
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

x86-64 native backend for TinyC
Bc. Michal Vlasák
Ing. Petr Máj
Informatics
System Programming
Department of Theoretical Computer Science
until the end of summer semester 2023/2024

Instructions

Analyze the current implementation of TinyC frontend used in the NI-GEN course.
Determine any necessary changes and minimal viable runtime support for TinyC to be
executed directly on the x86-64 architecture. Implement a compiler backend from TinyC
IR used in the course to native machine code that demonstrates the use of advanced
techniques mentioned in NI-GEN course for tasks such as register allocation and
instruction selection. Implement a runtime based on your design that would allow TinyC
programs on x86-64 to use system resources such as memory and I/O.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 5 December 2022 in Prague.

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F8 Faculty of Information Technology
Department of Theoretical Computer Science

Master’s Thesis

x86-64 native backend for TinyC

Bc. Michal Vlasák

June 29, 2023
Supervisor: Ing. Petr Máj

Acknowledgement / Declaration

I wish to thank my supervisor, Ing.
Petr Máj, for his patience and all the
valuable advice he has given me.

I also wish to thank my parents for
their support.

I hereby declare that the presented
thesis is my own work and that I have
cited all sources of information in accor-
dance with the Guideline for adhering
to ethical principles when elaborating an
academic final thesis.

I acknowledge that my thesis is sub-
ject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll.,
the Copyright Act, as amended. In
accordance with Section 2373(2) of Act
No. 89/2012 Coll., the Civil Code, as
amended, I hereby grant a non-exclusive
authorization (licence) to utilize this
thesis, including all computer programs
that are part of it or attached to it and
all documentation thereof (hereinafter
collectively referred to as the ”Work”),
to any and all persons who wish to use
the Work. Such persons are entitled
to use the Work in any manner that
does not diminish the value of the Work
and for any purpose (including use for
profit). This authorisation is unlimited
in time, territory and quantity.

In Prague on June 29, 2023

Michal Vlasák

iii

Abstrakt / Abstract

Tato práce popisuje backend překla-
dače, který kompiluje TinyC mezirepre-
zentaci do nativních x86-64 instrukcí.
Cílem bylo vytvořit překladač, který by
ukázal složitosti spojené s architektu-
rou x86-64, zvláště pak ve srovnání s
architekturou Tiny86, kterou používají
studenti předmětu NI-GEN.

V teoretické části je dán zvláštní zře-
tel na historii architektury x86-64 a pra-
vou podstatu jejích omezení. Je vyhod-
nocen dosavadní výzkum v oblasti bac-
kendů překladačů a to s přihlédnutím k
možnostem architektury x86-64.

Práce prezentuje návrh x86-64 TinyC
backendu. Ten je založen na výběru in-
strukcí extenzivní peephole optimalizací
a na alokaci registrů barvením grafů.
Implementace samotná je důkladně ro-
zebrána a mnoho praktických detailů je
zváženo a vysvětleno.

Přeložené programy mohou buď vy-
užít systémový runtime jazyka C, nebo
na Linuxu mohou být rozšířeny o vlastní
minimalistický runtime dovolující pro-
gramům běžet bez externích závislostí.

Text této práce a implementace jsou
volně dostupné a mohou být použity
nejen studenty předmětu NI-GEN.

Klíčová slova: překladač, backend
překladače, TinyC, x86-64, výběr in-
strukcí, alokace registrů, C, běhové
prostředí

Překlad titulu: x86-64 nativní bac-
kend pro TinyC

This thesis describes a compiler back
end compiling TinyC IR to x86-64 na-
tive machine code. The goal was to cre-
ate a compiler that would showcase ad-
ditional difficulties imposed by the x86-
64 architecture, especially compared to
the simplified Tiny86 architecture tar-
geted by students in the NI-GEN course.

In the theoretical part a close atten-
tion is paid to x86-64’s history and the
true nature of its limitations. Existing
compiler back end research is surveyed
and evaluated with respect to x86-64’s
capabilities.

A design for a x86-64 TinyC back
end is presented. It is based on instruc-
tion selection by extensive peephole
optimization and graph coloring reg-
ister allocation. The implementation
itself is presented thoroughly and many
practical details are considered and
explained.

The compiled programs are either
able to use the system C runtime, or
on Linux can be bundled with a custom
minimalistic runtime allowing the pro-
grams to run without any dependencies.

The text of this thesis and the imple-
mentation are freely available, and can
be used not only by NI-GEN students.

Keywords: compiler, compiler back-
end, TinyC, x86-64, instruction selec-
tion, register allocation, C, runtime

iv

Contents /

1 Introduction 1

2 x86-64 architecture 4
2.1 History 4
2.2 Characteristic 5

2.2.1 Basics 5
2.2.2 Registers 6
2.2.3 Memory locations 7
2.2.4 Arithmetic 8
2.2.5 Condition codes 9
2.2.6 Encoding 10

2.3 32-bit extension 12
2.4 64-bit extension 12
2.5 Calling conventions 13
2.6 Operating system interface . . 14
2.7 Comparison with Tiny86 14

2.7.1 Registers 14
2.7.2 Operations 15
2.7.3 Addressing modes 15

2.8 Conclusion 16
3 State of the art 17

3.1 Structure of a compiler
backend 17

3.1.1 Phase ordering 18
3.2 Intermediate representations . . 18

3.2.1 Abstract syntax tree 18
3.2.2 Directed acyclic graph . . . 18
3.2.3 Three address code 19
3.2.4 Control flow graph 19

3.3 Peephole optimization 19
3.4 SSA form 20

3.4.1 Value-based SSA 22
3.4.2 SSA for machine code . . . 23

3.5 SSA deconstruction 24
3.6 Instruction selection 27

3.6.1 Outline 28
3.6.2 Peephole optimization . . . 29
3.6.3 Covering 31
3.6.4 Reduction 34
3.6.5 Practical considerations . . 35

3.7 Instruction scheduling 35
3.7.1 Motivation 35
3.7.2 List scheduling 36
3.7.3 Practical considerations . . 36

3.8 Register allocation 37
3.8.1 Motivation 37

3.8.2 Spilling 39
3.8.3 Concepts 44
3.8.4 Techniques 51

4 Design and implementation 62
4.1 Architecture 63

4.1.1 Middle end 63
4.1.2 Back end 63

4.2 Technology 67
4.2.1 Assembler 67
4.2.2 Programming language . . 68

4.3 Data structures 68
4.3.1 Middle end 68
4.3.2 Back end 76
4.3.3 Work lists 86

4.4 Critical edge splitting 86
4.5 SSA deconstruction 88
4.6 Live range splitting 90
4.7 Lowering 90

4.7.1 Operands 94
4.7.2 Stack slots 95
4.7.3 Prologue and epilogue . . . 95
4.7.4 Narrow types 96
4.7.5 Signedness 96

4.8 Peephole optimization 97
4.8.1 Local optimizations 97
4.8.2 Flag based optimizations 100
4.8.3 Use-def based opti-

mizations 102
4.8.4 Inter-block optimizations 104
4.8.5 Implementation 106
4.8.6 Practical findings 109

4.9 Register allocation 112
4.9.1 Liveness analysis 113
4.9.2 Build interference graph . 116
4.9.3 Iterated register coa-

lescing 121
4.9.4 Register assignment . . . 128
4.9.5 Interference graph rep-

resentation 130
4.9.6 Physical registers, coa-

lescing 131
4.9.7 Spilling 132

4.10 Runtime 135
4.10.1 External C library 136
4.10.2 Custom runtime 137

v

4.11 Middle end 139
4.11.1 Jump threading 139
4.11.2 Value numbering SSA

construction 139
5 Evaluation 141

5.1 Known shortcomings 141
5.2 Comparison against GCC . . 142

6 Conclusion 144
6.1 Future work 145

References 146

A Acronyms 153

B Contents of the electronic
attachment 154

vi

Tables / Figures

5.1 Benchmark results 142 4.1 x86-64 instruction represen-
tation . 83

4.2 Example of x86-64 instruc-
tions in our representation 87

vii

Chapter 1
Introduction

Computers with hard-wired programs can serve only a specialized purpose and are not
practical. For this reason computers accept input data as well as the programs to run.
The programs are interpreted by the processor, and from the input data produce other
data as output. Because most computers today are based on the binary numeral system
(using only ones and zeros), the data as well as programs have to be encoded in binary.

Encoding machine instructions into binary by hand is tedious and error prone. As-
sembly language, a human readable textual notation of the instructions, came up as
an abstraction and convenience for humans. However, still every computer or rather
its CPU (central processing unit) can have different capabilities and support different
instructions. Assembly doesn’t abstract that—it is machine specific. High diversity was
mainly true in the early days where every computer could be very different. But since
then, the industry settled, and while CPUs can be still very different internally, they
usually support one of the prominent instruction set architectures. The instruction set
architecture (ISA) defines the interface of the processor—what instructions it supports
and how they are encoded. A CPU implements that interface.

A more powerful abstraction for writing programs came with the advent of pro-
gramming languages, which allow expressing programs at high level, without being tied
to any machine or its capabilities. Programs written in programming languages are
readable by humans, but not executable by machines. Programs usually have to be
translated (compiled) to machine instructions, in order to run on the target machine.

Compilation can be a difficult process, because modern high level languages care
to provide useful tools to the programmers, while machine instructions often support
rather elementary operations. As there are many instruction set architectures and
many programming languages, it may seem that a different compiler is needed for
every combination.

In practice, most compilers today employ an architecture where the compilation is
split into two steps:

1. Front end. Translates from human readable programming language to a programming
language and machine independent intermediate representation (IR).

2. Back end. Translates from the intermediate representation to instructions of a par-
ticular instruction set architecture.

In this design, it suffices to have one front end for each source language and one back
end for each target architecture. Compilation from any language with a front end to any
machine with a back end is then possible. Additionally, operations that any compiler
would want to do (due to being machine and programming language independent) can
be performed on the intermediate representation in a common third part of a modern
compiler:

3. Middle end. Performs programming language and machine independent transforma-
tions on the intermediate representation. Often these are optimizations that simplify
or otherwise improve the code.

1

1. Introduction .
In the real world, there is still a place for newer or better compilers, that produce more

efficient or smaller machine code. Not only are new programming languages created
by the industry or academic research, but rarely even new instruction set architectures
come up, or more often the existing architectures are extended with newer capabilities.
Existing instruction sets are also implemented in newer and more modern processors,
which may excel at slightly different operations and compiler writers often exploit even
these implementation details, just to generate better code.

This means that even just from a back end perspective there is still a need for new
compiler engineers. At the Faculty of Information Technology of Czech Technical Uni-
versity in Prague, there is a master’s compiler course NI-GEN (“Code generation”),
where students learn mainly about compiler back ends. The course features a program-
ming language TinyC (a simplified version of the well known C programming language)
and Tiny86 (a simplified version of the widespread x86-64 architecture). Using simpli-
fied versions of a well known programming language and CPU architecture is great for
education, because students are able to finish their own compiler in just one semester,
but stay fairly close to the real world.

TinyC as a simplification of C is a rather low level language, which is expressive
enough to be practical for humans writing production grade software, but it is low level
enough that its concepts have relatively straightforward translations to machine code.

x86-64 although tracing its history almost 50 years back, can still in these days be
considered the prevalent architecture. It poses many challenges not present in later
designs, e.g. low number of registers, irregular register class hierarchy, complex ad-
dressing modes which are only partly regular, etc. As the original instruction set got
extended throughout the years, some of the problematic areas were improved, but due
to extensive backwards compatibility, we have to still account for them even today.

In this thesis our goal is to design and implement a back end compiling TinyC (or
rather just the middle end IR used in the NI-GEN course) to x86-64. Such back end
can be seen to accomplish several things:. As a first back end to a real architecture it exercises the TinyC language and can

show how practical it really is.. It can show students, what difficulties a compiler faces when compiling to the real
x86-64 architecture, instead of the simplified Tiny86.. As the back end produces programs intended for an existing architecture, the pro-
duced programs can be inspected, debugged and measured with standard tools.. We can compare the generated code to the output of existing C compilers.

Naturally, the back end will be usable by other front ends, so it is not strictly limited
to TinyC.

Real world programs don’t run in isolation. Apart from needing the processor to
execute their machine code, they have other needs, that are towards the runtime sys-
tem (which for compiled programs is usually the operating system). Programs want
to allocate memory, perform I/O (input/output) operations, communicate with each
other, run other programs, etc. Support for making these requests to the operating
system is usually the job of a component called runtime. On the x86-64 the situation
is no exception: there are instructions that allow the program to make requests to the
operating system (system calls), but different operating systems allow system calls to
be used differently and don’t support the same features. The TinyC language doesn’t
nominally support calls into the operating system at all, and a runtime component
that allows TinyC to use system resources has to be provided and made available to
the TinyC language.

2

. .
The following chapters provide a description of the x86-64 architecture and its chal-

lenges (chapter 2), a look of the state of the art in the area of compiler back ends
(chapter 3), a close look at the design and implementation of an x86-64 back end for
TinyC and the accompanying runtime (chapter 4) and evaluation accompanied with
comparison to existing C compilers (chapter 5).

3

Chapter 2
x86-64 architecture

The x86-64 architecture, originally introduced by AMD under the name AMD64, and
sometimes also called x64, is still one of the most prevalent architectures today. It is
used in a most desktops, servers, but has also seen some use in mobile, low power,
devices.

This widespread use of the architecture alone make it a worthwhile target for study-
ing. From a compiler writer’s perspective, it is interesting because of its CISC Complex
Instruction Set Computing design, which is not straightforward to compile into.

For this reason the x86-64 has been used as an inspiration for Tiny x86 (also called
Tiny86) designed by Strejc [Strejc, 2021], which is used for teaching purposes in the
NI-GEN course at the Faculty of Information Technology CTU in Prague.

This chapter introduces the x86-64 architecture, its characteristics, constraints and
compares it to the simplified Tiny86. Knowledge of some other instruction set architec-
ture, or at least basic understanding of a processor, are expected, but familiarity with
x86-64 is not.

This chapter takes the liberty of explaining some of the properties or advancements
non-linearly with regards to the actual history, and sometimes tells little lies. From
the perspective of x86-64, where all of gradual additions to the instructions sets are
already available, it doesn’t matter much, but note that some of the things presented,
aren’t really true for the actual 8086 16-bit processor. The Intel software developer’s
manual [Intel Software Developer’s Manual, 2023] should be taken as the definitive
resource, though we can wholeheartedly also recommend Volume 3 of AMD’s Program-
mer’s Manual [AMD Programmer’s Manual Vol. 3, 2022] (which is focused on the
general purpose instructions and their encodings and is sometimes more focused and
little bit more approachable than Intel’s equivalent), and the unofficial X86 Opcode
and Instruction reference1.

2.1 History
Although AMD introduced the x86-64 in the year 1999, the architecture has a much
richer history. Interestingly enough, throughout the history, the instruction sets re-
mained almost fully compatible. For this reason it is important to keep the history in
mind when thinking about the x86-64.

The x86-64 is mostly still fully capable of behaving like its eldest ancestor, the Intel
8086, a 16-bit microprocessor introduced by Intel in 1978. This original design (loosely
based on earlier Intel 8-bit processors) is where most of the instruction set originates.

The line of Intel 16-bit processors based on 8086 included 80186 and 80286, which
added some new instructions and capabilities (like virtual memory). A big step was
the 32-bit 80386 (also called i386), which extended most of the original 8086 design to
32-bits in a relatively straightforward way.

1 http://ref.x86asm.net/coder64.html

4

http://ref.x86asm.net/coder64.html

. 2.2 Characteristic

After several iteration on i386, AMD introduced a 64-bit extension of the design,
the x86-64 (also called AMD64), which also kept all the 32-bit additions by Intel, still
staying fully backwards compatible. The extension to 64-bits was done in a different
way then the extension to 32 bits and brought additional interesting limitations.

2.2 Characteristic
Due to the history of x86-64, it must be seen as a 16-bit processor operating in a 32-
bit mode by default and additionally supporting 64-bit operations. In this section we
introduce some of the main characteristics of the original 8086 and later see how they
are reflected in the x86-64.

2.2.1 Basics

Like most CPU architectures these days, x86-64 is register based. This means that
interface of the CPU consists of a fixed number of registers and instructions that allow
operations on these registers. We can describe instructions on the x86-64 in textual
assembly syntax, which lists the mnemonic and the operands of the instruction:

⟨mnemonic⟩ ⟨op1⟩, ⟨op2⟩, ⟨...⟩

Most instructions then read some of the operands (usually registers) and write into
other operands (also usually registers). The instructions usually represent simple arith-
metic operations, but also more complex instructions are available. A concrete example
of an instruction is addition of two registers ax and bx:

add ax, bx

This instructions reads the contents of the ax and bx registers, adds them together
and writes the result to the ax register. Most instruction 8086 arithmetic instructions
work this way—they have two operands, both are used as sources and the first as the
destination for the result. We call this two address code, as opposed to three address
code, which has two sources and one destination.

Most operations manipulate registers and values stored in memory. For example,
there is an instruction to copy (“move”) a value from one register to another:

mov ⟨reg⟩, ⟨reg⟩

But similar instructions that address memory locations do slightly different things:

mov ⟨mem⟩, ⟨reg⟩
mov ⟨reg⟩, ⟨mem⟩

In the first instruction, we copy a value from register to memory, and with the second
instruction we copy a value from memory to a register. We can call these store and load
instructions. Even though they use the same mnemonic (mov), they do different opera-
tions and they are encoded a bit differently. We can view them as distinct instructions.
Internally, what distinguishes them is an opcode—a number, which uniquely identifies
all instructions and the kinds of operands. Together, we will call the kinds of operands
allowed by an instruction an addressing mode. Due to details that will become clear
soon, 8086 instructions mostly allow two kinds of operands:

. a register, ⟨reg⟩. a register or memory location ⟨reg/mem⟩

5

2. x86-64 architecture .
For this reason register copy, load and store instructions correspond to just two

opcodes, which cover all three combinations:
mov ⟨reg/mem⟩, ⟨reg⟩
mov ⟨reg⟩, ⟨reg/mem⟩

Two different opcodes can actually encode a register to register copy operation and we
can choose arbitrarily.

With the nomenclature in mind, we can for example call the following:
mov ax, [bx]

a load instruction, but is actually no more than an instruction with opcode (137 or
10001001 in binary), which uniquely encodes both the semantics (copy from second
operand to first) and the addressing mode (first ⟨reg⟩, second ⟨reg/mem⟩).

The distinction between opcode and mnemonic is important, because in a compiler
we mostly care about the semantics and the addressing mode of the operation (i.e. the
opcode and the actual operands), not how it is written textually in assembly, which is
just a representation that is meant to be convenient for humans. The difference can be
more subtle for some mnemonics like imul which have a few very different forms.

2.2.2 Registers
There are 8 registers on the 8086. They have names and some are sometimes used
in special ways. But mostly, we can call the registers general purpose, since usual
operations all work with them and allow either register to be used.

The full registers (like ax) are 16-bit, but separate access to either the upper 8-bits
or the lower 8-bits is allowed through the ah (“ax high”) and al (“ax low”) registers.
Because of this, registers like ah and al are not real registers, but just different names
for parts of the existing registers.

Not all registers allow access to the 8-bit parts. The registers that are only accessible
as 16-bit are sp (stack pointer), bp (base pointer, also known as frame pointer), di
(destination index) and si (source index). As can be seen from their names, they
are often used for special purposes and hold potentially large integers or addresses,
which need the full 16 bits. On the other hand, the other four registers are known as
the accumulator registers—they are just general purpose registers intended for most
arithmetic and called in the alphabetical order ax, bx, cx, dx. All registers are still
general purpose, the categories just signify how they are usually used.

bp and sp are usually used for special purpose—as pointers to the stack. The sp
instruction points to the top of the system stack (growing towards lower address),
which is also used as the call stack, and bp points to the base of the current function’s
stack frame. As function calls are nested, return addresses and base pointers of the
previous functions are pushed to the stack and popped back on returns.

It is no coincidence that there are eight 16-bit registers and eight 8-bit registers.
Most things on the 8086 come in eights. This stems from the actual encoding of the
instructions, where a register is encoded with 3 bits. In a context where 16-bit register
is expected, these 3 bits as a number identify one of the eight 16-bit registers, and in
8-bit contexts the 3 bits mean one of the halves of the four accumulator registers.

Most instructions have two variants: 8-bit and 16-bit which work with the respective
registers, or byte (8-bit) and word (16-bit) memory locations in memory.

For example an 8-bit variant of a load instruction has opcode 136 (16-bit variant is
137) and can look like this:
mov al, byte [bx]

6

. 2.2 Characteristic

There are two important things to note: only the first register became 8-bit, the
memory location is still identified by a 16-bit pointer. Also, in the textual assembly, we
can specify the memory location’s operand size with either byte or word. The keyword
is mostly optional if the operand size can be deducted otherwise (like here from the
8-bit al register).

2.2.3 Memory locations
We have already seen, that there are addressing modes which allow memory locations
to be encoded. These memory locations allow values to be stored to memory or loaded
back. But a lot of other instructions allow their operands to be values stored at the
memory locations. We usually write memory locations in between brackets ([,]) to
distinguish them from ordinary uses of registers.

In general, memory locations are either directly specified with an integer literal (an
immediate) or computed from values of registers and immediates. On the x86-64 (not
on earlier iterations of the instruction set), there are two main addressing modes:

1. SIB mode, where SIB stands for scale, index and base. The memory locations are in
the following form:
[⟨base⟩ + ⟨scale⟩ * ⟨index⟩ + ⟨displacement⟩]

Base and index are registers, scale is either 1, 2, 4 or 8 and displacement is an
immediate value (on 8086 either 8-bit or 16-bit). All of the individual parts are
optional. All of the following are valid:
[100]
[ax]
[ax + 100]
[ax + bx]
[ax + 2 * bx]
[ax + 8 * bx]
[ax + 8 * bx + 100]
[8 * bx]
[1 * bx + 100]

2. RIP-relative mode. This encoding addresses relatively to the current instruction
pointer (on 8086 called ip). On x86-64, the instruction pointer points to the be-
ginning of the next instruction, not to the current one. Addressing relative to the
instruction pointer is new addition of x86-64. The instruction pointer is not neces-
sarily a real register, but this addressing mode acts as if it was. We can imagine the
mode as if the following was allowed:
[ip + ⟨displacement⟩]

A displacement (relative offset) is added to the instruction pointer. This is useful
for position independent code, often used for libraries, because as long as the whole
library is in a continuous piece of memory and uses RIP-relative addressing, it can
actually be anywhere in memory. This is unlike absolute addresses, which require so
called relocations.

Due to the relative addressing nature, assemblers usually use a different syntax for
RIP-relative addressing, e.g. for NASM:
[rel ⟨label⟩ + ⟨constant⟩]

Assembler will transform this to the offset to ⟨label⟩ + ⟨constant⟩, relative to the
next instruction.

7

2. x86-64 architecture .
2.2.4 Arithmetic

As with registers, even arithmetic operations on the x86-64 come in eights. There are:

. 8 binary operations (we will sometimes call them group 1),. 8 shift operations (group 2). 8 unary operations (group 3)

Operations in these groups have the same encoding (the real reason for the grouping)
and often also very similar nature. In no category are all the 8 operations useful for
translating usual programs, but these are some notable examples of instructions in these
categories:

. Binary operations: add, sub, and, or, xor.. Shifts: shl (shift left), shr (shift logical right), sar (shift arithmetical right). Unary operations: not (bitwise complement), neg (two’s complement negation), mul
(unsigned long multiplication), imul (signed long multiplication), div (unsigned long
division).

Binary arithmetic is straightforward and except for working with registers, it allows
a memory location as either one of the two operands (but not both), e.g. the add
operation has the following modes:

add ⟨reg/mem16⟩, ⟨reg16⟩
add ⟨reg16⟩, ⟨reg/mem16⟩
add ⟨reg/mem8⟩, ⟨reg8⟩
add ⟨reg8⟩, ⟨reg/mem8⟩

Additionally, an immediate value can be used as the second operand:

add ⟨reg/mem8⟩, ⟨imm8⟩
add ⟨reg/mem16⟩, ⟨imm16⟩
add ⟨reg/mem16⟩, ⟨imm8⟩

In concrete examples:

add ax, bx
add [ax], cx
add [ax+20], cx
add dx, [ax+2*bx+20]
add dx, 1
add [ax], -5

There are two immediate sizes available for 16 bit operations—the 8-bit one can save
a byte if the immediate is small. In cases when the immediate is smaller then the
operand size, it is sign extended to the operand size. x86-64 uses two’s complement
representation for negative numbers.

There isn’t a separate signed and unsigned version of add and some other instruc-
tions. This is because the produced result is the same for both signed and unsigned
operations—they differ only in how the bits are interpreted by later operations and how
an invalid result is detected (either with the carry out bit, or with the overflow bit).
Carry and overflow are made available through the special flags register, which has a
bit for each of the flags (like carry, overflow, but also the zero flag, parity flag or sign
flag). Every arithmetic operation sets the flags register based on the flags of the result
of the arithmetic operation.

Unary operation like bitwise complement (also one’s complement negation) have the
following modes (note that they use the source also as destination):

8

. 2.2 Characteristic

neg ⟨reg/mem16⟩
neg ⟨reg/mem8⟩

One operand is necessarily not enough for long multiplication and division which
are also encoded like unary operations. They are also not really binary operations—
they are long multiplication and division, i.e. at least one of the operands is twice as
large (i.e. 32-bit on 8086), which needs two registers. These two registers are implicitly
understood to be ax and dx. With multiplication, ax is multiplied by the single operand
and the result put into ax (low 16-bits of the result) and dx (high 16-bits of the result).
With division, 32-bit value whose upper 16-bits are in dx and lower 16-bits in ax, is
divided by the single operand and the quotient is put into ax and the remainder into
dx.

Ordinary multiplication, where the result is limited to the size of the inputs is possible
with the imul instruction. Since it produces 16-bit result from two 16-bit operands,
it can actually be used for both signed and unsigned multiplication. This instruction
is much more suitable for compiler generated code, which often can’t make use of the
high 16-bits of the 32-bit result anyways.

Shifts are similarly restricted. They are encoded as unary operations and there are
only these modes as demonstrated on shl:

shl ⟨reg/mem16⟩, imm8
shl ⟨reg/mem8⟩, imm8
shl ⟨reg/mem16⟩, 1
shl ⟨reg/mem8⟩, 1
shl ⟨reg/mem16⟩, cl
shl ⟨reg/mem8⟩, cl

I.e. either the opcode specifies the shift by one implicitly, or there is an immediate value.
Shifts by variable amount have to store the shift amount in the cl register (lower 8-bits
of cx). 8-bit shift amount is enough even on 64-bit machines where the maximum shift
amount is 63—the processor actually masks this and limits the maximum shift amount.

2.2.5 Condition codes

As mentioned, arithmetic operations set flags. These flags can be used for conditional
execution. The flags register can be interpreted in one of the 16 ways, e.g.:

. Zero (z). Is true if the zero flag is 1.. Not zero (nz). Is true if the zero flag is 0.. Equal (e). Is true if the zero flag is 1.. Less than (l). Is true if sign flag is not equal to overflow flag.. Below (l). Is true if carry flag is 1.. . . .

While there are 16 predetermined ways to interpret the flags, we use more than 16
names for these condition codes. For example, to detect that the value is zero, the
zero flag can be checked to be 1 through the z condition code. But the same condition
code checking zero flag to be 1 can be used for equality checks—values are compared
by subtraction and if the result is zero, then the values are equal. But in that case we
usually call the condition code e (“equal”). Multiple semantic mnemonics compile to
just 16 condition codes.

Another thing of note is that there are two ways of doing a “smaller” check—less
than and below. The first is intended for unsigned numbers (and uses the carry flag)

9

2. x86-64 architecture .
and the second is for signed numbers (and checks the carry flag and the overflow flag).
These are one of the operations where signedness matters.

The following instructions have condition codes as part of their opcodes (cc stands
for the condition code):

. jcc ⟨destination⟩—jumps to destination if the condition is true. E.g.

jz label
jnz ax
jl [ax]

. cmovcc ⟨reg16⟩, ⟨mem/reg16⟩—copies source to register destination, but only if the
condition is true. E.g.

cmove ax, bx
cmovl ax, [bx]

. setcc ⟨reg/mem8⟩—sets lower 8 bits to 00000001 if the condition is true, and to
zero otherwise.

setl al
sete ah
setz [ax]

The condition code (4 bits) is part of the opcode for these instructions.
The jcc jump instruction is the alternative to the unconditional jmp instruction.

The call instruction has the same addressing modes as jmp:

jmp ⟨imm16⟩
jmp ⟨imm8⟩
jmp ⟨reg/mem16⟩

All three instructions allow instructions allow relative jumps based on immediates, but
only jmp and call allow absolute jump addresses to be read either from register or
from memory.

2.2.6 Encoding
All of the opcodes, addressing modes and sizes of operands, are deeply connected with
the actual encoding of the instructions. On the x86, most instructions follow this
scheme:

1. Prefix bytes. Optional, one byte per prefix. Some instructions allow behavior to be
changed by a prefix, e.g. the lock prefix makes some arithmetic instructions atomic.

2. Opcode byte. Specifies the opcode, i.e. both the operation and the addressing mode.
3. ModRM byte. Encodes two operands, ⟨reg⟩ and ⟨reg/mem⟩.
4. SIB byte. Encodes the memory location (see section 2.2.3).
5. Immediate value bytes. Any offsets, displacements or other immediates.

The ModRM byte is the most important thing when considering addressing modes.
It is present for most instructions (only e.g. instructions without any operands don’t
use it). It encodes up to two operands, one register, the other either register or memory
location. The name of the ModRM byte stems from its three components:

. Mode. 2 bits.. Register. 3 bits.. Memory or register. 3 bits.

10

. 2.2 Characteristic

The four modes are able to encode the following pairs of operands:

⟨reg⟩, [⟨reg⟩]
⟨reg⟩, [⟨reg⟩+⟨disp8⟩]
⟨reg⟩, [⟨reg⟩+⟨disp16⟩]
⟨reg⟩, ⟨reg⟩

One operand is always a register, the other can be either a register or a memory
location given by register and an optional big or small displacement. This is a form of
more compact encoding for the common case where the memory location is given just
by a register. It fits one special case of the SIB memory. The others have to be encoded
with a separate SIB byte, which has the following components:

. Scale. 2 bits. The actual scale is 2scale.. Index. 3 bits.. Base. 3 bits.

The encoding is fairly straightforward. Though as presented has a few problems:
none of the ModRM modes uses the values from SIB, and in SIB absence of index or
base cannot be encoded in 3 bits if the registers are also 3 bits. Unfortunately, there
are special cases on the x86-64. They are too confusing to list here, but they can
be found in [Intel Software Developer’s Manual, 2023]. Simply put, usually one of the
possible values of a field is reserved for special meaning (e.g. sp in the M part of ModRM
actually means that SIB should be present and consulted). There are necessarily a few
unencodable memory locations, but there is usually an alternative way of specifying the
same (e.g. with a displacement of 0). The only exception is using the sp stack pointer
as an index register, which is not encodable. Fortunately, using sp as index register
would rarely make sense, and it can still be used as base, which is more useful.

It is important to note that the ModRM byte always encodes the two operands
in the same way. The meaning and order of the operands is determined from the
opcode. For example, most binary operations allow ⟨reg/mem⟩ as either the source or
the destination. The direction is usually specified in one bit across all binary operation
opcodes, we can call it the direction bit.

Similarly, the operand size is also determined by the opcode and is one of the bits
of the opcode. Zero in the operand size bit means 8-bit operation, one means 16-bit
operation.

For operation which encode only one operand (like shifts, neg or idiv), only the M
operand is used. Because of this, the three bits for the R operand are free and instead
used for extension of the opcode. It is no coincidence that there are 8 shifts and 8 unary
operations, because the exact kind of the operation is encoded in these three bits. For
example, opcode 192 (0xC0) corresponds to shifts in the following addressing mode:

⟨shift⟩ ⟨reg/mem8⟩, ⟨imm8⟩

The exact kind of shift (shl, etc.) is encoded as if it was the ⟨reg⟩ parameter unused
by this addressing mode.

Interesting with regards to encoding is the lea (load effective address) instruction:

lea ⟨reg16⟩, [⟨mem⟩]

It is encoded naturally with the ModRM and SIB bytes. But instead of performing
anything with the value at the memory location, the instruction just computes the
address and stores it to the register. This is not only useful for calculating addresses
that can be reused several times (instead of being recomputed in every time), but

11

2. x86-64 architecture .
can also be used for ordinary arithmetic: memory locations are formed with addition
and simple multiplication (shift). Though lea doesn’t set flags, unlike other ordinary
arithmetic instructions, so it is not a universal replacement for addition.

2.3 32-bit extension
In the previous sections we introduced features of 8086 and later additions (x86, x86-
64), as if they were supported by the original 16-bit processor. Often they are not, but
by consistently introducing everything like it would be on the 16-bit processor, we can
look at how the 32-bit extension was done by Intel.

The extension was straightforward: the processors came with two modes—32-bit, but
also a 16-bit mode for backwards compatibility. In the new 32-bit mode, everything
16-bit is now 32-bit, including operand sizes, immediate sizes, displacements, etc. This
meant that in 32-bit the two supported operand sizes are 8-bit and 32-bit and these are
distinguished by the opcode. The 32-bit operations are encoded exactly like the 16-bit
processors, but with larger immediates.

The processor is thus capable of doing both 16-bit operations and 32-bit operations,
but they are multiplexed in the same opcodes. To allow 16-bit mode to use 32-bit op-
erations and vice versa, the operand-size prefix (0x66) was introduced. 8-bit operations
have separate opcodes, so these are available in both modes.

Similar prefix was introduced for addresses—the address-size prefix, which is able to
make a memory location be based on 16-bit calculations on 32-bit systems and vice
versa. Though this is less useful in practice.

All of the registers got extended to 32-bits. The full 32-bits became available with
the e (“extended”) prefix of the register name, e.g. eax or esp. The upper 16-bits of
the registers are no longer addressable individually and can change only as part of the
full 32-bit operations.

2.4 64-bit extension
When AMD extended x86 to 64-bits they brought also many other extensions. Notably
this included 8 additional registers (with no descriptive names, just numbered from
8 to 15) and the extension of registers to 64 bitt (the full 64 bits are accessible with
prefix r instead of e, e.g. rax or rsp). The encoding had only 3 bits available to
encode a register, so a new mode or operand size prefix was not enough, especially
since backwards compatibility was still desired.

The solution was the REX (“register extension”) prefix. It is a byte, where the 4
most significant bits are constant (0100, i.e. 4) and the 4 individual least significant
bits have individual meaning as follows:

. REX.R extends the R field of ModRM to 4 bits.. REX.X extends the index of SIB to 4 bits.. REX.B extends the base of SIB to 4 bits.. REX.W specifies operand size to be 64-bit.

The REX byte actually fulfills multiple purposes—it makes 8 additional registers
encodable for any instruction, because all use the ModRM (and SIB bytes) to specify
the operands. Additionally it makes available the 64-bit operand size and is like the
operand-size prefix.

12

. 2.5 Calling conventions

The reason why 64-bit operand size has to be requested explicitly is, that the default
operand size on x86-64 is still 32-bits. Either 8-bit or 32-bit opcodes are available by
default. REX byte has to be applied before the 32-bit opcodes to achieve 64-bit operand
size.

Like operand size, also the immediate size stayed at 32 bits. Only a few instructions
were allowed full 64-bit immediates. The most notable one is:
mov ⟨reg64⟩, ⟨imm64⟩

which allows 64-bit immediates to be loaded into a register directly, without bit twid-
dling. 64-bit immediates were disallowed likely because they are both too large, which
negatively impacts the code size, but also because they are mostly unnecessary—most
useful immediates are “small” positive and negative numbers, which can still be achieved
through the implicit sign extension of the 32-bit or even 8-bit immediate.

Another important change is, that operations with the 64-bit operand size automat-
ically zero out the upper 32-bits of the 64-bit registers. This is different from 16-bit
operations, which don’t change the upper 16 bits of the lower 32-bits. This behavior
implies that 32-bit operations don’t care about the upper 32-bits of the 64 bit registers,
which is actually very important for modern super scalar processors. If, with the de-
fault 32-bit operand size, the 32-bit operations only changed parts of the registers, the
operations would depend on the unchanged upper 32-bits. These kinds of partial depen-
dencies are detrimental for performance, because they are mostly false dependencies,
but still have to be obeyed by the processor.

For this reason, on 64-bit systems the 32-bit operations are very efficient, since they
are narrower than 64-bits, but still don’t have problem with partial dependencies as
operations on 8-bit or 16-bit portions of the registers do.

If a 32-bit operation doesn’t need to use any of the 8 new registers, it can also spare
the REX prefix. On the other hand, 64-bit operations already require the REX prefix,
so there is no penalty in using all of the available registers.

When any REX prefix is used, then the 8-bit registers change behavior—instead of
addressing lowest and second lowest 8-bits of the first 4 registers, they will address
lowest 8-bits of all registers. This makes x86-64 a bit more regular then its predeces-
sors, because no longer is there a distinction between accumulator and other registers,
provided are willing to in some cases use an otherwise unneeded REX prefix byte.

2.5 Calling conventions
As functions are called, there has to be an agreement in how resources are shared
between the calling function (caller) and the called function (callee). An ABI specifies
this as well as the details on how arguments are passed, what layout does the stack
have, how the functions are named and how big are essential types. For the x86-64
architecture, there are two prevalent ABIs:. System V AMD64 ABI [System V AMD64 ABI, 2023]. Used on most operating

systems.. Microsoft x64 calling convention [Microsoft x64 calling convention]. Used on Mi-
crosoft Windows.

The calling conventions share the definition of some C types like char (1 byte), short
(2 bytes) and int (4 bytes), but disagree for example on long (8 vs 4 bytes).

Both calling conventions use registers for passing arguments and return values, but
disagree on the registers themselves. Callee saved and caller saved registers also differ

13

2. x86-64 architecture .
(these are explained in more detail in section 3.8.3.6). Even alignment of stack is
handled differently.

From a perspective of a compiler, the system ABI is not important to internal func-
tions, which are only seen by one compiler, but functions which are either called by
external code, or which call external code must respect the system ABI. The ABI pro-
vides standard interface, and with that even code from multiple compilers can be linked
or even dynamically linked together and run without problems.

Languages like C usually abide the system ABI’s calling conventions for all functions.
In any case, functions from the C standard library usually are based on the C ABI, so
at least calls to standard functions have to respect the ABI.

2.6 Operating system interface
On the x86-64, programs ultimately use the syscall instruction to transfer the control
to the operating system. The instruction itself saves the instruction pointer (the return
address) to rcx and rflags to r11. Anything else is up to the operating system and
thus subject to a calling convention of its choosing. If this system call calling convention
is documented for applications, then applications can use it and call into the OS directly.

Linux is one of the few operating systems that documents the calling convention used
for system calls. The convention is very similar to the C one specified by the System
V ABI (they are in fact both specified in the same document [System V AMD64 ABI,
2023]). Though for system calls, an extra integer is passed to hold the system call
number (because the syscall instruction doesn’t specify “what to call” in any way,
unlike a normal call instruction).

On other operating systems like OpenBSD and Solaris (using the System V ABI
for ordinary calls), or Microsoft Windows, the system calls and the system call calling
convention are not specified and no guarantees are made about their stability from
version to version. On these operating systems usually the system C library abstracts
requests to the operating system.

We can distinguish between the standard part of the system C library and the OS
specific system part. By making the operating system interface the system C functions,
the operating system is free to only abide to the normal C calling convention and may
choose to implement simple system calls without a syscall if a switch to kernel space
is not needed.

2.7 Comparison with Tiny86
Tiny86 [Strejc, 2021] is a 64-bit architecture inspired by x86-64. It copies many of the
design decisions of x86-64, which is great because it is familiar (FIT students encounter
x86-64 in other courses), non-trivial as a target, and still popular in practice.

2.7.1 Registers

One of the main differences are the available registers. On x86-64 there are 16 general
purpose registers, of which two are usually used for special purposes (rbp, rsp) and
some special purpose registers like rflags or rip, which are only accessible through
“special” instructions. Tiny86 separates these 4 special registers and on top allows
configurable number of 64-bit general purpose and 64-bit floating point (i.e. double
precision) registers. No access to narrower parts of the registers is allowed.

14

. 2.7 Comparison with Tiny86

2.7.2 Operations
Tiny86 supports pretty much the same set of arithmetic operations the x86-64 does.
Notably two separate instructions are available for computing the remainder (confus-
ingly called mod) and quotient. There isn’t long multiplication (i.e. multiplication of
two 64-bit numbers only gives 64-bit result). This makes it much easier to use the
instructions, as it doesn’t involve any implicit operands.

Operations that are distinct in signed and unsigned variants are also distinguished
on Tiny86, just like on x86-64. Unfortunately, logical right shift (unsigned version of
the right shift) is not present, while the arithmetic right shift (the signed version) is.
This makes it harder for unsigned operations to be lowered.

Special purpose instructions are available for debugging, as well as for reading num-
bers from standard input and for writing numbers to standard output. These are
implemented by the Tiny86 VM with calls to the C++ standard library.

2.7.3 Addressing modes
The following addressing modes are supported by Tiny86:. For binary operations:

⟨binop⟩ ⟨reg⟩ ⟨reg⟩
⟨binop⟩ ⟨reg⟩ ⟨imm⟩
⟨binop⟩ ⟨reg⟩ ⟨reg⟩ + ⟨imm⟩
⟨binop⟩ ⟨reg⟩ [⟨reg⟩]
⟨binop⟩ ⟨reg⟩ [⟨imm⟩]
⟨binop⟩ ⟨reg⟩ [⟨reg⟩ + ⟨imm⟩]

. For unary operations:
⟨unop⟩ ⟨reg⟩

. For move and lea instructions:
mov ⟨reg⟩, ⟨reg⟩
mov ⟨reg⟩, ⟨mem⟩
mov ⟨reg⟩, ⟨imm⟩
mov ⟨reg⟩, ⟨reg⟩ + ⟨imm⟩
mov ⟨mem⟩, ⟨reg⟩
mov ⟨mem⟩, ⟨imm⟩

lea ⟨reg⟩, ⟨mem⟩

where ⟨mem⟩ is the following (all components are optional):
[⟨reg⟩ + ⟨reg⟩ * ⟨imm⟩ + ⟨imm⟩]

The interesting thing is, that the addressing modes for mov and lea instructions
are a superset of the SIB mode on x86-64. Like all immediates on Tiny86, even those
specifying memory locations are 64-bit. This makes the instructions much more flexible
in access to array elements than x86-64, which allows the scale to be only a small power
of two.

Unfortunately, unlike x86-64, Tiny86 chooses to allow different memory accesses in
binary operations and to not allow memory access for unary operations. These make
the instruction set rather irregular, especially since the destination is always limited to
a register.

The unsigned limitations and support for only 64-bit operations is not a problem,
since the TinyC language supports exactly those.

15

2. x86-64 architecture .

2.8 Conclusion
The addressing modes on x86-64 are fairly regular, even if it may not seem so. The
actual encoding is more complex because of the special cases, but all useful operand
combinations are allowed, so the complexity is limited to the encoder/decoder, and not
the compiler, which sees the operations as fairly orthogonal.

Tiny86 is much more regular in some regards, but less so in others. The main
advantage of x86-64 is the memory location specifications, which are the same for all
instructions. This is not true on Tiny86 and can even make compilation with some
techniques harder.

The x86-64 architecture is regarded as a CISC architecture, but in practice we see
it more as an architecture aiming for compact instruction encoding. Some other CISC
designs, like the VAX, make very different decisions and have fully orthogonal addressing
modes, where the kind of each operand is encoded separately and not as part of the
opcode.

x86-64 on the other hand, is only regular in its irregularities. This actually makes it
a very interesting compilation target, as it has the complex CISC features, but also the
irregularities, which test compiler capabilities.

16

Chapter 3
State of the art

This chapter’s goal is to introduce and evaluate techniques and approaches that are
already known and described in literature. We mainly focus on parts of the compiler
that are part of the back end, or very much connected to it.

3.1 Structure of a compiler backend

A compiler is a tool that transforms the source language into the target language.
Doing so directly is however hard as both the input and output language may be fairly
complex and in very different, incompatible ways.

Like with many things, an extra layer of indirection helps, and compilers got split
into more and more individual components.

Most compilers today are split into at least three parts: front end, middle end an
back end. This separation is very useful not only to solve the 𝑚 ⋅ 𝑛 compilers problem,
but allows each part to stay more focused.

A compiler back end is no exception. Translating directly from a machine indepen-
dent IR into instruction set (like x86-64) is hard. The classic architecture used by
countless compilers are the following three phases:

. Instruction selection. Chooses which machine instructions to use.. Instruction scheduling. Choose the order of the instructions.. Register allocation. Allocates and assigns machine registers to instructions.

This sequence is applicable to register based machines—the instructions have to
already be assigned some registers during instruction selection. But it is much more
convenient to pretend to have infinite amount of registers. This way only the late
register allocation stage has to be concerned with limited amount of physical registers.
The earlier stages may instead use arbitrary amount of virtual registers.

Even splitting into these or more stages doesn’t fully help with the complexity—most
of formulations of all three stages are NP-complete [Cooper et al., 2004].

Another important component to consider with regards to the back end is the middle
end. It is the middle end, which provides input to the back end. Either instruction
selection works directly on the middle end IR, or has its own IR somebody needs to
translate to.

The middle end can influence the back end greatly. Especially if SSA form (see
section 3.4) is used in the middle end. The SSA form has to usually be deconstructed
at some point, and the back end is usually the more suitable as it doesn’t need the
SSA form (although approaches exist to leverage SSA form for example in register
allocation, see 3.8.4.4), while middle end usually finds it much more useful and doesn’t
have a reason to deconstruct it early.

