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Abstract

In this project, we study vulnerable regular expression inputs in the Javas platform implemen-
tation, also known as OpenJDK. These inputs can cause a Regular expression Denial of Service
attack on the system which could make a targeted system unavailable to actual users. OpenJDK
is considered protected against ReDoS attack, especially in versions 9 and higher where optimiza-
tion of the regular-expression matching algorithms was added. But even with this improvement,
we will show that there are still vulnerable regex inputs, which can cause exponential run-time
problems and potentially cause a denial of service, even in the latest version of OpenJDK. In
this thesis, you will see which optimizations were added in version 9, how these improvements
affect OpenJDK today, and what these optimizations did not manage to cover. For each of the
vulnerable regex inputs you will also be given a flow chart that shows the process of the matching
algorithms, why the exponential run-time problems occur, and possible solutions.

Keywords ReDoS, Regular expression, Denial of Service, OpenJDK, Java, vulnerability

Abstrakt

V tomto projektu studujeme zranitelné vstupy regulárńıch výraz̊u v implementaci platformy
Java, známé také jako OpenJDK. Tyto vstupy mohou zp̊usobit útok regulárńıho výrazu Denial
of Service na systém, který by mohl zp̊usobit, že ćılový systém nebude dostupný skutečným
uživatel̊um. OpenJDK je považováno za chráněné proti ReDoS útoku, zejména ve verźıch 9 a
vyšš́ıch, kde byla přidána optimalizace algoritmů pro párováńı regulárńıch výraz̊u. Ale i s t́ımto
vylepšeńım ukážeme, že stále existuj́ı zranitelné vstupy regulárńıch výraz̊u, které mohou zp̊usobit
exponenciálńı problémy za běhu a potenciálně zp̊usobit odmı́tnut́ı služby, a to i v nejnověǰśı verzi
OpenJDK. V této práci uvid́ıte, které optimalizace byly přidány ve verzi 9, jak tato vylepšeńı
ovlivňuj́ı OpenJDK dnes a co tyto optimalizace nestihly pokrýt. Pro každý ze zranitelných
vstup̊u regulárńıch výraz̊u dostanete také vývojový diagram, který ukazuje proces párovaćıch
algoritmů, proč docháźı k exponenciálńım problémům za běhu a možná řešeńı.

Kĺıčová slova ReDoS utok, Regularńı výraz, OpenJDK, Java, bezpečnost, zranitelnost
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Introduction

A regular expression (Regex) is a series of different characters that represent a pattern, these
patterns are used by the regular expression engine to match input strings to the given patterns.
In the world of IT this process is crucial and is used for a multitude of different tasks. They can
be seen in the building of search engines, databases, in allowing input checking in applications,
and are used in some of the most well-known Unix system commands like awk, sed, and grep.
Nearly every publicly used programming language has the ability or an additional library that
allows you to use Regex within it. Regex isn’t just used in code, it is also a known tool in
language theory that allows you to describe regular language.

As you can see, regular expressions are a diverse tool that can be used all around and in
a lot of different contexts. For this exact reason, most Java systems hold some Regex within
them, be it to help verify inputs or to check that a new password does not contain the user’s
email. Although this tool is helpful and should be used, there are still security vulnerabilities
that can occur within it. One of the most dangerous vulnerabilities that can arise from regex is
a Denial of Service (DoS). DoS, in computing, is a cyber attack that causes a system or network
of systems to become unavailable to its intended users for a period of time by overloading their
available resources. These attacks can cost companies thousands of dollars and seriously affect
users who need access to the given network.

A regular expression DoS, or sometimes referred to as ReDoS, is the same type of attack, but
in this case the attacker does not need a lot of resources, they just need to exploit a weak regular
expression pattern. ReDoS attacks are algorithmic complexity attacks caused by an exploited
regular expression triggering a large amount of backtracking. This causes the affected system to
expand a large amount of resources on the request, which can cause a DOS.

Today, the Java programming language is used mostly for web application development. In
the article ”Static Detection of DoS Vulnerabilities in Programs that Use Regular Expressions” [1]
an experimental evaluation was done, this evaluation found that approximately 20% of these Java
web applications use vulnerable regular expressions within them. They found this by analyzing
Java programs from GitHub repositories for their likelihood of a ReDoS attack. This shows us
that ReDoS attacks are not just theoretical attacks, but actual ones that can be found in many
of today’s applications.

A good example of a real-life ReDoS attack occurred in 2016, where a successful attack was
executed against the stackstatus.net server [2], this server is the StackOverflows status page where
users can stay updated on incidence and site maintenance. This attack took down the whole
of StackStatus and StackOverflow for 34 minutes. The fall was caused by a regular expression
that was meant to trim the Unicode of white spaces from the beginning and end. The Regex
pattern was: ˆ[\s\u200c]+|[\s\u200c]+$, which caused an issue when an input of 20,000 white
spaces was entered due to the backtracking that took place. The input was therefore checked
by the engine 199,990,000 times which, though not exponential, was enough to overload the

1



2 Introduction

server. Because this was done to the home page which was also used by the load-balancer for
the health-check, the entire site became unavailable. Although it was only down for 34 minutes,
that can be enough to seriously harm certain companies and sites.

In this project, we will look at a portion of vulnerable regular expressions patterns in the
OpenJDK implementation [3], these patterns can be used to launch ReDoS attacks on a given
system. In general, OpenJDK has added optimizations to its regex engine to reduce its chances
of causing a ReDoS attack, especially in versions 9 [4]. But even with this improvement, we
will show that there are still vulnerable regex patterns which can cause exponential run-time
problems, catastrophic backtracking, and potentially cause a denial of service, even in the latest
version of OpenJDK [3].

In this paper, you will see which optimizations were added in version 9 and how these im-
provements affect OpenJDK today. In addition, we will look at the regex patterns that have
remained vulnerable within OpenJDK even after the version 9 optimization and will analyze the
inner causes of their resulted exponential run-time. Each of our vulnerable patterns will be put
through a thorough evaluation which will produce a graph of their run-time, and their object
diagram.

The information we gather will hopefully help future developers understand the danger of
specific groups of regex patterns and will help them avoid their use or potentially improve the
underlying engine as a whole. At the end of this thesis, we will also present a few possible
solutions to help mitigate the possibility of ReDoS attacks to Java developed applications.



Goal

In this thesis, we have four main goals that we will conquer. Our first being the discovery
of vulnerable patterns and input text, which can cause exponential run-time in the system
and potential cause denial of service. Our second task will be to investigate the OpenJDK
implementation [3] to better understand the root cause of the vulnerabilities we have found.
The third goal, you will see is to provide experimental evaluation and compare the run-time
between other vulnerable patterns and different inputs. Our fourth and final goal will be to
present theoretical possible solutions to prevent exponential run time based on investigations of
the OpenJDK implementation.

3
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Chapter 1

Preliminaries

In this chapter of our thesis, we aim to establish a clear understanding of the terminology used
throughout our research. It is crucial to define and explain the key terms and concepts that we
use to ensure accurate and consistent communication of ideas.

By providing a comprehensive glossary of terms, we enable readers to navigate our thesis with
ease and clarity. This chapter serves as a reference point and helps to ensure that all readers
share a common understanding when it comes to our terminology.

