
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Co-evolutionary approach to symbolic regression

Přemysl Pilař

Ing. Erik Derner, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2022/2023

Instructions

Symbolic regression (SR) is a machine-learning technique used to fit a set of data

samples with a model in the form of an analytic expression. The expression is composed

of constants, variables, and user-defined elementary functions such as {+, -, *, /, sin, log}.

Typically, the SR task is solved using genetic programming (GP). GP is a gradient-free

evolutionary method that iteratively evolves expressions by means of genetic operators

while minimizing the objective function, e.g., the mean-square error. It has been shown

that GP-based approaches work best if the model is represented as a linear combination

of a set of possibly nonlinear features.

The goal of this work is to design a co-evolutionary algorithm that simultaneously

evolves a diverse set of useful features and another population of well-performing

models composed of the features from the first population.

The objective of this work can be decomposed into the following sub-tasks:

1. Choose a suitable symbolic regression method that facilitates the implementation of

the co-evolution of features and candidate solutions.

2. Design and implement co-evolution for symbolic regression, where one population

represents features and the individuals in the other one are linear combinations of the

features.

3. Explore the possible ways of measuring the quality (fitness) of the features.

4. Suggest a technique to maintain the diversity in both populations, avoiding a

premature convergence to just a few sub-optimal solutions.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 10 May 2022 in Prague.

Bachelor’s thesis

CO-EVOLUTIONARY
APPROACH TO
SYMBOLIC REGRESSION

Přemysl Pilař

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Erik Derner, Ph.D.
June 29, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Přemysl Pilař. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Pilař Přemysl. Co-evolutionary approach to symbolic regression . Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgement vi

Declaration vii

Abstract viii

list of Abbreviations ix

1 Introduction 1

2 Context of the thesis 3
2.1 Problem definition . 3

2.1.1 Original SNGP implementation . 3
2.2 Challenges in Finding Formulas for Models . 4

2.2.1 Search Space Exploration . 4
2.2.2 Overfitting and Underfitting . 5
2.2.3 Computational Efficiency . 6
2.2.4 Interpretability and Model Complexity . 7
2.2.5 Maintaining Diversity . 8

2.3 Approaches for Formula Discovery . 9
2.3.1 Statistical Regression Models . 9
2.3.2 Neural Networks . 10
2.3.3 Bayesian Methods . 11

2.4 Fitness Evaluation and Objective Functions . 11
2.4.1 Fitness Evaluation Metrics . 12
2.4.2 Testing techniques . 12

3 Solution 15
3.1 Single Node Genetic Programming . 15
3.2 Co-evolution in SNGP . 15

3.2.1 Inputs and outputs of SNGP . 15
3.2.2 Separating features and models . 16
3.2.3 Features evaluation and evolution . 17
3.2.4 Maintaining diversity . 18
3.2.5 Implementation of co-evolution . 19
3.2.6 Used technologies . 19

4 Experiments 21
4.1 Tested problems . 21

4.1.1 Parallel resistors . 21
4.1.2 Magnetic Manipulation . 22
4.1.3 Turtle Bot . 24

4.2 Evaluation Metric . 26

iii

5 Conclusion 31
5.1 Future work . 31

List of Figures

4.1 Resistor Train and Test MSE . 22
4.2 Magman Train and Test MSE . 23
4.3 Magman plot with a minimum as fitness evaluation function 24
4.4 Turtle Bot Train and Test MSE . 25
4.5 Magman with the minimum as aggregation function for node fitness 26
4.6 Magman with the average as aggregation function for node fitness 27
4.7 Magman with the median as aggregation function for node fitness 28
4.8 Magman Plots . 29

List of Tables

4.1 MSE Resistor Results . 22
4.2 MSE Magman Results . 23
4.3 MSE Turtle Bot Results . 24
4.4 MSE Magman Median Results . 27
4.5 MSE Magman Minimum Results . 28
4.6 MSE Magman Average Results . 28

List of code listings

3.1 One generation of modelId evolution . 17
3.2 One generation of feature evolution . 18
3.3 One generation of feature changes . 19

Acknowledgement

I would like to thank my supervisor Ing. Erik Derner, Ph.D., for his valuable time. I would
also like to thank Ing. Jǐŕı Kubaĺık Ph.D. and prof. Dr. Ing. Robert Babuška for allowing me
to work on the project with them.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on June 29, 2023 .

