployments of new docker containers with the little resources
that we are running. These parameters are called desired tasks, minimum
and maximum running task thresholds. Desired tasks tells the service how
many instances we ideally want to be running. Minimum/maximum running
tasks threshold, tells the service, how many percent of the desired tasks may
be running at minimum/maximum. When leaving the thresholds at default
values, 100% and 200% respectively, we were not able to successfully deploy
new versions of our applications. After reading through the logs we were able
to see, that the issue has to do with too little resources to run another task.
We were able to solve this issue by setting the thresholds at 0% and 100%
respectively, allowing the service to the stop the existing task and after that
start the new one, thus temporarily running zero tasks even though the desired
tasks were set to 1.

3.4.4 Deployment

In order to deploy our application to AWS we decided to use GitHub Actions.
GitHub already features multiple templates for the most common Actions
and we were lucky enough to find one for deploying an application to ECS,
which required only minor changes. In order to use the Action, we also had
to provide it with AWS Credentials as well as ARNs of resources such as ECS
Task Definition, ECS Service or ECR Repository. All of these information are
sensitive and we do not want to make them publicly visible. That is why we
used GitHub Secrets to store all this information and provided them to the
Action through references to said Secrets.

The Action performs multiple steps when running. First, it builds Docker
image of the application. Next, it pushes the created Docker image into its

60

3.4. AWS

respective repository in ECR. After that, it instructs the ECS Service to pull
the new image from ECR and replace the currently running tasks with it.

One more thing that we changed in the Action template are the triggers.
By default, the Action would get triggered by every push to the main branch.
As we prefer to have more control over the deployment of new versions, we
updated the Action so it can be triggered only manually by us. This way,
we can double check that everything got merged the way it was supposed to,
when pushing code to the main branch and after that deploy the new version
manually.

61

Chapter 4
Testing

4.1 Types of used tests

4.1.1 Unit tests

The point of unit tests is to test the smallest piece of code that can be logically
isolated. This tends to be method, function or a property in the majority of
programming languages. Unit tests are written during the development and
they are capable of detecting bugs in software early on. This is important as
fixing the bugs right away is simpler that finding and fixing them down the
road when the software is bigger [63][64].

4.1.2 User tests

User testing is a process during which real users test the interface and func-
tionalities of given application in real word conditions. User testing can not
only show us whether or not the application is working, but also how com-
fortable, intuitive and easy to use it is to the users. These are very important
metrics as they can decided the fate of our application, meaning whether or
not will people use it [65].

4.2 Client bot

4.2.1 User testing

The main method used to verify that the client bot is working as expected and
that the UX is great were user tests. The users which tested the application
were picked from our colleagues and friends. The users were instructed to
perform the following tasks.

63

4. Testing

4.2.1.1 Create subscription

The users were tasked to create subscription that is set to monitor real estates
that:

• are houses

• are in Okres Nymburk

• are in the price range between one and three millions

• are bigger than 50 sqm. and smaller than 100 sqm.

• feature a pool

This task allowed us to collect feedback on the way filters are displayed
and about the options in select menus regarding prices and areas. For the
same reason we also purposefully tasked the users with selecting a value that
was not in the select menu options to see how they reacted to it and later
questioned them about it.

All the users were able to determine that the
sub command is used to create a new subscription. Some of the users, the
ones with at least basic knowledge of English, were able to determine the
functionality of the command based on its name. The rest was able to figure
it out from the description of the command. The way users were able to
determine the functionality of the command was the same for all the tested
commands and therefore will not be mentioned further.

Even though some of the users we slightly confused by not having the
exact option in the menu, they were all able to solve the situation by selecting
the closest less strict option. When asked about the granularity of options,
all users were satisfied with the options regarding the area sizes. On the other
hand, some users were not satisfied with the options in price select menus and
suggested that prices upwards to ten million should more granular. In reaction
to said critique, we added more options to the select menu. As a result there
are now also values 6, 7, 8 and 9 millions to pick from.

Some of the users were also not satisfied with the way the resulting sub-
scription that they created was presented to us, especially calling out its poor
design and readability. This was an understandable critique which was ad-
mittedly slightly expected when starting the user testing. In response to said
critique, we created and embed which conveys the information about the cre-
ated subscription in a more readable and graphically more pleasing manner.

One thing that we were slightly afraid of was the users critiquing the way
the form for creating a subscription is presented to them. This would a close to
impossible challenge to solve for us, due to Discord API not yet being capable
of anything more than what we are currently doing in terms of sending views.
Thankfully none of the users were dissatisfied with the way subscription create
form is presented to them and therefore there is no reason to change it.