In addition, due to the importance of aligning our definitions with established and known
industry standards, we have taken into account trusted sources and widely accepted definitions
to ensure accuracy and consistency in our terminology usage.

1.1 Formal languages, classification, and automata
In this subchapter, we define important terminology used through our research. Definitions were
taken from [5]

Formal languages

▶ Definition 1.1 (Alphabet). (denoted by Σ) is a finite set whose elements are called
symbols.

▶ Example 1.2. {1,2,3}, {a,b,c,d}

▶ Definition 1.3 (String). (word an alphabet) is a finite sequence of symbols from that
alphabet.

ε - the empty string, i.e., the empty sequence of symbols
Σ∗ - the set of all strings (including the empty one) over the alphabet Σ
Σ+ - the set of all non-empty strings over the alphabet Σ.

▶ Example 1.4. Let define Σ = {a, b, +} Then a, b, aa, ab+, ε are strings over the alphabet Σ.

▶ Definition 1.5 (Formal language L). is any subset of the set of all strings over Σ

enumeration notation: L1 = {ϵ}, L2 = {1, 2}, L3 = {0, 00, 01, 10, 11}
set-builder notation: L4 = {0n1n : n ∈ N}

Classification of languages (the Chomsky hierarchy)

5



6 Preliminaries

▶ Definition 1.6 (Regular languages). represent the simplest set of formal languages.
A formal language is labeled regular if and only if it can be generated by a regular grammar.
For each regular language, it holds that it can be:

recognized by a (non)deterministic finite automaton (DFA)

described with a regular expression

▶ Definition 1.7 (Context-free languages). represent another type of formal languages.
A formal language is labeled context-free if and only if it can be generated by a context-free
grammar. For each context-free language, is also holds that it can be:

recognized by a nondeterministic push-down automaton

▶ Definition 1.8 (Context-sensitive languages). represent another type of formal lan-
guages. A formal language is labeled context-sensitive if and only if it can be generated by a
context-sensitive grammar. For each context-sensitive language, it also holds that it can be:

recognized by a nondeterministic linear bounded automaton (i.e. linear bounded Turing
machine)

generated by a non-contracting grammar

▶ Definition 1.9 (Recursively enumerable languages). represent the fourth type of
formal language. A formal language is labeled recursively enumerable if and only if it can
be generated by an unrestricted grammar. For each recursively enumerable language, it also
holds that it can be:

recognized by a (non)deterministic Turing machine

Automata

▶ Definition 1.10 (Finite automat). Formally, a finite automaton is defined as a quintuple
M = (Q, Σ, δ, q0, F ) where

Q is a finite non-empty set of states

Σ is a finite set of symbols called the input alphabet

δ is the transition function

q0 ∈ Q is the finite (start) state

F ⊆ Q is a set of final states

▶ Definition 1.11 (Deterministic finite automaton (DFA)). is a finite automaton that
always knows how to continue during the computation (multiple choices are not available).
Therefore, we define its transition function as follows:

δ is mapping from the set Q× Σ to the set of states Q (i.e., Q× Σ) −→ Q

▶ Definition 1.12 (Nondeterministic finite automaton (NFA)). is a finite automaton
that at some point of computation has multiple choices on how to continue. Therefore, we
define its transition function as follows:

δ is a mapping from the set Q × Σ to the power set (set of all subsets) of Q (i.e., δ :
Q× Σ −→ P (Q))
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1.2 Regex syntax and semantics in OpenJDK
▶ Definition 1.13. [Regular expression] is a sequence of characters that specifies a match
pattern in text. Originally introduced by [6] to describe regular languages as described in definition
1.6.

▶ Definition 1.14. [OpenJDK] is a free and open source implementation of the Java platform,
Standard edition (Java SE).[7]

A regular expression, commonly referred to as regex, is a powerful pattern-matching syntax
that is used to search, manipulate, and validate text. It does all this by allowing us to build
flexible but complex search patterns through the combination of characters, meta-characters,
and special sequences.

Regular expressions can be found nearly anywhere within various programming languages,
text editors, command-line tools, and more. The implementation of regex in Java is located in
the java.util.regex package, which provides classes for working with regular expressions in Java
code. In this package are two main classes, which implement the whole regex engine:

Pattern - defines a regular expression pattern and build object tree for matching algorithm.

Matcher - applies a pattern to an input string and provides methods to perform various
operations on the matching string.

The syntax of regular expressions in Java is based on Perl-style regular expressions [8]. Open-
JDK regular expression patterns support a wide range of character classes, quantifiers, and
backreferences features [9]:

▶ Definition 1.15 (Character classes). defines a set of characters that can be matched in the
input string. Examples of character classes:

[a, b, c] - match any characters in the set of {a, b, c}

[∧a, b, c] - match any character, which is not in the set of {a, b, c}

\d - match any digit character

▶ Example 1.16. Pattern [xyz] match strings: x, xzz, xxyy, xxyzz, etc. L = {w : w ∈ {x, y, z}}

▶ Definition 1.17 (Quantifiers). gives the ability to define the number of occurrences to match
a pattern. Examples of quantifiers in Java:

+ - match one or mare instances of the preceding pattern

∗ - match zero or more instances of the preceding pattern

? - match zero or one instance of the preceding pattern

{n, m} where n, m ∈ N - define range of repetitions of the preceding pattern

▶ Example 1.18. Pattern xxa+ match strings: xxa, xxaa, xxaaa, etc. L = {xxaw : w ∈ {a}∗}

▶ Definition 1.19 (Capturing groups). are a way to treat multiple characters as a single
unit. They are created by placing the characters to be grouped within a set of parentheses. [10]

▶ Example 1.20. In pattern (a+)b by parentheses we define a subpattern - a+.

▶ Example 1.21. In pattern (a+)bbb(cd+) by parentheses, we define two subpatterns. The
first is a+ and the second is cd+.
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▶ Definition 1.22 (Backreference). is a feature that allows for reference to a previously
captured group within the pattern itself. It allows the engine to match the same group or sequence
of characters that were previously matched within the capture group. This gives us the ability to
identify repetitive patterns.

A backreference is usually represented within our pattern by a special syntax; in the case of
Java it is shown by two backslashes and a number (e.g., ”\\1”, ”\\2”, etc.). The number shown
represents the number of captured groups; for example, \1 refers to the first capturing group in
our pattern, while \2 refers to the second capturing group. When a backreference is used, the
regex engine will try to find a match within our input text for the same substring that was in
the desired reference group.

▶ Example 1.23. To be able to define context-sensitive language L = {anban|n ≥ 1}, within a
regex pattern, it will be expressed as (a+)b\1, where \1 points to the capture group (a+).

▶ Example 1.24. To define L = {(ab)2ncmdcm|n ≥ 1, m ≥ 0} within a regex pattern, it will
be expressed as (ab) + \1(c∗)d\2.

1.3 Backtracking in NFA-based regex implementation
▶ Definition 1.25 (Backtracking matching algorithm). is an algorithmic technique that
makes use of an input-directed depth-first search on an NFA regex engine. [11]

Catastrophic Backtracking in regex is when a regular expression engine spends an excessive
amount of time trying to match a string that does not match the pattern. This process can cause
exponential run-time, stack overflow, and a variety of other problems.