Abstract

Symbolic regression is a stochastic machine learning method which tries to find the best model for
given data composed of elementary mathematical functions. It develops its models using genetic
operators and evolutionary techniques. This thesis is devoted to the co-evolution of features and
models inside a symbolic regression, specifically Single Node Genetic Programming. It serves as
a proof of concept of this method demonstrated on problems like parallel resistors or magnetic
manipulation. The proof is done on the single objective optimisation

Keywords Symbolic Regression, Single Node Genetic Programming, Co-evolution, Single Ob-
jective Optimisation, Genetic Programming, Model Learning

Abstrakt

Symbolická regrese je stochastická metoda strojového učeńı. která se pokouš́ı hledat nejlepš́ı
model pro daná data, skládaj́ıćı základńı matematické funkce. Své modely vylepšuje pomoćı ge-
netických operátor̊u a evolučńıch technik. Tato práce je věnována koevoluci př́ıznak̊u a model̊u
uvnitř symbolické regrese, respektive Single Node Genetic Programming. Slouž́ı jako d̊ukaz
funkčnosti této metodu testovanéé na problémech jako je zapojeńı paralelńıch rezistor̊u či ma-
nipulace s magnetem. Tento d̊ukaz je uskutečňován na jednoćılové optimalizaci

Kĺıčová slova symbolická regrese, SNGP, koevoluce, jednoćılová optimalizace, genetické pro-
gramováńı, učeńı modelu

list of Abbreviations

GP Genetic Programming
MSE Mean Square Error

SR Symbolic Regression
SNGP Single Node Genetic Programming

x list of Abbreviations

Chapter 1

Introduction

Symbolic regression is a technique for determining a suitable mathematical model to describe
observed data [1]. In traditional regression modelling, the process starts with parameters opti-
mized for a specific model, such as the relationship between input data and examined variables
in linear regression or neuron structure in neural networks.

However, no such assumptions regarding the precise form of the function are necessary for
symbolic regression. Instead, candidate function building blocks such as mathematical operators,
variables, constants, and analytic functions are provided, and symbolic regression then searches
through the space spanned by these basic building blocks to find the best solution. In other
words, in symbolic regression, both model structures and model parameters are optimized. The
optimisation algorithms used in symbolic regression differ from traditional analytical/numerical
optimisation methods because there is no requirement for a predefined function form [2].

1

2 Introduction

Chapter 2

Context of the thesis

2.1 Problem definition

The Single Node Genetic Programming (SNGP) population is a set M = m0, m1, . . . , mL − 1 of L
individuals, with each individual being a single node represented by a tuple mi = <ei, Succi, P redi, oi, fi>
[3] where

ei ∈ T
⋃

F is element from function set F or a terminal set T ;

Succi is a set of successors of this node, the nodes that serve as input to this one;

Predi is a set of predecessors of this node, the nodes that use this node as input

oi is a vector of outputs

fi is the fitness

The architecture was expanded to a set of M independent models where each model is a base
SNGP population as described above [4].

2.1.1 Original SNGP implementation
The original SNGP implementation that was provided to me comes from these articles [3, 4, 5]. Its
single population consists of constants, variables, function nodes chosen from a set of elementary
functions, and identity nodes, which are connected in a left-right manner. That means the node
can be input (successor) only to those on the right (predecessors) of it in the population and
vice-versa. Each node is a root of an expression, and it can be traversed recursively to terminal
leaf nodes in the graph [3].

Every node keeps its own output calculated based on the training data. Not all nodes have a
variable as input data, and its output is constant for these conditions easing up the calculation
process. Even though we call it output, its relation with model fitness is complex.

Changes must be made for the population’s ability to progress and fit better into a given
dataset. A simple successor mutation (smut) was implemented between each generation. It
chooses a random node of the population, chooses one of its successors and then finds a random
node on the left to replace the chosen successor [3].