17

3. State of the art .
3.1.1 Phase ordering

A problem that will become clear gradually deserves a mention up front. There is a
problem with the classic three stages in a back end. The order in which they are is not
ideal. But in fact, no order is ideal, the phases all depend on each other: [Cooper et
al., 2004].

. Usually not all registers are equal, and instructions sometimes have specific register
constraints. Registers cannot be allocated until it is known what and how many
registers are needed.. Different instructions allow very different schedules. But different schedules might
make different instructions more plausible or interesting (e.g. due to differences in
execution unit saturation, see section 3.7).. Insufficient amount of physical registers may result in need to store values in memory.
This requires new instructions that should be selected and scheduled.

The classic order of instruction selection, instruction scheduling and register alloca-
tion turns out to be the best compromise. Still, register allocation may not only create
new instructions, but also delete others (see section 3.8.3.4). Not only for this reason
there is often a fourth, last, component of a back end: the peephole optimizer.

We will introduce all these four main components as well as SSA and SSA-destruction
in the following sections

3.2 Intermediate representations
The intermediate representation (or more of them if the compiler is spit into even more
stages) is the cornerstone of the compiler. Transformations on the middle end IR work
for any source language and for any target language. Due to this, the intermediate
representation should be made to suite the intended transformations.

3.2.1 Abstract syntax tree
Source languages (like TinyC) are sequences of characters. As they get parsed, a parse
tree is implicitly created. Often though, the more interesting representation is the
Abstract syntax tree (AST).

The AST can also be regarded and used as an intermediate representation in the
compiler. However, it has a couple of disadvantages. Mostly, it reflects the syntax. It
is too close to the source language to be suitable as a language independent middle end
IR.

Still many operations can be done just fine on trees. They are simple to process and
modify. A language independent tree representation is a perfectly valid representation.

3.2.2 Directed acyclic graph
Often trees become too limiting, especially for some optimizations like common subex-
pression elimination (CSE). If our program is something like:
(a + b) * (a + b)

then we would like to notice and use the fact that the operands of the multiplication
are in fact the same. However, if we were to reuse the first (a + b) node, it would
have “two parents” (the multiplication operation twice). This is not possible in trees,
but is possible with directed acyclic graphs (DAGs). DAGs are very natural especially
for common subexpression elimination or value numbering optimizations.

18

. 3.3 Peephole optimization

3.2.3 Three address code

Three address code can be seen as a linearization of a DAG [Aho et al., 2006]. For
example, the above could be rewritten with the common subexpression eliminated as
follows:

t1 = a + b
t2 = t1 * t1

The results are given explicit names and form temporaries. The name three address
code stems from the three variables involved in the operation—one is the destination,
and the other two are sources. Unlike with DAGs, the operations are ordered. While
DAG captures data-flow (how operands from to operations). On the other hand if we
assume the operands in three address code to be variables, three address code doesn’t
really capture data-flow, as the variables are assigned and read. But three address code
captures control flow. If however, the three address code operands represent the values
directly, and the names on the left side are merely labels naming the values, we have a
representation which captures both data-flow and control flow (see also 3.4.1).

3.2.4 Control flow graph

Three address code operations can be ordered linearly. Then the control flow is either
continuing from one triplet to the next, unless a special jump operation jumps to a
different part of the sequence.

Usually a more exact representation of control flow is desired. One where explicitly
each node has links to its successors and predecessors. This forms a control flow graph,
where edges are possible transfers of control flow and nodes are triplets. Naturally,
cycles in programs manifest as cycles in the control flow graph, etc., so here we have a
true general graph.

But most triplets (except for jumps and conditional jumps) continue explicitly to the
next triplet. To prevent expensive representations of all edges, we can make most of
them implicit by grouping into (maximal) sequences of triplets, which are only entered
at the first triplet and left with the last triplet. We call these basic blocks. Inside basic
blocks, the control flow edges are implicit, but among basic blocks, the control flow
edges have to be represented explicitly.

3.3 Peephole optimization
Peephole optimization is a general technique that examines a small part of a program
(the peephole), in which instructions are examined and optimized according to known
(or in other way derived) patterns.

Peephole optimization is applicable to any intermediate representation, but is es-
pecially effective on data-flow graphs, where it is able to investigate logically adjacent
operations, but is also often used on linear representations, where it examines physically
adjacent instructions.

Optimizations are possible even with patterns as small as one triplet. E.g. the
following:

t1 = t2 * 8

can be optimized to:

t1 = t2 << 3

19

3. State of the art .

3.4 SSA form

SSA (static single assignment) form is a form used by most of today’s optimizing
compilers, including for example LLVM1 and GCC2. It simplifies and makes faster a
lot of classic optimizations.

Like the name suggests, static single assignment form stands on the fact that each
variable is assigned exactly once. On top of that, we are interested only in static
assignments, meaning, that there is only one program point that assigns a variable—
contrary to dynamic assignments, which would count how many times the assignment
is executed at runtime, i.e. how many times the execution gets to the single program
point which assigns the variable.

There are many important benefits to SSA form, of which we highlight a few:

. Since each variable is assigned only once, no variable is ever reassigned. Thus value
held by the variable is always available. This means that algorithms don’t have to
be cautious about using a definition that is reassigned.. There is no ambiguity in what definition of a variable a use can refer to, since each
variable has exactly one definition. This means that instead of using use-def chains
(a data-structure that links together all definitions that may reach a use), uses can
refer directly to the unique definition.

As an example, here is an example that is not in SSA form, because a is assigned
twice:

a = 1
b = 1;
a = 2;
return (a + b) * (a + b);

A human can easily tell, that the first store to a is dead, since a is reassigned. It is
also easy to tell that the both of the expressions a * b compute the same result, since
they refer to the same a and b. However, this is not as easy to tell for a compiler.
“Versioning” each definition of a variable and tracking which version gets used makes
the observation simpler for an optimizing compiler:

a𝟷 = 1
b𝟷 = 1;
a𝟸 = 2;
return (a𝟸 + b𝟷) * (a𝟸 + b𝟷);

Here definition a𝟷 has no uses, this can be seen by keeping def-use chains (which link
together all uses of a definition, and which are not to be confused with use-def chains
mentioned above). But, the fact that a𝟸 is defined, doesn’t make a𝟷 unavailable and
if it held more interesting value then a constant, an optimizing compiler could use it
even after the definition of a𝟸. It is also much easier to tell that the a + b expressions
are indeed the same, since now they are the result of applying the same operator to
the exact same versions of variables, regardless of how many definitions these variables
had. The implementation of SSA construction by versioning the definitions is also easy
to implement.

Constructing SSA becomes more problematic with conditional execution:

1 https://llvm.org/
2 https://gcc.gnu.org/

20

https://llvm.org/
https://gcc.gnu.org/

. 3.4 SSA form

b = 1;
if (a) {

b = -b;
}
return b;

When we try to version the variables here, we don’t know whether to continue with
b𝟷 or b𝟸 after the if statement, though we are able to tell just fine that the use of b in
the conditional branch corresponds to b𝟷:

b𝟷 = 1;
if (a𝟷) {

b𝟸 = -b𝟷;
}
return b?;

The problem is that multiple definitions reach a use. With use-def chains this could
have been easily represented. But with SSA we don’t want to use def-use chains, since
we wish only one definition to reach each use. This brings us to the idea of actually
introducing a definition after the if statement, which merges b𝟷 and b𝟸 into b𝟹, and
can then be unambiguously used by the return statement:

b𝟷 = 1;
if (a𝟷) {

b𝟸 = -b𝟷;
}
b𝟹 = 𝜙(b𝟷, b𝟸);
return b𝟹;

Of course, the ambiguity is still there, just hidden behind the mysterious 𝜙-function
(phi function) which provides the merging definition. We would like the 𝜙-function to
evaluate to right version depending on the control flow which occurs at run-time, so we
define the 𝜙-function to do exactly that. Though the semantics may seem a bit weird,
having the ambiguity hidden in the 𝜙-function is is still better than use-def chains,
since there can be other uses of b𝟹 all referring to the single 𝜙-function, instead of each
having multiple reaching definitions.

The simplest possible method for SSA construction inserts a 𝜙 instruction for every
variable at each merge point. This is correct, but such approach introduces many
redundant 𝜙-functions, that don’t do nothing much useful. For example in the example
above a 𝜙 instruction would be introduced after the conditional branch for a, even
though there is a single definition:

b𝟷 = 1;
if (a𝟷) {

b𝟸 = -b𝟷;
}
a𝟸 = 𝜙(a𝟷, a𝟷);
b𝟹 = 𝜙(b𝟷, b𝟸);
return b𝟹;

Similarly redundant 𝜙 functions are created even in loops:

a = 1;
loop:
if (f()) goto loop;

21

3. State of the art .
Here, even though there is not reference to a in the loop, a 𝜙 function needed to be

introduced, since execution may flow to the beginning of the loop from two places (the
code preceding it and the end of the loop):

a𝟷 = 1;
loop:
a𝟸 = 𝜙(a𝟷, a𝟸);
if (f()) goto loop;
a𝟹 = 𝜙(a𝟸, a𝟸);

The 𝜙 refers to itself and only one other value (a𝟷), so it also can be safely removed and
the value used directly instead. Similar “cyclic” 𝜙-functions can occur even indirectly—
two 𝜙-functions can refer to each other and a single other value, which could just be
used directly.

So even though even simple SSA construction is possible, the produced code isn’t as
useful because of many redundant 𝜙-functions. The original inventors of SSA form and
the 𝜙-function concept [Rosen et al., 1988] came up with an efficient algorithm for SSA
construction [Cytron et al., 1991], which is based on the new concept of dominance
frontiers, which in a control flow graph are exactly the places where 𝜙-functions are
needed. Their algorithm produces what is known as minimal SSA form, which doesn’t
contain redundant 𝜙-functions. Despite the name, even more “minimal” forms of SSA
exist, for example pruned SSA doesn’t contain dead 𝜙-functions.

SSA form is deeply connected to the notion of dominance in a control flow graph.
Definition 3.1 Dominance. Let 𝑋 and 𝑌 be nodes in the control flow graph CFG of a
program. If 𝑋 appears on every path from Entry to 𝑌, then 𝑋 dominates 𝑌. [Cytron et
al., 1991]

3.4.1 Value-based SSA

An important observation with regards to SSA form is, that since each variable is
assigned exactly once, and the variables don’t get reassigned, there is no need for
the concept of a variable. The values assigned to the variables can be used directly.
Values are described by their structure, for example number literals, like 5 or operations
applied to other values like add 1, 2 (addition of two numbers) or add 5, (sub 6, 7)
(addition of a number and the result of subtraction of of two numbers). Generally we
can divide the values used in programs into two categories:

1. Constants. These represent number or character literals, but also addresses of static
objects. Examples include 3 (integer literal), 'a' (character literal), f (address of a
function), g (address of a global variable).

2. Operations. These represent values produced from other values by applying some
arithmetic or other operation. Examples include neg 5 (unary negation operation
applied to a constant), add 5, neg neg 3 (binary operation applied to a constant
and a negation applied to negation of a constant number 3). Arity isn’t limited, and
for example function calls can be seen as operations on several values of which the
first is the called function and the rest are the arguments, e.g. we can have function
f called with 4 arguments: call f, 1, 2, 3, 4.

Function parameters are constants as well—even though arguments (actual param-
eters) passed to a function may just be results of some operations, from the point of
view of the function the formal parameters are constant values that materialize when
the function begins its execution.

22

. 3.4 SSA form

When represented in a compiler, values are objects and they refer to each other by
means of references (for example through pointers). Our textual notation for operations
so far was direct: a use of value meant writing out the textual representation of the
definition (constructor) of a value. Because each value can be used many times and
due to the recursive nature (operations are able to refer to other operations), this
quickly becomes unwieldy. We will use a different notation that assigns each value a
unique number and for value number 𝑖 writes the references to it as v𝚒. The definitions
are accompanied by an “assignment” whose purpose is to show what index is used to
represent references to a particular value. For example, we could have:
v𝟷 = 3
v𝟸 = 3
v𝟹 = mul v𝟷, v𝟸

which differs a bit from:
v𝟷 = 3
v𝟹 = mul v𝟷, v𝟷

This notation also easily supports operations that refer to themselves, like the re-
dundant 𝜙-functions we have seen for loops:
...
v𝟸 = phi(v𝟷, v𝟸)
...

It should be noted that our notation for values doesn’t imply anything about the
order of operations—the only theoretically imposed order is the dependencies among
the operations themselves. The references of operations to each other actually form a
direct acyclic graph (DAG) showing the data dependencies—data-flow.

3.4.2 SSA for machine code
Though the value-based representation of SSA may be useful in some contexts, it is not
always possible to use it. After all, the resources for which we may want to construct
SSA form may not represent values at all, or the values may be constrained like shown
below. In such cases transforming the intermediate representation to SSA form is still
possible, but has to be based on versions and we will call it version-based SSA.

One such example is SSA form for machine code (or assembly). Here, we work with
registers, and registers no longer represent values, they hold values. Say we want to
represent the following x86-64 instructions in SSA form:
mov rcx, rax
add rcx, rbx

This example represents the addition rcx = rax + rbx, where all three registers are
preserved. Obviously, in this example rcx is assigned twice. We want to apply the
standard SSA versioning construction. The two address encoding actually means that
rcx is in fact both read and written, but the read rcx is different than the written
rcx. Thus we also need to extend our representation of our instructions to separate the
register reads (uses) from writes (definitions):
mov rcx𝟷 | rax𝟷
add rcx𝟸 | rcx𝟷, rbx𝟷

Above we follow the convention where all definitions are written before the “|” sym-
bol, and all uses after. This way the representation became more similar to classic three
address code, where operations are non-destructive.

23

3. State of the art .
Other snippets of x86-64 code can also produce a bit surprising results:

cmove rdx, rsi ⇒ cmove rdx𝟸 | rdx𝟷, rsi𝟷

setnz al ⇒ setnz rax𝟸 | rax𝟷

xor rcx, rcx ⇒ xor rcx𝟷

In the first example we have the conditional move if equal instruction. It moves rsi
to rdx only if the zero bit is set in the flags register. For our purposes the final value of
rdx can be rdx or rsi and with no better information, we must pessimistically expect
both. So we have two uses and one definition.

Second example has a set byte if not zero instruction, which writes 1 to the lowest 8
bits of rax register if the zero bit is not set in the flags register, or 0 otherwise. Since
only the lowest bits are set, the instruction actually merges the new low 8 bits with the
rest of the rax register as set previously, and this has to be modelled through a use of
the previous version of the register.

In the last example, the idiom for zeroing out a register is used. Xoring a register
with itself produces zero, regardless of the previous value of the register. Compared to
move of 4-byte immediate zero, this is much shorter, so the idiom is very common. But,
since the register is overwritten with zero, there is actually no reason for the instruction
to use the former value of the register— the previous value doesn’t matter. This is why
we want to model the instruction as only defining the register. In practice, the processor
also doesn’t have to wait for the used register, and for example Intel considers using xor
to zero out a register a dependency-breaking-idiom [Intel Optimization Manual, 2023].

SSA on machine code accomplishes its goal—there is only one assignment to each
register version. But the versions of one register are still tied together. When the SSA
form is deconstructed back into machine code, only the version numbers are dropped.
So while machine SSA form helps with analysis, because tracking definitions became
easier, in reality there are still multiple assignments to each resource.

3.5 SSA deconstruction
No common processor provides 𝜙-functions on which the SSA form relies. Thus re-
placement of 𝜙-functions with other instructions having same effect is needed. This is
step is called SSA deconstruction. Since 𝜙-functions are the means of achieving single
static assignment, necessarily eliminating them means that the program will no longer
be in SSA form.

𝜙-function’s semantics say that it evaluates to whichever value is appropriate to the
control flow happening at runtime. In a representation based on control flow graphs,
this is made explicit by basic blocks. We can achieve the effect of a 𝜙-function with
multiple assignments through a copy instruction in each of the predecessor blocks, i.e.
from:

block0:
v0 = 5
jmp block2

block1:
v1 = 3
jmp block2

24

. 3.5 SSA deconstruction

block2: block0, block1
v2 = phi v0, v1
jmp block2

to:
block0:

v0 = 5
v2 = v0
jmp block2

block1:
v1 = 3
v2 = v1
jmp block2

block2: block0, block1
jmp block2

This is the original way of eliminating 𝜙 functions and was introduced by [Cytron et
al., 1991]. Though seemingly simple, there are multiple subtle problems, which have
demanded improvements in this area.

One of the problems is, that there may be no predecessor, that is suitable for the
copy. This can be seen on the following program in SSA form:
block0:

v1 = 3
branch ⟨...⟩, block2, block4

block2: block0
v2 = 4
jump block4

block4: block0, block2
v3 = phi v1, v2
ret v3

Inserting copies in to predecessor blocks would look like this:
block0:

v1 = 3
v3 = v1
branch ⟨...⟩, block2, block4

block2: block0
v2 = 4
v3 = v2
jump block4

block4: block0, block2
ret v3

But the problem is that copy inserted into block 0 for deconstructing the 𝜙-function
v3 in block 4 takes effect even in case the execution doesn’t actually go to block 4,
but goes to block 2 instead. The problem stems from the fact, that control flow can
transfer from block with multiple successors (where execution continues in only one of
the successors) to a block with multiple predecessors (where 𝜙 functions may be needed
to merge multiple reaching definitions). In a control flow graph where possible transfers

25

3. State of the art .
of control flow across blocks are embodied by edges, this is known as a critical edge. It
is possible to split a critical edge by replacing it with an intermediate block. The block
will have only a single predecessor (the block with multiple successors, block 0 in our
example) and a single successor (the block with multiple predecessors, block 4 in our
example):

block0:
v0 = ⟨...⟩
v1 = 3
branch v0, block2, block5

block5:
v3 = v1
jmp block4

block2: block0
v2 = 4
v3 = v2
jump block4

block4: block0, block2
ret v3

Now the copies could be inserted into the new basic block 5 and are executed only when
control flow actually goes from block 0 to block 4 (through block 5).

Another problem with eliminating 𝜙-functions correctly is that semantically it is as
if all 𝜙-functions in a block executed in parallel at the time the control flow enters the
block. This is due to the fact, that 𝜙-functions evaluate to the right value based on
control flow alone. But copy instructions that we use for replacing 𝜙-functions execute
sequentially. With multiple 𝜙-functions in a basic block, a naive insertion of copies into
predecessor can lead to incorrect translation.

Briggs [Briggs et al., 1998] identified two examples where this happens, the first is
known as the lost-copy problem and the swap problem.

Both problems are ultimately due to dependencies among the 𝜙-functions and their
arguments. Bad order of copies can overwrite needed values. Simplest possible solution
is to do the copies in two steps: copy all phi node arguments into temporaries and only
then copy from temporaries into the right destinations. The approach is correct, since
the first step is non-destructive (unlike the naive copy insertion) and in the second
(destructive) step only new temporaries are read, which are not involved in any-𝜙
functions. While correct, the approach produces a large number of copies, most of
which are not needed.

Briggs [Briggs et al., 1998] approaches the problem as a scheduling problem. Since
copy instructions have a destination (definition) and a source (use), he finds an order
such that all uses of a virtual register precede its redefinition. If this is not possible due
to cycles (like in the swap problem), then a temporary and an additional copy needs to
be inserted to break the cycle.

Briggs also makes an important observation—the problems only manifest after some
of the more aggressive operations are run (like copy folding), and not after others (like
copy propagation or dead code elimination). Sreedhar [Sreedhar et al., 1999] calls the
form of SSA constructed by [Cytron et al., 1991] and other algorithms conventional
SSA and notes that it has the important property that all virtual registers in the same
phi congruence class (containing virtual registers connected via 𝜙-instruction) can be
replaced by one representative and the 𝜙-instruction eliminated.

Importantly, in [Sreedhar et al., 1999] they also consider transformed SSA, which
doesn’t have the phi congruence property, and present three methods for transforming

26

. 3.6 Instruction selection

transformed SSA into conventional SSA. The first method is remarkably simple: in
addition to the copies in predecessor blocks, a copy of the 𝜙-instruction is added. But
these are different copies than in previous algorithms! Here we are still in SSA form—
the copies can actually be considered aliases for the original values, or products of an
identity operation and they obey the single assignment property.1

The next two methods described by Sreedhar gradually build on top the first one and
additionally make use of liveness (described later in section 3.8.3.1) and interferences
(also described in a later section, 3.8.3.2) to prevent inserting too many unnecessary
copies.

Full SSA deconstruction based on Sreedhar’s approach thus consists of transformation
to conventional SSA form, merge of virtual registers in the same phi congruence class
(“drop of versions of variables”) and simple deletion of the 𝜙-instructions.

The most comprehensive treatment of SSA deconstruction was conducted by
Boissinot [Boissinot et al., 2009]. Their approach highlights more subtle issues with
SSA deconstruction, and presents an algorithm partly based on [Sreedhar et al.,
1999], which mainly aims for correctness, but also quality (of the generated code)
and efficiency (of the SSA deconstruction). The signature of their algorithm are three
passes, which strictly separate between correctness and optimization. Their approach
also makes use special properties of SSA to improve the algorithm’s run time.

Copies introduced by SSA deconstruction, but also any copies in general, can be
eliminated by coalescing. Intuitively, if we merge the source and destination of a copy
instruction into a single virtual register, then no copy instruction is needed (since it
would be a copy to itself). Basic approaches to SSA deconstruction insert copies freely
and depend on elimination of the copies through coalescing. But doing some coalescing
in SSA deconstruction stage can help greatly, since many fewer virtual registers need
to be considered in register allocation stage (speeding up all aspects of it). Also, while
in SSA form, many analysis are faster and cheaper to compute and more information
may be available to guide the coalescing. Because of these reasons both [Sreedhar et
al., 1999] (methods 2 and 3) and [Boissinot et al., 2009] do coalescing as part of SSA
deconstruction.

3.6 Instruction selection
Instruction selection is the process which translates a compiler’s intermediate represen-
tation to machine instructions. While compiler middle end intermediate representations
(IRs) are usually machine independent and made to be easily optimizable, machine in-
structions are usually designed to be conveniently executable by a processor. This,
irregularities in instruction sets as well as special constraints imposed by individual
instructions make the problem of choosing the “best” instructions hard.

To ease translation and split concerns, instruction selection is usually allowed to
assume that there is an infinite amount of registers available. These virtual registers
are then mapped to physical machine registers in a later phase, called register allocation.
We describe register allocation in a later section (section 3.8), where we also discuss the
problems of machine instruction constraints, where some instructions only work with
some physical registers (section 3.8.3.6). In this chapter we will use the prefix t and
a number (for example t12) for virtual registers and assume that there is unlimited
number of them.
1 In fact, exactly because these SSA values are aliases, they are folded by algorithms like copy folding,

that result in transformed SSA form, which exhibits problems with naive SSA deconstruction.

27

3. State of the art .
If the middle end IR and machine instruction set are relatively close, then even

something as simple as one-to-one mapping is possible. For example, this middle end
IR:

v3 = add v1, v2
v4 = load v3

can be translated to the following RISC-V code:

add t3, t1, t2
ld t4, 0(t3)

The mapping is relatively easy, because with RISC machine instructions, all opera-
tions are done on registers, and only load and store instructions touch memory. This
closely resembles the three address code used by the IR above. Even on CISC architec-
tures (which are known for addressing modes allowing memory operands), translation
of RISC-like middle end IRs is still straightforward, since simple forms of instructions
are generally still available and the more advanced addressing modes will simply not
be used. For example, this is how the piece of IR above could be translated to x86-64:

mov t3, t1
add t3, t2
mov t4, [t3]

The first copy instruction is needed to compile the IR’s three address code to x86-64 two
address code. Use of advanced addressing modes and memory operands in arithmetic
instructions can improve the generated code considerably:

mov t4, [t1+t2]

Even though we can intuitively tell that the second x86-64 version is “better”, it is
very important to consider exactly why. Fewer instructions are used, but is the code
smaller? Does it execute faster? Does “faster” consider throughput as well as latency?
These questions should be considered by instruction selection and their answers should
guide the instruction selector to find better code. Often, instruction selectors operate in
a cost based model, where each instruction is given a cost and, if possible, instructions
with the lowest cost are chosen. This cost should ideally consider all mentioned factors,
but often it can be hard to balance between speed and code size trade-off, and since both
can be important in different scenarios, having different instruction costs for different
situations can make sense.

Different orders of instructions can have impact on execution speed as well. Usually,
this problem is not considered as part of instruction selection, and separate instruction
scheduling pass is used to reorder instructions to a more favorable order. Instruction
scheduling is described in 3.7.

3.6.1 Outline

The first two instruction selections presented above, can be done relatively simply
programmatically. Each IR instruction is in turn expanded into one or more machine
instructions. Registers (or more precisely virtual registers in this stage before register
allocation) are used as means of abstraction—each instruction reads operands from
registers and writes results to registers. Different operand kinds (such as immediates
or memory locations) are handled by special few instructions that are able to load
immediate or perform load from memory or store to memory. The use of registers
has to be consistent, e.g. if an instruction maps to multiple instructions which need a

28

. 3.6 Instruction selection

temporary register, none of the input registers should be used, since later IR instructions
may expect the registers to not be modified. Either a fresh virtual register has to be
allocated, or one of the destination registers can be used, since they will be overwritten
by the expansion in any case.

This method produces a simple one-to-many translation. While the instruction se-
quence emitted for each single opcode can be optimal, most of the interesting instruction
selection opportunities stem from the fact that there are instructions which combine
several operations. In same cases this means many-to-many or even many-to-one map-
pings.

There are three fundamentally different approaches for handling instruction selection.
Most existing algorithms for instruction selection fall into one of these three categories,
though even algorithms falling into the same category can differ significantly in their
speed (how fast they run), quality (how fast does the produced code run) and capabili-
ties (e.g. ability to handle instructions with multiple outputs, like idiv on x86-64). In
the following subsections we introduce the three approaches.

3.6.2 Peephole optimization
Peephole optimization is a general optimization technique (see section 3.3). It is ap-
plicable to any compiler stage, but in the back end peephole optimization is often
associated to final improvements to machine code after instruction selection, instruc-
tion scheduling and register allocation. But peephole optimization has been applied
even to perform instruction selection. To distinguish this, we will call the technique
instruction selection by peephole optimization.

The idea for instruction selection by peephole optimization is simple. The naive
expansion method produces a simple one-to-many translation, and we can improve it,
by a peephole optimization pass that can find patterns and replace multiple instructions
with either shorter or more efficient instruction sequences. Since a lot of expansions
are mere translations one-to-one, even a relatively small peephole window can actually
examine many instructions in the original IR.

But, while the peephole optimization can be done on the machine instructions them-
selves, they are not much suitable for optimization. Apart from that, they are also
machine specific, and while improvements to instruction selection are machine specific
by nature, it is preferable when a single mechanism can drive the optimization for many
different instruction sets. Also, writing the peephole optimization patterns by hand is
tedious and does not scale for a compiler targeting many architectures.

Influential in this are was the algorithm by Davidson and Fraser [Davidson et al.,
1980]. Their retargetable peephole optimizer is based on register transfers, which de-
scribe very low level machine operations—like actual transfers among registers, but also
arithmetic operations and settings of flags. Each machine instruction has an associated
register transfer list, which describe the effects of the instruction. Their algorithm then
operates in four passes:

1. Translate all machine instructions to register transfer lists.
2. Iterate over the register transfer list backwards and determine the observable effects

(register transfers) of each list.
3. Iterate over the register transfer lists forwards and check for each pair of whether

there is an instruction whose register transfer list has the combined effects of the
pair. If there is, combine the two register transfer lists into one.

4. Iterate forward over the code and for each register transfer list find an instruction
that implements it and emit it.

29

3. State of the art .
The first step is actually optional, since the compiler can generate the register trans-

fers directly, but nominally their algorithm both reads and writes machine instructions.
The register transfers are only an immediate step, and importantly the backwards pass
deletes unobservable effects, which don’t need to be implemented by the combined in-
structions. The effects are mainly assignments to registers and flags, which Davidson
and Fraser handle in a unified way. Since an assigned (virtual) register or a flag may
not ever be read before being assigned again, it may be deleted. Liveness or rather
death of registers is also important for deletions: if a definition gets “inlined” into all
its uses (e.g. a small constant on an architecture which has addressing mode allowing
small immediates), then the definition can be deleted only if it is determined to no
longer be live after the deletion (becomes dead). The deletion may take form of either
combination into an instruction which doesn’t have the extraneous effect (in phase 3)
or replacement by a single final instruction (phase 4) which also doesn’t need to have
the extra effect. This is a form of dead code elimination (since for example an empty
register transfer list doesn’t translate to any instruction). But the extraneous assign-
ments are kept if there isn’t an instruction that doesn’t have them (for example, most
arithmetic instructions set flags, even if they are not needed, and there may be no
equivalent instruction that doesn’t set the flags).

Important aspect of Davidson’s and Fraser’s approach is that the correspondence
between register transfers and machine instruction is described by a textual file called
machine description. The compiler interprets the file and uses it to map instructions to
register transfers (phase 1), replace pairs of register transfer lists (phase 3) and to map
register transfer lists back to instructions (phase 4). All of these phases use the textual
description and are thus based on operations with strings. This has the advantage that
the compiler is easily retargetable just by swapping out the machine descriptions. Since
in the last phase register transfer lists are mapped back to instructions, the algorithm
has to obey an invariant: any produced register transfer list is implementable by at
least one instruction. This is why phase 3 is guided by the machine description and
why the machine description has to be written with care. In phase 4, if more machine
instructions can implement the same register transfer list the first one in the machine
description is chosen (simply because the algorithm tries to match with all instructions
one-by-one). This can be used to model (relative) costs of instructions with equivalent
behavior.

Later improvement of the algorithm by the same authors [Davidson et al., 1984a]
better formalized the phases of the algorithm. The expander produces register trans-
fers, combiner combines pairs of instructions and assigner translates register transfers
back to machine instructions (and in their approach also performs register allocation).
Combiner and assigner are now improved and based on finite automaton generated
at compile time of the compiler (compiler-compile time), making them much faster.
Though the simulation of combined effects of instructions happens still on strings.
Cacher is a new addition and performs local common subexpression elimination by
keeping track of what values are available in what registers in a basic block. Another
powerful addition was consideration of not only physically adjacent instructions, but
also logically adjacent instructions—instead of considering instructions in their control
flow order, they are considered based on data flow. This allowed to consider simple
definitions (like constants) to be folded into instructions, even if they fell out of the
small peephole window.

Davidson’s and Fraser’s design turned out to be very influential in the area of peep-
hole optimization. In particular the idea of expanding the instructions into a machine

30

. 3.6 Instruction selection

independent representation, that exposes even the smallest operations, then performing
optimizations and then combining the operations into machine instructions. This as-
pect is kept by a lot of compilers using peephole optimization for instruction selection.
The idea of a machine description that is preprocessed at compiler-compile time also
stuck. Slow compiler compile time doesn’t matter as much as the speed of the compiler
itself.

Other aspects of the original Davidson-Fraser design didn’t catch much. Later al-
gorithms opted for a fixed sets of patterns, in place of deriving them on the fly with
symbolic execution. These patterns used to be written by hand, but considering the
existence of the machine descriptions and symbolic executors based on them, Davidson
and Fraser [Davidson et al., 1984b] used them to derive the patterns. They did this by
introducing a set of programs known as the training set, over which they run their clas-
sical peephole optimizer [Davidson et al., 1984a]. Each unique optimization performed
on the training set is written to a file, which is then used as base of a more limited
peephole optimizer, which operates only based on these patterns. While the files are
still text based, they use string interning based on a hash based data structure to avoid
comparing strings and to speed up string comparisons.

3.6.3 Covering

A different paradigm for approaching instruction selection is covering. With interme-
diate representations like trees and DAGs (e.g. with value-based SSA on a control flow
graph from section 3.4.1) the operations and their operands form graphs—in particular
data-flow graphs, because the graphs capture the flow of values from their definitions
to their uses.

Also instructions can be represented as graphs, or rather graph-based patterns. For
example an add instruction, which accepts two registers and produces a result in a
register, can be represented as a node (the result of the addition) with two children
nodes (the operands). A different pattern can represent a similar instruction, but with
another addressing mode, e.g. an add of a register and an immediate or add of register
to memory location.

Covering instruction selection covers the data-flow graph of the middle end IR with
the instruction patterns. As each instruction pattern is associated with an instruction
(or instruction sequence), the covering gives the final set of instructions, but not nec-
essarily their exact ordering—any order resulting from a bottom-up walk is a possible
final instruction sequence.

As nodes are gradually covered, results from operations themselves become operands
covered by instruction patterns and the produced. The nodes in the instruction pat-
terns are typed by the kinds of operands of the x86-64 architecture. For the x86-64
architecture for example, at least the following fundamental types are required:

. Registers.. Memory locations. Small immediates (32-bits). Integer constants (64-bits)

Small immediates can be used anywhere where full integer constants are allowed.
A “retyping” pattern is usally associated with these transitions. There is no actual
instruction associated with such pattern. Leaves in patterns are special and may need
special separate types to be represented. For example, access to stack allocated variables
requires access to the base pointer which is not produced by anything. A “retyping”

31

3. State of the art .
no-op pattern, which makes base pointer (leaf) available as register will then allow the
frame pointer to be usable like registers produced by other patterns, for instance loads
of constants, arguments or results of arithmetic operations.

The formulation on graphs is very general and allows both the IR which is pattern
matched and the patterns to be general graphs. In practice, simpler forms sometimes
suffice and we stick to three categories as described in [Blindell, 2016]:

1. Trees. Trees are natural when the IR is an AST or a low level version of it—i.e.
only with simple RISC-like close-to-machine operations, which are more amenable
to matching. Many instruction patterns also form trees—most arithmetic operations
produce one result from multiple operands.

2. DAGs. While trees are nice and simple, they are often too limiting in an optimizing
compiler. For example, when common subexpressions are eliminated, a single node
can be used by multiple operations, but this means that the node no longer has a
single parent, but multiple. Directed acyclic graphs (DAGs) are able to represent
this exactly.

DAGs are sometimes also necessary for exact modelling of instructions, which don’t
correspond to trees. Notable example are multi-output instructions which produce
from some number of inputs multiple results. An example is the x86-64 instruction
idiv which produces two results—the quotient and the remainder. We may even
consider settings of flags to constitute additional outputs of instruction—in that
case on the x86-64 most arithmetic instructions would be multi-output.

3. General graphs. Both trees and DAGs are unable to capture control flow, which
in non-trivial programs contains loops and hence cycles in the control flow graphs.
Most advanced instruction selection for an entire procedure (across basic blocks)
thus requires instruction selection to be performed on general graphs with suitable
patterns that are able to cover such graphs.

Importantly for multi-target compilers, even though the patterns themselves are ma-
chine specific, their form is machine independent. A single algorithm can work for any
architecture, as long as it is provided a suitable set of patterns and instructions that
correspond to them.

Wide variety of algorithms have been used to perform the covering. They range in
what graphs they are able to handle, quality, run time and complexity. In the following
subsections we introduce some of the existing approaches.

3.6.3.1 LR parsing

The algorithm of Glanville and Graham [Glanville et al., 1978] uses LR parsing for
instruction selection.

LR parsing [Knuth, 1965] is a technique that is usually used for transforming streams
of tokens into parse trees or ASTs. However, it can be seen as a general technique that
allows matching of tree patterns. The productions in a context free grammar can be seen
as the patterns, where non-terminal symbols are the roots of patterns and correspond
to the types of nodes. Terminal symbols are then the trivial constants like the base
pointer or concrete integer literals—leaves.

The advantage of LR parsing is that it is well studied. The parsers can be generated
from context free grammars based on the instruction patterns. The expensive prepro-
cessing is done at compiler-compile time and the generated parsers themselves are fast.
Additional predicates (e.g. checks of small constants) and actions can be added to the
LR parsing through the use of attributed grammars [Knuth, 1968].

32

. 3.6 Instruction selection

A fundamental problem with LR parsing in the area of instruction selection is, that
it expects a linear sequence of terminals—the tree structure has to be linearized and
the matching happens over that linearization. Additionally, the patterns for instruction
selection are usually highly ambiguous—many instructions can produce the same effects.
A method for resolving the numerous reduce-reduce and shift-reduce conflicts is needed.
Often shifts are preferred to reductions, because they are likely to result in bigger
matches. Some kind of cost model is useful for resolving reduce-reduce conflicts.

Other problematic areas include ensuring of correctness (where we want to guarantee
that for any possible stack we can perform a reduction) and the size of the generated
parser, which reportedly can get impractical [Aho et al., 2006].

3.6.3.2 Top-down matching

LR parsing, like other algorithms which we will consider next, works bottom-up. I.e.
matching starts from the leaves and gradually covers nodes with patterns until it reaches
the root. An approach working top-down is possible, and natural for recursive formu-
lation like matching on trees.

Cattel [Cattel, 1978] mentions an algorithm which he calls “maximum munch”, which
top-to-bottom does the following for each node:

. Try matching all patterns with the current node as root. Select the first matching.. Apply the algorithm recursively for each child implied by the pattern.. Emit code associated with the selected pattern.

This is a greedy algorithm. The algorithm prioritizes patterns through their ordering.
In Cattel’s algorithm large patterns are ordered first, but attention is also paid to their
cost per covered node. Larger patterns are usually better, because they implement
more of the tree with fewer instructions. Though doing these decisions top down misses
a lot of low level context found only at the bottom.

The biggest advantage of maximal munch is its simplicity. But the limitation to
trees, and the worse quality (due to greediness) make it not as practical.

3.6.3.3 Bottom-up rewriting

LR parsing is too problematic and top-down too weak due to lack of any backtracking.
However, there are better approaches for bottom-up instruction selection. A group of
algorithms is based on dynamic programming. One such algorithm is [Aho et al., 1989],
which operates in three passes:

1. In a top-down fashion for all nodes the applicable patterns are identified. (The top-
down pattern matching is interestingly done with an extension of the Aho-Corasick
string matching algorithm [Aho et al., 1975].)

2. Bottom-up, the costs for each applicable pattern at each node are computed. All
possible types of the node must be considered, since in the bottom-up approach we
have not yet determined the type. Thanks to dynamic programming, the costs of
children (as all applicable types) are available when costs of parents (for all applicable
types) are computed. For each type only the cheapest pattern and its cost is saved.

3. Top-down, the cheapest type is selected for each node. Based on the rule associated
with type, the types of children are determined, which allow its cheapest type to be
selected.

Only the cheapest patterns for each type are interesting, because while any mode
can ultimately be chosen for a node in the third pass, we will only need the cheapest
pattern of a certain type. But the type itself is not known until the third pass.

33

3. State of the art .
The conflicts that hindered the LR parsing approach are gone—the results either

identify the cheapest tiling uniquely through the type of the root node, or it can be
chosen arbitrarily if multiple types have the cheapest cost.

A tool called twig is described as part of [Aho et al., 1989]. It takes a textual
grammar of the tree patterns and generates a C program that does the instruction
selection.

The concept of BURS (Bottom-Up Rewrite Systems) was introduced as means of
tree covering for instruction selection by [Pelegrí-Llopart et al., 1988]. With BURS it is
possible to move the dynamic programming to compiler-compile time. The technique
is based purely on rewrites at the bottom of the trees and something like the first pass
of [Aho et al., 1989] is not needed.

A tool called burg [Fraser et al., 1992b] is based on the BURS theory and does
the dynamic programming at compiler-compile time. This unfortunately means some
restrictions on the grammars. A similar tool called iburg [Fraser et al., 1992b] remains
more flexible by doing the dynamic programming in compile time.

3.6.3.4 DAG covering by tree covering

The algorithms introduced in previous subsections were all limited to trees, i.e. only
tree programs and tree patterns were allowed. In general, extending the tree approaches
to DAG programs is possible by transforming the DAGs into trees. Two fundamental
methods are described by [Blindell, 2016] and both work by identifying the trees with
multiple parents (i.e. the common subexpressions), on which is possible to either:

1. Split the edge. The tree is removed from the graph and replaced by a special leaf.
All individual trees are then covered separately and the results merged.

2. Duplicate the node. The common tree is duplicated for every use.

Both of these approaches are problematic: splitting makes small trees, which can
miss covering with bigger patterns (of supposedly better instruction) and duplication
undoes so carefully done common subexpression elimination.

A notable application of duplication is Ertl’s [Ertl, 1999], which is able to reduce the
need for duplication for a class of DAGs. Edge splitting has been successfully used by
Koes and Goldstein [Koes et al., 2008].

Unfortunately these straightforward extensions of tree covering don’t easily support
DAG patterns, which are required for multi-output instructions like idiv.

3.6.4 Reduction

Trees can be covered in linear time with dynamic programming. Covering of DAGs
and (as well as general graphs) is NP-complete [Koes et al., 2008]. Several approaches
then instead of solving instruction selection directly, choose to reduce it to another
NP-complete problem, use an existing efficient solver, and then transform the solution
to the selected instructions.

As solvers of some NP-complete problems have gotten much bigger attention, this
approach can be very efficient in practice. For example, techniques based on integer
programming [Wilson et al., 1994] and partitioned boolean quadratic problem [Eckstein
et al., 2003] exist.

The advantage is, that by embracing the NP-completeness a lot of flexibility can be
gained, and the techniques can work across basic blocks, selecting instructions for whole
functions.

34

. 3.7 Instruction scheduling

3.6.5 Practical considerations

Using register transfers for representing instructions has an interesting parallel in the
processor itself. Modern x86-64 implementations like the ones from Intel [Intel Soft-
ware Developer’s Manual, 2023] split instructions into micro-operations. These micro-
operations are small units of work that the processor actually executes. Because the
processor doesn’t execute instructions, but only micro-operations, the instructions can
be seen just a compact or even compressed representation of micro-operations lists.
Register transfers can be viewed similarly as the micro-operations. Combining multiple
register transfers and register transfer lists can then be seen as compression producing
the fewest instructions having the same effect.

Processors sometimes also find it more valuable to keep some operations together.
This combination of multiple instructions or micro-operations into a single micro-
operation are called macro-fusion and micro-fusion. They are used for example for
comparisons followed by branches.

In a way, we can say that the processor receives a compressed form of instructions
and reencodes it to a form suitable for execution.

3.7 Instruction scheduling
Instruction selection selects the machine instructions implementing the desired behav-
ior. However, these instructions are not necessarily ordered well to suite the concrete
machine. It is the job of instruction scheduling to decide on the final order of the
instructions.

The dependencies among instructions (selected by instruction selection) impose a
partial order on the instructions. These dependencies include data-flow on registers
(i.e. operands have to be evaluated before the operations that use them), but also
memory operations. Loads and stores to memory can be very limiting to the ordering,
though alias analysis may be able to tell which stores and loads are safe to reorder.

Instruction scheduling then produces a linear order of the instructions, where the
dependencies are honored, but the order is more suitable to to make better use of
machine resources.

3.7.1 Motivation

In a processor, that processes and executes exactly one instruction per cycle, there is
not much needed to find better orders of instructions—when all operations take the
same time, any ordering will produce the same net result.

In pipelined processors this becomes more interesting, because although the processor
still executes one instruction per cycle, multiple instructions are processed at the same
time in the pipeline. Each cycle a new instruction enters the pipeline and one finishes
its execution. Hence there are as many instructions in the pipeline as there are pipeline
stages and progress is made on each instruction in each stage of the pipeline. This is
comparable to to an assembly line in a factory. In a usual pipelined processor we can
imagine the following stages:

1. Instruction fetch. The instruction is loaded from memory.
2. Instruction decode and operand fetch. The processor figures out the nature of the

instruction and loads the operands.
3. Execute. The instruction is executed.
4. Write-back. The results of the instruction are written back to registers or memory.

35

3. State of the art .
In this scheme, the processor must be careful of the dependencies, since if the results

are written in stage 4, but operands loaded in stage 2, then a dependency in consecutive
instructions makes them unable to be executed in this pipeline. E.g. in:
add rax, rbx
add rax, rcx

The first instruction writes rax in its stage 4, but the second instruction reads rax in
the first instruction’s stage 3 when the results are not yet available. The processor has
to detect this, and often has to stall the execution until the results become available.
Actually, here the result written back at stage 4 is already available at stage 3 and may
be forwarded to the stage 2 of the preceding instruction at the same cycle. But in a
real pipelined processor there is a higher number of stages, which makes dependencies
of adjacent instructions much more problematic.

For pipelined processors, it is beneficial to interleave unrelated computations—while
one waits for the results, the other can be executed freely. If, like above, we don’t
have anything to interleave with, we can’t improve the code. But, in long basic blocks
opportunities for interleaving may occur.

3.7.2 List scheduling
Cooper and Torczon [Cooper et al., 2004] describe a technique for scheduling instruc-
tions in a basic block, that is the base of many other, more advanced techniques. The
approach works in four stages:. Rename. Registers are renamed to prevent false dependencies.. Build dependency graph. In a backwards fashion the operations in the block are

examined, and edges from definitions to uses are added.. Assign priorities. Priorities are assigned to be used to later to guide the scheduler.. Schedule operations. A ready list containing the instructions that can execute in
the current cycle is maintained. Instructions are removed from this list, until it
becomes empty. At which point (based on the cycle count and prepared operands),
new instructions can become ready.

3.7.3 Practical considerations
Even though in the previous subsections we motivated and presented a suitable ap-
proach for scheduling, these days the assumptions we made about pipelined processors
are mostly obsolete.

No longer, are processors just pipelined. Modern x86-64 processors are much more ad-
vanced and feature [Intel Optimization Manual, 2023, Intel Software Developer’s Man-
ual, 2023]:. Register renaming. Instead of using only the physical registers, there are many

more architectural registers and for each result a new fresh architectural register is
allocated. This removes false dependencies.. Out of order execution. The processor doesn’t process instructions one by one. Al-
though it decodes them in a sequential fashion, they get processed separately and
independently, and only retired in their nominal order in a reorder buffer. This is
supported by:. Multiple execution units. Instead of being able to execute only one operation at

a time, multiple operations can be executed in different execution units, though
each supports only certain kinds of operations. Many operations can be executed
in parallel.