▶ Example 1.26. An example of the way backtracking works within OpenJDK: For the regular
expression (a+)+! with input aaaa, in the case when backtracking is enabled, it will get through
and check the following way:

Match (a+)+! to input aaaa
Match
Attempt
Number

Attempt to Match
(a+)+

Attempt to Match
Character ’!’

1 aaaa Not Found
2 aaa — a Not Found
3 aa — aa Not Found
4 a — aaa Not Found
5 a — a — aa Not Found
6 a — aa — a Not Found
7 aa — a — a Not Found
8 a — a — a — a Not Found

Table 1.1 Example of backtracking for non-matching input

This table was created as part of the analysis that will be presented in Chapter 3.

▶ Definition 1.27 (NFA based regex implementation). One of the methods to implement
the regex engine. This method constructs NFA, as described in definition 1.12, for the given
regular expression and by using recursive backtracking to find the match for the given string. The
time complexity in the NFA native implementation is O(n2), where n is the length of the string
[12]
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▶ Definition 1.28 (DFA based regex implementation). Another method of implementing
the regex engine is to construct DFA, as described in definition 1.12, automata for the given
regular expression and use it to match the string. The time complexity guarantee O(n), where
n is the length of the string, but we might end up having 2n states due to the state explosion
problem [12]

The Java regex engine is a traditional NFA-based implementation [9], which uses recursive
calls to implement its backtracking. This kind of implementation uses backtracking as a way to
help match the desired input to the provided pattern, and in cases where a match is not found,
this method can result in catastrophic backtracking.

As defined in definition 1.2, Java supports features such as backreferences and capturing
groups. Backreferences help us to define context-free languages , defined in definition 1.7, (see
example in table 1.23), which cannot be recognized by the deterministic final automaton (DFA).
This is the main reason why Java does not use the DFA-based implementation.

1.4 OpenJDK Versioning
OpenJDK has in the past implemented changes to help mitigate the negative effects of back-
tracking, with the most impactful change being made in version 9 [4] (released on September
21st 2017). With versions 8 [13] and before, backtracking was always enabled with no way of
turning it off. From version 9 and beyond, this is no longer the case; a new variable was in-
troduced to the regex engine that indicates to the algorithm whether backtracking is enabled.
This feature helped reduce the amount of catastrophic backtracking that occurred within the
regex engine and helped reduce the run-time for specific patterns. The criteria for backtracking
being disabled is not fully clear, but previously vulnerable patterns such as (a+)+ that caused
experiential run-time in version 8 in OpenJDK are no longer vulnerable in versions 9 - 20. This
will be better looked at in our second chapter in figure 2.5 and in our third chapter in figure 3.2.

Although backtracking has been disabled for a small set of vulnerable patterns in versions
9 through 20, it is still enabled for more complex vulnerable patterns. These patterns will be
thoroughly explored in the next chapters.

1.5 Regular expression Denial of Service (ReDoS)
▶ Definition 1.29 (ReDoS). is an algorithmic complexity attack that produces a denial-of-
service by providing a regular expression and/or an input that takes a long time to evaluate. [14]

As mentioned before, OpenJDK’s regex engine is based on an NFA implementation, and
this implementation allows for backtracking during its computation. When the engine is fed a
pattern, it will build a straightforward nondeterministic automaton. From there the algorithm
will take any given input string and try to see if it can be considered a match by going forward
and checking all possible paths, or as many as it takes to find a viable one, this is done using
backtracking. In a worst-case scenario, all where all of the paths are tried and fail, which should
result in a negative result, but due to the run-time and resource usage that this problem can
take, we can be left with our systems being unable to respond to other requests or even a stack
overflow. This is defined as a ReDos attack, when a system experiences a denial of service due to
a regular expression. A good example of real-life regex patterns that were vulnerable to ReDoS
attacks before OpenJDK 9 can be found in[15].
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Chapter 2

Vulnerable regex patterns in
OpenJDK

This chapter investigates vulnerable regex patterns in OpenJDK and provides an experimental
evaluation of their impact. Regex is a powerful tool used for pattern matching in software
development, but certain incorrect patterns that can be created in regex can introduce security
vulnerabilities. In this research, we discover and analyze vulnerable regex patterns with different
input texts in the OpenJDK project. We will categorize them based on their security risks and
assess their impact through a series of experiments. Our findings shed light on the importance
of secure regex usage and provide insight for developers to avoid similar vulnerabilities in their
own project.

2.1 Introduction
The regex engine in Java is a powerful tool for validating, processing, and filtering input texts,
but with great power in IT comes even greater vulnerabilities. When patterns are not care-
fully crafted and properly used, they can introduce vulnerabilities that attackers can exploit.
These vulnerabilities can range from denial-of-service attacks due to catastrophic backtracking
to information disclosure and remote code execution.

This chapter will provide examples of these types of patterns which are vulnerable in the new
OpenJDK 20 (released 2023). It will provide background information on each pattern and the
qualities that make them a potential threat. From there we will be able to look at the run-time
analysis of each example to show the true depth of the issue.

The remainder of this chapter is organized as follows. Subchapter two describes our method-
ology for identifying and categorizing vulnerable regex patterns in OpenJDK. Subchapter three
presents the vulnerable regex patterns that were found. Subchapter four will present the exper-
imental setup and evaluation of the identified vulnerabilities. Finally, subpattern five concludes
the whole chapter by reviewing our findings and presenting the conclusion of this chapter.

2.2 Methodology for identifying vulnerable regex pattern
To identify vulnerable regex patterns in OpenJDK, we followed a systematic methodology that
contains five steps.

The first step was to identify our vulnerable criteria. When doing this, we first must look at
the most well-known vulnerabilities within the regex engine. This includes catastrophic back-
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tracking and exponential time complexity; this will be our vulnerable criterion. These criteria
will determine which patterns we are looking for and which we will exclude for this analysis.

From there we can move to our second step, finding examples of patterns that fit these criteria
by using research papers, manual testing, forums such as StackOverflow, OpenJDK github bugs,
and OpenJDKs’ own bug ticketing system. By utilizing these and other sources, we can easily
see and collect the multitude of different patterns that have caused these problems for real-life
users.

Once we have a large enough collection, we can start the third step, categorizing. Here, we
can break each pattern down and create the most basic form of the pattern that still fits our
vulnerable criteria. This allows us to remove patterns that were found that are caused by the
same root issue and categorize each remaining regular expression. This categorization allows us
to analyze and evaluate the severity of each pattern and prioritize further investigation.

For our fourth step, we take the remaining regex patterns that meet our vulnerable criteria and
pose potential risks and now conduct experiments to evaluate their impact. These experiments
are shown in section 2.4.4 and include runtime and performance-based tests that compare the
results when fed different inputs.

Our fifth and last step is documenting and reporting. Throughout the process, we aim
to identify regex patterns, their categorization, vulnerability analysis, and experimental results;
This documentation serves as a basis for further analysis, discussion, and reporting of our findings.

By following this methodology, our aim is to identify and better analyze the vulnerabilities
within OpenJDK pertaining to the regex engine. This approach best allows us to uncover these
potential security risks and provide the best and most thorough results regarding them.

