
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

The Parameterized Complexity of Network Microaggregation

Bc. Jan Pokorný

doc. RNDr. Dušan Knop, Ph.D.

Informatics

Computer Science

Department of Theoretical Computer Science

until the end of summer semester 2023/2024

Instructions

Microaggregation is a classical statistical disclosure control technique that requires the

input data to be partitioned into clusters while adhering to specified size constraints.

The task is to design algorithms and/or hardness results for the clustering problems

related to user-data anonymization.

The focus of the thesis should be on structural parameters such as treewidth, vertex

cover, or related ones.

Additional parameters, e.g., cluster size or cluster diameter, might be used as additional

parameters if necessary.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 16 January 2023 in Prague.

Master’s thesis

THE PARAMETERIZED
COMPLEXITY OF
NETWORK
MICROAGGREGATION

Bc. Jan Pokorný

Faculty of Information Technology
Department of Theoretical Computer Science
Supervisor: doc. RNDr. Dušan Knop, Ph.D.
June 29, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Jan Pokorný. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Pokorný Jan. The Parameterized Complexity of Network Microaggregation.
Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments v

Declaration vi

Abstract vii

1 Introduction 1
1.1 Notation . 2
1.2 Graph theory . 2
1.3 Parameterized Complexity . 5

1.3.1 Treewidth . 6
1.3.2 Other structural parameters . 7

1.4 Our problem . 7
1.5 Compedium of problems . 9

2 Algorithms 11
2.1 Dynamic programming on tree decomposition . 11
2.2 Algorithms Based on Branching and ILP . 23

3 Lowerbounds 29

4 Treedepth hardness for ECP 33

iii

List of Figures

1.1 An overview of parameters used in this thesis. An arrow from parameter A to
parameter B means that A bounds B. The relation is transitive, and so arrows
that can be obtained from the transitivity are omitted. 8

2.1 Example of an entry; red shows clusters, green groups; a future and past center is
depicted; note how w (w ∈ P) causes a group to span the whole cluster P 13

2.2 Joining groups to form bigger connected components 16

3.1 An illustration of the selection gadget for selection of a vertex colored i ∈ [k] to
the solution used in the proof of Theorem 10. 31

4.1 An anchor (left) and a choice gadget (right) with its schematic representation used
in further construction illustrations (bellow). 35

4.2 An overview of the construction used in the proof of Theorem 12. The dashed line
represents a choice gadget carrying the signal selecting a vertex, the dotted line
carries the signal selecting an edge and the full line is used for the combined signal. 36

List of Tables

1.1 The full complexity-theoretic landscape of (Connected) Network Microag-
gregation under all combinations of considered input-specified parameters (rows)
and structural parameters (columns); NP-h means that the problem remains NP-
hard even for a fixed value of the parameters. Results that are marked blue are
results obtained in this thesis. A blue result without a linked theorem or corol-
lary is trivially derived from other results. The rest of the results are part of the
article [9]. 8

iv

I would like to thank my supervisor for arranging a research in-
ternship at TU Wien and helping me transition into the world of
research. Then I would like to thank Robert Ganian for hosting
me, and together with Dušan Knop for their guidance. Moreover, I
would like to thank Dušan Knop, Robert Ganian, Václav Blažej, Ši-
mon Schierreich, Kirill Simonov for their expertise, helpful insights
and advice while working with them. Last but not least, I want to
thank my family and my cat for their support not only during writing
this thesis but throughout my whole studies.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Section 2373(2) of Act No. 89/2012 Coll., the Civil Code, as amended, I hereby grant a non-
exclusive authorization (licence) to utilize this thesis, including all computer programs that are
part of it or attached to it and all documentation thereof (hereinafter collectively referred to as
the ”Work”), to any and all persons who wish to use the Work. Such persons are entitled to
use the Work in any manner that does not diminish the value of the Work and for any purpose
(including use for profit). This authorisation is unlimited in time, territory and quantity

In Prague on June 29, 2023 .

vi

Abstract

Microaggregation is a classical statistical disclosure control technique that requires the input data
to be partitioned into clusters while adhering to specified size and distance constraints. We ex-
plore the problem when the data points are embedded into a network that specifies the distances.
Additionally, we consider the case when the clusters are connected. We use a combination of
input parameters (maximum cluster size, maximum distance) and structural parameters (vertex
cover, treewidth, treedepth) to achieve or rule out tractability in various settings. Namely, we
propose a dynamic programming algorithm for the connected version. Further, we show FPT
algorithms parameterized by vertex cover and maximum distance based on integer linear pro-
gramming for both versions of the problem. On the other hand, we show that the connected
version is W[1]-hard with respect to treewidth and maximum distance. For disconnected clus-
ters, the problem is also W[1]-hard when parameterized by the vertex cover number. Lastly, we
establish W[1]-hardness of the problem Equitable Connected Partition when parameterized by
treedepth.

Keywords parameterized complexity, microaggregation, clustering, structural parametrization

Abstrakt

Mikroagregace je technika sloužící k rozdělení dat do shluků dle zadaných velikostních a vzdálenos-
tní požadavků. V této práci se zabýváme případem, kdy data tvoří sít a dvěma variantami, zda
shluky jsou souvislé nebo nejsou. Problém zkoumáme z hlediska kombinací parametrů danými
problémem (maximální velikost shluků, maximální vzdálenost) a strukturálních parametrů (ve-
likost vrcholového pokrytí, stromové šířky, stromové hloubky). Představujeme několik algo-
ritmů, které ukazují, že problém lze efektivně řešit pomocí parametrizované složitosti. Jmenovitě
představujeme pro souvislou verzi problému dynamické programování na stromovém rozkladu.
Dále při parametrizaci pomocí velikosti vrcholového pokrytí a maximální vzdálenosti do cen-
tra ukazujeme FPT algoritmus na bázi celočíselného programování pro obě verze problému. Na
druhé straně ukazujeme že problém je W[1] těžký při parametrizaci stromovou hloubkou a max-
imální vzdáleností v rámci souvislých shluků. Pokud jsou povoleny nesouvislé shluky, je problém
W[1] těžký při parametrizaci velikostí vrcholového pokrytí. Nakonec ukazujeme, že problém Eq-
uitable Connected Partition je W[1] těžký vzhledem k parametru stromové hloubky.

Klíčová slova parametrizovaná složitost, mikroagregace, shlukování, strukturální parametrizace

vii

viii Abstract

Chapter 1

Introduction

In the current era, the amount of data and the need for them has increased tremendously.
As much as the data might be useful for statistics and further research, it is essential not to
invalidate the privacy of any individual when shared. Preservation of the individual’s anonymity
and relevancy of datasets is the main task of statistical disclosure control (SDC). One of the
used metrics in SDC is the so called k-Anonymity. To achieve k-Anonymity no single record can
be distinguished from at least k − 1 other records when looking at identifying columns of the
database. So any malicious actor should not be able to link the released records to an individual
even when they have access to another database.

One particular approach used to achieve k-Anonymity is through microaggregation [1]. Mi-
croaggregation is a clustering method in which the records are partitioned into small clusters of
size at least k based on their similarity. Then for each cluster a candidate that best represents
the cluster is chosen. It was shown that with this method the loss of information is negligible
for performance of many machine learning algorithms [2].

However, it is NP-hard to achieve k-Anonymity with microaggregation when the distances
adhere into Euclidean space [3]. One of the directions to solve this problem was using heuristics [4]
and approximations [5, 6]. Another approach is to change the way the instances are described
and use graphs to encode closeness of the records. Both these approaches were utilized in [7] to
produce clusters with lower-bound for their sizes. The graph structure of the graph can be used
to produce faster algorithms or tighter approximations in reasonable time using parameterized
complexity [8].

In the parameterized complexity paradigm, we are given a graph and a parameter k which
captures some special structure of the graph. When considering both the size of the instance n
and the parameter k, it enables us to construct faster algorithms than we could otherwise. The
best outcome from parameterized complexity view is that our problem is fixed parameter tractable
(FPT) which means it is solvable in time f(k)nc for some computable function f . Another desired
outcome is to have XP algorithm running in time nf(k). To show that it is unlikely for a problem
to admit an XP algorithm, it is enough to show that the problem is NP-hard for a constant value
of the parameter k. Similarly, to rule out FPT algorithm, one can show the problem is W[1]-hard.

The precise problem we study is Network Microaggregation (NMA) where our goal is
to partition a given edge-weighted graph into clusters and provide representatives for them. For
each cluster we require its size to be between a lower-bound (ℓ) and upper-bound (u) to preserve
privacy and together with the maximum distance d from cluster vertices to the cluster center to
retain as much information. We also study a variation of the problem Connected Network
Microaggregation (CNMA) where the clusters are connected. The problem (Connected)
Network Microaggregation was first defined in [9]. This thesis expands the article, it
provides further details and continues the study of the problem.

1

2 Introduction

In particular, we study the problem exactly from the viewpoint of parameterized complexity.
We propose two types of algorithms in Chapter 2 while focusing on two structural parameters –
vertex cover number (vc) and treewidth (tw) because without structural parameters the prob-
lem remains NP-hard. With a dynamic programming on tree decomposition, we show an FPT
algorithm for CNMA when parameterized by tw, u, and d. The same algorithm also shows that
the problem belongs to XP when parameterized only by tw. The second type of algorithms is
based on exhaustive branching and reduction to ILP and achieves FPT algorithm for both NMA
and CNMA when parameterized by vc and d.

In Chapter 3, we supplement shown algorithms with appropriate hardness results. We show
that Connected Network Microaggregation is W[1]-hard with respect to tw+d which
pairs tightly with the previously shown dynamic programming. Then we show W[1]-hardness
for Network Microaggregation with respect to vc by a reduction from Multicolored
Independent Set. In the last chapter, we focus on a different problem called Equitable
Connected Partition (ECP). In ECP the task is to partition a given graph into connected
parts that differ in size by at most 1. We establish W[1]-hardness of the problem with respect
to treedepth and then use it to establish W[1]-hardness of Connected Network Microag-
gregation when parameterized by treedepth.

1.1 Notation

The set of natural numbers including zero is denoted N. By [n], where n ∈ N, we denote the set
of positive integers up to n. Let A be a set and A := {A1, A2, . . . , An} be a set of subsets of
A. The set A is a partition of A if A :=

∪
i∈[n]Ai and no two elements of A have a nonempty

intersection. We also say that A partitions A.

1.2 Graph theory

A graph G is an ordered pair of sets (V,E) such that each element of E is a two element subset
of V . We call V vertices and E edges of graph G and refer to them also as V (G) and E(G),
respectively. Two vertices u, v are adjacent if {u, v} ∈ E, we also say that u is a neighbor of v.
The set of all vertices adjacent to a vertex v is called the neighborhood of v and is denoted
as N(v). A vertex with only one neighbor is called a leaf. Let G = (V,E), G′ = (V ′, E′) be
graphs, if V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of G. Furthermore, if every edge {u, v} ∈ E
such that u, v ∈ V ′ is in E′, we call G′ induced subgraph of G and denote it as G′ := G[V ′].

A path Pk = (V,E) is a graph such that V has k distinct vertices {v1, v2, . . . , vk} and E =
{{v1, v2}, {v2, v3}, . . . , {vk−1, vk}}. We also call it a path from v1 to vk. The length of Pk is
k − 1. The distance dist(u, v) of two vertices u, v in graph G is the length of a shortest path
from u to v. If there is no such path, we set dist(u, v) :=∞. A graph G is connected if for each
pair of vertices u, v ∈ V (G) there is a path from u to v, otherwise, we call it disconnected. Let
Pk = (V,E), k > 2 be a path from u to v, graph Ck := (V,E ∪ {{u, v}}) is a cycle. Graph that
does not contain a cycle as a subgraph is a forest. If it is also connected, it is a tree. A tree with
one vertex designated as a root is a rooted tree. The height of a rooted tree is the length of a
longest path from the root to a leaf plus one. A rooted forest is a union of rooted trees and its
height is the maximum height of one of its trees. A graph that does not contain any edge is an
independent set.

Let G = (V,E) be a graph and let X ⊆ V ∪ E. If removing elements of X from G makes G
disconnected, then X is a separator of G.

Graph theory 3

Computational Complexity
Our goal is to find a fast algorithm or find arguments that there does not exist. For that, we
need a way of measuring how fast an algorithm is. The function T : N → N that computes the
maximum number of steps that the algorithm spends on input of size n might not capture this
notion well. There might exist two algorithms such that one spends fewer steps than the other
depending on how exactly we set what the elemental operations are. Furthermore, it is not that
important for us to study the speed of an algorithm with small, constant-sized, inputs as we
can precompute the results for the finitely many cases and then answer immediately. Even a
constant factor in the speed of the algorithm is not that interesting because we can simply buy
a better computational machine to match the faster algorithm. The notion of the speed of an
algorithm we are looking for is the asymptotic complexity.

▶ Definition 1 (Bih-oh notation, Definition 0.2 in [10]). If f, g are two functions from N to N,
then we say that:

f = O(g) if there exists a constant c such that f(n) ≤ c · g(n) for every sufficiently large n,

f = Ω(g) if g = O(f),

f = Θ(g) if f = O(g) and g = O(f),

f = o(g) if for every ε > 0: f(n) ≤ ε · g(n) for every sufficiently large n, and

f = ω(g) if g = o(f).

To emphasize the input parameter, we often write f(n) = O(g(n)) instead of f = O(g), and use
similar notation for o, ω,Ω,Θ.

To understand what we mean when we say an algorithm, we define the computational model
on which the algorithms are realized. We have chosen to use Turing machine (first defined by
Turing [11]) as our computational model, however, this choice is arbitrary, and we could have
built the same notion of algorithms and complexity upon other models of computation such as
Lambda calculus as its expressive power is the same [12]. Later, we don’t describe an algorithm
this precisely but still with the following formalization in mind.

Intuitively, a Turing machine is a simplification of a computer that has k tapes each with
an infinite amount of cells containing a symbol and a head that looks onto a single cell on each
tape. The first tape serves as an input to the machine, the last as an output and the remaining
tapes are for computing. The algorithms in the Turing machine is implemented as a set of states
which dictate what to do in each step of the computation if the head sees certain cells on the
tapes. More formally, the Turing machine is defined as follows.

▶ Definition 2 (The Turing machine, Section 1.2 in [10]). A Turing machine (TM) M is a
tuple (Σ, Q, δ) containing:

A finite set Σ of the symbols that M ’s tapes can contain. The set Σ contains a designated
“blank” symbol, denoted □; a designated “start” symbol, denoted ▷; and the numbers 0 and
1. We call Σ the alphabet of M .

A finite set Q of possible states M ’s register can be in. We assume that Q contains a
designated start state, denoted qstart, and a designated halting state, denoted qhalt.

A function δ : Q×Σk → Q− qhalt×Σk−1×{←, •,→}k, where k ≥ 2, describing the rules M
use in performing each step. This function is called the transition function of M .

4 Introduction

The computation starts with M in state qstart, each tape has ▷ in the first cell and the rest
is filled with □ except for the input tape, which has the input x written after ▷ as a finite string
without blank symbols. This is the starting configuration of M with input x. The machine goes
from one configuration to another with a step.

Let (a1, a2, . . . , ak) ∈ Σk be the symbols under the head on each tape and q ∈ Q be a
state of the machine M . The step of a machine is applying the result of δ(q, (a1, a2, . . . , ak)) :=
(q′, (a′2, a

′
3, . . . , a

′
k), (z1, z2, . . . , zk)) as changing the state of the machine to q′, writing a′i to the

cell under i-th head and moving the head according to zi.
Once the machine reaches the state qhalt it halts and the non-blank string y written on the

output tape is the answer for input x. We write that as M(x) = y.

▶ Definition 3 (Computing a function and running time, Definition 1.3 in [10]). Let f : {0, 1}∗ →
{0, 1}∗ and let T : N → N be some functions, and let M be a Turing machine. We say that M
computes f if for every x ∈ {0, 1}∗, whenever M is initialized to the start configuration on input
x, then it halts with f(x) written on its output tape. We say M computes f in T (n)-time if its
computation on every input x requires at most T (|x|) steps.