64

4.2. Client bot

4.2.2 Update subscription

The users were tasked to update the subscription created in 4.2.1.1. They
were instructed to change the subscription to monitor real estate that:

• are apartments

• are in Okres Karlovy Vary

• are in the price range between two and five millions

• are bigger than 70 sqm. and smaller than 180 sqm.

• feature a garage

This task ensured that all the previously set values can be changed and
that the process of deselecting the previous values is comfortable to the users.

All the users were able to determine, that the command
sub update is used to update existing subscriptions. Everyone was also capa-
ble to select the requested subscription from the returned drop-down menu
without any issues.

As for changing the already set values, none of the users had any issues
doing so. Some of the users also noted that it is great that when updating
the subscriptions all filters get shown by default. When asked why, the users
said that they would otherwise expand all the filters anyway as they would
anyway want to check that the pre-selected values are set correctly.

4.2.3 View subscription details

The users were tasked to view the details of the subscription they just created.
All the users were able to determine, that the command

sub detail is the one to use to view the subscriptions details. As the interface of
this command is identical with the first part of update subscription command,
we did not ask the users about the experience with the UI and included this
command just to check it functions as intended.

4.2.4 Remove subscription

The users were tasked to remove the subscription that they created and edited
in the previous tasks.

All the users were able to determine that the command
sub delete is used for removing the subscription. As the drop-down menu with
existing subscriptions was the same one as the one returned during the update,
the users were not questioned on it again.

65

4. Testing

4.2.5 Verify the bot is working

The users were tasked to check whether the bot is online and responding to
their commands without altering any subscriptions. They were not provided
any more instructions as to how to accomplish this goal as we wanted to see
whether the command
ping is simple and intuitive enough.

All the users that tested the application were common with the meaning
of ping and therefore were right away confident in what the ping command is
for and were not afraid to use it right away.

4.3 REST API

The whole API code was covered using unit tests. In order to implement these
tests, we used multiple different frameworks.

• JUnit

• JaCoCo

• Mockito

JUnit is a Java framework which allows to implement unit tests in a stan-
dardized manner using annotations. It provides us with many useful features
such as initializing the variables and mocks before each test or cleaning up
the environment after every test and much more.

JaCoCo is a library that does not help us with writing tests per se, but
rather with analyzing existing tests and seeing how well they cover the code.
These data are conveyed to us using a simple UI in the form of website which is
also generated by JaCoCO. Using JaCoCo can help us spot undertested places
in our code and make sure that all the possible cases are porperly covered by
the unit tests.

Mockito is a library that allows us to create mocks of different classes.
This is very important, especially in unit testing, as the tests are supposed
to focus on just the tested method and nothing else. By injecting the tested
classes and therefore their methods with mocks instead of real instances, we
can be sure that we are really testing only the code we are supposed to. It
also allows to monitor whether the tested method called the mocks expected
amount of times, or if the values that the method returns correspond with the
values provided by the mocks.

66

Chapter 5
Conclusion

The goal of this thesis was to implement an application which is capable of
performing multiple tasks. The application should be able to scrap listings
of real estates for sale on Czech real estate market. It should also be able
to communicate with its users through the Discord application and provide
them with the means to create subscriptions. These subscriptions should allow
the users to monitor the Czech real estate market for listings that match the
properties of their subscriptions. Another goal of this thesis was to ensure the
applications availability and scalability by deploying it to cloud. All of the
previously stated goals were successfully reached and the resulting application
fulfills all of the functional and non-functional requirements defined in chapter
1.

In the chapter number one 1, the existing solutions for the solved problem
were analysed. It was concluded that although some similar solutions exist,
they tend to be pricey, cover less real estate portals, are no longer maintained
and/or not support Discord. The functional and non-functional requirements
as well as the use cases were also defined in this chapter.

In the second chapter 2, it was decided that the application is going to be
split into three parts. These parts are namely scrapers, client bot and API. For
each of these parts we discussed which technologies are the most appropriate
ones to use. It was also stated which cloud provider is going to be used to
host the application. In the end, we designed the high-level architecture of the
application which displays what cloud services are used as well as the use of
other external services. It also discusses the relationships and communication
between different parts of the application.

The third chapter 3 discusses the implementation of the whole application,
which was based on the analysis and design from chapters 1 and 2. The
problems that we came across and the solutions and fixes used to solve them
are described there. Also, the used cloud services and deployment of the
application are discussed to a greater detail in this chapter.

Chapter number four 4 is devoted to testing. Different types of used tests

67

5. Conclusion

are explained in this chapter. Also the details of testing of each of the parts
of the application are discussed here, especially the details of user testing of
the client bot as it revealed some imperfections which were then addressed.