2.3 Vulnerable patterns in OpenJDK
In this subchapter we will show examples of vulnerable patterns. It is important to note that in
our examples we use the letter “a” for simplicity, though “a” can be substituted by any substring
or special symbol.

In addition, in most of our examples, we will use a Kleene plus which can be easily replaced
by a Kleene star and still be considered a vulnerable pattern.

2.3.1 Pattern ((a+)+)+ with input an!
This type of vulnerable patterns is one of the most famous security issues in the regex engine and
can be found in different sources such as the OWASP security documentation [15], in the about
detection of ReDoS [1] article, and in the software engineering forums such as StackOverflow
[16]. This kind of pattern can also be found in the official OpenJDK bug system [11], a system
that allows users to report problems and once authenticated become open bugs that OpenJDK
is aware of that need to be fixed.

The pattern ((a+)+)+ matches strings that contain nested sequences of one or more occur-
rences of the letter “a”. The regex engine of OpenJDK matches huge inputs of “a”s quickly. The
problem arises when the input text does not fit the pattern. For example, if we add to the end
of an input string of “a”s the symbol “!”. Here, the algorithm starts backtracking; this causes
exponential run-time of the application.

OpenJDK version 8 had exponential backtracking with the pattern (a+)+, but starting with
version 9 this issue was resolved, as mentioned in section 1.4 and can be seen in the figure 2.5.
It did so by adding optimization to prevent exponential backtracking in this type of pattern
(which will be explained in section 3.4). Unfortunately, by adding an additional capturing group
with quantifier - “()+” we can still cause exponential backtracking. When looking closer at the
issue, we can see that adding more and more capturing groups to the pattern, the execution time
will become longer and longer. A good example can be seen later in the figure 2.1, a regular
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expression pattern such as ((((a+)+)+)+)+ fed a small input such as a16! can take more than
a minute on a regular PC in OpenJDK 20 to return the negative result, as can be seen in figure
2.1.

2.3.2 Pattern (a+){1, 100} and (a{1, 100}){1, 100} with in-
put an!

Sourced from the research document [17], where this kind of pattern was described as performance
problematic in NFA backtracking algorithm. These patterns are similar to the previous pattern,
(a+)+, the difference between them is that we define the repetitions manually. Although unlike
in pattern a+, in this pattern our character a can repeat only within the range given, in this
case 1 to 100.

Despite the many similarities between these patterns, the interesting difference between
them is that the pattern (a+)+ is not vulnerable in Java since version 9, but the patterns
(a{1, 100}){1, 100} and (a+){1, 100} are vulnerable even in version 20.

2.3.3 Pattern (a|a){1, 100} with input an!
First was sourced from [18], where it explains about the regex implementation of Java version 6
and the vulnerable pattern (a|a)∗ with non-matchable input. After personally manually testing
this pattern in the new version of OpenJDK 20, the matching run time was quick and it no
longer looks vulnerable, but when switching from the quantifier plus to the manual repetition
setting quantifier, the exponential run time problem returns, as can be seen in figure 2.3.

The pattern (a|a){1, 100} is similar to (a|a)+, and the situation is similar to the issue we
describe in section 2.3.2. The suspicious difference between the patterns is that the (a|a)+
pattern is not vulnerable, since Java version 9 and the (a|a){1, 100} pattern are vulnerable even
in the new Java version released 2023.

2.3.4 Pattern (a+) + \1 with input an!
This pattern was discovered by me during our testing process by personally manually testing
different patterns combining capturing groups and quantifiers. After adding a backreference to
the capturing group at the end of the nonvulnerable pattern ”(a+)+”, another vulnerable pattern
was found: ”(a+) + \1”.

This pattern accepts the same inputs as our nonvulnerable pattern (a+)+ but due to the
backreference added at the end the time complexity of our run time increases drastically.

2.4 Experimental evaluation

In this section we will go into the fourth step of our process of discovering and analyzing vul-
nerable regex patterns. More specifically, our vulnerable patterns that we looked at in section
2.3. We will show the experimental evaluation that was conducted to assess the impact of each
found vulnerable regex pattern and the different inputs we used to achieve these results. The
purpose of this evaluation is to measure the performance and potential security implications of
these vulnerable patterns. This will give us a better understanding of the outcome these patterns
can have when used within any code.
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2.4.1 Controlled test environment setup
To obtain the best results with the least impact, we created an executor service that will run
our input strings, one by one, within the vulnerable pattern using a single thread. Using the
VisualVM monitoring system, we can monitor the running thread and get the exact run-time
of the matching algorithm. This monitoring application will also let us be sure that our testing
environment is clean and that no other threads or processes are running that might skew our
results. In addition, to reduce the enslavement of a third-party processes in our experiment, we
will turn off all possible applications and processes that are running in operation systems, like
antivirus, IDE and so on.

It is important to note that for measurements of less than 10 milliseconds VisualVM was not
used as it cannot measure that small amount of time. For measurements below 10 milliseconds,
the method System.nanoT ime() was used, which measured the time the process started and the
time it finished and deduced the start from the end. The difference

For our testing, we will use only OpenJDK commands, such as the javac command to compile
and the java command for running tests. We run our test with one JVM argument that allows
the RMI (Remote Method Invocation) localhost server for VisualVM to monitor CPU time.

2.4.1.1 Platform specification
Operation system: Windows 10 Enterprise

Processor: 12th Gen Intel® Core™ i7-12800H 2.40 GHz

Architecture: x64-based processor

Memory size (RAM): 64.0 GB

2.4.1.2 OpenJDK 20 and Java Virtual Machine (JVM) specification
OpenJDK version and build: 20.0.1 2023-04-18 (build 20.0.1+9-29)

JVM vendor: Oracle Corporation

JVM version: 20.0.1+9-29

JVM configuration: -Djava.rmi.server.hostname=localhost

2.4.1.3 OpenJDK 8 and Java Virtual Machine (JVM) specification
OpenJDK version and build: 1.8.0 43 (build 25.40-b25)

JVM vendor: Oracle Corporation

JVM version: 1.8.0 43-b03

JVM configuration: -Djava.rmi.server.hostname=localhost

2.4.1.4 Monitoring tool
VisualVM version: 2.1.6



Experimental evaluation 15

2.4.2 Selection of vulnerable regex patterns

To understand the difference between these results compared to safe regex patterns, it is impor-
tant to note that running the same input on a safe version of one of these patterns, (a+)+, the
run-time was so low that it resulted in less than one milliseconds on our test monitoring system.

Experiment 1: We will run three tests in OpenJDK 20 with patterns that include Kleene plus:
((a+)+)+, (((a+)+)+)+, and ((((a+)+)+)+)+.

Experiment 2: We will run three tests in OpenJDK 20 with patterns that include Kleene stars:
((a∗)∗)∗, (((a∗)∗)∗)∗ and ((((a∗)∗)∗)∗)∗.

Experiment 3: We will run three tests in OpenJDK 20 with patterns that include manual
repetitions: (a+){1, 100}, (a{1, 100}){1, 100} and (a|a){1, 100}.

Experiment 4: We will run two tests in OpenJDK 20 with patterns that include a backrefer-
ence: (a+) + \1 and (a+)\1.