36

. 3.8 Register allocation

. Issuing of multiple instruction in a single cycle. This way, multiple execution units
are kept saturated, because many operations can start their execution at once.. Branch prediction and speculative execution. The processor is able to continue exe-

cuting code after a branch even before evaluating the condition. If the assumption
turns out incorrect, it is able to backtrack.

Ultimately, this means that the processor redoes all the instruction scheduling by
itself dynamically at run time. This is very powerful, because with the addition of
branch prediction and speculative execution, it works across basic blocks and adjusts
to the actual execution.

This makes static instruction scheduling in a compiler a less important optimization.
It is still useful, but becomes interesting with at least some of the following:

. expensive operations (like division, which can only execute in a small number of
execution units and has high latency),. precise processor specific information (about execution units, reorder buffer size,
instruction latencies and throughput, etc.),. long or computation heavy basic blocks (i.e. the static scheduling has something to
work with),. predictable branches (i.e. the compiler statically knows which blocks are likely to
execute after each other).

3.8 Register allocation
Register allocation is the last of the three big conceptual parts of a usual compiler back
end. Motivation, importance and possible approaches are introduced.

The x86-64 architecture is what we mainly care about in this thesis. Since it is
familiar, we will be using it as examples in the following sections. It is also a good
candidate because it brings some challenges not found on other architectures, but shows
the general problems just as well as other architectures.

Note that like with instruction selection although we are already working with target
specific instructions, their form doesn’t necessarily have to be target specific. Target
independent representation of target specific instructions allows us to share also register
allocation logic for all targets.

3.8.1 Motivation

During previous phases of the compiler we used a powerful abstraction, we pretended
that there is an infinite amount of registers. This is very important for the middle end
IR, since it is supposed to be platform agnostic and rather than limiting to some fixed
number of registers (per architecture or wholesale), we might as well pretend to have
infinite amount of them. But once we start translating the middle end IR we just need
to limit ourselves to fixed amount of registers somewhere.

After instruction selection (which determines what instructions to use) and instruc-
tion scheduling (which refines the order of the instructions), a snippet of input to
register allocation can look as follows:

mov t1, 1
mov t2, 2
mov t3, t1
add t3, t2

37

3. State of the art .
There are several things of note here. The instructions don’t operate on real ma-

chine registers (like rax), but on virtual registers (often also called “pseudoregisters”
or “temporaries”). It is the goal of register allocation to transform the code so that
physical (“machine”) registers are used. Since the whole program doesn’t use more than
16 registers, we have no problem assigning x86-64 registers directly, for example in the
order of the temporaries:
mov rax, 1 // t1 = rax
mov rbx, 2 // t2 = rbx
mov rcx, rax // t3 = rcx
add rcx, rbx

Even for such a simple example, we can notice several things about register allocation
alone:

. We introduce a third register rcx to store the result of addition. This works well
and fits into the 16 registers we have available. But we can notice that after the
addition we no longer need the value stored in register rax. This is on of the big
ideas in register allocation, we only need to store those values that will be needed in
the future, and we can use that to “reuse” registers.. If we were to reuse rax for storing the result of addition, our situation would look
like this:
mov rax, 1 // t1 = rax
mov rbx, 2 // t2 = rbx
mov rax, rax // t3 = rax
add rax, rbx

Move (copy) of a register to itself is a no-op, the instructions doesn’t have any real
effect. It doesn’t even change flags, to it is safely possible to remove it. We can notice
that the two address code generated from SSA three address code can be improved
if it turns out that the destination can be the same register as the first source (or
the second source in this case, since addition is commutative).

Though this brings a question to which we will come back later: Can the register
allocator remove the instruction? Does it have sufficient information to do so? Or
should it even be concerned about the semantics of instructions it is working with?

While we have shown that opportunities for register reuse arise, it doesn’t mean we
can’t get out of registers. After all, there is a limited number of them, and oppor-
tunities for reuse come only when a virtual register is no longer needed later. Even
relatively simple expressions can produce code which requires surprising amount of
registers, while not allowing much reuse. For example, compilation of the expression
1 + (2 + (3 + 4)) can produce code like the one below:
mov t1, 1 // t1 = rax
mov t2, 2 // t2 = rbx
mov t3, 3 // t3 = rcx
mov t4, 4 // t4 = rdx

mov t5, t3 // t5 = rcx
add t5, t4

mov t6, t2 // t6 = rbx
add t6, t5

mov t7, t1 // t7 = rax

38

. 3.8 Register allocation

add t7, t6

Possible register allocation is noted in the example. The right associative nature
of the expression means, that for each of the additions while the left hand side (the
immediate numbers) are evaluated first, its result has to be kept in registers until the
right hand side is evaluated and ready for the addition. Register reuse is possible but
only after the additions, because each has at least one argument that is not needed
further. The example could be extended to exhaust all available registers. Contrary to
that the left associative version (i.e. ((1 + 2) + 3) + 4) needs just two registers:
mov t1, 1 // t1 = rax
mov t2, 2 // t2 = rbx
mov t3, t1 // t3 = rax
add t3, t2

mov t4, 3 // t4 = rbx
mov t5, t3 // t5 = rax
add t5, t4

mov t6, 4 // t6 = rbx
mov t7, t3 // t7 = rax
add t7, t5

Since the operands are kept in registers only for short time in between the additions,
there are more possibilities for reuse. So even though both versions use the same amount
of virtual registers, they need different amounts of physical registers. While instruction
scheduling, or perhaps instruction selection or middle-end optimizations can transform
the right associative version to the left associative one, or just fold the computation
entirely (since it’s a sum of four constants), the example illustrates that virtual register
which are needed for a long time are a problem, since they prevent register reuse and
that because of that even simple examples can get out of registers.

3.8.2 Spilling
We have to make all values in virtual register available wherever they are needed.
But there may be too little of physical registers to do so. One possibility of reducing
the register pressure is to use memory. In the simplified view of a compiler, there is
essentially infinite amount of memory available, so storing values does not deplete a
limited resource as much as using physical registers does.

Techniques that involve using memory to reduce register pressure are usually called
spilling—alluding to the fact that what does not fit into physical registers is put some-
where else, and that in fact it is an undesirable thing and we use it only when absolutely
necessary.

The best place for storing spilled values is on the system stack (also often called
“frame stack” or “call stack”) in the function’s call frame. This is due to the same
reasons why it is a good place for local variables—each invocation of a function gets its
own locations for storing the values. This keeps the functions reentrant and for example
naturally supports recursion.

Architectures usually also have a dedicated register for the pointer to the top of the
stack, which means that code needing to access the values not fitting into registers
can address their memory locations using relative addressing with small offsets, also
a feature efficiently supported by all common architectures these days. On the other
hand accessing static slots of memory would pose similar challenges as accessing global
variables does (e.g. relocations, position independence, large constants, . . .).

39

3. State of the art .
3.8.2.1 Using spilled values

Putting values into memory brings in the problem of using them in instructions. The
generated code used operations involving registers and often instructions don’t allow
memory locations to be used everywhere where registers are allowed to be used. In fact,
on processors employing the “load-store” architecture (which is one of the signatures
of RISC processors), there are only few instructions for loading values from memory
into registers and a few instructions for storing register contents into memory and no
other instruction can address memory locations. But, the computation of a value still
needs to store it into a register, just like the use of the value needs it to be present in
a register—though between the definition and use, the value can reside in memory. To
achieve this load and store instructions are introduced. These inserted loads and stores
are called spill code.

What makes spilling beneficial, is that the registers involved in the spill code (and
in the associated definitions and uses of the spilled values) are only used very locally.
Additionally, the registers used for storing and loading are essentially completely inde-
pendent, because each load and store can use a different register. This makes register
allocation much easier (or even possible), since this essentially introduces new and much
less “constrained” virtual registers.

In this text, we care especially about the x86-64 architecture, which, like most CISC
architectures, doesn’t have a load-store architecture. There are for example instructions,
which can perform arithmetic directly on locations in memory. Though at most one
operand of an instruction can be a location in memory, the other one has to be either a
register or an immediate value. So on one hand, the problem of having to use registers
for storing/retrieving spilled values remains, but on the other hand, since one operand
can be a location in memory, we can take advantage of that and not use an intermediate
register at all.

Even though the x86-64 architecture allows the instructions to operate on memory
operands, an implementation of the architecture in for example some new Intel proces-
sors splits these instructions into micro-operations based on the load-store architecture,
using internal architectural registers (not accessible directly) for storing the interme-
diate values. Because of this there probably isn’t any direct performance difference
of using the memory operands. But it is still very useful to use these more complex
instructions—not only can the instruction encoding be shorter (thus sparing the in-
struction cache of the processor), but we take advantage of the internal architectural
registers, that we normally wouldn’t have access to, which can mean less constraints on
the use of the ordinary physical registers that we have access to, which may allow stor-
ing more values into registers instead of memory and hence have a significant indirect
impact on performance.

For example, suppose that t3 needs to be spilled in the following:

add t3, t2

The straightforward solution is to add a load before and store after:

mov t4, [rbp+s3] // s3 = an offset to t3's spill stack slot (immediate integer)
add t4, t2
mov [rbp+s3], t4

We have to be careful about actually inserting loads and stores, because t3 is both
used and defined in this instruction—the instruction essentially does t3 := t3 + t2.
Because of this, the register used for loading t3 from memory is the same one that will

40

. 3.8 Register allocation

hold the result that needs to be stored back into memory, so the store needs to use the
same virtual register the load does, here it as t4.

This example shows, that as mentioned, at least with a very narrow local view, and
with the first straightforward solution, spilling t3 doesn’t help with the use of registers.
We introduced another pseudoregister, t4, to substitute t3, but the original instruction
just became surrounded by memory operations. Indeed, spilling helps only in a broader
scope, where for example t3 had more definitions and uses.

We can alternatively just operate on the memory location:

add [rbp+s3], t2

This seems beneficial, since the processor will likely do the same three fetch modify
write operations we had with with our own spill code, it will use an architectural register
to do so, and we don’t need any physical register (represented by above by t4 virtual
register) to do so. But we shall look at this in bigger context than a single instruction.
The x86-64 two address code is often generated from three address code (likely from
SSA form), for that the code generator likely had to introduce a copy to preserve the
value of the first operand1, so in fact assuming that the original IR was:

v3 = add v1, v2

the full x86-64 code would be:

mov t3, t1
add t3, t2

Now the prospect of naively spilling t3 seems even worse:

mov [rbp+s3], t1
mov t4, [rbp+s3]
add t4, t2
mov [rbp+s3], t4

For the copy instruction, instead of using a temporary, we can just copy to the spill
location immediately (see section 3.8.2.2). But with the copy instruction, the code gen-
erator hoped that by assigning t1 and t3 the same register, the move instruction could
be eliminated. Since for some reason t3 was spilled, that is now out of the question,
but there is still a suboptimality—t1 is copied to memory and then immediately loaded
back again into t4, because it needs to be used in the add instruction and then also
stored back into memory. Use of t3’s memory location as the first operand of the add
instruction helps:

mov [rbp+s3], t1
add [rbp+s3], t2

But the issue is just hidden—the memory operations are still there, the CPU still
has to load the value t3 from memory in the add instruction, when we just had it in
a register. Just because the addressing modes of x86 allow use of memory locations in
the instruction encodings, doesn’t mean that internally the ALU (Arithmetical logical
unit) can suddenly operate directly on memory, the CPU still has to internally load the
value into a register. So while we spare a general purpose register and instead use an
architectural one, we still excessively operate on memory.

1 Technically, the lowering step doesn’t have to generate the copy to preserve the value if it is not needed.
But, as mentioned further, this requires non-trivial liveness analysis and eliding (coalescing) the copies is
what register allocators try to be good at, so emitting the copy unconditionally is reasonable solution.

41

3. State of the art .
Alternatively, starting from the straightforward 4 instruction sequence, we can just

forward the load and use t1 to populate t4 directly:

mov [rbp+s3], t1
mov t4, t1
add t4, t2
mov [rbp+s3], t4

Now the dead store to [rbp+s3] is even more apparent, and can be optimized away:

mov t4, t1
add t4, t2
mov [rbp+s3], t4

Now, we keep the values in registers the whole time, and only store the final result in
memory on assumption that later the value is needed and storing it in memory somehow
helps the register allocator.

Another important observation is that, the “optimal” code we ended up with, is very
similar to what we started with—there is just a store instruction in the end. Whether
spilling t3 helped is impossible to tell from this context. But we can something about
the possible benefits of spilling t4—there are none. By spilling t4 we would get the same
instruction we already have, just with a different pseudoregister (say t5). We are at
the t3 spilling fixed point. For this reason we should prevent the register allocator from
thinking that spilling t4 might be a good idea, since it might lead it to an infinite loop.
The reason why spilling t4 is not beneficial is the fact that the potentially inserted loads
and stores are redundant. The more general pattern is, that any definition immediately
followed by use is not a possible spill candidate. This includes virtual registers inserted
for spill code (so prevents potential infinite loops spilling spill registers), but can also
prevent spilling other virtual registers, which otherwise might look like plausible spill
targets, but in fact aren’t.

A different point of view is, that essentially, in (the last snippet) in the first two
instructions t3 is represented by t4, while in the last instruction it shifts back to being
represented by t3, which due to some previous decision, resides in a memory location
[rbp+s3]. It is as if we have originally split the register t3 into multiple registers (t3
and t4 connected by moves) and only spilled t3. It results in the same great code as our
optimized spilled version improved the generated code, because some of the multiple
registers can be much less constrained than the original one and are thus less likely to
be spilled and more likely to get assigned a physical register.

In contrast, we argued, that by merging t4 and t1 we would have had the chance
to eliminate the move instruction, thus improving the code as well. Both ”merging”
(called coalescing) and “splitting” (called live range splitting) can improve the code in
different situations, this makes it even harder, because recklessly doing one or the other
will make the code certainly worse, while doing neither may be just as bad. This makes
great register allocation even harder.

3.8.2.2 Spilling in copy instructions

In the previous section we found the need to spill a virtual register used in a copy
instruction (often called move), like this one:

mov t1, t2

If t2 is to be spilled, we nominally need to load it before each use. Here this would
look like this:

42

. 3.8 Register allocation

mov t3, [rbp+s2]
mov t1, t3

Here the temporary is not needed at all—we can just load to the right register directly:
mov t1, [rbp+s2]

Similarly if t1 was spilled and a store was needed, we can omit the copy:
mov [rbp+s1], t2

However, if both are spilled we need both a load and store, though the copy instruc-
tion can be deleted and a common temporary has to be used:
mov t3, [rbp+s2]
mov [rbp+s1], t3

And if we are able to assign t1 and t2 to a common memory location, then no
instruction is necessary at all.

3.8.2.3 Interaction with instruction selection

As we have seen, the process of spilling needs to insert new instructions which together
form the so called ”spill code”. In simplest scenario they just load and store the value,
but better code can be achieved if the spill code is inserted with more thought than
just load from memory and store to memory. But both of these problems—selecting
the instructions to use for operations and choosing best ones in the current context is
exactly the job of instruction selection.

In principle, register allocator shouldn’t care about the instructions. It should only
care about their effects on the registers. The result of register allocation should be
the assignment of register to virtual registers. Since spills can be necessary, which
requires insertion of new instructions, we have to decide how this spill code will be
handled. The basic options are the following, and mostly depend on the chosen register
allocation technique:

1. Insert spill code in the register allocator pass.
2. Return the list of spilled virtual registers, and expect to be called again with code

transformed to include the spill code.

The first option can make the register allocator depend on the target architecture—
it now needs to know about the current target, its instructions, their meanings and
how to insert them. On one hand, register allocation is already in the ”back end”,
where we expect to handle things on the level of the target, and generally hope to take
advantage of that by, for example, doing optimizations specific to the particular target.
On the other hand, as mentioned previously, machine independent representations of
(machine dependent) instructions are possible, thus spill code insertion could also be
made machine independent similarly just like the register allocation.

The second approach also makes the register allocation process pure in a sense. The
register allocator never modifies the input, its result is a either a mapping of virtual
registers to physical registers, or a list of virtual registers to be spilled. Though it
still has to be decided on how to insert the instructions. Some instruction selection
mechanisms which ultimately depend on the middle end IR, are not suitable for inserting
and optimizing spill code, since we are already in the low level back end IR. Tree or
DAG based instruction selection mechanisms may also not be directly applicable—we
may no longer be using trees or DAGs for representing the machine code, especially
after instruction scheduling, which sets the order of instructions in stone. On the other

43

3. State of the art .
hand peephole optimization is a great fit for improving inserted spill code. The inserted
spill code can be very naive, and peephole optimization run on the spill code and its
surroundings can make improvements. This is especially likely if we are able to find
patterns which spilled code creates, such as in the example in the previous subsection
(3.8.2.1).

The obvious downside of the “pure register allocation” approach is, that it has to
start over with register allocation if any spills need to be made. The first approach
seems more suited to register allocation where we want a self contained fast single pass
register allocation.

The approaches used for spill code insertion are usually very connected to the core
principle of the register allocation algorithm at hand, and choices of some approaches
are discussed in section 3.8.4.

3.8.3 Concepts
The terms used in the previous sections about register allocation were not properly
defined, and used a bit vaguely. The intention was to practically show the problems
register allocation tries to solve and what it needs to do to solve it, which includes
optimizations that try to make the register allocation process more optimal. In this
section, we try to more properly introduce the terms used for concepts connected to
register allocation.

One thing that has to be noted is the name “register allocation” itself. We mentioned
that register allocation is meant to map virtual registers to physical registers of the
target architecture, but the process isn’t always so direct, and sometimes it makes
sense and brings benefits to split this process into two parts, which really define what
we mean by these names:
1. Register allocation. In a narrower sense, by register allocation we mean the process of

making sure that each virtual register can be assigned a physical one. At this point,
we may not care too much about which one, but we care about spill code, because
that is what allows us to fit into the limited amount of registers available.

2. Register assignment. Assignments follows allocation—now that we can map every
virtual register to at least one register, we choose the concrete one. Although this
seems much more simpler than the allocation part, in practice register assignment is
also very important, because we have seen situations where some assignments lead
to better code, for example where the source and destination of a move instruction
are assigned the same register, the move instruction can be eliminated.
Some register allocation algorithms intertwine both parts and don’t split them. Some

algorithms strictly separate these concerns. In general simpler algorithms usually merge
both of these parts, while more complex algorithms try to take advantage of attacking
each of those issues separately to reach more optimal results. But this distinction is of
course not definitive.

3.8.3.1 Liveness

Already in previous sections we hinted that we may reuse a physical register if the
virtual register occupying has no further use. Liveness is the property that captures
this formally.
Definition 3.1 Liveness. A virtual register is live at a program point if it may be used
in future.

The definition of liveness captures the “not used further” aspect that we found bene-
ficial for register reuse. If at a program point a virtual register stops being live (becomes

44

. 3.8 Register allocation

dead) the physical register allocated to it becomes available. The definition of liveness
carefully says “may be used in future”, because in general it is undecidable whether a
virtual register will be used.

3.8.3.2 Interference

Interference captures the fact that registers are live at the same time, and thus cannot
be allocated the same register (nor coalesced).
Definition 3.2 Interference. Two virtual registers interfere, when they are simultane-
ously live at some point in the object program. [Chaitin et al., 1981]

3.8.3.3 Live ranges

It is usually not desirable to allocate registers for variables. We prefer to assign registers
separately for each distinct definitions and its uses.

This is in principle very similar to SSA form, where we also want to split multiple
assignments to each variable into multiple entities. In register allocation, the main
advantage is, that the “splits” may be assigned physical registers or spilled separately.

The splits are known by different names in literature: names [Chaitin et al., 1981],
webs [Muchnick, 1997], and live ranges [Cooper et al., 2004]. Live range is the often
used name, because the splitting exactly corresponds to a technique which is able to
introduce additional splits: live range splitting (see section 3.8.3.5).

Since we are mostly concerned with translation out of SSA, our virtual registers
practically correspond to live ranges. In later text a mention of a virtual register
should also be taken to mean a live range.

3.8.3.4 Coalescing

Coalescing in register allocation tries to assign virtual registers a common physical
register. Usually we only care about coalescing where it is beneficial. In the low level
these are the situations which may manifest as copies from one register to the other—if
the two registers are allocated the same physical register, the copy is redundant and
can be optimized out.

In practice this is connected to several high level concepts that generate low level
copies:

. Translation from three address code to two address code. In two address code the
first operand is the same as the destination. When translating three address code to
two address code, we need to introduce a copy to not clobber the first operand in
case it lives out. For example this three address code instruction:

sub t1, t2, t3

Can be translated to:

mov t3, t1
sub t3, t2

. SSA deconstruction (section 3.5). Effects of 𝜙 instructions are usually modelled with
copies in predecessor blocks. For example the following instruction in block 3, which
merges virtual registers t1 and t2 into virtual register t3:

phi t3, t1, t2

May translate to the following instructions in the two predecessors blocks:

45

3. State of the art .
// predecessor 1
mov t3, t1

// predecessor 2
mov t3, t2

Note that just these copies may be insufficient in some situations, see section 3.5.. Live range splits. A virtual register can be split into multiple virtual registers, and
copies are introduced to connect them. These can include splits due to register
constraints (including calling conventions). See section 3.8.3.5 for more details.

As coalescing is the exact opposite of live range splitting, virtual registers that are
the result of live range splitting should not be carelessly coalesced, since that would
practically undo the splits.

The removal of the move instructions itself is a simple task that can be left to
the peephole optimizer. The real role of coalescing in register allocation is to try
to allocate move related nodes to the same register. But too much coalescing can
be counterproductive—choosing to allocate two virtual registers to the same physical
one means that effectively the registers are combined into one. This means that their
interferences add together and it becomes much harder to find a common register.

3.8.3.5 Live range splitting

Live range splitting is essentially the opposite of coalescing. By splitting one virtual
register into multiple, we hope to achieve better register allocation, since the split virtual
registers can be allocated separately and they can be much less constrained (have less
interferences) than the original virtual register.

A big disadvantage of our model of register allocation being a mapping from virtual
register to physical registers is that a virtual register can be assigned only one physical
register. Live range splitting essentially remedies it, because the splits are allocated
separately.

Another advantage is that, in the simple spilling implementation, every use and
definition of a register is replaced accordingly by a load or store.

Naive spilling of an entire virtual register is simple to implement, but doesn’t consider
the nature of the register’s use. For example the virtual register may see significant
use in the beginning of the procedure and then in the end of the procedure and not
be used much otherwise. Such virtual register will interfere with practically all other
virtual registers, since it is live during the whole function. Splitting it to three registers
(beginning, middle and end of the procedure) not only allows different physical registers
to be allocated to it in the different parts, but it also allows independent spill decisions.
For example, it can be spilled during the middle of the function cheaply with only one
load and one store. The splits here would mean splitting say t10:
...
mov t10, ...
..., t10

[...] // a loop

..., t10

To t11, t12 and t13:
...
mov t11, ...

46

. 3.8 Register allocation

..., t11

mov t12, t11
[...] // a loop
mov t13, t12

..., t12

Splits can be especially beneficial around loops, since spills of any values used inside
loops are costly. Even a lot of shuffling of registers and memory can be beneficial if a
loop is executed many times. Moving expensive operations out of the loops has been
the task of code motion in the middle-end and instruction scheduling in the back end.
Since register allocation generally follows them, we should do our best to not hinder it.

If the splits turn out to be unnecessary, they can be coalesced away. Though in-
troducing too many splits can reduce the chance of coalescing in general—coalescing
has to be careful about splits in order to not undo them carelessly, additionally many
register allocation techniques avoid excessive coalescing.

Spilling can be seen as a very primitive form of live range splitting, which introduces a
new virtual register for each use and definition and spills all of them. Splitting the uses
and definitions manually, and spilling them only when needed may prove to be better,
since even in case the copies across the splits don’t get coalesced, they are presumably
cheaper than touching the memory.

Some allocators are able to rethink the register allocation of a virtual register at
its every use or definition. This means that the algorithm can essentially perform live
range splitting everywhere. Other algorithms are not able to do splitting “online” and
require it to be done as a preprocessing step, in that case live range splitting can be
even more important.

3.8.3.6 Register constraints

Some instructions require the arguments to be in particular registers or produce values
in particular registers. Typically, there are two such constraints:

1. One concrete register has to be used.
2. One register belonging to a particular class can be used.

Register classes are discussed in section 3.8.3.7. Here we discuss only constraints
which require one particular register.

The x86-64 architecture has two notable examples where concrete registers have to
be used for operands or results:

1. Shifts. Shift instructions where the shift amount is not an immediate value, require
the shift amount to be in the cl register (that is, the low 8 bits of the rcx register).

2. Long multiplication and division. On x86-64 the only available division instructions
(for signed and unsigned division) divide a 128-bit number by a 64-bit value.1 Upper
64-bits of the 128-bit dividend are expected in rdx, the lower 64-bits in rax. The
division instructions store the remainder in rdx and quotient in rax. The divisor can
be a (64-bit) register or memory location.

But there are restrictions imposed not necessarily to the instruction set itself, but
by calling conventions of the platform. For example on x86-64 Linux the System V

1 As with other instructions on x86-64, the 32-bit variants are available. So for example, the long division
divides 64-bit number by a 32-bit number, but it still operates on two registers (eax and edx).

47

3. State of the art .
ABI prescribes that the registers rdi, rsi, rdx, rcx, r8 and r9 are used for passing
parameters and rax and rdx are used for return values.

Register allocator needs to conform to these requirements. But if the physical regis-
ters are allocated for the entire lifetime of the constrained virtual registers, then there
can be conflicts if there are multiple such constrained contexts and the virtual registers
interfere. For example, if there are the x86-64 shift instructions:
sal t1, t2 // t2 needs to be allocated to cl
sar t3, t4 // t4 needs to be allocated to cl

Here t2 and t4 both need to be allocated to cl, but they are live at the same time
(interfere), so they cannot be assigned the same register. This is the case regardless of
the number of available registers, so this is a problem of the register assignment part
of register allocation. Spilling can save the situation, for example spill of t4 helps if t2
isn’t needed after this snippet of code:
sal t1, t2 // t2 = cl
mov t5, [rbp+s4]
sar t3, t5 // t5 = cl

Spilling both of course also helps, but spill of t2 alone doesn’t, because the newly
introduced temporary (t5, constrained to cl) would still be alive at the same as t4 and
thus they would interfere:
mov t5, [rbp+s2]
sal t1, t5 // t5 = cl
sar t3, t4 // t4 = cl

The problem with spilling here is, that it is mainly used as means of reducing register
pressure. Because of that spilling heuristics are meant to spill virtual registers that are
e.g. not going to be used for the “longest” (which frees a physical register for the
longest time) or which interfere with a lot of other virtual registers (so the other virtual
registers have much higher chance of being allocated themselves). Nothing usually
makes constrained registers good spill candidates, and it shouldn’t, since because of the
constraints the virtual registers need to be assigned.

Live range splitting is a much better choice for handling constrained registers. By
introducing a new virtual register (and a copy to it) for the short time of the constrained
use, the constrained use doesn’t have any chance of interfering with other constrained
uses and is so short lived that it even isn’t a plausible spill target (see section 3.8.2).
In our example, it looks like this:
mov t5, t2
sal t1, t5 // t5 = cl
mov t6, t4
sar t3, t6 // t6 = cl

Here indeed t5 and t6 don’t interfere and are unspillable. If, like we assumed earlier,
t2 doesn’t live-out, then the best assignment would assign t5 the cl register (low 8 bits
of rcx), like this:
mov rcx, rcx
sal rax, cl
mov rcx, rdx
sar rbx, cl

Here it was possible to keep all values in registers. The first copy can be easily
optimized by subsequent peephole optimization pass.

48

. 3.8 Register allocation

Live range splitting is good solution for making register constraints not constrain
the register assignment much. The same ideas that apply to live range splitting apply
also here, in particular allocators which are unable to perform live range splitting on
demand should split constrained uses beforehand and coalescing may be able to remove
the copies if it turns out they are not needed.

Calling conventions also dictate the coordination of registers between the caller (call-
ing function) and the callee. Both want to use machine registers (and ideally all of
them), but if callee uses the registers, it overwrites values the caller has stored. For
that purpose registers are classified as either caller-saved (caller has to save the regis-
ters, if it uses them) or callee-saved (callee has to save the registers, if it wants to use
them).

The fact that a register is caller saved means that when a function performs a call,
it has to pessimistically assume that the callee changes all the caller saved registers.1
This can be modelled like an register constraint on the call instruction. For example
on x86-64, where for example rax, rcx and r11 are caller saved we can make the call
instruction define the registers:

call f % defines rax, rcx, r11 and others

Coincidentally rax is at the same time used for passing the return value, so it would
have been defined by the call instruction already. But rcx for example is used for
parameter passing and is thus as mentioned above used by the call instruction to model
that. Adding definition of rcx to the call means, that the caller shouldn’t expect the
rcx register to be preserved by the caller. While this model works well for correct
allocation, a lot of registers are caller saved and virtual registers that live through the
call can not be allocated to them. Callee saved registers are needed in that situation.
But for example on x86-64 there are 9 caller saved registers and only 7 are callee
saved, and out of those 2 are usually reserved for special purposes (stack and base
pointer). Having only a few available registers for values living across calls means very
high register pressure, which will have to be mitigated by spills. Spills are correct and
needed here, since if the registers are reserved for the caller, we don’t have any other
choice for storing values than memory. But naively spilling virtual registers everywhere
just because of high register pressure at a call site is not ideal. Once again this is a
place where live range splitting helps—just like splits around loops were useful, splits
around calls can be useful for minimizing damage implied by spilling virtual registers
at every use or definition.

Callee saved registers can be modelled through uses and definitions as well. Having
definitions of callee saved registers at the entry point of a function and uses at the
exit point (return instruction) models the fact, that the callee saved register has to be
preserved for the entire duration of call. This not only requires physical registers to be
somehow represented, but also blocks the callee saved register for the entire duration

1 The callee doesn’t necessarily change any of the caller saved registers, but it is allowed to do so. Calling
conventions are general, and don’t try to specialize for some cases. They are the interface functions need
to conform to, and allow code produced by different compilers to cooperate together. But if a compiler is
sure that the function doesn’t have to conform to the interface (perphaps because the function is static
and thus not callable by from other separately compiled modules), then it can can try to do better by
employing whole module register allocation, which considers register allocation even across the calls. Often
though a much simpler technique helps with calling convention constraints—not performing any calls at
all! Inlining the called function into the call site means that the registers used be the called function
are allocated as part of the function procedure and the calling convention constraints don’t apply at all.
Leaf functions (functions not calling other functions) are especially good candidates for inlining especially
because they don’t impose calling convention constraints themselves.

49

3. State of the art .
of the function. Live range splitting is again very useful here, because we can introduce
virtual registers for holding the values in callee saved registers during the function, e.g.
if we consider just rbx and r12:

mov t20, rbx
mov t21, r12
[...]
mov rbx, t20
mov r12, t21

This is much better, since the virtual registers can be spilled, which frees up a
callee saved physical registers, which can possibly be used by many (short lived) virtual
registers or perhaps just one virtual register with more uses and definitions which would
be more expensive to spill. The virtual registers introduced for callee saved registers
are in fact ideal spill targets—there is only one definition and one use, both outside of
any loop. Spilling them could look like this:

mov [rbp+s20], rbx
mov [rbp+s21], r12
[...]
mov rbx, [rbp+s20]
mov r12, [rbp+s21]

Here we refer to some abstract “stack slots”. If the stack slots are chosen well, push
and pop instructions can even be used for realizing those spills:

push rbx
push r12
[...]
pop r12
pop rbx

Which essentially gets us the code one would use to free up callee saved registers.
But modelling it through register constraints can nicely take care of only using the
callee saved registers when beneficial and so it is more flexible.

3.8.3.7 Register classes

On real world architectures almost always not all registers are equal. For example on the
x86-64 we have general purpose registers as well as vector registers (and also the floating
point registers, which are not real registers per se and because they are largely obsolete
we will not consider them further). Additionally, many actual hardware registers (like
rax) have parts which are accessible with different names (eax, al, ah).

We call the set of registers which are interchangeable in some context a register class
and the fact that a multiple names may access the same register register aliasing.

Most architectures like the x86-64 have apart from general purpose register class an
entirely independent floating pointer (or vector) register class. Dealing with indepen-
dent register classes is relatively straightforward—register allocation can be done mostly
separately. Though general purpose registers have a special status—they are used for
address calculations and spills address memory. In practice however, spill locations are
usually on the stack and CPUs are able to access relatively to the stack pointer (or base
pointer), so spills don’t influence general purpose register allocation.

A problem occurs when occurs when register classes overlap and are not independent.
Aliasing is one thing that makes register classes overlap—for example, on the x86-64
64-bit register (rax, etc.) overlap with 8-bit registers (al, etc.). This brings many

50

. 3.8 Register allocation

problems, since allocation of rax for example “blocks” both al and ah, while allocation
of ah blocks rax, but not al. Register class hierarchies, where the classes all not all
independent, require special handling.

The paper by Smith [Smith et al., 2004] is perhaps still the definitive treatment of
register classes in register allocation literature. We used similar terminology as them
in this section and further consider their approach in the next section.

3.8.4 Techniques
We have already seen a few things that can distinguish different register allocation
algorithms:. Handling of spilling (section 3.8.2.1),. Split or no split of allocation and assignment (section 3.8.3).
But there are others:. Scope: local vs global vs interprocedural vs whole program algorithms. Local algo-

rithms operate on singular basic blocks and use only information local to the basic
block to decide on register allocation. The limited scope makes the algorithms gener-
ally simpler and produces worse results then global register allocation, which allocates
registers to whole functions. Global register allocation is global in the sense that all
basic blocks are considered at the same time. The analysis is more complex, since
it has to handle control flow. Even techniques for allocating registers across func-
tion calls and whole programs exist. These can be less practical in practice, where
functions may be required to conform to a calling convention, which specifies how
arguments should be passed in function calls, what registers are preserved by calls
and where will the return values reside. We will not discuss techniques operating in
larger scopes than global (whole function, all basic blocks).. Quality vs speed. With no restrictions on time, we ideally would like to achieve
optimal register allocation. With the right definition of optimal, it can be possible,
but due to the difficulty of the register allocation, this approach is bound to be too
slow (in compile-time), although it would produce code that would be fast (in run-
time). In code compiled ahead of time, we can probably justify spending more time
on compilation to achieve better run-time, since it is expected, that the program will
run for some time and that the investment will return.

On the other end of the spectre we may want a register allocation algorithm that
runs very fast (due to constraints on compile-time), but in that case we can’t expect
good results (i.e. code that has fast run-time). This can be interesting for Just-
in-time (JIT) compilers, where the compile time is part of run-time and hence it is
not possible to spend much time on optimizations, because it is possible that they
wouldn’t pay off (though they could, we don’t know ahead of time).. Control flow sensitivity. Some global algorithms may completely disregard the ac-
tual control flow of the program and just use (global) liveness and/or interferences
to do register allocation and assignment. But use of control flow information in
an algorithm is likely to steer it to better results—spills in hot or nested loops are
undesirable. Control flow sensitive register allocation (not assignment) may for ex-
ample even try to purposefully do spills or splits before loops to make more registers
available in loops.

3.8.4.1 Local top-down and bottom-up

Two of the most basic algorithms for register allocation are described by Cooper and
Torczon [Cooper et al., 2004]. They operate only on single basic blocks, but form a

51

3. State of the art .
good baseline to improve upon. Also, surprisingly, their ideas of how to handle spilling
have their equivalents in more powerful algorithms.

Both algorithms investigate uses and definitions of virtual registers inside a basic
block, allocate some map some virtual registers to physical registers and spill the others.
They differ in how they choose which virtual registers to spill:

. Top-down. In the top-down view those virtual registers which are used most often
(i.e. their number of uses and definitions is the highest) should be the ones that get
assigned registers, others should be spilled.

While this is simple to implement, there are glaring problems. The algorithm
is not able to reuse registers—since it maps virtual registers to physical registers
one-to-one, it is not able to reuse a physical register once a virtual register becomes
dead.

Also, most instructions require at least some arguments to reside in registers, but
it can happen that top-down register allocator spills all used and defined virtual
registers of a particular instruction. To solve this, sufficient number of registers
has to be set aside and not be allocated, they will be used for realizing loads of
uses and stores of definitions of spilled virtual registers. This of course makes the
allocation results even worse, because only a lesser number of registers are available
for allocation, and spills may be introduced just because some registers are reserved
for spill code realization.. Bottom-up. In the bottom-up approach instructions are investigated in order, one by
one, and registers are allocated to supply the demand of each particular instruction.
In general, each instruction is an operation with multiple input registers and multiple
output registers. Hence for each instruction the algorithm ensures that input virtual
registers are allocated into physical registers and allocates registers for output virtual
registers.

It may seem, that since the algorithm operates on a single basic block, that each
use of an virtual registers should have a preceding definition, which should be the
one, which allocates register for it, and that allocation of registers for arguments is
not necessary. But it is necessary for handling spills—allocation of a physical register
(whether for input or output virtual register) may find that none of the registers is
free, so it has to choose one of the assigned registers, and spill it, by moving the
value from that register to memory. Later the spilled register may be needed again,
and so it has to be assigned register again and the previous value has to be reloaded
from memory into the new register. The newly allocated register doesn’t have to be
the old one. This is a great advantage of this approach over top-down, while spilling,
it is able to effectively split a live range and allocate it different physical registers or
memory locations.

Because the algorithm considers each instruction, it is able to much better deal
with machine constraints. For example, if an instruction needs its operand to reside
in a particular register, or puts the result in a particular register, then the allocator
may just forcibly allocate that particular register. One example of such constraint
are that of the shift instructions on x86-64, which require the shift size to be specified
in the cl register:

shl t1, t2 % t2 has to be allocated to cl

If we suppose that t1 already resides in a register (say rax), and t2 is already in
rcx (the register of which cl is the lowest 8 bits), then the allocator doesn’t have to
do anything:

52

. 3.8 Register allocation

shl rax, cl % t2 has to be allocated to cl

If t2 is assigned say the rdx register, and the value in the rcx register is no longer
needed, just a copy is sufficient:
mov rcx, rdx
shl rax, cl

If however, the virtual register which occupies rcx (say t3) is live after the in-
struction, then we need to find it a new register. And if conveniently t2 (the shift
amount) is not needed after the shift, then we can just reuse the newly freed rdx
register by swapping the registers:
xchg rcx, rdx
shl rax, cl

And so on. Similarly we could deal with platform calling conventions. For example,
if the called function needs arguments in registers rdi and rsi, then we might just
forcibly allocate them. If the function call doesn’t preserve other registers (like rax
or rcx), these registers should also be forcibly allocated—though the call-site will
not use them for anything, the called function might, and hence we need to preserve
values in them, and using the “allocate a register” mechanism, we elegantly also
handle the necessary spills.

When a physical register is needed and none is available, one has to be spilled.
Good choice is to spill the virtual register whose next use is the furthest away [Cooper
et al., 2004]. This is akin to Bélády’s MIN algorithm for page replacement [Belady,
1966]. The benefit of the approach is, that if we need to spill, the register we free
up will be available for other purposes for the longest time, hence it will hopefully
prevent other spills.

The bottom-up algorithm has to do two passes over the code—first one to derive
liveness information, second one to actually do the allocation. Liveness information
provides the information necessary for choosing spills.
An interesting twist to the bottom-up algorithm described by Mike Pall [Pall, 2009].

He does the allocation in a single pass over the code in SSA form, though in reverse.
In programs in SSA form SSA values naturally correspond to live ranges, and reverse
order is natural for computing liveness. Pall’s algorithm essentially combines register
allocation with the liveness computation. While iterating in reverse order definitions
are processed first, while uses are processed next, contrary to the bottom-up algorithm.
Also contrary to the bottom-up algorithm, where definitions was what derived the
assignment, it is the uses that drive the assignment in this algorithm. When a first
use of a virtual register encountered, it is allocated a register, and when (the only)
definition of a virtual register is reached, then it is freed. This is often better, since
more often the uses are constrained by machine constraints, so by discovering the uses
first, the allocation can be targeted more easily.

The problem with all these three approaches is that they are too local. Their versions
as presented above work only in a single basic block. Extensions to global (whole-
procedure) allocation are possible by using memory—a simple extension does register
allocation on each basic block separately and all virtual registers are stored at the end
of each block and loaded back at start of a each block. This still only requires only local
analysis, but produces very inefficient code. It is possible to improve this by performing
global liveness analysis and to store only virtual registers that live-out and to load only
live-in virtual registers. Though at the point where global analysis is feasible, some of
the global register allocation algorithms is probably feasible as well.

53

3. State of the art .
3.8.4.2 Linear scan

Poletto and Sarkar [Poletto et al., 1999] introduced o called linear scan register alloca-
tion. It can be seen as an extension of the bottom-up approach described in the previous
section (3.8.4.1). The canonical version of the bottom-up is able to allocate registers
only for a single basic block, because it depends on many of the linear aspects of basic
blocks, such as that the instructions are ordered, live ranges are also ordered and it
can be determined which is “furthest away”, so that something akin to Bélády’s algo-
rithm [Belady, 1966] can be used. Linear scan register allocation extends the bottom-up
approach to perform global (whole procedure) register allocation by imposing an or-
dering over the instructions by (globally) numbering them. This ordering induces a
linear sequence, where live ranges can be represented as simple intervals starting at
the number of the first instruction where the virtual register is live and ending at the
number of the last instruction where the virtual register is live. This essentially makes
the procedure into a single “basic block” on which something akin to the bottom-up
allocator can be run.

But the algorithm described by Poletto instead operates on the live intervals. The
algorithm orders the intervals by increasing start point and iterates over them. The
algorithm effectively iterates over the starts of live ranges, keeping the set of active
intervals (those whose start is before the start of the current interval, and end after the
current interval). For each encountered interval, those intervals in the active set which
end before the current interval’s start are expired and their registers freed, and a new
register is a allocated from the pool of free registers for the current live interval. If the
number of intervals live at some point exceeds the number of available registers a live
range needs to be spilled. Poletto and Sarkar choose to spill the live range which ends
furthest away—if that live range is the one which is currently being allocated, it is not
allocated a register, but a memory location instead, otherwise the current live range is
assigned the register of the spilled interval and the spilled interval is assigned a memory
location.

There are many problems with linear scan. It has been designed as a fast and simple
alternative to graph coloring register allocators (see 3.8.4.3), mainly for JIT compilers
which value greatly run-time of the compiler and can sacrifice run-time of the compiled
code. The relatively poor allocation quality is intentional.

The reasons for the poor quality is that live ranges are really really imprecise, since
this simple live ranges don’t represent live ranges truthfully—there may be many in-
structions in the middle of the interval, where the virtual register is not live. In fact
trivial live range [1, 𝑛], where 𝑛 is the number of instructions is correct for each virtual
register, but of course produces unsatisfactory allocations. Another problem is, that
unlike the bottom-up approach linear scan has more trouble with handling of spilled
code as well as machine constraints. This is because virtual registers (live intervals) are
assigned either a register for their entire duration, or a memory location. For use of the
memory locations in instructions registers have to be used, and a few registers would
have to be set aside for that (like with the top-down allocator from section 3.8.4.1).
Basic form of linear scan doesn’t handle machine constrains at all

While in some sense linear scan register allocation can be seen as a extension of
the bottom-up register allocator, it suffers from many of the issues of the top-down
allocator. Some of the follow ups on linear scan are much better suited to practice.
For example in [Traub et al., 1998] they are able to additionally deal with holes in live
intervals and can assign a multiple registers to a single live range (at different times)

54

. 3.8 Register allocation

and other approaches are able to better handle machine constraints and use properties
of SSA form [Mössenböck et al., 2002, Wimmer et al., 2010].

3.8.4.3 Graph coloring

Even though the idea of using graph coloring for register allocation is older, first notable
use of the technique is by Chaitin [Chaitin et al., 1981, Chaitin, 1982]. The core of the
idea is to construct an interference graph from the interferences of virtual registers—all
virtual registers become nodes in a graph and there is an edge between virtual registers
if and only if they interfere. Then on this graph we aim to find a coloring—mapping
of nodes to colors, such that no neighbouring nodes get the same color. In our case the
colors ultimately constitute the machine registers. Because edges designate interference,
it is guaranteed that no virtual registers that interfere are assigned the same physical
register. If we have 𝑘 machine registers available, then we are looking for a 𝑘 coloring—
the coloring needs to use at most 𝑘 colors (registers).

By reducing the register allocation to graph coloring we may seemingly not gain
much, since graph coloring is an NP-complete problem1. However in [Chaitin et al.,
1981] they rediscover a technique that can simplify and make graph coloring practical
for register allocation. It is based on the observation that a node which has fewer than
𝑘 neighbours can be always assigned a color distinct from all of its neighbours. Because
the node has less neighbours than there are available colors, even if all neighbours
used different colors, there would still be a free color left. This simple, yet important
observation is the base for their and derived techniques.

Since incorporating a node with degree (number of adjacent nodes) less than 𝑘 (a
so called insignificant node) into an already colored graph is easy, initially we do the
opposite—remove from the graph all insignificant nodes, such that later, in the reverse
process we can add them back to the graph and color them trivially. Removing low
degree nodes from the graph causes the degrees of neighbouring nodes to decrease as
well and may thus lead to more simplifications. In Chaitin’s algorithm this phase is
called simplify and the removed low degree nodes are pushed onto a stack. In the
final stage, called assign, the nodes have colors assigned in the reverse order simply
by popping them from the stack and assigning them a color not used by any of the
already colored neighbours in the now being rebuilt graph. Use of this heuristic is not
all saving—it is possible that after after simplification (removal of low degree nodes)
there will still be high degree nodes left. In that moment, push of any of the remaining
nodes on to the stack, could mean that there won’t be a color left for it. Chaitin’s
solution is to calculate spill costs of all the remaining high degree nodes, choose the one
with the lowest cost, mark it as to be spilled and remove it from the graph. Due to the
removal, the simplification process may find more simplifications, otherwise another
spill decisions may be made. The removal of the to be spilled node from the graph
simulates its replacement by loads and stores, which although will introduce new virtual
registers, they will have very short live ranges, with (hopefully) much less interferences,
so it suffices as an approximation.

