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Instructions

Inter-Camera Multi-Object Tracking Using Transfer Learning from Synthetic Dataset

Managers of complex buildings such as shopping malls and office spaces face various 

challenges, including optimizing lighting and heating based on occupancy, determining 

rent amounts, and placing and targeting advertisements. To better understand their 

customers, it is vital to have systems for pedestrian detection, gender and age 

prediction, and inter-camera identity preservation. At iC Systems.ai, s.r.o., we are working 

on developing such systems. The current solution for preserving identity among multiple 

cameras in complex buildings is described in [1]. 

This thesis aims to extend this system for preserving identity among multiple cameras 

in complex buildings. To do this, the student will first conduct a literature review on the 

topic. They will then design a solution for generating synthetic datasets that will be used 

to animate and simulate human behaviour. Using both artificial and real data, the 

student will design and train a neural network that encodes image crops into global 

descriptor vectors. These vectors will be used to measure the similarity between 

pedestrian image crops, taking into account the orientation of objects relative to the 

camera. The student will also implement spatio-temporal inter-camera identity 

matching using these descriptor vectors. Finally, they will evaluate the overall system.

[1] Erik, Hulmák. Re-identifikace osob v systému kamer. BS thesis. České vysoké učení 

technické v Praze. Vypočetní a informační centrum., 2021.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 25 January 2023 in Prague.
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Abstract

Multi-Target Multi-Camera Tracking (MTMCT) can provide invaluable insights into human
behavior and movement patterns. An effective tracking infrastructure can significantly influence
service refinement, public safety, and resource management. Unfortunately, developing such
intricate systems is costly due to the challenges of obtaining large datasets of sufficient quality. To
mitigate this, we created and incorporated synthetic data into the training process. This project
has both scientific and practical objectives. The scientific objectives include using synthetic
datasets and orientation estimation to create a robust visual feature extractor. The practical goal
is implementing a powerful MTMCT solution that utilizes available resources to achieve optimal
performance. The results of this work will be applied in over ten large complex buildings across
Europe. We have constructed four large datasets to address both objectives, each serving different
purposes. We utilized multi-task curriculum learning to develop robust models to build and solve
the assignment problem. The efficiency of the proposed methodology has been demonstrated in
a simulated environment with convincing results. We have shown the benefit of synthetic data
use, particularly for smaller datasets.

Keywords computer vision, multi-target multi-camera tracking, synthetic data, multi-task
learning, person re-identification, image retrieval, assignment problem

Abstrakt

Multi-Target Multi-Camera Tracking (MTMCT) je systém, který přináš́ı cenné informace o po-
hybu a chováńı lid́ı a dokáže spolehlivě re-identifikovat návštěvńıky bez narušeńı jejich soukromı́.
Výstupy jsou následně využity pro zkvalitňováńı služeb a zajǐst’ováńı veřejné bezpečnosti. Vývoj
takovýchto systémů je nákladný kv̊uli vysokým nárok̊um na kvalitu a čistotu trénovaćıch dat.
Za účelem jejich sńıžeńı jsme se rozhodli využ́ıt generovaných dat. Účel práce je primárně aka-
demický, ale předpokládáme, že dosažené výsledky budou brzy nasazeny v praxi, a to do v́ıce
než deseti komplexńıch budov po celé Evropě. Hlavńım př́ınosem práce je využit́ı v́ıceúlohového
tréninku na čtyřech námi vytvořených datových sadách, které velikost́ı přesahuj́ı 0.5M obrázk̊u.
Metodologie vede k lepš́ı generalizaci modelu a pomoćı postupného zvyšováńı náročnosti tréninku
jsme se výrazně posunuli oproti předchoźım verźım. Výsledky demonstruj́ı užitečnost gen-
erovaných dat a navrhovaných metod, a to zejména v př́ıpadě, kdy je reálných dat nedostatek.

Kĺıčová slova poč́ıtačové viděńı, mutli-object multi-camera tracking, generovaná data, hluboké
učeńı, v́ıce-úlohové učeńı, re-identifikace osob
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Introduction

The rise of Artificial Intelligence (AI) and Machine Learning (ML) technologies has led to trans-
formative advancements across many industries, optimizing tasks and processes. One essential
application of these innovations is people counting, an increasingly vital tool for managing com-
plex buildings. By gaining insights into customer profiles and behavior, building managers can
enhance services, optimize energy consumption, and effectively control people flow within their
facilities. Similar systems are also often used for security and anomaly detection because each
sensor can recognize suspicious behavior and alert the security worker.

At iC Systems.ai, we are developing a people-counting solution strategically employing low-
resolution cameras mounted on ceilings. Each sensor performs the tracking on edge, meaning that
all computations are happening on the sensor without an external server. This makes the system
cost-effective and secure, as transmitting or storing video footage is unnecessary. The trade-off is
lower resolution, weaker computational power, and performance. Whenever we use the term ”re-
identification,” we only mean it from a local perspective. That way, matching customers across
multiple visits is nearly impossible. Our method is based on visual and textural image features
without facial recognition. If, for example, someone takes their jacket off, we cannot match him
to his previous self. Please note that each person published in this thesis is a contracted actor.

My primary role at the company involves Multi-Target Multi-Camera Tracking (MTMCT)
and pedestrian re-identification. MTMCT is a very challenging problem since installed cameras
are often inexpensive with various lens distortions and low-resolution output. Cameras are placed
far apart to reduce costs, and their field of view does not always intersect. Visual features of
tracked objects are weak and often occluded. We must face different viewpoints, color and
illumination changes, various backgrounds, unreliable detection sequences, and bounding boxes.
In addition, the number of people is typically not known in advance, and the amount of data
to process is enormous. We need a high-quality dataset for training identity embeddings to
overcome these issues.

In our prior work, we faced challenges in creating such a dataset. The task requires hard
sample mining that exploits the dataset’s slightest impurity. One potential solution to this issue
involves generating a synthetic dataset using 3D graphics. With perfect control over the digital
space, we can simulate various scenarios and extract metadata that would otherwise be very
expensive to annotate and almost impossible to obtain.

The research question is: How can we generate a synthetic dataset for re-identification?
How can we leverage the data for training a high-performant model? And how to utilize model
capabilities to perform multi-camera multi-target tracking. To address this, we will train a
Siamese network for re-identification on multiple tasks and aim to develop a robust solution that
functions efficiently under all possible conditions. Hopefully, our work will contribute to the
growing field of AI and ML and help managers of complex buildings improve their services and
optimize their operations.

1



2 Introduction

Figure 1 The diagram outlines key components of our work. Multi-Object Tracking is performed
simultaneously on multiple video streams via an end-to-end tracker [1] or a proposal-based system [2].
Then, a multi-task model estimates target orientation and calculates identity embeddings. Orientation,
alongside visual descriptors, are involved in viewpoint-based retrieval. This technique and spatiotemporal
constraints narrow down candidates for the correspondence matrix. The Hungarian algorithm solves the
assignment problem, allowing the reconstruction of the target’s original trajectory across cameras.



Chapter 1

Background

1.1 Single-Camera Tracking

Single-camera tracking, also known as Multiple-object tracking (MOT) [3], tracks an object or
multiple objects within a single camera view. The traditional approach is tracking by detection,
although end-to-end algorithms also exist. The first step in single-camera tracking is object
detection [4], which involves identifying and classifying [5] the object of interest in each frame
of the video. Once an object has been detected in a frame, its location is recorded, a bounding
box is drawn around it, and its visual features are extracted as a local descriptor for later re-
identification [6].

A track is a temporal sequence of object detections in consecutive frames. The tracking
algorithm aims to maintain the object’s identity over long durations.

Object Detection

Object detection [2, 7, 8, 9] is one of the fundamental fields of computer vision. In our setting
with limited computational power, we can’t afford to use state-of-the-art detectors like YOLOv7
[10, 11] (Although hardware and software development progresses quickly). Instead, we use
pipelines similar to the ones used for autonomous driving [12] or traditional computer vision [13]
that are known for their lightweight and reliable process.

One popular approach to object detection is the sliding window technique, which involves
scanning a window of fixed size over the entire image and classifying each window as either
containing an object of interest or not. While this method can be effective, it can also be
computationally expensive [14], particularly when applied to high-resolution images.

To address the speed/accuracy tradeoff [15], a more efficient approach to object detection
is to use a pipeline that combines region proposals, classification, and bounding box regression
[13]. This approach involves first generating a set of candidate regions within the image likely
to contain an object of interest, then using classification and bounding box regression to refine
the regions and output the final object detection.

With the rise of Transformers, many interesting methods were proposed. An end-to-end
detection network DETR [16] and Deformable DETR [1] achieved state-of-the-art performance
at the time.

3



4 Background

Figure 1.1 An example of a proposal-based object detection pipeline. The system first extracts the
region proposals. Each image crop is then classified with a score value. Post-processing steps include
bbox refinement and aggregation using the non-maxima suppression algorithm. Representative features
can be global in the form of identity embedding or local in various forms (Bag of words, key points, etc.)

Region Proposals
To extract region proposals, we move a sliding window that changes in size and shape depending
on the image region, examining each image region for potential objects. A region proposal
algorithm is utilized to reduce the number of bounding boxes that need to be evaluated thus
reducing the computational load immensely.

One popular method for generating region proposals is the Selective Search algorithm [17],
which combines adjacent segments in the image based on similarity in color, illumination, texture,
size, and shape. Another popular method is Region Proposal Networks (RPNs) [15], neural
networks designed to generate region proposals directly from an input image.

Classification
Once the region proposals are generated, they are passed through a deep learning-based classifier,
such as a Convolutional neural network (CNN) [18, 19], to determine the presence and class of
objects within each proposal. The CNN extracts features from the region proposals, and a fully
connected layer classifies the proposals into object classes or backgrounds. Features can also be
extracted in a more traditional manner using Histogram of Oriented Gradients (HOG) [13] or
with Haar-like features [20, 21]. For classification Support vector machine (SVM) [22] can be
used. This step filters out false positives and identifies the most probable objects within the
image.

We use Bounding Box Aggregation to combine or cluster multiple overlapped bounding boxes
into one final detection. [4] The Non-Maxima Suppression (NMS) [21] algorithm selects the
bounding box with the highest classification score, discarding any neighboring boxes with sig-
nificant overlap (based on a predefined Intersection over Union (IoU) threshold). The proposed
regions only sometimes capture the object well. Therefore, we often adjust the regions using a
bounding box regression.
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Identity Embedding

Figure 1.2 Single-camera multi-
object tracking starts with object de-
tection on each frame. Then runs a
tracking algorithm that connects de-
tections into sequences of the same
identity. The algorithm must al-
low new tracks to begin and finished
tracks to terminate.