Experiment 5: We will run the pattern (a+)+ in OpenJDK 8 vs. the same pattern in Open-
JDK 20

2.4.3 Input scenarios

To keep an even testing scenario among all our tests, we will use only one matching character:
’a’(index 97 in ASCII table). This means that all our patterns will correctly match any input
string of any length, excluding the ones that contain a min and max, as they will only match if
their length fits within the given range, which contains only the character a.

Within our testing, we are trying to cause catastrophic backtracking within the matching
algorithms and exponential run-time. This can be done by attempting to match an input string
to a pattern that does not match. For this reason, we will add an invalid character to the end of
our input string in every test. Our invalid character will be – ”!”.

Our input strings will range from two characters long, one ”a” character and one ”!” character,
to 31 characters long, 30 ”a” characters, and one ! character.

Example of our input string: a!, aa!, aaa!...
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2.4.4 Performance measurement

Figure 2.1 Graph results of patterns ((a+)+)+, (((a+)+)+)+, and ((((a+)+)+)+)+

This graph shows the results of the our first experiment mentioned in subsection 2.4.2. Here,
we can see and compare the run-time of three regex patterns that hold the same acceptance
criteria. Though these three patterns can be simplified to the same pattern, their runtime
differs when given the same inputs. We can see that with every capturing groups added to the
pattern, the run time increases expediently, with the input a16! taking 6.4 milliseconds for the
pattern ((a+)+)+, 991.9 milliseconds for the pattern (((a+)+)+)+, and 80828 milliseconds for
the pattern ((((a+)+)+)+)+.

Figure 2.2 Graph results of patterns ((a∗)∗)∗, (((a∗)∗)∗)∗, and ((((a∗)∗)∗)∗)∗



Experimental evaluation 17

This graph shows the results of our second experiment mentioned in subsection 2.4.2. Here,
we can examine the run-time results for three patterned that use the Kleen star; the patterns also
accept the same language criteria as one another. When comparing the three patterns to each
other, we can intently tell a large run-time difference from each other. If we look at their run-
time when given an input of a9! the pattern ((a∗)∗)∗ took 0.3603 milliseconds to run, the pattern
(((a∗)∗)∗)∗ took 7.849501 milliseconds, while the pattern ((((a∗)∗)∗)∗)∗ took 5218 milliseconds.

Nearly identical patterns to these can be seen in the figure 2.2, all three patterns accept the
nearly same inputs as those patterns, with the only difference being that they also except for
an empty string, ε. But if we compare the run time of these two groups of patterns, we can see
that they differ expediently. If we take the run-time of the patterns ((a+)+)+ and ((a∗)∗)∗,
we can see that patterns using the Kleen star have a much larger run-time; with an input of
a19! taking 45.0002 milliseconds and an input of a20! taking 64.818 milliseconds with the pattern
((a+)+)+, and the same inputs taking 53.2367 milliseconds and 86.5807 milliseconds for the
pattern ((a∗)∗)∗.

Figure 2.3 Graph results of patterns (a+){1, 100}, (a{1, 100}){1, 100}, and (a|a){1, 100}

Here we can see the graph representation of our results following the third experiment listed
in subsection 2.4.2. Within this experiment we tested the run-time of our vulnerable patterns
that use manual repetition within them. In this figure, we can see that all three patterns have
quite a similar result with the pattern that uses the pipeline having a bit of a higher run-time
out of the three. It is best seen when these patterns are given the input of a29!; the pattern
(a+){1, 100} run time for this input is 5184.9429 milliseconds, the pattern (a{1, 100}){1, 100}
has the run time of 5690.746 milliseconds for this input, and the pattern (a|a){1, 100} has the
run time of 18225.0763 milliseconds for this input.



18 Vulnerable regex patterns in OpenJDK

Figure 2.4 Graph results of the patterns (a+) + \1 and (a+)\1

In this graph, we show the results of our fourth experiment, as mentioned in subsection 2.4.2.
As you can see from this graph, within this experiment, we have only tested one pattern, our
reference pattern back, as mentioned in section 2.3.4, (a+)+\1. Here, we can see the exponential
growth of this pattern when fed different input lengths.

Figure 2.5 Graph results of the pattern (a+)+ in OpenJDK 8 vs OpenJDK 20

In this graph, we compare the matching run-time of pattern (a+)+ in different versions of
OpenJDKs, for our fifth and final experiment as mentioned in section 2.4.2. From the results can
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be seen the effect of the optimization mentioned in chapter 1.4 that was added after version 8 of
OpenJDK. We can see that when the pattern is run in version 8 it exhibits the same experiential
run-time problem as its sister patterns as can be seen in figure 2.1, unlike in version 20 of
OpenJDK where this problem can no longer be seen when running this pattern.

2.5 Conclusion
What we can conclude from all the data we have collected during our investigation to identify
vulnerable regex patterns is that even in the new versions of OpenJDK there are still potential
security risks. We can see from all the data and evaluations that vulnerable patterns still exist
within the regex engine. These patterns can cause serious problems such as exponential run-time
problems.

Through our evaluation, we can identify security implications associated with the presence of
capturing groups, repetitions, and backreferences within our regex pattern. These issues expose
the system to potential denial-of-service attacks or other security vulnerabilities. Moreover, we
found similar patterns like (a+)+ and (a+)1, 100, which behave absolutely differently in terms of
execution time even when fed the same inputs. It is important to remember that this difference
in run-time happens only in version 9 and higher.

Now that we have established our vulnerable patterns, we can investigate the reason why
they behave this way. In our next chapter we will go deeper into the implementation of the regex
engine and will try to find the root cause of these problems.
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Chapter 3

Analysing the causes of
exponential run-time for

vulnerable patterns in OpenJDK

This chapter aims to analyze the causes of the exponential run-time behavior observed in vul-
nerable patterns within the OpenJDK regex implementation. By understanding the underlying
causes of this behavior, developers can understand the underlying reason for this behavior, devise
strategies to mitigate its impact, and enhance the efficiency of regex processing in OpenJDK.

The following chapter is divided into five subchapters. The first will show a brief overhead of
the implementation of the regex engine within OpenJDK. The second will show the construction
of the object diagrams that were constructed for each pattern. The third will present the pseudo-
code for important methods and provide a small description for each one. Our fourth subchapter
will take all the information provided so far and give an analysis of the reason behind the
exponential execution. Lastly, in our fifth section, we conclude our chapter.

3.1 OpenJDK regex engine implementation

The Java regex engine is fully located within the package - java.util.regex. Its core imple-
mentation is divided into two classes, which where briefly described in the definitions 1.2. These
classes, java.util.regex.Pattern, and java.util.regex.Matcher, who’s full description and a more
in-depth analysis can be found in the research paper ”Analyzing Catastrophic Backtracking Be-
haviour in Practical Regular Expression Matching” [18], are what we will be looking into to
understand the algorithm behind the matching process.

We will first focus on the Pattern class; this class builds a tree of nodes, nodes being objects,
based on the regex pattern we supplied to it. In the Pattern class, we can find the subclass
java.util.regex.Pattern.Node, this subclass lets us add nodes in our tree. Nodes are objects
that act like states, allowing us to move through them while comparing our characters in our
input to the possible accepted characters that match our pattern. This subclass contains the
method match; the match method is a fundamental component of the regex engine, responsible
for determining whether a given input string matches a specified pattern. The subclass also has
the reference pointer next that points to the next node in our tree.