In conclusion, we would like to say that we deem working on this thesis
highly beneficial to us. Throughout the thesis, we got to deepen our AWS
skills, especially when working with ASG and ECS. We also learnt to use the
Discord API, work with Nominatim and with the Python’s asyncio package.
The knowledge we gained was also not limited to the technical domain, as we
got to understand and orient ourselves in the real estate market which we also
view as an invaluable skill for our life.

5.1 Visions for the future

As the topic of this thesis was chosen due to our personal interest, we plan to
continue the development of this application in the future. At the moment,
the application is in Beta version. Once we are confident with its state we
plan to make it available through a website of our own. We also understand
that not all potential users are also users of Discord and we recognize the
opportunities that providing our notifications through other platforms than
Discord offers us. That is why the whole application was implemented with
extendability in mind so that email or phone notifications can be easily added
in the future, thus broadening our target group.

68

Bibliography

1. NUMBEO. Europe: Current Property Prices Index by City [online]. [vis-
ited on 2023-06-28]. Available from: https://www.numbeo.com/property-
investment/region_rankings_current.jsp?region=150.

2. REALITNÍ HLÍDACÍ PES. Realitńı hĺıdaćı pes [online]. [visited on 2023-
02-19]. Available from: https://www.realitnihlidacipes.cz/.

3. REALITYMON. realitymon [online]. [visited on 2023-02-19]. Available
from: http://www.realitymon.cz/#.

4. INFOEXE S.R.O. inforeality [online]. [visited on 2023-02-19]. Available
from: http://infoexe.cz/inforeality.

5. GURU99. What is a Functional Requirement in Software Engineering?
[Online]. 2023-01. [visited on 2023-02-24]. Available from: https://www.
guru99 . com / functional - requirement - specification - example .
html.

6. NUCLINO. A Guide to Functional Requirements (with Examples) [on-
line]. [visited on 2023-02-24]. Available from: https://www.nuclino.
com/articles/functional-requirements.

7. SAGGU, Ashmeet. Non-functional Requirements in Software Engineer-
ing [online]. 2023-02. [visited on 2023-02-24]. Available from: https :
/ / www . geeksforgeeks . org / non - functional - requirements - in -
software-engineering/.

8. ALTEXSOFT. Non-functional Requirements: Examples, Types, How to
Approach [online]. 2022-07. [visited on 2023-02-24]. Available from: https:
//www.altexsoft.com/blog/non-functional-requirements/.

9. POSEY, Brien. Top public cloud providers of 2023: A brief comparison
[online]. 2022-11. [visited on 2023-02-25]. Available from: https://www.
techtarget.com/searchcloudcomputing/tip/Top- public- cloud-
providers-A-brief-comparison.

69

https://www.numbeo.com/property-investment/region_rankings_current.jsp?region=150
https://www.numbeo.com/property-investment/region_rankings_current.jsp?region=150
https://www.realitnihlidacipes.cz/
http://www.realitymon.cz/#
http://infoexe.cz/inforeality
https://www.guru99.com/functional-requirement-specification-example.html
https://www.guru99.com/functional-requirement-specification-example.html
https://www.guru99.com/functional-requirement-specification-example.html
https://www.nuclino.com/articles/functional-requirements
https://www.nuclino.com/articles/functional-requirements
https://www.geeksforgeeks.org/non-functional-requirements-in-software-engineering/
https://www.geeksforgeeks.org/non-functional-requirements-in-software-engineering/
https://www.geeksforgeeks.org/non-functional-requirements-in-software-engineering/
https://www.altexsoft.com/blog/non-functional-requirements/
https://www.altexsoft.com/blog/non-functional-requirements/
https://www.techtarget.com/searchcloudcomputing/tip/Top-public-cloud-providers-A-brief-comparison
https://www.techtarget.com/searchcloudcomputing/tip/Top-public-cloud-providers-A-brief-comparison
https://www.techtarget.com/searchcloudcomputing/tip/Top-public-cloud-providers-A-brief-comparison

Bibliography

10. INFLECTRA. Use Cases & Scenarios: What They Are & More [on-
line]. 2023-01. [visited on 2023-02-25]. Available from: https://www.
inflectra.com/Ideas/Topic/Use-Cases.aspx.

11. DALY, Nicky. What Is a Use Case? [Online]. 2022-05. [visited on 2023-
02-25]. Available from: https://www.wrike.com/blog/what-is-a-
use-case/.

12. BRUSH, Kate. use case [online]. [visited on 2023-02-25]. Available from:
https://www.techtarget.com/searchsoftwarequality/definition/
use-case.