Once the objects have been detected and localized within the
image, an identity embedding function extracts descriptors
for re-identification. This function processes the cropped im-
ages of the detected objects and generates a feature vector
(or descriptor) for each object. These feature vectors serve
as compact representations of the object’s appearance. They
can be compared using a distance metric (e.g., Euclidean dis-
tance) to determine if two objects from different images or
camera views are the same. The fact that simple descriptors
like Color Names [23] or LOMO [24] work well demonstrates
the importance of visual features. Traditional keypoint de-
scriptors like LAF [25], LBP [26], and ORB [27] didn’t prove
to be useful. On the other hand, SIFT [28], alternatively
RootSIFT [29], used previously in relevant works [30], could
serve as a simple baseline. Finally, the deep learned descrip-
tors [31] outperform any handcrafted alternative by a signif-
icant margin. Deep learned descriptors are further covered
in the ReID section (sec: 1.2.1).

Multiple-Object Tracking
The current state-of-the-art multi-object tracker [32] is based
on the Hungarian algorithm [33] that connects detections
obtained via YOLO [10]. Trackers often solve a global op-
timization problem by continuous energy minimization [34,
35], or attention-based Transformer pipeline [36, 37] that
originated as DETR [16, 1]. The biggest disadvantage of the
previously mentioned methods is their complexity since they
solve a global optimization problem. Accurate object detec-
tions allow for a much simpler IoU-based tracking algorithm
[38] that can be extended to a Visual-IoU tracker [39].

1.2 Multi-Target Multi-Camera Tracking
MTMCT aims to group occurrences of every person at all times from video streams taken by
multiple cameras. The resulting identity ensembles are helpful for visual surveillance, anomaly
detection, crowd behavior analysis, and many more applications.

MTMCT and Person Re-Identification (Re-ID) are closely related, but they differ in objec-
tive. Re-ID ranks identity distances to a query, while MTMCT ultimately solves an assignment
problem. The performance of MTMCT is evaluated as a classification error rate [40], while that
of Re-ID is as a ranking performance. However, training with a loss of the MTMCT type is very
expensive [41]. Therefore we divide the task into two parts. The first part is building a strong
Re-ID system. The second part incorporates Re-ID as a tool for solving a global assignment
problem.

1.2.1 Deep Metric Learning and Curriculum Learning
We must extract a global feature vector for each person’s image to capture discriminative cues.
Similarity learning is a subfield of machine learning that focuses on learning and measuring the



6 Background

Figure 1.3 Overview of various identity learning methods. Methods often intersect and can be used
jointly. (a) Identity Loss - classification of pedestrians, suitable for closed world domains. (b) Verification
loss - allows us to decide whether two embeddings represent the same person. (c) Triplet loss - tends to
minimize interclass distance while maximizing margin to others.

similarity or distance between two objects. It aims to determine how alike or dissimilar two
samples are based on their feature vectors. In many applications, the objective is to compare
samples and identify those belonging to the same class or category [42, 43].

These paradigms can be described through a relevant loss function. There are multiple widely
studied loss functions with their variants for a person Re-ID, including the identity loss [44], ver-
ification loss [45, 46], and triplet loss [47].

Identity loss - The training process is derived from the image classification problem, where
each identity is a distinct class. The prediction is usually encoded with the softmax function.
Consider input image xi with identity label yi. Probability of xi being recognized as yi is
represented by p (yi | xi). Then the identity loss is computed by the cross-entropy loss.

Lid = − 1
n

n∑
i=1

log (p (yi | xi)) (1.1)

However, identity loss is applicable only if a limited number of identities exist. Any new
identity in the training set is necessarily out-of-distribution. Using the identity loss on top of
other losses is usually beneficial but impractical in the open-world scenario.

Verification loss - Pedestrian re-identification can also be approached as a validation prob-
lem. Unlike the classification loss, a network trained using verification loss necessitates two input
images. Comparing the feature information from both images establishes whether the two input
images depict the same pedestrian. It is possible to use either binary verification loss or a con-
trastive loss [45, 46]. The contrastive loss optimizes a pairwise distance of two feature vectors xi

and xj , enabling validation and ranking. The function is parametrized by a distance threshold
ρ.

Lc = δij ∥xi − xj∥2
2 + (1 − δij)

[
ρ − ∥xi − xj∥2

2

]
+

(1.2)
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Where δij is a binary label indicator (δij = 1 when xi and xj are co-identical and δij = 0,
otherwise).

Triplet loss - The objective is to ensure that the distance between the positive pair is smaller
than the distance between the negative pair by a predefined margin ρ. A triplet consists of a
co-identical anchor xa, a positive xp sample pair, and one negative sample xn with a different
identity.

Ltrip =
[
∥xa − xp∥2

2 − ∥xa − xn∥2
2 + ρ

]
+

(1.3)

The combination of triplet/contrastive loss and identity loss is mutually beneficial and used
in many Re-ID papers [6].

Authors of the quadruplet loss [48] propose to form quadruplets by adding another negative
sample. The two negative samples are of different identities. The quadruplet loss leads to the
model output with a larger inter-class variation and a smaller intra-class variation than the triplet
loss. It is because of a constraint that demands a margin between unrelated image pairs. In our
previous work [49], we achieved the best performance using this method.

The previously described methods share a common challenge: tuples that quickly satisfy the
loss equations do not contribute significantly to the training process but merely pass through
the network. This necessitates hard sample mining, a technique focusing on training with more
difficult examples that activate the loss and contribute to training. Hard sample mining is
described in more detail in Section 3.1.4. However, if the batch of training samples becomes
too difficult, it can increase the risk of gradient explosion, a problem where gradient values
become excessively large, as explained in [50]. A technique to balance these factors and improve
model performance while mitigating the risk of gradient explosion is curriculum learning [51].
Curriculum learning is a methodology that organizes the training samples in a meaningful order,
typically from easy to difficult. This strategy has been successfully applied in a wide range
of tasks. However, determining how to rank the samples in terms of difficulty and setting the
appropriate pacing for training often presents challenges. Fortunately, we have a simple way
to measure the difficulty of data samples. For more information on how we implement these
techniques, please refer to Sections 3.1.4 and 3.1.1.

Local Feature Learning

Figure 1.4 Examples of orientation
vectors. The bottom row shows the com-
plexity of spherical space, where catego-
rization is inadequate. Determining a per-
son’s view category is uncertain as they
walk beneath the camera.

The field of pedestrian re-identification largely catego-
rizes learning-based methods into two groups: global
feature learning and local feature learning. Global fea-
ture learning techniques extract a single comprehensive
feature from a pedestrian image. However, these meth-
ods often struggle to capture the granular details nec-
essary for accurate Re-ID.

In contrast, local feature-based learning approaches
emphasize distinct image regions that contain critical
information. These regions can be suggested via various
methods, including manual annotation, pose estimation,
hardcoded horizontal division, or even neural networks.
Local-based approaches potentially alleviate challenges
associated with occlusion, errors in boundary detection,
and variations in view and pose. Local approaches can
suffer from misalignment. Consequently, researchers often propose a hybrid approach, combining
global and local features for more accurate and reliable re-identification.
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Viewpoint Bias

Figure 1.5 The orientation vector
represents the direction a person is
facing. With knowledge of position,
we can estimate from which angle we
see the target. Crops with similar
views usually share visual features.

Significant variations in visual and textural features can be
observed when viewing a subject from different angles, as
shown in fig: 1.4. Recognizing a pedestrian from different
angles is often impossible, even for a trained human eye.
A considerable body of research is geared towards creating
viewpoint invariant Re-ID frameworks [52]. For instance,
the authors in [53] proposed a method that divides an image
equally into six horizontal stripes, with a single histogram
for each stripe. This local feature approach has been widely
adopted in viewpoint invariant person representation. Al-
ternatively, others have disregarded the view information en-
tirely, instead building a shared space where the view-specific
bias can be mitigated [54]. Recently, researchers in [55] sug-
gested a novel approach combining view-specific and view-
invariant features to achieve state-of-the-art performance.
Our previous work [49] neglected the view bias during the
learning phase. Surprisingly, even with low-resolution con-
straints, this proved to be a reasonable baseline.

Existing techniques, such as those previously discussed,
operate under the assumption of a front-view dataset, where
the viewing angle is subject to a circular geometric pattern,
as shown in figure 1.5. Often, authors will quantize orienta-
tion into four (or sometimes eight) categories: front, back,
left, and right [55, 56]. However, these categories prove in-
adequate in a top-down-view setup, given that the geometry
becomes spherical and the object of interest can move di-
rectly beneath the camera.

Our previous experiments encountered challenges with
pedestrian orientation categorization. Also, quantifying a
continuous space is confusing for annotators. We suggest
treating the viewpoint as a regression problem rather than a
classification.

We define the orientation as a unit vector in image space
that aligns with the direction the person is facing (fig: 1.4). The orientation Loss is then
the Cosine Distance Loss 1.4. This method allows us to capture the orientation in a manner
that overcomes the limitations associated with strict categorization, potentially leading to more
accurate person re-identification models.

Lori = 1 − x1 · x2

max (∥x1∥2 · ∥x2∥2 , ϵ) (1.4)

Where x1, x2 are orientation vectors, and ϵ is a value to avoid division by zero.
In Chapter 2, we explain a method for acquiring a suitable dataset. Finally, we can measure

the two samples’ viewing distance, estimating the visual distance relevance. Finally, we can
employ the view angle distance in the hard sampling process during the descriptor training.

1.2.2 Multi Task Learning and Transfer Learning
The conventional approach to machine learning presumes that the domains and distributions
of the training and testing data are identical. Nevertheless, this is often not the case in many
real-world applications. Often, acquiring training data is expensive, difficult, or near impossible.
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Therefore, utilizing available data from various domains to create high-performing learners is use-
ful. This methodology is known as transfer learning.

Figure 1.6 A difference between transfer learning
and multi-task learning. Transfer learning utilizes
knowledge from different domains to achieve higher
performance in the target domain. While multi-
task learning trains multiple tasks jointly leveraging
shared knowledge. The two methodologies intersect,
and often one is used to enhance the other.

Multi-task Learning (MTL) [57], a distinct
machine learning paradigm, seeks to learn
multiple related tasks simultaneously. MTL
enhances the overall performance by allow-
ing knowledge gained from one task to be ap-
plied to others. Previously, MTL was pri-
marily used to address data sparsity issues,
where each task has a limited amount of la-
beled data. Studies have demonstrated that
deep MTL models outperform models focused
on a single task [8]. The Multi-Task Learn-
ing (MTL) is closely related to transfer learn-
ing but differs in fundamentals highlighted in
Figure 1.6.

However, it should be noted that knowl-
edge transfer [58] or multi-task learning does not always yield positive results. If domains share
few similarities, the effectiveness of knowledge transfer may be limited. For instance, learning
to ride a bicycle does not expedite learning to play the piano - a phenomenon referred to as
negative transfer. The negative transfer may depend on several factors, such as the domain gap,
the learner’s ability to transfer knowledge across domains, or misleading domain similarities.
These factors exist similarly within MTL.

Both techniques are currently widely used. For instance, a multi-task loss function is used
for object detection and semantic segmentation [59, 60]. Deep metric learning combines Identity
Loss and Contrastive/Triplet Loss [45, 6, 61]. Using synthetic data for weight initialization in
learning keypoint descriptors [62], or using virtual humans rendered under different illumination
conditions [63].