With every character in our input we will slowly move along our constructed tree seeing one
by one if it fits the given pattern. If the character is found to be a fit and is not the end of the
input string, we will continue on to the next node. When a character is found to be not fitting,
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the algorithm will return false.

The subclass java.util.regex.pattern.Node can be taken as a base class or parent class for all
other node classes, and all child node classes should override the match() method and the next
reference. The parent Node class is an accepting node, so the match method always returns
true. A good example for a child node is LastNode, which is the final state, if we reach this
node, our string is accepted and matches the input.

The object Matcher is created from a pattern by invoking the pattern’s matche method.[19]
This object is used like an open book and saves the result of a matching algorithm at any given
time. The Pattern class only builds the tree but cannot remember the states in which we moved,
so to remember the states, we need an object Matcher.

As described above, each node class should be overridden by the parent node method
match(Matcher matcher, int i , CharSequesnce seq), where seq is the input text, “i” is
a current index of the input text itself and invoked Matcher object.

3.2 Constructed object diagrams of regex patterns in Pat-
tern class

In this subchapter we will try to take an in-depth look at the classes Pattern and Patcher. We
will illustrate the object diagram (node tree) that is created inside the class Pattern.java for
each of the vulnerable and nonvulnerable patterns. We can do so by debugging our patterns
when they are fed inputs and looking into the OpenJDK code to see what variables and classes
they are using.

The process of doing so consists of using an IntellijIDE [20] to go step by step through the
regex engine, each time with a different pattern set, and following its flow through the code. By
doing so, we can see each variable and the value it holds at every step, which classes are entered,
and what triggered each step. After observing and documenting the flow of each pattern, we can
go into the code itself and investigate the way the engine was built and the logic behind it.

In the following diagrams, you will see boxes, these represent objects that were created in the
code when the pattern was run. Within our objects there will be the variables with the value
they held during the run. The path, an arrow, represents a dependency of another object and
most of them are the next node.

Each of the following diagrams will have the object Pattern that holds within it our regex
pattern. The Pattern also has a value named matchRoot that is a reference to a node tree that
was built for the regex pattern and used by Matcher to match the input string. (see previous
subchapter 3.1)
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3.2.1 Diagrams of patterns a+, (a+)+, ((a+)+)+

Figure 3.1 Constructed object diagram for non-vulnerable pattern a+

For pattern a+, within the OpenJDK regex engine, two nodes were created: BmpCharProperty
and LastNode. The BmpCharProperty node has two values – predicate, which has the symbol
that will be a match for our pattern a, and cmin whose value represents the minimum number
of repetitions for the character a. LastNode is the final node and represents the last state in
which an additional validation is performed. The additional validation checks to see if we have
reached the end of our sequence.

Figure 3.2 Constructed object diagram for non-vulnerable pattern (a+)+

For pattern (a+)+ an additional three objects, in addition to the two that were created for
the previous pattern, were added - Loop, GroupHead and GroupTail.

The Loop object in our diagram represents the Kleen plus within our pattern that comes
after the capture group. The variables cmin and cmax that are seen within the object show
the minimum and maximum repetition that our capturing group is allowed, the maximum being
2147483647 as that is the largest numerical value the variable can hold. The value posIndex is
set to 0, this value represents the algorithm if backtracking is activated or deactivated. Because
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it is set to 0, we know that backtracking is disabled. There are other values such as countIndex
and beginIndex which are tracking the capturing group. There is also the object Prolog, which
is an initialization object for Loop, but we will not focus on these values and Prolog in this
chapter.

Figure 3.3 Constructed object diagram for vulnerable pattern ((a+)+)+

For pattern ((a+)+)+ an additional set of these three objects was created - Loop, GroupHead
and GroupTail - these represent our additional capturing group of patterns (see diagram expla-
nations in figure 3.2).

In this subchapter we created a node tree for patterns with Kleene plus, the same trees are
created for patterns with Kleene star, for example ((a∗)∗)∗, except for cmin value in Loop object
equal to zero.
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3.2.2 Pattern (a+){1, 100}

Figure 3.4 Constructed sub classes diagram for vulnerable pattern (a+){1, 1000}

For this pattern a similar data structure was created as in figure 3.2, except for some small
differences, posIndex is set to −1 and cmax is set to 100.

3.2.3 Patterns (a|a){1, 100} and (a|a)+

Figure 3.5 Constructed object diagram for patterns (a|a){1, 1000} (left) and (a|a)+
(right)
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In these diagrams two new objects can be seen, Branch and BranchConn. These objects
represent the set of alternatives due to the symbol “|” within their pattern. These objects hold
two pointers to the BmpCharProperty nodes (our two alternatives - ’a’s).

3.2.4 Pattern (a+) + \1

For our vulnerable backreference pattern, there is no need to make a diagram, as the tree that
is built is nearly identical to the one seen in figure 3.2, but with two small points of difference.
For this pattern when the tree is created, the variable posIndex is set to −1 indicating that
backtracking is enabled, and in place of the lastNode object that can be seen, an object called
backRef is placed and that object points to lastNode

3.3 Short pseudo-codes of match method

In this subchapter, we will dive into the inner workings of the ‘match‘ method in the OpenJDK
regex engine, providing a concise yet insightful overview of its pseudocode implementation.

Understanding the pseudocode of the match method is essential for gaining a deeper com-
prehension of how the OpenJDK regex engine handles pattern matching behind the scenes. By
examining the pseudo-code, we can uncover the core algorithms and steps involved in the match-
ing process.

We will explore the pseudocode of the ‘match‘ method within different child node classes. We
will do so in a clear and concise manner by breaking down the algorithm into its essential steps
and explaining the purpose and significance of each. By doing so, we can truly see where these
vulnerabilities and issues originate. So, let us dive in and explore the fascinating pseudocode of
the match method.

Algorithm 1 Match methods’ pseudo-code in the Loop class
Require: i ∧ seq
Ensure: i ≤ seq.length

1: if posIndex ̸= −1 ∧ isFailedBefore(i) then
2: return next.match(i, seq)
3: end if
4: if body.match(i, seq) then
5: return true
6: end if

The above pseudocode is the algorithm displayed within the match method, which is located
in our Loop object that can be seen in all our diagrams. As you can see, the method takes in two
parameters, “i” – which is showing us the algorithm’s current index within the given input string
and ’seq’, which represents the input string itself. On line 1 we simplify the origin logic and
replace it with method isFailedBefore(i), emphasizing here if a failure match was performed
before on index “i”.

It is important to note that the pseudocode above was simplified a lot to convey a spe-
cific point. The real match method is more complex and includes the Matcher object and its
parameters.
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Algorithm 2 Match method in BmpCharPropertyGreedy class
Require: i ∧ seq ∧ (N = 0)
Ensure: i ≤ seq.length

1: while seq[i] =′ a′ do
2: i← i + 1
3: N ← N + 1
4: end while
5: while N ≥ cmin do
6: if next.match(i, seq) then
7: return true
8: end if
9: i← i− 1

10: N ← N − 1
11: end while
12: return false

This pseudocode represents the algorithm shown within the object’s BmpCharPropertyGreedy
match method. When the regex engine creates the node tree, best seen in the figure 3.1, for
patterns with Kleene plus this object is used to compare the input characters with our pattern
“a” (line 1). After the comparison, we enter a backtracking while loop (line 5) and enter the next
node (line 6) with every iteration. In the worst-case scenario, the algorithm might try checking
n2 times, with n representing the input length.