13. AWS. Amazon S3 pricing [online]. [visited on 2023-05-10]. Available from:
https://aws.amazon.com/s3/pricing/.

14. CHAND, Mahesh. Most Popular Databases In The World (2023) [on-
line]. 2022-12. [visited on 2023-03-18]. Available from: https://www.c-
sharpcorner.com/article/what-is-the-most-popular-database-
in-the-world/.

15. AWS AMAZON. What is NoSQL? [Online]. [visited on 2023-03-18].
Available from: https://aws.amazon.com/nosql/.

16. AWS. Amazon AWS pricing calculator [online]. [visited on 2023-05-10].
Available from: https://calculator.aws/#/.

17. SCALEGRID. PostgreSQL vs. Oracle: Difference in Costs, Ease of Use
& Functionality [online]. 2020-07. [visited on 2023-03-18]. Available from:
https://scalegrid.io/blog/postgresql-vs-oracle-difference-
in-costs-ease-of-use-functionality/.

18. AWS AMAZON. Amazon RDS for PostgreSQL Pricing [online]. [vis-
ited on 2023-03-18]. Available from: https://aws.amazon.com/rds/
postgresql/pricing/.

19. AWS AMAZON. Amazon RDS for SQL Server Pricing [online]. [vis-
ited on 2023-03-18]. Available from: https://aws.amazon.com/rds/
sqlserver/pricing/.

20. TIOBE. TIOBE Index for March 2023 [online]. 2023-01. [visited on 2023-
03-12]. Available from: https://www.tiobe.com/tiobe-index/.

21. MITCHELL, Brad. The 5 Easiest Programming Language to Learn (and
Why) [online]. 2022-11. [visited on 2023-03-12]. Available from: https:
//www.codingdojo.com/blog/easiest-programming-language-to-
learn.

22. PROXIES, Scraping. The Best Language for Web Scraping (Hint: There
are 5) [online]. 2021-12. [visited on 2023-03-12]. Available from: https:
//lightproxies.com/blog/best-language-for-web-scraping/.

70

https://www.inflectra.com/Ideas/Topic/Use-Cases.aspx
https://www.inflectra.com/Ideas/Topic/Use-Cases.aspx
https://www.wrike.com/blog/what-is-a-use-case/
https://www.wrike.com/blog/what-is-a-use-case/
https://www.techtarget.com/searchsoftwarequality/definition/use-case
https://www.techtarget.com/searchsoftwarequality/definition/use-case
https://aws.amazon.com/s3/pricing/
https://www.c-sharpcorner.com/article/what-is-the-most-popular-database-in-the-world/
https://www.c-sharpcorner.com/article/what-is-the-most-popular-database-in-the-world/
https://www.c-sharpcorner.com/article/what-is-the-most-popular-database-in-the-world/
https://aws.amazon.com/nosql/
https://calculator.aws/#/
https://scalegrid.io/blog/postgresql-vs-oracle-difference-in-costs-ease-of-use-functionality/
https://scalegrid.io/blog/postgresql-vs-oracle-difference-in-costs-ease-of-use-functionality/
https://aws.amazon.com/rds/postgresql/pricing/
https://aws.amazon.com/rds/postgresql/pricing/
https://aws.amazon.com/rds/sqlserver/pricing/
https://aws.amazon.com/rds/sqlserver/pricing/
https://www.tiobe.com/tiobe-index/
https://www.codingdojo.com/blog/easiest-programming-language-to-learn
https://www.codingdojo.com/blog/easiest-programming-language-to-learn
https://www.codingdojo.com/blog/easiest-programming-language-to-learn
https://lightproxies.com/blog/best-language-for-web-scraping/
https://lightproxies.com/blog/best-language-for-web-scraping/

Bibliography

23. DILMEGANI, Cem. Best Web Scraping Programming Languages in 2023
with Stats [online]. 2023-03. [visited on 2023-03-12]. Available from: https:
//research.aimultiple.com/web-scraping-programming-languages/.

24. PROMPT CLOUD. What are The Best Programming Languages for
Web Scraping? [Online]. 2017-08. [visited on 2023-03-12]. Available from:
https://www.promptcloud.com/blog/best-programming-language-
for-web-scraping/.

25. JAMES, Alexander. Best Programming Languages for Web Scraping [on-
line]. 2023-02. [visited on 2023-03-12]. Available from: https://scrape.
do/blog/best-programming-languages-for-web-scraping/.

26. ZENROWS. Top 5 JavaScript and NodeJS web scraping libraries in 2023
[online]. 2022-09. [visited on 2023-03-12]. Available from: https://www.
zenrows.com/blog/javascript-nodejs-web-scraping-libraries#
playwright.