1.2.3 Person Re-ID
Person Re-Identification has gained substantial attention in recent years, leading to an increasing
number of research papers published in top conferences [64]. The main goal of ReID is to identify
the appearances of a person of interest at different times and places. However, a significant
gap exists between research scenarios and real-world applications [65]. This project aspires to
overcome this gap and aims to deliver a robust solution for practical use.

The open-world application [65, 66, 67] implies that the person in the query may not occur
in the gallery set. Under these circumstances, the task can be perceived as person verification.
In contrast, in closed-world settings [68, 69], ReID is treated more like a personal identification
or classification problem. Like in MOT, various attention-based algorithms have emerged [70,
71], achieving state-of-the-art results.

Viepoint Based Ranking
As discussed in Section 1.2.1, a person’s appearance features change based on the viewpoint
angle. To mitigate this view bias impact on the ranking, we initially planned to use a Long
short-term memory (LSTM) model [72] to accumulate all detections and produce a view-invariant
identity embedding. However, such methods often require substantial data and computational
resources, which could be challenging under our constraints. As an alternative, we propose a
track representation similar in function to the LSTM-based identity embedding. In Figure 3.2,
notice a large CNN backbone with two heads: one for the descriptor vector and the other for



10 Background

the orientation vector. The descriptor is trained using similarity learning (sec: 1.2.1), and the
orientation is trained using the method proposed in Section 1.2.1.

Figure 1.7 It is possible to re-
trieve similar-looking pictures from
a pool of images based on visual fea-
tures. The viewpoint angle can help
to determine how relevant the simi-
larity is.

A track may contain numerous detections, leading to po-
tential redundancy in information. We extract a representa-
tive set of features with distinct viewpoints to address this
and significantly reduce the track size using k-Means clus-
tering based on the viewpoint angle. We select one represen-
tative from each cluster closest to the center, although using
the centroid is also an option [61]. Consequently, the track
representation consists of k descriptor vectors with corre-
sponding orientation information. The distance between two
tracks is then calculated as the mean distance between cho-
sen representatives that are sufficiently close in view. This
method normalizes the track length, discards irrelevant infor-
mation, and substantially decreases the ranking computation
time.

Forcing the model to ensemble latent representations into
tight clusters is beneficial if the targets share visual features.
Otherwise, it may introduce confusion, especially with hard
sample mining. Therefore positive pairs should share the
viewpoint angle. Once the orientation head is trained (or
during its training), we can enable view-sensitive hard sam-
ple mining (Section 1.2.1). The difficulty of samples form-
ing pairs (contrastive loss [46]), triplets (triplet loss [47]), or
quadruplets (quadruplet loss [48]) can be weighted by the
viewpoint distance. It is also possible to weight the loss pro-
portionally to the viewpoint distance. When tuned, only the
most relevant and challenging pairs enter the training loop.

The ranking in its original form indeed operates with sin-
gle images. Since our objective is MTMCT, we prefer robust
distance metrics for tracks rather than image crops. Ap-
pearance ranking concerning viewpoint for image crops can
be done using uncertainty. For each retrieved image, it is
possible to return a number that would estimate the simi-
larity uncertainty. The number is proportional to the view
angle distance. Then it is a question of weighing the distance, which can result in re-ranking.

1.2.4 The Assignment Problem
A recognized approach to achieving classification involves formulating the task as an assignment
problem [73, 74] and employing a deterministic algorithm, such as the Hungarian method [33].
Libraries like NetworkX [75], or SciPy [76] offer implementations of augmenting algorithms for
balanced [77] or unbalanced [78] linear assignment problems. Authors in [79] utilize the LOMO
[24] appearance feature extraction and the Total Least Squares algorithm [80, 81] to estimate an
assignment cost matrix. They frame the issue as a Mixed-Binary Integer Programming problem.

Alternately, multi-target tracking data association can be learned through recurrent neural
networks [82] or by backpropagating through a network-flow solution [83]. Employing Trans-
formers is also possible [71].

In our prior work [49], we addressed the linear assignment problem using the method proposed
by [73, 74]. Originally designed for two cameras, the solution also works for multiple cameras.
Construction of the assignment problem correspondence matrix is further described in the method
section (sec: 3.2).



Multi-Target Multi-Camera Tracking 11

1.2.4.1 The Hungarian Method (Kuhn-Munkers algorithm)
While various methods exist for solving the assignment problem, one of the earliest polynomial-
time algorithms for a balanced assignment was the Hungarian algorithm (also known as the
Kuhn-Munkres algorithm [33]), with a complexity of O(V 3), where V is a number of nodes. By
using the Fibonacci heap, the complexity can be improved to O(mn+n2 log n), where m denotes
the number of edges [84]. The Hungarian method can be implemented using a correspondence
matrix or a graph. Lecture notes [85] inspired the following description. A curious reader can
find all additional proofs and theorems there. A deeper analysis of the algorithm is unnecessary
for this work.

▶ Definition 1.1 (Matching). A matching is a subset M ⊆ E such that ∀v ∈ V at most one
edge in M is incident upon v. A Perfect Matching is an M ⊆ E in which every vertex is adjacent
to some edge in M .

▶ Definition 1.2 (Vertex labeling). A function ℓ : V → R. Labeling is feasible if ℓ(x) + ℓ(y) ≥
w(x, y), ∀x ∈ X, y ∈ Y .

▶ Definition 1.3 (Equality Graph). Graph Gℓ = (V, Eℓ) where Eℓ = {(x, y) : ℓ(x) + ℓ(y) =
w(x, y)}

▶ Definition 1.4 (Neighborhood Nℓ of u ∈ V and set S ⊆ V ). Nℓ(u) = {v : (u, v) ∈
Eℓ}, Nℓ(S) = ∪u inSNℓ(u)

▶ Theorem 1.5 (Kuhn-Munkers). If ℓ is feasible and M is a perfect matching in Eℓ, then M
is a max-weight matching.

Algorithm 1: The Hungarian Algorithm
Data: Complete, bipartite weighted graph G = (V, E) with partitions X, Y

1 Construct Equality Graph: Gℓ = (V, Eℓ) with initial labelling:
∀x ∈ X, y ∈ Y | ℓ(y) = 0, ℓ(x) = max

y∈Y
(w(x, y))

2 M := some matching in Eℓ

3 while M is not perfect do
4 Pick a free node u ∈ X
5 S := {u}, T := ∅
6 while True do
7 if Nℓ(S) = T then
8 update labels (forcing Nℓ(S) ̸= T ) in a following way:
9 αℓ := min

s∈S,y /∈T
{ℓ(x) + ℓ(y) − w(x, y)}

10 if v ∈ S then ℓ(v) := ℓ(v) − αℓ

11 if v ∈ T then ℓ(v) := ℓ(v) + αℓ

12 else
13 pick y ∈ Nℓ(S) − T
14 if y is free then
15 Augment M (u—y is an augmenting path)
16 break
17 else
18 Extend the alterning tree: S := S ∪ {z}, T := T ∪ {y}, where z is the node

y is matched to

Result: A perfect matching M ⊆ Eℓ, where ℓ is feasible.
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1.2.5 Evaluation Metrics

Figure 1.8 The process of solving the
assignment problem involves constructing
a correspondence matrix by proposing po-
tential connections based on spatiotem-
poral constraints. By utilizing descrip-
tor vectors, we can calculate assignment
costs. The MTMCT is then resolved us-
ing the Hungarian algorithm.

The ranking component of a person Re-ID in multi-
target multi-camera tracking necessitates a robust eval-
uation score.

For each query, an algorithm sorts all gallery sam-
ples. The rank-k recognition rate signifies the frac-
tion of top-k ranked gallery samples that contain the
query identity. The Cumulative Matching Characteris-
tics (CMC) curve [86] is a step function that represents
multiple rank-k evaluations for a sufficiently large k.

Although the CMC is a common evaluation met-
ric for person re-identification, it is only accurate when
a single ground truth exists for each query. It is be-
cause the metric considers only the first match. The
always-present ground truth in the gallery also implies
a closed-world scenario. Large-scale datasets do not
always meet this condition. Another commonly used
metric, Mean Average Precision (mAP) [68], measures
the average retrieval performance when multiple ground
truths are present.

In evaluating MTMCT, we use the counts of false
negatives (IDFN), false positives (IDFP), and true pos-
itives (IDTP) to compute the Identification Precision
(IDP), Identification Recall (IDR), and the correspond-
ing F1 score (IDF1).

IDTP - Correct non-terminal assignments.

IDFP - Incorrect non-terminal assignments.

IDTN - Tracks correctly predicted as terminal.

IDFN - Tracks incorrectly as terminal.

IDF1 is a variant of the F1 score, a frequently employed metric in machine learning that
combines precision (IDP) and recall (IDR) into a single measure. Within the MTMCT context,
precision is the proportion of relevant instances among retrieved samples, while recall is the
fraction of relevant samples to the total number of positive samples.

IDP = IDTP

IDTP + IDFP
IDR = IDTP

IDTP + IDFN
(1.5)

(1.6)

IDF1 = 2IDTP

2IDTP + IDFP + IDFN
(1.7)



Chapter 2

Dataset

To our knowledge, there is currently no sufficient public top-view dataset for person Re-ID.
Widely-used datasets such as Market-1501 [68] and VIPeR [87] predominantly focus on non-
top-view perspectives and are set in outdoor environments, leading to a significant illumination
domain gap. Consequently, we have created a dataset tailored to our specific needs. Re-ID
datasets are highly sensitive to noise, and hard sample mining can exacerbate this issue, thereby
elevating the cost of data collection. Given these constraints, acquiring a high-quality dataset
at scale would be challenging. As a result, we propose using a synthetic dataset and multi-task
learning to address these limitations.

2.1 Geometry

Pinhole Camera
A pinhole camera is the simplest camera model in computer vision that maps between the 3D
world and a 2D image. The model uses projective geometry that can be described with the
following equation sm′ = K[R | t]M ′ [88].

s

 u
v
1

 =

 fx 0 u0
0 fy v0
0 0 1

  r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3




X
Y
Z
1

 (2.1)

M ′ is a point in 3D Euclidean space known as the world coordinate system. m′ is the
projection of the 3D point M ′ onto the image plane with coordinates [u, v]T expressed in pixel
units. K is the camera calibration matrix, called the intrinsic camera matrix. C is the principal
point offset with coordinates [u0, v0]T at the origin in the image plane. fx, fy are the focal lengths
expressed in pixel units. Camera rotation and translation are expressed with joint rotation-
translation matrix [R | t] that transforms the coordinates of a 3D point from the world coordinate
system to the camera coordinate system.

Camera Calibration
We already understand the relationship between the 3D world and the 2D camera plane, but
typically, a third coordinate system is involved. We refer to this space as the Image coordinate
space, which is a product of lens distortion and serves as the actual output of a video. Lens
distortion is a form of optical aberration where straight lines in the scene do not remain straight

13
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Figure 2.1 Pinhole Camera - The simplest camera model in computer vision that maps between the
3D world and a 2D image [88].

in the image. Examples of lens distortions include barrel distortion (fig: 2.2), fisheye distortion,
and pincushion distortion. They are usually a combination of more basic distortions like radial,
tangential, thin prism, and tilt distortions.