3.4 Analysing cause of exponential executions
In first glance at the diagrams, we can see the loops between objects Loop, GroupTail, and
the object that is used to predicate the symbol or string (for example in figure 3.4 is the
BmpCharPropertyGreedy node). And from here we can immediately notice the danger not
only from time execution but also from stack overflow when we use recursive calls from these ob-
jects. For example, when we look at figure 3.4 and the behavior of the algorithm in pseudocodes
1 on line 4 and pseudocode 2 on line 6, we can see that we have a complex recursion that calls
each other in a while loop (2 line 5). Based on this, a stack overflow can occur if we have a
sufficiently large input.

In the pseudocode of the match method in the Loop object if pseudocode 1, we can see that if
posIndex is set to −1, the algorithm first goes to the body node and if it fails, it continues to the
next node. This can explain the behavior in figure 2.1, where we had an extremely large growing
run-time with each “()+” added to the pattern. When we add an additional combination of a
capture group and Kleene plus - “()+”, we are creating more Loop objects (see in figure 3.2 and
figure 3.3), which are wired. Each of them first goes to the body node and then to the next node,
which is another Loop object, and continues to another body node.

Furthermore, in the Loop pseudocode (pseudocode 1) on line 1 we can find the optimization
that was added in version 9. Optimization allows us to disable backtracking to avoid excessive
run-time with patterns like (a+)+. A check was added within the Loop objects match method
that checks if we failed to match a character to our pattern before the current index, “i”, of our
input string and if the backtracking has been disabled (posIndex not equal to −1). If this is true,
then we are not continuing to the body node, but straight to the next node (see the pseudocode
1 line 2), thus significantly shortening the execution time. This can explain why patterns such as
(a+)+ and (a+){1, 100}, which have very similar behaviors and accept almost the same input,
have such different run-time. When we look at the figure 3.2 and figure 3.4, we can see that for
pattern (a+)+ the backtracking is disabled (posIndex equal to 0), but for pattern (a+)1, 100 it
is enabled (posIndex equal to -1). The same situation can be found in figure 3.3 and figure 3.5.
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In the pseudocode of the match method in BmpCharPropertyGreedy, pseudocode 2, on
line 5 we can find a whileloop with the condition n > cmin where the “n” value is set to
zero (according to the algorithm’ requirements). This can explain why in graphs with patterns
including Kleene stars (figure 2.2) the execution time is greater than in patterns including Kleene
plus (figure 2.1). In patterns of Kleene stars, cmin value is set to zero, which means that in
whileloop on line 5 we enter an addition one time to the next node.

3.5 Conclusion
In conclusion, the analysis of the causes behind the exponential run-time behavior in vulnerable
patterns provides information on the challenges and potential solutions to improve the efficiency
of the regex engine.

Through our examination, we found several key factors contributing to the exponential run-
time behavior, including the complexity of regex patterns, inefficient quantifiers, or capturing
groups.

In our next chapter, we will look into different theoretical solutions to the oversights within
OpenJDK that we looked into within this chapter.



Chapter 4

Possible theoretical solutions

This chapter explores possible theoretical solutions in relation to the exponential run-time in the
regex engine within OpenJDK. By proposing alternative approaches and optimizations, we aim
to mitigate the impact of this behavior and improve the overall efficiency of regex processing.
We will take into account all our experimental findings, documented in Chapters 2 and 3, to
assess what possible solutions can be explored to eliminate or reduce the risk of a ReDoS attack
to systems using the OpenJDK regex engine.

4.1 Deconstruction of the problem behind OpenJDK’s
regex engine

At this point, we can confidently point out the main issues with the OpenJDK implementation
and the root causes of the vulnerable criteria that we defined in section 2.2. We can see that as a
whole, the experiential runtime allows the engine to consume more and more resources, as can be
seen from our subchapter 3.4, which analyzed the exponential runtime. The analysis also showed
that this consumption of resources was caused by the backtracking itself within these patterns.
This is due to the tree these patterns build; which is a result of the NFA implementation. Due
to the nondeterminization of the algorithm, large trees are built, as can be seen in the figures
4.2, 3.3, 3.4, and 3.5, which results in much more backtracking needed.

With this in mind, we can go step by step to see what solutions would best mitigate these
problems, starting from the quickest and simplest theoretical solutions to the more lengthy and
total ones.

4.2 Timing-out

When looking at the exponential run-time issue as a whole, a very simple and obvious solution
stands out; adding a timeout to our regex engine. Though this addition does not fix the inner-
laying problem of the engine, it will cause it to no longer be vulnerable to ReDoS attacks.

This kind of solution could be added as an optional feature. For example, the timeout will
be disabled by default, but can be enabled when called by giving the call an additional variable
within its parameters; this variable will be the timeout length and by default will be equal to
NULL. The developer would set the time-out in milliseconds, putting a variable holding a
numerical value in the designated parameter within the call for the matching algorithm. From
there, the matching sequence within the regex engine would run for a maximum amount of
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milliseconds designated by that given value before it returns an exception. This allows us to
limit the run-time and makes sure we do not get stuck in our matching process.

This implementation of timing-out could be done by adding an additional scheduler thread
that will be created when the matching algorithm starts the execution process, for example in
the method matches() in the Matcher class; mentioned in section 3.1. This thread will check
at specified times using an atomic value that would be located within the class Matcher if the
execution is completed or not. If the execution is not done in the specified time, the thread will
set another atomic value to stop the matching algorithm and terminate itself. This atomic value
will be checked in all match() methods in the Pattern class and throw the exception if it was
set to stop.

A similar solution was described in ”Preventing Unbounded Regular Expression Operations
in Java” [21], where it describes a theoretical solution of setting a timeout in the charAt()
method. The proposed solution was due to an investigation that determined that the method
charAt() was the most accessed method within OpenJDK’s regex matching algorithm. This
would allow the timeout to accrue at the lowest level of the algorithm and only be called if we
have reached a potentially dangerous scenario. The document shows the implementation of this
solution. OpenJDK investigated this idea, though they decided to not implement it with the
response being posted on there Bug System [22] stating that ”The problem is that this approach
relies on the engine internals. It will break if tomorrow the engine, for example, will operate on
some array where the input was copied, and thus will stop invoking the override charAt.”.

4.3 Expand disabling backtracking
Since OpenJDK version 9, there are possibility to enable and disable backtracking as can be
seen in figure 1. Disabling backtracking drastically reduces runtime for these types of vulnerable
patterns, as can be seen in figure 2.5, and eliminates the possibility of catastrophic backtracking.
Disabling backtracking currently works for a small group of patterns like (a—a)+ or (a+)+, but
for similar patterns that have manual repetitions instead of the kleene plus or star backtracking
is still enabled, as can be seen within figure 3.4 with the variable posIndex being equal to −1.
The disabling of backtracking could be expanded for this group of patterns.

Additionally, this kind of solution can be expanded to other groups of vulnerable patterns such
as combinations of capturing groups and quantifiers, such as pattern ((a+)+)+, (((a+)+)+)+
or patterns with combinations of capturing group and backreferences (a+) ∗ \1.