27. GEEKSFORGEEKS. What is Callback Hell and how to avoid it in Node.js
? [Online]. 2022-03. [visited on 2023-03-12]. Available from: https://
www.geeksforgeeks.org/what- is- callback- hell- and- how- to-
avoid-it-in-node-js/?ref=rp.

28. LAI, Hongli. What causes Ruby memory bloat? [Online]. 2019-03. [visited
on 2023-03-12]. Available from: https://www.joyfulbikeshedding.
com/blog/2019-03-14-what-causes-ruby-memory-bloat.html.

29. MATUSZ, Jan. Ruby Quirks [online]. 2019-09. [visited on 2023-03-12].
Available from: https://www.visuality.pl/posts/ruby-quirks.

30. RICHTER, Felix. Amazon, Microsoft & Google Dominate Cloud Market
[online]. 2022-12. [visited on 2023-03-05]. Available from: https://www.
statista.com/chart/18819/worldwide-market-share-of-leading-
cloud-infrastructure-service-providers/.

31. SERVERLESS FRAMEWORK. Serverless Infrastructure Providers [on-
line]. [visited on 2023-03-12]. Available from: https://www.serverless.
com/framework/docs/providers.

32. SERVERLESS FRAMEWORK. AWS Python Example [online]. [visited
on 2023-03-12]. Available from: https://www.serverless.com/examples/
aws-python.

33. BESWICK, James. Using Amazon EFS for AWS Lambda in your server-
less applications [online]. 2020-06. [visited on 2023-03-11]. Available from:
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-
aws-lambda-in-your-serverless-applications/.

34. MICROSOFT. Storage considerations for Azure Functions [online]. 2023-
02. [visited on 2023-03-11]. Available from: https://learn.microsoft.
com / en - us / azure / azure - functions / storage - considerations ?
tabs=azure-cli.

71

https://research.aimultiple.com/web-scraping-programming-languages/
https://research.aimultiple.com/web-scraping-programming-languages/
https://www.promptcloud.com/blog/best-programming-language-for-web-scraping/
https://www.promptcloud.com/blog/best-programming-language-for-web-scraping/
https://scrape.do/blog/best-programming-languages-for-web-scraping/
https://scrape.do/blog/best-programming-languages-for-web-scraping/
https://www.zenrows.com/blog/javascript-nodejs-web-scraping-libraries#playwright
https://www.zenrows.com/blog/javascript-nodejs-web-scraping-libraries#playwright
https://www.zenrows.com/blog/javascript-nodejs-web-scraping-libraries#playwright
https://www.geeksforgeeks.org/what-is-callback-hell-and-how-to-avoid-it-in-node-js/?ref=rp
https://www.geeksforgeeks.org/what-is-callback-hell-and-how-to-avoid-it-in-node-js/?ref=rp
https://www.geeksforgeeks.org/what-is-callback-hell-and-how-to-avoid-it-in-node-js/?ref=rp
https://www.joyfulbikeshedding.com/blog/2019-03-14-what-causes-ruby-memory-bloat.html
https://www.joyfulbikeshedding.com/blog/2019-03-14-what-causes-ruby-memory-bloat.html
https://www.visuality.pl/posts/ruby-quirks
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.serverless.com/framework/docs/providers
https://www.serverless.com/framework/docs/providers
https://www.serverless.com/examples/aws-python
https://www.serverless.com/examples/aws-python
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications/
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications/
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations?tabs=azure-cli

Bibliography

35. AMAZON AWS. How do I give internet access to a Lambda function
that’s connected to an Amazon VPC? [Online]. 2023-03. [visited on 2023-
03-11]. Available from: https://aws.amazon.com/premiumsupport/
knowledge-center/internet-access-lambda-function/.

36. MICROSOFT. Azure Functions networking options [online]. 2018-10.
[visited on 2023-03-11]. Available from: https://learn.microsoft.
com/en-us/azure/azure-functions/functions-networking-options?
tabs=azure-cli#virtual-network-integration.

37. ASHAN. Can an Azure Function access internet? [Online]. 2018-10. [vis-
ited on 2023-03-11]. Available from: https : / / stackoverflow . com /
questions/53394481/can-an-azure-function-access-internet.

38. AMAZON AWS. How do I troubleshoot Lambda function invocation time-
out errors? [Online]. 2023-02. [visited on 2023-03-11]. Available from:
https : / / aws . amazon . com / premiumsupport / knowledge - center /
lambda-troubleshoot-invocation-timeouts/.