The equation below [88], describes the relationship between distorted (ud, vd) 2D coordi-
nated and undistorted (u, v) coordinates. It covers parameters for radial (k1, k2, k3, k4, k5, k6),
tangential (p1, p2), and thin prism (s1, s2, s3, s4) distortion. For simplicity r = u2 + v2.

[
ud

vd

]
= 1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6

[
u
v

]
+

[
2p1uv + p2

(
r2 + 2u2)

+ s1r2 + s2r4

2p2uv + p1
(
r2 + 2v2)

+ s3r2 + s4r4

]
(2.2)

We need to inverse the previously described model to undistort coordinates that leave the
physical pinhole camera. To undistort an image, libraries like OpenCV [89] usually distort each
pixel in the destination image to match the input image.

Coordinate Transformer
To fully utilize our setup’s capabilities, we require a method for transforming between coordinate
spaces. We already explained the process of calibration. However, other necessary transitions
need to be covered. In later stages, we need a method to project Camera/Image coordinates into
the World system. Given that our camera at a given height is orthogonal to the floor, we can
calculate an inverse perspective transformation at the corresponding depth and project camera
coordinates onto a 3D plane.

2.2 Real Dataset
We mounted cameras with overlapping fields of view in the Krakov shopping center. This al-
lowed us to employ our existing single-camera tracking capabilities to identify tracks overlapping
in time and space. Firstly, we registered the cameras into a common plan using a perspective
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Figure 2.2 Figure depicts the transformation between coordinate systems, with each arrow represent-
ing one method in our CoordinateTransformer. The Image-space corresponds to video stream images.
With camera calibration, it is possible to correct the distortion and transition to the Camera frame.
The inverse distortion for the Camera and World is done using a reference rectify map. A perspective
transformation describes the transition between cameras. An inverse perspective transformation is fea-
sible with the knowledge of scene depth, which is crucial for generating synthetic data in shared world
space. Each camera’s homography was estimated using the Perspective-n-Point (PnP) method [90] (as
depicted in fig: 2.3).

Figure 2.3 A projection of more than 20 undistorted camera images on a common floor plan. We
manually estimated the homography using the PnP method [90]. Wide Baseline Stereo homography
estimation, based on matching local key points [28, 25, 13] and applying the RANSAC [91], proved
problematic due to imperfect distortion correction.
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Figure 2.4 Unbalanced density of optical axis angle indicates that scenarios, when the pedestrian
is captured directly under the camera are rare. This observation supports the distribution of distances
from the image center. If the camera lens is not distorted, the optical axis intersects the center of the
image. The x-axis in the second plot corresponds to a relative distance if the image size is normalized
to be (1, 1).

transformation between two planes (fig: 2.3). As all cameras face directly downwards, we as-
sumed all ground points were at zero height. We identified corresponding points between the
virtual building plan and the undistorted camera images, computing the homography by solving
the PnP problem [90]. The mapping functions estimated in sec: 2.1 were sufficiently accurate
to compute a spatiotemporal distance matrix between relevant tracks. Using the Interval Tree
data structure sped up searching for tracks with temporal overlap. We represent the spatial
cost of two tracks as the mean distance between detections adjacent in time. Track pairs with
sufficiently low cost were bonded and sent to the annotation tool (fig: 2.5). Further reading on
this topic is available in our previous work [49].

2.2.1 Annotation Job
We optimize the single-camera tracking for accurate people counting rather than tracking. The
resulting tracks can be noisy, and the identities mismatched, which adversely affects hard sam-
pling during the re-identification learning process. Consequently, we had to annotate and clean
the data. In collaboration with Jǐŕı Hulmák, we developed an annotation grid selection tool (fig:
2.5), a web application designed to speed up the annotation process. Every screen contains two
tracks that were suggested for bonding. An annotator who encounters a noisy detection must
select the corresponding spot and click on a button that assigns a ”noise” label. The types of
problems we encountered included: 1. intra-track mismatches, 2. inter-track mismatches, 3.
noisy object detections, 4. objects outside the bounding box, and 5. poor quality samples.

We enlisted the help of multiple annotators to label the proposed data. Managing even a small
group of individuals to perform a high-precision task accurately proved extremely challenging.
To post-process the collected data, we implemented the following steps:

1. Tracks containing fewer than five clean detections were excluded.

2. If all detections from one track were noisy, we excluded both tracks involved in the bond.

3. Some tracks are involved in multiple pairs, appearing multiple times during the annotation
process. A detection is conflicting if labeled noisy and clean in different occurrences. All
conflicting detections were considered noisy.

4. As track bonds exhibit transitive relations, we searched for connected components, ultimately
unifying all identity occurrences into a single identity group.

2.2.2 Orientation Dataset
The distance of embeddings can fluctuate depending on the viewpoint. The viewpoint angle is
determined by the object’s rotation and position relative to the camera. The MOT pipeline esti-
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Figure 2.5 The user interface of the grid selection tool for labeling image crops. Crops with a magenta
border are selected, and a crop with the red dot is labeled as noise. If necessary, it is possible to define
multiple attributes. For better clarity, we filled the grid with synthetically generated images. The real
annotation task requires a grid of shape 11x11. Grouping crops by possible identity and displaying them
in one batch is desirable.

Figure 2.6 By using location coordinates and the orientation vector, we can compute the Viewpoint
Angle. It represents the direction from which we observe the target. The distribution is balanced,
meaning we have a good representation of how people appear from all angles. The OYOX Angle is the
radial distance between the target’s orientation vector and the y-axis. A balanced input can project
an unbalanced target. The effect is caused by aligning the camera with a corridor so that the resulting
image covers as much space as possible. It usually corresponds to the x-axis being parallel to the passage
below.



18 Dataset

mates the coordinates for each detection, but it is unreliable to derive orientation from location
measurements alone. While it is true that a person usually faces in the direction of movement,
targets often remain stationary or rotate in place. Such noisy data is not very useful for machine
learning applications. However, with the help of reasonable heuristics and filters, we can generate
a noisy dataset that humans can review and clean.

The orientation annotation job was conducted similarly to the initial annotation process
(sec: 2.2.1). We began by using strict rules to identify linear, consistent movements. We then
applied the Kalman Filter [92] to refine the ground point predictions. Afterward, we generated
suggestions for orientation vectors (fig: 1.4). Finally, we used our grid selection tool (fig: 2.5) to
filter out noisy suggestions.

2.3 Synthetic Dataset

Figure 2.7 An ex-
ample of three gen-
erated humans. Low
render quality is tai-
lored to match the
real dataset domain.

Synthetic datasets have proven to be useful across various machine-learning
domains. They offer an economical means of boosting generalization by
pre-training networks and securing robust weight initialization. Synthetic
datasets also provide effective regularization capabilities, preventing multi-
task learning from divergence. Absolute control over 3D space presents
numerous advantages, such as varying perspectives, illumination changes,
or color changes. We can obtain semantic segmentation, depth maps, or
labels for location, orientation, and pose estimation. Synthetic datasets
have been extensively used for action recognition and anomaly detection
tasks. More recently, CycleGANs have been used for domain adaptation in
autonomous driving, helping researchers to mitigate the negative effects of
long-tail distributions.

We can generate synthetic data with a 3D graphics engine [93] or a
video game [94, 95]. While these datasets offer high quality, they are pre-
dominantly front-view based, which does not meet our needs. To overcome
this limitation, we developed our synthetic data generator using Blender
[96], in conjunction with the Human Generator v3 plugin [97]. We mod-
eled multi-view scenes, developed a trajectory generator (fig: 2.11, and
animated pedestrians to simulate walking.

In terms of volume in this thesis, the synthetic dataset covers only a
fraction of the space. However, by the time spent, it was really a chal-
lenging engineering journey that took several months of dedicated work.
The synthetic dataset is useful, as proven in the experiments Chapter 4.
However, in the large scheme of things, this work is only a fraction of what
the dataset offers. In IC Systems.ai, s.r.o. (iC), we already employed the
synthetic data to multiple different pipelines, and they have proven to be
very helpful for various reasons. The synthetic generator is a key that opens
many doors.

2.3.1 Trajectory Generator
The most challenging aspect of creating the synthetic dataset was the engineering process. The
second challenge was the problem of generating trajectories that closely resemble authentic hu-
man movement patterns.

Our assumptions about accurate human trajectories include the following:

1. Humans tend to walk the shortest path, maintaining a comfortable distance from obstacles.

2. People in motion exhibit inertia, meaning they do not typically change direction suddenly.
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3. They walk parallel to corridor walls.

Our objective was to simulate these behaviors while occasionally breaking the rules. For
instance, we wanted to incorporate instances where a pedestrian turns around, walks back, or
avoids an obstacle by a larger margin than usual.

The central concept behind our trajectory generator involved constructing a network of nodes
and paths for pedestrians to follow. We temporarily closed a pathway or node to simulate an
obstacle, forcing the person to walk around it. We then randomly augmented the path to
achieving reasonable variance while retaining the underlying network structure. Finally, we
simulated a continuous, smooth walking curve using a pure path controller (sec: 2.3.1).

Background Network Generator

Figure 2.8 5-Nearest
Neighbor Graph. Non-
planar alternative to
graphs below.

Figure 2.9 Gabriel
Graph is a subgraph of
the Delaunay Triangula-
tion.

Figure 2.10 Delaunay
Triangulation - a suit-
able structure for trajec-
tory simulation.

Table 2.1 A comparison of three proximity graphs reveals distinct characteristics. The k-nearest
neighbor graph (k-NNG) connects each node to its k-nearest neighbors. However, unlike Gabriel and
Delaunay graphs, k-NNG is not a planar graph and does not possess a constant vertex degree. Among
these proximity graphs, we selected Delaunay triangulation due to its structural advantages, such as
density, connectivity, and ease of planting obstacles, making it the ideal choice for our purposes.

The algorithm begins by randomly distributing points within a virtual floor plan while en-
suring a minimum distance between nodes. Points too close to one another are removed or
slightly repositioned to prevent unwanted clustering. Subsequently, vertices are connected using
Delaunay triangulation (Dt) [98] (fig: 2.1). Initially, we experimented with the k-NN graph, but
its disadvantages, such as non-constant vertex degree, non-planarity, and over-connectivity of
clusters, led us to discard the approach. In contrast, Dt is a planar graph with a constant vertex
degree, ensuring the placement of an obstacle always results in a detour. We also considered
employing subgraphs of Dt like Gabriel Graphs. They provide properties similar to DT with less
computation. The complexity advantage was insignificant, given the reasonable initial sample
density and coverage.