3

4 Context of the thesis

Identity nodes represent the actual model. Each identity node has one successor, the link to
another node in the population, and its output is simply the output of the linked node. Given
the set of these nodes, we are presented with a model which can be evaluated. The model f(x)
follows this formula

f(x) = β0 +
nf∑
i=1

βiφi(x) (2.1)

where φi are features/expressions evolved through the means of the smut. These features are
non-constant combinations of nodes originating from the population. The coefficients βi are not
part of the population and do not undertake any mutations. Instead, they are estimated using
the least squares technique [4]. Two user-defined parameters keep model complexity in check.
nf is the maximum number of identity nodes in one population. The second parameter is the
maximum depth of any given feature [4].

At last, these populations (SNGPs) and their models create another population. The popu-
lation of multiple SNGPs allows population-based methods [4]. Every SNGP has fitness in the
form of MSE and, therefore, can be compared to others. This could not be done on a node scale
since nodes need to indicate their performance adequately.

2.2 Challenges in Finding Formulas for Models

2.2.1 Search Space Exploration
Search space exploration is integral to symbolic regression since it explores a considerable

universe of alternative formulas to discover the best representation for the underlying connections
in the provided data. Yet, owing to the innate complexity and vastness of the search universe,
this exploration method creates substantial problems [6].

Searching through a space that contains numerous combinations and arrangements of mathe-
matical operations, variables, and constants is known as symbolic regression. The search space
expands exponentially as the number of variables and possible mathematical operations rises,
making comprehensive exploration computationally intensive [7].

Researchers have developed several methodologies and approaches for practical search space
exploration in symbolic regression to solve this difficulty. These algorithms try to strike a com-
promise between exploration and exploitation, guaranteeing complete search space exploration
while discovering attractive locations effectively.

Heuristic search strategies are a prevalent tactic. To develop and enhance candidate formulas
iteratively, these approaches include genetic programming, genetic algorithms, particle swarm
optimisation, or ant colony optimisation. These algorithms explore the search space for high-
quality answers by using genetic operators such as mutation and crossover [6].

Another way is to use sampling or subset selection methods. Instead of scanning the whole
search space, these approaches analyse and enhance a representative selection of formulas. Ran-
dom sampling, Latin hypercube sampling, or Monte Carlo sampling methods may be utilised to
examine a wide range of formulas effectively. Subset selection strategies reduce the dimension-
ality of the search space by identifying a smaller subset of variables or mathematical operations
that are most useful or relevant to the issue [6].

Challenges in Finding Formulas for Models 5

Multi-objective optimisation techniques [8] have also been used to solve the difficulty of search
space exploration. These algorithms investigate several parts of the search space at the same
time, taking into account numerous competing goals such as accuracy, model complexity, and
interpretability. These algorithms allow the identification of solutions that balance opposing
goals by examining the Pareto front, representing a spectrum of trade-off solutions.

Integrating past information and limits may help steer search space research even further.
Using domain-specific information or setting limits on the search process, researchers might
steer the search towards more promising locations. This may assist in increasing the exploration
process’s efficiency and efficacy.

Effective symbolic regression search space exploration requires careful consideration of the
trade-offs between exploration and exploitation and the efficient use of computer resources. Re-
searchers want to lower the computational cost, enhance search efficacy, and raise the possibility
of discovering correct and interpretable formulas by utilising appropriate search tactics and
methodologies[9].

2.2.2 Overfitting and Underfitting
Overfitting and underfitting are common challenges in machine learning, including symbolic
regression. They refer to the phenomena where a model fails to generalise well to unseen data
due to excessive complexity or insufficient flexibility, respectively.

Overfitting occurs when a model becomes overly complex and too closely fits the training
data, capturing noise and irrelevant patterns instead of the underlying relationships. This leads
to poor generalisation, where the model performs well on the training data but poorly on new,
unseen data. Overfitting can occur when a model has too many variables, incorporates too many
features, or is too complex. It often results from an overly ambitious attempt to capture all the
details of the training data, failing to discern proper underlying patterns [10].

On the other hand, underfitting arises when a model is too simplistic or lacks the necessary
flexibility to capture the underlying relationships in the data. An underfit model has not learned
enough from the training data and struggles to capture the complexity of the problem. It typically
leads to poor performance in the training and unseen data, as it fails to capture the essential
patterns and trends [10].