39. AMAZON AWS. Azure Functions hosting options [online]. 2022-11. [vis-
ited on 2023-03-11]. Available from: https://learn.microsoft.com/
en-us/azure/azure-functions/functions-scale.

40. MICROSOFT. Azure Functions pricing [online]. [visited on 2023-03-11].
Available from: https : / / azure . microsoft . com / en - us / pricing /
details/functions/.

41. MICROSOFT. Windows Virtual Machines Pricing [online]. [visited on
2023-03-11]. Available from: https://azure.microsoft.com/en-us/
pricing/details/virtual-machines/windows/.

42. WIKIPEDIA. cron [online]. 2023-03. [visited on 2023-03-11]. Available
from: https://en.wikipedia.org/wiki/Cron.

43. RAMANUJAM, Sriram. How to Run a Cron Job Inside a Docker Con-
tainer? [Online]. 2022-08. [visited on 2023-03-11]. Available from: https:
//www.baeldung.com/ops/docker-cron-job.

44. DISCORD.PY. discord.ext.tasks – asyncio.Task helpers [online]. [visited
on 2023-03-11]. Available from: https://discordpy.readthedocs.io/
en/stable/ext/tasks/index.html.

45. EMERSON, Rob. What Language Are Discord Bots Written In? [On-
line]. 2023-01. [visited on 2023-03-12]. Available from: https://www.
itgeared.com/what-language-are-discord-bots-written-in/.

46. WRITEBOTS. How to Make a Discord Bot in 2023 [online]. 2023-01.
[visited on 2023-03-12]. Available from: https://www.writebots.com/
how-to-make-a-discord-bot/.

72

https://aws.amazon.com/premiumsupport/knowledge-center/internet-access-lambda-function/
https://aws.amazon.com/premiumsupport/knowledge-center/internet-access-lambda-function/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options?tabs=azure-cli#virtual-network-integration
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options?tabs=azure-cli#virtual-network-integration
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options?tabs=azure-cli#virtual-network-integration
https://stackoverflow.com/questions/53394481/can-an-azure-function-access-internet
https://stackoverflow.com/questions/53394481/can-an-azure-function-access-internet
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-troubleshoot-invocation-timeouts/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-troubleshoot-invocation-timeouts/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://en.wikipedia.org/wiki/Cron
https://www.baeldung.com/ops/docker-cron-job
https://www.baeldung.com/ops/docker-cron-job
https://discordpy.readthedocs.io/en/stable/ext/tasks/index.html
https://discordpy.readthedocs.io/en/stable/ext/tasks/index.html
https://www.itgeared.com/what-language-are-discord-bots-written-in/
https://www.itgeared.com/what-language-are-discord-bots-written-in/
https://www.writebots.com/how-to-make-a-discord-bot/
https://www.writebots.com/how-to-make-a-discord-bot/

Bibliography

47. GIRDHAR, Abhinav. Appy Pie : What language are discord bots written
in? [Online]. 2022-04. [visited on 2023-03-12]. Available from: https:
/ / www . appypie . com / faqs / what - language - are - discord - bots -
written-in.

48. STATISTICS&DATA. Most Popular Backend Frameworks – 2012/2023
[online]. [visited on 2023-03-19]. Available from: https://statisticsanddata.
org/data/most-popular-backend-frameworks-2012-2023/.

49. KAUR, Preet. 10 Most Popular Frameworks For Building RESTful APIs
[online]. 2022-12. [visited on 2023-03-19]. Available from: https://www.
moesif.com/blog/api- product- management/api- analytics/10-
Most-Popular-Frameworks-For-Building-RESTful-APIs/.

50. PYCODEMATES. The Top Ten Web Frameworks for creating REST
APIs -Backend Development [online]. 2022-08. [visited on 2023-03-19].
Available from: https://www.pycodemates.com/2022/08/top-ten-
web-frameworks-for-creating-rest-apis.html.

51. ZHANG, Mary. Top 10 Cloud Service Providers Globally in 2023 [on-
line]. 2023-01. [visited on 2023-03-05]. Available from: https://dgtlinfra.
com/top-10-cloud-service-providers-2022/.

52. OSMF. Nominatim Usage Policy (aka Geocoding Policy) [online]. [visited
on 2023-05-07]. Available from: https://operations.osmfoundation.
org/policies/nominatim/.

53. SEZNAM.CZ, A.S. Sreality [online]. [visited on 2023-02-19]. Available
from: https://www.sreality.cz/.

54. KALKMAN, Patrick. Dependency Injection in Python [online]. 2023-04.
[visited on 2023-06-17]. Available from: https://itnext.io/dependency-
injection-in-python-a1e56ab8bdd0.