Furthermore, we say that a TM decides a language L ⊆ 0, 1∗ if it computes the function
fL : 0, 1

∗ → {0, 1}, where fL(x) = 1 ⇐⇒ x ∈ L.
In this thesis, we are not computing the solution to a problem, but instead, we formulate

the problems as decision problems. By simplifying the possible answers to only Yes and No ,
or 1 and 0, we are able to use many of the tools of complexity theory without sacrificing much
expressiveness. Every algorithm presented here can be easily modified to output the solution and
the lower bounds hold as outputting the solution is not easier than saying whether a solution
exists.

What we strive to do, is to find efficiently solvable algorithms. It might seem clear at first
whether an algorithm running in O(n4) or O(n3) should be called efficient. But from a broad
point of view, we want to preserve the property of combining two efficient algorithms is still an
efficient algorithm even if we run one inside the other. This is well captured by the algorithms
running in polynomial time, but not with a fixed constant with an exponent.

▶ Definition 4 (The class P, Definition 1.12 and 1.13 in [10]). Let T : N→ N be a function. A
language L is in DTIME(T (n)) iff there is a Turing machine that runs in time c · T (n) for some
constant c > 0 and decides L. Then, the class P is defined as

∪
c≥1 DTIME(nc).

For some problems, we do not know whether we are able to solve them efficiently, but we
might know whether we can verify that the solution exists efficiently.

▶ Definition 5 (The class NP, Definition 2.1 in [10]). A language L ⊆ {0, 1}∗ is in NP if there
exists a polynomial p : N→ N and a polynomial-time TM M (called the verifier for L) such that
for every x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1.

If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1, then we call u a certificate for x (with
respect to the language L and Turing machine M).

We can easily observe, that every problem in P is also in NPas the certificate can be the
answer to the problem and the verifier the TM that shows the problem is in P. However, the
other direction of set inclusion is still not known and is one of the fundamental open problems
in computer science. It is widely believed, that P ̸= NP. The usual approach to show that a
polynomial-time algorithm for a certain problem is highly unlikely is to show that if this problem
allows a polynomial-time algorithm, so does every problem in NPand thus P = NP. This process
is called a reduction with which we are able to show that one problem is at least as hard as the
other as defined now.

Parameterized Complexity 5

▶ Definition 6 (Reductions, NP-hardness and NP-completeness, Definition 2.7 in [10]). A
language L ⊆ {0, 1}∗ is polynomial-time reducible to a language L′ ⊆ {0, 1}∗, denoted by L ≤p

L′, if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every
x ∈ {0, 1}∗ : x ∈ L if and only if f(x) ∈ L′. We say that L′ is NP-hard if L ≤p L

′ for every
L ∈ NP. We say that L′ is NP-complete if L′ is NP-hard and L ∈ NP.

The set of NP-complete problems is non-empty as Cook showed by reducing every problem
in NPto SAT [13]. But we do not have to show a problem is NP-hard by definition how Cook
did. Now we are able to reduce just from a single NP-hard problem because the reduction is
transitive. Many of the essential problems such as Vertex Cover or Integer Linear Programminģ
were first shown to be NP-complete by Karp [14] and Definition 6 is also called Karp reduction.

As said earlier, NP-hard problems most likely don’t have a polynomial-time algorithm, to
solve them we turn to another paradigm, the parameterized complexity.

1.3 Parameterized Complexity
The main goal of parameterized complexity is to provide a theoretical framework for under-
standing the complexity of problems that are difficult in the worst case but may have efficient
algorithms when we have extra information about the problem. The extra property of the prob-
lem is captured by a parameter k that is assumed to be small in relevant instances of our problem.
This parameter is given to us alongside the description of the instance.

▶ Definition 7 (Parameterized problem, Definition 1.1 in [15]). A parameterized problem is a
language L ⊆ Σ∗ × N, where Σ is a fixed, finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is
called the parameter.

To generalize the parameterized problem to multiple parameters k1, k2, . . . , kr, one can simply
create a new parameter as the sum

∑r
i=1 ki.

The parameterized complexity further classifies problems into the following classes. The
most favorable outcome we can hope for with a NP-complete problem is that it admits an FPT
algorithm.

▶ Definition 8 (FPT, Definition 1.2 in [15]). A parameterized problem L ⊆ Σ∗×N is called fixed-
parameter tractable (FPT) if there exists an algorithm A (called a fixed-parameter algorithm), a
computable function f : N→ N, and a constant c such that, given (x, k) ∈ Σ∗×N, the algorithm
A correctly decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The complexity class
containing all fixed-parameter tractable problems is called FPT.

Another positive but less favorable outcome is to classify that our problem belongs to the
class XP.

▶ Definition 9 (XP, Definition 1.3 in [15]). A parameterized problem L ⊆ Σ∗×N is called slice-
wise polynomial (XP) if there exists an algorithm A and two computable functions f, g : N → N
such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, k) ∈ L in time
bounded by f(k)·|(x, k)|g(k). The complexity class containing all slice-wise polynomial problems
is called XP.

Similarly, as with NP-hard problems, we are able to say that a fast algorithm is highly unlikely
by using reductions. The difference between Karp reduction and parameterized reduction is that
it can run in an FPT-time and that we have to bound our parameter by a function of a parameter
from the problem we are reducing from.

▶ Definition 10 (Parameterized reduction, Definition 13.1 (Parameterized reduction in [15])).
Let A,B ⊆ Σ∗ × N be two parameterized problems. A parameterized reduction from A to B is
an algorithm that, given an instance (x, k) of A, outputs an instance (x′, k′) of B such that

6 Introduction

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,

2. k′ ≤ g(k) for some computable function g, and

3. the running time is f(k) · |x|O(1) for some computable function f .

As with polynomial reduction, the parameterized reduction has a transitive property, so we
can reduce from any problem that is hard for a given class to establish that our problem is also
hard. The problems that most likely do not have an FPT algorithm are by the hard problems
in the W[1] hierarchy. Usually, we do not need to know the exact class of the W-hierarchy that
our problem belongs to, rather we are interested in whether the problem is at least W[1]-hard.
For that, we can reduce from the problem Clique as it is W-complete [16]. Problems that are
W[k]-hard for any k > 0 still might belong to XP. To also exclude XP algorithm we have to show
that our problem is paraNP -hard i.e. for each constant value of the parameter k the problem
is NP-hard. The class paraNP has the same relation to FPT as NPto P– FPT = paraNP only if
P = NP [17, Corollary 2.13].

Therefore, there are 3 possibilities of characterization we want to show. Either the problem
(1) has FPT algorithm, (2) has an XP algorithm and is W[1]-hard or (3) is paraNP -hard.

1.3.1 Treewidth
One of the most used parameters to obtain an efficient algorithm is the treewidth. From a high-
level perspective, it captures how much the graph is similar to a tree. Many algorithms that
work on trees can be generalized to work on graphs.

▶ Definition 11 (Tree decompositions in [15]). A tree decomposition of a graph G is a pair
T = (T, {Xt}t∈V (T)), where T is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G),
called a bag, such that the following three conditions hold:

1.
∪

t∈V (T)X
t = V (G). In other words, every vertex of G is in at least one bag.

2. For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both u and v.

3. For every u ∈ V (G), the set Tu = {t ∈ V (T) | u ∈ Xt}, i.e., the set of nodes whose
corresponding bags contain u, induces a connected subtree of T .

The width of tree decomposition T = (T, {Xt}t∈V (T)) equals maxt∈V (T) |Xt| − 1, that is, the
maximum size of its bag minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum
possible width of a tree decomposition of G.

To avoid confusion, we call the vertices of T nodes.
One of the properties of the treewidth decomposition we use to create faster algorithms is

that the intersection of bags of two neighboring nodes is a separator.

▶ Lemma 1 (Lemma 7.3. in [15]). Let (T, {Xt}t∈V (T)) be a tree decomposition of a graph G
and let ab be an edge of T . The forest T − ab obtained from T by deleting edge ab consists of
two connected components Ta (containing a) and Tb (containing b). Let A =

∪
t∈V (Ta)

Xt and
B =

∪
t∈V (Tb)

Xt. Then Xa ∩Xb is a separator.

To be able to design simpler algorithms, we will be using a nice tree decomposition.

▶ Definition 12 (Nice tree decomposition in [15]). For a tree decomposition T = (T, {Xt}t∈V (T))
we distinguish one vertex r of T which will be the root of T . This introduces natural parent-child
and ancestor-descendant relations in the tree T . We will say that such a rooted tree decomposi-
tion T is nice if the following conditions are satisfied:

Our problem 7

Xr = ∅ and Xℓ = ∅ for every leaf ℓ of T . In other words, all the leaves as well as the root
contain empty bags.

Every non-leaf node of T is of one of the following three types:

Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some
vertex v ̸∈ Xt′ ; we say that v is introduced at t.
Forget node: a node t with exactly one child t′ such that Xt = Xt′ \{w} for some vertex
w ∈ Xt′ ; we say that w is forgotten at t.
Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

The computation of a tree decomposition is in FPT with respect to the treewidth [18] even if
we use the nice tree decomposition as shown in Lemma 2. Therefore, when we propose an FPT
or slower algorithm, the algorithm’s complexity class remains the same even when we do not get
the tree decomposition on the input.

▶ Lemma 2 (Lemma 7.4. in [15]). If a graph G admits a tree decomposition of width at most k,
then it also admits a nice tree decomposition of width at most k. Moreover, given a tree decompo-
sition T = (T, {Xt}t∈V (T)) of G of width at most k, one can in time O(k2 ·max(|V (T)|, |V (G)|))
compute a nice tree decomposition of G of width at most k that has at most O(k|V (G)|) nodes.

1.3.2 Other structural parameters
Many parameters on graphs are derived from a fundamental graph problem such as Vertex
Cover (VC). The parameter is the smallest integer k such that there exist a solution for VC of
size k. We call the parameter vertex cover number or we write it as vertex cover #. The rest of
the problems which can be easily transformed into a parameter, and we use them are described
in Section 1.5.

Other parameters we use are pathwidth and treedepth. Pathwidth has the same definition as
treewidth except the nodes of the decomposition form a path. Treedepth is defined as follows.

▶ Definition 13 (Definition 6.1 in [19]). Let clos(F) of a rooted forest F be the graph with
vertex set V (F) and edge set {{x, y} : x is an ancestor of y in F, x ̸= y}. The treedepth td (G)
of a graph G is the minimum height of a rooted forest F such that G ⊆ clos(F).

For some parameters A,B, if we show there is an FPT (or XP) algorithm parameterized by
A we immediately also obtain FPT (or XP) algorithm parameterized by B if B bounds A. We
say parameter B bounds parameter A if there exists a function f such that for each graph G
it holds that f(B(G)) > A(G). A small hierarchy of used parameters is in Figure 1.1. Vertex
cover bounds 4-pvcn because if we remove the vertex cover, no edge is present and so there is no
path on 4 vertices. The graph without paths of length more than k has treedepth at most k [19,
Proposition 6.1] and so 4-pvcn bounds treedepth. The remaining relations are that treedepth
bounds pathwidth, both vertex cover number and feedback edge set number bound feedback
vertex set number and both feedback vertex set number and pathwidth bound treewidth [20].

1.4 Our problem
To model a network, we use a weighted graph where the weight of an edge is the distance between
its incident vertices. We assume that the input network is connected, otherwise, it could be split
into its connected components and solve each independently. Our problem is formally defined as
follows:

8 Introduction

vertex cover #

4-path ver-
tex cover #

feedback-
edge set #

tree-depth

pathwidth feedback-
vertex set #

treewidth

Figure 1.1 An overview of parameters used in this thesis. An arrow from parameter A to parameter
B means that A bounds B. The relation is transitive, and so arrows that can be obtained from the
transitivity are omitted.

NMA CNMA
tw vc tw vc

— NP-h W[1]-h (Thm. 10), XP W[1]-h, XP (Cor. 5) W[1]-h, XP
d W[1]-h, XP FPT (Thm. 8) W[1]-h (Thm. 9), XP FPT (Thm. 7)
u NP-h FPT W[1]-h, XP FPT
d + u W[1]-h, XP FPT FPT (Cor. 5) FPT

Table 1.1 The full complexity-theoretic landscape of (Connected) Network Microaggrega-
tion under all combinations of considered input-specified parameters (rows) and structural parameters
(columns); NP-h means that the problem remains NP-hard even for a fixed value of the parameters.
Results that are marked blue are results obtained in this thesis. A blue result without a linked theorem
or corollary is trivially derived from other results. The rest of the results are part of the article [9].

Network Microaggregation (NMA)
Input: An undirected n-vertex graph G = (V,E), a lower-bound ℓ ∈ N, an

upper-bound u ∈ N, a maximum allowed distance to a cluster center
d ∈ N and a length function ω : E → [d].

Question: Is there an integer m and a partition Π = (C1, . . . , Cm) of V together
with a list of vertices C = (c1, . . . , cm) such that ∀i ∈ [m] : ℓ ≤ |Ci| ≤ u,
∀v ∈ Ci : distG(v, ci) ≤ d?

The Connected Network Microaggregation problem (CNMA) is defined analogously,
but with the additional requirements that the subgraph induced by each cluster C ∈ Π is
connected. We mention that while (C)NMA are formulated as decision problems for complexity-
theoretic reasons, all our algorithms are constructive and can also output a microaggregation Π
as a witness.

In Table 1.1 we can see the overview of all the results of both CNMA and NMA, when
parameterized by the vertex cover number and treewidth of the graph in combination with the
maximum distance d to the cluster center and upper-bound u on the cluster size. We have to
use the structural parameters because without them the problem is NP-hard even when u and d
are constant as we show now.

Compedium of problems 9

P3-Partitioning
Input: A graph G = (V,E).
Question: Can G be partitioned into vertex disjoint subgraphs G1, G2, . . . , G |V |

3

such that each Gi is isomorphic to P3.

The problem P3-Partitioning is a special case of the problem Generalized Matching
Problem and was proven to be NP-hard in [21]. We use it as a starting point of a simple
reduction to prove the hardness of Connected Network Microaggregation.

▶ Claim 1. Connected Network Microaggregation is paraNP hard even if d = 1 and
u = 3.

Proof. The reduction is just using the same graph on the input and setting d = 1 and ℓ =
u = 3, and setting the weight ω(e) := 1 for each edge e ∈ E. If the Connected Network
Microaggregation instance has a solution then every cluster Ci has a cluster center ci which
is neighboring both of the other 2 vertices of the cluster, and they induce either P3 or C3 which
contains P3 as a subgraph. Therefore, P3-Partitioning has a solution as well. Conversely, each
P3 in the solution of P3-Partitioning is also a connected cluster of size 3 and the cluster center
is the inner vertex of the path. ■

1.5 Compedium of problems
We include a small compendium of computational problems used in this thesis either as a problem
we are reducing from, reducing to or a parameter is derived from it.

Equitable Connected Partition (ECP)
Input: A simple undirected and connected n-vertex graph G = (V,E) and a

positive integer p ∈ N.
Question: Is there a partition π = {V1, . . . , Vp} of V such that ∀i ∈ [p] : G[Vi] is

connected and ||Vi| − |Vj || ≤ 1 for every pair of i, j ∈ [p]?

Vertex Cover (VC)
Input: A graph G = (V,E) and an integer k.
Question: Is there a set X ⊂ V such that |X| ≤ k and G − X is an independent

set?

d-Path Vertex Cover (d-PVC)
Input: A graph G = (V,E) and an integer k.
Question: Is there a set X ⊂ V such that |X| ≤ k and G−X does not contain Pd

as a subgraph?

Feedback Vertex Set (FVS)
Input: A graph G = (V,E) and an integer k.
Question: Is there a set X ⊂ V such that |X| ≤ k and G−X is a forest?

Feedback Edge Set (FES)
Input: A graph G = (V,E) and an integer k.
Question: Is there a set X ⊂ E such that |X| ≤ k and G−X is a forest?

10 Introduction

Independent set
Input: A graph G = (V,E) and an integer k.
Question: Has G independent set as a subgraph of size at least k?

Multicolored Independent set (MIS)
Input: A graph G = (V,E), an integer k and a coloring c : V → [k].
Question: Has G independent set I as a subgraph such that {c(v)|v ∈ I} = k?