To address overfitting and underfitting in symbolic regression, various techniques can be em-
ployed:

1. Regularisation: Regularization techniques introduce additional constraints on the model
during training to prevent overfitting. Standard regularisation methods include L1 and L2
regularisation, which add penalty terms to the objective function, discouraging the model
from relying too heavily on specific variables or features [11].

2. Cross-validation: Cross-validation helps assess the model’s generalisation performance by
splitting the available data into training and validation sets. This enables evaluating the
model’s performance on unseen data and helps identify overfitting or underfitting. Techniques
like k-fold cross-validation or hold-out validation can be employed to obtain more reliable
estimates of the model’s performance [12].

3. Feature selection and dimensionality reduction: Selecting relevant features and reduc-
ing the dimensionality of the input space can mitigate overfitting. By focusing on informative

6 Context of the thesis

features, the model can avoid noise and irrelevant patterns in the data. Techniques like for-
ward selection, backward elimination, or principal component analysis (PCA) can be used
for feature selection and dimensionality reduction [13].

4. Early stopping: Early stopping involves monitoring the model’s performance on a validation
set during training and stopping the training process when the performance degrades. This
prevents the model from excessively fitting the training data and helps find a balance between
model complexity and generalisation [14].

5. Ensemble methods: Ensemble methods combine multiple models to improve predictive
performance and mitigate overfitting. Techniques such as bagging, boosting, or random
forests can aggregate the predictions of various models and reduce the impact of individual
model biases or errors [14, 15].

Researchers aim to find a model that generalises to unseen data and captures the genuine
underlying relationships by addressing overfitting and underfitting in symbolic regression. These
techniques contribute to developing accurate and reliable models that can be effectively applied
in various domains.

2.2.3 Computational Efficiency
Computational efficiency is essential in symbolic regression as it directly impacts the practical-

ity and scalability of the technique. Symbolic regression involves exploring a large search space
of possible formulas, which can be computationally demanding. Therefore, improving computa-
tional efficiency is essential to make symbolic regression feasible for real-world applications.

There are several strategies to enhance computational efficiency in symbolic regression:

1. Optimized search algorithms: Efficient search algorithms are crucial for navigating the
search space effectively. Genetic programming techniques can be optimised by implementing
advanced genetic operators, such as subtree crossover and mutation, designed explicitly for
symbolic regression. These operators should be carefully crafted to balance exploration and
exploitation, ensuring a thorough search without excessive computational overhead [16].

2. Parallel computing: Symbolic regression algorithms can benefit from parallel computing
techniques to distribute computations across multiple processors or machines. Parallelisa-
tion can significantly reduce the execution time, particularly when evaluating the fitness of
candidate solutions, performing crossover and mutation operations, or conducting extensive
simulations. Utilising multi-core processors, clusters, or GPU acceleration can exploit paral-
lelism and boost computational efficiency [17].

3. Data preprocessing and feature selection: Preprocessing the data and selecting infor-
mative features can reduce the computational burden in symbolic regression. Data cleaning,
dimensionality reduction techniques, and feature selection methods can help eliminate noise,
reduce the problem’s dimensionality, and focus the search on relevant features [18].

4. Model complexity control: Techniques such as regularisation or complexity penalties
can prevent the model from becoming overly complex, reducing the risk of overfitting and
improving computational efficiency during training and evaluation. Encouraging sparsity in
the evolved models can also simplify calculations and make the models more interpretable
[19].

5. Sampling and approximation: Rather than exhaustively evaluating all possible formu-
las, sampling techniques and approximation methods can be employed. These approaches

Challenges in Finding Formulas for Models 7

involve assessing a subset of candidate solutions or using surrogate models to estimate the
fitness values. Sampling and approximation reduce the computational burden while providing
reasonable solutions, mainly when dealing with large datasets or complex formulas [20].

6. Algorithmic optimizations: Algorithmic optimisations specific to symbolic regression can
enhance computational efficiency. For example, memoisation techniques can store and reuse
intermediate calculations, avoiding redundant computations. Additionally, carefully selecting
evaluation strategies and data structures, such as expression trees or matrix representations,
can improve efficiency during fitness evaluation and model manipulation [21].