55. ETS-LABS. python-dependency-injector [online]. [visited on 2023-06-17].
Available from: https://github.com/ets-labs/python-dependency-
injector.

56. POSTGIS PSC & OSGEO. About PostGIS [online]. [visited on 2023-06-
22]. Available from: http://postgis.net/.

57. BAELDUNG. Entity To DTO Conversion for a Spring REST API [on-
line]. 2022-12. [visited on 2023-06-27]. Available from: https://www.
baeldung.com/entity- to- and- from- dto- for- a- java- spring-
application.

58. KHAN, Nadeem. Best Practices in Spring Boot Project Structure [on-
line]. 2021-06. [visited on 2023-06-27]. Available from: https://medium.
com / learnwithnk / best - practices - in - spring - boot - project -
structure-layers-of-microservice-versioning-in-api-cadf62bd3459.

73

https://www.appypie.com/faqs/what-language-are-discord-bots-written-in
https://www.appypie.com/faqs/what-language-are-discord-bots-written-in
https://www.appypie.com/faqs/what-language-are-discord-bots-written-in
https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2023/
https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2023/
https://www.moesif.com/blog/api-product-management/api-analytics/10-Most-Popular-Frameworks-For-Building-RESTful-APIs/
https://www.moesif.com/blog/api-product-management/api-analytics/10-Most-Popular-Frameworks-For-Building-RESTful-APIs/
https://www.moesif.com/blog/api-product-management/api-analytics/10-Most-Popular-Frameworks-For-Building-RESTful-APIs/
https://www.pycodemates.com/2022/08/top-ten-web-frameworks-for-creating-rest-apis.html
https://www.pycodemates.com/2022/08/top-ten-web-frameworks-for-creating-rest-apis.html
https://dgtlinfra.com/top-10-cloud-service-providers-2022/
https://dgtlinfra.com/top-10-cloud-service-providers-2022/
https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/
https://www.sreality.cz/
https://itnext.io/dependency-injection-in-python-a1e56ab8bdd0
https://itnext.io/dependency-injection-in-python-a1e56ab8bdd0
https://github.com/ets-labs/python-dependency-injector
https://github.com/ets-labs/python-dependency-injector
http://postgis.net/
https://www.baeldung.com/entity-to-and-from-dto-for-a-java-spring-application
https://www.baeldung.com/entity-to-and-from-dto-for-a-java-spring-application
https://www.baeldung.com/entity-to-and-from-dto-for-a-java-spring-application
https://medium.com/learnwithnk/best-practices-in-spring-boot-project-structure-layers-of-microservice-versioning-in-api-cadf62bd3459
https://medium.com/learnwithnk/best-practices-in-spring-boot-project-structure-layers-of-microservice-versioning-in-api-cadf62bd3459
https://medium.com/learnwithnk/best-practices-in-spring-boot-project-structure-layers-of-microservice-versioning-in-api-cadf62bd3459

Bibliography

59. FADATARE, Ramesh. Spring Boot DTO Example Tutorial [online]. [vis-
ited on 2023-06-27]. Available from: https://www.javaguides.net/
2022/12/spring-boot-dto-example-tutorial.html.

60. J.G., Daniel. Using DTO to transfer data between service layer and UI
layer [online]. [visited on 2023-06-27]. Available from: https://stackoverflow.
com/questions/16866102/using-dto-to-transfer-data-between-
service-layer-and-ui-layer/16872129#16872129.

61. MODELMAPPER. modelmapper [online]. [visited on 2023-06-28]. Avail-
able from: https://modelmapper.org/.

62. HIBERNATE. Hibernate Validator [online]. [visited on 2023-06-28]. Avail-
able from: https://hibernate.org/validator/.

63. TECHTARGET. unit testing [online]. [visited on 2023-06-28]. Available
from: https://www.techtarget.com/searchsoftwarequality/definition/
unit-testing.

64. SMARTBEAR. What Is Unit Testing? [Online]. [visited on 2023-06-28].
Available from: https://smartbear.com/learn/automated-testing/
what-is-unit-testing/.

65. OMNICONVERT. What is... User testing [online]. [visited on 2023-06-
28]. Available from: https://www.omniconvert.com/what-is/user-
testing/.