Integer Linear Programming (ILP)
Input: Integers n,m, a matrix A ∈ Nn,m a vector b ∈ Nm.
Question: Is there a vector x ∈ Nm such that Ax ≤ b?

Integer Linear Programming is usually defined with extra vector c ∈ Np, and we want
to maximize c · x. We call one row (Ax)i ≤ bi a condition and one column of A a variable when
referring to an ILP.

Chapter 2

Algorithms

Our goal is to establish whether the problems can be solved efficiently – has an FPT or XP algo-
rithm. For that we consider two structural parameters, the vertex cover number and treewidth
of a graph as we already showed without them the problem is NP-hard in Claim 1 even if the
cluster size u and the maximum distance to the center d are constants. Primarily, we focus
on obtaining an algorithm parametrized by treewidth as the result immediately carries over to
vertex cover.

2.1 Dynamic programming on tree decomposition
In this section, we provide a dynamic programming algorithm for CNMA that establishes the
tractability treewidth is used as a parameter. We remark that while the use of dynamic pro-
gramming that relies on bags acting as separators in the graph is the “golden standard” for
treewidth-based algorithms, the technical details here are far from standard. Among others, to
obtain dynamic programming tables which are succinct enough for our purposes, we needed to
identify a suitable notion of vertex types that capture their properties when used as a center and
incorporate these into the tables.

As the types used in this section will crucially depend on vertex distances, it will be useful
to introduce some additional terminology to capture this. As we will not need to distinguish
distances longer than d, let distd(v, w) = dist(v, w) if dist(v, w) ≤ d and ∞ otherwise. Our
operations over distances are additive, assuming the result is set to∞ whenever the value exceeds
d.

For each node x in a tree decomposition, we can now partition the vertices of G into center-
types that are based on their membership to V x and their distances to Xx. Formally, let the
center-type of a vertex v for v ∈ V (G) be

tx,v = (distd(v, w1), distd(v, w2), . . . , distd(v, w|Xx|)),

where wi are the vertices of Xx. A core ingredient for the proof is that if two vertices have the
same type and are both in the past or both in the future, then they are “indistinguishable” from
the viewpoint of the bag.

Let T x ⊆ ([d] ∪ {0,∞})|Xx| be the set of all center-types capturing all possible distances a
center could have to the bag vertices. We further distinguish the set of center-types that are in
the past as T x

T and in the future as T x
F .

The set T x can be computed by running Dijkstra’s algorithm from each vertex in the bag Xx.
The complexity of finding T x is only O(tw(tw n+ n log n)) since there are at most tw n edges in
G [18] and Dijkstra’s algorithm runs in O(|E|+ |V | log |V |) time [22]. There are O(n tw) nodes

11

12 Algorithms

in the tree decomposition of G [18]. Therefore, the calculation of the center-types for every node
x can be done in O(n2 tw2(tw+ log n)).

▶ Definition 14. Let us have two bags x and y and a vertex v such that Xy \ Xz = v. Let
w ∈ V be a vertex on the other side of the bag as v. We call distd(v, w) for any w ∈ B
uniquely determined. We denote the center-type with the uniquely determined distance from v
as ty,unq(w) = (tz,wv1 , tz,wv2 , . . . , distd(v, w)), where ∀i ∈ [|Xz|] : vi ∈ Xz. Moreover, we call ty,unq(w)

as uniquely determined.

▶ Observation 3. The uniquely determined distance distd(v, w) = minv′∈Xz distd(v, v
′) +

distd(v
′, w) because Xz separates v from w.

For a bag x let us call a cluster C open when C ⊆ V x and closed when C ⊆ V x \Xx. The
intuition is that we are incrementally creating the clusters that together make the solution. Once
they are closed, we do not change them, and they have to satisfy all conditions we require from
the solution i.e.: their size has to be between ℓ and u, and there has to exist a center vertex which
is at most d far from all cluster vertices. For an open cluster, we do not require the lower-bound
on the size to be satisfied.

The presented algorithm in this section proceeds by leaf-to-root dynamic programming along
a nice tree decomposition computed using well-known algorithms [23, 24] in FPT-time.

▶ Theorem 4. The problem Connected Network Microaggregation can be solved in
time O(n2 tw2(tw+ log n)) + dO(tw2)uO(tw)n.

Proof. Since the clusters are connected and the bag is a separator, the number of open clusters
is upper bounded by tw+1. We remember the partition of the bag into open clusters and
the current size of the clusters including already forgotten vertices. However, the cluster center
doesn’t have to be inside the cluster or neighboring a vertex from the cluster. It is sufficient to use
just the center-type of the center. Therefore, for each open cluster, we guess whether its center is
in the past or future and its center-type. The center-type has (d+2)tw+1 possibilities, and there
are at most tw+1 many open clusters, so we have at most ((d + 2)tw+1)tw+1 = (d + 2)(tw+1)2

different possibilities in total. For each bag, we compute a set of all existing center-types T x both
in the past and in the future. This way we know whether a center exists when we are closing the
cluster or when we are creating a new cluster.

When a new vertex v is introduced, we guess its cluster and check if the distance to its center
is at most d. Vertex v is in the bag now, so we know its distance from the center. We also
consider that v can create new cluster C. In that case, we have to guess the center-type of the
center of C. For future centers we don’t know the distance from v to the center, we have to
guess it as well. However, we can check the correctness of our guess in forget node, since then it
is uniquely determined and the distance can be calculated using Observation 3. In forget nodes,
we also verify that the cluster size is correct if we are closing the cluster. In join nodes, we are
joining records that partition the bag into the same clusters with the same center-types. For the
same clusters, we add the sizes together and check that center is in the future in at least one of
the records.

To ensure that the clusters are connected, we further partition the clusters into connected
groups. The idea of the groups is similar as in the dynamic programming for finding Steiner
Tree on graphs with a small treewidth [15]. Two groups are merged in an introduce node if a
vertex is added to the cluster that neighbors both of the groups. The groups are also merged in
the join node if they have a nonempty intersection But the group does not split when a vertex
is forgotten, the group remains connected through the past. We forbid forgetting a vertex if it
is the last vertex of its group when the cluster still has more than one group. The number of
groups in a bag is at most tw+1 and since the number of groups is not lower than the number
of open clusters we have at most twO(tw) different ways to partition the bag into groups and
clusters. We stress that it is not sufficient to partition the bag only into clusters and solve the

Dynamic programming on tree decomposition 13

connectivity by merging the clusters because past vertices might be verified to different cluster
centers which now may be incompatible.

The table for the dynamic programming is as follows:

D[x,P, c, s, b] ∈ {T,F},

where

x is a node of the nice tree decomposition T ,

P = {P1, P2, . . . , PNx} is a set of open clusters, where Pi = {P 1

i , P
2

i , . . . P
ni

i } is an open
cluster,

c : P → T x are the center-types of centers of clusters in P,

s : P → [u] determines the size of the open clusters,

b : P → {T,F} says whether the center of each cluster is in the past (T) or the future (F).

The visualization of an entry can be seen in Figure 2.1.

Xx

V x

Px

bxP = F

bxQ = T

Q

P

w

Figure 2.1 Example of an entry; red shows clusters, green groups; a future and past center is depicted;
note how w (w ∈ P) causes a group to span the whole cluster P

To obtain a value tied to a specific cluster we use bottom indices, e.g., cxP is the center-type
of an open cluster P . We later prove that the value of an entry in the table is T if and only
if there exists a partition of V x into closed and open clusters such that the open clusters are
partitioned according to P, c, s, and b.

The values in the table are computed in leaf to root fashion. We fix the entry arguments to
x,Px, cx, sx, bx and compute the value for the entry in the following way.

Leaf node:
There are no vertices, therefore no open clusters and the solution is valid. We slightly abuse
the notation here to say that c, s, b have an empty domain.

D[x, ∅, ∅, ∅, ∅] = T

Introduce node: Introduction of v, i.e., Xx = Xy ∪ {v}.
We divide the computation of the current entry into a few equations. First, we rule out the
invalid table entries.
The vertex v has to be within the distance d to the center of its cluster Pv. If the current
arguments do not satisfy this, we mark the entry as invalid (F), that is,

D[x,Px, cx, sx, bx] = F if cxPv,v =∞. (2.1)

14 Algorithms

Since v is in the bag, cx contains the distance from each open cluster center to it.
For each cluster P ∈ Px, a vertex of center-type cxP has to exist in the correct part of the
graph determined by bxP . If it does not, we invalidate the entry, i.e.,

D[x,Px, cx, sx, bx] = F if ∃P ∈ Px : cxP ̸∈ T x
bxP
. (2.2)

Now we subdivide the search for a previous T entry which is extended by the current entry.
In each of the equations we bind only a subset of the arguments, but together it constructs
an exact procedure for finding the previous entry.
The vertex v may either create a new cluster or join an existing one. In the first case,
we consider that v creates its own open cluster P with a single group containing only v.
Therefore, Px differs from Py by containing P . The other arguments cx, sx, bx now contain a
new entry of the cluster P . For the cluster sizes, it holds that sxP := 1, but the sizes of other
clusters remain the same in sy. We set the constraints for cx and bx later.
In the second case, v was added to an open cluster P x ∈ Px, and it might have connected
a few groups in P x. Let P∗ be the set of all the possible open clusters P y in Py such that
adding the vertex v into them and merging the groups neighboring v creates the cluster P x.
Then the result of entry is computed by iterating over the set P∗ and finding one suitable
previous entry with open cluster P y ∈ P∗ and the size sy satisfying syPy = sxPx − 1 and for
every other cluster P ∈ Px \ P x the size syP = sxP remains the same.

D[x,Px, cx, sx, bx] =
∨

Py∈P∗

D[y, (Px \ {P x}) ∪ {P y}, cy, sy, by] (2.3)

Adding the vertex v to the bag introduces new distance between v and the cluster centers
in the center-types cx. From cx we obtain cy by dropping the v coordinate of the center-
type cxP for each cluster P ∈ Px (except for the cluster of v if v is the only vertex in it).
Then the shortest path from the center in the past through v has to go through the bag Xy.
We can verify the distance to v from each past cluster from Observation 3 as it is uniquely
determined. For each cluster P ∈ Px with cluster center in the future, we already verified
the distance to all its vertices and thus nothing has to be done.

D[x,Px, cx, sx, bx] = D[y,Py, cy, sy, by]∧
∀P ∈ Px : ¬bxP ∨ cxP,v = min

w∈Xy
{cyP,w + distd(v, w)} (2.4)

If for some cluster P holds that tv,=cxP and bxP = T, both byP = T and byP = F may be valid
options as v may but doesn’t have to be the cluster center for P . However, if bxP = T and
byP = F, then v is the center of the cluster P . For a given partition Px, center-types cx, and a
boolean vector bx of which centers are in the past, we create a set B(Px, cx, bx) of all possible
boolean vectors by determining if the cluster centers are in the past or in the future. More
formally, let B(Px, cx, bx) = {by ∈ {T,F}|Py| | ∀P ∈ Py \{{v}} : byP =⇒ bxP ∧(bxP ∧¬b

y
P) =⇒

cxP,w = tx,v}. We also have to reflect the changes v does to the cluster P and if v created its
own cluster we have to skip it because it does not exist in Py Then the dynamic programming
table entry is computed as follows.

D[x,Px, cx, sx, bx] =
∨

by∈B(Px,cx,bx)

D[y,Py, cy, sy, by] (2.5)

Dynamic programming on tree decomposition 15

Forget node: This is the last occurrence of a vertex v in the tree decomposition, i.e.,
Xx = Xy \ {v}. This node is symmetric to introduce node but simpler.
We first describe how to find Py, sy and by, later we will focus on cy. The partition Py may
differ from Px only by having v inside one of the groups of an open cluster or v is the only
vertex in an open cluster. The size of the clusters sx and the flag bx remain the same, except
for the case v is the last vertex of an open cluster, where we additionally have to check its
size. More formally, let S(Px, sx, Pv) = {sy | ℓ ≤ syPv

≤ u ∧ ∀P ∈ Px : syP = sxP } be the set of
possible sizes and B(Px, bx, Pv) = {by | byPv

∈ {T,F}∧ ∀P ∈ Px : bxP = byP } the set of possible
boolean vectors of whether the center is in the past.

D[x,Px, cx, sx, bx] =
∨

by∈B(Px,bx,Pv)
sy∈S(Px,sx,Pv)

D[y,Px ∪ {Pv}, cy, sy, by] (2.6)

Now we focus on the center-types cx. As opposed to the introduction of v, here, the distances
from every cluster center to v are being forgotten. We validate them by checking bx whether
v is on the other side of Xx than the centers, then the distance is uniquely determined. We
define C(Py, cx, by) := {cy | ∀P ∈ Py : cyP ∈ T

y
byP
∧ ∀w ∈ Xx : cxP,w = cyP,w} as the set of all

the possible extension of cx by adding the v coordinate.

D[x,Px, cx, sx, bx] =∨
cy∈C(Py,cx)

D[y,Py, cy, sy, by] ∧ ∀P ∈ Py : byP ∨ c
y
P,v = min

w∈Xy
{cyP,w + distd(v, w)} (2.7)

Join node: In the join node, we are joining two nodes y, z that have the same partition
of open clusters with the same center-types, but the group partition can be different. The
group in V x may be connected through a path in V y and V z as seen in Figure 2.2. Let
P be the set of all possible pairs of partitions (Py,Pz) such that for each pair of groups
P

y ∈ P y, P
z ∈ P z from respective partitions holds two conditions. They contain the same

vertices flat(P x) = flat(P y) = flat(P z) and if P y ∩ P z ̸= ∅ then (P
y ∪ P z

) ⊆ P
x, where

P
x is a group in an open cluster P x ∈ Px. Whether the cluster center is in the past or not

may differ, but it is not possible for the center to be in the past in both children’s entries. Let
B(Px, bx) := {(by, bz) | ∀P ∈ P : ((byP ∨bzP) = bxP)∧(¬b

y
P ∨¬bzP)} be the set of possible pairs of

whether cluster centers are in the past or future that add up to bx. If the center is in the future
in both of the children’s entries, the center-type has to exist in the set of future centers T x

F , this
is ensured with the extra condition in Equation (2.8). The sizes of the clusters in nodes y, z
have to add up to the size of x. Let S(Px, sx) := {(sy, sz) | ∀P ∈ Px : syP+s

z
P−|P∩Xx| = sxP }

be the set of all possible pairs of cluster sizes in nodes y and z.
To compute the value of an entry in the table, we iterate through the sets P, S and B until
we find two compatible entries that are both true.

D[x,Px, cx, sx, bx] = ∨
(Py,Pz)∈P(Px)
(sy,sz)∈S(sx,Px)
(by,bz)∈B(bx,Px)

D[y,Py, cx, sy, by] ∧D[z,Pz, cx, sz, bz]

∧ ∀P ∈ Px : ¬byP ∧ ¬b
z
P =⇒ cxP ∈ T x

F (2.8)

This concludes the description of the computation of dynamic programming table D.
As with any dynamic programming algorithm, even though we only get a single value from any

cell, the reconstruction of the solution from the table is quite simple. We start from D[r, ∅, ∅, ∅, ∅],

16 Algorithms

V y V z

Xx

Figure 2.2 Joining groups to form bigger connected components

where r is the node of the tree decomposition T of G. If it is equal to F, there does not exist
any solution. Otherwise, we recursively find the solution. We find a cell that we are extending
as described in the computation and also its value is T. Then, we recursively ask for its partial
solution - a partial partition which is made of open clusters that are made of connected groups
Qy and closed clusters Ry with assigned centers Cy, together partitioning the seen vertices V x.
We remind that both open and closed clusters must have its size at most u, the distance to the
cluster center has to be at most d for every cluster vertex. Closed clusters have to also satisfy
the lower-bound on their size. From the arguments identifying the cell we infer the taken action
and apply it to (Qy,Ry), giving us solution (Qx,Rx) for node x. To simplify the notation, we
define ♭(X) to be X if X is not a set, otherwise, it is the union of all its elements after calling ♭
on them.

Now, we show the correctness of the computation.