Spill of any node means that the code needs to be updated with spill code, and the
register allocation process repeated. Since the program is now different, and new pseu-
doregisters were introduced to accommodate spill code, liveness analysis and building of
interference graph have to be repeated as well. Then simplification can be tried again.
This entire process is tried until the simplification is able to reduce the graph to an

1 In [Chaitin et al., 1981] authors argue further that register allocation is also NP-complete, this has
since been disputed [Bouchez et al., 2007].

55

3. State of the art .
empty graph, which is trivially colorable. Since each iteration is very expensive, it is
important that there can be multiple spill decisions made in a single simplify run, this
way the process can often finish in 1 or 2 iterations, if the first iteration successfully
finds all nodes that need to be spilled and the second iteration finalizes the assignment.
Being able to spill only one node on each iteration would mean that graphs with many
high degree nodes would need many expensive iterations to finish. Proceeding from
simplify only after all spill have been handled makes it possible to push only low degree
nodes, guaranteeing that in the reverse assign stage, every node popped from top of
the stack will have at least one free color.

But, it is possible to do better. The fact, that a node has a significant number of
neighbours doesn’t mean, that it will be uncolorable in the assignment stage. There
is a chance that the already colored neighbours will be assigned less than 𝑘 distinct
colors, in that case the popped node could still be colored even though at the time
it was pushed it was significant. Because of this, in simplify we may optimistically
try to remove and push high degree nodes on to the stack, instead of pessimistically
spilling them. If in the assignment phase it turns out that there isn’t a color left for the
popped node, we spill it only then. We call these pushed high degree nodes potential
spills, since they become actual spills spilled in the assign stage. This strategy is called
optimistic coloring and was devised by Briggs [Briggs, 1992, Briggs et al., 1994]. Even
in this strategy, it can happen that more than one (potential) spill will be necessary.
Like with Chaitin’s “pessimistic” spilling, the best possible node for potential spill is
the one with the lowest spill cost—first potential spill will be processed last in the
assign stage, and will encounter a more complete interference graph, than potential
spills pushed later, which are assigned colors earlier. Like before, we want to capture
all actual spills, before we repeat the whole process with spill code inserted. To do this,
in the assignment stage we don’t allocate the actual spills any color, just mark them
for spilling and proceed. This can make more some nodes neighbours of actual spills
colorable, since by not coloring the actual spill, they effectively have one less interfering
node. Like with Chaitin’s spilling in simplify stage, this approximates the actual effect
of spilling, which splits a single node into many temporaries whose interferences are
more local and hopefully easier to deal with.

As we have seen before (in section 3.8.2), spilling can always be necessary, reducing
the register allocation problem to graph coloring doesn’t change that. No matter how
𝑘 is big, there are always graphs which need more registers to be colored successfully.
Even an exact graph coloring algorithm that tries all possibilities can fail to find coloring
because of this. Spilling is thus not only due to Chaitin’s heuristic. Though the
heuristic even with Briggs’ optimistic coloring can introduce more spills than a more
exact algorithm would.

The interference graph is a really great data structure, because apart from being able
to represent the “live at the same time, and thus unallocatable to the same register”
constraints, it can express also other restrictions. Machine constraints and calling
conventions can both be modelled by interferences (edges in the interference graph) if
we also add physical registers as nodes. For example, we can force a virtual register
node to be allocated to a particular physical register by making it interfere with nodes
corresponding to all the other physical registers. This is often called precoloring. In
fact, since we need to be careful about not accidentally allocating physical register a
different physical register, we need to make all physical registers interfere with each
other, this way they are all guaranteed to be allocated their color (register). But
these additional constrains can lead to uncolorable (“overconstrained”) graphs if the

56

. 3.8 Register allocation

live ranges of precolored registers are too long. Since graph coloring maps each virtual
register to a single physical register, it needs the precolored live ranges to be short and
non-interfering, which can be done with live range splitting (see section 3.8.3.5).

But avoiding uncolorable graphs with splits means a lot of copy instructions, which
if allocated different registers, will not be optimized by peephole optimization and thus
can incur significant unnecessary overhead. This increases the need for coalescing (see
section 3.8.3.4). Chaitin already realized the need for coalescing. His solution [Chaitin
et al., 1981] was to coalesce every copy-related, non-interfering pair of virtual registers
in a pass called coalesce, before simplification. A pair of virtual registers t1 and t2 is
copy related when there is a copy (move) instruction between them (i.e. mov t1, t2
or vice versa), which captures the goal of eliminating these moves. The virtual registers
have to be non-interfering, since otherwise the coalesced node would be uncolorable,
and also, since the temporaries interfere, they wouldn’t be assigned distinct colors, and
elimination of the copy wouldn’t be possible anyways. Because of the non-intefering
criterion, we have to be careful not to create artificial interferences for the operands
of a copy instruction, for example mov t2, t1 alone shouldn’t imply that t1 and t2
interfere! Chaitin essentially does coalescing everywhere where it is possible and where
it might be beneficial. Because of its nature, this form of coalescing has later become
called aggressive. The problem with it, is that the node created by coalescing two
virtual registers has interferences of both of the former nodes, notably this means that
the node’s degree will be the sum of the two degrees and such nodes easily become
significant (“high degree”, not trivially colorable). High degree nodes are problematic
in the following simplify phase, because apart from being blocked from simplification
themselves, they prevent simplifications on a high number of other nodes. Often this
means spills of these high degree nodes. Aggressive coloring can make colorable graphs
uncolorable, and depends on spilling to make the graph colorable again. Since a spill
of a node essentially splits the node into many low degree nodes, this effectively undoes
coalescing, but also adds memory operations that weren’t there originally.

Briggs improved on this by employing so called conservative coalescing. Instead of
coalescing all nodes that can be coalesced, he uses a filtering heuristic, which allows
only those coalesces, that can’t make the graph uncolorable. The filtering is done
using a heuristic, because exactly predicting the effect on colorability is a hard problem
and would be too time consuming. Since the effect of aggressive coalescing can be so
severe, the heuristic was made conservative, i.e. it never allows coalescings which would
make the graph uncolorable, but may also not allow coalesces that would be perfectly
fine. The heuristic says that t1 and t2 can be coalesced only when the merged node
t12 would have no more significant (high-degree) neighbours, than 𝑘 (the number of
available registers). This implies, that after simplification of (low-degree) neighbours,
the node will have at most 𝑘 neighbours left, which makes it simplifiable itself. Though
it is easy to imagine a situation where a lot of the neighbours have common neighbours,
so simplification may do much better than conservatively assumed, and thus a lot of
the moves remain uncoalesced.

Appel and George [George et al., 1996] found that for their use aggressive coalescing
produced too many spills, while conservative coalescing was too conservative, i.e. there
were are too many uneliminated move instructions left, even though coalescing would be
fine. They suggest an improvement called iterated register coalescing. The idea is to still
use only Briggs’ conservative coalescing (to prevent making the graph uncolorable), but
instead of doing all the coalescing upfront, they iterate the simplify and coalesce phases
repeatedly. What is important is, that simplify precedes coalescing—this alone improves

57

3. State of the art .
the coalescing phase a lot, since the conservative heuristic is based on degrees of nodes,
and simplification can decrease them significantly (and Briggs’ coalescing heuristic is
too local to notice that otherwise). But importantly after coalescing there may be
nodes which become insignificant. For example, if t3 interferes with both t1 and t2,
and the two are coalesced into t12, then in effect t3 loses a neighbour and it’s degree
is decreased, and it might just become insignificant (“low degree”) and simplifiable
(leading to more simplifications, which in turn might lead to more coalescings, etc.).
While this may seem like a perfect positive feedback loop, it is important to recall, that
coalescing two nodes creates a node of higher (even significant) degree.

Park and Moon note that even iterated coalescing can be too conservative and not
combine nodes that could be safely combined. They also note that that the positive
effect of coalescing explained in the previous paragraph is not to be underestimated.
Their approach is called optimistic coalescing [Park et al., 2004], not to be confused
with optimistic coloring due to Briggs [Briggs, 1992]. Park and Moon’s idea is to do
aggressive coalescing like Chaitin did, to exploit the positive effect of coalescing, but
their improvement lies in being able to revert coalescing of a particular node, if it would
have to be spilled. Briggs’ optimistic coloring delayed actual spilling until the assign
phase, since by then it may turn out that the concrete assignment isn’t as unfavorable
as it could have be just by judging from the interference graph and the simplification
heuristic. Similarly Park and Moon moves decisions to not coalesce into the assign
stage, and they are able to do better just because the concrete assignment is known.
For example, in case a color is not available for t12 (the result of coalescing t1 and
t2), it may be possible to find a color for t1 or t2 (or both, though it will not be
the same color), which effectively undoes the coalescing. Though in practice, while
Briggs’ optimistic coloring improvement was simple addition and a sure improvement,
optimistic coalescing and especially an efficient implementation is not simple.

Smith [Smith et al., 2004] provides an extension to graph coloring allocators based
on Chaitin’s heuristic. They generalize it to support complex register class hierarchies.
They approach is general enough to handle all sensible (and thus actually existing)
register class hierarchies, include x86-64’s. Chaitin’s heuristic compares the degree of
node to the number of available registers (𝑘)—if the degree is smaller the node can be
simplified. With register classes the number of available registers is different per class
(which is determined based on the uses of the virtual register) and degree no longer
reflects the number of registers occupied by the neighbouring registers. The core of
their idea is pretty simple instead of comparing the degree to the number of available
registers, compare the maximum number of registers denied by the neighbours to the
number of registers available in the register class. Like Chaitin’s heuristic this is a
simple comparison just analogously extended to register classes and reflects the fact
that we can simplify (remove from graph) a register only if we can be absolutely sure
that there will be a color left for it in the assignment stage. However, the maximum
number of registers denied by the neighbours depends on the actual coloring—e.g.
assignment of rsi denies only sil, while rax denies both al and ah. Investigating all
colorings for each simplification is not feasible, however [Smith et al., 2004] describe
a safe approximation, which is as easy to maintain as the current degree of the node,
while being close to the actually possible maximum to not be overly pessimistic. The
changes to the new version of “degree” are based on the classes of the neighbours and the
decrements can be derived statically from the properties of the register class hierarchy.

Nice thing about Chaitin’s scheme (and Briggs’ improvement) is that even the in-
troduced spill code with new virtual registers gets the same general treatment as other

58

. 3.8 Register allocation

virtual registers - they are allocated by the next iteration of graph coloring, so although
the spill code needs to be inserted separately, it is not handled specially. The price for
this is that multiple expensive iterations may be needed to finalize the allocation. An
alternative would be to (like with the top down allocator in section 3.8.4.1) reserve a
few registers off the side and use them to perform the loads and stores around spilled
variables. This could be used to rewrite the program into final form after just one
iteration of the graph coloring register allocator. While this potentially saves multiple
expensive iterations, it is less flexible than coloring the spill code in a new iteration. In
particular, since the few spill handling registers have to be set off the side for the whole
program, we are not able to assign them, so in fact we are looking for a 𝑘 coloring for
a smaller 𝑘 than the number of available registers, which potentially means more spills
by itself. On architectures like x86-64, where some instructions only work with certain
registers there is another difficulty in choosing the on the side registers. If the registers
needed by the constrained instructions are put off the side, they would prevent any
allocation. But keeping them in the regular allocatable set would mean that they won’t
be available for handling the spills of the values constrained to such registers, the off
the side registers would have to be used to somehow swap the values with the needed
registers.

3.8.4.4 Graph coloring of chordal graphs

While graph coloring in general is an NP-complete problem, for certain classes of graphs,
it can be easier. Notable example are chordal graphs, which have posses useful proper-
ties for efficient graph coloring. It turns out, that chordal graphs are the exact class of
graphs for which exists a so called “perfect elimination order”. Importantly for graph
coloring, by assigning colors to nodes in the perfect elimination order, the graph can
be colored with 𝑘 colors in a single greedy pass—of course provided that the graph is
indeed 𝑘-colorable. Similar greedy coloring pass was the assign phase of Chaitin’s algo-
rithm [Chaitin et al., 1981], there the node ordering was determined by simplifications
based on a heuristic and colorability was ensured by spilling nodes. Perfect elimination
order can be found in 𝑂(𝑛2) time using the maximum cardinality search algorithm and
guarantees optimal coloring. Chordal graphs also offer improvements for spilling, be-
cause like with perfect graphs of which they are a subset, the number of colors needed
to color a chordal graph is given by the size of the largest clique. This is powerful,
because it gives the possibility to do enough of spills or live range splits ahead of time,
before actually starting with coloring.

The first application of these ideas to register allocation are due to Pereira and
Palsberg [Pereira et al., 2005], who noticed that 95 % of interference graphs in the Java
1.5 library had chordal interference graphs (when compiled with JoeQ compiler). The
algorithm proposed by them operates in a few independent phases:

1. pre-spilling. Spill code is inserted in order to decrease the size of the largest clique
to 𝑘, which makes it 𝑘 colorable.

2. greedy coloring. The graph is greedily colored without limiting the number of avail-
able colors.

3. post-spilling. If the number of used colors exceeds 𝑘, additional spills are done.
4. coalescing. Move related nodes are coalesced, if possible.

Both pre-spilling and coalescing are entirely optional—spills can be handled by post-
spilling phase and coalescing is not a necessary port of any register allocation algorithm.
But they both improve the quality of the generated code. In particular due to the
properties of the chordal graphs described above, pre-spilling is a much better place for

59

3. State of the art .
introducing spills, and if done properly, it is guaranteed that post-spilling doesn’t need
to do anything at all. Case when post-spilling comes into play are when the optional
pre-spilling isn’t run, or when non-chordal graph is being colored—Pereira and Palsberg
noticed that the same algorithm can be used also for non-chordal graphs, though the
register assignment is not optimal, it is competitive according to them [Pereira et al.,
2005].

One of the important benefits of the algorithm is, that it isn’t iterated, it finishes after
running each phase only once. Though to be more precise, the post-spilling phase is not
a single step—if more than 𝑘 are used, all nodes of one color are spilled (transforming
a graph using 𝑚 colors to one using 𝑚 − 1), so this needs to be iterated until the only
𝑘 colors are used. Though this is bounded, usually fast and may not be needed at all
if pre-spilling phase is run.

While there are interesting similarities to Chaitin’s classical approach, in particu-
lar being able to spill enough so that greedy algorithm can find a coloring, there are
also interesting differences—in Chaitin’s and derived algorithms coalescing is done be-
fore assignment, this can have both positive and negative impacts on colorability, and
different variations approached it differently. Pereira’s algorithm does all coalescing af-
ter assignment because after coalescing an interference graph can become non-chordal,
though they report that in their experiments their approach does better in coalescing
than Appel’s iterated register coalescing.

While Pereira’s algorithm can be used even for non-chordal interference graphs, fol-
lowing researched by e.g. Hack [Hack et al., 2006] showed, that programs in (strict)
SSA form have chordal interference graphs. This is seems like an excellent result, be-
cause SSA form is great for middle-end optimizations and it simultaneously seems to
be good for register allocation. Additionally SSA form allows much more efficient com-
putation of the liveness property. The basis structure of Hack’s algorithm is similar to
Pereira’s—do spilling before coloring to make the program 𝑘 colorable, then color the
graph in a perfect elimination order. However, there are substantial improvements: as
they prove that interference is directly connected to the notion of dominance deeply
associated with SSA, it is possible to derive the perfect elimination order from the con-
trol flow graph and dominator tree alone. Also, if we assume that copy propagation has
been run before register allocation, the only coalescing that has to be done on SSA is
the coalescing of 𝜙 node operands—by assigning the operands the same color as the phi
node, SSA deconstruction doesn’t have to insert any moves. However, in fact SSA de-
construction and coalescing have to be integral parts of their algorithm, since inserting
arbitrary moves for SSA deconstruction could make the graph non-chordal (and in fact
SSA incompatible) or increase register demand—which would be detrimental, because
now SSA deconstruction is done after register allocation.

The fact that Hack’s algorithm is able to take advantage of the many guarantees
of SSA form, is also it’s great disadvantage—it depends on the program on being
in SSA form, which is not the norm. Usually, compilers do register allocation only
after instruction selection during which concrete machine instructions are chosen to
implement the behavior of the SSA-based intermediate representation. Keeping the
𝜙 instructions in the later stages of the compiler means that the algorithms have to
respect parallel copy semantics of the 𝜙 instructions.

60

. 3.8 Register allocation

3.8.4.5 Reduction

Like with instruction selection, since register allocation is a very hard problem, it is
possible to leverage existing efficient methods for solving other problems through a
reduction.

The methods using reduction fully transform the register allocation problem to an
instance of another problem, then use (often an external) generic solver and then trans-
late the result back into a register allocation. This is a bit different from the graph
coloring register allocators, which use ideas of graph coloring, but can still be seen as
solving the register allocation problem directly—the coloring itself is only part of a
scheme that consists of also spilling and coalescing, which are not handled as part of
the graph coloring in an integrated fashion.

A notable example is reduction to integer linear programming by Appel and
George [Appel et al., 2001]. The characteristics of their approach are separation of
spilling, which is done upfront in the first stage, and extreme live range splitting, where
they split at every program point and then do register assignment and coalescing in
the second stage.

Scholz and Eckstein [Scholz et al., 2002] reduce register allocation to partitioned
boolean quadratic problem and solve it using a heuristic running in near linear time.

61

Chapter 4
Design and implementation

This thesis looks into practical issues of taking a modern middle end intermediate
representation and translating it to executable machine code of a real architecture, the
x86-64. This is not something that hasn’t been done before. The main benefits of this
thesis are doing it as part of a TinyC compiler. TinyC is like C, but simpler in some
aspects, though still keeping many challenges for implementations of middle ends and
back ends alike.

In the NI-GEN course at FIT CTU, where TinyC originated, students write compilers
from TinyC to Tiny86.

After careful consideration we set the following goals for the implementation of a
TinyC back end for x86-64 and the runtime:

. The compiler should explore how TinyC features translate to constraints of a real
architecture.. Execution on real hardware (x86-64 CPU) and operating system should be possible.. Advanced global optimizing techniques should be used.. Simplicity of the compiler structure and of the code shall be one of the main goals,
because the back end will serve as a demonstration of compiling TinyC to a real
machine architecture.. The source code should be readable by students of the NI-GEN course, who are
learning about compiler back ends.. The number of intermediate representations should be low. This will hopefully make
the code more digestible and prevents much of the code being just translations from
one IR to another.. The back end should not have many external dependencies, since while they may
simplify development and implementation, they hide details that are necessarily part
of the implementation. For educational purposes it is beneficial to fully show every-
thing.. The goal of this thesis is not true machine independence, as we target only one
architecture, but extensibility to other architectures should be considered.. The back end should be a separate program, independent of the TinyC front end.
This allows the TinyC front end used in the NI-GEN course to adapt to needs of the
course without having to worry about our back end. And on the other hand it allows
our implementation to define features which the TinyC front end doesn’t want to
have, but we need for runtime.. The produced x86-64 assembly should be optimized not only for machine consump-
tion by an assembler, but also for consumption by a humans—the assembly should
be approachable by students.. Since real programs rarely live in vacuum, the produced code should be able to
interface with the operating system and foreign code.. The back end targets real machine code, comparisons with other compilers will be
possible and the relative performance of our solution should be evaluated.

62

. 4.1 Architecture

Next subsections focus on the design and implementation of a TinyC back end for
x86-64. Many of the algorithms used in the state of the art compilers have been intro-
duced in chapter 3. This chapter focuses mainly on evaluating the algorithms and their
practicality and possibility of use in our back end and highlights the chosen architecture
of our back end (section 4.1). We also present data structures used for our middle end
and back end representations separately (section 4.3) and only then delve into how we
actually designed and implemented the individual components of our architecture.

4.1 Architecture
The input to our back end is a TinyC middle end IR, and the output is x86-64 machine
code. This gives us our two main interfacing points. Everything in between is the
goal of this thesis and the architecture should be designed to fulfill the goals presented
above.

Traditionally compilers have been split into three main parts—front end, middle
end, and back end (see section 3.1). Our compiler will have a bit of middle end (as
it constitutes the input) and focus mainly on the back end. Often these three stages
operate on completely different intermediate representations. In particular middle ends
usually aim for representation suitable for (machine independent) optimization and
often employs SSA form (see section 3.4). On the other hand, representations in middle
ends usually aim for producing the best machine code possible, thus they focus on
finding patterns in the compiled programs as well as the instructions sets, which allow
choosing the most appropriate instruction sequence.

4.1.1 Middle end

Our compiler will need to process output of the canonical TinyC front end implemen-
tation1, which is a middle end intermediate representation based on control flow graphs
(described in section 3.2.4) and is in value-based SSA form (described in section 3.4.1).

We will follow this design decision. Not only to keep it approachable for students of
the NI-GEN course familiar with the existing front end, but also because such repre-
sentations are still considered state of the art even today.

Because our compiler will be separate program from the existing TinyC front end,
we can choose how exactly to represent and even make a few design decisions that make
it appropriate for our particular implementation and its needs. These design decisions
are described more in later subsections (in particular 4.3.2 and 4.7).

4.1.2 Back end

Main interest of this thesis is the back end. As introduced in section 3.1 the main goal
of a compiler back end is to translate from a (preferably machine independent) interme-
diate representation into machine instructions that can be executed by the processor.

For instruction selection, back ends usually use a specialized intermediate represen-
tation. For example, in the case of instruction selection by peephole optimization, these
are the register transfer lists, or for tiling it can be trees, DAGs or general graphs.

While often register allocation is done on selected and ordered instructions, it doesn’t
have that many requirements on the actual IR. Though depending on the allocator, the
IR has to to easily support calculation of liveness, which for iterative data-flow analysis

1 https://gitlab.fit.cvut.cz/NI-GEN/ni-gen-23

63

https://gitlab.fit.cvut.cz/NI-GEN/ni-gen-23

4. Design and implementation .
requires the availability of control flow information, and the ability to iterate over used
and defined registers.

In our back end, we are dealing with the x86-64 architecture, its machine constraints
and calling conventions. Practical issues that limit us in our design are:

. Multi-output instructions like idiv (which produces both the quotient and the re-
mainder) are not truthfully representable with trees and require DAGs.. Some instructions like shifts require operands to be in certain registers.. Not only are there two completely independent register classes (the general purpose
registers and the “vector” registers), but both of them have aliasing subclasses which
allow accessing only parts of the registers and operands of concrete instructions are
limited to one concrete register subclass.

The register restrictions mean that register allocator has to either be able to represent
physical registers in addition to virtual registers, or otherwise be able to restrict register
assignment (like with precoloring in graph coloring register allocators, section 3.8.4.3).

Instruction selection is more decisive when it comes to intermediate representations.
Advanced intermediate representations like DAGs and register transfer lists also come
with additional problems—it has to be ensured that in every situation the nodes or
transfer lists are translatable to machine instructions. This is a big problem for ensuring
correctness.

The popularity of SSA for middle end optimizations and recent developments in the
field of register allocation on SSA form make it very appealing even for a back end.
However, methods for instruction selection on SSA are currently based on reduction to
other problems. Similar reductions are possible for other components of a back end.
Though for educational purposes, we want to focus on dealing with instruction selection
and register allocation directly, and not focus on heuristics for solving NP-complete
problems or offload the work to external dependencies.

For the very same educational reasons we also won’t use something like iburg [Fraser
et al., 1992b] to generate our instruction selector from a declarative description of the
architecture.

Considering all these requirements, we decided to use machine instructions as the
intermediate representation throughout the back end. This is based on several obser-
vations:

. We have to be able to represent machine instructions, since they are our output.. Often a peephole optimizer step is run on the machine instructions in the final stage
of a back end 3.3 and this is done over machine instructions.. Instruction selection by peephole optimization (described in section 3.6.2) is a very
competitive technique. It can also be used on a stream of machine instructions,
though data-flow has to be used to achieve better quality.. Correctness of instruction selection is more easily achieved if at all times the IR
directly corresponds to machine instructions.. Expressing machine constraints and calling conventions is straightforward in an IR
based on actual machine instructions.. Even though the machine instructions are machine dependent, their form and repre-
sentation can be machine independent, still allowing for potential expansion to other
targets.

If we use machine instructions for our back end, then full architecture of compiler
can consist of the following steps:

64

. 4.1 Architecture

. SSA deconstruction. Even though value-based SSA is convenient for the middle end,
in the back end we have machine instructions, which work with registers. We also
need to replace 𝜙-functions with equivalent copies.. Code generation. Translating from middle end to back end IR is often in general
called lowering, because often we transform from a higher level representation to a
lower level one. However, in our case, since back end IR represents the machine
instructions directly, we can just call the phase code generation, since it will generate
appropriate code for the target architecture. The code generator has to be machine
specific, because it handles machine instructions, as well as calling conventions and
other machine specific constraints.. Instruction selection. Even though we produced valid instructions, the instructions
are not necessarily the best possible ones. To improve the selection of instructions,
we employ instruction selection by peephole optimization, inspired by Davidson and
Fraser [Davidson et al., 1984a] (see also section 3.6.2).. Register allocation. To simplify previous stages of our back end, they will mainly
work with virtual registers, but they will also refer to physical registers to realize
machine constraints and calling conventions. Before the machine code is finalized we
have to rewrite the machine code so that it only refers to physical registers.. Peephole optimization. Assignment of physical registers may unlock new possibilities
for optimization. For example, due to coalescing (see section 3.8.3.4) copy instruc-
tions may become redundant, which can lead to other improvements, e.g. due to
instructions now fitting into a peephole window. Because we use the same represen-
tation, the same peephole pass can be reused with a little care.

Notably we omit from our design instruction scheduling. As explained in section 3.7.3,
modern implementations of architectures (including the x86-64) feature powerful out
of order execution. Also, considering the ever increasing gap between speed of memory
(and caches) and the processor itself, the chances of saturating execution units in a
processor are only becoming smaller. Instead of specifically optimizing the instruction
order for scheduling, we instead try to not introduce unnecessary additional dependen-
cies, which is what makes any code scheduling (static or dynamic) more complicated,
and the code ultimately slower on a superscalar processor. Notably this includes our
use of the setcc instruction, where we avoid partial dependencies.

More complicated instruction selection mechanisms on specialized IRs have problems
with ensuring correctness, because they may not be able to find a suitable instruction
for a piece of the IR (subtree, register transfer list). In an extreme case the IR can
be limited so that each piece of IR corresponds to one instruction. But, this has
to be ensured across all targets, thus limitations in one target limit an IR common
to all targets. Because we choose the initial instructions in the code generation step
based on the middle end IR, we have to ensure that all our middle end IR nodes
correspond directly to one or more machine instructions. This brings the limitations
to the extreme—our middle end IR is essentially limited by all targeted architectures.
This means that in the middle end IR we may have to limit ourselves to the most basic
RISC-like operations, which are offered on all relevant architectures.

Limiting middle end, based on target architectures might seem like a bad thing, but
we argue otherwise. A simple, regular RISC-like load-store architecture is easy to reason
about in the middle end, and in fact may be preferable even if we had a free choice.
Additionally, as seen in section 3.6.2, peephole optimization benefits from expansion into
fundamental operations, because it can match them together into machine instructions
based on the target architecture’s available instructions and capabilities.

65

4. Design and implementation .
In our case, that role could be filled by a very naive code generator, which would

generate the most simplest sequences of instructions and thus produce the “expanded
IR” the peephole optimizer could then operate on. This makes the code generator sim-
ple, because not much case analysis is required. A smarter code generator employing
more case analysis would even be undesirable, because it would hide low level patterns
that could have been exploited by the peephole optimizer. This is inline with observa-
tions made in [Davidson et al., 1984b], where they also describe lack of case analysis
in the lowering as a great benefit, and introduce the concept of an intersection ma-
chine, which implements only those operations available for all targets. Our middle
end representation can thus be seen as an intersection machine.

4.1.2.1 Assembly

We have decided on our compiler to output textual assembly instead of machine code.
While this means an external dependency, it is in our opinion a fair trade off, since
producing actual machine code (i.e. executable binary files) is matter of serializing
the machine instructions and adding headers depending on the executable format (like
ELF, or PE).

The job of the back end is not made much easier by omission of serialization. As
we also show in later sections, the compiler has to know exactly which instructions
it intends to emit, otherwise it could easily use non-existing addressing modes. This
distinction is in fact similar to the distinction of a mnemonic and an opcode (see sec-
tion 2.2.1)—while assemblers expect the human friendly mnemonics, the compiler al-
ready has to figure out the right opcode.

The most useful job of the assembler is then the implementation of the serializa-
tion rules, which are sometimes tricky on x86-64. But more usefully, it also handles
relocations, i.e. it adds notes for either the static or dynamic linker, which make the
application work with external code. Emitting our own executables would mean that
we could do without relocations altogether, but using external code is so interesting in
its own right, that we prefer to keep the possibility (see also section 4.10.1).

Our assembly still has to keep in mind what kind of executable it produces. For
example, we choose to output positional independent code, where we refer to procedures
and global variables with relative addresses. Position independence is (usually) required
for libraries, which get be mapped to different places in address space, and recently often
also for executables (due to address space layout randomization). By making our code
positional independent, we allow it to be linked into any external code.

4.1.2.2 Register allocation

The high level purpose of register allocation are simple—map virtual registers to physi-
cal registers. The details are much more complicated and explained in section 3.8. Here
we focus on how to do register allocation in practice on our back end representation
(machine instructions) for our target architecture (x86-64).

Since our back end representation is not in SSA form, we can’t use register allocation
techniques requiring it. Though possibilities to use SSA form even for machine instruc-
tions exist (see section 3.4.2), in our opinion, the technique is little too disconnected
from the traditional state of the art compiler structure, which deconstructs SSA before
register allocation. For educational purposes we don’t think it would be a great idea to
do register allocation on SSA form.

Local methods like top-down or bottom-up register allocation (section 3.8.4.1) are
unsuitable, because their local nature just doesn’t allow them to produce great register
assignment.

66

. 4.2 Technology

Linear scan, though a global algorithm, does also not quite fit our situation. As
mention in section 3.8.4.2, the algorithm was designed for JIT compilers, which care
very much about run time of the algorithm and for which more sophisticated methods
already available at the time were too slow. We are designing an ahead of time compiler,
which doesn’t have to worry about compile time as much as JITs do.

Reduction of register allocation to another problem is interesting and produces good
results, but as explained in section 4.1.2 we prefer to avoid reductions to another prob-
lems and instead like to stay close to the original register allocation problem.

Register allocation by graph coloring (see section 3.8.4.3 for more details) can also be
seen as a reduction to another problem. What makes it different, is that usually imple-
mentations of graph coloring register allocation stay specialized—they don’t just offload
the work to an external graph coloring solver, but they code specialized solvers exploit-
ing many particularities of register allocation like possibility of coalescing. Graph col-
oring register allocation also allows great flexibility with regards to machine constraints
and also offers solutions for handling complex register class hierarchies. For this reason
we think register allocation is the most suitable register allocation technique for our
purpose.

There are many different improvements to Chaitin’s original graph coloring register
allocation. For example, optimistic coloring is a big improvement, while being very
simple and efficient. Other improvements to Chaitin’s algorithm mainly focus on im-
proving coalescing and taking advantage of the special properties of interference graphs
(see section 3.8.4.4).

Ultimately, we decided to implement iterated register coalescing as formulated
in [George et al., 1996]. It has been regarded as the state of the art for a long time—
newer algorithms take it as a reference, for example [Park et al., 2004] or [Pereira et al.,
2005]. While optimistic coalescing seems great, it is not as straightforward extension
as optimistic coloring. In fact, the exact approach is asymptotically impractical, and
instead authors [Park et al., 2004] use heuristics instead. Graph coloring in perfect
elimination order of [Pereira et al., 2005] is in today’s eyes a remnant from time before
special properties of SSA were understood. As a result it would be much preferable
to use SSA-based register allocation due to [Hack et al., 2006], which also focuses on
machine constraints and other problems encountered by practical register allocators.

Other advantage of iterated register coalescing is that, like some other formulations,
but unlike for example [Pereira et al., 2005], it has an existing flexible and comprehensive
method for handling register classes due to [Smith et al., 2004].

4.2 Technology
Our choice of technologies mainly concerns the programming language for the imple-
mentation and any other dependencies.

4.2.1 Assembler
For the assembler, we chose NASM1. It is an assembler intended for consumption of
programs written by humans and because of this, the syntax is nice to read. Addition-
ally, it is available on wide range of platforms, which makes it an easy dependency to
obtain.

Other assemblers, like the GNU assembler, are not concerned much with human
readability of the assembly, as they mainly consume assembly produced by compilers.
1 https://www.nasm.us/

67

https://www.nasm.us/

4. Design and implementation .
Unfortunately, NASM, like other assemblers, cannot be linked in to our compiler as

a library, and we will have to either call it externally or leave it up to the users to
assemble and link the programs.

4.2.2 Programming language
We considered the programming language by several criteria:

. Suitability for compiler development.. Familiarity to the students of the NI-GEN course.. How easy it is to compile and distribute the compiler.

Languages like OCaml or Scala are great for compilers, because they offer pat-
tern matching and garbage collection, which both make compiler development easier.
OCaml, unlike Scala is not taught in any class on the Faculty of Information and tech-
nology. Scala programs are also in our experience not as easy to distribute (due to
dependencies on particular versions of either the Scala compiler or JDK).

We rejected emerging languages like Zig because they are still not stable enough and
students are not familiar with them.

We deeply considered C++, because it is the language TinyC front end is written
in. But, the language is improving much in each revision of the standard. Because of
that, there is not a single C++ to target—there is anything ranging from C-like C++,
to very modern C++20, which is sometimes not even fully supported, yet (especially
by older versions of compilers present for example on stable Linux distributions).

Ultimately, we decided to implement the software in C. C programs can compiled
and run basically anywhere. While the language doesn’t support any data structure
or paradigm well, it often means that we are able to choose the data structures most
suitable to our exact problem. Hopefully everybody studying a TinyC compiler is
already familiar with C.

Additionally, a back end written in C, can still be linked to and directly used by
other projects involved in the Tinyverse.

4.3 Data structures
Presenting the data structures before presenting the implementation details and needs
is a compromise. In practice in our implementation one motivated the other. Because
the high level ideas of the used algorithms used in our architecture (section 4.1) are
already explained in chapter 3, we hope that the design of data structures will be
understandable enough even if it becomes fully justified only in later sections.

4.3.1 Middle end
The entire middle end is based on control flow graphs (CFGs) and the idea of value-
based SSA form (presented in section 3.4.1). Most of the things a middle end works
with can be represented as values. Including functions (represented by their addresses,
i.e. they are pointers to code), blocks (also pointers to code), static variables (also
represented by addresses, i.e. pointers to .data or .bss sections).

4.3.1.1 Values

Representing everything with values is great, because it is uniform and easy to work
with. But there isn’t a single kind of value—there are potentially very many if we count
each kind of distinct operation as a separate kind of value. Different languages have

68

. 4.3 Data structures

different approaches for expressing the idea that a type has many different variants.
Object oriented languages like C++ use inheritance. There, we would have a top level
class Value and other classes like Function, BasicBlock or Constant that would inherit
from it. Each subclass would hold data (fields) appropriate for the particular kind of
value, but also fields inherited from the base class. Not only are different subclasses
of different sizes, but code often wants to work with them opaquely—as such it only
works with references to the values (either with real references or pointer as in C++
or through the classes being reference types in Java). Behavior supported for all values
is defined in methods on the top level Value class, but subclasses can override it (or
even may have to override it, if the method is abstract). Choice of the method is
achieved with dynamic dispatch often implemented with virtual tables. Adding new
value variants is easy and consists of introducing new subclass, which would override
the methods from its parent class as appropriate. Adding new behavior to values is not
that easy, since possibly all subclasses have to be touched and extended with method
overrides to handle the new behavior.

Languages which support algebraic data types support a “type that has different
variants” through sum types. With sum types, we can introduce a (top level) Value
which would be a sum type of the types introduced for all the variants (like Function
or Constant). Internally, this is usually represented either very similarly as the class
hierarchy, with a separate representation for the different variants, each having only its
fields. But there would be also one common field—the discriminator, a small integer
distinguishing the variants. Though sometimes more efficient representation consists of
a tagged union, where the sum type is big enough to store all the variants (like in a C
union), but still contains the discriminating integer (the tag). Since the representation
is uniform and the sum type has enough storage for all variants, it can be used to
represent the type directly, there is no need for a level of indirection (so for example,
array of Values would be an array of structs not array of pointers to structs). Behavior
would be implemented in functions, which would check the discriminator to choose the
behavior for the variant at hand. Many languages aid the discriminator checking with
more powerful pattern matching. Adding new behaviors is easy, since just one more
function is added. Adding new variants is not as easy, because all functions have to be
extended with the behavior for the new variant.

The class hierarchy and sum type approach are essentially complements each other—
one makes it easy to add new variants and the other makes it easy to add new behavior.
This is known as the expression problem [Wadler, 1998] and a lot of common languages
(including C, C++, Java, Rust and OCaml) don’t offer any easy solution. Since our
implementation language is C, which can implement both approaches, we can decide
on the approach freely and most appropriately to our use case.

Our Value type has a relatively fixed set of variants—there are arithmetic operations
and constants like functions, basic blocks and global variable addresses. Extending with
new variants is imaginable, but there isn’t a large space for extensions here—there are
just so many operations that a middle end can consider.

On the other hand, there are many different behaviors for middle end values. We
want to print them, translate them to potentially many different architectures, and
most importantly optimize them. There can be many different optimization passes over
the middle end. The optimizations can be largely independent and benefit from being
fully contained in a single place (either function or module).

For both of the above reasons sum types seem better for this use case. However,
we can achieve the same with class hierarchy thanks to the visitor pattern described

69

4. Design and implementation .
by [Gamma et al., 1995]. With visitor pattern we introduce a central dispatching
place—the base Visitor class. This makes it hard to introduce new independent
variants (the benefit of the class hierarchy approach), but allows new behaviours to
be introduced by subclassing the Visitor. Different visitors can be introduced inde-
pendently and also can group all the code implementing a single behavior, instead of
interspersing it all over the subclasses constituting the variants.

However there is still a difference in the two and it is in how we work with the variants
and how we distinguish between them. In a middle end optimizations often want to
check for the nature of the values. For example, a peephole optimizer may want to
check whether a value is an operation on two constants and replace it with a constant
equal to the result (constant folding). Elsewhere we may need to check whether a load
operation loads from a stack slot. This means that apart from checking the variant of
a single value, we often want nested checks. Sum types with their discriminator allow
such checks easily and languages with pattern matching allow even nice nested checks.
In a class hierarchy for such questions we would have to either introduce methods for
performing these checks (like isConstant or isLoadFromStackSlot) or employ some
mechanism of investigating the variants, like with dynamic_cast in C++ or instanceof
in Java (both of which are seen as very unidiomatic in their respective languages).

For our use of Values, sum types seem to be better match. But still, there are two
options of implementation—inheritance (through struct embedding) and tagged unions.
Ultimately we decided to go with inheritance for several reasons:

. Values are recursive types—values contain other values. For example an unconditional
branch “contains” (has as a field) the destination of the jump. And this is true for
essentially all operations which are just values produced from other values. Recursive
types usually have to be implemented with a layer of indirection (in C this is done
explicitly with pointers). Because of this, tagged unions which normally allow less
indirection are not that beneficial.. The sizes of individual values can differ greatly. For example there are usually not
that many functions, but we may need to store a lot of information about them. On
the other hand there may be many numeric constants, which essentially store just
their tag and the constant itself. Tagged unions would have required us to have all
the variants with the same size. Differences in size of the variants can be mitigated by
adding a level of indirection to same variants and represent them with pointers. But
having some variants with indirection and others not makes the structure slightly less
nice to work with and since we need the level of indirection because of the recursivity,
we may as well go with inheritance.. Tagged unions require all the types used to represent the variants to be listed in
the union. With inheritance new types can be introduced more independently, since
most consumers of the types don’t care about the size of a “Value”, they work with
pointers to values, i.e. “Value *”. Though the benefit of this independence is not
big, since the tags still have to be listed in one central place (commonly an enum in
C).

As of now the representation of Value looks like this:

typedef struct Value Value;
struct Value {

ValueKind kind;
u8 visited;
u8 operand_cnt;
Type *type;

70

. 4.3 Data structures

size_t index;
Value *parent;
Value *prev;
Value *next;

};

Value is the base type other other types used to represent values inherit from. As
such, it can have fields common to all variants, the obvious one being the discriminator,
called kind in our case. In our implementation we found it useful to have also other
fields:

. All values have a type (one of the TinyC types, e.g. “int” or “char *”).. Each value is given a unique index in its scope. For example, all operations in a
function have distinct indices in the particular function. Each function has a distinct
index from all other functions and basic blocks in one function also have distinct
indices. Indices are assigned from zero and serve a few purposes:. Textual representation (see section 3.4).. Assignment to virtual registers (see section 4.5).. Indices to off the side temporary arrays containing information associated with

values. Indices can essentially provide much faster and compact way of mapping
values to something, then for example a hash table could.
Since operations link to each other directly with pointers, the indices don’t have

much semantic meaning (except for the SSA deconstruction stage, where we violate
that a little bit, see section 4.5). This for example means that the assignment of
indices to values can be changed arbitrarily, without changing the meaning of values.. Each value contains a link to its parent. For example, operations link to basic blocks
they are contained in and basic blocks link to the functions they are in. This is can
sometimes be convenient.. Each Value has a link to next and previous one. This is mostly convenient for
operations, which due to our control flow graph based representation have to be
ordered. These links make up the explicit order. Since the linked list is contained in
the structure itself, this is an intrusive list, (as opposed to for example something like
a std::list<T> in C++, which is an extrusive list). Intrusive lists are a convenient
way for representing linked lists in C.. Even though not all values are operations, we still want to associate an operand count
with each value. For values which are not operations, this count is simply zero. For
some operations the operand count can be determined implicitly from the value’s
kind—for example multiplication has always two operands. But operations like phis
or calls, which can have different number of operands (depending on the number of
predecessor blocks or call arguments respectively) require the number of operands to
be determined in other way than just with a check of the value’s kind.

We are able to determine the number of operands for 𝜙 nodes through parent link to
a basic block, which stores the number of block predecessors. The number of operands
of a call operation could be determined from the type of the first operand (the called
function)—a function type also knows the number of arguments the function takes.
However this became problematic when function with variable number of arguments
became supported—for them the number of parameters is only lower bound for the
number of parameters. For this reason we started storing the operand count explicitly.. A visited field of values can be used by graph algorithms over values. This is used
for example by the depth first traversal which computes the postorder of basic blocks
in a function.

71

4. Design and implementation .
The choice of a linked lists instead of an array deserve a bit of attention. Oper-

ations in basic blocks are ordered through linked lists, because insertions, deletions
and reordering in the middle end are convenient with them. Since our middle end is
not complete and doesn’t actually do that much, this amount of flexibility is not fully
needed. But linked lists are convenient to work with in C, since C for example has no
conveniences for dynamic arrays.

With ordinary doubly linked lists, there is head and often also a tail pointer which are
like the entry points to the linked list—they are pointers from outside to the inside of the
list. However, these bring several special cases to an doubly linked list implementation.
For example a deletion of a first node in a linked list should (apart from changing
the prev field of the second node) change also the head of the linked list. Even a
construction of a list encounters a few special cases.

Circular doubly linked lists solve most of the problems. Since “last” node points to
the “first” and vice versa, there is no longer a special case. All nodes can be treated as
if they were in the middle. The problem with circular linked lists is that there can not
easily be something like a head pointer from the outside to the linked list—or rather
there could be, but it would bring back the special cases of non-circular doubly linked
list. But in our use case, we want to link together operations inside a basic block to a
linked list rooted in the basic block—a basic block should contain a pointer to the head
(or also the tail) of the linked list of instructions. Our solution is to make basic blocks
part of the doubly linked list of instructions they contain. This can be done, since basic
blocks inherit from Value as well and thus have next and prev fields and can be part
of the list. Then next and prev fields of the basic block serve as the head and tail
pointers to the list of instructions. But thanks to the linked list being circular, they
are updated transparently.

Because the next and prev fields of basic blocks are used for holding the instruction
lists, they may not be used to link together all basic blocks in a function, thus we need
to handle it differently (discussed in section 4.3.1.5).

4.3.1.2 Constants

Here we show how some concrete value variants are represented:

typedef struct {
Value base;
i64 k;

} Constant;

typedef struct {
Value base;
Str name;
Value *init;

} Global;

typedef struct {
Value base;
Value *operands[];

} Operation;

All values inherit Value through struct embedding. For consistency, all value vari-
ants inherit Value in a first field called base. This makes it easy to both down-
cast ((Global *) value) or upcast (&global->base), since for example pointer to
Constant and its Value base are the same.

72

. 4.3 Data structures

Both Constant (which represents actual integer or character constants) and Global
represent constant values. Their fields should identify them sufficiently. For numeric
constants, this can be done with a single field holding a 64-bit integer (the largest
size supported by TinyC). Global values are more interesting as they are named.
With external linkage, we need to preserve their names. Also, unlike normal variables
allocated on the stack, global values are special, because they may only be initialized
with constants. For simplicity, we store the initializer with the Global. If there is no
initializer (init is NULL), then the global variable is meant to be zero initialized (i.e.
it will be put into .bss section and the initializer doesn’t have to be stored in the
resulting binary). Allowing only constant initializers is the same behavior as in the
C programming language.1 Type of a Global is actually a pointer to the type of the
global variable—in a sense the value represents the address of the global variable, not
the global variable itself.