74

https://www.javaguides.net/2022/12/spring-boot-dto-example-tutorial.html
https://www.javaguides.net/2022/12/spring-boot-dto-example-tutorial.html
https://stackoverflow.com/questions/16866102/using-dto-to-transfer-data-between-service-layer-and-ui-layer/16872129#16872129
https://stackoverflow.com/questions/16866102/using-dto-to-transfer-data-between-service-layer-and-ui-layer/16872129#16872129
https://stackoverflow.com/questions/16866102/using-dto-to-transfer-data-between-service-layer-and-ui-layer/16872129#16872129
https://modelmapper.org/
https://hibernate.org/validator/
https://www.techtarget.com/searchsoftwarequality/definition/unit-testing
https://www.techtarget.com/searchsoftwarequality/definition/unit-testing
https://smartbear.com/learn/automated-testing/what-is-unit-testing/
https://smartbear.com/learn/automated-testing/what-is-unit-testing/
https://www.omniconvert.com/what-is/user-testing/
https://www.omniconvert.com/what-is/user-testing/

Appendix A
Acronyms

SLA Service level agreement

GUI Graphical user interface

REST Representational state transfer

GCP Google Cloud Platform

AWS Amazon Web Services

API Application Programming Interface

CPU Computer Processing Unit

RAM Random Access Memory

VPC Virtual Private Cloud

NAT Network Address Translation

EC2 Elastic Compute Cloud

EFS Elastic File System

UI User Interface

UX User Experience

RDBMS Relational Database Management System

DI Dependency Injection

EBS Elastic Beanstalk

ECS Elastic Container Service

ECR Elastic Container Registry

75

A. Acronyms

ARN Amazon Resource Name

DTO Data Transfer Object

ID Identifier

DB Database

76

	Acknowledgments
	Analysis
	Analysis of existing solutions
	Realitní hlídací pes
	realitymon
	inforeality
	Conclusion

	Requirements engineering
	Functional requirements
	F1: Subscribe to a location
	F2: Subscribe to a location with filters
	F3: Edit existing location subscription
	F4: Cancel subscription
	F5: List all user's subscriptions
	F6: Send notification about new listing to subscribed users
	F7: Send notification about price change to subscribed users
	F8: Send notification about listing removal to subscribed users
	F9: Manual scraper start
	F10: Application health status
	F11: Data updates
	F12: Date & time of last update

	Non-functional requirements
	NF1: Responsiveness
	NF2: User friendliness
	NF3: Frequency of data scraping
	NF4: Ethical load on scraped servers
	NF5: Secured access to scrapers
	NF6: Availability
	NF7: Cost efficiency
	NF8: Deployment automation

	Use cases
	UC1: Subscribe to location
	UC2: Adding new subscription with filters
	UC3: Updating an existing subscription
	UC4: Removing existing subscription
	UC5: Scraping new listings
	UC6: Scraping price changes
	UC7: Identifying removed listings
	UC8: Manually triggering scraping of new data
	UC9: Health status check
	UC10: List active subscriptions

	Domain model
	Subscription
	RealEstate
	Address
	Hidden location
	Old listings
	Same real estate, different portals

	Channel

	Design
	Database
	Data model
	Real estate listings
	Address
	Suburb Prague

	Database type
	RDBMS

	Scrapers
	Programming language
	Python
	JavaScript (Node.js)
	Ruby
	C/C++
	Conclusion

	Architecture
	Server-less/Lambda functions
	Cron jobs
	Discord bot
	Conclusion

	Commands

	Discord bot - client side
	Commands
	Creating a subscription
	Updating a subscription
	Deleting a subscription
	Viewing subscription details
	Health-check

	Programming language
	C/C++
	Java
	Conclusion

	RESTful API
	Programming language & framework
	Endpoints

	Cloud provider
	High-level architecture
	Deployment
	Managing listings - Scrappers and REST API
	Managing subscriptions - Discord bot and REST API
	Obtaining user info - Discord bot and REST API
	Reverse geocoding - Nominatim and Scrappers

	Implementation
	Scraping Bot
	Sreality scrapping
	Scraping new listings
	Scraping data from search results
	Scraping data from listing details
	Conclusion

	Address scraping
	httpx vs requests
	Reverse engineering of the API

	Reality Idnes scraping
	Addresses

	Bezrealitky scraping
	Scraping listing's details

	Dependency Injection
	SQLite as cache

	Client bot
	Sending images
	Modals vs Views
	Regions and municipalities

	REST API
	Architecture
	Model conversion placement
	ModelMapper
	Hibernate Validator
	Access control
	Price change
	Deriving missing parts of addresses from existing data

	AWS
	Multiple SQS queues VS. Message Groups
	ECS Task definition
	ECS Service
	Deployment

	Testing
	Types of used tests
	Unit tests
	User tests

	Client bot
	User testing
	Create subscription

	Update subscription
	View subscription details
	Remove subscription
	Verify the bot is working

	REST API

	Conclusion
	Visions for the future

	Bibliography
	Acronyms