▶ Claim 2. If D[x,Px, cx, sx, bx] = T then there exists a partial partition (Qx,Rx) of V x with
assigned centers Cx and for each open cluster P ∈ Px there exists an open cluster Q ∈ Qx such
that

1. Every group in Q is a superset of a group in P .

2. Let cQ be the assigned center for Q, its center-type is cxP ∈ T x
bxP

.

3. Let P be the representation of the open cluster Q in Px, then |flat(Q)| = sxP .

Note that in Item 2 checking cxP ∈ T x
bxP

is enough since the existence of vertices of a given type
in the correct part of graph T x

F and T x
T is precomputed correctly. Also note that for a given

cluster center cQ its distance to a vertex w in the bag Xx can be derived from the center type
as distd(w, cQ) = t

x,cQ
w .

Proof. We prove the claim by induction on the nice tree decomposition. Starting in the leaf node
x, there are no seen vertices, V x = ∅, so the partition Px is empty, thus we set (Qy = ∅,Ry = ∅)
and Cx = ∅ and the claim holds trivially.

For the inductive step, we know there exists Py, cy, sy, by such that D[y,Py, cy, sy, by] = T
or even exists Pz, cz, sz, bz such also D[z,Pz, cz, sz, bz] = T, because each non-leaf entry extends
one of the entries of the children node(s). We assume the induction hypothesis holds and so
the partial partition (Qy,Ry) of V y exists (or even the partial partition (Qz,Rz) of V z exists).
With small modifications, we create the partial partition (Qx,Rx).

Introduce node: It is the first occurrence of the vertex v in the node x, the child node of
x is y.
Let P x be the cluster that contains v in Px. If P x = {{v}}, then we set Qx := Qy ∪ {P x}.
We also set an arbitrary vertex that satisfies the center types cxP and is in the correct part of
the graph bxP to be the center type cQ.

Dynamic programming on tree decomposition 17

Else, let P y ∈ Py be the cluster to which v was added. For P y we obtain the corresponding
open cluster Qy ∈ Qy. We connect the same groups in Qy to obtain Qx as were connected
in P y to obtain P x and add v to it. Then we set Qx = (Qy \Qy) ∪Qx. We let Rx := Ry to
remain the same in both cases. For the assigned centers we check whether each center in Cy
satisfies the center types cxP , if not we set cQ in Cx to another vertex satisfying the type cxP .
The pair (Qx,Rx) is a valid partitioning as it partitions V x (v was added to both V x and
Qx). Size of clusters is correct because it is equal to the sxP which is at most u (this is
explained in Item 3). We also have to check that for its cluster center cQ holds that ∀w ∈∪
Q : dist(w, cQ) ≤ d.

First, we focus on all vertices except for v and then on v separately. The cluster center cQ
is of the type cxP , but also of type cyP , because cyP is the same as cxP except for the missing v
coordinate. Now we continue with a case analysis of whether the center cQ is in the past or
future.

cQ ∈ V x: Distance of every vertex from V y to a center in the V y is at most d from the
induction hypothesis. The only change in cluster centers is for clusters with center cQ = v.
But every vertex w′ ∈ V y was previously verified to a distance minw∈Xx{distd(w,w′) +
cyP , w} = distd(w

′, cQ) ≤ d. Which is cxP , v as asserted in Equation (2.4), so the distance
is at most d.
cQ ̸∈ V x: Every vertex in V x other than v had already verified its distance to cQ through
a vertex w ∈ Xy, and it still holds cyP,w = cxP,w.

Since v is in the bag Xx, we know the distance to its center cQx is the coordinate v in the
center-type tx,cQ . That the distance is at most d is checked in Equation (2.1).
Now, we prove the items in the claim.

1. We have to check only the open cluster containing v because other clusters remain the
same and this condition is satisfied for them through the induction hypothesis. If P x

contains only v, we added it to Qx and this condition is satisfied. Otherwise, v was added
to Qx and all group merges in Qy were done accordingly from P y to P x. Since all the
merged groups in P y had a superset from Qy, the merge of the supersets is a superset of
the merged group. And the vertex v is both in the group in P x and P y.
Formally written as P x

= P
y

1 ∪ P
y

2 ∪ · · · ∪ P
y

k ∪ {v} ⊆ Q
y

1 ∪Q
y

2 ∪ · · · ∪Q
y

k ∪ {v} = Q
x.

2. We have checked that a vertex of center-type cxP exists in Equation (2.2).
3. For all clusters except P x, the size remains the same both |flat(Qx)| = |flat(Qy)| as well

in the table sxPx = syPy
. Only for P x : sxPx = syPy + 1 which is asserted in Equation (2.3).

From the induction hypothesis we get that it is equal to |flat(Qy)| + 1, and we obtain
|flat(Qx)| by adding v which is the only size change of Qx.

Forget node: Let P y ∈ Py be the open cluster containing v at node y. If v isn’t the only
vertex in P y, we let Qx := Qy and Rx := Ry which is trivially a partial partition.
Otherwise, P y = {{v}}, let Qy ∈ Qy be the cluster containing v and Qv is the only group in
Qy. We set Qx := Qy \Qy and Rx := Ry ∪Qv. To show that (Qx,Rx) is a partial partition,
it is enough to see that Qy satisfies constraints of this claim from the induction hypothesis
and thus Qv is a closed cluster from the perspective of x.
In both cases, the assigned centers Cx remain the same. Because also V x = V y, the maximal
distances to cluster centers are also satisfied.

1. One cluster might have been removed from both Qy and Py without any change to other
clusters, this condition holds from the induction hypothesis.

18 Algorithms

2. The center cQ exists as V x = V y remains the same and has type cyP for which the center
exists from the induction hypothesis. From the definition of C in Equation (2.7) we know,
that cxP is the same as cyP except it does not have the v coordinate. Therefore, cQ also is
of type cxP .
From the induction hypothesis, we know cyP ∈ T y

bxP
. It remains in the same part of the

graph as V x = V y and bxP = byP as asserted in the definition of B in Equation (2.6).
Therefore, it holds that cxP ∈ T x

bxP
.

3. Each open cluster in Qx is unchanged from Qy and also in Equation (2.6) we contain the
cluster size to remain the same, so it still holds that |flat(Q)| = sxP .

Join node: We set Rx := Ry ∪Rz, and we construct Qx by merging pairs of open clusters
Qy ∈ Qy, Qz ∈ Qz into Qx in such a way that two groups are joined together if they have
nonempty intersection. We pair the clusters Qy, Qz if flat(Qy) ∩ Xx = flat(Qz) ∩ Xx.
Non-matching intersection is not possible, as the clusters are also paired this way in P. The
set of centers of type cxP = cyP = czP and part of the graph according to byP or bzP might have
split with the introduction of bxP therefore we adjust the centers Cx according to that. The
existence of such center is checked in Item 2.
Now, we show (Qx,Rx) is a partial partition of V x. Every vertex outside the bag is exactly
in one cluster because it was either in V y \Xx or in V z \Xx and V y ∩ V z = Xx. If a vertex
is inside the bag, then it is inside an open cluster and the two copies from different nodes are
merged. Each group of a cluster in Qx remains connected because the groups from different
branches intersect only in the bag which connects the intersecting groups. The size bound is
correct because the size of Q is equal to sxP as checked in Item 3.
The last thing remaining to check is the distance bound. The vertices that are in an open
cluster with its center in the past in their branch are already verified. If in both of the
branches, the cluster center is in the future, then all vertices in that cluster had their distance
to center already verified to the same center-type, since the bag remained the same and
cxP = cyP = czP . In the remaining case, the remaining vertices have their cluster center in the
future in their branch. In the other branch, the center exists with the same center type. The
distance to the center of this type was already verified in an earlier node.

1. For an arbitrary group P
x it holds that P x

=
∪k

i=1 P
y

i ⊆
∪k

i=1Q
y

i ∪Q
z

i = Q
x as each P

y

has superset Qy from the induction hypothesis and Q
y ∪Qz is a superset of that.

2. Let cQ be the center of Q in Qy. The center-type of cQ is the same in all the three nodes
x, y, z as cx are the center types even for nodes y and z in Equation (2.8). There are four
cases how the center cQ could be seen from the nodes y, z. The first case when in both
children nodes the center cQ is in the past cannot happen, because of the construction of
set B in Equation (2.8). The second case is when both of the centers are in the future,
then the existence of the center of the center-type tx,cQ ∈ T x

F is checked for each pair of
vectors by, bz in Equation (2.8).
The remaining two cases are symmetrical. The center cQ is in the past in respect to the
bag Xx and T x

T is the superset of both T y
T and T z

T . The center-type cQ is in either of them
(from the induction hypothesis and that byP ∨ bzP), therefore it is also in T x

T .
3. For an open cluster Qx ∈ Qx, which was constructed by merging Qy and Qz, the set

flat(Qx) equals to flat(Qy) ∪ flat(Qz). Therefore, the size |flat(Qx)| = |flat(Qy)|+
|flat(Qz)| − |flat(Qy) ∩ flat(Qz)|. From the induction hypothesis, we know syP =
|flat(Qy)| and szP = |flat(Qz)|. And we also know the intersection is only in the bag,
and it is P , therefore, |flat(Qx)| = sxP + szP − |Xx ∩ P | = sxP . ■

For the root r of the tree decomposition, all clusters are closed becauseXr = ∅ and Vr = V (G).
Therefore, if D[r, ∅, ∅, ∅, ∅] = T, then Rr is the partition of V into connected clusters and I is a
Yes− instance.

Dynamic programming on tree decomposition 19

▶ Claim 3. If (Qx,Rx) is a partial partition of V x with assigned centers Cx then there exists
Px, cx, sx, bx such that D[x,Px, cx, sx, bx] = T and for each open cluster Q ∈ Qx there exists an
open cluster P ∈ Px such that

1. Every group in Q is a superset of a group in P .

2. Let cQ be the assigned center for Q, its center-type is cxP ∈ T x
bxP

.

3. Let P be the representation of the open cluster Q in Px, then |flat(Q)| = sxP .

Proof. We prove this claim by induction as well. We start with the leaf node, where V x = ∅
and also Qx = ∅ and Rx = ∅. By setting Px, cx, sx, bx to ∅ for which D[x, ∅, ∅, ∅, ∅] = T. The
claim holds trivially, as Qx is empty.

In the other nodes, we construct a partial partition (Qy,Ry) (or even (Qz,Rz)) from (Qx,Rx).
From the induction hypothesis we obtain Py, cy, sy, by such that D[y,Py, cy, sy, by] = T (or even
Pz, cz, sz, bz such that D[z,Pz, cz, sz, bz] = T). From which we finally construct Px, cx, sx, bx

that satisfy D[x,Px, cx, sx, bx] = T.

Introduce node: We start by setting Ry := Rx. Let Qx ∈ Qx be the cluster containing v
and let Qx be the group of v. First, we handle the case v is the only vertex in Qx. We set
Qy := Qx \ {Qx}. And we drop the center of Qx from Cx to obtain Cy. The pair (Qy,Ry) is
a partial partition of V y since it partitions V y and Qy ⊆ Qx and Ry := Rx.
In the other case, let Qy

1, Q
y

2, . . . , Q
y

k be the connected components Qx splits into if we remove
v. Then we set Qy := (Qx \Qx

)
∪k

i=1Q
y

i and Qy := Qx \ {Qx}∪{Qy}. And we set Cy := Cx.
We show that (Qy,Ry) is a partial partition of V y. It partitions V y as we removed v. The size
upper-bound is satisfied because we only removed one vertex. The distance is also satisfied
because every vertex is the same distance from the same Every group is connected because
they are connected in Qx, or we removed v, and we split the original group into connected
components. And the Rx remained the same.
Since (Qy,Ry) is a partial partition of V y, from the induction hypothesis we know that exists
Py, cy, sy, by such that D[y,Py, cy, sy, by] = T and Items 1 to 3 hold. We now show that also
suitable Px, cx, sx, bx exists. If Qx = {{v}} we set P x := Qx and Px := Py ∪ P x. Let cQ be
the center of Q and tx,cQ its center-type, we set cxPx := tx,cQ . Furthermore, we set sxPx := 1
and bxPx := T if cQ ∈ V x, otherwise F. The values for remaining clusters will be set later.

Otherwise, v is not the only vertex in Qx, and it joins the groups Qy

1, Q
y

2, . . . , Q
y

k. For
i ∈ [k] we know the groups P y

i = Q
y

i ∩ Xy are in the open cluster P y. We let P x :=

(P y \ {P y

1, P
y

2, . . . P
y

k})∪ v∪
∪k

i=1 P
y

i and Px := (Py \P y)∪P x. We then set sxPx := sxPy +1.
For both of the cases, we further specify the yet unspecified values of cx, sx, bx. For each of
the open cluster Q ∈ Qx, we let the distances from the center cQ to every bag vertex w ∈ Xy

be the same as before – cxP,w := cyP,w. The remaining v coordinate in the center-type of cQ is
set as cxP,v := distd(v, cQ). The size of the cluster remains the same sxP := syP except for the
cluster containing v (which was already set). And if the center is in the past changes only if
cQ = v to T, otherwise it remains the same.

1. If P x contains only the vertex v, then Qx is the same. In the other case where v is not
the only vertex in P x this claim holds for all the groups of P y that were connected by v
because P y

i = Q
y

i ∩ Xy. Then the groups were connected the same way in Qx and P x,
therefore every vertex in the union of groups in P x is also in the union of groups in Qx.
The rest of the groups remain the same, and thus this claim holds for them through the
induction hypothesis.

20 Algorithms

2. If P x contains only the vertex v, we have set the center-type cxPx = tx,cQ according to
the definition. For the cluster P = fx(Q) ∈ Px, the center-type cyP is correct from
the induction hypothesis and the v coordinate was set as distd(v, cq) Therefore, all the
coordinates are set to distance to cQ which is the type tx,cQ .

3. For the cluster containing v, the size was set to 1 if it was the only vertex which is also the
size of Qx. Or it was set to sxP = syP + 1 which is equal to |flat(Qy) ∪ {v}| = |flat(Qx)|
thanks to the induction hypothesis. For the remaining clusters, the size of the cluster is
the same because it is the same as in the previous node and there this claim holds through
the induction hypothesis.

We now show D[x,Px, cx, sx, bx] = T, we show that according to the text setting up the table
D. We start with the two condition that if satisfied D[x,Px, cx, sx, bx] = F The condition
Equation (2.1) is not satisfied, since distd(v, cQ) ≤ d, otherwise v wouldn’t be able to be in
Q. Also, the condition Equation (2.2) is not satisfied since Item 2 holds.
If P x only contains the vertex v, we have set the size accordingly to sxPx = 1. Similarly, in
the other case, Py = (Px \P x)∪P y and sxPx = sxPy +1 and other sizes remained unchanged.
The set P∗ in Equation (2.3) contains P y since P x was created by merging multiple groups
in P y neighboring v. Therefore, D[y,Py, cy, sy, by] is one of the iterated entries on the right
side of Equation (2.3) and since it is T, this equation is satisfied.
In Equation (2.4), cy does not contain the v coordinate and for any open cluster P ∈ Px.
The center cQ is in the future if and only if bxP = F. Otherwise, the bag Xy is a separator
between cQ and cxP,v = minw∈Xy{cyP,w +distd(v, w)} holds, because the shortest path from v

to the center has to go through a vertex w ∈ Xy and cyP,w is correct size from the induction
hypothesis.
Finally, Equation (2.5) contains D[y,Py, cy, sy, by] on the right side of the equation since if
cQ is in V y it is also in V y, and we only changed bxP to T if cQ = v, and we have checked
that cQ satisfies the distances of cxP earlier. Therefore, Equation (2.5) is satisfied because
D[y,Py, cy, sy, by] = T.