4.3.1.3 Operations

Operations are the main kinds of values which reference other values. Operations consist
purely of the base and an array of operands. The array of operands uses a feature of
the C programming language called flexible array member, which allows the array to
be part of the structure, but to be dynamically sized. This way, the same Operation
representation can work with arbitrarily many operands—though the structure has to
be dynamically allocated with the correct size. The actual number of operands is given
by the operand_cnt field of the base, as explained above.

This representation of operations is very uniform and allows tasks as iteration over all
operands very easily. This simplifies operations on the middle end representation quite
a lot and requires no case analysis, since values that don’t have operands simply have
operand_cnt of zero. Iteration over all operands is very common for many operations
on the middle end IR—printing, translation to machine code, use analysis, etc.

On the other hand, consider how much case analysis and special provisions for itera-
tion would have to be made if for example unary and binary operations were represented
like this:
typedef struct {

Value base;
Value *arg;

} Unary;

typedef struct {
Value base;
Value *left;
Value *right;

} Binary;

Though the advantage of this representation is, that operands are available through
human readable names like left and right. For our operation structure, this can be
remedied through macros:
#define OPER(v, i) (((Operation *) (v))->operands[i])

1 If a global variable were to be initialized with a non-constant value it would be questionable when the
value should actually be evaluated—for example the global variables should certainly be initialized before
main runs, but in what order, and how to run code before main? C++ allows non-constant initializers
and runs them through hooks which execute before main and which are offered by the C runtime which is
the one calling main.

73

4. Design and implementation .
#define UNARY_ARG(v) OPER(v, 0)
#define BINARY_LEFT(v) OPER(v, 0)
#define BINARY_RIGHT(v) OPER(v, 1)

Here the mapping of indices to binary or unary operation operands is reasonably
clear. But the macros are the are much useful in cases where there the order of operands
is not so obvious. These are mainly the operations which don’t correspond to classic
arithmetic, and which we introduce here:

. Load. The load operation has one operand, the address for the load, while the load
operation itself represents the loaded value.

#define LOAD_ADDR(v) OPER(v, 0)

. Store. Store operation has two operands, one is an address (target of the store) and
the other is the value that is to be stored. Unlike most other operations, store doesn’t
evaluate to anything—it is only useful for its side-effect on memory.

#define STORE_ADDR(v) OPER(v, 0)
#define STORE_VALUE(v) OPER(v, 1)

Currently, we model the fact that an operation doesn’t return anything with the
TinyC void type. This is not entirely correct, since the store operation itself rep-
resents a value, while void represents an absence of a value altogether. A bit more
flexibility could be achieved if the stores would be of the unit type, but so far we kept
the type system used in the middle IR to exactly the same as the one used for the
TinyC programming language.. Call. Call operation has as its first operand the function to be called (a value with
type of function pointer), and the arguments are in the operands starting at index
one. The call operation evaluates to the return value of the function and has its type.

#define CALL_FUN(v) OPER(v, 0)
#define CALL_ARGS(v) (&OPER(v, 1))

. Jump. Jump operations perform unconditional jump to a basic block. The basic
block is the only operand of the operation.. Branch. Branch operations perform conditional jump to one of two basic blocks,
based on a condition. The condition is stored as the first argument, the basic block
which is the destination in case the condition evaluates to true (non-zero) is the
second argument, and the destination in case the condition evaluates to false (zero)
is the third argument.

#define BRANCH_COND(v) OPER(v, 0)
#define BRANCH_TRUE(v) OPER(v, 1)
#define BRANCH_FALSE(v) OPER(v, 2)

. Return. There are actually two kinds of returns—those that return a value (i.e.
operand_cnt is 1) and those that don’t return a value (i.e. operand_cnt is 0).
Absence of a return value could also be represented with a return of a unit value of
the unit type, but this was again rejected to stay in line with the TinyC type system.

Currently, the type of the control flow changing (terminator) instructions is the
TinyC void type. Some languages employ a bottom type (sometimes also called zero
type or never type), which has no values and thus can be more suitable for representing
control flow changing operations, since they don’t ever return.

74

. 4.3 Data structures

4.3.1.4 Basic blocks

Basic blocks apart from being the heads of the linked lists of instructions through
their next and prev pointers in base also explicitly hold the predecessors through a
dynamically growable array:

typedef struct {
Value base;
MBlock *mblock; // link to corresponding machine block
Block **preds_;
size_t pred_cnt_;
size_t pred_cap_;
size_t depth; // loop nesting depth (0 means outside of all loops)

} Block;

In TinyC IR blocks can gain successors only through jump and branch terminating
operations. Thus block’s successors can be found implicitly by investigating it’s last
operation through the base.prev field. Explicitly storing successor blocks would only
lead to duplication, which can easily result in inconsistencies. One special value held
by basic blocks is the loop nesting depth which is used to calculate spill costs (see
section 4.9.7.1). There is also a link to a machine block, which is further explained in
section 4.3.2.

Other operation that deserves mention is the 𝜙, denoted with phi in the textual form
of the IR and often simply written as “phi”. They are deeply connected to blocks—
while still ordinary operations, their operands correspond to values from predecessors.
In our representation this correspondence is implicit: 𝑖th operand of a phi operation is
the value from the 𝑖th predecessor. This needlessly requires care from any code tries to
change control flow, and may encounter phi operations. However such code will always
require special care, because of the non-standard nature of phis.

4.3.1.5 Functions

Representation of functions is show below:

typedef struct {
Value base;
size_t index;

} Argument;

typedef struct {
Value base;
Str name;
Argument *args;
Block *entry;
Block **blocks;
Block **post_order;
size_t block_cap;
size_t block_cnt;
size_t value_cnt;
MFunction *mfunction; // link to corresponding machine function

} Function;

As mention in a previous section, we usually don’t want to iterate over the blocks
in some random order or the order they were created in. Instead, we want to iterate
over them in an order that is beneficial for performed analysis and optimization passes.
Often this order is either reverse postorder (where all non-cyclic predecessors are visited

75

4. Design and implementation .
before the block itself) or postorder (where a block is visited after all its non-cyclic
predecessors), which is useful for example for liveness analysis (section 4.9.1).

Postorder is easily computed with depth first search [Aho et al., 2006], and we store
it as an array of (pointers to) basic blocks. The array is dynamically growable, since
blocks can be added or deleted to functions. The only explicitly stored basic block
for a functions is the entry basic block. All useful blocks are (recursively) reachable
through it and listed in the postorder. By using the postorder to iterate over the
blocks, unreachable blocks are automatically skipped. Iteration over an array with the
postorder can be also done in reverse, so in a way a reverse postorder is simultaneously
also available.

Special values are function arguments. From the perspective of the called function
they are constants. Because of this, they don’t appear in the control flow graph in
basic blocks—they are not operations that run. Through pointers, other values like
operations can link to them freely, but since sometimes iteration over all arguments is
needed, they are also explicitly linked from the function itself. The number of function
arguments doesn’t have to be stored explicitly—it is derivable from the type stored in
base. Arguments could be linked in an intrusive linked list, but storing them in an
array and explicitly storing the index of each argument proved to be convenient.

Function with variable number of arguments are currently not allowed to be defined
in TinyC, but they wouldn’t require many special provision here—handling of variable
arguments such as with C’s va_arg is stateful (arguments are extracted one at a time)
and thus a corresponding va_arg would have to be an operation over a va_list, thus
no longer a constant, and very distinct from Argument.

4.3.2 Back end
This section describes the reasoning, motivation and design of the data structures core
to the backend. There are three main data structures in the back end which are intro-
duced in the following subsections:
1. Machine instruction (section 4.3.2.2).
2. Machine block holding a contiguous sequence of machine instructions (sec-

tion 4.3.2.3).
3. Machine function holding a linear sequence of basic blocks.

4.3.2.1 Registers

Before introducing actual data structures, we note how we represent registers. There
are two kinds of registers: virtual registers and physical registers. Not all compilers need
to represent physical registers, but we need to, since we use the same representation
throughout the back end, and use physical registers to express machine constraints
(see section 3.8.3.6) even before register allocation maps virtual registers to physical
registers.

Representing registers with integers, instead of some kind of rich object, has many
advantages:. They are small and easy to understand.. Data can be associated for each register with an array indexed by the registers. This

is compact, easy from memory management stand point of view, and provides great
cache locality from the point of view of associated data. Additionally, many different
kinds of data may be associated with the registers at different times.. Physical and virtual registers can be assigned different ranges of integers and thus
be distinguishable just by the numbers themselves.

76

. 4.3 Data structures

. Associating physical registers with low numbers can allow them to be used as bit
positions in bit sets packed into a 64-bit integer or similar, allowing register sets or
masks to be efficiently and concisely represented.

For these reasons we chose to represent integers with an integer type. Apart from
physical registers and virtual registers we have found need to represent “no register”.
A special integer value is suitable for this. In the end we decided on the following:

1. Special register value R_NONE is assigned the integer 0.
2. Physical registers are named symbolically through an enum as R_⟨name⟩ and are

assigned the indices 1 through the number of physical registers.
3. Virtual registers are all integers larger than the last physical register. They are

denoted with t and their number. For example on x86-64 our first virtual register is
t17 (since there are 16 physical registers). But we will take the liberty of using any
virtual registers in examples, even though on the x86-64 they might actually clash
with physical registers.

We considered representing virtual registers by the highest bit (or similarly with
negative numbers), but this doesn’t allow all registers to be used as indices. We found
representing the special register value with zero is sometimes convenient and sometimes
not—zero makes zero initialization automatically assign “no registers” and is convenient
in checks, but it shifts all physical registers by one, which makes the assignment not
consistent with machine encoding.

4.3.2.2 Machine instructions

Machine instructions usually consist of two essential parts:

1. Opcode. An opcode usually packs together a few things:. the operation itself,. the number of operands and their kinds.
2. Operands. Operand kinds are usually:. registers,. immediates,. and memory locations.

One possible representation for instructions contains the opcode and the operands,
where the operands also encode their kind. In such representations, tagged unions can
be used with advantage: the kind field in a structure encodes the operand kind, while
the (anonymous) union allows the storage for the data (“payloads”) of all the different
kinds of operands. This representation of x86-64 instructions is sketched here:

typedef u32 Register;
typedef u64 Immediate;

typedef enum {
ML_REG,
ML_REG_DISP,
ML_BASE_INDEX_DISP,
ML_RIP_DISP,
[...]

} MemoryLocationKind;

typedef struct {
MemoryLocationKind kind;

77

4. Design and implementation .
union {

struct {
Register reg;

} reg;
struct {

Register reg;
Immediate displacement;

} reg_disp;
struct {

Register base;
Register index;
Immediate displacement;

} base_index_disp;
struct {

Immediate displacement;
} rip;
[...]

};
} MemoryLocation;

typedef enum {
O_REG,
O_IMM,
O_MEM,

} OperandKind;

typedef struct {
OperandKind kind;
union {

Register reg;
Immediate imm;
MemoryLocation mem;

};
} Operand;

typedef enum {
[...]

} OpCode;

typedef struct {
OpCode opcode;
Operand operands[];

} Instruction;

Both registers (see section 4.3.2.1 for more details) and immediates are represented
directly with integer types.

Array of operands is represented with a flexible array member, which means that
number of allocated operands may be customized for each instruction. On x86-64,
instructions have at most three operands, so the array could be statically sized, if
wasting a bit of memory each instruction is acceptable.

The number of operands can be usually derived from the opcode. But this implies,
that two and three operand multiplications have to be distinguished by the opcode, even
though they use the same mnemonic in assembly. See section 2.2.1 for more details.

One problem with the representation is, that it allows invalid forms of instructions
to be easily represented. For example more than one memory operand is allowed, even

78

. 4.3 Data structures

though x86-64 only allows at most one. Since MemoryLocation is the biggest member of
the union, this also makes the struct larger than necessary if only one memory operand
is ever used.

The representation of x86-64 memory locations poses a bit of a problem, since there
are many ways of specifying a memory location (see section 2.2.3). In the usual SIB
mode essentially all components (the base register, index register, scale and displace-
ment) are optional. Having a variant for each combination soon becomes unwieldy—
not just to list the variants, but to work with them. For example a function checking
whether the memory location uses an index register would have to check whether the
kind of the instruction is one of the ones that use an index register. Iteration over
all involved registers is also a bit cumbersome, because the registers are mixed with
immediates and different variants of the union store registers differently.

Instead a more flat representation, where all the fields are in the struct (without any
unions) can simplify matters, because it is more uniform:
typedef struct {

MemoryLocationKind kind;
Register base;
Register index;
Immediate scale;
Immediate displacement;

} MemoryLocation;

This representation is however also problematic, because the union essentially be-
came implicit. Not all fields are valid, and this depends on the kind, which still has to
be investigated. Even iteration didn’t become much easier because of that. However,
the differences between the memory location variants are mostly due to fields being
optional.

Instead of deriving the validity of the fields from the kind, we could reserve one special
value for each field to mean that the field is actually not present. For displacements
this is very natural, since absence of a displacement is very similar to the displacement
being zero.1 For scale, similar thing applies—absence of scale and scale being one are
essentially equivalent. For registers a special value would have to be reserved meaning
that the register is not used. Normally, the compiler would have to be very careful not
to end up with an invalid combination of absent fields, but since with x86-64 memory
locations all fields are optional, it is not even a problem. The representation could thus
be simplified to:
typedef struct {

Register base;
Register index;
Immediate scale;
Immediate displacement;

} MemoryLocation;

Iteration over the registers is a bit easier—as long as the invalid register value is
handled specially everywhere, it is possible to iterate over both base and index un-
1 It is very different in the actual encoding of the instruction, since modes with displacement need the

displacement to be present even if it is zero. But this is a detail that can be handled by a future stage
of the compiler. Just like the fact that on the x86-64 the displacement can be either 8 bit or 32 bit.
Choosing the 8 bit form may be deferred to much later stage of the compilation. This is different with 64
bit displacements. Since no instruction allows 64 bit displacement, the late stage of compilation shouldn’t
ever need to encode such displacement, this should be handled in instruction selection phase, because
different instructions have to be used.

79

4. Design and implementation .
conditionally. Though still it is not ideal, because the iterator would either have to
be callback based or would have to employ code duplication to work on both of the
register fields. Arrays are much nicer for iteration, which leads to the following idea:

typedef struct {
Register reg[2];
Immediate imm[2];

} MemoryLocation;

Arrays are ideal for iteration. Though the problem is now accessing specific register
or immediate, because hardcoded indices have to be used to access them in the arrays.
Some kind of nested anonymous struct and union combination would have to be used
to make both possible:

typedef struct {
union {

struct {
Register reg[2];
Immediate imm[2];

};
struct {

Register base;
Register index;
Immediate scale;
Immediate displacement;

};
};

} MemoryLocation;

Or macros could be used to abstract away the ugly indexing:

typedef struct {
Register reg[2];
Immediate imm[2];

} MemoryLocation;

#define BASE(mem) ((mem)->reg[0])
#define INDEX(mem) ((mem)->reg[1])
#define SCALE(mem) ((mem)->imm[0])
#define DISPLACEMENT(mem) ((mem)->imm[1))

With either, we have essentially flattened the memory location representation to a
form that allows easy addressing of individual fields as well as iteration.

Going back to the full instruction representation, we can apply similar flattening
principles. In particular, we can also make the representation even more uniform, by
noticing that even memory locations, the most structured kind of operand, are made up
of just registers and immediates. And registers as well as immediates can be represented
by integers. Now the memory locations, immediates and registers can all fit into one
uniform structure containing an array of integer “operands”:

typedef long Operand;

typedef struct {
OpCode opcode;
Operand operands[];

} Instruction;

80

. 4.3 Data structures

The meaning of individual slots in the operands array could either depend on the
opcode, or be the same for all opcodes if we are willing to sacrifice memory and keep
representation of all instruction uniform—in that case the flexible array member could
also be replaced by fixed size array.

In the end, the following representation is what we chose for our implementation:

typedef u32 Oper;

typedef struct Inst Inst;
struct Inst {

Inst *next;
Inst *prev;
u8 kind;
u8 subkind;
u8 mode;
[...]
Oper ops[];

};

The split of opcode into kind and subkind is beneficial, because there are opcodes
that have very similar characteristics and handling them all at once through the kind
field is convenient. For example while there are 16 different conditional jump opcodes,
most of the time we don’t care much about the particular opcode (subkind), just the
fact that it is an indirect jump (kind). Other groups form nicely:

. binary ALU operations (add, sub, xor, and, or, test, cmp, imul),. unary ALU operations (not, neg),. shifts (shl, sar, ...),. conditional moves (cmovz, cmovl, . . .),. conditional jumps (jz, jl, . . .),. set on condition (setz, setl, . . .),. long division and multiplication (idiv, imul),. etc.

Conveniently conditional jumps, conditional moves, and conditional set instructions
are all based on the same 16 condition codes (see section 2.2.5), so subkind can be a
condition code for all three of these.

The mode field is what gives the meaning to the individual slots of ops (operands). In
theory, modes could just differentiate between the kinds of operands used. For example,
two operand instructions usually have the following modes:

. register, register. register, memory. memory, register. memory, immediate

However, for register allocation we want more information about the involved reg-
isters. In particular, we want to iterate over all the defined and all used registers
separately. Registers used for forming memory locations are only used, never defined,
even if the instruction is store instruction which writes a value—the value is stored to
memory, not to the register. But other register operands may actually be either both
used and defined, or one of those. For example, consider the following instructions:

mov rax, 1 ; rax just used
add rax, 2 ; rax used and then defined

81

4. Design and implementation .
imul rbx, rax, 4 ; rbx just defined, rax just used
cmp rax, rbx ; rax just used, rbx just used
mov [rax], rcx ; rax just used, rcx just used
mov rax, [rcx] ; rax just defined, rcx just used
xor [rbp+16], -1 ; rbp just used

Notably, add and cmp, which on the x86-64 are very similar and can be grouped
under the same kind, have a different mode even in the two register form: cmp unlike
add doesn’t write to the first register. The ability to tell this just from the mode alone
without investigating kind is one of the benefits of splitting them, instead of having a
single opcode field.

kind, subkind and mode are all small integers. And while they have their meaning
by themselves, other information may be associated with them by considering them as
indices into arrays with associated information for each. Such arrays can be used to
hold for example string representations of kinds and subkinds.

These “descriptor arrays” are more interesting for modes. They list for each mode
which part of the operands correspond to defined and which to used registers:

typedef struct {
u8 def_start;
u8 def_end;
u8 use_start;
u8 use_end;
[...]

} ModeDescriptor;

The def_start field gives the starting index of defined registers in ops, def_end the
index one past the last defined register. Analogously for used registers. In practice,
mode descriptors can look like this:

ModeDescriptor formats[] = {
// first only defined, first two used,
// e.g. add rax, rcx
[M_Rr] = { 0, 1, 0, 2, },
// none defined, first two used
// e.g. test rax, rcx
[M_rr] = { 0, 0, 0, 2, },
// first defined, second used
// e.g. mov rax, rcx
[M_Cr] = { 0, 1, 1, 2, },
// first defined, first three used
// e.g. add rax, [rcx+rdx]
[M_RM] = { 0, 1, 0, 3, },

}

The naming convention for modes has one operand per each letter after underscore.
Here the letter r means only used register, R used and defined register, C only defined
register and M stands for memory. This representation with indices is nice for x86-64,
because it allows overlap between the used and defined registers. For example, the first
mode uses and later defines the same register, hence it is covered by both ranges.

The reason for representing modes with small integers as indices into arrays, as
opposed to, for example, pointers to the descriptors (which would allow even more
opaqueness and similar target independence of the representation), is not only because
the integers can be much smaller than pointer, but ultimately in our peephole optimizer
we want to do pattern matching over the instructions. Small integers are more flexible

82

. 4.3 Data structures

in this regard: for example matching one of multiple modes can be done with bitwise
operations instead of sequential comparisons of pointers. The integers are also more
flexible since more tables can be associated with the same indices (or the same table
can be used for subkinds of different kinds of instructions, like with the condition codes
for cmovcc and jcc x86-64 instructions, which proved to be useful and elegant in the
implementaiton).

One of the important aspects of the representation is, that each register logically
present in an instruction is present only once in the representation. Alternatively a
different representation could have forbidden any overlap between used and defined
registers, and if a register is both used and defined, then it would be listed twice in
the representation. However, since there is only one register logically, only one of these
two would get serialized (e.g. or printed to assembly) and both of them would have to
be kept in sync. Keeping the two mentions of the same registers in sync is tricky in
situations like spilling, where uses and definitions of a register are replaced by loads and
stores through fresh virtual registers. In case a register that is both used and defined,
a single virtual register has to be used for both the load and store.

The layout of the ops used for x86-64 is illustrated in figure 4.1. The representation
fits operands for each mode into just 6 operand slots. Not all modes use all 6 slots, but
they are allocated with them nonetheless, since it makes it universally possible to just
change mode and some operands to transform one instruction into another. It also sim-
plifies memory management, because for objects of single size, memory fragmentation
is not a problem.

IREG IBASE IINDEX ISCALE IDISP

IREG1 IREG2 ILABEL IARGCNT

IIMMnext prev kind subkind mode

ops 0

IK IS IM

ops 1 ops 2 ops 3 ops 4 ops 5

Figure 4.1. x86-64 instruction representation

All 6 operand slots are needed for only one instruction: 3 operand imul with register
(1 slot), memory (2 register and 2 immediate slots) and immediate (1 slot) arguments.

Different slots are used for different purposes in different addressing modes. But the
assignment has been kept consistent as long as possible. For example, most modes have
one main register, which is always in the first slot. The single memory operand always
uses the slots 1 through 4. Slot 1 is also used in case there are two registers involved—in
which case memory operand is not used. The following macros are used to access the
operands:

#define IREG(inst) ((inst)->ops[0])
#define IREG1(inst) ((inst)->ops[0])
#define IBASE(inst) ((inst)->ops[1])
#define IREG2(inst) ((inst)->ops[1])
#define IINDEX(inst) ((inst)->ops[2])
#define ILABEL(inst) ((inst)->ops[3])
#define ISCALE(inst) ((inst)->ops[3])
#define IDISP(inst) ((inst)->ops[4])
#define IIMM(inst) ((inst)->ops[5])
#define IARG_CNT(inst) ((inst)->ops[5])

83

4. Design and implementation .
The fact that different slots have different purposes in different modes sadly makes

the representation a bit harder to understand. On the other hand, most of it is hidden
behind accessor macros and the really close to the encoding of the x86-64 instructions.
Of course the actual x86-64 encoding is much more compact. But for example the
following two instruction (load and store) are encoded in the same way in both the
backend representation and the actual x86-64 encoding:
mov rax, [rdx+2*rcx]
mov [rdx+2*rcx], rdx

In x86-64 serialization, the only difference is one bit in the opcode field (the direction
bit), while in our backend representation they have different mode (M_CM, i.e. register
and memory vs M_Mr, i.e. memory and register).

So far, the fact that Oper is defined as 32-bit unsigned integer has been neglected. It
may seem as a weird choice, considering that immediates are usually considered signed
by the architecture. In practice, there are two good reasons for this:

. Immediates for most x86-64 instructions are limited to 32 bits. So limiting them to
the same range makes it obvious that special handling of larger immediates is needed.. Unsigned integers have defined representation and behaviour in C, as well as on the
x86-64. With signed integers this is not true: C doesn’t define the representation of
signed numbers, while on the x86-64 signed integers use two’s complement representa-
tion. When, for example, evaluating constant expressions in the peephole optimizer,
the semantics of the x86-64 should be used, not the semantics of machine the com-
piler is running on. Two’s complement semantics should be used for immediates,
which is easier to do portably on unsigned numbers.

Notably the “move immediate into register” (i.e. mov rax, 1) is the only x86-64
instruction supported by our backend, which allows a 64-bit immediate. It stores the
immediate in two 32-bit operand slots. The large immediate is only accessible through
two accessor functions, which signalize the need for careful handling.

The fields of the Inst structure are usually accessed through macros:
#define IK(inst) ((inst)->kind)
#define IS(inst) ((inst)->subkind)
#define IM(inst) ((inst)->mode)

Naming is intentionally very terse, because especially in the peephole optimizer, they
are used a lot—in our opinion long names would bring no sizeable benefits. The “I” pre-
fix on all the macros stands for “Inst”, which accomplishes at least some namespacing
in C.

Another so far neglected aspect of the modes and operands were labels. Even though
ultimately all instructions compile out the memory location displacements into up to
32-bit numbers, some addresses are logically connected to (often named) objects. In
the following TinyC example, the address of the second field of a global variable has an
address relative to the start of the global variable:
struct S {

int a;
int b;

};

S global_struct;

[...]

84

. 4.3 Data structures

global_struct.b = 5;
[...]

We want to (or even need to) use RIP-relative addressing for global variables (see
also section 2.2.3. RIP-relative addressing uses the instruction pointer (rip) and a
32-bit displacement. However, the real displacement to global_struct.b or even to
global_struct is not known until after the final executable is linked together. As
a zero-initialized global variable, global_struct will be put into the .bss section.
During linking, .bss sections from all object files are merged into one .bss section, so
the real displacements cannot be known until all object files are linked together. Hence
earlier compiler stages need to somehow encode relative address without knowing the
final displacements. Without going into further details, in ELF object files this is done
through relocations. Assemblers usually support labels, for example our target NASM
would allow the following:

mov qword [rel global_struct + 8], 5

The rel keyword is important, as it forces RIP-relative addressing. The assembler
doesn’t write out the “label plus offset” information into the object file, it resolves
the address to a relative position in this object file’s (in this case) .bss section. Our
compiler has to use the NASM syntax with the label. But even if it did produce object
files directly, it would be necessary to associate the address of global variable’s field
with the global variable itself.

For this we use the concept of labels are used. Like other Opers, labels are just
integers. In this case each integer corresponds to an entry in a label array, which
has a pointer to a Value. Hence a label can freely point to global variable, function,
strings literal, etc. But importantly the label operand is stored separately from the
displacement operand—in a distinct operand slot. So there is still a displacement
involved, but only relative to the label. Since labels are only interesting in RIP-relative
addressing, which doesn’t use neither base, nor index register or scale, their slots can
actually be reused—label is stored inside scale’s slot and special register value in base’s
slot is used to signalize RIP-relative addressing. Displacement is stored in the same
way in both addressing modes. We currently use R_NONE as the special value for RIP-
relative addressing. This is convenient, because it is already a special case in a lot of
places in code. Slight problem is that this makes memory locations without the base
unencodable in our representation, but in practice we haven’t yet found much need to
have memory locations without the base other than the RIP-relative addressing.

Instructions also contain pointers to the previous and next one. Like Value in the
middle-end, they are linked together in an intrusive linked list. Linked lists allow arbi-
trary insertions, deletions and reorderings in the middle of a sequence of instructions,
which are exactly the operation a peephole optimizer does. Circular doubly linked list
is especially nice for these operations, because it has no special cases for insertion or
deletions at the end or the beginning of the linked list, simply because there is no real
start or end of the linked—every node may be presumed to be in the middle.

4.3.2.3 Machine blocks

To allow circular linked lists for instructions to work nicely the head of the linked list
(i.e. the pointer to the linked list of instructions) should also be part of the linked list
itself. With our middle-end representation this was fairly easy, since “instrucions” were
Values with next and previous links, and basic blocks were values as well, so the next
and previous links of basic blocks served the purpose of the “head” and “tail” fields.

85

4. Design and implementation .
Similar thing would be needed here to allow machine basic block to be the head of
the linked list, but also part of the linked list of instructions. This can be achieved by
“inheriting” the Inst struct in machine basic block struct:

struct MBlock {
Block *block;
size_t index;
// `insts.next` and `insts.prev` are respectively the head and tail of
// circular doubly linked list of instructions
Inst insts;

};

Adding Inst as field of MBlock means that it is now able to be part of the linked
list of instructions. The next and prev pointers serve as head and tail respectively.
Other fields like mode or kind are also inherited—special values can be reserved for
them and for example peephole optimizer’s pattern matching on instructions can then
transparently skip machine basic blocks, if it gets to them while investigating neighbours
of instructions. As a result of the representation, the rolling window in the peephole
optimizer actually transparently skips patterns that would reach out of bounds, because
basic block’s kind doesn’t match any usual pattern.

Other than that, currently a machine block just links back to a middle-end basic
block. Since currently the backend lacks the ability to do big changes to control flow,
it can reuse the control flow (successors and predecessors) of the middle-end represen-
tation.

Figure 4.2 shows examples of a few x86-64 as represented in a linked list of Inst
structures together with the head of the linked list an Inst in MBlock.

4.3.3 Work lists

Often we found ourselves in need of a data structure like a queue or stack, which would
additionally allow checks of presence of elements in the queue or stack. Such data
structure is called a work list and is used for example for liveness data-flow analysis
(see section 4.9.1).

A right set implementation is suitable for a work list. Especially in our case, where
our elements are mostly small integers (indices). A bit set, is very compact, but it
doesn’t support pushes or pops of elements efficiently.

In the end, we extended Briggs’ [Briggs et al., 1993] sparse set data structure into a
circular buffer. The result is a set, which allows fast presence checks, is fast to iterate
over (the elements are stored contiguously in an array) and to which we can either
prepend or append freely.

This one data structure covers almost all our needs for various different stacks, queues
and work lists. The only downside of the data structure is its memory inefficiency, so
we notably don’t use it to represent interference graphs (see section 4.9.5).

4.4 Critical edge splitting
Critical edges and their implications for SSA deconstruction are explained in section 3.5.
We don’t have to split all critical edges. From the perspective of our back end, only
edges to blocks with 𝜙 functions are problematic (see also section 4.5). But we choose
to split all critical edges, since later optimizations can undo the splits, if it turns out
they are not needed after all (see section 4.8.4).

86

. 4.4 Critical edge splitting

IIMMIREGadd t20, 5

M_Ri 20 5

M_CM 23

mov t20, t17

MOV M_Cr 20 17

mov t23, t20

MOV 20 0 0

M_Mr 19 23 3 410

IK_
18 0 - 8 15IMUL3

IREG1 IREG2

IK_

MOV

IK_

BLOK

M_

NONE

IK_

BINALU

IK_

MOV

R_

NONE

mov byte t23 + 8 * t10 + 4 , t19

MOV8
IK_

MOV

IREG IBASE IINDEX ISCALE IDISP

M_CMi
R_

RAX

R_

NONE

imul rax, t18 - 8 , 15

G1_

ADD

IREG IBASE IINDEX ISCALE IDISP

IREG IBASE IINDEX ISCALE IDISP

IIMM

Figure 4.2. A machine block with a few x86-64 instructions linked in a circular linked list

The splitting can be realized in a single linear pass over all basic blocks in a function.
For each block, if it has multiple predecessors, we check for each predecessor whether
it has multiple successors—if it does, we have found critical edge. The edge is split
by introducing a new basic block, which contains just one jump operation into the
successor, and has one predecessor—the original predecessor of the edge.

Full implementation critical edge splitting in our implementation is shown below.
The algorithm is rather simple and shows the use of our design and data structures.
In particular, we do the critical edge splitting on the middle end representation. This
is not only because splitting of critical edges is fully machine independent, but also
because we currently don’t allow all kinds of control flow changes in the back end
representation.

A few key points in the implementation deserve a mention:

. Iteration over blocks is based on reverse postorder, by iterating over the precomputed
postorder in reverse. New blocks are not added to the post order on the fly. We don’t
need to visit them in our algorithm, since they are created without critical edges.. Since the postorder isn’t updated during the run of the algorithm, it is updated after
the algorithm finishes.

87

4. Design and implementation .
. Adding an operation to the end of a basic block can be realized with a prepend_value

function, which prepends a value to a doubly linked list of values. Since the block is
the head of the circular doubly linked list of instructions, anything prepended to it
will become the last instruction.. We have to iterate linearly to find a predecessor/successor to replace in the list of
them.

void split_critical_edges(Arena *arena, Function *function) {
for (size_t b = function->block_cnt; b--;) {

Block *succ = function->post_order[b];
if (block_pred_cnt(succ) <= 1)

continue;

FOR_EACH_BLOCK_PRED(succ, pred_) {
Block *pred = *pred_;
if (block_succ_cnt(pred) <= 1)

continue;

Block *new_block = create_block(arena, function);
block_add_pred(new_block, pred);
Value *jump = create_unary(arena, VK_JUMP, &TYPE_VOID, &succ->base);
jump->parent = &new_block->base;
jump->index = function->value_cnt++;
prepend_value(&new_block->base, jump);

FOR_EACH_BLOCK_SUCC(pred, s)
if (*s == succ)

*s = new_block;

FOR_EACH_BLOCK_PRED(succ, p)
if (*p == pred)

*p = new_block;
}

}

compute_postorder(function);
}

4.5 SSA deconstruction
In the middle end we use value-based SSA (introduced in section 3.4.1) and also 𝜙-
functions. In the back end we work with machine instructions and virtual and physical
registers. Thus we need to map values to virtual registers (to be mapped to physical
registers later) and also need to replace uses of 𝜙-functions with copy (mov) instructions.

Assignment of virtual registers is simple in our representation. Because we already
assign an index to a Value for printing and array indexing purposes (see section 4.3.1),
we can use the integer indices directly as virtual registers. Since the virtual registers are
assigned directly from SSA form, the virtual registers will obey the single assignment
property and thus also correspond to live ranges for which we want to allocate registers.

In our design we will do SSA deconstruction on the value-based representation with
method 1 from [Sreedhar et al., 1999] (see section 3.5 for more details). Doing it on
the middle end value-based representation turns out to be more straightforward and is
also how Sreedhar’s method nominally works.

88

. 4.5 SSA deconstruction

Sreedhar’s method 1 consists of adding a copy instruction to each predecessor of the
block holding the 𝜙-operation and also an extra copy after the 𝜙 itself. Next all virtual
registers involved in the 𝜙-instruction itself are given the same virtual register and the
𝜙-instruction can be safely removed.

In our implementation we operate with values, not instructions themselves. So realiz-
ing copy instructions is not possible in the strict sense. Though we can introduce identity
operations. These are operations with single operand, that just copy the operand. Since
we will also be using the index field of values as the virtual registers, we can assign the
same virtual registers to all the identity operations (the to-be copy instructions), and
also replace the 𝜙-operation itself with a copy instruction, which copies from the same
virtual register by inserting a dummy value with the right index.

Consider for example the following function f, which returns 4 or 3 depending on the
truthiness of the first integer argument:

f:
v0: int = argument 0

block0:
branch v0, block2, block5

block5: block0
jump block4

block2: block0
jump block4

block4: block2, block5
v4: int = phi 4, 3
ret v4

We deconstruct the phi by introducing copies to block 2 and block 5 and changing
the phi to be a copy itself. All the copies need to be based on the same index (which
will become a virtual register):

f:
v0: int = argument 0

block0:
branch v0, block2, block5

block5: block0
v6: int = identity 3
jump block4

block2: block0
v6: int = identity 4
jump block4

block4: block2, block5
v4: int = identity v6
ret v4

Our value based SSA form always stays in SSA, since values can’t be assigned. But
by making the indices semantically meaningful, we can deconstruct the SSA with the
right assignment of virtual registers and identity operations that translate to copy (mov)
instructions.

Doing the SSA deconstruction on the SSA form has one significant advantage over
doing it on the machine form—the control flow graph is fully built already, and we can
easily just insert copies into predecessors. Doing it in the code generator would not
be as straightforward. We plan our code generator to be very simple and single pass.
Requiring copies in predecessor blocks becomes troublesome in such generator, because
at the time of lowering a block with 𝜙-operations the predecessor block may have not

89

4. Design and implementation .
been translated yet and there may be no place for the copy insertion! Alternatively, we
could flip the idea of SSA deconstruction, and instead of inserting copies into prede-
cessors while processing the block, we can insert the copies to the predecessors, while
lowering them—this is easier, since we base this on the existence of 𝜙-operations in
successor blocks in the middle end representation and don’t need the successors to be
already translated. However, in Sreedhar’s method we have to introduce a new virtual
register for the copies, and suddenly coordinating when and how the virtual register is
allocated becomes more messy than doing it in the middle end IR.

We considered even doing the two step copying method (see section 3.5), which works
well even when done when processing the predecessors—the two rounds of copies are
fully self contained in the predecessors, no indexes have to be changed or coordinated
elsewhere. However, as the two copy method puts a lot of unnecessary burden on
register coalescing, we decided to go with Sreedhar’s method 1 instead. Other methods
are able to save even more on future coalescing by inserting the copies in a smarter way,
by essentially doing the coalescing in the SSA deconstruction stage, but we haven’t yet
found the need to justify a much more complicated algorithm for not as that many
benefits. If we ever do, [Boissinot et al., 2009]’s approach is the way to go.

4.6 Live range splitting
Currently we don’t do any extra live range splitting. Deconstruction of 𝜙-operations
naturally introduces splits into a lot of places where they would be interesting—mainly
loops.

Still, we found that sometimes a spill of a variable also spills distant, uses of the reg-
ister. In these situations splitting could help to minimize the spilling damage. Splitting
around loops and function calls seems like an addition that could in some cases improve
the generated code. Especially for live-through registers, which are not split naturally
by 𝜙-operations.

4.7 Lowering
Code generation or lowering is the stage where we go from middle end (machine in-
dependent) representation of values to machine dependent instructions. We designed
our code generator to be simple, with no case analysis. It receives as input a RISC-like
value based IR and will transform it to RISC-like x86-64 machine instructions.

We mostly solved SSA deconstruction in section 4.5 and thus have already assigned
virtual registers. The lowering step should then simply go over the values in the control
flow graph one by one and translate them to corresponding instructions. For following
analysis in register allocation, we will preserve the basic blocks, and as we don’t have
to add any new basic blocks, the translation is done one-to-one in terms of basic blocks.
Not as much with instructions, where one middle end operation may require multiple
x86-64 instructions.

In section about implementation of SSA deconstruction (4.5) we claimed that for
values we simply use their index as the virtual register. So in order to transform an
operation like the following addition:
v5: int = add v3, v4

We want to emit an add instruction adding virtual register 3 and virtual register 4
into virtual register 5. However, there is no such instruction on the x86-64. We only

90

. 4.7 Lowering

have available two address code instructions (see section 2.2.1 for more details), where
the result is put into the first source register. We can only add virtual register 3 and
virtual register 4 into virtual register 31:
add t3, t4

To move the result into t5 we could add a copy instruction after:
add t3, t4
mov t5, t3

However, to also preserve the original value of t3 (since in general it may be needed
elsewhere), we do the copy before:
mov t5, t3
add t5, t4

We do similar translations for most of the ordinary binary operations. Unary oper-
ations are very similar, we go from:
v3: int = neg v2

to:
mov t3, t2
neg t3

Instructions which have special register constraints are realized through copies to or
from the required registers (see section 3.8.3.6), thus effectively we perform live range
splitting (explained more thoroughly in section 3.8.3.5). For example shifts require the
shift amount to be in register cl, i.e. the following:
v3 = shl v1, v2

needs to translate to:
mov t3, t1
mov rcx, t2
shl t3, cl

Another example is (signed) division which essentially requires the dividend to be
128 bits: lower 64 bits in rax, upper in rdx. Since we only need 64-bit division, we can
move the 64-bit dividend into rax and sign extend it into rdx with the special purpose
instruction cqo (“convert quadword to octoword”), which does exactly that. After the
division, the quotient is in rax and we need to move it to a temporary as well:
v3 = sdiv v1, v2

to:
mov rax, v1
cqo
idiv v2
mov t3, rax

In a RISC-like fashion, we base our operations on registers and don’t investigate
whether we can use a more suitable addressing mode. One problem is, that in the
middle end IR, we allow integer constants to be used directly in operations, i.e. this:
1 Notice that we use the letter t as in “temporary” for virtual registers to distinguish them from values

which are prefixed with letter v, however for readability and ease of implementation we keep the indices
themselves mostly the same.

91

4. Design and implementation .
v7: int = add v6, 1

Here v7 is an Operation whose first argument is another operation with index 6, and the
second argument is a Constant (see section 4.3.1). Operations are embedded in concrete
places in control flow graph and represent the value resulting from an operation, which
is only valid in the function (and to be concrete speaking only in operations strictly
dominated by the operation). But constants are not anchored anywhere in the control
flow graph (at least in our implementation). There are two practical problems with
assigning them virtual registers:

. Our virtual register assignments are not global across all functions functions, but
only per-function.. Even if we did for example assign the constant 4 the virtual register 4 across all
functions, later we would have to assign it a physical register. Blocking a physical for
storing constants is unacceptable, if only because much more constants can be used
than there physical registers available.

As opposed to operations, constants are always available. Because they are also
compile time constants, instead of assigning virtual registers to constants, we can mate-
rialize the constants to registers on demand, when needed—and each time into a new,
fresh, virtual register. This way, we not only keep the constants close to their uses
(allowing easier peephole optimization), but also keep the fresh virtual registers very
short lived. This way we alleviate much of the need for rematerialization of constants
in register allocation (see for example [Chaitin et al., 1981])—due to being short lived,
they are not great candidates for spilling, and many constants are easily folded into
other instructions through the use of better addressing modes.

For these reasons we don’t put constants like integers into control flow graph like
other operations, i.e. addition for two numbers wouldn’t be represented as:

v1: int = constant 1
v2: int = constant 2
v3: int = add v1, v2

but as:

v3: int = add 1, 2

For many of the constants (like functions, globals and string literals) we can also
choose either form, e.g. for functions:

v4: *(int) -> int = function f
[...]
v6: int = call v4, v5

But also:

v6: int = call f, v5

Materialization of constants has to be done every time we encounter the constant
being used as an operand. As our code generator doesn’t do any case analysis, it
suffices to materialize the constant into a register. For example, we would translate

v3 = add 1, 2
v4 = call f, v3, 1, 2

to the following:

92

. 4.7 Lowering

mov t10, 1
mov t11, 2
mov t3, t10
add t3, t11

lea t12, [f]
mov t13, 1
mov t14, 2

mov rdi, t3
mov rsi, t13
mov rdx, t14

call t12

Above, the first group of instructions realizes the addition including the materializa-
tion of constants. In the second group, the constants for the call are materialized—the
address of the function is loaded into a register, just as well as the constants. In the
third group, there are copies to registers imposed by the calling registers—i.e. first ar-
gument to rdi, etc. And finally in the last instruction the function is called indirectly
through a function pointer.

The code generated by our simple code generator is very inefficient, but produces
correct, obvious code, that can be improved upon in the peephole optimization stage.
The peepholer is not only more suited to do case analysis, but it can also do it across the
code expansions of more operations. For example, we could make the code generator
generate direct function calls (“label calls”) instead of indirect calls (“register calls”),
but we want to transform indirect calls to direct even in the case they didn’t seem as
direct at first, but only appeared so after other (peephole) optimizations.

Even use of immediates in instructions isn’t without case analysis: generally only
32-bit immediates (which are sign extended) are allowed for instructions. For example
the following the additions have different possible optimized versions:

v7: int = add v6, 2147483647

v9: int = add v8, 2147483648

lea t7, [t6 + 2147483647]

mov t10, 2147483648
mov t9, t8
add t9, t10

The code generation is mainly driven by a function called translate_value, which is
called in turn for each value in a basic block. The function is responsible for translating
the values anchored in the control flow graph, i.e. mostly the operations.

void translate_value(TranslationState *ts, Value *v) {
Oper ops[256];
Value **operands = value_operands(v);
size_t operand_cnt = value_operand_cnt(v);
for (size_t i = 0; i < operand_cnt; i++)

ops[i] = translate_operand(ts, operands[i]);

Oper res = v->index;

93

4. Design and implementation .
switch (v->kind) {
case VK_IDENTITY: add_copy(ts, res, ops[0]); break;
case VK_ADD: translate_binop(ts, G1_ADD, res, ops[0], ops[1]); break;
case VK_SUB: translate_binop(ts, G1_SUB, res, ops[0], ops[1]); break;
case VK_SHL: translate_shift(ts, G2_SHL, res, ops[0], ops[1]); break;
case VK_SAR: translate_shift(ts, G2_SAR, res, ops[0], ops[1]); break;
case VK_NEQ: translate_cmpop(ts, CC_NE, res, ops[0], ops[1]); break;
case VK_SLT: translate_cmpop(ts, CC_L, res, ops[0], ops[1]); break;
[...]
case VK_JUMP: add_jmp(ts, ops[0]); break;
[...]
}
}

}

Before any operation is translated, the operands are translated with the function
translate_operand—mainly translation of operands involves materialization of con-
stants. Then for each operation we translate it into a sequence of instructions using
the operands in registers and writing the result into a register. Our naming convention
names simple instruction constructors as add_⟨instruction⟩ and helper functions that
add multiple instructions translate_⟨kind⟩.

For example, the copy instruction has the following constructor, which initializes all
operands as well as the kind, subkind and mode:
void add_copy(TranslationState *ts, Oper dest, Oper src) {

Inst *inst = add_inst(ts, IK_MOV, MOV, M_Cr);
IREG1(inst) = dest;
IREG2(inst) = src;

}

And translation of binary operations is as follows:
static void translate_binop(TranslationState *ts,

X86Group1 op, Oper res, Oper arg1, Oper arg2)
{

add_copy(ts, res, arg1);
add_binop(ts, op, res, arg2);

}

There are not that many different kinds of operations from the perspective of the
x86-64, so a few helpers suffice to cover most operations.