Trajectory Augmentation
Initially, we constructed a proximity graph using Delaunay Triangulation. Following this, we
generate trajectories in several stages. First, we identify the shortest path between two random
entrance locations (fig: 2.11). Subsequently, we sample two sets of distances. The first set, which
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Figure 2.11 Initially, we constructed a proximity graph using Delaunay Triangulation. Following this,
we generate trajectories in multiple stages. First, we identify the shortest path between two random
entrance locations. After augmenting this path, we create a smooth trajectory utilizing a Pure Pursuit
Controller. Finally, after each iteration, we simulate obstacles by closing nodes or edges along the path.
Upon completing a predefined number of iterations, we restart the entire process. The algorithm is
highly parametrizable, making it an effective tool for simulating all kinds of human locomotion. Please
see an animation of this process: https://youtu.be/l9kU5Lj_hTI

follows a uniform distribution, represents an offset from the starting point without exceeding the
path length. The second set, sampled from the Gaussian distribution, signifies an orthogonal
deviation from the path. Both distributions can be parameterized to control the properties of the
generated trajectories. A greater distance between points results in a less convoluted path, while
a larger orthogonal distance allows for deviation from the structure defined by the background
network.

Pure Path Controller

There are various methods to transform a series of points into a curve, such as using the Kalman
filter [92] with kinetic energy and small step size, Bézier curves, spline interpolation, polynomial
regression, or Bayesian processes like Gaussian process regression. However, one method stands
out due to its close resemblance to the actual walking process: the pure pursuit controller. This
navigation algorithm, commonly used in robotics to guide a robot along a path, operates on
the ”look-ahead” control principle. The controller predicts the robot’s future position along
the path and calculates the steering angle required to reach that position. By parameterizing
the pure pursuit controller, it becomes straightforward to simulate various walking speeds and
path curvatures, making it a flexible and effective tool for simulating human locomotion across
diverse scenarios. The algorithm’s high degree of parameterization allows for adjustments to
distributions, their properties, distances, and graph density. Factors such as the robot’s motion
speed, turning speeds, and look-ahead distance can be altered to influence trajectory smoothness.
This adaptability enables the fine-tuning of the algorithm to meet specific requirements, resulting
in the creation of diverse and realistic pedestrian trajectories across a wide range of scenarios.

https://youtu.be/l9kU5Lj_hTI
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Figure 2.12 In a toy corridor model, we animated 1000 trajectories. They can be visualized at once
as a heatmap. The brightness corresponds to the density.

Scene Settings
Blender allows us to set intrinsic camera parameters and establish a projection matrix between
camera and world coordinates. Previously, we explained our good knowledge of scene geometry.
Therefore, we used known geometry to digitally simulate installations in various shopping malls.
However, imitating lens distortion was challenging, as Blender does not support the specifying
parameters for barrel distortion. To save time, we opted to generate images without distortion
and apply the distortion later if necessary.

A scene consists of multiple cameras and lights, with randomly generated humans featuring
random clothing, dimensions, and attributes. Rather than using a 3D background, we employ
images from cameras converted into virtual space. Using the described coordinate transforma-
tions (sec: 2.1), we project generated trajectories into the shared Blender 3D scene and animate
pedestrians walking along the smooth trajectory. Each camera has slightly different lighting,
simulating illumination changes. It is also possible to generate a segmentation mask for every
object. With a segmentation mask, background alteration during the training process is feasible.
Since bounding box information is available, we can crop images and reduce the dataset size
by more than 50 times.

2.4 Dataset Overview

In Blender, we implemented a pipeline capable of simulating and animating pedestrians. The
solution is highly customizable, allowing the parametrization of crowd density, pedestrian mo-
tion patterns, and common appearances, including clothing, skin tone, hair color, and facial
expression. The generator also allows for changes in both gender and age. The render utilizes
a transparent background, which, combined with a bounding box, makes it possible to save
only crops, significantly reducing the dataset’s size. The transparent background also enables us
to change the background to real images during training, thus preventing overfitting, which is
common in our data domain. It is because of the static cameras with low background variance.
With the additional information provided, it is possible to train pose estimation, orientation,
segmentation, and more.
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Synth - Using our synthetic data generation, we created 1 803 identities and 6 646 tracks
with 234 034 crops.

Krakov 2023 desc - The real dataset, recorded by overlapping cameras. We registered all
cameras into the floor plan (2.3). Then with a coordination transformer, we made assignment
suggestions for humans to label. Using the annotation tool (sec: 2.2.1), we organized a job
for multiple annotators that filtered out most of the noisy smart dataset suggestions. All in
all, 20 cameras recorded more than 170 hours of footage with 3 579 identities and 7 385
tracks over 291 602 crops.

Krakov 2023 desc small - As described in Chapter 4, a smaller subset of the real descriptor
dataset was necessary. Therefore we sampled 512 identities of 1 036 tracks, and 38 168
image crops.

Krakov 2023 ori - Real orientation dataset. We developed a heuristic that suggests a
direction based on the Kalman Filter prediction for the orientation dataset (sec: 2.2.2).
After filtering noisy data using the annotation tool, we were left with 12 753 crops.

footfall background - We made a fourth dataset to switch the transparent background of
the synthetic data. It consists of 20 291 real images. We took the pixel-wise median image to
get a real scene without pedestrians. For faster data loading, we randomly extracted multiple
sections from each scene.



Chapter 3

Method

This chapter explains interesting implementation details of multi-task learning and the intricacies
of building a correspondence matrix for track assignment problems. Finally, we explain the
benchmark that we use for the final evaluation.

We chose Python 3.10 as a programming platform, providing us with a broad range of scientific
computing libraries. We implemented our models in PyTorch 2.0.1+cu117 [99], which offers
robust support for GPU-accelerated computation. Image processing tasks were performed using
OpenCV 4.5.5 [89]. For data management, we used the FiftyOne 0.20 package and an instance
of MongoDB running in a docker container.

3.1 Multi-Task Learning

The complexity of our dataset allowed for multi-task learning. To balance the benefit-cost ratio,
we chose a handful of essential tasks. The training combines semantic segmentation, orientation
prediction, and identity embedding on synthetic and real data. The network architecture we
used is outlined in Figure 3.2. It is a modified version of the EfficientNet-B0 [100] with 5.3M
trainable parameters and 0.39B FLOPS. Its main building block is mobile inverted bottleneck
MBConv as described in the MobileNet paper [101]. Authors extended the MBConv layer with
the squeeze-and-excitation optimization [102].

In the scheme, there are two inputs. The first one is the image data input that accepts
matrices of shape (3, 64, 64). The second input is for side information relevant to the image
crop. The metadata is a concatenation of location coordinates, bounding box, camera height, and
optical axis angle. This angle is then encoded using a multi-layer perceptron and concatenated
with a feature map that leaves the second block.

Data augmentations are simple color, illumination, and transformation changes. We jitter
brightness, contrast, hue, and saturation simulating relevant lighting conditions. Since cameras
are mounted to the ceiling, orientations of full 360 degrees are possible. We flip the input crops
and metadata depending on the image quadrant to ensure a uniform alignment. The angle of
pedestrians is then in a 90-degree range. This simple transformation proved to be extremely
advantageous.

For our deep learning tasks, we employed the Adam optimizer [103], favored for its efficiency
and minimal memory requirement, making it suitable for our large-scale datasets. We set the
initial learning rate at 1e-3, a commonly-used value that balances speed and convergence. As
a learning rate schedule, we selected the CosineAnnealingWarmRestart (more in the torch li-
brary [99]) for its ability to converge effectively during training through periodic learning rate
adjustments with a lower bound set to 1e-5. Tensorboard provided real-time monitoring and

23
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Figure 3.1 Cosine annealing with warm restarts - a learning rate schedule. The initial cycle length
is 50, and the following cycle is twice as long as the previous one. The values move in the range from
1e-5 to 1e-3.

visualization of the training progress. We recorded various metrics and visualizations for all
tasks and validations. We saved model weights every 50 epochs to ensure progress and facilitate
potential recovery.

Upon the completion of training, we put the model into inference mode. The model is then
fed with image crops and side information to generate predictions. The resulting output is a
Python dictionary containing three predictions, one each from the segmentation, descriptor, and
orientation branches. We have discovered that saving indices of input data and logit values is
also beneficial.

3.1.1 Task Scheduling
The training of multiple tasks jointly can be approached in numerous ways. These tasks could
share datasets, inputs, and outputs and individually manage their resources. It is possible to
train several neural networks, share all weights, or deploy a backbone with distinct branches.
The loss function can be a weighted combination of several losses, or the tasks can alternatively
perform updates based on their internal loss. Achieving a balance and optimizing the training
process is challenging. Guided by past experiences, we adopted the method of switching between
tasks. Careful scheduling must occur since each task can lead the network differently. As such,
we designed a probabilistic trainer to facilitate task-switching by a prescribed schedule (fig: 3.3).

For each task described below, we created an identical task for the corresponding test dataset.
We took advantage of the ability to switch between tasks and ran one evaluation step every five
training steps. This allowed for more continuous evaluation compared to the more traditional
approach where we evaluate all testing data at once every nth epoch. Moreover, we created two
additional evaluation tasks when hard sample mining was employed (sec: 3.1.4): One task with
a mining schedule identical to the parent task and one with random sampling. This method
gave us valuable intel to distinguish between higher loss due to the mining difficulty and actual
overfitting.

Figure 3.3 illustrates the training schedule for the first Segmentation task. As previously
discussed, the segmentation task provides a robust stream of information for the model, enabling
it to perform exceptionally well after only a few epochs. Given this characteristic, we have
structured the schedule as follows: The model initially focuses on quickly learning various human
shapes through the segmentation task, and then as more tasks are introduced, we maintain the
segmentation at a lower percentage. This strategy serves as a form of regularization, preventing
overfitting by not allowing the model to rely too heavily on any single feature. Similar reasoning is
applied to the combined synthetic orientation and descriptor task (SynthDescOri). We prioritize
early learning of accurate human representation and then retain the task at a lower intensity
for the same regularization reasons. The hard sampling schedule is aligned closely with the
task schedule. Waiting too long before implementing hard sampling could accelerate overfitting,
whereas introducing it too early could lead to gradient explosion and a weaker foundational
understanding. Consequently, we introduce the real orientation task early in the training process.
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Figure 3.2 A scheme of a modified
version of the EfficientNet-B0 [100] with
5.3M trainable parameters and 0.39B
FLOPS. Its main building block is mo-
bile inverted bottleneck MBConv as de-
scribed in the MobileNet paper [101]. Au-
thors extended the MBConv layer with
the squeeze-and-excitation optimization
[102]. The model accepts Image Input
of shape (B, 3, 64, 64), where B is the
batch size. Then we extract the feature
map early as Segmentation of shape (B,
1, 16, 16) with Sigmoid as an activation.
The Side Information Input is a method
to inject additional information into the
network, including location coordinates,
bounding box, camera height, and opti-
cal axis angle. This metadata vector is
then encoded using a multi-layer percep-
tron to shape (B, 1, 16, 16) and concate-
nated with a feature map that leaves the
second block. Then we follow the orig-
inal routine. Ultimately, we branch the
output into two streams: The Descriptor
(B, 32) and the Orientation (B, 2). After
long experimentation, we used Identity as
an activation for the Descriptor and hy-
perbolic tangent for the Orientation.