Forget node: First, we handle the case when v is in a cluster in Rx. Let R ∈ Rx be the
cluster containing v, we set Qy := {R}. Then we set Qy := Qx ∪Qy and Ry := Rx \ {R}.
The pair (Qy,Ry) is a partial partition of V y because the closed cluster has to satisfy ev-
erything open cluster and the lower-bound on the size as well. There is an exception that a
group has to be connected, not the open cluster, but we made a group from R.
Otherwise, v is in an open cluster Qx ∈ Qx. We set Qy := Qx and Ry := Rx and because it
remained the same it trivially is a partial partition.
Since (Qy,Ry) is a partial partition of V y, from the induction hypothesis we know that exists
Py, cy, sy, by such that D[y,Py, cy, sy, by] = T and Items 1 to 3 hold.
If v ∈ flat(Rx), we set P y := {{v}} and Px := Py \ {P y}. In the other case, let P y ∈ Py

is the open cluster of v and let P y ∈ P y be the group containing v. We set the group
P

y
:= P

x \ {v}, the cluster P x := (P y \ {P x}) ∪ {P y} and the set of open clusters Px :=
(Py \ {P y}) ∪ P x. Additionally, we set sxPx := syPy .
In both cases, we set the remaining entries of cx, sx, bx. For all open clusters P ∈ Px \ P x,
we set cx to remain the same on all coordinates as cy except for the removed v coordinate.
The sizes we set as sxP := syP and bxP := byP to remain the same.

1. Every group in Qx is also in Qy for which this condition holds. And the corresponding
group P x was also the same in P y. Therefore, this condition trivially holds.

2. Let cQ be the center of an open cluster Q ∈ Qx, then its center-type tx,cQ is given by the
distances to vertices in the bag Xx. From Xx the vertex v was dropped to get Xy, but the

Dynamic programming on tree decomposition 21

distances remained the same. Additionally, V x = V y and bxP = byP for each P . Therefore,
if tx,cQ ∈ T x

bxP
, so is ty,cQ ∈ T y

byP
.

3. The sizes remained the same for every open cluster as well as sx = sy. And syP = |Qx|
holds from the induction hypothesis.

We now show D[x,Px, cx, sx, bx] = T, we show that according to the text setting up the
table D. Starting with Equation (2.6) where the case P y = {{v}} is forgotten. The sets
C(Px, cx), S(Px, sx), B(Px, bx) contain cy, sy, by respectively. Because the sets C(Px, cx), B(Px, bx)
does not impose any limits to cy and by. The set S(Px, sx) contains sy, because ℓ ≤
syPy ≤ u holds since syPy = |R|. Therefore, D[x,Px, cx, sx, bx] is on the right side of Equa-
tion (2.6)which is hence satisfied.
We continue with the case where P y contains more vertices than just v. The only difference
between Px and Py indeed is that P x does not contain v and P v contains v. The set
C ′(Py, cx) contains cy because we created cy in such a way we only forgot the v coordinate
of the center type, and we kept the others the same. Therefore, D[x,Px, cx, sx, bx] is on the
right side of Equation (2.7).
If the center cQ is in the past, the extra condition holds, since byP = T. Otherwise, cQ is
in the future and the bag xx is a separator between cQ and v. Therefore, the distance cyP,v

represents a shortest path from v to cQ which goes through the bag.

Join node:
We set Ry := {R ∈ Rx | R ⊂ V y}. Then for each Qx ∈ Qx, we transform it to Qy := {Qy ⊆
V y | ∃Qx ∈ Qx : Q

y ⊆ Q
x ∧ Qy is maximal set such that G[Qy

] is connected} and add it to
Qy. Similarly, we create Rz and Qz.
We show that (Qy,Ry) is a partial partition of V y. All vertices in V y must be in Qx or Rx.
Every open cluster was transformed into a smaller open cluster with only the vertices from
V y. The closed clusters are entirely in V y or V z as they do not go through the bag and
are connected. Therefore, (Qy,Ry) is a partition. The closed clusters were not changed, so
their size is correct, and they remain connected. The open clusters were split into connected
groups and their size was made smaller, but there is no lower-bound only upper-bound that
was satisfied before. The distance requirement is satisfied for both open and closed clusters,
as they are only a subset of the vertices that they were in V x.
Similarly, (Qz,Rz) is a partial partition of V z. Since (Qy,Ry) and (Qz,Rz) are partial
partition of V y and V z respectively, from the induction hypothesis we know that exists
Py, cy, sy, by and Pz, cz, sz, bz such that D[y,Py, cy, sy, by] = D[y,Py, cy, sy, by] = T and
Items 1 to 3 holds in respect to them.
We create the partition of the bag Px by joining groups that share vertices in Py and Pz,
and set the center-types cx := cy. Additionally, for each open cluster P ∈ Px, we set
sxP := syP + szP − |P | and bxP := byP ∨ bzP .

1. For an arbitrary group P
x it holds that P x

=
∪k

i=1 P
y

i ⊆
∪k

i=1Q
y

i ∪Q
z

i = Q
x as each P

y

has superset Qy from the induction hypothesis and Q
y ∪Qz is a superset of that.

2. The bags Xx and Xy are the same, therefore the distances from the center cQ to it, remain
the same. Hence, the center-types tx,cQ = ty,cQ . And it holds that cxP = cyP = ty,cQ = tx,cQ .
The bxP was set as logical or of byP and bzP . The cluster center cQ satisfied both of them
because of the induction hypothesis. If it is in the past in one branch, then it is in the past
with respect to x as V x = V y ∪ V z. Therefore, bxP is set correctly and tx,cQ ∈ T x

b holds.
3. For cluster Qx its size is |flat(Qx)| = |flat(Qy)| + |flat(Qz)| − |flat(Qy) ∩ flat(Qz)|

from the induction hypothesis and the fact that |flat(Qy) ∩ flat(Qz)| = |P | we get then
it equals to syP + szP − |P | which is exactly how we set sxP to be.

22 Algorithms

We now show D[x,Px, cx, sx, bx] = T, we show that according to the text setting up the
table D. There is only Equation (2.8) we have to verify. The pair of open cluster partitions
(Py,Pz) is in P because if two groups P y

, P
z share a vertex then (P

y ∪ P z
) ⊆ P

x. The
center-types cx, cy, cz are the same. The pair of size vectors (sy, sz) are in S(sx,P) because
for each open cluster P ∈ P , we have set sxP := syP + szP − |P |. And the pair of boolean
vectors (by, bz) are in B(bx,P) since for each open cluster P ∈ P , we have set bxP := byP ∨ bzP .
Therefore, both entries D[y,Py, cy, sy, by] and D[z,Pz, cz, sz, bz] can be found on the right
side of Equation (2.8) and remains to prove the extra condition is true.
For an open cluster P ∈ Px if either byP = T or byP = T, the condition holds trivially. Let cQ
be the cluster of Q ∈ Qx such that fx(Q) = P . If both byP = byP = F the center cQ is not
in V y neither in V z. Since V x = V y ∪ V z it is neither in V x, therefore tx,cQ ∈ T x

F . And we
know that cxP = tx,cQ from Item 2. ■

Let r be the root node in the tree decomposition of G. If (Qr,Rr) is a partial solution of
V r = V (G), then from this claim D[r,Pr, cr, sr, br] = T, where D[r,Pr, cr, sr, br] = D[r, ∅, ∅, ∅, ∅]
since Qr = ∅ because Xr = ∅.

It remains to show the time complexity of the algorithm. There are at most tw groups in all
the open clusters for a given node, since each has to contain at least one vertex. Each group is
in one of the at most tw open clusters, therefore there are at most twtw ways to arrange just
the groups to clusters. Additionally, there are at most tw vertices that are being distributed
and each is assigned to one group. That makes at most twtw ways to assign vertices to a fixed
structure of groups within open clusters. Therefore, there is tw2·tw ∈ O(twtw) possible ways to
arrange P.

Then the set of all possible center-types for a given bag T x contains at most (d + 2)tw

elements. The function cx is determined by the center-type of each open cluster, therefore there
are |T x|tw = ((d+ 2)tw)tw ∈ dO(tw2) possible ways of choosing cx. The size of an open cluster is
between in [u], therefore there are uO(tw) ways to arrange sx Finally, the center of a cluster can
only be in the past or future, hence, there are 2O(tw) ways of bx.

In total, for each node of the tree decomposition, there are at most twO(tw) dO(tw2)uO(tw)2O(tw) ∈
dO(tw2)uO(tw) entries in D. But to compute an entry, one has to search through entries on one
or two previous nodes, which can be upper-bounded by all the entries. Therefore, all the entries
tied to a specific tree decomposition node can be computed in time (dO(tw2)uO(tw))3, which is still
dO(tw2)uO(tw). There are O(n tw) nodes in the tree decomposition of G. And at the beginning of
this section, it was argued the calculation of distances can be computed in O(n2 tw(tw+ log n)).
Hence, the algorithm runs in time O(n2 tw2(tw+ log n)) + dO(tw2)uO(tw) tw n which can be sim-
plified to O(n3) + dO(tw2)uO(tw)n. ◀

▶ Corollary 5. Connected Network Microaggregation is in XP parameterized by tw
only, and is fixed-parameter tractable when parameterized by tw+u+ d.

Algorithms Based on Branching and ILP 23

2.2 Algorithms Based on Branching and ILP
Our next set of algorithms combines exhaustive branching with an encoding into an Integer
Linear Program (ILP) where the number of variables is bounded by the parameters. Such ILPs
are known to be fixed-parameter tractable:

▶ Proposition 6 (Lenstra Jr. 1983; Kannan 1987; Frank; Tardos 1987). There is an algorithm
that solves an input ILP instance I with p variables in time pO(p) · |I|.

Both of our ILP algorithms are parameterized by the vertex cover number, and we expect the
instance to come equipped with the vertex cover. This does not falsify our results as the vertex
cover of size k can be calculated in FPT time [28]. We start by defining the types of vertices
outside the vertex cover and the types of clusters, both of which are based on the distances to
the vertices in M .

▶ Definition 15. Let M = {v1, v2, . . . vvc} be a vertex cover of the graph G = (V,E) and let
v ∈ V \M . The vertex-type tv ∈ {[d] ∪ {∞}}M of v is

tvi =

{
ω(v, vi) If {v, vi} ∈ E,
∞ Otherwise.

By T we denote the set of all vertex-types of vertices.

▶ Definition 16. Let C ⊆ V be a cluster. The cluster-type t(C) ⊆ T of C is defined as
t(C) = {t ∈ T | ∃v ∈ C : tv = t}. Moreover, let c ∈ T ∪M . We call (t(C), c) the extended-
cluster-type of cluster C with center c.

In this section, we will often be referring to vertices through their vertex-types, and hence
we use dist(v, t) as shorthand for the distance from v to any vertex of vertex-type t excluding v.
Furthermore, we use dist(t) := dist(v, w), where v ̸= w and tv = tw = t as the distance between
two different vertices of vertex-type t.

We observe that there are |T | ≤ (d+1)vc different vertex-types, plus additional vc vertices in
the vertex cover that are dealt with separately. Moreover, the number of different cluster-types
is at most 2vc+|T | = 2vc+(d+1)vc ∈ 2d

O(vc) . When also considering the centers, we get at most
2d

O(vc) · (vc+(d+ 1)vc) ∈ 2d
O(vc) possible extended-cluster-types.

▶ Theorem 7. Connected Network Microaggregation is fixed-parameter tractable pa-
rameterized by the vertex-cover number vc and the maximum distance d.

Proof. Assume u > 1, otherwise the instance is trivial. Then, every cluster has at least one
vertex in the vertex cover because the cluster is connected. This upper bounds the number of
clusters by vc.

We start by guessing the number of clusters m ∈ [vc], all theirs extended-cluster-types
((t(C1), c1), (t(C2), c2), . . . , (t(Cm), cm)) and their vertex cover vertices (M1,M2, . . . ,Mm). The
total number of guesses can be bounded by (2d

O(vc) · 2vc)vc+1 ∈ 2d
O(vc) . Then we check whether

all guessed extended-cluster-types are valid, if not, we continue with the next guess. For an
extended-cluster-type (t(Ci), ci) to be valid the following has to hold.

The graph on vertices Mi and all vertices of vertex-types in t(Ci) is connected.

∀x ∈ t(Ci) ∪Mi we have dist(ci, x) ≤ d

Finally, the guessed collection is valid ifMi partitionM , that is, if
∪m

i=1Mi =M and
∑m

i=1 |Mi| =
|M |.

24 Algorithms

Then we use an ILP to find whether there exists a solution respecting the guessed extended-
cluster-types. In order to do so, we use non-negative variables xti representing the number of
vertices of vertex-type t in the cluster Ci.

For each i ∈ [m] we add the following conditions:

t ∈ t(Ci) : x
t
i ≥ 1 (2.9)

t ̸∈ t(Ci) : x
t
i = 0 (2.10)

xitci ≤ 1 if dist(tci) > d (2.11)

ℓ ≤
∑

t∈t(Ci)

xti + |Mi| ≤ u (2.12)

And then we add these conditions:

∀t ∈ T :

m∑
i=1

xti = |V t|, (2.13)

where V t is the set of all vertices of vertex-type t.
If the vertex-type t is not in the cluster-type of i-th cluster, we still create the variable xti but

set it to zero. Otherwise, there has to be at least one vertex as the certificate of the cluster-type.
A vertex of the same vertex-type as the cluster center might be farther than d. To prevent adding
more vertices than the cluster center, we add Equation (2.11). Then in Equation (2.12) we check
that all clusters have the correct sizes. Lastly, Equation (2.13) ensures that every vertex is used.

▶ Claim 4. If the ILP with Equations (2.9) to (2.13) has a solution, then I is a Yes -instance.

Proof. Let x be a solution of the ILP. First, we partition the vertices V t into sets V t
i such that

|V t
i | = xti and V t

i ∩ V t
j ̸= ∅ implies j = i. This is possible because of Equation (2.13). Now

we set clusters Ci = ∪t∈TV
t
i ∪Mi. Each vertex is in a cluster since vertices in M were checked

beforehand and Equation (2.13) forces that every vertex in V \M is used exactly once.
Every cluster has a correct size:

ℓ ≤
∑

t∈t(Ci)

xti + |Mi| =
∑

t∈t(Ci)

|V t
i |+ |Mi| = |Ci| ≤ u

The distance to the center ci is the same for each vertex of a given vertex-type except for
vertices of vertex-type tci . For contradiction, suppose that there is another vertex v ∈ Ci of
vertex-type tci and dist(ci, v) > d. But then for tci Equation (2.11) is present, and it is not
satisfied, since xitci ≥ 2. Therefore, it is sufficient to check the distances only by examining the
vertex-types in t(Ci) and the vertex cover vertices M .

Each path to the center has to go through the vertex cover, hence it is also sufficient to
validate connectivity beforehand by examining only t(Ci) and Mi. Finally, we can say that the
cluster partitioning Π = (C1, C2, . . . , Cm) with centers C = (c1, c2, . . . , cm) is a valid solution. ■

▶ Claim 5. If I is a Yes -instance, then the ILP Equations (2.9) to (2.13) has a solution.

Proof. Let Π = (C1, C2, . . . , Cm) with centers C = (c1, c2, . . . , cm) be a solution. For cluster Ci

and vertex-type t ∈ t(Ci) set the variable xti = |V t
i |, where V t

i = {v ∈ Ci | tv = t}.
Now we show that every condition in the ILP formulation is satisfied one by one in the

corresponding order. Equations (2.9) to (2.13) are shown for fixed i ∈ [m].

1. Recall that in Definition 15 t ∈ t(C) ⇐⇒ ∃v ∈ C : tv = t therefore ∀t ∈ t(Ci) : 1 ≤ |V t
i | = xti.

2. Similarly, if t ̸∈ t(Ci), then there is no vertex v with tv = t in Ci, that is, 0 = |V t
i | = xti.

Algorithms Based on Branching and ILP 25

3. For contradiction, suppose Equation (2.11) is not satisfied. Then, there is a vertex v ∈ Ci of
vertex-type tci such that v ̸= ci. This means that dist(ci, v) > d, which is a contradiction.

4. We know that ℓ ≤ |Ci| ≤ u holds, and we will rewrite it as |Ci| =
∑

t∈t(Ci)
|V t

i | + |Mi| =∑
t∈t(Ci)

xti + |Mi|.

5. Finally, for any vertex-type t ∈ T the number of vertices |V t| =
∑m

i=1 |V t
i | =

∑m
i=1 x

t
i. ■

The number of vertex-types is bounded as |T | ≤ (d+1)vc and the number of cluster-types is
bounded by 2vc+(d+1)vc+1. Therefore, the number of variables is at most (d+1)vc ·2dO(vc) ∈ 2d

O(vc)

and the ILP can be solved in FPT time as noted in Proposition 6. Together with that the total
number of guesses (the number of ILP formulations) is bounded by a function of vc and d, the
theorem follows. ◀

Next, we turn to Network Microaggregation. The following algorithm is based on
similar ideas as the previous Theorem, but there is an additional complication: the number of
clusters is no longer upper bounded by vc. Hence, we use variables in the ILP formulation to
capture how often each of the extended-cluster-types occurs.