4.7.1 Operands
The translation of operands with the translate_operand function is reproduced below
in full for clarity:
Oper translate_operand(TranslationState *ts, Value *operand) {

Oper res;
switch (operand->kind) {
case VK_BLOCK:

res = operand->index;
break;

case VK_FUNCTION:
case VK_GLOBAL:
case VK_STRING: {

size_t label_index = add_label(ts->labels, operand);
res = ts->index++;

94

. 4.7 Lowering

add_lea_label(ts, res, label_index);
break;

}
case VK_CONSTANT: {

Constant *k = (void*) operand;
res = ts->index++;
add_mov_imm(ts, res, k->k);
break;

}
case VK_ALLOCA: {

Alloca *alloca = (Alloca *) operand;
res = ts->index++;
add_lea(ts, res, R_RBP, alloca->stack_offset);
break;

}
default:

res = operand->index;
break;

}
return res;

}

Most kinds of values (i.e. all operations) don’t need anything special—our invariant
already puts them into registers. But constants like integer constants or addresses of
functions, globals or strings need to be materialized. As they are not assigned one static
register, we allocate a fresh virtual register with a simple increment of a counter. The
following are the instructions that get introduced with translation of operands:
lea t2, [f] ; function
lea t2, [G] ; global
lea t2, [$str3] ; string
mov t2, 34 ; constant
lea t2, [rbp-32] ; alloca

Basic blocks are represented with values in our implementation, but they are not first
class values. We don’t allow the address of a basic block to be taken.1

4.7.2 Stack slots
Currently stack slots are handled with Alloca, which is a weird mix between an actual
instruction (akin to C’s alloca) and a constant. We embed allocas in control flow, and
not hold them separately, like for example function arguments. But we also evaluate
them as constants, i.e. they don’t actually allocate memory dynamically.

We might fully switch to either the dynamic operation or static constant in the future.
For now it works for ordinary TinyC programs.

4.7.3 Prologue and epilogue
For prologue, we choose to always establish a base pointer rbp. The one free register
that we could gain by not using it as a base pointer is not worth it, in our opinion.
Establishing the stack frame is very useful for debugging and to human readers of the
code.
1 Some implementations of the C programming language, like GCC, allow taking the address of a label:
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html. With sufficient support in the front
end, our implementation could easily support this by translating basic blocks similarly as functions. After
all, in assembly they are just labels, and the only difference is in calling conventions.

95

https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

4. Design and implementation .
Hence all our functions are wrapped in:
push rbp
mov rbp, rsp
sub rsp, 42
[...]
mov rsp, rbp
pop rbp
ret

Additionally, in the prologue, we reserve the needed stack space with a sub instruction.
As we don’t yet known how much stack space will be required (because spills may be
introduced to the stack), we just add a dummy constant to be replaced later. We can’t
use zero, because peephole optimizer would optimize the instruction as unuseful.

Saves and restores of all callee saved registers were already explained elsewhere. But
importantly we also copy the arguments from the calling convention registers to the
virtual registers associated with the Argument. E.g. for the first argument with a value
index 17, we might emit the following copy instruction:
mov t17, rdi

This is yet another form of live range splitting. Though the situation is a little bit
different with arguments passed on the stack. There we issue a load instruction instead.
E.g. for the 7th argument:
mov t23, [rbp+16]

4.7.4 Narrow types
TinyC supports chars as well as ints. In our implementation we chose to go with
C’s semantics, where most narrow integer types get promoted to int before any other
operation.

As a result, in our type system and implementation, there are only two instructions
which know about 8-bit chars—loads and stores. For this we introduce special subkind
for 8-bit store (MOV8) and a sign extending load (MOVSX8). The stores naturally restrict
the range through the use of 8-bit register parts (e.g. al). Sign extension is able to
read a byte from memory and store it into a full 64-bit register.

4.7.5 Signedness
Our back end fully supports both signed and unsigned operations. This is currently
mostly unused, since TinyC the language has only signed types.

Interestingly, adding support for unsigned operations in the back end is just a matter
of adding the 4 unsigned comparisons to translate_value, as well as unsigned division:
case VK_UDIV:

translate_div(ts, res, ops[0], ops[1], SK_UNSIGNED, DR_QUOTIENT);
break;

case VK_UREM:
translate_div(ts, res, ops[0], ops[1], SK_UNSIGNED, DR_REMAINDER);
break;

case VK_ULT: translate_cmpop(ts, CC_B, res, ops[0], ops[1]); break;
case VK_ULEQ: translate_cmpop(ts, CC_BE, res, ops[0], ops[1]); break;
case VK_UGT: translate_cmpop(ts, CC_A, res, ops[0], ops[1]); break;
case VK_UGEQ: translate_cmpop(ts, CC_AE, res, ops[0], ops[1]); break;

Instead of performing sign extension with cqo, unsigned division can just zero out
the upper 64-bits of the dividend (rdx).

96

. 4.8 Peephole optimization

4.8 Peephole optimization
In our compiler, peephole optimization serves the roles of both the instruction selection
and the classic peephole optimization that runs as the last step of the backend for
code cleanup. This is because we chose to use a single back end representation—
machine instructions. Our peephole optimizer shall look at sequences of instructions
and replace them with better alternatives, where better is often faster, shorter, or even
just more canonical to allow subsequent optimizations. We should also be careful about
optimizations that transform code that doesn’t allow subsequent optimizations.

In the next few subsections, we will look at optimizations applicable to x86-64 ma-
chine instructions (or in general) and also into the implementation in our back end
(section 4.8.5).

4.8.1 Local optimizations

Local optimizations are the classic peephole optimizations based on small windows
peepholes into instructions. They are very limited, since they have only very local
knowledge about the code.

As mentioned when discussing coalescing (section 3.8.3.4), the register allocator tries
to assign virtual registers involved in the same move instruction the same physical
register. In that case we can end up with instruction like:

mov rax, rax

On the x86-64, copy instruction where the source is the same as destination can be
deleted freely, because they have no effect—they don’t even set flags.

For an implementation of this particular peephole pattern, we need to match the
exact opcode. In this case we need to match a mov from register to register. In our
representation of instruction (described thoroughly in section 4.3.2), we split the opcode
information into three parts: kind, subkind and mode. This split is especially targeted
at peephole patterns, where we can get a lot of patterns sharing the same kind, but
with different subkinds, or the patterns can be applicable to different instructions with
the same mode.

Kind (“instruction kind”, IK) for this pattern would be IK_MOV, subkind MOV1 and
mode M_Cr (i.e. first register only written, second register only read). And we also need
to check whether the two registers are the same. These checks don’t need to occur in
the order described here—as long as they all succeed, they can be done in any order,
however filtering first based on the kind and subkind can quickly filter out instructions
not worth checking.

The entire implementation of the pattern could be the following:

if (IK(inst) == IK_MOV && IS(inst) == MOV && IM(inst) == M_Cr
&& IREG(inst) == IREG2(inst)) {

inst->prev->next = inst->next;
inst->next->prev = inst->prev;

}

Here, the macros IK, IS and IM respectively allow terse access to the kind, subkind
and mode fields of the instructions (see section 4.3.2.2 for more details). If the pattern
matches, we can remove the instruction by unlinking it from the circular doubly linked

1 There are multiple variations of the mov opcode, in particular for different sizes (i.e. 8-bit vs 64-bit
loads/stores).

97

4. Design and implementation .
list by pointing the previous node’s next field to the next instruction and likewise for
the prev field of the next instruction.

There are more single instruction peephole patterns that are possible. For example
a comparison of a register with a 0:
cmp t12, 0

is the same as using test instruction (which performs bitwise and of the two operands
and sets flags based on the result) on the register with itself:
test t12, t12

This saves 4 bytes on the immediate 0. The implementation of the pattern can look
like this:
if (IK(inst) == IK_BINALU && IS(inst) == G1_CMP && IM(inst) == M_ri

&& IIMM(inst) == 0) {
IS(inst) = G1_TEST;
IM(inst) = M_rr;
IREG2(inst) = IREG(inst);

}

We check for kind, subkind, mode and then the special properties we are looking
for, in this case that the 32-bit immediate is zero. To realize the replacement of the
instruction we don’t have to allocate a new one and free the old one. We can use the
existing instruction and modify it in place. This saves as quite a bit of relinking we
would have to do, but more importantly it allows us to keep some fields unchanged,
which is really handy for some patterns. Here we for example don’t need to change the
first register—it stays the same for both instructions. In more complicated patterns
this can be more interesting—often we e.g. don’t care about how a memory operand
looks, we can just pass it through.

When considering peephole patterns we don’t need to just find just useful patterns,
they need to be reachable as well. For example, the transformation of comparison with
zero to test presented above is useful (produces shorter instruction encoding), but it
as of now, it is not reachable—our code generator never generates comparisons with
immediates.

In this case, immediate operands are in fact very common, because they can be
created with simple peephole optimization like this one:
mov t13, 0
cmp t12, t13

cmp t12, 0

This pattern is more general—certainly we don’t need it to be limited to just zero.
But we need to consider the fact, that on the x86-64 immediate operands can be at most
32-bit signed values, so “small” positive and negative immediates (which are the most
common ones) are applicable. The pattern is also not limited to the cmp instruction—it
will also work with add or sub. All of these are conveniently in the IK_BINALU kind,
since they have very similar addressing modes. But the mode is different—cmp like
test, but unlike e.g. add doesn’t write to any register—it just changes the flags. Thus
we don’t need to match for any particular subkind, but we need to check for one of the
two modes. Here an implementation could look like this:
if (IK(inst) == IK_BINALU && (IM(inst) == M_Rr || IM(inst) == M_rr)

&& IK(prev) == IK_MOV && IS(prev) == MOV

98

. 4.8 Peephole optimization

&& IM(prev) == M_CI && IREG(prev) == IREG2(inst)
&& pack_into_oper(get_imm64(prev), &IIMM(inst))) {

inst->mode = IM(inst) == M_Rr ? M_Ri : M_ri;
IREG2(inst) = R_NONE;

}

As hinted above, we check the current instruction (inst) for the right kind and mode,
but we also investigate the previous instruction (here designated by the local variable
prev). We expect it to be a mov with mode M_CI. The big letter I signifies a 64-bit
immediate—moves of immediates into registers are one of the very few instructions
where 64-bit immediates are allowed. Hence before applying this pattern we also need
to check whether the immediate from the mov instruction actually fits into 32-bit with
the sign bit. Here we do that, with helper functions which extract the 64-bit immediate
from two 32-bit Oper slots, and then try to fit it into the 32-bit Oper of the arithmetic
instruction. The function returns a boolean indicating success, but also performs a side
effect, for this reason we call it as last check. If successful, we update the mode of the
instruction accordingly—we will use mode with i for the second operand (since it is
now a 32-bit to-be sign extended immediate), and we preserve the use and def property
on the first register. Also, since generally we keep unset fields set to zero, we also set
the (now unused) second register field to 0 (or the symbolic constant R_NONE which is
defined to be 0)—we don’t need to do this, because as long as the mode doesn’t need
the slot, it is not going to be read, but the zero-initialized property is sometimes useful
and we chose to preserve it.

Unfortunately, the pattern shown above is still not very useful—it expects two the
immediate move and arithmetic instructions to immediately follow each other. But for
example subtractions are lowered into code like this:

mov t13, 10
mov t14, t12
sub t14, t13

then the copy in the middle prevents the pattern to match. Though if t14 and t12
get coalesced:

mov rax, 10
mov rcx, rcx
sub rcx, rax

the pattern will match after the redundant copy is optimized out:

sub rcx, 10

Though the code is better, and uses a better addressing mode, we missed an
optimization—by waiting until after register allocation, we had to allocate a physical
register for the short lived temporary. This could have caused a long lived temporary
to get spilled or at least makes the register allocation problem harder by keeping more
interferences. Thus we really do want to make optimizations in the first peephole
pass before register allocation. Here we can notice the pattern with the move in the
middle and introduce a three instruction pattern. The new pattern should probably
check fully that the middle instruction is a mov in the form we expect, or at least it
has to make sure, that the register with the immediate isn’t overwritten in the middle
instruction, which would make the optimization invalid.

Apart from register or immediate operands, instructions can also have one memory
operand. Instructions often use operands in memory—C variables are nominally stored

99

4. Design and implementation .
on the stack, just like spilled registers. Addresses of variables on the stack (through
alloca instructions) are constants in our implementation, hence are often very close
to their use, making it possible for simple peephole patterns to optimize the memory
access. For example, a load from a local variable might look like this:

lea t25, [rbp-24]
mov t26, [t25]

and can be easily optimized to this:

mov t26, [rbp-24]

This optimization is nicely possible, because the address computation in the lea
(“load effective address”) instruction uses the same memory addressing as all other
instructions referencing memory. Similar memory addressing optimizations are also
applicable for stores and operands of arithmetic instructions.

Peephole optimizations don’t only involve simple identities or addressing mode
changes. Opportunities arise for example for elimination of a load from just stored
address:

mov [G], t27
mov t28, [G]

Instead of loading from the global variable G, it would seemingly be possible to use the
register t27. However, all uses of t28 currently refer to t28 and we can’t easily changed
them without additional bookkeeping. Merging the registers into one practically is just
like coalescing, and we can encourage the register allocator to coalesce just by rewriting
the load into a copy:

mov [G], t27
mov t28, t27

The advantage to leaving the coalescing to the register allocator is, that it has the
knowledge about interferences and will not combine t28 with t27 if they interfere (see
section 3.8.4.3). Virtual registers which interfere are live at the same time at some
point, and can’t share a single physical register. Our limited view in the peephole
optimizer doesn’t allow us to tell if the optimization would be safe, so we always stay
with safer copies if applicable.

4.8.2 Flag based optimizations
Well known arithmetic identities like addition of zero or multiplication by one are often
folded in the middle end. Though, with an optimizing back end, opportunities for such
optimizations often arise again. Hence our peephole optimizer should be able to do
them as well. They are not as straightforward though. Take as an example addition
with zero:

add rax, 0

While the register rax isn’t changed by the instruction at all, the flags register gets
updated based on the result of addition—in this it will reflect rax. If a later instruction
depends on the flags, we can’t just delete this instruction.

Similar need for flags prevents the use of lea for arithmetic, because unlike arithmetic
instructions the lea instruction doesn’t set flags. I.e. the following addition:

mov t26, t18
add t26, t34

100

. 4.8 Peephole optimization

can only be optimized to the below lea if the flags are not observed after the add:

lea t26, [t18+t34]

Normally our code generator doesn’t generate lea instructions except for materi-
alization of constants (see section 4.7). However, as shown in the previous section
(section 4.8.1), we are able to transform uses of leas in loads and stores or other in-
structions that allow memory operands. So transforming address calculations involving
add or imul into lea instructions is important to allow these better addressing modes.
Transforming even ordinary arithmetic (i.e. not address calculations) into lea instruc-
tions is also almost always an improvement—lea unlike most other instructions can
write a different register than any of the read registers, so its use may constrain register
allocation less.

As our code generator doesn’t do any case analysis, it inserts explicit cmp instructions
to set the flags. Thus we could perform the optimizations described above freely. But
then we would have to give up the optimizations that are able to use the flags. For
example a loop might be decrementing a register until it becomes zero:

sub rax, 1
test rax, rax
jz .L3

Using test to set flags according to rax’s value is redundant, since the flags are
already set by the previous arithmetic instruction. The instruction sequence above is
not unreal—we have shown how optimizations can replace comparison with zero to
test with itself in section 4.8.1.

Ideally we would like to support both kinds of optimizations—removing redundant
settings of flags when the flags are already set by arithmetic instructions, as well as
making use of instructions not setting the flags if the flags are not needed. For this
we need to track whether flags set by an instruction are observed. We do that by
introducing three flags to each instruction:

struct Inst {
[...]
bool writes_flags;
bool reads_flags;
bool flags_observed;
[...]

};

And then compute the flags_observed property based on how the instructions read
and write flags in a single backwards pass over a basic block:

bool flags_needed = false;
for (Inst *inst = block->insts.prev; inst != &block->insts; inst = inst->prev) {

inst->flags_observed = flags_needed;
if (inst->writes_flags)

flags_needed = false;
if (inst->reads_flags)

flags_needed = true;
}

This way instructions which set flags needed in the future, as well as instructions
through which needed flags pass through are marked. More complicated data-flow
analysis is not needed, since we don’t ever assume anything about the state of flags at

101

4. Design and implementation .
basic block starts and can thus assume the flags are not needed at the end of a basic
block.

The boolean flags on Inst are flexible, but perhaps unnecessarily since whether the
instruction writes or reads flags could be derived from the instruction kind. But since
in our implementation instructions had spare space for the two flags due to alignment,
we didn’t yet find the need for such improvement.

Now with sufficient information, we may realize simple arithmetic identities like ad-
dition of zero or multiplication by one: depending on whether the flags are observed,
we can either remove the instruction completely, or change it to test of the register
with itself. test is a better way of setting the flags then an arithmetic instruction, if
only because it doesn’t involve an immediate.

The information about flag observation can be used for even more optimizations. For
example, cmp and test instructions can be removed if the flags set by them are not
observed:

cmp t3, t5 // can be deleted if flags not observed

Some instructions are problematic with regards to flags. For example inc and dec
instruction don’t set the carry flag, but do set other flags and shift instructions (like
shl) don’t set the flags when the shift amount is equal to zero. The special behavior
of inc and dec isn’t that problematic, since we currently don’t use the carry flag for
anything. Shifts are more problematic, since if we expect them to set flags and optimize
based on that like above, we might actually get into situation where the flags are not
set and instead a previous incorrect value of the flag register would be read. For this
reason we don’t set writes_flags for shift instructions. This way, if flags are needed
after the instruction, the peephole optimizer will be forced to leave the cmp instruction
inserted by the code generator. This will then be marked as pass-through of flags by
our algorithm above, though this isn’t a problem with code patterns generated by our
generator, where we always set flags and read flags in the same expansion, not across
expansions.

4.8.3 Use-def based optimizations

In section 4.8.1 we showed an addressing mode optimization, which took an immediate
move instruction or lea loading an address of local or global variable and folded the
constant into other instruction. For example from:

mov t13, 0
cmp t12, t13

to:

cmp t12, 0

However, there are a few problems with this optimization:

. The optimization is actually incorrect. We can’t remove the definition of t13, since
there may be other uses of the register. In practice, since during code generation we
materialize constants for each use (see section 4.7), there are no other uses of the
constants. But other optimizations can change that.. It is not powerful enough. The optimization only takes place when there are two
(physically) consecutive instructions.

102

. 4.8 Peephole optimization

We can improve on both points by tracking uses and definitions. We call this use-def
based peephole optimization. Our approach and idea are pretty simple: for each register
we track the number of definitions, the number of uses and if there is only one definition,
then we also track the defining instruction. These properties are precalculated once,
before the peephole pass, and in the implementation we actually do it as part of the
backwards pass over blocks where we track flag information.

This information about the number of definitions and uses allows us to remove in-
structions that define a register with no uses (provided that the instruction doesn’t
have other side effects). Such peephole pattern may be even as abstract as this:
if ((IM(inst) == M_CI || IM(inst) == M_Cr || IM(inst) == M_CM

|| IM(inst) == M_Cn) && use_cnt[IREG(inst)] == 0) {
def_cnt[IREG(inst)]--;
for_each_use(inst, decrement_count, use_cnt);
inst->prev->next = inst->next;
inst->next->prev = inst->prev;

}

Here we check the mode of the instruction and if is one of those that define the first
register, and the register has no uses, then we can remove the definition by unlink-
ing the instructions and decrementing the definition count of the register. To allow
further optimizations, we also decrement the use counts of the registers used in this
instruction—which may in effect lead to them being unused—though the implications
of this on the peephole optimization are only discussed later, in section 4.8.5.

The tracking of the single definition is more interesting for thorough addressing mode
improvements. For example, we can for an instruction in one addressing mode (say
using only registers) check, whether e.g. the second register is defined as an immediate
that fits into 32-bits, or a memory location computed using lea, etc. and use these
definitions directly in the instruction with a better addressing mode. Additionally, if
the original register with the constant is used only once, the definition can be deleted.
With a right set of functions that abstract the check for constant definition and the
folding, we can specify the peephole optimization patterns in a pretty terse way. Just
for illustration:
if (IK(inst) == IK_MOV && IS(inst) == MOV && IM(inst) == M_Mr

&& try_replace_by_immediate(mfunction, inst, IREG2(inst))) {
IM(inst) = M_Mi;

}

Above, if the instruction is a store instruction (moving a value from register to
memory location) and the register is actually a 32-bit constant, then we can change the
addressing mode to “memory-immediate”. The helper function takes care of checking
the (single) constant definition and packing the immediate into IIMM(inst), which can
of course fail if the constant cannot be expressed as a 32-bit signed number. And just
for completeness, the folding of memory locations can be done like this:
if (IK(inst) == IK_MOV && IS(inst) == MOV && IM(inst) == M_CM

&& try_combine_memory(mfunction, inst)) {
// all work done by `try_combine_memory`

}

The above pattern can fold the memory location of the address in a load instruction.
I.e. to go from the following:
lea t25, [rbp-24]
mov t26, [t25]

103

4. Design and implementation .
to:

mov t26, [rbp-24]

The function try_combine_memory is actually pretty involved, because it not only
allows folds of constants, it tries to combine any two memory locations together. The
function doesn’t care about the actual addressing mode of the instruction the peephole
executes on (i.e. the fact that it is a load in the example above), it only looks at the
memory specification. If the base register used in the specification (t25 above) has only
one unique definition, which is a lea instruction and the base register of the lea (rbp
above) is either R_NONE (meaning that RIP-relative, i.e. label addressing is used) or
rbp1 or other register with one unique definition then it will try to combine the base,
index, scale and displacement fields of the two memory locations. So for example, even
these two memory locations can be folded:

lea t27, [a-4]
mov t28, [t27+8]

and these two as well:

lea t29, [4*t25] // say t25 has only one definition
mov [t29+16], 1

The implementation currently doesn’t support all possibilities that could be opti-
mized. But sufficient number of them found in real programs using the advanced
addressing modes are supported.

Similar helper function is used to transform lea instructions loading function ad-
dresses and indirect calls into direct calls:

if (IK(inst) == IK_CALL && IM(inst) == M_rCALL
&& try_combine_label(mfunction, inst)) {

IM(inst) = M_LCALL;
}

i.e. this goes from:

lea rax, [function]
call rax

to:

call function

4.8.4 Inter-block optimizations

During code generation (section 4.7) we lowered jump and conditional jump operations
at the end of basic blocks into jmp and jcc instructions. Depending on how the blocks
are ordered, some of the instructions are unnecessary—unlike our middle end represen-
tation, which needs explicit jumps from each basic block, conditional jumps in machine
code fall-through to the next instruction if the condition is not satisfied. This leaves
opportunities for peephole optimization.

It is no longer enough to consider instructions alone—we need to also consider which
block is the following one. Thus the optimizations depend on particular linearized order
of the blocks. We will come back to the issue of block ordering in section 4.8.5, but for

1 We have to special case rbp, because it actually has two definitions—one saving it in the prologue and
one restoring it in the epilogue.

104

. 4.8 Peephole optimization

now it suffices to assume that when performing peephole optimizations at the end of a
block, we know which block is the following “fall-through” block.

The most straightforward optimization possible, is to remove an unconditional jump
to the following block:

[...]
jmp .BB5

.BB5:
[...]

The jmp instruction above is always redundant. This also applies to unconditional
jumps which result from translation of conditional jumps:

[...]
jge .BB4
jmp .BB3

.BB3:

If the following block is not the target of the unconditional jump (jmp), but of the
conditional one (jcc), we can still perform the optimization, but we need to invert the
condition:

[...]
jge .BB7
jmp .BB8

.BB7:

[...]
jl .BB8

.BB7:

Here we changed “greater-or-equal” condition to “less-than”. This is done simply by
changing the subkind of the instruction, since the subkind is the x86-64 condition code.
There are 16 condition codes and inverse of a condition code can be found simply by
inverting the least significant bit of the condition code.

It would seem that when the jump instruction is optimized out and implicit fall-
through is used, then the basic block label can also be deleted. But this is only possible
when there are no other jumps to the label—unconditional or not. Deleting the label
would essentially mean a merge of two basic blocks, and basic blocks can only be entered
at the start, so the merge of basic blocks is only possible if there isn’t a jump into the
“middle”.

Even when the merge is possible, we can no longer speak about basic blocks, be-
cause there could be jump instructions in the middle—notably, if a block ended with
a conditional jump compiled into jcc and jmp and jmp gets optimized away and the
block gets merged with the following fallthrough block, the jcc instruction remains as
an exit point in the middle of the block. The block is no longer basic. For example if
we optimize from:
.BB6

jge .BB7
jmp .BB8

105

4. Design and implementation .
.BB7:

mov t17, t15
jmp .BB8

.BB8:
[...]

To:
.BB6

jl .BB8
mov t17, t15

.BB8:
[...]

We see how the label .BB7 corresponding to block 7 gets eliminated, because blocks
6 and 7 are merged. The resulting merged block 6 is no longer basic—it can be left
in the middle. Some distinction of blocks is still useful, since they still correspond to
sequences of instructions which are executed after each other, even if the blocks are
not basic. It is not a problem from the perspective of peephole optimization, which
optimizes physically neighbouring instructions. There we can take advantage of the
fact that the sequence is not entered in the middle, and we don’t mind that it can be
left in the middle.

Additionally, following up to the example above, we can notice that the whole purpose
of the conditional jump above is to skip the copy instruction. On the x86-64 architecture
the same behavior can be achieved with a cmovcc instruction with an inverted condition
code:
.BB6

cmovge t17, t15
.BB8:

[...]

This again, may leave the block 8 mergeable into block 6 if there are no other jumps
to it. This example is very close to reality—similar short blocks conditionally entered,
unconditionally left, and with zero or more copy instructions in them are created by
critical edge splitting (see section 4.4) and SSA deconstruction (see section 4.5). Co-
alescing is often able to assign the virtual registers the same physical register and the
copies are often removed. By removing coalesced copies, transforming simple jumps
around copies into cmovcc and merging blocks through peephole optimizations we can
often get straight line code that is even more amenable to peephole optimization.

For each block we track the number of references to it. When last reference of
the block is removed from physically preceding block, the two blocks can be merged
together.

4.8.5 Implementation
In the previous subsections we presented intra-block, but also inter-block peephole
optimization patterns and how they can be matched and applied with our representation
of instruction. In this section we solve the problem of putting the peephole optimization
together, i.e. how to apply subsequent optimizations even on the same instruction, how
to represent and move the peephole sliding window, etc.

Considering only intra-block optimization first, we want to go through the instruction
sequence, try to match a pattern, apply the optimization and to readjust the peephole
window according to what the optimization does to the instructions. Our patterns are

106

. 4.8 Peephole optimization

also not of one uniform size: we have patterns that match on a single instruction, but
also patterns matching up to four instructions.

What works fairly well, is to iterate over the instruction sequence in forward, while
having a notion of the current instruction. When iterating over the instructions we root
all the peephole patterns to the current instruction, such that the current instruction
always constitutes the very end of the peephole window—matching on the context is
done only on on previous instructions. If a pattern matches, it executes and modifies
the instructions and perhaps even reorders them. Then, a new instruction is set as
the current one and new matching is tried again with the same patterns. Since the
current instruction is the last one in the peephole window, each optimization should
set the current instruction to be the instruction most further back on which peephole
optimizations are worthwhile, i.e. the instruction furthest back, which changed. This
is because changed instructions can allow match of different patterns, so it is beneficial
to go back and try them.

This construction has another advantage—it may even be used in an online way.
For example, each time the code generator appends a new instruction, the peephole
machine described above could be run on the last instruction, optimizing the tail of the
produced code.

A state machine would be a great match for this kind of problem. The state machine
could in its states remember the previous instructions encountered, and provide efficient
matching and lookup of patterns to execute. In practice, the patterns, especially the
use-def based (section 4.8.3) don’t fit into this model that well. The fact that we
can go back a few instructions would also mean a big number of states keeping the
context. Additionally, the predicates used for matching the instructions are not always
straightforward and often benefit of being coded in C, like shown in previous sections.
Ultimately, creating a state machine generator also doesn’t pay off that much until
multiple target architectures are needed, so we settled on ad hoc pattern matching and
optimization with C code.

In the implementation, we iterate the instruction sequence, try to match each pattern
in turn, and, if any of them matches, its associated code executes and also sets the new
current instruction, which we try matching next. If no pattern matches, we set current
instruction to the instruction following the current one.

This is how it looks like in the actual implementation:

Inst *inst = mblock->insts.next;
while (inst != &mblock->insts) {

if (⟨pattern 1⟩) {
⟨rule 1⟩
inst = ⟨new current 1⟩;
continue;

}

if (⟨pattern 2⟩) {
⟨rule 2⟩
inst = ⟨new current 2⟩;
continue;

}

[...]

next:
inst = inst->next;

107

4. Design and implementation .
}

The pattern matching and rule execution is exactly like hinted in previous sections.
If any pattern matches, new inst (current instruction) is set to go back sufficiently
and the pattern matching “restarts”. Otherwise the process continues with the next
instruction.

The choice to do peephole optimization on instruction sequences limited to blocks
instead of doing it on whole functions is not an obvious trade-off. In our architecture
we do peephole optimization twice—before and after register allocation. For register
allocation (due to liveness analysis, section 4.9.1) as well as flag analysis (section 4.8.2)
we want to have basic blocks. But, for peephole optimization itself, we don’t care
about basic block that much. We can have either blocks that are not basic as hinted
in section 4.8.4, or just a single instruction sequence for a whole function. Though
still with a single instruction sequence we need a way to do jumps, which could be
represented with label nodes, similar to what is done in [Wulf et al., 1975]. By having
a linked list of instructions and labels, we could iterate over the whole function and
not handle blocks as a special case—being represented as labels they would be part
of normal patterns. After a label would become unreferenced, it would be deleted
and instructions formerly separated would become adjacent and eligible for peephole
optimization.

However, since we do a round of peephole optimization before register allocation’s
liveness analysis, we would need to derive information about basic blocks for it specially.
Then we would have to be careful about keeping the basic block boundary representation
valid even throughout the spill stage, which inserts new instruction (which depending
on the boundary representation can be problematic e.g. if a load is inserted before the
first instruction in a basic block) or we would have to recompute basic block information
after spilling. Another problematic point for some representations of basic blocks is the
fact, that liveness analysis needs to iterate over the blocks backwards, as well as keep
them in a worklist for fast data-flow analysis (see section 4.9.1).

In our approach we chose to keep middle end basic blocks tied to machine blocks.
Control flow graph from the middle end representation is used even in the back end,
and merging of basic blocks is only done in the second round of peephole optimization
(after register allocation), which is not followed by any analysis needing basic blocks.
This works fairly well in that we don’t introduce many different or even temporary
intermediate representations, but still allows inter-block peephole optimization, though
it has to be handled outside of the main loop shown above, which is executed for each
basic block. The separate handling of inter-block optimizations looks roughly like this:

if (⟨there is a following block⟩) {
if (⟨inter-block pattern 1⟩) {

⟨inter-block rule 1⟩
}

[...]

if (⟨the following block is not referenced⟩) {
⟨merge following block into the current one⟩
inst = ⟨first instruction of following block⟩;
goto next;

}
}

108

. 4.8 Peephole optimization

4.8.6 Practical findings

All in all, the peephole optimization seems to do fairly well. Early deletions of instruc-
tions are particularly important for getting good results out of peephole optimizations.
In particular, dead instruction removal should be done as soon as possible, in the pass,
not for example left to the next pass. These removals can bring closer instructions that
would have otherwise not been covered by the same peephole window.

There are also a couple of disadvantages to our peephole optimization design:

. Patterns are written by hand which is tedious.. Only patterns noticed by a human are implemented.. The potential of use of data-flow is not fully realized yet, because deletions of con-
stants far away from current instruction can still result in new cascading improve-
ments.

Improvements on all points are of course possible, but require quite a different approach
and are thus not yet implemented.

4.8.6.1 Copy propagation

There are still interesting patterns that have been found and implemented by hand.
For example, the following works surprisingly well:

if (IK(inst) == IK_MOV && IM(inst) == M_Cr && IK(prev) != IK_CMOVCC
&& (IM(prev) == M_CI || IM(prev) == M_Cr || IM(prev) == M_CM)
&& IREG(prev) == IREG2(inst) && use_cnt[IREG(prev)] == 1) {

def_cnt[IREG(prev)]--;
use_cnt[IREG(prev)]--;
IREG(prev) = IREG(inst);
prev->next = inst->next;
inst->next->prev = prev;
prev->next = inst->next;
inst = prev;
continue;

}

The pattern essentially checks whether the physically first out of two instructions
(prev) writes into a register and the next instruction (inst) copies the register to
another register. Then, if the original register has only one use (the second instruction)
the copy is not necessary, and the move can be realized directly. Other than the change
in register, the rule deletes the redundant copy, and marks the one remaining instruction
as current for the next investigation. Use and definition counts are updated accordingly.

This pattern cover surprising lot of cases, for example it can delete copies in all of
the following:

lea t32, [rbp-16]
mov t14, t32

mov t27, 1
mov t18, t27

As this optimization removes an instruction it allows more optimizations that would
otherwise be outside of reach. Despite being a simple form of copy propagation it works
so well, because a lot of copies are present in translation to x86-64’s two address code,
many of them can be fused together with constant materialization.

109

4. Design and implementation .
4.8.6.2 Duplication of patterns

Even though use-def based optimization can propagate constants or memory locations,
they are currently only tried last. Less general local peephole optimization patterns
are tried first. For example, with the proper use and def count checks a pattern which
transforms the following:
mov t22, [H]
mov t23, [...]
add t23, t22

to:
mov t23, ...
add t23, [H]

performs much better than the “data-flow” version from section 4.8.3 based on the
try_combine_memory function. This is purely because it is able to bring the peephole
window back to the first instruction, which cascades to many other optimizations.

Improvements to allow the use-def based optimizations to go back would be necessary
to prevent duplication in patterns, while keeping the quality of the generated code.
Implementing such improvement is more tricky than it might seem, because there are
performance as well as clarity concerns.

4.8.6.3 Avoiding dead ends

As mentioned in section 4.8.2, we prefer the lea instruction for arithmetic, because
it allows subsequent optimizations to fold more arithmetic into a single instruction.
Again, these optimizations cascade well, and we can even turn C code like this:
int f(int *arr, int a, int b, int c) {

return arr[c] = arr[a] + arr[b];
}

Into the following (without the uninteresting prologue and epilogue):
mov rax, [rdi+8*rsi]
add rax, [rdi+8*rdx]
mov [rdi+8*rcx], rax

This stems from the great composability of the lea instruction. To not miss these
optimizations our peephole optimizer prefers lea even for situations where other in-
structions might be better, e.g. it can generate the following leas:
lea t12, [t12+t13]
lea t12, [t12+1]
lea t12, [t12-1]

The first instruction could be replaced by a single add instruction. On some low-end
Intel microarchitectures [Intel Optimization Manual, 2023], the add is recommended,
because the processors use separate Address Generation Unit (AGU) for lea calcula-
tions which means doing normal arithmetic there imposes additional synchronization.

The last two instructions are replaceable by inc and dec respectively. These have
their own problems with partial writes to flags (see section 4.8.2), but there are no big
penalties on recent processors.

As using lea is generally not worse in any significant way (and certainly not so on
recent microarchitectures [Intel Optimization Manual, 2023]), we believe it is okay to
leave the situation as is.

110

. 4.8 Peephole optimization

4.8.6.4 Optimization order

Because we try to match and apply peephole optimization patterns one by one, we want
to pay attention to their order, because in some cases optimizations may prevent other
ones.

As an example, take calculation of struct field’s address. It is formed by adding the
offset to the field to the address of the struct itself. TinyC code like this:

struct S {
int a;
int b;

};
S a;
int global_offset() {

return a.b;
}

which will be expanded to something like this:

lea t25, [a]
mov t26, 8
mov t17, t25
add t17, t26
mov t18, [t17]
mov rax, t18

While it could be simplified to a single instruction:

mov rax, [a+8]

Our optimizer is able to do this transformation through a series of steps, most of
which we have already shown. But at some point we get to:

lea t17, [a]
add t17, 8
mov t18, [t17]

The addition of constant can be folded into the displacement of the memory specifica-
tion:

lea t17, [a+8]
mov t18, [t17]

Note that here we have RIP-relative addressing (see section 4.3.2.2 for more information
about labels). There are two nice things about this particular transformation: it reduces
the number of definitions, and if the lea instruction is the last remaining definition
of t17, we can mark it as the only definition of t17. Importantly, this makes the
[a+8] address calculation foldable later due to use-def based peephole patterns (see
section 4.8.3). In this specific example, use-def based optimization is not necessary,
because the load instruction is next to the address calculation.

But, if we modify the example slightly:

void local_offset() {
S a;
S b;
[...]
a.a = b.a;

}

111

4. Design and implementation .
we can get into a similar situation with regards to the offset calculation, where from
this:

lea t29, [rbp-16]
mov t30, 0
mov t19, t29
add t19, t30
lea t31, [rbp-32]
mov t32, 0
mov t20, t31
add t20, t32
mov t21, [t20]
mov [t19], t21

it is not a problem to get to this (if we peepholed each address calculation separately):

lea t19, [rbp-16]
add t19, 0
lea t20, [rbp-32]
add t20, 0
mov t21, [t20]
mov [t19], t21

Here, if like explained above we fold the add to the displacement of the lea and mark
t19 and t20 as the only definitions, we can fold them into the loads and stores below:

mov t21, [rbp-32]
mov [rbp-16], t21

However, there is a simpler pattern that can make us fail to do that. The add instruction
has no observable flags and adds zero, so it may simply get deleted. This is however
even more local, and doesn’t notice that the lea before it has now become the last
definition, leaving the lea instructions unfoldable:1

lea t19, [rbp-16]
lea t20, [rbp-32]
mov t21, [t20]
mov [t19], t21

We might make the use-def optimizations more robust by using full use-def and def-
use chains (see section 3.4, where they are mentioned) or in this case, simply guarantee
that the pattern matching two instructions is tried before the single pattern instruction.
Intuitively longer or in general more specific patterns should always be preferred and
as mentioned, local patterns should be preferred to use-def ones (section 4.8.3).

4.9 Register allocation
Register allocation by graph coloring and in particular the iterated register coalesc-
ing [George et al., 1996] algorithm we implement, does not consist of one simple step,
but of multiple. Additionally, the algorithm is repeated until it succeeds. The basic
means of operation of the algorithm are briefly introduced here:

1 Actually the load instruction can get folded, because it is next to the address calculation, but the store
address will certainly not be folded.

112

. 4.9 Register allocation

1. Liveness analysis. First we need to analyze where are virtual registers live.
2. Build interference graph. From the liveness information we construct the interference

graph.
3. Calculate spill costs. We calculate how costly would spill of each virtual register be

as well as mark some registers unspillable.
4. Perform iteration of iterated register coalescing graph coloring. This is the initializa-

tion and main loop of the [George et al., 1996] algorithm. It runs until the graph is
fully simplified, which also determines a coloring order.

5. Assign registers. Virtual registers are colored one by one according to the order
and coalescing determined in the previous step. The previous step always succeeds.
Virtual registers are at most marked as potential spills and may still be assigned
color. If no color is left for some of them in this step, they are an actual spills and
this step returns the list of virtual registers to spill.

6. Rewrite the program. If the previous step failed the program is rewritten to include
loads and stores of spilled virtual registers and all the above steps are attempted
again.

7. Apply register assignment. If the graph coloring was successful (i.e. there were no
actual spills), then the program can be rewritten to change occurrences of virtual
register to their assigned physical registers.

The specialty of the iterated register coalescing algorithm lies mainly in step 4, but
it has also consequences on previous steps, notably on the design of data structures
(discussed in section 4.9.6).

The overall design of the register allocator in our compiler keeps it as a separate,
opaque component. We store all data needed for the register allocator in a single
struct called RegAllocState. The user of the register allocator obtains the state with
a call to a create function and frees the state with a free function. Register allocation
itself requires the allocated state and a machine function for which to do the register
allocation. The register allocator returns the function modified to not use any virtual
register, which sometimes means that additional spill code is added. The API design
allows a single state to be reused for register allocation of many functions and thus
greatly reducing the costs of allocating the state.

RegAllocState *reg_alloc_state_create(Arena *arena);
void reg_alloc_state_free(RegAllocState *ras);

void reg_alloc_function(RegAllocState *ras, MFunction *mfunction);

Most of the register allocator is target independent. The only x86-64 dependent
things are currently the routines for creating loads and stores from stack, allocation
of stack slots and the number of physical registers as well as the descriptor tables (see
section 4.3.2 for more details about the back end representation).

More information about the steps, as well as design and implementation considera-
tions are the subject of the following subsections.

4.9.1 Liveness analysis

For liveness analysis we use the classic [Kam et al., 1977] approach of iterative data-flow
analysis:

1. We construct data-flow equations.
2. We solve them with an iterative algorithm.

113

4. Design and implementation .
In liveness we propagate information in control flow from future to past—each use

means that a virtual register starts being live and each definition means that a virtual
register stops being live. Concrete data-flow equations that capture this are given for
example by [Appel et al., 1998]:

𝑖𝑛[𝑛] = 𝑢𝑠𝑒[𝑛] ∪ (𝑜𝑢𝑡[𝑛] − 𝑑𝑒𝑓[𝑛]) (1)
𝑜𝑢𝑡[𝑛] = ⋃

𝑠∈𝑠𝑢𝑐𝑐[𝑛]
𝑖𝑛[𝑠] (2)

The formulation is based on live-in and live-out sets, which capture the state of
liveness along control flow edges. Liveness information in a control flow node is given
by the liveness in all successors, i.e. we propagate information from the future to past.

Iterative data-flow analysis starts with all live-in and live-out sets empty, and refines
them until reaching a fixed point (i.e. the point where all the sets stabilize and are
equal to those in previous iteration). This can be quite expensive and can require
quite a lot of memory in a naive solution, so in our implementation we perform a few
optimizations:

. Our control flow edges are basic blocks. We only keep liveness sets for the edges
to and from basic blocks, which requires much less memory than doing so for each
instruction. To compute basic block’s live-out from the live-in of all successors equa-
tion (2) suffices. To compute live-in of a block from its live-out we need to iterate
over the basic block backwards and use equation (1) for each instruction.. We don’t store in memory all live-in and live-out sets, but only live-in sets of all basic
blocks. We can recompute live-out set for any basic blocks according to equation (2).. We use a work list based approach [Cooper et al., 2006] in which we first insert all
blocks into a work list, then as long as the work list is not empty, we keep removing a
block from it, recompute its liveness sets and insert its predecessors back to the work
list. This means that we iterate over each block once in the beginning, and then only
on demand as we find changes in block’s successors.. Blocks use information from their successors, which means that if we processed all
blocks after their successors, we could find the solution in a single iteration. In
practice, control flow graphs contain loops, so processing all successors of a block
before the block is not possible, but we can use a block order which tries to put
block’s successors before it, such as the postorder of the control flow graph, which
we already have available (see section 4.3.1.5).

In the actual implementation this becomes the following:

void liveness_analysis(RegAllocState *ras) {
MFunction *mfunction = ras->mfunction;
WorkList *live_set = &ras->live_set;

wl_init_all_reverse(&ras->block_work_list, mfunction->mblock_cnt);
Oper b;
while (wl_take(&ras->block_work_list, &b)) {

MBlock *mblock = mfunction->mblocks[b];
Block *block = mblock->block;
get_live_out(ras, block, live_set);

Inst *inst = mblock->insts.prev;
while (inst != &mblock->insts) {

114

. 4.9 Register allocation

live_step(live_set, mfunction, inst);
inst = inst->prev;

}

if (!wl_eq(live_set, &ras->live_in[b])) {
WorkList tmp = ras->live_in[b];
ras->live_in[b] = *live_set;
*live_set = tmp;
FOR_EACH_BLOCK_PRED(block, pred)

wl_add(&ras->block_work_list, (*pred)->mblock->index);
}

}
}

The same data structure (WorkList) is used for representing both the work list for
blocks that need to be processed as well as the liveness sets—sets need to support fast
unique addition as well as removal and iteration and clearing, which is pretty similar
to work list’s needs. Our work list implementation (section 4.3.3) supports all these
operations. As mentioned live-out sets are not stored, RegAllocState only holds live-in
sets:
struct RegAllocState {

[...]
WorkList block_work_list;
WorkList live_set;
WorkList *live_in; // WorkList for each block
[...]

}

Block’s indices correspond to their positions in mfunction->mblocks, which lists
them in reverse postorder. These indices are also used for subscripting the live_in
and other arrays. The arrays, sets and work lists in RegAllocState are allocated with
enough capacity for all blocks or all virtual registers (depending on the use).
void get_live_out(RegAllocState *ras, Block *block, WorkList *live_set) {

wl_reset(live_set);
FOR_EACH_BLOCK_SUCC(block, succ)

wl_union(live_set, &ras->live_in[(*succ)->mblock->index]);
}

The live step function mostly implements equation (1) for an instruction:
void live_step(WorkList *live_set, MFunction *mfunction, Inst *inst) {

// Remove definitions from live.
for_each_def(inst, remove_from_set, live_set);
// Add uses to live.
for_each_use(inst, add_to_set, live_set);

}

Simple iteration over register uses and definitions was one of the motivations for our
representation for instructions (see section 4.3.2) and it works out nicely, since we can
use generic callback-based iterators for iterating over all definitions and uses.

After the function liveness_analysis runs, live_in sets for each block are calcu-
lated. From these we can derive the set of live virtual registers at any program point
by starting in the right basic block, computing live-out, and iterating backwards to the
program point of interest updating the live-set with live_step, similarly as we do in
the liveness analysis itself.

115

4. Design and implementation .
4.9.2 Build interference graph

Now that we know which virtual registers are live at different program points, we use
them to construct the interference graph.

Formally, two virtual registers interfere when they are live at the same time (defini-
tion 3.2). We can find the live-set for each program point by iterating over all blocks
(in any order) and instructions (backwards) maintaining a live-set with the live_step
function. But adding interference between all ℓ live in the live-set would mean adding
ℓ ⋅ (ℓ − 1) at each program point—this is both expensive and adds too many edges
repeatedly if virtual registers are alive for longer periods of times.

Instead Chaitin [Chaitin et al., 1981] suggests a more practical notion of interference:
Definition 4.1 Interference. Two virtual registers interfere if one of them is live at the
definition point of other. [Chaitin et al., 1981]

This definition translates much better to an implementation, because this means at
each instruction adding interference for all definitions in that instruction with all ℓ
members of live-set (thus for most instruction this is ℓ edges, in general 𝑐 ⋅ ℓ, where 𝑐 is
a constant).