When investigating the tree that each of our patterns creates in section 3.2 it is not fully clear
what criteria are currently in place to determine whether backtracking should be disabled. From
what we could analyze from our findings, it seems that when a kleene plus or star, by itself and
not connected to any other sub-string, is placed after a single capturing group, then the pattern
fits the criteria for backtracking to be disabled. With the addition of more capturing groups
placed around the original capturing group, or a manual repetition being in the place of the
kleene plus or star, the pattern no longer falls under the needed criteria for backtracking to be
disabled, and therefore can be subjected to catastrophic backtracking and experiential run-time
problems. If we expand the criteria to include patterns that have manual repetition in the place
of kleene plus or star, and patterns that can easily simplify to our no longer vulnerable patterns,
such as (a+)+, we can greatly reduce the number of potentially dangerous patterns that exist
for OpenJDK’s regex engine. This kind of solution will not solve all incoming problems related
to exponential run-time, but it will make the OpenJDK regex engine more secure.

4.4 Safe regex implementation
Our most complex solution would also be our most thorough one; this would be a complete
reworking of the regex engine. As we mentioned before in subsection 1.27, the current OpenJDK
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regex engine’s algorithm builds NFA’s for each pattern, rather than the safer DFA based solution.
This is mainly because NFA’s can cover regex features that a DFA implementation cannot, but
its important to note that most regex patterns can be covered by a DFA based regex engine
implementation. For this reason, creating a safe regex implementation should not replace the
current engine but could be added in the same regex package.

This safe regex engine would be less powerful than the current one in the sense that it would
not cover all current features the OpenJDK engine providers, as mentioned in subchapter 1.27,
but it would be safe and guarantee a linear run-time of the matching process. The safe regex
can be used for validation of input texts from user in web applications to avoid any malicious
attempts of inflicting a ReDoS attack. In some cases the two engines can even be combined, as
suggested in [23], in a solution where all patterns would first attempt to be built as DFA’s, and
only the patterns that do not succeed in this transformation will be sent to our original regex
engine to be built as NFA’s.

This would be a substantial improvement to the current regex implementation. This can be
best seen when looking at the automaton built for our now no longer vulnerable pattern (a+)+,
as shown in [15].

Figure 4.1 NFA for pattern (a+)+

This figure is the automata representation of the tree that is built by the regex engine in
OpenJDK, as shown in figure 2.1. As you can see in the NFA figure 4.1 we have a lot of repetitive
transitions that can cause a lot of nondeterministic movement, when needing to backtrack this
movement, it is no wonder the memory consumption and run-time are so large.

When turning this diagram into a DFA model, we will see the extent of the simplification
that can be done to this automaton. To turn this NFA into a DFA, we have used the method
of determinization and DFA minimization to our automaton taking into account the capturing
groups.

Figure 4.2 DFA for pattern (a+)+
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Here we can see in our above figure 4.2 that when converting to the automaton to a DFA in this
instance we can keep all the used regex features and create a non-repetitive and safe automaton
for our regex engine to use. The result in this figure is not only the DFA implementation of the
pattern (a+)+, but due to the simplification of the automata it is also a representation of the
pattern’s a+ tree, as can be seen in figure 3.1.

A DFA regex engine implementation is not a new concept, in fact, this kind of implementation
already exists, for example, Google’s RE2 engine [24], which is a DFA-based implementation that
guarantees O (n) performance. Even the OpenJDK feature draft [23] mentions the RE2 engine
as a proposed addition.

Though this solution will not protect OpenJDK’s regex engine from all possible patterns
when the two engines are combined, it will help reduce the possibilities by the most significant
amount.



Conclusion

In conclusion, throughout this thesis we have explored and dissected the topic of vulnerable
regular expressions within OpenJDK. Through our analysis we have shed light on the inner
causes of these patterns bad characteristics and have seen the run-time results of their use. With
the help of research papers, online findings, testing, experiments, and debugging, we were able
to present several key findings on the topic and achieve the goals we have set in place.

We can now be sure that we uncovered and shown the root causes of the vulnerabilities regex
can cause that we have aimed to examine; experiential run-time, and catastrophic backtracking.
Using the information we have obtained, we have been able to observe that these security risks
disappear for several previously vulnerable patterns when optimization was added in OpenJDK
9, as discussed in sub-chapter 1.4. The optimization added was the ability for the algorithm
to disable backtracking with-in a specific group of patterns. This optimization helps show the
effects backtracking can inflict on complex, or risky regex patterns, as can be seen in the figure
2.5. This coupled by the evaluations shown in chapter 3 allows us to understand the amount of
backtracking that can occur when a repetitive pattern that includes capturing groups is fed a
nonmatching input. Due to the fact that with each additional capturing group more and more
class objects are added to the patterns tree, we can understand the reason behind the run-time
growing exponentially with every addition of a capturing group, with more backtracking needed
in response to this growth. Using this and previous work done by different research papers we
have mentioned, we can confidently deduce that the root cause of the catastrophic backtracking
is the behavior the engine exhibits during the build of the patterns tree, with it taking the
straight forward approach and building a large repetitive non-deterministic tree. This leads us
to the exponential run-time which is the result of the large amount of backtracking that needs
to be done within the tree.

This deduction was in large part the result of our in-depth investigation of the OpenJDK
implementation of the regex engine that can be seen in the chapter 3. This in-depth dive
showed us the classes that exist within the engines implementation and their use. We were
able to understand that tree the engine creates based on the pattern it is given and the way it
processes said pattern. This insight into the algorithm helps us to understand how it separates
and processes the pattern, which in turn helps us to understand how it attempts to match the
given inputs. The match process was deconstructed and shown in our presented pseudocodes 1
2 where we could see that each child node object has its own match process in place but with a
similar methodology.

Within this thesis we were also able to find a number of vulnerable patterns, as seen in
chapter 2, we were able to prove their vulnerable status by providing experimental evaluations
and compare their run time, not only to one another but also to nonvulnerable patterns. Our
experiments consisted of multipulse inputs with a wide range of lengths and can be best seen in
their corresponding graphs in section 2.4. When conducting our experiments we heavily focused

33



34 Introduction

on ensuring that there was no outside influence on our results and that we only measured the
effects of the regex engine process.

In the end using everything collected we were able to theorize about possible solutions that
can be implemented to help mitigate the possibility of ReDoS attacks to applications using
OpenJDK’s regex engine. These solutions were based on our own analysis as well as proposed
solutions from other research papers. When looking at the solutions, we included both the
benefits as well as the possible downfalls of them and also added OpenJDK’s response to them.

Given our analysis, it can be seen that vulnerable regular expressions still exist within Open-
JDk, and have the potential to cause a lot of harm with their use. Hopefully the research done
can be used in the future to better implement or improve the way the regex OpenJDK engine
works and help reduce its risk factor. Although solutions have been proposed, for now it is the
responsibility of each developer to make sure they are not opening themselves to a potential
attack. This thesis has shown the importance of developer awareness and education on regex
vulnerabilities. By promoting best practices, providing training, and increasing knowledge dis-
semination, software developers can enhance their understanding of regex pitfalls and proactively
address potential security issues during the software development life cycle.
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