▶ Theorem 8. Network Microaggregation is fixed-parameter tractable parameterized by
vc+ d.

Proof. Let U be the set of all valid cluster-types. Furthermore, let P = U × (T ∪M) be the set
of all extended-cluster-types.

The main observation in this setting is that we can decide how many vertices of various
vertex-types to assign to cluster-types without deciding distribution within clusters. Then, the
viability of such an assignment can be checked as it is sufficient if a vertex assignment that makes
all the clusters the same size (up to a difference of 1) is between ℓ and u. More precisely, if we
know the number of clusters z of extended-cluster-type (τ, c) then we need that

ℓ ≤ total number of vertices assigned to (τ, c)

z
≤ u.

To deal with the vertex cover vertices we use similar technique as in the connected case.
We start by guessing the number of clusters m ≤ vc with vertex cover vertices, their extended-
cluster-types T = ((t(C1), c1), (t(C2), c2), . . . , (t(Cm′), cm′)) and their vertex cover verticesM =
(M1,M2, . . . ,Mm′).

We find the number of assigned vertices of vertex-type t to each extended-cluster-type p as
well as the number of clusters z of each extended-cluster-type using the following ILP. First, we
define the variables.

1. xti representing the number of vertices of vertex-type t in the cluster Ci.

2. ytp for every t ∈ T, p ∈ P indicating how many vertices of vertex-type t are used in all clusters
with extended-cluster-type p.

3. zp ≥ 0 for every p ∈ P indicating the number of clusters with extended-cluster-type p.

And then the conditions. We use Equations (2.9) to (2.12) from ILP in Theorem 7. For each
i ∈ [m′] we add the following conditions:

t ∈ t(Ci) : x
t
i ≥ 1 (2.14)

t ̸∈ t(Ci) : x
t
i = 0 (2.15)

xitci ≤ 1 if dist(tci) > d (2.16)

ℓ ≤
∑

t∈t(Ci)

xti + |Mi| ≤ u (2.17)

26 Algorithms

Then, for every extended-cluster-type p = (τ, c) ∈ P we further add these conditions.

∀t ∈ τ : ytp ≥ zp (2.18)
∀t ̸∈ τ : ytp = 0 (2.19)
yptc ≤ zp if dist(tc) > d (2.20)

ℓ · zp ≤
∑
t∈T

ytp ≤ u · zp (2.21)

Equations (2.18) to (2.21) are equivalents of Equations (2.14) to (2.17) for variables of multiple
clusters. In contrast, either we have to have at least one vertex representing the vertex-type for
each cluster of extended-cluster-type, or none at all. Same with Equation (2.20), we cap the
total cluster center vertex-type vertices to one vertex per cluster if they are too far apart. Then
in Equation (2.21) we bound the total number of vertices assigned to one extended-cluster-type.

Finally, we add the following conditions.

∀t ∈ T :

m′∑
i=1

xti +
∑
p∈P

ytp = |V t| (2.22)

Which makes sure that in total we counted exactly all vertices across the variables in x,y for
each vertex-type.

▶ Claim 6. If ILP above has a solution, then I is a Yes− instance.

Proof. Let (x,y, z) be a solution. First, we partition the vertices V t into sets ∀i ∈ m′ : V t
i , ∀p ∈

P : V t
p . This is possible thanks to Equation (2.22).

We start with creating clusters containing vertex cover vertices Ci = ∪t∈t(Ci)V
t
i ∪Mi for i ∈

[m′]. Those are valid clusters as proved in Claim 4, because the variables x and Equations (2.18)
to (2.21) are identical to Equations (2.14) to (2.17).

Next, for each extended-cluster-type p = (τ, c) we create zp many clusters C1
p , C

2
p , . . . C

zp
p .

To each of them we add one vertex of each vertex-type that is in the cluster-type τ . Thanks to
Equation (2.18) we have at least zp vertices of every used extended-cluster-type. Then we divide
the remaining vertices V t

p such that every cluster has size within the lower and upper bound.
This can be done, since Equation (2.21) holds by simply distributing the number of vertices as
evenly as possible.

The distance to the center c is the same for each vertex of a given vertex-type except for
vertices of vertex-type tc. But if another vertex v of the vertex-type tc is in C, then dist(c, v) ≤ d,
because we know that ytcp > zp holds. So, the extra condition upper bounding the number of
vertices of this vertex-type was not added. Therefore, all vertices in cluster are close enough to
the cluster center.

Each vertex is in a cluster, since vertices in M were checked beforehand, and Equation (2.22)
forces that every non vertex cover vertex is used exactly once.

Finally, we can say that the created cluster partitioning is valid and the instance is Yes
-instance. ■

▶ Claim 7. If I is a Yes -instance, then ILP above has a solution.

Proof. Let Π = (C1, C2, . . . , Cm′ , . . . , Cm) with centers C = (c1, c2, . . . , cm′ , . . . , cm) be a solu-
tion and clusters C1, C2, . . . , Cm′ are exactly those clusters that contain vertex cover vertices. For
cluster Ci, i ≤ m′ and vertex-type t ∈ t(Ci) set variable xti = |V t

i |, where V t
i = {v ∈ Ci|tv = t}.

Then for each of the extended-cluster-type p ∈ P , we set ytp = |{v ∈ Ci | tv = t, p = (t(Ci), ci), i >
m′}| and zp = |{Ci | p = (t(Ci), ci), i > m′}|.

Equations (2.14) to (2.17) are exactly the same as in Theorem 7 and the vector x has the
same meaning therefore correctness of these conditions hold from Claim 5. Now we show the

Algorithms Based on Branching and ILP 27

remaining conditions of the ILP formulation above is satisfied. We show that Equations (2.18)
to (2.21) hold for arbitrary p = (τ, c) ∈ P .

11. Since t ∈ τ , then each cluster contain at least one vertex of vertex-type t, with zp clusters of
the extended-cluster-type p, it holds that ytp ≥ zp.

12. No vertices of vertex-type t are in the clusters of cluster-type τ because t ̸∈ τ , so ytp = 0.

13. For contradiction, suppose that this condition is not satisfied. Either ytcp < zp, but that means
there are some clusters of cluster-type τ that does not contain any vertex of vertex-type tc
therefore this is not possible. Or ytcp > zp, but then one of the clusters contain at least two
vertices of vertex-type tc. The distance between each pair is more than d so if one of them is
the cluster center then the clustering is not valid and we have a contradiction.

14. Because ∀i ∈ [m] : ℓ ≤ |Ci| ≤ u we bound the total amount of vertices with the same
extended-cluster-type p = (τ, c) by

zp · ℓ ≤
∑

i:i>m∧
(t(Ci),ci)=p

|Ci| ≤ zp · u.

Then we rewrite it to wanted form∑
i:i>m′∧

(t(Ci),ci)=p

|Ci| =
∑
t∈T

∑
i:i>m′∧

(t(Ci),ci)=p

|V t
i | =

∑
t∈T

ytp

15.

|V t| =
m∑
i=1

|V t
i | =

m′∑
i=1

xti +
∑
p∈P

∑
i:i>m′∧

(t(Ci),ci)=p

|V t
i |

=

m′∑
i=1

xti +
∑
p∈P

ytτ,c

■

We have only guessed the clusters for vertex cover vertices therefore the number of guesses
can be limited by 2d

O(vc) as in Theorem 7. For each guess we run ILP with three types of
variables, the amount of each type of variables is at most |T | · |P | · (|T | + vc). In total, the
number of variables is bounded by the parameters, so the ILP is solvable in FPT time as noted
in Proposition 6. ◀

28 Algorithms

Chapter 3

Lowerbounds

A fast algorithm for our algorithm does not have to exist. The proposed algorithm can be the
fastest one that can be achieved when looking from the complexity classes perspective. This is
usually too ambitious to prove. Instead, we use a widely believed hypothesis FPT ̸= W[1] to show
that there is no FPT algorithm with respect to a certain parameterization unless the hypothesis
is false. Ideally, we also want to justify the usage of every parameter for every algorithm that
was shown in Chapter 2. The justification is made in the sense that if that parameter is dropped,
an algorithm belonging to the same class as before also falsifies the hypothesis.

In Theorem 4 we have shown an FPT algorithm for CNMA when parameterized by tw+d+u.
The problem is NP-hard even when d and u are constants, as we have already shown in Claim 1,
therefore FPT algorithm is the best what we can hope for. Also, the structural parameters are
always justified. In this chapter, we show that the CNMA is W[1]-hard parameterized by tw+d.
This justifies the parameters tw and d, but not u in the FPT algorithm. It also shows that the
XP algorithm is the best we can hope for when parameterized by tw+d or just by tw. Later
in Chapter 4 we provide an even stronger result that the problem W[1]-hard parameterized by
td+d. For the FPT algorithm for NMA when parameterize by vc+d we show the problem is
W[1]-hard when parameterized only by vc.

▶ Theorem 9. Connected Network Microaggregation is W[1]-hard parameterized by
tw, even if d = 1.

Proof. We reduce from the Equitable Connected Partition (ECP for short) problem.
Here, we are given an undirected graph H and an integer r ∈ N, and our goal is to decide
whether there is a partition of V (H) into r components B1, . . . , Br such that for any i ∈ [r]
it holds that H[Bi] is connected and |Bi| ∈ {⌊nH

r ⌋, ⌈
nH

r ⌉}, where nH = |V (H)|. It is known
that ECP is W[1]-hard with respect to the treewidth plus the number of components r [29].
Moreover, the hardness reduction for ECP holds in the case nH mod r = 0, which we assume
for the rest of the proof.

Let (H, r) be an instance of ECP with nH mod r = 0, we construct an equivalent instance
of Connected Network Microaggregation. We set the bounds ℓ = u = nH

r and d = 1,
and obtain a new graph G from H as follows. First, we add an extra vertex v to the graph and
connect it to every other vertex. The intuition here is that v makes any connected cluster of valid
size admissible, bypassing the distance requirement. Second, we make sure that v cannot join
any cluster in the original vertex set V (G) by introducing ℓ − 1 additional vertices v1, . . . , vℓ−1

and connecting them only to v. Finally, the unweighted graph is converted to a weighted graph
by setting each edge weight to one.

To show the correctness of the reduction, let B1, . . . , Br be the solution for the instance (H, r)
of ECP. We claim that clusters Π = (B1, . . . , Br, {v, v1, v2, . . . vℓ−1}) with centers C = (v, . . . , v)

29

30 Lowerbounds

form a solution for the instance (G, ℓ, u, d) of Connected Network Microaggregation.
The tuple Π is a partition of V (G) since B1, . . . , Br is a partition of V (H), and all vertices of
V (G) \ V (H) belong to the last cluster. The clusters are connected since Bi is connected for
all i ∈ [r], and the last cluster is connected via the vertex v. Every vertex except v is adjacent
to v via an edge of length 1, and every cluster center is v, thus the distance from any vertex to
its center is at most d = 1. The cluster sizes are within the required bounds since by definition
of ECP for each i ∈ [r], ℓ = ⌊nH

r ⌋ ≤ |Bi| ≤ ⌈nH

r ⌉ = u, and the size of the extra cluster is
|{v, v1, v2, . . . vℓ−1}| = ℓ.

Now to the other direction, let Π = (C1, C2, . . . Cm) and C = (c1, c2, . . . cm) be the so-
lution to Connected Network Microaggregation. By reordering, we can assume that
v ∈ Cm. Vertices v1, v2, . . . , vℓ−1 have v as their only neighbor, so they have to be in Cm

as well. No other vertices can be in Cm since |{v, v1, v2, . . . , vu−1}| = u. Thus, Cm is ex-
actly the vertices outside V (H), and C1, …, Cm−1 is a partition of V (H). By definition
of Connected Network Microaggregation, for each i ∈ [m − 1], Ci is connected, and
nH

r = ℓ ≤ |Ci| ≤ u = nH

r . The latter also implies that m − 1 = nH

nH/r = r. Therefore, C1, …,
Cm−1 is a solution to the instance (H, r) of ECP.

Finally, observe that the reduction takes polynomial time, and by removing the vertex v it
is easy to see that tw(G) ≤ tw(H) + 1. ◀

Next, we continue with showing W[1]-hardness reduction to NMA parameterized by the
vertex cover number. The reduction is from Multicolored Independent Set (MIS). It
consists of an undirected graph G = (V,E), an integer k ∈ N, and a function c : V → {1, . . . , k},
which is a proper k-coloring of the graph G. A set X ⊆ V is called multicolored if for each pair
of distinct vertices v, w ∈ X it holds that c(v) ̸= c(w). In MIS, we have to decide whether there
is a multicolored set I ⊆ V of size k such that G[I] is an edgeless graph. It is well-known that
both problems are W[1]-hard parameterized by the number of colors k [30, 15].

Before we dive deep into the reduction, we define some basic notation for MIS. Let I =
(G, c, k) be an instance of a multicolored problem. For a given color i ∈ [k], we let Vi denote the
set of vertices with color i, i. e., Vi = {v ∈ V (G) | c(v) = i}. Analogously, for a pair of distinct
colors i, i′ ∈ [k] we denote by Ei,i′ the subset of edges between these two color classes, that is,
Ei,i′ = {{vi, vi′} ∈ E(G) | vi ∈ Vi ∧ vi′ ∈ Vi′}.
▶ Theorem 10. Network Microaggregation is W[1]-hard parameterized by the vertex-
cover number vc.
Proof. We reduce from the Multicolored Independent Set problem where the color classes
are equally sized. The problem with this extra constraint is still W[1]-hard as any instance can be
padded with vertices of missing colors that are connected to every other vertex. Assuming k > 1,
these vertices are not in any independent set of size k and each independent set of the original
graph is preserved. The blowup is still polynomial, as at most O(n2) vertices were added. Let
I = (G, c, k) be an instance of MIS and let N = n

k be the size of every Vi.
The basic building block of our construction is selection gadget. We introduce exactly one

copy of the selection gadget, denoted Qi, for every color i ∈ [k]. The purpose of this gadget is
to select one of the vertices colored i to the solution.

Let i ∈ [k] be a fixed color and let Vi = {v1i , . . . , vNi }. First, we introduce in Qi an isolated
vertex for every element of Vi. Slightly abusing the notation, we will also call these new vertices
Vi. Then, we add two special vertices vri and vli which serve as connection ports with outsides of
the gadget, and we call them r-port and l-port, respectively. For every j ∈ [N], we add an edge
{vri , v

j
i } of length d

3 +1+ j and an edge {vli, v
j
i } of length d

3 +1− j. Next, we add a guard vertex
gi that is connected to all vertices of Vi with edges of length d − 1. Finally, we introduce a set
Ai = {a1i , . . . , an

2

i }, where n = |V (G)|, of auxiliary vertices connected to guard vertex gi with
edges of length 1. The illustration of the selection gadget is depicted in Figure 3.1.

The new graph G′ of the equivalent NMA instance J is then created as follows. For every
color i ∈ [k], we introduce one selection gadget Qi as described above. Then, for every edge

31

vri

vli

gi

ω = 1

ω = d − 1

Vi

v1i

v2i

v3i

...

vNi

b +
1

b
+

N

b
−

1

b −
N

b = d
3

+ 1

Ai

|V (G)|2

Figure 3.1 An illustration of the selection gadget for selection of a vertex colored i ∈ [k] to the
solution used in the proof of Theorem 10.

{v, w} ∈ E(G), where v = vji and w = vj
′

i′ , we add one edge-vertex ev,w. This edge-vertex is then
connected to

1. vertices vri and vli with edges of length 2d
3 − j and 2d

3 + j, respectively, and

2. vertices vri′ and vli′ with edges of length 2d
3 − j

′ and 2d
3 + j′, respectively.