Figure 3.3 Intensity schedule for joint task training (upper) and hard sample mining (below). Rig-
orous experimentation with schedule tuning would be extremely costly. Therefore we manually set the
schedules based on previous experience and results during training. Explanation described in Section
3.1.1
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Since orientation is crucial for later stages, we keep its intensity at maximum until the end.
Lastly, we initiate training on the real descriptor task. The network is already warmed up from
the synthetic descriptor task and has learned real dataset visual patterns from the real orientation
task. Throughout this phase, we maintain maximum intensity for both the task and the mining
schedule. The curves depicted in the schedule represent parameterized sigmoids. We chose them
because they change over a relatively short interval (as described in the curriculum learning
survey [51]) while ensuring long tails that keep the schedule at either zero or one.

3.1.2 Semantic Segmentation

Figure 3.4 The first column is an
input image of shape (3, 64, 64) -
a synthetic person with a real back-
ground. The second column is a tar-
get segmentation mask of shape (1,
16, 16). The last column is a pre-
dicted segmentation mask of the cor-
responding size.

A deep neural network usually recognizes basic shapes in
the first few layers and then builds up the complexity with
depth. Semantic segmentation is a strong pixel-wise stream
of information that quickly allows the model to recognize ba-
sic human shapes and textures. Past experiments revealed
that the network tended to overfit the background in our
data domain, which means that instead of concentrating on
the designated person, it focused on comparing the similar-
ity of the background. We hoped to accelerate the learning
of diverse pedestrian shapes using semantic segmentation.
In Blender, it is possible to render scenes with transparent
backgrounds. The result was exported as a PNG with four
channels (RGBA). The last alpha channel serves as trans-
parency and corresponds to the mask applied for segmenta-
tion training.

Using the mask, we can change the image’s background.
Initially, we deployed the OIV7 dataset [104], considering the
broad variance in real-world scenarios. To personalize the
task, we curated a dataset using our footage. The dataset is
devoid of humans, reducing potential confusion during train-
ing. The segmentation branch incorporates an additional
one-by-one convolution to integrate all layers, with Sigmoid
as the activation function. The anticipated mask size is
16x16 pixels. We considered IoU loss and Binary Cross-Entropy loss. Experiments demonstrated
the superior performance of the Binary Cross-Entropy loss.

Lbce = −w [y · log x + (1 − y) · log (1 − x)] (3.1)

Where y is the target segmentation mask, x is the predicted segmentation mask, and w is a
manual rescaling weight parameter.

3.1.3 Orientation
We conducted experiments with category learning (front, back, left, right as per [55, 56]) and
regression learning. Given that our cameras are ceiling-mounted, category learning presents
many challenges. The process of quantizing continuous space often results in ambiguity for
border values. As pedestrians can pass directly under the cameras, there is a requirement for an
additional (top) category. This could lead to numerous issues, given that the top category borders
all other specified categories. Annotators often label the same image differently, demonstrating
the inherent difficulty in categorizing in this context, even for humans. Such ambiguity in
annotations could lead to a weak and uncertain model. Figure 1.4 presents an example of an
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image crop that is ambiguous when classified using categorization, while it is straightforward
with regression.

In the next iteration of the orientation learning, we formulated the task as regression learning
(fig: 1.5). Continuous space better represents the data, and the annotation task (fig: 1.4) was
slightly easier. The uncertainty of the prediction (and annotation) is then possible to express
using the deviation from the ground truth. The synthetic dataset provides perfect ground truth
and is a strong regularization for learning on the real orientation dataset.

The output of the orientation branch is a two-dimensional direction vector with values from
the < −1, 1 > range. As an activation, we used the hyperbolic tangent function. The loss
function is cosine distance (eq: 1.4).

3.1.4 Identity Embedding
We extensively explored identity embedding learning in our previous work [49]. We compared
various loss functions in that study, including triplet, quadruplet, contrastive, and cluster losses.
However, considering the objective of this thesis, we prioritized convenience over performance.
Consequently, we opted to employ the contrastive loss function (eq: 1.2) in our algorithm. Unlike
other methods that sample triplets, quadruplets, or tuples, our approach uses sampling pairs for
contrastive loss. This choice was made because contrastive learning is a form of validation loss.
Therefore, it is better suited for the next stage, which is MTMCT.

When training models for descriptor learning, the Softmax function is frequently utilized as
the activation function. However, we found it to be less effective in our setup. The Softmax
function normalizes values increasing the relative ratio’s importance. As a result, the descriptor
may degenerate into a one-hot encoding akin to a classification problem. Assigning a class to
each identity is suitable in a closed-world scenario. However, in our case, this led to suboptimal
results. Consequently, we used the Identity function as the activation function, as it does not
force the values to compete against each other. Alternatively, a sigmoid or hyperbolic tangent
function could ensure a specific range of values. We have discussed combining the loss function
of two tasks and training two branches with the same data. However, a challenge arises because
the data for orientation learning is only available for a small subset of the real dataset. Therefore
we must carefully balance the number of steps, as the orientation task would begin to overfit
much sooner than the descriptor task. We can train the synthetic descriptor and orientation
jointly, as we have ground truth for both tasks across the entirety of the synthetic dataset. This
saved us time and computational power because we only needed to make a single pass through
the backbone network instead of two.

Hard Sample Mining and Curriculum Learning
If we took two random people, distinguishing between them would be easy. They often wear
clothes of different colors and vary in body shape or other features. The critical situation is
when the two persons are visually very similar, making it difficult to decide whether they are
the same person. Sampling a difficult batch in this manner is rather unlikely. A technique of
hard sample mining is incorporated [47] that searches both for difficult positive and negative
samples. It is important to schedule the hard sample mining and ramp up the difficulty of
the training progressively. A rapid change in difficulty can cause gradient explosions, although
gradient clipping significantly helps [50]. We implemented a hard sample mining schedule to
provide the network with progressively harder samples (fig: 3.3). The sampler then picks a
random/hard sample based on current probability.

Searching for hard pairs across the whole dataset is infeasible. Therefore we implemented
a routine that first uses a forward pass on a structured batch of data and then selects difficult
cases. Four variables (of arbitrary names) parametrize the process (B, I, J, K). A batch consists
of B different identities. Each identity is a set of I crops, where I/2 crops originated in one
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camera and I/2 in the second camera. To each identity, we then attach J negative samples.
However, they are negative for the whole batch, meaning that none of the B identities can
occur in any negative group. This setup consequently creates a batch of shape (B, I + J). The
sampling process is then parametrized by K, the number of samples we make to reach identity.
The loss is then calculated on K quadruplets, where a positive is chosen from I/2 crops, and
negative pair is chosen from B ∗ K crops. At first glance, it is obvious that the potential for very
difficult negative samples is large. The hard mining schedule in Figure 3.3 corresponds to the
hard samples’ proportion. This means that we can finetune the difficulty of each batch and use
the potential of curriculum learning [51] without exploding the gradient.

We explained the influence of orientation on the visual resemblance of two images. If we ig-
nored the orientation during the hard sample mining phase, we would probably force embeddings
of two differently oriented images to be close even when they do not look the same. This results
in suboptimal network performance. We utilized the orientation predictions during the sampling
phase to address this issue. Targets with large enough differences can not be sampled. The
probability of an image being sampled is proportional to the weighted combination of embedding
distance and view angle distance. Using view angle for hard sample mining with contrastive
learning offers many more combinations than traditional learning with triplets/quadruplets.

3.2 Multi-Camera Multi-Object Tracking
The MTMCT solvers can be very complicated. For simplicity and stability, we use solvers for
minimum weighted matching. First, we define a correspondence matrix H of size (2m + 2n) ×
(2m + 2n) as follows:

H =


Am×m Bm×n Em×m −∞m×n

Cn×m Dn×n −∞n×m Fn×n

Gm×m −∞m×m 0m×m 0m×n

−∞n×m Kn×n 0n×m 0n×n

 (3.2)

Where the parts of the matrix are as follows:

A targets leave and return back to Camera a
B targets leave and return back to Camera b
C targets leave Camera b and enter Camera a
D targets leave and return back to Camera b
E targets terminate in Camera a
F targets terminate in Camera b
G new targets initialized in Camera a
K new targets initialized in Camera b

It is crucial to acknowledge that creating the full-sized matrix described above is unnecessary.
We can limit ourselves to the upper part of the matrix, leaving Gm×m, Kn×n, and the rest out.
This simplification calls for a slightly modified algorithm. Instead of the Hungarian Method (alg:
1), we employed a solver incorporated in the NetworkX [75] library. This solver, introduced by
Karp in 1980 [105], solves an m × n assignment problem in O(mn log n) steps.

Track Assignment Cost
The metrics for obtaining an assignment cost can be interpreted as a distance function between
two tracks. We employed and experimented with various functions that fall into three broad
categories.



Multi-Camera Multi-Object Tracking 29

Global pairwise group: This method involves the computation of a pairwise distance ma-
trix for each descriptor vector, followed by some form of reduction (e.g., Minimum, Mean,
Min×Max, etc.). The most relevant candidate from this group was the minimum value from
Min×Max, referred to as MinMaxCost.

Viewpoint-based clustering: This method divides the track into n clusters based on the
view angle, then selects a representative closest to the centroid from each cluster. This
representation is memory-efficient and normalizes track lengths. To measure the resemblance
of the two tracks, we select a suitable counterpart for each sample based on the view angle.
Then a suitable reduction is applied. The reduction yielding the best results was the mean
distance. In the follwing text: MeanClusterMatchingCost.

Hybrid approach: This method combines the best aspects of the previous two groups. Each
track is divided into clusters based on the view angle, with each cluster then reduced to its
centroid. A distance matrix is built to compare two tracks, returning the minimum. We refer
to this method as the ClosestCentroidCost.

Reducing the Number of Possible Links
We anticipated a strong correlation between the number of possible links and the algorithm’s
performance. A dense problem may contain a negative sample closer (in latent space) to the
anchor than the positive sample (or the termination node). Therefore, the goal is to minimize
the number of permitted links without excluding the positive track we seek. Since we consider
our cameras non-overlapping, we rely solely on visual and temporal cues. Visual features help
estimate the cost in the correspondence matrix, while temporal cues act as a filtering mechanism,
restricting the number of potential links. (Outside this work, we also apply spatial constraints
to reduce the difficulty further. Since we consider our cameras non-overlapping, we cannot use
them.)

Tracks are matchable if and only if they occur within a reasonable time interval. We check
the constraint efficiently by using an interval tree. Surveillance often involves re-identifying
pedestrians over a long time horizon or multiple visits. However, our algorithm is geared towards
statistical analysis to operate within a smaller time window. A practical rule of thumb we
employed is in the range of minutes. If an individual leaves a camera’s view for a period exceeding
this threshold, we cannot match subsequent tracks to the individual’s previous identity. Using
a transition map between sensors and exits can further filter potential matches. Tracks from
unconnected cameras then cannot be matched. Ultimately, the performance of the MTMCT
algorithm largely depends on the number of possible links in the correspondence matrix.