The actual implementation of building the interference graph is very similar to
performing liveness analysis (section 4.9.1), except that we can iterate over each
block just once, and call the interference_step function (shown below) instead of
live_step—apart from updating the liveness instruction to instruction, we need to
add the interference edges:
void interference_step(RegAllocState *ras, WorkList *live_set, Inst *inst) {

if (is_move(inst)) {
for_each_use(inst, remove_from_set, live_set);
add_move(ras, inst);

}

for_each_def(inst, add_to_set, live_set);

FOR_EACH_WL_INDEX(live_set, j) {
for_each_def(inst, add_interference_with, live_set->dense[j]);

}

for_each_def(inst, remove_from_set, live_set);
for_each_use(inst, add_to_set, live_set);

}

The most important part above is the loop which for each member of live_set adds
interference with each definition. But before doing that, we actually add all definitions
to the live set. By adding definitions to the live-set and then adding interferences of all
definitions with all live, we also add interferences across all defined registers, which is
important, to prevent assignment of the same physical register to any two definitions in
the same instruction. Adding the definitions to the live set is not really correct in the
iteration, since we ought to add uses, not definitions. But when stepping the liveness
for an instruction, we actually remove definitions from the live set, before adding the
uses, so the fact that we add the definitions to the live set temporarily is not observable
from the outside. The liveness step is realized by the last two calls, which are the same
as in live_step.

Before any of that, we also have special handling of copy instructions. For example
an instruction like
mov t19, t20

116

. 4.9 Register allocation

shouldn’t add an artificial interference between the two virtual registers, because then
they can’t be coalesced (recall section 3.8.4.3, we can only coalesce non-interfering
virtual registers). Other instructions can find that the virtual registers are live at the
same time at a different program point, but the copy instruction itself shouldn’t add the
interference. This can be done nicely, by removing the used register (i.e. t20) from the
live-set—then it won’t be present when interferences of definitions and live-set members
are added.

Last, but not least, we also call add_move function to accumulate all copy instruc-
tions, which is important for the later coalescing stage.

4.9.2.1 Calling conventions

In sections 3.8.3.6 and 3.8.4.3 we claimed that the combination of live range splitting
and interferences added through right definitions and uses can be used to model calling
conventions passing arguments or return values in physical registers (which is done on
all commonly used x86-64 calling conventions, see section 2.5). In section 4.7.3 we
described how the live range splitting of callee saved registers is handled. But so far
we haven’t explained how the interferences are added in our implementation, since the
instruction representation (see section 4.3.2) only holds the registers explicitly listed by
the instruction and there is no space for any calling convention related registers and
their uses and definitions.

Before describing the implementation details, let’s show on an example how exactly
we want to model uses and definitions on the following source program:

int f(int c) {
return g() + h() + c;

}

After peephole optimization, right before register allocation:

f:
.L0:

; entry
push rbp
mov rbp, rsp
sub rsp, 42

mov t28, rbx
mov t29, r12
mov t30, r13
mov t31, r14
mov t32, r15

mov t18, rdi

call g
mov t21, rax

mov rdi, t18
call h
lea t26, [t21+rax]
add t26, t18
mov rax, t26

mov rbx, t28

117

4. Design and implementation .
mov r12, t29
mov r13, t30
mov r14, t31
mov r15, t32

mov rsp, rbp
pop rbp
ret

We see the classic prologue and epilogue creating and destroying the stack frame and
since we don’t yet know the final stack space required (there might be spills) a dummy
amount is listed and will be fixed up much later. Then there are the live range splits
for the five callee saved registers (rbx and r12 through r15). There is also a live range
split for the argument c, which is passed in register rdi, but saved into r18. Another
live range split is present for the return value of function g, which is moved from rax
to t21. The argument for h is also split and passed in rdi. A copy of the return value
of h has actually been optimized out and rax is used directly in the following addition
(lea instruction). After both calls all three values are added in two instructions and
the result is moved to rax, the return value register.

The call instruction has only one argument—the label of the function to call. It
doesn’t in any way communicate explicitly, that the caller saved registers (like rdi or
rsi which are also used for passing arguments) are not preserved throughout the call.
There is also no explicit definition of the callee saved and argument registers, even
though we use them in the function. As established mainly in section 3.8.3.6, we want
to add:. Uses of actually used argument registers to the call instruction. Otherwise the

definitions which assign parameters to registers would see no uses and thus in the
backwards computation of liveness they wouldn’t ever be added to the live-set. On
the other hand, we need to add uses of only the registers actually used for argument
passing—otherwise they would be added to the live-set unnecessarily and without any
definitions—meaning a lot of interferences would be added and use of the argument
registers would effectively be forbidden.. Definitions of all caller saved registers to the call instruction. Caller saved registers
are not preserved by the function call, anything live across the call has to either be
saved in a callee saved register (because every register is either caller or callee saved)
or spilled to memory.. Uses of all callee saved registers to the ret instruction. The caller expects the callee
saved registers to be preserved, thus modelling uses of them in the ret instruction
adds them to the live set for as long as they are not defined. If we defined them in
the entry to the function we would have effectively added interferences of them with
everything else in the function and thus preserved them correctly, but not allowed
them to be allocated.

But in our case, they are split, and their definitions appear right before the epilogue
and thus they are kept in the live set only for a short time. It is still important that
we model the uses in the ret instruction though—it adds interferences to the registers
holding the callee saved register values. These interferences are important for graph
coloring algorithm, as precise degrees of nodes are expected.. Definitions of argument and callee saved registers in the entry point. They are
“passed” by the caller. Adding the definitions isn’t strictly needed as the defini-
tions won’t prevent any additional interferences. But they assure that all registers

118

. 4.9 Register allocation

have at least one definition, which makes it consistent for the purposes of peephole
optimization (where we track the uses an definitions of registers, see section 4.8.3).

Adding all the uses and definitions as additional operands to the Inst structure
(introduced in section 4.3.2), is a bit wasteful, considering we want to attach the extra
defined and used registers mostly statically to instructions kinds, except sometimes we
want to limit the number of registers to argument count.

Because of this regularity, we opted to attach the additional uses and definitions
to instruction modes. The existing modes M_LCALL (call label) M_rCALL (indirect call
through register) and M_RET (return instruction) can be extended with pointers to these
additional definitions and uses.

A bit more problematic is attaching definitions and uses to the entry point—there is
no explicit instruction there, and we don’t want to handle neither function entry nor
exit points specially. In the end we chose to introduce an additional instruction kind
IK_ENTRY with a mode M_ENTRY whose sole purpose is to hold the additional definitions
and uses. The instruction is otherwise mostly skipped as a no-op instruction. It is
present even in the listing above—it’s text printout is “; entry” (i.e. it is a comment).

Code-wise, the definition of the ModeDescriptor type is enhanced with a couple of
fields related to these additional definitions and uses:

typedef struct {
[...]
bool use_cnt_given_by_arg_cnt;
bool def_cnt_given_by_arg_cnt;
Oper *extra_defs;
Oper *extra_uses;

} ModeDescriptor;

To avoid having to specify the number of physical registers in these lists, they are
terminated with the special register R_NONE. If the number of extra definitions or uses
is determined by the argument count (as is for the number of either received arguments
for the entry instruction or passed arguments in case of call instruction), it is signified in
the mode descriptor by a boolean flag, and the count is read using the macro IARG_CNT
from one of the operand fields. These additional definitions and uses are also used for
long division, where rax and rdx are both read and written implicitly, while there is an
extra register or memory argument specifying the divisor, because listing rax and rdx
wouldn’t fit into the compact representation of operands of x86-64 instructions. Again,
similarly to real encoding of x86-64 instructions, where the use of rax and rdx is only
implicit.

In practice, the mode descriptors are extended like this:

#define IARG_CNT(inst) ((inst)->ops[5])

Oper none[] = { R_NONE };

Oper rax_rdx[] = { R_RAX, R_RDX, R_NONE };
Oper caller_saved[] = { R_RAX, R_RCX, R_RDX, R_RSI, R_RDI,

R_8, R_9, R_10, R_11, R_NONE };
Oper argument_regs[] = { R_RDI, R_RSI, R_RDX, R_RCX, R_8, R_9, R_NONE };

ModeDescriptor mode_descs[] = {
[M_Rr] = { [...], 0, 0, none, none },
[M_rCALL] = { [...], 1, 0, caller_saved, argument_regs },
[M_ADr] = { [...], 0, 0, rax_rdx, rax_rdx },

119

4. Design and implementation .
};

And the iteration over all uses look like this:

void
for_each_use(Inst *inst,

void (*fun)(void *user_data, Oper *use),
void *user_data)

{
ModeDescriptor *mode = &mode_descs[inst->mode];
for (size_t i = mode->use_start; i < mode->use_end; i++)

fun(user_data, &inst->ops[i]);

if (mode->use_cnt_given_by_arg_cnt) {
size_t use_cnt = IARG_CNT(inst);
for (size_t i = 0; i < use_cnt; i++)

fun(user_data, &mode->extra_uses[i]);
} else {

for (Oper *use = mode->extra_uses; *use != R_NONE; use++)
fun(user_data, use);

}
}

The callback-based iterator passes pointers (“references”) to the registers. This is
needed for spilling, where we rewrite uses and definitions.

Perhaps greater flexibility could be achieved by not keeping the compact encoding
and instead representing the definitions and uses in a more expensive way (i.e. with each
instruction, not mode). But the compact operand packing, close to x86-64 instructions
is one of the reasons why peephole optimization can be done so expressively even with
hand-coded rules.

The approach is mostly target independent—each target can have different mode
descriptors. The macro IARG_CNT is x86-64 specific, but extending the approach to
have a per-target operand index for the argument count would be straightforward.

With all the implementation details in place, our example above register allocates
and peephole optimizes successfully to the following:

f:
.L0:

push rbp
mov rbp, rsp
sub rsp, 16
mov [rbp-16], rbx
mov [rbp-8], r12
mov r12, rdi
call g
mov rbx, rax
mov rdi, r12
call h
lea rax, [rbx+rax]
add rax, r12
mov rbx, [rbp-16]
mov r12, [rbp-8]
mov rsp, rbp
pop rbp
ret

120

. 4.9 Register allocation

The “entry instruction” is optimized out, since it is no longer needed after register
allocation. Callee saved registers rbx and r12 are used for values live across call, and
as their virtual registers got spilled, the former values in callee saved registers got
automatically saved in stack slots. Other than for the other callee saved registers,
coalescing wasn’t applicable much—the registers were mostly restricted by the calling
convention or interfered with each other due to being live at the same time.

4.9.3 Iterated register coalescing
A lot of other graph coloring register allocation approaches could reuse many parts of
our implementation. However, the main simplification loop which we describe in this
section is the main characteristic of the iterated register coalescing (“IRC”) algorithm
by George and Appel [George et al., 1996], which we also describe in context of other
graph coloring register allocators in section 3.8.4.3. As we will be working mainly
on an interference graph of virtual registers, we will also be calling virtual registers
nodes of the interference graph, and we will call interferences edges. The ideas and
implementation of the algorithm in our implementation are based also on pseudo code
listed in [George et al., 1996], though we chose more descriptive names, and additionally
include clarifications and corrections to the algorithm.

The main loop of IRC interleaves simplification and conservative coalescing. This
leads to more coalescing, while still being as safe as earlier approach. The main loop’s
purpose apart from the coalescing is to push all the nodes on to a stack, even the
potential spills, because we use optimistic coloring. The actual coloring of the graph
is handled in a later stage, which is common to other approaches like Briggs’ and uses
the order imposed by the stack for coloring the registers.

For a start, let’s first consider the simplification phase of Briggs’ algorithm, which
also does optimistic coloring, but contrary to IRC does all the coalescing before starting
with simplification. The simplifications are based on Chaitin’s heuristic, which says that
every node with less than 𝑘 neighbours (where 𝑘 is the number of available registers)
can be pushed onto the stack and “removed from the graph”—later when coloring the
node will be trivially colorable when popped from the stack and “reinserted back into
the graph”. Based on this heuristic we want to partition the nodes not yet pushed onto
the stack into two different categories:
1. Low (< 𝑘) degree nodes. Sometimes also called “insignificant” or “trivially colorable”.
2. High (≥ 𝑘) degree nodes. Sometimes also called “significant”.

Strict separation of these categories allows our efforts to concentrate on the low de-
gree nodes—those can be removed from the graph as they already fulfill the condition
imposed by Chaitin’s heuristic. Of course, their removal decreases degrees of neighbor-
ing nodes, and occasionally high degree node becomes low degree and we need to move
it from the category to the first. Partitioning the nodes into two categories initially
is easy. Then, as long as the set of low degree nodes is not empty, the algorithm can
simplify the interference graph and keep constructing the coloring order on the stack.

But when the set of low degree nodes becomes empty, and there are still nodes left
in the high degree set, then we need to choose a node to be a potential spill and push
it to the stack and remove it from the graph despite having a high degree. This either
allows other nodes to become low degree or requires even more potential spills. Since
the “remove from graph and push onto the stack” action is already performed on every
node in the low degree set: we can just move the potential spill to the low degree set
and let it be handled by the same simplification mechanism. Consequently we can find
more appropriate names for the two sets:

121

4. Design and implementation .
. Simplify set. Contains nodes intended for simplification.. Spill set. Nodes that are currently spill candidates, because their degree is high.

They can move to the simplify set either when their degree becomes low or they are
chosen as potential spill.
We can represent the two categories of nodes with two work lists—we already use work

lists for representing other sparse sets (like the live-set in section 4.9.1), because our
work list implementation (section 4.3.3) supports set operations efficiently. Our work
list can even be used for the stack, which gives us the following main simplification
loop:
while (true) {

while (wl_take_back(&ras->simplify_wl, &i)) {
simplify_one(ras, i);

}
if (wl_empty(&ras->spill_wl)) {

break;
}
choose_and_spill_one(ras);

}

The loop always tries to remove nodes from the simplify work list as long as possible.
If no node is available for simplification, a node from the spill work list is spilled. If the
spill work list is empty, it means that we have already fallen-through the simplify loop
and both work lists are empty, thus we can break out of the loop. If we for now ignore
the choice of the best spilled candidate, even the helper functions are straightforward:
void simplify_one(RegAllocState *ras, Oper i) {

wl_add(&ras->stack, i);
for_each_adjacent(ras, i, decrement_degree);

}

void decrement_degree(RegAllocState *ras, Oper u) {
if (ras->degree[u]-- == ras->reg_avail) {

wl_remove(&ras->spill_wl, u);
wl_add(&ras->simplify_wl, u);

}
}

void choose_and_spill_one(RegAllocState *ras) {
Oper candidate = ⟨the best spill candidate⟩;
wl_remove(&ras->spill_wl, candidate);
wl_add(&ras->simplify_wl, candidate);

}

Simplifications and spills move nodes from the spill work list to simplify work list.
In the case of simplifications, nodes are moved when their degree decreases below 𝑘
(represented by ras->reg_avail). The simplified nodes themselves are pushed onto
a stack. The interference graph itself is not modified in any explicit way—with the
push of a node onto the stack we remove it from the graph implicitly—until the node
is popped back, we have to presume it and its edges removed from the graph. Due to
that, the for_each_adjacent function skips nodes which are present on the stack and
we maintain a degree of each node to detect simplifications without having to check
presence of neighbours on the stack.

The simplifications in the iterated register coalescing are still based on the same
Chaitin heuristic, so the same simplification mechanism applies. But, because we want

122

. 4.9 Register allocation

to interleave simplifications with coalescing, we need to obey one limitation: we can’t
coalesce any node pushed onto the stack, because it is removed from the graph.

To not miss any coalescing opportunities, we have to try all coalescings of a node
before we push it (i.e. remove it from the graph). We only remove from the graph
nodes put on to the simplify work list, and to prevent putting coalescable nodes onto
the simplify work list, we introduce a third category of nodes: low degree move-related
nodes—nodes that have a low degree, but are either a source or destination in at least
one copy (move) instruction. We than add to the simplify work list only those low
degree nodes that are not move-related, i.e. those which can’t be coalesced. Though
like with high degree nodes, if we can’t find opportunities for simplifications, we have
to give up, and move something to the simplify work list. Instead of choosing a node
from the spill work list, it is preferable to give up any coalescing of a move-related node.
We will call giving up on coalescing freezing and like with spills, separate nodes which
we can freeze into a separate work list:

. Simplify work list. Contains nodes intended for simplification, i.e. removal from
graph and push onto the stack.. Freeze work list. Nodes that are currently freeze candidates, because they are low de-
gree and move-related. They can move to the simplify work list either when they stop
being move-related (i.e. all their moves are either coalesced or given up individually)
or when they are chosen to be frozen (i.e. all their moves are given up).. Spill work list. Nodes that are currently spill candidates, because their degree is
high. They can move to the freeze work list when their degree becomes low and they
are move-related, or they can move to simplify work list if their degree becomes low
and they are not move-related. They can also move to the simplify work list if they
are chosen as potential spill.

We also need to distinguish several kinds of moves:

. Active moves. Moves that we want to actively check for coalescing.. Inactive moves. Moves that we already checked for coalescing, but were declined
by the conservative heuristic. If there is a chance that a change might make the
conservative heuristic allow the coalescing, an inactive move should be made active
and the coalescing tried again.. Given up (frozen) moves. Moves that are no longer coalescable in any capacity.
Either because the source and destination interfere or we have given up on them by
freezing the source or destination.

We also partition the moves into work lists. Representing frozen moves is actually
not needed, since they can be detected by not being present on the other two work lists.

For the high level algorithm, we will revisit Briggs’ simplification. There we would
simplify in a loop, then fall-through to spill and if any spill was made, we would go
back to simplification, otherwise we would end the loop. This can be also written like
this in C:

simplify:
while (wl_take_back(&ras->simplify_wl, &i)) {

simplify_one(ras, i);
}
if (!wl_empty(&ras->spill_wl)) {

choose_and_spill_one(ras);
goto simplify;

}

123

4. Design and implementation .
The falling-through is made implicit and the backward jumps are made explicit

through goto. With IRC we have more chances to add to simplify work list other
than spilling:

. Coalescing two nodes into one decreases degrees of nodes that were interfering
with both. This means that they can be added to the simplify work list through
decrement_degree.. Before resorting to spilling, we want to freeze a node if any can be frozen. Giving up
moves (i.e. keeping the move instructions) is better than spilling (i.e. adding loads
and stores).

We can thus introduce processing of active moves and freezing, with more explicit
backward jumps to simplification:

simplify:
while (wl_take_back(&ras->simplify_wl, &i)) {

simplify_one(ras, i);
}
if (wl_take(&ras->active_moves_wl, &i)) {

coalesce_move(ras, i);
goto simplify;

}
if (wl_take_back(&ras->freeze_wl, &i)) {

freeze_one(ras, i);
goto simplify;

}
if (!wl_empty(&ras->spill_wl)) {

choose_and_spill_one(ras);
goto simplify;

}

This code captures the idea of IRC very well: first simplify as much as possible,
then try coalescing, and go back to simplification. Since full simplification (removal of
all nodes from the graph) is our end goal, if the simplification work list ever becomes
empty with the graph still being non-empty, we add even coalescable or high degree
nodes to the simplify work list.

More guided freeze choice using free costs (analogous to spill costs) is possible [Leung
et al., 1998], and would be a nice future improvement to our implementation.

The tricky part of the IRC algorithm is getting the transitions right. Initially, putting
the nodes and moves into right work lists is straightforward:

void initialize_worklists(RegAllocState *ras) {
wl_init_all(&ras->active_moves_wl, move_cnt);
wl_reset(&ras->inactive_moves_wl);

size_t vreg_cnt = ras->mfunction->vreg_cnt;
for (Oper u = ras->first_vreg; u < vreg_cnt; u++) {

if (is_significant(ras, u)) {
wl_add(&ras->spill_wl, u);

} else if (is_move_related(ras, u)) {
wl_add(&ras->freeze_wl, u);

} else {
wl_add(&ras->simplify_wl, u);

}
}

}

124

. 4.9 Register allocation

But any following change in degree or moves may require a transition of node or
move into a different work list. Notably transitions which previously put nodes right
into simplify work list now need to check whether the node is move-related. One such
place is the decrement_degree function:

void decrement_degree(RegAllocState *ras, Oper u) {
if (ras->degree[u]-- == ras->reg_avail) {

enable_moves_for_one(ras, u);
for_each_adjacent(ras, u, enable_moves_for_one);
wl_remove(&ras->spill_wl, u);
if (is_move_related(ras, u)) {

wl_add(&ras->freeze_wl, u);
} else {

wl_add(&ras->simplify_wl, u);
}

}
}

Apart from moving the node from spill work list to either freeze or simplify work
list, moves of the node and its neighbours are enabled (moved from inactive to active).
This is because Briggs’ heuristic for coalescing is based on number of significant neigh-
bours—a node becoming insignificant may make moves of all neighbours coalescable
even if they were previously denied as potentially unsafe.

Enabling moves is a straightforward transition from inactive moves to active moves.
This is because both active and inactive moves count towards the node being move
related and there is no change in status of any node.

void enable_move(RegAllocState *ras, Oper u, Oper m, Inst *move) {
(void) u;
if (wl_remove(&ras->inactive_moves_wl, m)) {

wl_add(&ras->active_moves_wl, m);
}

}

void enable_moves_for_one(RegAllocState *ras, Oper u) {
for_each_move(ras, u, enable_move);

}

On the other hand, when nodes move straight to simplify work list, either because
of spilling or freezing, all their moves are given up entirely, i.e. they will be removed
from both inactive and active moves and not considered further:

void choose_and_spill_one(RegAllocState *ras) {
Oper candidate = <the best spill candidate>;
wl_remove(&ras->spill_wl, candidate);
wl_add(&ras->simplify_wl, candidate);
freeze_moves(ras, candidate);

}

void freeze_one(RegAllocState *ras, Oper i) {
wl_add(&ras->simplify_wl, i);
freeze_moves(ras, i);

}

As opposed to enabling (inactive → active), freezing a move (giving up on the move
entirely) can change the status of the node—the removed move can be the last one

125

4. Design and implementation .
related to the node and the node can possibly transition from the freeze work list to
the simplify work list, though it stays in spill work list if it is high degree:

void freeze_move(RegAllocState *ras, Oper u, Oper m, Inst *move) {
if (!wl_remove(&ras->inactive_moves_wl, m)) {

wl_remove(&ras->active_moves_wl, m);
}
Oper op1 = get_alias(ras, move->ops[0]);
Oper op2 = get_alias(ras, move->ops[1]);
Oper v = op1 != u ? op1 : op2;
if (!is_move_related(ras, v) && !is_significant(ras, v)) {

wl_remove(&ras->freeze_wl, v);
wl_add(&ras->simplify_wl, v);

}
}

void freeze_moves(RegAllocState *ras, Oper u) {
for_each_move(ras, u, freeze_move);

}

There are two subtle details in the freeze_move function. First, the operands of a
move in the move instruction are listed as the original nodes, but coalescing might have
merged them into other nodes, so a resolution through aliases is needed. Next, when
freezing moves of u we don’t need to consider u transitioning from freeze work list to
simplify work list—we are already removing all the moves. But we need to do the check
for the other move operand, v.

4.9.3.1 Coalescing

The active moves work list holds the indices into an array listing all move instructions.
When considering the operands of an active move instruction for coalescing, the function
coalesce_move is called, where there are 4 cases:

1. The registers were already coalesced. The move needs to be given up, frozen to not
be investigated again.

2. The registers are interfering and can’t be coalesced. The move also needs to be frozen
to not be investigated again, since the there is no chance of ever coalescing.

3. The registers can be coalesced and the coalescing heuristic allows the coalescing.
Then we also want to not investigate the move again (i.e. remove the move from
work lists), but also need to merge the two nodes into one.

4. The registers can be coalesced and the coalescing heuristic doesn’t allow the coalesc-
ing. Then we transition the move from active moves to inactive moves and will try
it again in case the situation improves (the move is enabled) or the move is frozen
for other reason.

In an implementation this looks like this:

void coalesce_move(RegAllocState *ras, Oper m) {
Inst *move = garena_array(&ras->gmoves, Inst *)[m];

Oper u = get_alias(ras, move->ops[0]);
Oper v = get_alias(ras, move->ops[1]);
if (v < u)

⟨swap u and v⟩

if (u == v) {

126

. 4.9 Register allocation

decrement_move_cnt(ras, u);
} else if (are_interfering(ras, u, v)) {

decrement_move_cnt(ras, u);
decrement_move_cnt(ras, v);

} else if (are_coalesceble(ras, u, v)) {
combine(ras, u, v);
decrement_move_cnt(ras, u);

} else {
wl_add(&ras->inactive_moves_wl, m);

}
}

The move is removed from the active moves work list prior to calling coalesce_move,
so it doesn’t have to be removed there. The calls to decrement_move_cnt are impor-
tant, because in three of the situations the move is either given up or coalesced and not
to be considered further. This means that a low degree node might become no longer
move related, and can move to the simplify work list:

void decrement_move_cnt(RegAllocState *ras, Oper u) {
if (!is_move_related(ras, u) && !is_significant(ras, u)) {

wl_remove(&ras->freeze_wl, u);
wl_add(&ras->simplify_wl, u);

}
}

Nodes are always combined into the lexicographically smaller node (register). This
is done by copying the moves of that node, as well as all the interferences:

void combine(RegAllocState *ras, Oper u, Oper v) {
if (!wl_remove(&ras->freeze_wl, v)) {

wl_remove(&ras->spill_wl, v);
}

ras->alias[v] = u;

⟨add moves of v to u⟩

⟨for each adjacent t of v⟩ {
add_interference(ras, u, t);
decrement_degree(ras, t);

}

if (is_significant(ras, u) && wl_remove(&ras->freeze_wl, u)) {
wl_add(&ras->spill_wl, u);

}
}

The copy of interferences of v is realized by adding interference to u for each v’s
neighbour in the interference graph. However, as we are also conceptually removing v
from the interference graph, all its neighbours have their degree decremented. When a
node is neighbouring with either v or u this addition of a neighbour and removal of a
neighbour is a net zero. Though if a node as adjacent with both, then it’s degree is truly
decremented by one, which, if it is high degree, may lead to moving it to either simplify
or freeze work lists. We already can handle this with function decrement_degree, so
we reuse it now.

127

4. Design and implementation .
The combined node u can now have a high degree and may have to be moved to

the spill work list. This doesn’t mean that it will be spilled—as we use a conser-
vative coalescing heuristic, only coalescings that won’t lead to spills are allowed (see
section 3.8.4.3). The move into spill work list is only temporary until simplifications
decrease the degree of the combined node.

4.9.4 Register assignment

In the previous simplification phase (see section 4.9.3), the interference graph was sim-
plified into an empty graph by gradual simplification. Vertices were removed from the
graph one by one and pushed onto the stack. In the register assignment stage, we will
pop nodes one by one from the stack, reinsert them back into the graph, and find colors
for them based on the current interference graph.

For each node we have to find a color, which is not assigned to any of the neighbours.
Primarily only nodes with degree lower than the number of available registers were
pushed. For such nodes we are guaranteed to a find a color, since even if all the
neighbours were assigned different colors, a free color is guaranteed.

However, we are using [Briggs et al., 1994]’s optimistic coloring and in the simplifi-
cation phase push even high degree nodes as potential spills. When these are popped,
a free color for them is not guaranteed, but it may be found if some of the neighbours
get assigned the same colors.

From an implementation’s perspective we don’t need much additional tools other
than those already used in previous sections. Notably, we will use the same mecha-
nism for enumerating all node’s neighbours in the interference graph. In particular,
as established in section 4.9.3 we represent removals of nodes (and their edges) from
the interference graph implicitly—nodes pushed to the stack are considered to not be
present in the graph, even though the interference graph representation isn’t changed
in any capacity. In register assignment, we need to do the inverse and reinsert nodes
back to the graph and we will also represent this implicitly with pops from the stack.

Finding a physical for a virtual register works in three phases:

1. Physical registers used by neighbours are marked as used and not available for this
allocation.

2. Moves of the virtual register are checked and if the register of the other operand of
a coalescable move is available, then it is chosen for the register.

3. Otherwise first free register is chosen.

The second step tries to do what we could call last chance coalescing—even when
conservative coalescing failed, we may be able to assign a common physical register.
Since the other way of choosing a register is the first one available, last chance coalescing
can only improve the allocation.

In the actual implementation, it looks roughly like this:

Oper find_register_for(RegAllocState *ras, Oper u) {
u64 used = 0;
⟨for each adjacent adj of u⟩ {

Oper v = get_alias(ras, adj);
if (wl_has(&ras->stack, v) || is_to_be_spilled(ras, v)) {

continue;
}
used |= 1U << ras->reg_assignment[v];

}

128

. 4.9 Register allocation

⟨for each move move of u⟩ {
Oper op1 = get_alias(ras, move->ops[0]);
Oper op2 = get_alias(ras, move->ops[1]);
Oper v = op1 != u ? op1 : op2;
if (u == v || are_interfering(ras, u, v) || wl_has(&ras->stack, v)

|| is_to_be_spilled(ras, v)) {
continue;

}
Oper reg = ras->reg_assignment[v];
if ((used & (1U << reg)) == 0) {

return reg;
}

}

for (size_t reg = 1; reg <= ras->reg_avail; reg++) {
size_t mask = 1 << reg;
if ((used & mask) == 0) {

return reg;
}

}

return R_NONE;
}

All neighbours (even those not in the interference graph) are iterated over, aliases
are resolved, and the if the node is in the interference graph (not popped yet) and not
spilled, then it’s assigned register is added to the used registers. To improve run time,
the set of used registers is packed into a single 64-bit integer and bitwise operations are
used—every bit represents a single physical register. When skipping not yet allocated
coalescing candidates, we have to be careful about also skipping the self copies (i.e.
mov t12, t12) which could occur due to previous coalescing.

The actual assignment first assigns physical registers their physical register and then
allocates a physical register for each virtual register in turn, based on the order imposed
by the stack:
bool assign_registers(RegAllocState *ras) {

for (size_t i = 0; i < ras->first_vreg; i++) {
ras->reg_assignment[i] = i;

}

bool have_spill = false;
Oper u;
while (wl_take_back(&ras->stack, &u)) {

Oper reg = find_register_for(ras, u);
if (reg == R_NONE) {

spill_virtual_register(ras, u);
have_spill = true;
continue;

}
ras->reg_assignment[u] = reg;

}

return !have_spill;
}

void spill_virtual_register(RegAllocState *ras, Oper u) {

129

4. Design and implementation .
ras->to_spill[u] = mfunction_reserve_stack_space(ras->mfunction, 8, 8);

}

Actual spills are marked by having a stack slot allocated.
At this point the assignment of virtual registers to physical registers exists only as

a mapping in ras->reg_assignment. The mapping is applied by a separate function,
which iterates over all instructions in a function and applies the mapping, i.e. for each
register operand it does something like this:
inst->ops[i] = ras->reg_assignment[get_alias(ras, inst->ops[i])];

Again, resolution of aliases is important, since the nodes that got combined into
another nodes are not allocated registers at all (never pushed onto the stack) and don’t
have valid entries in reg_assignment.

4.9.5 Interference graph representation
Graphs can be represented in different ways. Different representations are suitable for
different purposes. In our case, we have seen how we use the interference graph in
previous subsections:

1) Checks whether two nodes are neighbours in are_interfering.
2) Iteration over all neighbours. Needed for register assignment (finding out free reg-

isters amongst neighbours) and coalescing (for adding neighbours of one node to
another).

Common representations like adjacency matrix support 1) efficiently, but not 2). On
the other hand adjacency lists support 2) efficiently, but not 1). For this reason, usually
both representations were historically used for interference graphs [Chaitin, 1982], and
we do the same in our implementation.

The adjacency list representation has for each virtual register an array with all adja-
cent (neighbouring) virtual registers. In our implementation, these arrays are dynamic
(i.e. the array can be reallocated and has a capacity as well as current size), because
we extend the adjacency lists while coalescing.

An adjacency matrix can be efficiently represented as a bit matrix where the adja-
cency of two nodes is represented with a single bit. With a help of a mapping function,
the matrix can actually be stored as a bit array and in our case can be smaller than
𝑛 ⋅ 𝑛 (where 𝑛 is the number of nodes), since the adjacency matrix of an interference
graph is symmetric and there aren’t be self edges.

Other representations have been used as alternatives to adjacency matrix, for example
hash tables [George et al., 1996] or “split bit-matrix” [Cooper et al., 1998], which trade
lookup speed for memory. Memory consumption is a big disadvantage of the bit matrix,
since its size is still 𝑂(𝑛2) and in practice, it is very sparse. So far, we stayed with the
bit matrix. In case need for reducing memory consumption arises, we can try other
tricks, like compacting the virtual registers (reindexing them)—many temporaries are
optimized out before register allocation, and by compacting we can decrease 𝑛 and thus
the size of the matrix considerably.

Our implementation maps the bit matrix onto a generic bit set (bit array):
bool are_interfering(RegAllocState *ras, Oper u, Oper v) {

if (u == R_NONE || v == R_NONE)
return true;

Oper index = bitmatrix_index(ras, u, v);
return bs_test(&ras->matrix, index);

}

130

. 4.9 Register allocation

Inspired by [George et al., 1996] we don’t keep the adjacency lists for physical regis-
ters. The reasons for this are the following:

. Adjacency lists are needed in the register assignment, where we find free physical
registers for virtual registers. This is not needed for physical registers.. Adjacency lists for physical registers grow fairly big as physical registers are used
across the whole function. For example the register rbp (used as a frame base pointer
on the x86-64) practically interferes with all other registers.

Thus we special case physical registers when adding interference:

void add_interference(RegAllocState *ras, Oper u, Oper v) {
if (u == v || are_interfering(ras, u, v))

return;
Oper index = bitmatrix_index(ras, u, v);
bs_set(&ras->matrix, index);
if (!is_physical(ras, u))

garena_push_value(&ras->adj_list[u], Oper, v);
if (!is_physical(ras, v))

garena_push_value(&ras->adj_list[v], Oper, u);
ras->degree[u]++;
ras->degree[v]++;

}

4.9.6 Physical registers, coalescing

For register assignment (section 4.9.4) and interference graphs (section 4.9.5) we did
introduce special cases for physical registers. Surprisingly enough most of the simpli-
fication and coalescing implementation details (section 4.9.3) didn’t so far have any
check for physical registers. Even though intuitively, physical registers are very much
a special case:

. We shouldn’t ever coalesce two physical registers or spill a physical register.. When combining physical and virtual register, they should be combined into the
physical register, because it has special meaning, for calling conventions etc.. We shouldn’t “simplify” and push physical registers onto the stack, since we want to
only allocate virtual registers.. Since we don’t store adjacency lists for physical registers, we should never try to
access them.

In practice, most of the issues are solved implicitly by adding interferences among
all physical registers:

. Because physical registers interfere with each other, they are not allowed to coalesce
together.. If the number of physical registers is 𝑝, then each physical register has hast at least
𝑝 − 1 interferences. This means that after all simplifications of virtual registers,
physical registers would be simplified. In practice the number of available registers
(𝑘) is strictly less than the number of physical registers. For example, on x86-64 we
reserve rbp and rsp for special purposes and don’t allocate them. Even on other
architectures usually at least one register is reserved for special purposes.

Other issues require more handling and care. For example, to always combine phys-
ical and virtual register into the physical register, we always combine into the register

131

4. Design and implementation .
that compares smaller (physical registers are represented by smaller integers than vir-
tual registers). Also when initializing the work lists, we don’t put physical registers to
the spill work list, which means they will never even be considered for spilling.

Another issue is the coalescing heuristic. Briggs’ conservative coalescing heuristic re-
quires iteration over adjacent nodes. Because we don’t store adjacency lists for physical
registers we have to use a different heuristic. George’s heuristic is given (and proved
safe) by [Appel et al., 1998]: “nodes 𝑎 and 𝑏 can be coalesced if, for every neighbor 𝑡 of
𝑎, either 𝑡 already interferes with 𝑏 or 𝑡 is of insignificant degree”. The original [George
et al., 1996] paper suggested the heuristic only for physical registers, but the heuristic
can even be used even for virtual registers. In fact trying both heuristics (when pos-
sible) can be beneficial, since both are conservative and can detect safe coalescing in
different cases.

We try both heuristics for virtual registers. In the implementation we assume that
if one of the two registers is physical, it is u, which has to be ensured by the caller:

bool are_coalesceble(RegAllocState *ras, Oper u, Oper v) {
bool coalescable = george_heuristic(ras, u, v);
if (!coalescable && !is_physical(ras, u))

coalescable = briggs_heuristic(ras, u, v);;
return coalescable;

}

4.9.7 Spilling

When we need to select one out of multiple virtual registers as a potential spill (which
might become actual spill later), then we want to spill the register, which is the best
candidate for spilling. In our implementation the function choose_and_spill_one
chooses the best candidate, and marks it as potential spill. In this section we discuss
how the spill decision is made.

When choosing a spill we want to balance two effects of spilling a node:

1. Negative effect. When a node is spilled, we have to introduce a load for each its use
and a store for each of its definitions. Statically, each load and store is equivalent,
since they are just instructions, but dynamically, at runtime, the loads and stores
may execute different number of times. In particular, memory operations inside of
loops are likely to get executed more times compared to loads and stores in prologue
and epilogue (such as those of the callee saved registers, see section 4.9.2.1). To
minimalize the negative effect, we want to spill nodes with the lowest number of
dynamic uses and definitions.

2. Positive effect. In a graph coloring register allocator, we model a spill of a node
through its removal from the graph (see section 3.8.4.3 for the justification). But
the important aspect from the point of the simplification is, that this reduces the
degree of all of its neighbours by one, leading to further simplifications. To exploit
the positive effect, we want to spill nodes with the highest degree.

We will call the negative effect spill cost, because it reflects the actual cost of the
spill imposed on the program and we want to minimize it. We call spill metric the final
metric in which we balance the spill cost (negative effect) and degree (positive effect).

In a graph coloring register allocator, the interference graph doesn’t capture control
flow at all, it is control flow insensitive. By considering control flow in spill choice we
gain at least some control flow sensitivity.

132

. 4.9 Register allocation

4.9.7.1 Calculating spill cost

We have to calculate the cost of the inserted loads and stores statically, as we don’t
know how the code will behave dynamically at run time. However, we can be sure that
instructions in the same basic block have the same cost, since they are always executed
all or none. Additionally, instructions in loops should be more costly.

[Briggs et al., 1994] weights instruction by 10𝑑, where 𝑑 is the loop nesting depth of
the block which contains the instruction. This means that costs of instructions outside
of loops are 1, inside a loop 10 and inside a doubly nested loop 100 etc. This method
essentially assumes that each loop is executed 10 times.

With weights of instructions, we need to calculate the actual costs. For each use
and definition of a register we should accumulate the sum of costs of all loads and
stores that would be needed. In case of copy instructions, we don’t need to keep the
copy instruction after either load or store is inserted (see section 3.8.2.2), so spills in
copy instructions are somewhat cheaper—while a memory operation is added, a copy
instruction will be deleted.

For debugging purposes we accumulate costs of stores, loads and moves separately:

⟨for each instruction inst in machine block mblock⟩ {
u16 cost = cost_in_depth(block->depth);
⟨for each definition def in inst⟩

ras->def_cost[def] += cost;
⟨for each use use in inst⟩

ras->use_cost[use] += cost;
if (is_move(inst)) {

ras->move_cost[inst->ops[0]] += cost;
ras->move_cost[inst->ops[1]] += cost;

}

}

Also, since we store the depth 𝑑, not 10𝑑, it is more convenient for use to actually
use 8𝑑 [Muchnick, 1997], which can be calculated more efficiently using shifts:

u32 cost_in_depth(u32 depth) {
return 1 << (3 * depth);

}

4.9.7.2 Unspillable nodes

In section 3.8.2.1 we identified that some virtual registers are never worth spilling. Often
these are virtual registers introduced by spill code. But also other registers which have
a very close definition and use where spilling doesn’t decrease register pressure. As
they can have lower spill costs than other registers (because of low number of uses and
definitions) we want to mark these nodes unspillable, to make sure we don’t spill them.

Unspillable nodes have been identified already by Chaitin [Chaitin, 1982]. How-
ever, in our implementation we use formulation based on Briggs’ [Briggs, 1992], which
translates well to an actual implementation:
Definition 4.2. If some virtual register 𝑣 becomes dead in between a use and associated
definition of register 𝑢, then we call 𝑢’s live range interrupted.
Definition 4.3. If none of the live ranges of virtual register 𝑢 are interrupted, we call
the virtual register uninterrupted.

We want to detect uninterrupted virtual registers and mark them unspillable. As the
interruptions are based on liveness, we want to detect the property in a backwards pass

133

4. Design and implementation .
over basic blocks. Apart from live-set the algorithm also maintains set of registers which
are currently uninterrupted and the set of registers which have ever been interrupted,
then for each instruction:

. If we reach a definition of a register, its live range ends and it is removed from the
live-set. If additionally it is in the uninterrupted set, and not set as ever interrupted,
then it is marked unspillable.. Before the uses in the current instruction are added to the live-set, we check whether
they are already in the set. If they are not live, this means that we have found a
death of register—an interruption. We should mark all registers in the uninterrupted
set as interrupted at least once, and reset the set.. Only now we add all uses to the live-set and the currently-uninterrupted-set.

This solves local liveness. For registers live across basic block boundaries, we cur-
rently don’t try to mark them uninterrupted, because expensive data-flow analysis
would have to be performed. Instead, we are conservative and mark all registers ini-
tially in live-out as interrupted. This can mean that we may accidentally spill them,
even though it wouldn’t help, but in practice in the implementation we try to keep
basic blocks maximal (i.e. if one block has one successor and the successor has only
one predecessor we merge them), and the interesting unspillable situations occur with
physically adjacent instructions, which make local analysis sufficient enough.

4.9.7.3 Spill metric

Spill costs are mostly static from the perspective of the simplification process—they are
determined by the uses and definitions, which are not changed, except for the possible
coalescing, which should combine the costs of the two nodes.1 But the degrees of nodes
are more dynamic, and are changed with every simplification.

Because of this, we combine the static costs with the degrees only when a spill
candidate has to be selected. The actual calculation of the spill metric is thus following:
double spill_metric(RegAllocState *ras, Oper u) {

if (wl_has(&ras->unspillable, u)) {
return 1 / 0.0;

}
Oper cost = 2 * ras->def_cost[u] + 2 * ras->use_cost[u] - ras->move_cost[u];
return (double) cost / ras->degree[u];

}

We weight the possible future stores and loads two times as much as the copy in-
structions, because they are more expensive. The metric is the quotient of the cost and
the degree and in choose_and_spill_one we spill the virtual register with the lowest
metric:
Oper candidate;
double max = 1 / 0.0;
⟨for each element u in work list ras->spill_wl⟩ {

double curr = spill_metric(ras, u);
if (curr < max || (curr == max && u < candidate)) {

max = curr;

1 Currently in the function combine we add the spill costs together, although this is imprecise, since we
do not account for the move instructions that can be deleted due to the coalescing. More precise tracking
of especially the move costs could also help with choice of freeze candidates, but would make the simplify
loop more complex by including additional bookkeeping depending on both the instructions and their
nesting depth in the control flow graph.

134

. 4.10 Runtime

candidate = u;
}

}
assert(max < 1 / 0.0);

The inverse of the spill metric, where we would divide by the cost, instead of by the
degree, is not as practical—depending on our approach to definitions and uses the cost
could actually even get negative or zero (not in our implementation though, where defs
and uses incorporate the moves, and the moves just reduce the cost). Unfortunately,
the minimum formulation makes it slightly harder to pick the candidate with lowest
metric, as the metric of the first node in the work list cannot be used as a reference
point, because it may actually be unspillable. For this reason we use the inf double
value created by division by zero.

In an extreme case, all nodes in the work list may be marked unspillable, we assert
that this does not happen and that we have at least one spillable candidate that we
can actually spill.

Spilling an unspillable candidate is wrong, since it will just be replaced with a fresh
temporary that also is unspillable and we might easily get into an infinite loop of
unproductive spills. The fact that spill of unspillable won’t be attempted should be
guaranteed statically. In practice, the assertion can find issues where the back end
programmer mistakenly makes too few registers available (i.e. we can’t expect the reg-
ister allocation to succeed with 1 available register, when most operations require two
operands, assuming we don’t change the instructions while spilling; see section 3.8.2.1),
or makes the registers unavailable with a mistake in an implementation of calling con-
ventions (see section 4.9.2.1).

As a special case, if two virtual registers have the same metric, we choose the one
which is a smaller number. This is mostly so we can primarily spill the register used to
hold the rbx callee saved register as opposed to for example r12 (another callee saved
register), because use of rbx can sometimes save a REX prefix byte (see section 2.4).

4.10 Runtime
Programs output by our compiler like all non-toy programs will need to interact with
the operating system in two crucial ways:

. The operating system needs to transfer the control to the entry point of the program.. The program will need to call routines provided by the operating system.

Even successfully exitting the program involves a request to the operating system
(e.g. through a call to the exit function of standard C). As mentioned in section 2.6,
on most platforms the C library is the only way to make requests to the operating
system. On others, it is possible to perform syscalls directly if they have stable system
call interface. Linux is known for such stability, but most applications still perform
system calls through a C library, such as glibc1.

Startup is also usually handled by the C library. The program loader in the Linux
kernel jumps to the entry point address listed in the ELF binary, and while it passes
some data to the program by writing it to its address space, it doesn’t call main nor
prepares its arguments. The transition from entry point to main is handled by the
runtime component2, which is linked into the application.
1 https://www.gnu.org/software/libc/
2 In C it is sometimes associated with the acronym CRT—C runtime.

135

https://www.gnu.org/software/libc/

4. Design and implementation .
In following subsection, we demonstrate how TinyC programs are able to be linked

with the system C library, and call its functions and how TinyC programs can perform
system calls directly.

Our implementation supports both behaviours. Though performing system calls
directly is a bit bare bones, as no further abstractions are provided at the moment.
Both of the approaches are mainly intended to showcase how TinyC the language would
need to be extended, since as of now it doesn’t support calls to external functions or
variable number of arguments.