Our intention is to have one cluster for each color class and select the vertex of the corre-
sponding color as the cluster center. Thus, we set the size bounds as follows. In total, the new
graph G′ has (|V (G)|2 + N + 3) · k + |E(G)| vertices, and we set ℓ = |V (G)|2 + N + 3 and
u = ℓ+ |E(G)|. The lower bound ℓ is greater than |E(G)|, therefore, the solution does not have
more than k clusters. At the same time, there must be at least k clusters due to the auxiliary
vertices Ai which are too far from vri and vli, for every i ∈ [k]. Finally, to ensure that there are
only integer and non-negative edge lengths, we set d = 9N .

Let I be a Yes -instance of MIS and I = {vj11 , . . . , v
jk
k }, where ∀i ∈ [k] : c(vjii) = i, be a

solution. We construct the solution for J as follows. For every i ∈ [k], the cluster Ci contains
the entire selection gadget Qi and the center ci of this cluster is an element corresponding to the
vertex vjii . So far, in every cluster are exactly ℓ vertices. The distances to the cluster center are
d for auxiliary vertices, d − 1 for the guard vertex, at most d

3 + d
3 −N + 1 < d for the vertices

of Vi, and, finally, at most d
3 + 1+N for the r-ports and the l-ports. What remains is to assign

the edge-vertices to clusters. Let ev,w, where v = vji and w = vj
′

i′ , be an edge-vertex. Since the
cluster centers form an independent set in G, it holds that at least one of v and w is not a cluster
center. Without loss of generality, let v ̸= ci. Then we add ev,w to the cluster Ci. If neither v
nor w are cluster centers, we place ev,w in an arbitrary cluster Ci or Cj . This increases the size
of each cluster to at most ℓ+ |E(G)| = u and, for every edge vertex, the distance to the cluster
center is exactly d, due to the independence of the cluster centers.

In the opposite direction, let J = (G′, ℓ, u, d) be a Yes -instance of NMA and Π = (C1, . . . , Cm)
together with C = (c1, . . . , cm) be a solution for J . We already discussed that, due to our size
bounds, it holds that m = k.

Now, we show that all cluster centers are elements of some Vi. Moreover, for every Vi, where
i ∈ [k], there is exactly one center ci between its elements, as otherwise, we broke either the
cluster size condition or the distances to the center.

▶ Claim 8. Let (Π, C) be a solution for J . For each set Vi there is a cluster center ci ∈ C.

32 Lowerbounds

Proof. The vertices that are less than d far from ai ∈ Ai are the vertices from Vi, guard vertex gi
and other auxiliary vertices from Ai. This forces each cluster center to be in a distinct selection
gadget Qi in either Vi or to be the guard vertex gi. The distance between any two vertices from
different selection gadgets is more than d, because the shortest the goes through an edge vertex
which is connected only with edges of length > d

2 . Therefore, the whole selection gadget is inside
the same cluster where its center is, thus each cluster contains its own selection gadget. Since
the distance from l-port and r-port to the guard vertex is at least d

3 + 1 − N + d − 1 > d, the
only remaining option for the cluster center is to be inside Vi. ■

We already verified that each vertex inside Qi is at most d far from any vertex in Vi. What re-
mains to show is the placement of edge-vertices. It is not hard to verify that, due to edge lengths,
an edge-vertex representing an edge e ∈ Ei,i′ has to be part of either the cluster containing vri
or vri′ , as otherwise, we break the condition on the distance d to cluster center.

▶ Claim 9. Let (Π, C) be a solution for J and ev,w, where v = vji and w = vj
′

i′ , be an edge-vertex.
Then ev,w is an element of a cluster C ∈ {Ci, Ci′} with cluster center c /∈ {v, w}.

Proof. Let ev,w be an edge-vertex that is an element of a cluster C such that, without loss of
generality, v = vji is the cluster center c. Then the distance to the center of the cluster is

dist(ev,w, c) =
2d

3
− j + d

3
+ 1 + j = d+ 1.

This contradicts that (Π, C) is a solution. Hence, edge-vertex cannot be in a cluster where the
center corresponds to one end-point of this edge. ■

We assumed that J is a Yes -instance. By Claim 9, we have that every edge-vertex is a
member of a cluster where the cluster center is not one of the edge endpoints. Moreover, such
a cluster exists for every edge-vertex. Hence, we obtain a solution for a MIS instance I by
taking as I the vertices forming cluster centers. There are exactly k of these and every cluster
center corresponds to a vertex of a different color thanks to Claim 8 and these vertices form an
independent set in G.

It is easy to see that the set
∪k

i=1{vri , vli, gi} is of size 3k and forms a vertex cover of G′, as
{vri , vli, gi} is vertex-cover for the selection gadget Qi, i ∈ [k], and the only connections outside
the selection gadget are realized via vri and vli. Hence, the presented reduction is indeed a
parameterized reduction and the theorem follows. ◀

We note that a highly similar construction as the one used above also works for the connected
variant of the problem.

Chapter 4

Treedepth hardness for ECP

In this chapter, we improve the result shown in Theorem 9 and start classifying the complexity
of Connected Network Microaggregation w.r.t. to other parameters between vc and tw.
We ask a question if Connected Network Microaggregation is W[1]-hard parameterized
by tw+d, and FPT when parameterized by vc+d Theorem 7 when does the problem becomes
W[1]-hard? Surprisingly, the answer can be easily answered by providing a tighter parameterized
intractability result for the problem we have reduced from.

First, we recall the hardness reduction of Enciso et al. [29, Theorem 1] as it serves as a basic
building block for other W[1]-hardness reductions presented in this section. The reduction is
reducing from the problem Multicolored Clique. For each one of the k colors, there is a
vertex selection gadget made of 2(k−1) anchors, each enforces its own partition by having many
pendant leaves. Anchors send between themselves signals through choice gadgets, which is just
a path with pendant leaves appended in such a way that only wanted values of the signals are
possible. To agree on a single vertex in one vertex selection gadget, the anchors are arranged
on a cycle If one anchor takes x vertices from a choice gadget, it forces the neighboring anchor
to take x vertices from the next anchor to have its partition of the correct size. Two vertex
selection gadgets agree on an edge by dedicating two anchors for each color and putting them
with two corresponding anchors of that color on a cycle made of choice gadgets. Because this
cycle shares one choice gadget with both vertex selection gadgets, they are able to filter only the
signals corresponding to a vertex incident to an edge to the other color. Which in the complete
picture forces the solution to represent a multicolored clique.

Now, we observe that ECP is W[1]-hard with respect to the feedback edge set number of G.
This resolves negatively the question from the introduction of our paper. The actual statement
shows an even stronger intractability result.

▶ Observation 11. Equitable Connected Partition is W[1]-hard with respect to the path-
width pw, the feedback-edge set number fes, and the number of parts p combined.

Proof. Enciso et al. [29] show in their basic reduction that the ECP problem is W[1]-hard
parameterized by the pathwidth, the feedback-vertex set, and the number of parts combined.
One can observe, that the same reduction also shows W[1]-hardness for the pathwidth, the
feedback-edge set, and the number of parts combined. To see this, we recall that there are k
selection gadgets, each containing 2(k−1) anchors. That is, there are 2k(k−1) anchors in total.
Moreover, the number of parts p is equal to the number of anchors. By removing the roots of
every anchor, we obtain a graph which is a collection of paths with pending vertices, thus, the
pathwidth is at most number of roots plus one. Finally, for the feedback-edge set number, recall
that every selection gadget for color i consists of 2(k − 1) anchors N i

j and P i
j , where 1 ≤ j ≤ k

and i ̸= j connected into a cycle using choice gadgets. By removing the edges on the cycle

33

34 Treedepth hardness for ECP

adjacent to the anchor’s roots, we obtain a collection of trees, each made of a choice gadget and
two anchors. Therefore, the feedback-edge set of the construction is at most 4k(k − 1). ◀

Note that the result from Observation 11 can be, following the same arguments, strengthened
to show a similar result for planar graphs.

Next, we show that the d-pvcn parameter cannot be relaxed anymore while keeping the
problem tractable. Our reduction is from the Partitioned Subgraph Isomorphism problem,
which is defined as follows.

Partitioned Subgraph Isomorphism (PSI)
Input: Two undirected graphs G and H with |V (H)| ≤ |V (G)| and a mapping

ψ : V (G)→ V (H).
Question: Is there an injective mapping ϕ : V (H)→ V (G) such that {ϕ(u), ϕ(v)} ∈

E(G) for each {u, v} ∈ E(H) and ψ ◦ ϕ is the identity?

Since special case of PSI called Partitioned Clique, where H is a complete graph, is
known to be W[1]-complete parameterized by the clique size [31], it follows that PSI is W[1]-hard
parameterized by |E(H)|.

▶ Theorem 12. Equitable Connected Partition is W[1]-hard parameterized by the 4-pvcn.

Proof. Our reduction is, from the high-level perspective, the same as the one of Enciso et al. [29].
However, to be able to show hardness for the parameter 4-path vertex cover number, the concrete
realization of gadgets is quite different. For the sake of completeness, let us present the reduction
in its entirety.

A basic building block of our construction is an anchor. An anchor, denoted by anch(r, ℓ),
is a simple star with a root r and ℓ − 1 leaves. Every anchor is connected with the rest of the
graph by its root r only, hence, by setting the number of leaves of an anchor we can affect the
number of additional vertices in the part together with this anchor.

Anchors will be interconnected via so-called choice gadgets. A choice gadget for a multiset
S = {s1, . . . , st}, denoted choice(S), is a bipartite graph. We start the construction of choice(S)
with two ports v⊤ and v⊥. Next, we create an element-vertex vi for every si ∈ S. For every
i ∈ [t], an element-vertex vi is neighbor of both v⊤ and v⊥ and vi has si − 1 pendant leaves.

Let A and B be two anchors with roots rA and rB , respectively. We connect A to B by a
choice-gadget choice(S) by identifying v⊤ with rA and v⊥ with rB . For an illustration of anchors
and choice gadgets, we refer the reader to Figure 4.1.

Let I = (G,H,ψ) be a PSI instance. We construct an equivalent ECP instance J = (G′, p)
as follows. Let k := |V (H)|, n := |V (G)|, N := n + 1 and let ID be a function that assigns a
unique ID from [n] to every vertex in V (G) and a unique ID from [

(
n
2

)
] to every unordered pair

of vertices of G. Furthermore, we define a successor of j ∈ [k] to be s(j) := (j + 1) if j < k and
s(k) := 1.

We start by creating k vertex selection gadgets, one for each vertex i ∈ [k]. These gadgets
will select one vertex from ψ−1(i). Each of these gadgets is made of 2(k − 1) anchors labeled as
A⊤

i,j = anch(v⊤i,j , ℓ
⊤
i,j), A

⊥
i,j = anch(v⊥i,j , ℓ

⊥
i,j) for j ∈ [k] \ {i}. We label their roots as v⊤i,j and v⊥i,j ,

respectively.
Similarly to Enciso et al. [29], each anchor forces its own partition and anchors communicate

with other anchors through signals carried by the choice gadgets. There are 2 different strengths
of signals being carried. Between the ports v⊥i,j , v⊤i,s(j) there is a CV

i,j := choice({1 | v ∈ V (G)}),
where the vertex is selected by picking that many stars in the gadget as is the vertex ID. Similarly,
there is a CE

i,j := choice({N | e ∈ E(G)}) between v⊥j,i, v
⊤
i,j . These choice gadgets enable two

different vertex selection gadgets to agree on an edge or a non-edge.
Finally, the third type of choice gadget CC

i,j is between v⊤i,j and v⊥i,j which allows both the
vertex and edge selecting signal to be carried simultaneously and at the same time verify that

35

r..
.

ℓ

v⊤

v⊥

s1 s2 s3 st. . .

v⊤ v⊥
(s1, s2, . . . , st)

Figure 4.1 An anchor (left) and a choice gadget (right) with its schematic representation used in
further construction illustrations (bellow).

there is an edge between chosen vertices if {i, j} ∈ E(H). The vertex and edge selecting signals
do not interfere because the smallest change of the bigger signal is larger than the maximum size
of the small signal. We use the following choice gadget CC

i,j := choice({ID(u)+N · ID(u, v)+N3 |
u, v ∈ V (G) ∧ ψ(u) = i ∧ ψ(v) = j ∧ ({i, j} ∈ E(H) =⇒ {u, v} ∈ E(G))}). The first part
ID(u) +N · ID(u, v) allows only the desired vertex and edge selection signals to pass through to
the next anchor. With the extra N3 we ensure that we select only one value from the choice
gadget CC

i,j by the partition containing A⊤
i,j as we show now.

The size of each partition is chosen to be r := n+N ·
(
n
2

)
+S, where S :=

∑
(u,v)∈V (G)2(ID(u)+

N ·ID(u, v)+N3). Based on that, we set the sizes of anchors A⊤
i,j as ℓ⊤i,j := S−N3 and size of A⊥

i,j

as ℓ⊥i,j := S−Si,j +N
3+n+N ·

(
n
2

)
, where Si,j :=

∑
{u,v}∈ϕ−1({i,j})(ID(u)+N · ID(u, v)+N3).

Finally, we notice that there are k(2k − 2) · (r) vertices in V (G′).
The connections of the anchors via choice gadgets can be seen in Figure 4.2.

▶ Claim 10. If I = (G,H,ψ) is a Yes -instance then J = (G′, p) is a Yes -instance.

Proof. We create p = 2k(k − 1) partitions, one for each anchor labeled as V ⊤
i,j for anchor A⊤

i,j

and V ⊥
i,j for A⊥

i,j .
For each i, j ∈ V (H), i ̸= j we assign ID(ϕ(i)) vertices in choice gadget CV

i,j to a partition
V ⊥
i,j . The rest of the vertices in the choice gadget we assign to partition V ⊤

i,s(j). Similarly, for each
i, j ∈ V (H), where i ̸= j, we assign ID(ϕ(i), ϕ(j)) stars with pendant vertices from the choice
gadget CE

i,j to the partition V ⊥
i,j . The rest we will assign to V ⊥

i,j .
For the last type of the choice gadget CC

i,j with i, j ∈ V (G), i ̸= j, we choose a single star
that contains ϕ(i) + ID(ϕ(i), ϕ(j)) ·N +N3 vertices and assign it to V ⊤

i,j .
We know there is such a star since CC

i,j contains all possible value combinations of a vertex
in ψ(i)−1 and an edge ψ(i, j)−1, or just the vertex if the edge does not exist. Every other star
in this choice gadget is assigned to V ⊥

i,j .
Now we verify that there are exactly r = V (G′)

p vertices in each partition. Each partition V ⊤
i,j

contains (n−ϕ(i))+N · (
(
n
2

)
− ID(ϕ(i), ϕ(j)))+ϕ(i)+N · ID(ϕ(i), ϕ(j))+N3 = n+N ·

(
n
2

)
+N3

vertices from choice gadgets incident to its anchor. With the remaining ℓ⊤ = S − N3 vertices
from being an anchor, the partition size is exactly n +

(
n
2

)
· N + S = r. For the partition V ⊥

i,j

36 Treedepth hardness for ECP

v⊥i,j−1

v⊤i,j

v⊥i,j

v⊤i,j+1

v⊥j,i

v⊤j,i

Figure 4.2 An overview of the construction used in the proof of Theorem 12. The dashed line
represents a choice gadget carrying the signal selecting a vertex, the dotted line carries the signal selecting
an edge and the full line is used for the combined signal.

there are ϕ(i) + N · ID(ϕ(i), ϕ(j)) + (Si,j − (i + N · ID(ϕ(i), ϕ(j)) + N3)) = Si,j − N3 vertices
from the incident choice gadgets. Together with ℓ⊥ := S − Si,j +N3 + n+N ·

(
n
2

)
vertices from

the anchor, we get exactly n+
(
n
2

)
·N + S = r vertices as well.

Therefore, all partitions have the correct size, and they are connected, therefore J is a Yes
-instance. ■

▶ Claim 11. If J = (G′, p) is a Yes -instance then I = (G,H,ψ) is a Yes -instance.