MTMCT Benchmark
The benchmark we have created is designed to test the performance of the MTMCT algorithm
in scenarios involving non-overlapping cameras. Our results demonstrate that the algorithm’s
success largely depends on its ability to compare the visual similarities between two image crops.
The density of the correspondence matrix determines the complexity of the problem. A robust
benchmark should simulate pedestrian traffic and adjust the difficulty level based on crowd
density.

The benchmark process is straightforward: it first groups the test dataset by tracks and
identities then generates a schedule for each track to occur while respecting spatiotemporal con-
straints. There are two crucial parameters to consider: the simulation and maximum transition
lengths. The simulation length dictates the intervals in which the tracks are distributed. The
maximum transition time restricts the duration an identity can spend off-camera. While simu-
lating challenging situations could provide additional insights, it would likely defeat the purpose
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of early-stage testing. The distribution is uniform across the simulation period, and all tracks
are included in the test process. Some might argue that excluding tracks tests the algorithm’s
ability to terminate rather than its ability to avoid incorrect matching. However, each identity
sequence starts and ends, meaning that exactly two termination nodes are necessary for the cor-
rect assignment. This benchmark, while simple, serves as a powerful tool for constructing various
matching problems with specified difficulty levels. It provides a flexible and effective means of
evaluating and refining the performance of the MTMCT algorithm.
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Experiments and Results

This chapter presents the experimental procedures conducted to validate the proposed method-
ologies. The experiments were performed on the test set of the Krakov 2023 desc, which
contains real sequences of pedestrians passing in the Krakov shopping center. The test set con-
sists of 513 unique identities, 1 048 tracks, and 38 151 image crops. The testing set covers
real-world scenarios to ensure a broad spectrum of situations. The objective is not merely to
demonstrate the effectiveness of our methodologies but to provide a concrete foundation for
future research directions in this domain.

The machine for conducting our experiments and data processing is a powerful computing unit
with Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 32 cores, and 93GB RAM. The machine is
complemented by GPU by Nvidia GeForce RTX 3060 Ti, which provides exceptional acceleration
for deep learning and computer vision tasks. The system operates on the Ubuntu 20.04 platform
running as a docker container.

Selected Models

As a baseline, we trained the model using the entire Krakov 2023 desc dataset. However, this
training process was excessively long, with one model requiring over a week for joint training on
all datasets. Consequently, conducting dozens of experiments would be nearly unfeasible. To
address this, we reduced the dataset to approximately 38,000 images, enabling us to load all
the necessary data into working memory and expedite the training process to a matter of hours.
We included a model BaselineLong that we trained on the full Krakov 2023 desc dataset. It
is mainly for comparison; although we believe achieving even greater results would be possible,
but that is not the purpose of this work. The BaselineShort model is an alternative to the
large baseline. As it utilizes only real data, we applied the RealDesc schedule as shown in
Figure 4.1. Both baseline models were trained without orientation, assuming all their related
predictions to be zero. To evaluate the impact of orientation training, we trained the same model
with orientation—denoted as OriShort. The third model WarmupOriShort on the reduced
dataset is pre-trained using synthetic data in the first phase and then trained as the OriShort
in the second phase. The final model, OldBest, is the best-performing model from our previous
work [49], trained on a dataset of 436,043 image crops—over eleven times larger than the reduced
dataset.

Notably, we trained one extra model, initially using synthetic data, then jointly applying the
schedule in Figure 4.1. This model did not perform well on the testing set, presumably due
to the synthetic data interfering with the necessary intensification for peak performance during
training. However, this effect was not apparent during joint training on the large dataset.

31
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Figure 4.1 The above image illustrates the intensity schedule for task training (top) and hard sample
mining (bottom) on the Krakov 2023 desc small dataset (38k images). Models BaselineShort, OriShort,
and WarmupShort were trained using the RealDesc schedule, excluding the secondary SynthDescOri
schedule. However, the red curve represents the intention of joint training on the small dataset. Regret-
tably, we could not train a high-performing model that could compete with the models we tested.

Model Precision Recall ACC F1
BaselineLong 0.920138 0.894080 0.908240 0.906922
WarmupOriShort 0.784244 0.829040 0.800480 0.806020
OriShort 0.768608 0.805440 0.781480 0.786593
BaselineShort 0.764932 0.797120 0.776080 0.780694
OldBest 0.666667 0.673920 0.668480 0.670274

Table 4.1 Comparison of all models in the verification test. All models trained using the new
methodology demonstrate superior performance compared to OldBest. The table indicates that the
baseline can be improved by employing orientation. The synthetic pre-training improves the score
further. As anticipated, BaselineLong significantly outperforms the other models.

4.1 Identity Verification

Identity verification is a problem where the objective is to decide whether two images feature
the same individual. We utilized this task to select the best weights for each model discussed
previously (see Figure 4.2).

The contrastive loss is parameterized with a margin value corresponding to the optimal
decision boundary. We began by measuring the distances between numerous image pairs. Then
we sorted the measurements into two classes. The first class contains distances of positive pairs,
while the second comprises distances of negative pairs. Finally, we employed logistic regression to
estimate the decision boundary based on the measured distances (Figure 4.3). Results indicate
that the better the model gets, the smaller the threshold is. This is presumably because the
intra-class distances are reduced more than the inter-class distances are expanded. Distinguishing
between two visually similar identities is exceptionally challenging when working with crops of
size (64, 64) pixels. Given enough samples, a negative pair with a very small distance occurs
relatively frequently. Despite this high difficulty level, BaselineLong can reasonably distinguish
between positive and negative pairs.

4.2 Ranking and Retrieval

Mean Average Precision at K (mAP@K) is a widely adopted evaluation metric in recommender
systems and other rank-based tasks. This metric considers an algorithm’s precision and recall,
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Figure 4.2 Selection of the best model based on Accuracy on the validation dataset. Even tho we
trained models for 4000 epochs, performance peaks around the 2000th epoch (peak epoch is specified in
the legend). The optimal epoch for WarmupOriShort is 1700, proving that the training time is about
15% faster.

Figure 4.3 The graph represents the density of positive and negative pairs by distance. The upper
bar indicates the probabilities of both classes, while the lower image is a distribution plot. Each model
has a unique threshold obtained through logistic regression. The x-axis displays the threshold value,
with a second value near the end to provide a sense of scale. The label ”Warmup” represents the
WarmupOriShort model, while the prefix ”B” denotes Baseline. The intersection of the distributions
reflects the descriptor’s effectiveness in separating positive and negative sample pairs.
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Figure 4.4 Comparison of models for various mAP @k values. Increasing k reduces the effects of
error, while expanding the pool size intensifies the difficulty. As anticipated, BaselineLong exhibits the
best performance on both graphs. Models trained on the reduced dataset performed as expected. The
top performer was the model incorporating synthetic warmup and orientation. The second and third
models, trained exclusively on the real subset, demonstrated that OriShort outperforms BaselineShort.
OldBest finished last. Interestingly, the OldBest model considerably underperforms at mAP @1, while
the difference is not as pronounced for other k values.

providing a comprehensive assessment. For a better understanding, it is important to define two
fundamental measures. Precision at k (P@k) is the ratio of relevant results within the top k
retrieved documents to the number of retrieved documents. The area under the Precision-Recall
curve signifies average precision at k (AP@K).

AP@K = 1
r

K∑
k=1

P@k · rel(k)

rel(k) =
{

1, if item at kth rank is relevant
0, otherwise

(4.1)

Where r is the total number of relevant documents.
Finally, the mean value of AP@K of all queries (mAP@K) is calculated, combining an

algorithm’s precision and recall into a single robust value.
In this section, the results consider viewpoint predictions during the pool creation. This

enables viewpoint-based ranking, giving an advantage to models trained with orientation. Models
trained without do not influence the process in any way. As the results suggest, the integration of
orientation can enhance the outcomes. Figure 4.4 depicts the ranking results for various mAP@k
values. The pool size significantly influences the performance, with a larger gallery size increases
the chance of a negative sample infiltrating the top k results. It is important to note that the
slope is very steep initially. In the context of MTMCT, matching results can be very accurate
with a limited number of possible connections. However, as evidenced by BaselineLong, the
steepness seems to diminish with sufficient data.

4.3 MTMCT Benchmark
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Model mAP@1 mAP@3 mAP@5 mAP@8 mAP@10 mAP@25
BaselineLong 0.67200 0.90433 0.92952 0.94639 0.94891 0.97803
WarmupOriShort 0.34400 0.65900 0.75586 0.79530 0.80268 0.90707
OriShort 0.31600 0.65400 0.71742 0.79661 0.79089 0.88380
BaselineShort 0.29200 0.60100 0.69390 0.74172 0.76643 0.88634
OldBest 0.20400 0.53467 0.67633 0.74208 0.73496 0.83877

Table 4.2 The ranking results depicted in the table further validate the superiority of synthetic
datasets and enhancements brought about by orientation learning. Notably, the OldBest model exhibits
a surprisingly close performance compared to the other models, especially considering the verification
results.

Figure 4.5 The mean number of links is equiva-
lent to the density of the correspondence matrix. A
denser matrix necessitates a smaller optimal termi-
nation cost. This is because the termination cost is
associated with confidence levels. When faced with
a larger selection pool, our confidence in the closest
pair sharing an identity with the anchor decreases.
The intrinsic nature of the MTMCT makes more fre-
quent termination desirable. We obtained the data
with the BaselineLong model and ClosestCentroid-
Cost.

Our chosen metric, IDF1, described in Sec-
tion 1.2.4, is well-accepted in academia. We
applied the functions outlined in Section 3.2
to estimate the best assignment cost. We also
experimented with several other functions and
their variations but could not yield satisfac-
tory results. This aspect of our work still holds
potential for further exploration. Modifying
the training process to favor a given cost func-
tion could significantly enhance results. Re-
grettably, we could not conduct these experi-
ments within a reasonable time frame due to
their resource-intensive nature.

One surprising insight we gleaned was the
correlation between the correspondence ma-
trix’s density and the optimal termination
value (fig: 4.5). The denser the matrix, the
larger the termination cost should be. De-
creasing the number of connections is equal to
reducing the gallery size during ranking (fig:
4.4). Fewer connections mean we can have
more confidence in the accuracy of a match.
The termination cost is in some way tied to
confidence. In a larger pool, our confidence
that the closest pair shares an identity de-
creases, and the nature of the task encourages more frequent terminations. This effect then
reflects in other experiments. We believe that in later stages, this parameter can be learned as
part of the model. For now, we tune the termination cost for each model, cost function, and
matrix density.