4.10.1 External C library

As we fully implement the System V ABI. Programs produced by us are fully able to
use the existing C libraries. They still have to be linked correctly to the C library’s
runtime. We shall consider the following example:

// prog.c
int puts(char *s);

int main(int argc, char **argv) {
puts(argv[0]);
return 0;

}

There are several things to note:

. We declare the puts function to make our TinyC compiler aware of this external
function. As it won’t see any definition of it, it will presume it to be an external
function.. We define a main function receiving two arguments. First one is 32-bit, passed in
register rdi, second is 64-bit pointer passed in rsi and the return value is to be
saved into rax.. The external function puts gets called with the 0th argument (the program name).

Translated to NASM assembly (with unrelated output omitted):

; prog.asm
extern puts
global main

main:
.L0:

push rbp
mov rbp, rsp
mov rdi, [rsi]
call puts wrt ..plt
xor rax, rax
mov rsp, rbp
pop rbp
ret

. The external puts function is marked as external, for similar reasons it was in TinyC:
the function will be provided externally and only resolved when (dynamically) linked
in.. The main function is marked as exported. This makes the label into a symbol in
the resulting object file, and thus it will be findable by other linked object files or
libraries, like the C runtime, which calls it.

136

. 4.10 Runtime

. The call to puts is marked with wrt ..plt which makes NASM emit the call as
call through the procedure linkage table. We do this to get a position independent
executable.

The assembly can then be assembled into an ELF object file with nasm:

nasm -f elf64 -o prog.o prog.asm

The final executable is then linked together with the system linker ld:

ld -pie -m elf_x86_64 -dynamic-linker /lib64/ld-linux-x86-64.so.2 -o prog
/usr/lib/Scrt1.o
prog.o
/usr/lib/libc.so

Apart from requesting linking into a position independent executable ELF x86-64 exe-
cutable, the ELF interpreter (“dynamic linker”) is set to its standard path [System V
AMD64 ABI, 2023]. The following three ELF files are linked together:

. Scrt1.o, which contains the _start symbol. _start is marked as entry point by
the linker’s default linker script. The final address of _start will be marked in the
ELF as the entry point, i.e. the address where the kernel will jump to.. prog.o, our object file, which contains main.. /usr/lib/libc.so, the dynamic library (shared object) version of the C standard
library, containing puts amongst others. Will be only linked at runtime by the
dynamic linker.

The program can then be run like this:

./prog

In reality, there are usually more object files linked in. Notably they handle the runs
of constructs and destructors (code which runs before and after main, respectively).
Since our program didn’t need them, we didn’t need to link them. But the C dynamic
library could need them. We are in dangerous zone of compiler and C library specific
details. It is usually better to use the C compiler’s driver to figure out the linker
command line. Such driver is the gcc command of the GCC compiler. With the driver,
it is also much easier to use static linking or an alternative library like musl:

gcc -o prog obj.o
gcc -static -o prog obj.o
musl-gcc -o prog obj.o
musl-gcc -dynamic -o prog obj.o

The actual linker invocation can be then found by adding the -v flag.

4.10.2 Custom runtime
An equivalent program can be created without using the C library. For simplicity and
presentation purposes, we will substitute the puts function with a simple write of 6
characters (without a new line), to avoid having to figure out the length of the program
name, etc. We will just illustrate the runtime portion which will run the program’s
main function, perform a system call and exit the program with main’s return value as
exit code.

The most important thing is the entry point. We can define this with the name
_start as the linker defaults to it, but we could choose any other name, as long as we
export the symbol and instruct the linker correctly.

137

4. Design and implementation .
According to the System V ABI [System V AMD64 ABI, 2023], the entry point finds

itself with the stack aligned to 16 bytes, with the 8-byte argument count on top of the
stack ([rsp]) and the pointers to arguments start after it ([rsp+8]). We can prepare
these to appropriate registers to be passed to main. Then after main is called, we need
to run the exit system call, which has the number 60 (to be passed in rax) and the
argument (rdi) is the exit code, which main returns in rax. Additionally, the ABI says
that rbp is unspecified at entry and should be zeroed out to mark the outermost stack
frame and we abide:

global _start
_start:

xor rbp, rbp
mov rdi, [rsp]
lea rsi, [rsp+8]
call main
mov rdi, rax
mov rax, 60
syscall

Since we are guaranteed that the stack is aligned to 16 bytes, we don’t have to realign
it before calling main (which, like all functions respecting the System V ABI, expects
the stack to be 16 byte aligned).

To add system call support, we need to translate from the System V C ABI to
the System V Linux kernel ABI and to perform the system call with the syscall
instruction, which is not normally accessible to C programs. We do this with a syscall
function hand-coded in assembly. The function will receive up to 7 arguments, the first
one will be the system call number (to be put into rax) and then the 6 arguments,
which the kernel expects in registers. As our syscall function will be called from C
code, the first 6 arguments are passed in registers and the 7th on the stack—we are off
by one, since we also receive the system call number. We also fix the difference in the
two calling conventions, where the kernel uses r10 instead of rcx:
syscall:

mov rax, rdi
mov rdi, rsi
mov rsi, rdx
mov rdx, rcx
mov r10, r8
mov r8, r9
mov r9, [rsp+8]
syscall
ret

The simple definition actually packs a few other things that are not immediately ap-
parent:. The function works for any number of arguments. Six is the maximum number

of arguments any system call has. If a syscall needs less than 6 arguments, the
extraneous parameters simply won’t be read. This is also the reason why the read of
the 7th parameter from the stack is benign. The argument registers don’t have to be
preserved according to the C calling convention, so it doesn’t matter that we change
them.. Callee saved registers (rbp, rbx, and r12 through r15) are preserved, since neither
our function nor the kernel changes them. (The kernel changes only rcx and r11 and
only due to them being used implicitly by the syscall instruction, see section 2.6).

138

. 4.11 Middle end

. The return value from the kernel (rax) is passed back in the C return register (rax).
Essentially we have a variable argument function without using va_list. But the

caller can still pass us arguments using the C ABI and as long as there are no more
than 7, we can understand them (and there shouldn’t actually be more than 7). In
TinyC we can make the function available with the following declaration:
int syscall(int syscall_nr, ...);

To actually write something to standard output, we can for brevity at least output
the first 6 characters (./prog) of the program name:
int main(int argc, char **argv) {

syscall(1, 0, argv[0], 6);
return 0;

}

Here 1 corresponds the write system call and 0 to the file descriptor of standard output.
A wrapper for the write system call, can be created like this:
int write(int fd, void *buf, int count) {

return syscall(1, fd, buf, count);
}

With wrappers for all usual system calls, we can hide the ugly implementation details
from the users.

A few wrappers for system calls like open, close, read, write (input and output)
mmap, munmap (memory mapping, allocation) and exit go a long way towards a base
on top of which a C library could be implemented.

4.11 Middle end
As no complete front end nor middle end for TinyC was available when work on this
thesis was started, we created our own.

The front end is a simple recursive descent Pratt parser (see [Pratt, 1973]). In a
single pass it parsers, type checks and emits middle end IR (constants and operations
as described in section 4.3.1).

More interesting things happen in the middle end, where we do a few optimizations
that our back end isn’t able to currently do.

4.11.1 Jump threading
We perform a bit of jump threading optimization, which removes some control flow
edges needlessly inserted by our simplistic front end. Sometimes by the threading we
we introduce critical edges. We split them again later (see section 4.4), but keeping
them unsplit at least temporarily allows for simpler control flow on which we do the
next optimization.

4.11.2 Value numbering SSA construction
We perform a very weak form of “alias analysis” on stack slots (what used to be TinyC
local variables) and in simple cases are able to optimize them into values respecting
SSA, replacing the former loads and stores.

Since values in our implementation translate to virtual registers, this essentially
means that we replace memory operations by operations on registers. Although this in-
creases register pressure, the introduced spills are not worse than the previous memory
operations.

139

4. Design and implementation .
The simple alias analysis notices that any stack slot, which is only involved in oper-

ations that either load or store to it, can be treated as a simple variable on which we
can apply SSA construction. Other uses of the stack slot could mean that the stack
slot value (which is a constant, pointer to the stack slot), is aliased and written to by
other stores. This analysis is very weak, as it aborts in cases where there are in fact
no aliases. But in our experience it is powerful enough and is able to eliminate many
scalar “stack allocated variables”. Our analysis doesn’t attempt to optimize aggregates
(structs) or arrays.

When optimizable stack slots are identified, the stores and loads are regarded as
assignments and reads, which can be used with any SSA construction method. We use
Braun’s method [Braun et al., 2013], which can be used for SSA repairs. The algorithm
is conceptually simple and intuitive: it works like global value numbering, but reads
𝜙-function operands by recursively querying predecessor blocks. Handling of cycles and
speed are achieved with elegant memoization.

140

Chapter 5
Evaluation

Our back end does global register allocation and extensive, but mostly local peephole
optimization. There are no big transformations of control flow or analysis, that could
achieve optimization.

Our assumption is, that the code is already fairly optimized when provided as input
to the back end. Our back end then does its best to generate the best sequence of
machine instructions implementing the exact same behavior, but with x86-64 specific
improvements, like use of the more complex and compact addressing modes or improved
work with flags.

There are optimizations that might be better suitable for a back end.

5.1 Known shortcomings

Things that are known not to produce good code include:

. Division by a (power of two) constant. Divisions by constants, are much better
realized with multiplication by reciprocal or, in case of powers of two, by shifts.
Unfortunately, due to register constraints of the idiv instruction, detecting divisions
by constants is not as easy as it may seem.. Identities on comparisons. Simple identities like a != 0 are optimizable quite well
in our back end, and can be also fused into conditional jump instructions. But any
more complex comparison expressions like (a != 0) == 1 are not easily folded by
our peephole optimizer. This is because such operations compile into quite a few
instructions (as the setcc instruction sets only a byte, which has partial dependency
problems), and reads and writes of flags are not as easy to optimize in our current
design.. Extensive use of narrow integers. We support TinyC chars purely with sign extending
loads and trimming stores. This is in line with normal C semantics, which promote
narrow types to int before doing any operations. However, sometimes it is possible
to operate on memory directly e.g. with an instruction like: add byte [rax], 1.
As we only support narrow types for loads and stores, we are not able to do this
optimization. It would be possible with more general handling of narrow operations,
which does not tie them to subkinds.

We hope that the constants propagation, constant folding and arithmetic/comparison
identities get applied in the middle end, which is also much more suited to actually find
the constants to optimize with, such as with the sparse conditional constant propagation
optimization [Wegman et al., 1991].

There are surely many other shortcomings, but these are the ones we encountered a
few times and know are the limitations of our architecture, and can’t be fixed by adding
a simple two-instruction peephole pattern.

141

5. Evaluation .

5.2 Comparison against GCC
Since our source language is based on C, and we output x86-64 machine code, we are
able to compare our code with the output of existing C compilers, like GCC1.

Comparison with GCC is especially interesting, since it’s back end representation
(RTL, the Register Transfer Language) is based on the Davidson-Fraser (see sec-
tion 3.6.2), which inspired our successive peephole optimization of machine code.
Though our implementation doesn’t use actual low level register transfers and has
linear sequences of instruction, while GCC’s RTL is actually tree based.

Unfortunately, it is not straightforward to compare just the back ends. As both
compilers (ours and GCC) have very low level and different program representations,
we can’t even generate a code that would be an equivalent starting point for both. Our
compiler itself has only few middle end optimizations (see section 4.11).

Still we decided to do at least some comparison against GCC. We focused on a simple
implementation of the Sieve of Eratosthenes. It exercises quite a few components of
the implementation:

. chars and bit arrays from ints,. Plenty constants and memory addressing for better use of addressing modes.. Control flow in doubly nested loops. If value numbering SSA construction (sec-
tion 4.11.2) is used, then placement of cyclic 𝜙-operations in the doubly nested loops
is tested.

As a benchmark, the Sieve is mainly CPU bound, not I/O bound, which is a must for
any similar benchmark. We implemented three versions of the sieve in two languages—
TinyC and C. The benchmarks had to be implemented separately, to keep the behavior
the same. For example, while TinyC integers are 64-bit, the equivalent type in C on
x86-64 is long. The three different versions were:

. sieve. Using char array with a bit per byte.. sieve-bit. Using int (64-bit integer) array with a 64-bits per element.. sieve-bit-cse. Using int (64-bit integer) array with a 64-bits per element. Addi-
tionally, eliminates a common subexpression.

The first version is the real benchmark we started with. Then we investigated how
the two compilers would fare with a fairly high number of bit twiddling operations. In
the bit set implementation, there was also a common subexpression, that our compiler
is not able to eliminate. We eliminated it manually, to try to aid comparison. The
results are in table 5.1.

Table 5.1. Benchmark of Sieve of Eratosthenes [ms]

GCC Our implementation
-O2 -O1 -O0 P, V Vi Pii –

sieve 1477 1475 2114 1622 1751 2066 2730
sieve-bit 954 931 1915 1475 2009 1905 3060
sieve-bit-cse 951 935 1918 1269 1760 1938 2705

iValue numbering SSA construction enabled
iiPeephole optimization enabled

1 https://gcc.gnu.org/

142

https://gcc.gnu.org/

. 5.2 Comparison against GCC

We tested with various optimization levels in both GCC and in our implementation.
Since our implementation only has two important optimizations (value numbering SSA
construction in the middle end and peephole optimization in back end), we tested all
combinations.

We can see, that the unoptimized version of our compiler was still quite a bit slower
(2730 ms) than unoptimized GCC version. After looking at the assembly, it makes
sense. Without optimization of stack slots, both GCC and our implementation do a lot
of memory operations. But our very naive code generations creates a lot of very verbose
code, that just runs slower. We haven’t really intended for peephole optimization to be
omitted.

With stack slot elimination, and peephole optimization, we get almost within 10 %
of GCC, which seems to not be able to make more optimizations to the code after the
-O1 level. Surprisingly, the -O1 is consistently a bit faster, but the since the observed
deviation is about 8 ms, we can also attribute it to measuring error. No immediately
obvious differences are in the -O2 and -O1 code. Looking at the assembly of our
compiler’s optimized version, it looks like a version somebody would write by porting
the C code to assembly—there are no excessive uses of stack, the register use looks
reasonable, and the control flow is one-to-one the same as in the TinyC version, which
makes sense, since we don’t do any big control flow transformations.

The big amount of eliminated memory operations is likely the reason why SSA con-
struction fares much better individually, then peephole optimization for the sieve
benchmark. Even with our peephole optimizer we don’t get much faster then GCC’s
-O0. It seems that with GCC’s -O0 doesn’t do any stack slot elimination, but there are
still apparent uses of advanced addressing modes e.g. lea is used for multiplication by
8.

For the second round of benchmarks with bit set implemented with 64-bit integers, we
see that GCC is able to be much faster then we are. GCC is much better at improving
the control flow and the use of arithmetic instructions. But an improvement can be
seen in the third benchmark, which has the common subexpression eliminated. This
removes a fair amount of shifts, as the common subexpression looks like this (and is in
a hoot loop):

not_prime[i >> 6] = not_prime[i >> 6] | (1 << (i & 63));

This is easily fixable in ordinary C, where there are arithmetic assignment operators.
In TinyC we simulated the with the following:

int *prim = ¬_prime[i >> 6];
*prim = *prim | (1 << (i & 63));

The elimination depends on elimination of the temporary from stack to actually be
more efficient. Which is why we see that the peephole optimizing version is a bit slower
on the CSE benchmark.

We think our back end did well. Most of the difference in speed seems to be coming
from the middle end.

143

Chapter 6
Conclusion

In this thesis we studied x86-64, one of the most prevalent architectures today. We
designed and implemented a back end for translating TinyC IR into x86-64 machine
code. To achieve this, we investigated existing literature on the topic of compiler back
ends. This final chapter provides some reflections, practical considerations and ideas
for future work.

The x86-64 features many constraints that make it harder to compile for. A lot of
these constraints can be overcome with the right use of live range splitting. The prob-
lems with register classes on x86-64 can be avoided by not using problematic registers
(like ah)—this not only makes register allocation simpler, but the resulting code is also
also faster in practice, because use of the historical register classes is associated with
big penalties on modern superscalar processors.

Irregularities in the x86-64 instruction set and the addressing modes make it harder
for a compiler to model instruction selection with trees or DAGs. In our design, we
chose to first do a naive translation to x86-64 machine instructions and then optimize
the generated code successively with peephole optimizations. This is an application of
the Davidson-Fraser model [Davidson et al., 1984a], though we work on instructions
directly, instead of on a separate low level intermediate representation. In this model we
can easily express the constraints mentioned above—our naive code generation provides
correctness, while the optimizations make the produced code efficient.

Peephole optimization itself proved to be capable of improving the code to take ad-
vantage of the various x86-64 addressing modes, though data-flow based optimizations
have to be used, otherwise many optimizations can be missed due to not falling into
a peephole window. Writing the peephole patterns by hand, is tractable for a single
architecture, but it is error prone—patterns are not too hard to create in isolation, but
their interactions can sometimes become problematic. Some automation or a domain
specific language for writing the patterns would be a must for a compiler with more
target architectures or a big number of patterns. On the other hand, hand-written pat-
terns proved to be quite expressive and can easily cover more cases then automatically
derived patterns could.

Modern optimizing compilers use SSA form in their middle ends. Deconstructing the
𝜙-functions (not executable by machines) into copy instructions is not as trivial as it
may seem, but correct and simple algorithms are available.

Live range splitting, compilation to x86-64’s two address code as well as SSA de-
construction can all produce a large number of copy instructions. Coalescing, which
is able to remove the copy instructions if possible, is needed to produce efficient code.
Coalescing has to be done carefully to ensure both correctness as well as code quality,
since excessive coalescing can lead to spilling. This is one of the reasons why we used
the iterated register coalescing algorithm [George et al., 1996] for register allocation—it
is based on the classic well known technique of graph coloring register allocation, but
is able to eliminate many more copy instructions than previous approaches.

144

. 6.1 Future work

Although the produced code is good for code sequences that are covered by our
peephole patterns, the code quality goes down significantly if our patterns are weak
enough and not able to optimize a sequence of instructions. A lot of times this can be
attributed to translation from middle end IR that was not sufficiently optimized—the
inoptimalities are only magnified in our back end, which is mostly focused on making
use of x86-64’s features as much as possible. The middle end is much more suited for
optimizations that are not x86-64 specific, not only because improvements there apply
to other architectures, but also because it works with a higher level abstractions and
still has some knowledge about semantics, while the backend already works mostly with
untyped integers.

This thesis, both the text and the actual implementation, can hopefully serve as
examples to the students at FIT CTU considering advancing their compilers beyond
the simplified Tiny86 architecture.

The implementation of the back end, documentation, as well as the source of this
text is available publicly under an open source license.1.

6.1 Future work
The back end works, and can be used as is. However there are still some interesting
areas that could be explored in future work.

We tried to design the back end with porting to other target architectures in mind.
It would be great to exercise that in practice and add a second target architecture
to our compiler. Starting without a peephole optimizer, the port should hopefully be
relatively straightforward. Porting to an architecture like AArch64 would be the most
interesting, since it features register classes that require more care than the ones on
x86-64.

Ports to other calling conventions (like Microsoft’s) or to operating systems which re-
quire system calls to be performed directly (like Windows or OpenBSD) would exercise
other parts of the compiler.

The back end produces textual NASM assembly, that can be turned into a final exe-
cutable with external programs (NASM assembler and system linker). This works great
for inspection and allows linking with external code, but still shows all important as-
pects of the compiler. Making the back end produce executables directly could however
make it more self-contained as external dependencies would no longer be required.

As of now, the back end is implemented as a standalone program. Turning it into a
library could make it more universally usable.

We also identified a few extensions to the TinyC language (external calls, variable
number of arguments) that are needed in order to run non-trivial programs on the
x86-64 architecture.

With experience with both x86-64 and Tiny86, we see a few areas where Tiny86
could be made more realistic (system calls) or improved a bit (unsigned operations).

Extensions to both TinyC and Tiny86 are not hard to implement, but they have to
be carefully evaluated before they needlessly complicate things for students.

1 https://github.com/vlasakm/master-thesis

145

https://github.com/vlasakm/master-thesis

References

Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Volume
3: General-Purpose and System Instructions. 2022 [cit. 2023-06-09]. Available
from https://www.amd.com/en/support/tech-docs/amd64-architecture-
programmers-manual-volume-3-general-purpose-and-system.

Aho, Alfred V., and Margaret J. Corasick. Efficient String Matching: An Aid to Bib-
liographic Search. Commun. ACM . New York, NY, USA: Association for Comput-
ing Machinery, jun, 1975, Vol. 18, No. 6, pp. 333–340. ISSN 0001-0782. Available
from DOI 10.1145/360825.360855. Available from https://doi.org/10.1145/
360825.360855.

Aho, Alfred V., Mahadevan Ganapathi, and Steven W. K. Tjiang. Code Gen-
eration Using Tree Matching and Dynamic Programming. ACM Trans. Pro-
gram. Lang. Syst. New York, NY, USA: Association for Computing Machin-
ery, oct, 1989, Vol. 11, No. 4, pp. 491–516. ISSN 0164-0925. Available from DOI
10.1145/69558.75700. Available from https://doi.org/10.1145/69558.75700.

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006. ISBN 0321486811.

Appel, Andrew W., and Lal George. Optimal Spilling for CISC Machines with Few
Registers. SIGPLAN Not. New York, NY, USA: Association for Computing Ma-
chinery, may, 2001, Vol. 36, No. 5, pp. 243–253. ISSN 0362-1340. Available from
DOI 10.1145/381694.378854. Available from https://doi.org/10.1145/381694.
378854.

Appel, Andrew W., and Maia Ginsburg. Modern compiler implementation in C .
Cambridge, UK: Cambridge University Press, 1998. ISBN 052158390X.

Belady, Laszlo A.. A study of replacement algorithms for a virtual-storage computer.
IBM Systems journal. IBM, 1966, Vol. 5, No. 2, pp. 78–101.

Blindell, Gabriel Hjort. Instruction Selection: Principles, Methods, and Applications.
1st ed. Springer Publishing Company, Incorporated, 2016. ISBN 3319340174.

Boissinot, Benoit, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin,
and Christophe Guillon. Revisiting Out-of-SSA Translation for Correctness,
Code Quality and Efficiency. In: 2009 International Symposium on Code
Generation and Optimization. 2009. pp. 114-125. Available from DOI
10.1109/CGO.2009.19.

Bouchez, Florent, Alain Darte, Christophe Guillon, and Fabrice Rastello. Reg-
ister Allocation: What Does the NP-Completeness Proof of Chaitin et al. Really
Prove? Or Revisiting Register Allocation: Why and How. Available from DOI
10.1007/978-3-540-72521-3_21. Available from https://doi.org/10.1007/978-
3-540-72521-3_21.

146

https://www.amd.com/en/support/tech-docs/amd64-architecture-programmers-manual-volume-3-general-purpose-and-system
https://www.amd.com/en/support/tech-docs/amd64-architecture-programmers-manual-volume-3-general-purpose-and-system
http://dx.doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
http://dx.doi.org/10.1145/69558.75700
https://doi.org/10.1145/69558.75700
http://dx.doi.org/10.1145/381694.378854
https://doi.org/10.1145/381694.378854
https://doi.org/10.1145/381694.378854
http://dx.doi.org/10.1109/CGO.2009.19
http://dx.doi.org/10.1007/978-3-540-72521-3_21
https://doi.org/10.1007/978-3-540-72521-3_21
https://doi.org/10.1007/978-3-540-72521-3_21

. .
Braun, Matthias, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph

Mallon, and Andreas Zwinkau. Simple and Efficient Construction of Static Sin-
gle Assignment Form. In: Proceedings of the 22nd International Conference on
Compiler Construction. Berlin, Heidelberg: Springer-Verlag, 2013. pp. 102–122.
CC’13. ISBN 9783642370502. Available from DOI 10.1007/978-3-642-37051-9_6.
Available from https://doi.org/10.1007/978-3-642-37051-9_6.

Briggs, Preston. Register allocation via graph coloring. Houston, Texas, USA: Rice
University, 1992. Master’s Thesis.

Briggs, Preston, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson.
Practical Improvements to the Construction and Destruction of Static Single As-
signment Form. Softw. Pract. Exper. USA: John Wiley & Sons, Inc., jul, 1998,
Vol. 28, No. 8, pp. 859–881. ISSN 0038-0644.

Briggs, Preston, Keith D. Cooper, and Linda Torczon. Improvements to Graph
Coloring Register Allocation. ACM Trans. Program. Lang. Syst. New York,
NY, USA: Association for Computing Machinery, may, 1994, Vol. 16, No. 3,
pp. 428–455. ISSN 0164-0925. Available from DOI 10.1145/177492.177575. Avail-
able from https://doi.org/10.1145/177492.177575.

Briggs, Preston, and Linda Torczon. An Efficient Representation for Sparse Sets.
ACM Lett. Program. Lang. Syst. New York, NY, USA: Association for Computing
Machinery, mar, 1993, Vol. 2, No. 1–4, pp. 59–69. ISSN 1057-4514. Available from
DOI 10.1145/176454.176484. Available from https://doi.org/10.1145/176454.
176484.

Cattel, R. G. G.. Formalization and Automatic Derivation of Code Generators. Pitts-
burgh, Pennsylvania, USA: Carnegie Mellon University, 1978. Ph.D. Thesis.

Chaitin, G. J.. Register Allocation & Spilling via Graph Coloring. In: Proceedings
of the 1982 SIGPLAN Symposium on Compiler Construction. New York, NY,
USA: Association for Computing Machinery, 1982. pp. 98–105. SIGPLAN ’82.
ISBN 0897910745. Available from DOI 10.1145/800230.806984. Available from ht
tps://doi.org/10.1145/800230.806984.

Chaitin, Gregory J., Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin
E. Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer
Languages. Elsevier BV, jan, 1981, Vol. 6, No. 1, pp. 47–57. Available from DOI
10.1016/0096-0551(81)90048-5. Available from https://doi.org/10.1016/0096-
0551(81)90048-5.

Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy. An Empirical Study
of Iterative Data-Flow Analysis. In: Proceedings of the 15th International Con-
ference on Computing. USA: IEEE Computer Society, 2006. pp. 266–276. CIC
’06. ISBN 0769527086. Available from DOI 10.1109/CIC.2006.22. Available from
https://doi.org/10.1109/CIC.2006.22.

Cooper, Keith D., Timothy J. Harvey, and Linda Torczon. How to build an in-
terference graph. Software: Practice and Experience. Wiley Online Library, 1998,
Vol. 28, No. 4, pp. 425–444.

Cooper, Keith D., and Linda Torczon. Engineering a Compiler . 2004.
Cytron, Ron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Trans. Program. Lang. Syst. New York,
NY, USA: Association for Computing Machinery, oct, 1991, Vol. 13, No. 4,

147

http://dx.doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1007/978-3-642-37051-9_6
http://dx.doi.org/10.1145/177492.177575
https://doi.org/10.1145/177492.177575
http://dx.doi.org/10.1145/176454.176484
https://doi.org/10.1145/176454.176484
https://doi.org/10.1145/176454.176484
http://dx.doi.org/10.1145/800230.806984
https://doi.org/10.1145/800230.806984
https://doi.org/10.1145/800230.806984
http://dx.doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
http://dx.doi.org/10.1109/CIC.2006.22
https://doi.org/10.1109/CIC.2006.22

References .
pp. 451–490. ISSN 0164-0925. Available from DOI 10.1145/115372.115320. Avail-
able from https://doi.org/10.1145/115372.115320.

Davidson, Jack W., and Christopher W. Fraser. The Design and Application of
a Retargetable Peephole Optimizer. ACM Trans. Program. Lang. Syst. New
York, NY, USA: Association for Computing Machinery, apr, 1980, Vol. 2, No. 2,
pp. 191–202. ISSN 0164-0925. Available from DOI 10.1145/357094.357098. Avail-
able from https://doi.org/10.1145/357094.357098.

Davidson, Jack W., and Christopher W. Fraser. Code Selection through Object
Code Optimization. ACM Trans. Program. Lang. Syst. New York, NY, USA:
Association for Computing Machinery, oct, 1984, Vol. 6, No. 4, pp. 505–526.
ISSN 0164-0925. Available from DOI 10.1145/1780.1783. Available from https://
doi.org/10.1145/1780.1783.

Davidson, Jack W., and Christopher W. Fraser. Automatic Generation of Peep-
hole Optimizations. In: Proceedings of the 1984 SIGPLAN Symposium on Com-
piler Construction. New York, NY, USA: Association for Computing Machin-
ery, 1984. pp. 111–116. SIGPLAN ’84. ISBN 0897911393. Available from DOI
10.1145/502874.502885. Available from https://doi.org/10.1145/502874.
502885.

Eckstein, Erik, Oliver König, and Bernhard Scholz. Code Instruction Selection
Based on SSA-Graphs. In: Andreas Krall, ed. Software and Compilers for Em-
bedded Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. pp. 49–65.
ISBN 978-3-540-39920-9.

Ertl, M. Anton. Optimal Code Selection in DAGs. In: Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New
York, NY, USA: Association for Computing Machinery, 1999. pp. 242–249. POPL
’99. ISBN 1581130953. Available from DOI 10.1145/292540.292562. Available from
https://doi.org/10.1145/292540.292562.

Fraser, Christopher W., David R. Hanson, and Todd A. Proebsting. Engineering
a Simple, Efficient Code-Generator Generator. ACM Lett. Program. Lang. Syst.
New York, NY, USA: Association for Computing Machinery, sep, 1992, Vol. 1,
No. 3, pp. 213–226. ISSN 1057-4514. Available from DOI 10.1145/151640.151642.
Available from https://doi.org/10.1145/151640.151642.

Fraser, Christopher W., Robert R. Henry, and Todd A. Proebsting. BURG: Fast
Optimal Instruction Selection and Tree Parsing. SIGPLAN Not. New York, NY,
USA: Association for Computing Machinery, apr, 1992, Vol. 27, No. 4, pp. 68–76.
ISSN 0362-1340. Available from DOI 10.1145/131080.131089. Available from http
s://doi.org/10.1145/131080.131089.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Westford, Massachusetts, United
States: Addison-Wesley, 1995. ISBN 0-201-63361-2.

George, Lal, and Andrew W. Appel. Iterated Register Coalescing. ACM Trans. Pro-
gram. Lang. Syst. New York, NY, USA: Association for Computing Machinery,
may, 1996, Vol. 18, No. 3, pp. 300–324. ISSN 0164-0925. Available from DOI
10.1145/229542.229546. Available from https://doi.org/10.1145/229542.
229546.

Glanville, R. Steven, and Susan L. Graham. A New Method for Compiler Code
Generation. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on

148

http://dx.doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/357094.357098
https://doi.org/10.1145/357094.357098
http://dx.doi.org/10.1145/1780.1783
https://doi.org/10.1145/1780.1783
https://doi.org/10.1145/1780.1783
http://dx.doi.org/10.1145/502874.502885
https://doi.org/10.1145/502874.502885
https://doi.org/10.1145/502874.502885
http://dx.doi.org/10.1145/292540.292562
https://doi.org/10.1145/292540.292562
http://dx.doi.org/10.1145/151640.151642
https://doi.org/10.1145/151640.151642
http://dx.doi.org/10.1145/131080.131089
https://doi.org/10.1145/131080.131089
https://doi.org/10.1145/131080.131089
http://dx.doi.org/10.1145/229542.229546
https://doi.org/10.1145/229542.229546
https://doi.org/10.1145/229542.229546

. .
Principles of Programming Languages. New York, NY, USA: Association for Com-
puting Machinery, 1978. pp. 231–254. POPL ’78. ISBN 9781450373487. Available
from DOI 10.1145/512760.512785. Available from https://doi.org/10.1145/
512760.512785.

Hack, Sebastian, Daniel Grund, and Gerhard Goos. Register Allocation for Programs
in SSA-Form. In: Proceedings of the 15th International Conference on Compiler
Construction. Berlin, Heidelberg: Springer-Verlag, 2006. pp. 247–262. CC’06.
ISBN 354033050X. Available from DOI 10.1007/11688839_20. Available from htt
ps://doi.org/10.1007/11688839_20.

Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual. 2023a [cit. 2023-06-09]. Available from https://www.intel.com/content/
www/us/en/developer/articles/technical/intel-sdm.html.

Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual.
2023b [cit. 2023-06-09]. Available from https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-sdm.html.

Kam, John B., and Jeffrey D. Ullman. Monotone Data Flow Analysis Frameworks.
Acta Inf. Berlin, Heidelberg: Springer-Verlag, sep, 1977, Vol. 7, No. 3, pp. 305–317.
ISSN 0001-5903. Available from DOI 10.1007/BF00290339. Available from http
s://doi.org/10.1007/BF00290339.

Knuth, Donald E. Semantics of context-free languages. Mathematical systems theory.
Springer, 1968, Vol. 2, No. 2, pp. 127–145.

Knuth, Donald E.. On the translation of languages from left to right. Information and
Control. 1965, Vol. 8, No. 6, pp. 607-639. ISSN 0019-9958. Available from DOI
https://doi.org/10.1016/S0019-9958(65)90426-2. Available from https://www.sc
iencedirect.com/science/article/pii/S0019995865904262.

Koes, David Ryan, and Seth Copen Goldstein. Near-Optimal Instruction Selection on
Dags. In: Proceedings of the 6th Annual IEEE/ACM International Symposium on
Code Generation and Optimization. New York, NY, USA: Association for Com-
puting Machinery, 2008. pp. 45–54. CGO ’08. ISBN 9781595939784. Available
from DOI 10.1145/1356058.1356065. Available from https://doi.org/10.1145/
1356058.1356065.

Leung, Allen, and Lal George. A new MLRISC register allocator . 1998.
Lu, H.J., Michael Matz, Milind Girkar, Jan Hubička, Andreas Jaeger, and Mark

Mitchell. System V Application Binary Interface: AMD64 Architecture Proces-
sor Supplement. 2023 [cit. 2023-06-12]. Available from https://gitlab.com/
x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.
pdf?job=build.

Microsoft Corporation. x64 calling convention. 2022 [cit. 2023-06-12]. Available
from https://learn.microsoft.com/en-us/cpp/build/x64-software-conven
tions?view=msvc-170.

Muchnick, Steven S.. Advanced Compiler Design and Implementation. San Francisco,
USA: Morgan Kaufmann Publishers, 1997. ISBN 1-55860-320-4.

Mössenböck, Hanspeter, and Michael Pfeiffer. Linear Scan Register Allocation in
the Context of SSA Form and Register Constraints. In: R. Nigel Horspool, ed.
Compiler Construction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
pp. 229–246. ISBN 978-3-540-45937-8.

149

http://dx.doi.org/10.1145/512760.512785
https://doi.org/10.1145/512760.512785
https://doi.org/10.1145/512760.512785
http://dx.doi.org/10.1007/11688839_20
https://doi.org/10.1007/11688839_20
https://doi.org/10.1007/11688839_20
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://dx.doi.org/10.1007/BF00290339
https://doi.org/10.1007/BF00290339
https://doi.org/10.1007/BF00290339
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90426-2
https://www.sciencedirect.com/science/article/pii/S0019995865904262
https://www.sciencedirect.com/science/article/pii/S0019995865904262
http://dx.doi.org/10.1145/1356058.1356065
https://doi.org/10.1145/1356058.1356065
https://doi.org/10.1145/1356058.1356065
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://learn.microsoft.com/en-us/cpp/build/x64-software-conventions?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/x64-software-conventions?view=msvc-170

References .
Pall, Mike. LuaJIT 2.0 intellectual property disclosure and research opportunities [on-

line]. 2009 [cit. 2023-05-29]. Available from http://lua-users.org/lists/lua-
l/2009-11/msg00089.html.

Park, Jinpyo, and Soo-Mook Moon. Optimistic Register Coalescing. ACM Trans.
Program. Lang. Syst. New York, NY, USA: Association for Computing Machin-
ery, jul, 2004, Vol. 26, No. 4, pp. 735–765. ISSN 0164-0925. Available from DOI
10.1145/1011508.1011512. Available from https://doi.org/10.1145/1011508.
1011512.

Pelegrí-Llopart, E., and S. L. Graham. Optimal Code Generation for Expres-
sion Trees: An Application BURS Theory. In: Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New
York, NY, USA: Association for Computing Machinery, 1988. pp. 294–308. POPL
’88. ISBN 0897912527. Available from DOI 10.1145/73560.73586. Available from
https://doi.org/10.1145/73560.73586.

Pereira, Fernando Magno Quintão, and Jens Palsberg. Register Allocation Via
Coloring of Chordal Graphs. In: Kwangkeun Yi, ed. Programming Languages
and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. pp. 315–329.
ISBN 978-3-540-32247-4.

Poletto, Massimiliano, and Vivek Sarkar. Linear Scan Register Allocation. ACM
Trans. Program. Lang. Syst. New York, NY, USA: Association for Computing
Machinery, sep, 1999, Vol. 21, No. 5, pp. 895–913. ISSN 0164-0925. Available from
DOI 10.1145/330249.330250. Available from https://doi.org/10.1145/330249.
330250.

Pratt, Vaughan R.. Top down Operator Precedence. In: Proceedings of the 1st Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
New York, NY, USA: Association for Computing Machinery, 1973. pp. 41–51.
POPL ’73. ISBN 9781450373494. Available from DOI 10.1145/512927.512931.
Available from https://doi.org/10.1145/512927.512931.

Rosen, B. K., M. N. Wegman, and F. K. Zadeck. Global Value Numbers and Redun-
dant Computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. New York, NY, USA: Association
for Computing Machinery, 1988. pp. 12–27. POPL ’88. ISBN 0897912527. Avail-
able from DOI 10.1145/73560.73562. Available from https://doi.org/10.1145/
73560.73562.

Scholz, Bernhard, and Erik Eckstein. Register Allocation for Irregular Archi-
tectures. In: Proceedings of the Joint Conference on Languages, Compilers
and Tools for Embedded Systems: Software and Compilers for Embedded Sys-
tems. New York, NY, USA: Association for Computing Machinery, 2002.
pp. 139–148. LCTES/SCOPES ’02. ISBN 1581135270. Available from DOI
10.1145/513829.513854. Available from https://doi.org/10.1145/513829.
513854.

Smith, Michael D., Norman Ramsey, and Glenn Holloway. A Generalized Algorithm
for Graph-Coloring Register Allocation. In: Proceedings of the ACM SIGPLAN
2004 Conference on Programming Language Design and Implementation. New
York, NY, USA: Association for Computing Machinery, 2004. pp. 277–288. PLDI
’04. ISBN 1581138075. Available from DOI 10.1145/996841.996875. Available from
https://doi.org/10.1145/996841.996875.

150

http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://dx.doi.org/10.1145/1011508.1011512
https://doi.org/10.1145/1011508.1011512
https://doi.org/10.1145/1011508.1011512
http://dx.doi.org/10.1145/73560.73586
https://doi.org/10.1145/73560.73586
http://dx.doi.org/10.1145/330249.330250
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/330249.330250
http://dx.doi.org/10.1145/512927.512931
https://doi.org/10.1145/512927.512931
http://dx.doi.org/10.1145/73560.73562
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/73560.73562
http://dx.doi.org/10.1145/513829.513854
https://doi.org/10.1145/513829.513854
https://doi.org/10.1145/513829.513854
http://dx.doi.org/10.1145/996841.996875
https://doi.org/10.1145/996841.996875

. .
Sreedhar, Vugranam C., Roy Dz-Ching Ju, David M. Gillies, and Vatsa San-

thanam. Translating Out of Static Single Assignment Form. In: Agostino
Cortesi, and Gilberto Filé, eds. Static Analysis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999. pp. 194–210. ISBN 978-3-540-48294-9.

Strejc, Ivo. Tiny x86 - Architecture Simulator for Educational Purposes. Prague,
Czech Republic: Faculty of Information Technology, CTU in Prague, 2021. Mas-
ter’s Thesis. Available from http://hdl.handle.net/10467/94644.

Traub, Omri, Glenn Holloway, and Michael D. Smith. Quality and Speed in
Linear-Scan Register Allocation. In: Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation. New York,
NY, USA: Association for Computing Machinery, 1998. pp. 142–151. PLDI
’98. ISBN 0897919874. Available from DOI 10.1145/277650.277714. Available from
https://doi.org/10.1145/277650.277714.

Wadler, Philip. The Expression Problem [online]. 1998 [cit. 2023-06-19]. Available
from https://homepages.inf.ed.ac.uk/wadler/papers/expression/express
ion.txt.

Wegman, Mark N., and F. Kenneth Zadeck. Constant Propagation with Conditional
Branches. ACM Trans. Program. Lang. Syst. New York, NY, USA: Association
for Computing Machinery, apr, 1991, Vol. 13, No. 2, pp. 181–210. ISSN 0164-
0925. Available from DOI 10.1145/103135.103136. Available from https://doi.
org/10.1145/103135.103136.

Wilson, Tom, Gary Grewal, Ben Halley, and Dilip Banerji. An Integrated Ap-
proach to Retargetable Code Generation. In: Proceedings of the 7th International
Symposium on High-Level Synthesis. Washington, DC, USA: IEEE Computer So-
ciety Press, 1994. pp. 70–75. ISSS ’94. ISBN 0818657855.

Wimmer, Christian, and Michael Franz. Linear Scan Register Allocation on SSA
Form. In: Proceedings of the 8th Annual IEEE/ACM International Symposium on
Code Generation and Optimization. New York, NY, USA: Association for Com-
puting Machinery, 2010. pp. 170–179. CGO ’10. ISBN 9781605586359. Available
from DOI 10.1145/1772954.1772979. Available from https://doi.org/10.1145/
1772954.1772979.

Wulf, William Allan, Richard K. Johnsson, Charles B. Weinstock, Steven O.
Hobbs, and Charles M. Geschke. The Design of an Optimizing Compiler . USA:
Elsevier Science Inc., 1975. ISBN 0444001581.

151

http://hdl.handle.net/10467/94644
http://dx.doi.org/10.1145/277650.277714
https://doi.org/10.1145/277650.277714
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://dx.doi.org/10.1145/103135.103136
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/103135.103136
http://dx.doi.org/10.1145/1772954.1772979
https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1145/1772954.1772979

Appendix A
Acronyms

ALU . Arithmetic logic unit
AST . Abstract syntax tree
CFG . Control-flow graph
CISC . Complex instruction set computer
CRT . C runtime
CSE . common subexpression elimination
DAG . Directed acyclic graph
ELF . Executable and Linkable Format
GCC . GNU compiler collection
IR . Intermediate representation
IRC . Iterated register coalescing [George et al., 1996]
JIT . Just-in-time (compiler)
OS . Operating system
PE . Portable Executable
RISC . Reduced instruction set computer
SSA . Static single assignment

153

Appendix B
Contents of the electronic attachment

The electronic attachment contains the following directories:
/

benchmarks . directory with benchmarks
out . directory with benchmark results
run_benchmarks.sh . script for running the benchmarks

examples . directory with examples
ref . a folder with reference outputs of tests
src . directory with C sources
tests . a folder with test files
text . source code of the text of the thesis

figures . figures used in the thesis
vlasami6-dip.pdf . text of the thesis in the PDF format
vlasami6-dip.tex . TEX source of the thesis
vlasami6-dip.bib . bibliography in BibTEX

meson.build .configuration for the Meson1 build system
README.md . electronic attachment description
test.sh . testing script

154

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	x86-64 architecture
	History
	Characteristic
	Basics
	Registers
	Memory locations
	Arithmetic
	Condition codes
	Encoding

	32-bit extension
	64-bit extension
	Calling conventions
	Operating system interface
	Comparison with Tiny86
	Registers
	Operations
	Addressing modes

	Conclusion

	State of the art
	Structure of a compiler backend
	Phase ordering

	Intermediate representations
	Abstract syntax tree
	Directed acyclic graph
	Three address code
	Control flow graph

	Peephole optimization
	SSA form
	Value-based SSA
	SSA for machine code

	SSA deconstruction
	Instruction selection
	Outline
	Peephole optimization
	Covering
	LR parsing
	Top-down matching
	Bottom-up rewriting
	DAG covering by tree covering

	Reduction
	Practical considerations

	Instruction scheduling
	Motivation
	List scheduling
	Practical considerations

	Register allocation
	Motivation
	Spilling
	Using spilled values
	Spilling in copy instructions
	Interaction with instruction selection

	Concepts
	Liveness
	Interference
	Live ranges
	Coalescing
	Live range splitting
	Register constraints
	Register classes

	Techniques
	Local top-down and bottom-up
	Linear scan
	Graph coloring
	Graph coloring of chordal graphs
	Reduction

	Design and implementation
	Architecture
	Middle end
	Back end
	Assembly
	Register allocation

	Technology
	Assembler
	Programming language

	Data structures
	Middle end
	Values
	Constants
	Operations
	Basic blocks
	Functions

	Back end
	Registers
	Machine instructions
	Machine blocks

	Work lists

	Critical edge splitting
	SSA deconstruction
	Live range splitting
	Lowering
	Operands
	Stack slots
	Prologue and epilogue
	Narrow types
	Signedness

	Peephole optimization
	Local optimizations
	Flag based optimizations
	Use-def based optimizations
	Inter-block optimizations
	Implementation
	Practical findings
	Copy propagation
	Duplication of patterns
	Avoiding dead ends
	Optimization order

	Register allocation
	Liveness analysis
	Build interference graph
	Calling conventions

	Iterated register coalescing
	Coalescing

	Register assignment
	Interference graph representation
	Physical registers, coalescing
	Spilling
	Calculating spill cost
	Unspillable nodes
	Spill metric

	Runtime
	External C library
	Custom runtime

	Middle end
	Jump threading
	Value numbering SSA construction

	Evaluation
	Known shortcomings
	Comparison against GCC

	Conclusion
	Future work

	References
	Acronyms
	Contents of the electronic attachment