Proof. Let π = {V1, . . . , Vp} be the partitioning of V (G′). Every partition contains exactly one
anchor. It is easy to see that every pendant leaf is in the same partition as his only neighbor
with r > 1. Every value in a choice gadget is a star that is connected only to two anchors.
Since it contains at most N3 + N ·

(
n
2

)
+ n < 2N3 vertices and r > S > |V (G)| · N3 > 2N3,

it has to share partition with one of the neighboring anchors. In fact, there is exactly one
anchor per partition, because two anchors sharing a choice gadget would have at least ℓ⊤+ ℓ⊥ =
S −N3 + S − Si,j +N3 + n+N ·

(
n
2

)
= 2S − Si,j + n+N ·

(
n
2

)
> r since S − Si,j > 0.

Let V ⊤
i,j , V

⊥
i,j be the partitions containing the anchors A⊤

i,j and A⊥
i,j , respectively. Since r −

ℓ⊤i,j > N3, at least one value from the choice gadget CC
i,j has to be inside V ⊤

i,j . In fact only a
single star from the choice gadget CC

i,j can be inside the partition V ⊤
i,j , otherwise the size of V ⊤

i,j

would be at least ℓ⊤i,j + 2N3 = S −N3 + 2N3 > r. The selected star determines corresponding
vertices u ∈ Vi, v ∈ Vj from the value X = ID(u)+N · ID(u, v)+N3 because X mod N = ID(u)

and X−ID(u)
N mod N2 = ID(u, v). The remainder of r − ℓ⊤i,j when divided by N is n and values

in CE
i,j are multiples of N , therefore they cannot fill the offset ID(u) from selecting X. The only

possible way for r mod N = |Vi| mod N = n is to have exactly n − ID(u) many vertices from
CV

i,j−1 in V ⊤
i,j . Similarly, X−ID(u)

N modN2 = ID(u, v) and r−ℓ⊤i,j−n

N mod N2 =
(
n
2

)
. There are

only n < N vertices in CV
i,j , therefore

(
n
2

)
− ID(u, v) many stars from CE

j,i are present in V ⊤
i,j . The

neighboring partition V ⊥
i,j is forced to choose ID(u) and ID(u, v) many vertices in CV

i,j and CE
i,j ,

respectively, with the same argument about the modulo of r. With the additional ℓ⊤i,j or ℓ⊥i,j
vertices from their anchor, there are exactly r vertices in V ⊤

i,j and V ⊤
j,i as calculated in previous

claim.

37

Every other partition in the i-th vertex selection gadget selects u ∈ ψ−1(i) as well, because
the preceding partition forces it to take n − ID(u) mod N vertices and thus it has to take
ID mod N vertices in the next choice gadget. So we specify that ϕ(i) = u. Similarly, the edge
selection gadget selects a pair of vertices u ∈ ψ−1(i), v ∈ ψ−1(j) such that ϕ(i) = u and ϕ(j) = v.
For two vertices i, j ∈ V (H) the edge {i, j} ∈ E(H) =⇒ {ϕ(i), ϕ(j)} ∈ E(G) because only these
pairs of vertices were allowed in the choice gadget CC

i,j . Therefore, I is a Yes -instance. ■

The reduction runs in polynomial time since the graph contains O(k2n5) vertices.
◀

It is not hard to see that if the 4-pvcn is bounded, then so is the treedepth td of the graph.
The graph without paths of length more than k has treedepth at most k [19, Proposition 6.1].
Removing 4-pvcn vertices from G could decrease td of G by at most 4-pvcn as every removed
vertex can remove only one layer in the tree depth decomposition. Therefore, td ≤ k + k-pvcn
and hence, we directly obtain.

▶ Corollary 13. Equitable Connected Partition is W[1]-hard parameterized by the treedepth
td.

Recall, that in our reduction from ECP in Theorem 9 we added a single vertex v connected to
every vertex in G and then added pendant vertices to it. The new graph G′ has 4-pvcn increase
by at most one from G since removing the same vertices in G plus the vertex v gives us a graph
without paths on 4 vertices. Finally, we present our last result.

▶ Corollary 14. Connected Network Microaggregation is W[1]-hard parameterized by
4-pvcn or td, even if d = 1.

38 Treedepth hardness for ECP

Conclusion

The thesis presented in this work focuses on two clustering problems, namely Network Mi-
croaggregation and Connected Network Microaggregation, and explores their pa-
rameterized complexity. By applying various techniques, we were able to provide both tractabil-
ity and intractability results for these problems.

In terms of tractability, we showed that Connected Network Microaggregation is in
FPT when parameterized by the treewidth, distance to cluster center, and upper-bound on the
cluster size. Moreover, we demonstrated that Connected Network Microaggregation is in
XP when parameterized only by the treewidth with a dynamic programming approach. We also
designed FPT algorithms for both Connected Network Microaggregation and Network
Microaggregation using exhaustive search and ILP for the vertex cover number and distance
to the cluster center. However, there is still room for improvement with these algorithms, as it is
unclear whether they can be further optimized or their tightness can be proven using tools such
as the exponential time hypothesis.

On the other hand, we presented W[1]-hardness reductions to show the intractability of the
problems with certain parameterizations. Specifically, we demonstrated that Connected Net-
work Microaggregation is W[1]-hard with respect to the treewidth and the distance to the
cluster center using a reduction from Equitable Connected Partition, and that Network
Microaggregation is W[1]-hard parameterized by the vertex cover number using a reduction
from Multicolored Clique. Additionally, we showed that the well-known problem Equi-
table Connected Partition is W[1]-hard when parameterized by treedepth, which immedi-
ately carried over to our reduction from Equitable Connected Partition and established
W[1]-hardness when parameterized by treedepth and distance to cluster center.

Similarly, in many other cases of the problem, there is an FPT algorithm for vertex cover plus
additional parameters, but when we exchange vc for tw we get W[1]-hardness. Thus, a natural
question arises. How does the problem behave between those two parameters in other cases?
Other parameterization might be interesting as well, depending upon what parameters happen
to be small in the real world.

From the problem specific parameters, we only considered the distance to the cluster center
and upper-bound on the size of the cluster. We did not consider the lower-bound as it is smaller
or equal to the upper bound and in Network Microaggregation u is effectively at most
2ℓ− 1,

Lastly, we have shown two versions of the problem, but other slight variations might make
sense. For example, we might want the cluster centers to be in its own cluster center to better
represent the group. Alternatively, there does not have to be centers at all and the coherency of
clusters may be maintained by a maximal pairwise distance between members of each cluster.

39

40 Treedepth hardness for ECP

Bibliography

1. DOMINGO-FERRER, Josep; TORRA, Vicenç. Ordinal, continuous and heterogeneous k-
anonymity through microaggregation. Data Mining and Knowledge Discovery. 2005, vol. 11,
pp. 195–212.

2. RODRIGUEZ-HOYOS, Ana; ESTRADA-JIMÉNEZ, José; REBOLLO-MONEDERO, David;
PARRA-ARNAU, Javier; FORNÉ, Jordi. Does k-Anonymous microaggregation affect machine-
learned macrotrends? IEEE access. 2018, vol. 6, pp. 28258–28277.

3. THAETER, Florian; REISCHUK, Rüdiger. Hardness of k-anonymous microaggregation.
Discrete Applied Mathematics. 2021, vol. 303, pp. 149–158. Available from doi: 10.1016/
j.dam.2020.10.005.

4. DOMINGO-FERRER, Josep; TORRA, Vicenc. A quantitative comparison of disclosure
control methods for microdata. Confidentiality, disclosure and data access: theory and prac-
tical applications for statistical agencies. 2001, pp. 111–134.

5. DOMINGO-FERRER, Josep; SEBÉ, Francesc; SOLANAS, Agusti. A polynomial-time ap-
proximation to optimal multivariate microaggregation. Computers & Mathematics with Ap-
plications. 2008, vol. 55, no. 4, pp. 714–732. issn 0898-1221. Available from doi: https:
//doi.org/10.1016/j.camwa.2007.04.034.

6. SUN, Xiaoxun; WANG, Hua; LI, Jiuyong; ZHANG, Yanchun. An Approximate Microaggre-
gation Approach for Microdata Protection. Expert Systems with Applications. 2012, vol. 39,
no. 2, pp. 2211–2219. issn 0957-4174. Available from doi: 10.1016/j.eswa.2011.04.223.

7. ABU-KHZAM, Faisal N.; BAZGAN, Cristina; CASEL, Katrin; FERNAU, Henning. Clus-
tering with Lower-Bounded Sizes. Algorithmica. 2018, vol. 80, no. 9, pp. 2517–2550. issn
0178-4617. Available from doi: 10.1007/s00453-017-0374-5.

8. CASEL, Katrin. Resolving Conflicts for Lower-Bounded Clustering. In: Proceedings of the
13th International Symposium on Parameterized and Exact Computation, IPEC ’18. 2019,
vol. 115, 23:1–23:14. LIPIcs. issn 1868-8969. Available from doi: 10.4230/LIPIcs.IPEC.
2018.23.

9. BLAŽEJ, Václav; GANIAN, Robert; KNOP, Dušan; POKORNÝ, Jan; SCHIERREICH,
Šimon; SIMONOV, Kirill. The Parameterized Complexity of Network Microaggregation.
In: Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023. AAAI Press,
2023.

10. ARORA, Sanjeev; BARAK, Boaz. Computational complexity: a modern approach. Cam-
bridge University Press, 2009.

11. TURING, Alan M. On computable numbers, with an application to the Entscheidungsprob-
lem. Proc. London Math. Soc. 1937, vol. s2-42, no. 1, pp. 230–265. Available from doi:
10.1112/plms/s2-42.1.230.

41

https://doi.org/10.1016/j.dam.2020.10.005
https://doi.org/10.1016/j.dam.2020.10.005
https://doi.org/https://doi.org/10.1016/j.camwa.2007.04.034
https://doi.org/https://doi.org/10.1016/j.camwa.2007.04.034
https://doi.org/10.1016/j.eswa.2011.04.223
https://doi.org/10.1007/s00453-017-0374-5
https://doi.org/10.4230/LIPIcs.IPEC.2018.23
https://doi.org/10.4230/LIPIcs.IPEC.2018.23
https://doi.org/10.1112/plms/s2-42.1.230

42 Bibliography

12. TURING, Alan M. Computability and λ-Definability. J. Symb. Log. 1937, vol. 2, no. 4,
pp. 153–163. Available from doi: 10.2307/2268280.

13. COOK, Stephen A. The Complexity of Theorem-Proving Procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing. Shaker Heights, Ohio, USA:
Association for Computing Machinery, 1971, pp. 151–158. STOC ’71. isbn 9781450374644.
Available from doi: 10.1145/800157.805047.

14. KARP, Richard M. Reducibility Among Combinatorial Problems. In: MILLER, Raymond
E.; THATCHER, James W. (eds.). Proceedings of a symposium on the Complexity of Com-
puter Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA. Plenum Press, New York, 1972, pp. 85–103.
The IBM Research Symposia Series. Available from doi: 10.1007/978-1-4684-2001-2_9.

15. CYGAN, Marek; FOMIN, Fedor V.; KOWALIK, Łukasz; LOKSHTANOV, Daniel; MARX,
Dániel; PILIPCZUK, Marcin; PILIPCZUK, Michał; SAURABH, Saket. Parameterized Al-
gorithms. Springer, 2015. isbn 978-3-319-21274-6. Available from doi: 10.1007/978-3-
319-21275-3.

16. DOWNEY, Rodney G.; FELLOWS, Michael R. Fixed-Parameter Tractability and Com-
pleteness II: On Completeness for W[1]. Theor. Comput. Sci. 1995, vol. 141, no. 1&2,
pp. 109–131. Available from doi: 10.1016/0304-3975(94)00097-3.

17. FLUM, Jörg; GROHE, Martin. Parameterized Complexity Theory. Springer, 2006. Texts in
Theoretical Computer Science. An EATCS Series. isbn 978-3-540-29952-3. Available from
doi: 10.1007/3-540-29953-X.

18. BODLAENDER, Hans L.; DRANGE, Pål Grǿnås; DREGI, Markus S.; FOMIN, Fedor
V.; LOKSHTANOV, Daniel; PILIPCZUK, Michał. A ckn 5-Approximation Algorithm for
Treewidth. SIAM Journal on Computing. 2016, vol. 45, no. 2, pp. 317–378. Available from
doi: 10.1137/130947374.

19. NEŠETŘIL, Jaroslav; OSSONA DE MENDEZ, Patrice. Sparsity: Graphs, Structures, and
Algorithms. Vol. 28. Berlin, Heidelberg: Springer, 2012. Algorithms and Combinatorics. isbn
978-3-642-27874-7. issn 0937-5511. Available from doi: 10.1007/978-3-642-27875-4.

20. SORGE, Manuel. The graph parameter hierarchy. Available also from: https://manyu.
pro/assets/parameter-hierarchy.pdf. Accessed on 26.06.2023.

21. KIRKPATRICK, David G.; HELL, Pavol. On the Completeness of a Generalized Matching
Problem. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing,
STOC ’78. San Diego, California, USA, 1978, pp. 240–245. Available from doi: 10.1145/
800133.804353.

22. FREDMAN, Michael L.; TARJAN, Robert Endre. Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms. Journal of the ACM. 1987, vol. 34, no. 3,
pp. 596–615. issn 0004-5411. Available from doi: 10.1145/28869.28874.

23. BODLAENDER, Hans L. A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM Journal on Computing. 1996, vol. 25, no. 6, pp. 1305–1317. Available
from doi: 10.1137/S0097539793251219.

24. KORHONEN, Tuukka. A Single-Exponential Time 2-Approximation Algorithm for Treewidth.
In: Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS ’21. 2021, pp. 184–192. Available from doi: 10.1109/FOCS52979.2021.00026.

25. LENSTRA JR., H. W. Integer programming with a fixed number of variables. Mathematics
of Operations Research. 1983, vol. 8, no. 4, pp. 538–548.

26. KANNAN, Ravi. Minkowski’s Convex Body Theorem and Integer Programming. Math-
ematics of Operations Research. 1987, vol. 12, no. 3, pp. 415–440. Available from doi:
10.1287/moor.12.3.415.

https://doi.org/10.2307/2268280
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1137/130947374
https://doi.org/10.1007/978-3-642-27875-4
https://manyu.pro/assets/parameter-hierarchy.pdf
https://manyu.pro/assets/parameter-hierarchy.pdf
https://doi.org/10.1145/800133.804353
https://doi.org/10.1145/800133.804353
https://doi.org/10.1145/28869.28874
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1287/moor.12.3.415

Bibliography 43

27. FRANK, András; TARDOS, Éva. An application of simultaneous Diophantine approxima-
tion in combinatorial optimization. Combinatorica. 1987, vol. 7, no. 1, pp. 49–65.

28. CHEN, Jianer; KANJ, Iyad A; XIA, Ge. Improved parameterized upper bounds for vertex
cover. In: Mathematical Foundations of Computer Science 2006: 31st International Sym-
posium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006. Proceedings 31.
Springer, 2006, pp. 238–249.

29. ENCISO, Rosa; FELLOWS, Michael R.; GUO, Jiong; KANJ, Iyad; ROSAMOND, Frances;
SUCHÝ, Ondřej. What Makes Equitable Connected Partition Easy. In: Proceedings of the
4th International Workshop on Parameterized and Exact Computation, IWPEC ’09. 2009,
vol. 5917, pp. 122–133. LNCS.

30. FELLOWS, Michael R.; HERMELIN, Danny; ROSAMOND, Frances; VIALETTE, Stéphane.
On the parameterized complexity of multiple-interval graph problems. Theoretical Com-
puter Science. 2009, vol. 410, no. 1, pp. 53–61. issn 0304-3975. Available from doi: 10.
1016/j.tcs.2008.09.065.

31. PIETRZAK, Krzysztof. On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems. Journal of Computer
and System Sciences. 2003, vol. 67, no. 4, pp. 757–771. Available from doi: 10.1016/S0022-
0000(03)00078-3.

https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/10.1016/S0022-0000(03)00078-3

	Acknowledgments
	Declaration
	Abstract
	Introduction
	Notation
	Graph theory
	Parameterized Complexity
	Treewidth
	Other structural parameters

	Our problem
	Compedium of problems

	Algorithms
	Dynamic programming on tree decomposition
	Algorithms Based on Branching and ILP

	Lowerbounds
	Treedepth hardness for ECP