In order to measure the difference between the tracks, we employed the cost functions dis-
cussed in Section 3.2. The initial idea was that clustering tracks based on the view angle could
potentially improve the assignment. We aimed to design a cost function that reduces the negative
impact of outliers and compares only the relevant parts of tracks. Unfortunately, we were unable
to validate this hypothesis. Figure 4.6 demonstrates the advantage of using a single centroid to
represent tracks. This pattern was consistently observed across all models. For the final results
presented in Table 4.3, we used the ClosestCentroidCost with a single cluster for all models. It
is important to note that the same cost function also yielded the best results in our previous
studies, further confirming the research on the ”Unreasonable Effectiveness of Centroids in Image
Retrieval” [61].
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Figure 4.6 The expectation was higher for multiple clusters due to their potential to avoid outliers.
However, we could not confirm this hypothesis, as the best score consistently peaked with only one
cluster, regardless of the training method or terminal cost. Despite this, we can’t rule out the possible
utility of multiple clusters. With a more advanced hard sample mining approach, we could potentially
train a model to identify outliers and thus support our original hypothesis. A positive observation
is a stable performance across a wide range of terminal costs. The results were obtained using the
WarmupOriShort model, with the correspondence matrix averaging 20 connections.

Model IDF1 IDP IDR IDTP IDFP IDTN IDFN
BaselineLong 0.68503 0.59113 0.81441 373 258 332 85
WarmupOriShort 0.42029 0.33388 0.56704 203 405 285 155
OriShort 0.40396 0.29143 0.65807 204 496 242 106
BaselineShort 0.38680 0.26641 0.70569 211 581 168 88
OldBest 0.22222 0.12853 0.82000 123 834 64 27

Table 4.3 The final evaluation of all models. As expected, the most significant performance difference
is due to the size and quality of the training set. Both tested methods (synthetic warmup and orientation
learning) consistently outperform the baseline. There is a significant performance gap compared with
the OldBest model, even more so than in previous results. In this test, the old model was placed in a
scenario that did not favor its intended purpose.
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Figure 4.7 t-SNE projection of 160 identity embeddings. Each color represents a different identity.
An identity connects multiple tracks (two in this scenario). We like to observe homogeneous clusters of
the same identity emerge. Since we reduce a 32-dimensional vector onto a flat surface, we can not be
certain if tracks E and G are intertwined or if this is the product of the projection.

It is important to address why the old descriptor underperforms so significantly in Table
4.3. The old dataset was large compared to the current short dataset, consisting of nearly
half a million samples. At the time, conditions made it nearly impossible to ensure the high
quality and purity of the data. Therefore, we developed an annotation tool to exclude noisy
samples efficiently. Hard sample mining elevates this problem further, putting the old model at
a big disadvantage. The most effective approach to inter-camera tracking involved heavy use of
camera overlaps, with visual cost being a much weaker factor in the global assignment problem.
In this thesis, we wanted to focus extensively on training a strong visual feature extractor, and
therefore, we assumed the camera views to be non-overlapping. Training with an impact on
identity verification enabled better track termination. The metric used in the previous work was
weaker, meaning that not terminating tracks were not as heavily penalized. Considering the
conditions at the time, the old model performed well in all tasks except the last one.
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Chapter 5

Discussion

Our experiments suggest enriching training with extra tasks enhances the system’s performance.
Incorporating an orientation task into training positively impacted our baseline model. Further,
using a synthetic dataset for weight initialization boosted the model’s effectiveness. Synthetic
datasets, being cost-effective supplements to real data, save training time due to the early identi-
fication of human shapes, which is essential with smaller datasets. Integrating synthetic data can
increase the model’s generalization ability, even with plenty of real data. Joint training following
this prevents overfitting and strengthens regularization.

This project is key to iC Systems’ goal of developing a privacy-preserving, pedestrian be-
havior analysis solution in large structures. Until now, our solution relied on isolated cameras
for pedestrian tracking within their field of view only. The ability to link tracks across multiple
cameras elevates our product to a new level of sophistication. Experience suggests that aug-
menting previous geometry-focused solutions with our current focus on visual feature extraction
can enhance performance further.

Two findings from our study were particularly unexpected yet crucial. Firstly, the correlation
between the correspondence matrix’s density and termination cost. This implies that for real-
world applications, it would be necessary to estimate the optimal termination cost from the
matrix density and characteristics of the model. Secondly, we were surprised that centroid
distances were the most effective cost function despite our efforts to accommodate training to
different cost functions.

Limitations of presented results are tied to the size of the used dataset. With larger data, it
is unknown if synthetic data improves performance. The training process can be yet improved
significantly to suit specific cost functions for the assignment problem.

In future work, we plan to explore existing end-to-end multi-camera trackers [83, 71]. How-
ever, a custom solution tailored to our needs may be more effective than adopting a larger,
generalized system. A future research direction could involve connecting the assignment algo-
rithm and deep learning techniques. Additionally, adopting more advanced methods for training
the descriptor [61] could be promising.

The creation of multiple large datasets for training various deep learning tasks, and the
development of a highly customizable synthetic data generator, opens numerous opportunities.
The utility of synthetic data in our field was initially uncertain, given the challenging conditions
such as low resolution and changing illumination. Fortunately, we simulated these conditions
and constructed a solution that could benefit others in the future.
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Chapter 6

Conclusion

Our research presents four large datasets, each having a unique purpose. The Krakov 2023 desc
dataset comprises 291,602 images and is designed for identity embedding. Using overlapping
camera views and precise geometry, we generated smart suggestions that were labeled using
our annotation tool. The second dataset, Krakov 2023 ori, includes 12,753 image crops and is
intended for orientation learning. Initial suggestions were obtained using the Kalman filter, and
annotations were made similarly to the previous dataset. The third dataset, Synth, contains
234,034 crops and employs 3D graphics to simulate human behavior and movement patterns in
an environment that closely mirrors real-world scenarios. We navigated a challenging engineering
process that automated the entire generation pipeline—from scene setting, trajectory planning,
and animation to rendering and refining the final product. Finally, the footfall background
dataset consists of 20,291 images without pedestrians. This dataset serves as an extension for
the synthetic dataset and allows for changing the background to real scene images. This feature
significantly improves generalization when training on synthetic data.

As outlined in Chapter 6, the combined count of relevant lines of code is approximate 17,000
lines + estimating 5,000 more of experimental code saved in jupyter notebooks.

We developed a probabilistic multi-task trainer to incorporate semantic segmentation, de-
scriptor, and orientation tasks for both real and synthetic data. Through experimentation, we
utilized task scheduling and curriculum learning to gradually increase the training process’s dif-
ficulty level. We successfully transferred the knowledge acquired from the synthetic domain to
the real one, with the model pre-trained on synthetic data demonstrating a 15% shorter training
time while consistently outperforming other models.

Despite the challenges posed by extremely low resolution, illumination changes, lens distor-
tion, and a low frame rate, we successfully trained a robust model. The BaselineLong model
significantly outperformed the previous best model, largely due to the higher quality of available
data. A remarkable observation was that models trained on only 38 thousand samples outper-
formed the prior best model trained with nearly half a million samples. This improvement was
primarily achieved due to a cleaner dataset and the application of advanced methodologies.

Furthermore, our study identified and addressed weaknesses in the assignment algorithm. By
training identity verification, we discovered a method that allows tracks to match and terminate
on time. This new approach, when combined with our previous solution that heavily relied on
known geometry, will hopefully result in a robust system suitable for deployment.

Looking forward, our goal is to implement our solution in real-world settings, further en-
hancing the robustness and consistency of the methods presented. A future research direction
is exploring and establishing a connection between the assignment algorithm and the training
process. This would transform our pipeline into an end-to-end system, tying all components
together into a larger, interconnected infrastructure.
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Chapter 7

Acronyms

CMC Cumulative Matching Characteristics.

CNN Convolutional neural network.

Dt Delaunay triangulation.

HOG Histogram of Oriented Gradients.

iC iC Systems.ai, s.r.o..

IDP Identification Precision.

IDR Identification Recall.

IoU Intersection over Union.

LSTM Long short-term memory.

mAP mean Average Precision.

MOT Multiple-object tracking.

MTL multi-Task Learning.

MTMCT Multi-Target Multi-Camera Tracking.

NMS Non-Maxima Suppression.

PnP Perspective-n-Point.

Re-ID Person Re-Identification.

RPNs Region Proposal Networks.

SVM Support vector machine.
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Figure 1 The figure shows a humorous example from the early development stage, where we intended
to set a random (human) pose. To this date, this result remains a mystery. Notice the unfortunate
position of the upper palate.
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29. ARANDJELOVIĆ, Relja; ZISSERMAN, Andrew. Three things everyone should know to
improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. 2012, pp. 2911–2918. Available from doi: 10.1109/CVPR.2012.6248018.
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Contents of the enclosed media

The project we described in this thesis consists of four repositories worth mentioning. Each dir
tree lists modules involved in each project. The number specified in the description corresponds
to the number of relevant lines in the module.

The lines were obtained with the following code, ensuring only relevant files are included.
Each repository also contains a folder with a considerable amount of jupyter notebooks that we
did not consider as production code.

1 #! /bin/bash
2 for d in */ ; do
3 echo -n " $d"
4 cd $d
5 git ls-files "*.bashrc" "*.Dockerfile" "*.Dockerfile_jupyterlab" "*.py"

"*.yaml" | xargs cat | wc -l↪→

6 cd ..
7 done
8 echo -n "./"
9 find . -maxdepth 1 -type f -name "*.bashrc" -o -name "*.Dockerfile" -o -name

"*.Dockerfile_jupyterlab" -o -name "*.py" -o -name "*.yaml" | xargs cat |
wc -l

↪→

↪→

Synthetic Dataset

A repository that is responsible for generating synthetic data. The code involves tools for Blender
automation and simulation of multiple pedestrians in scenes with multiple cameras.

calibration.....................................files with saved camera calibrations (89)
scripts............................ scripts to automate the data generation process (779)
synthetic dataset.........................................automatizace process (3825)

animation.......................................module for walking animations (225)
camera..........................module for controlling the blender camera object(242)
misc.............................................................miscellaneous (116)
object .......................... module for representing various Blender objects (655)
sample...............................................tools for random sampling (121)
scene.......................... factories that generate static and dynamic scenes (551)
trajectory ........................................ trajectory generator module (551)
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Inter Camera Tracking
Code related to solving the assignment problem. Various evaluation methods are present, in-
cluding the benchmark. This codebase also provides the source code for creating the real and
orientation dataset.

inter camera tracking.......................................................... (4672)
evaluation.............................evaluation of mtmct and image retrieval (167)
matching..............................code for solving the assignment problem (1387)
misc.............................................................miscellaneous (281)
orientation dataset ....... files involved during creating the orientation dataset (310)
scripts .................................... scripts for automating various tasks (250)
smart dataset ........ sequence of scripts necessary for building the real dataset (1597)

Global Descriptor
Repository for training the global descriptor.

global descriptor .............................................................. (6137)
config..............training configuration files corresponding to experiment runs (265)
database...................................interface for the FiftyOne database (1001)
dataset ....................... data loading pipelines for training with PyTorch (1443)
evaluate.................. scripts for generating reports, results, and evaluations (836)
loss................................................definitions of cost functions (357)
model..................................................modified EfficientNet b0 (554)
train...............................code for scheduling and multi-task training (1101)

Camera Geometry Utils
A repository with general camera geometry transformations that we used across mentioned
projects.

test .................................................................... unit tests (115)
camera geometry utils..........................................................(1136)

camera.....................................object representing a pinhole camera (479)
homography..............................source code for obtaining a homography (82)
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