Efficient computational techniques in symbolic regression are crucial to handle the search
space’s complexity. By optimising search algorithms, using parallel computing, preprocessing
data, controlling model complexity, employing sampling and approximation, and implementing
algorithmic optimisations, researchers can significantly enhance the computational efficiency of
symbolic regression algorithms, enabling their practical application to large-scale and real-world
problems.

2.2.4 Interpretability and Model Complexity
Interpretability refers to understanding and explaining how a model arrives at its predictions.

In symbolic regression, interpretability is achieved by representing the models as human-readable
formulas composed of mathematical expressions, variables, and elementary functions. Symbolic
regression excels in this field, unlike its competitors. Interpretable models are desirable as they al-
low domain experts to gain insights, validate the model’s behaviour, and make informed decisions
based on the learned formulas. By providing transparent and understandable representations,
symbolic regression models can facilitate the discovery of meaningful patterns and relationships
in the data [22].

Model complexity refers to the sophistication of the learned formulas. While a complex model
may have a higher potential to fit the training data accurately, it runs the risk of overfitting,
making it difficult to generalise to new, unseen data. On the other hand, an overly simplistic
model may underfit, failing to capture the complexity of the underlying relationships. Balancing
between model complexity and performance is essential to ensure accurate predictions while
maintaining interpretability.

1. Regularization: Regularisation techniques, such as L1 or L2 regularisation, can be employed
to control model complexity. By adding penalty terms to the objective function, regularisation
discourages the model from relying too heavily on certain variables or features, promoting
sparsity and reducing unnecessary complexity [11].

2. Feature selection: Careful feature selection can simplify the model and improve inter-
pretability. Identifying and selecting relevant features that capture the essential aspects of
the problem can help reduce noise, eliminate irrelevant variables, and create more inter-
pretable formulas [13].

3. Simplification techniques: After obtaining a symbolic regression model, simplification
techniques can be applied to reduce complexity without sacrificing accuracy. Simplification
involves eliminating redundant terms, combining similar terms, or applying mathematical
identities to create more concise and interpretable formulas. Techniques such as genetic
programming-based simplification or symbolic algebraic manipulation can be employed [23].

4. Trade-off analysis: Researchers need to find an optimal trade-off between model complexity
and performance by evaluating different models with varying levels of complexity. Techniques

8 Context of the thesis

such as cross-validation can help assess the generalisation performance of the models and guide
the selection of the best compromise between accuracy and interpretability [24].

5. Visualization and explanation: Developing visualisation techniques and tools can aid in
interpreting and explaining the learned formulas. Graphical representations, such as plots
or diagrams, can provide intuitive insights into the relationships between variables and the
overall behaviour of the model. Additionally, providing explanations or justifications for the
model’s decisions and predictions can enhance interpretability and build trust in the model
[25].

Symbolic regression models can generate accurate and understandable formulas for domain
experts by considering interpretability and managing model complexity. The ability to interpret
the learned formulas empowers researchers and practitioners to gain valuable insights, validate
the model’s behaviour, and effectively apply symbolic regression in various fields where inter-
pretability is essential.

2.2.5 Maintaining Diversity
Without any techniques to maintain diversity, populations could quickly converge to a few

sub-optimal solutions in the local optimum. Therefore it is yet another key aspect to consider
when designing a formula-finding algorithm [26].

1. Population Initialisation: Proper population initialisation is the first step in maintaining
diversity. It is important to generate an initial population of candidate formulas that covers
a diverse range of solutions. This can be achieved by employing various techniques, such
as random initialisation or using diverse seed formulas based on prior knowledge or domain
expertise [27].

2. Selection Operators: The selection process in evolutionary algorithms determines which
individuals are chosen to reproduce and produce offspring for the next generation. Different
selection strategies can influence the diversity of the population. For example, tournament
selection or roulette selection methods can preserve diversity by ensuring that a wide range
of individuals has the chance to be selected for reproduction [28].

3. Genetic Operators: Genetic operators, including mutation and crossover, create new
candidate solutions in the population. When designing these operators, it is important to
balance exploration and exploitation. Exploration encourages generating diverse solutions
by introducing random variations, while exploitation focuses on refining promising solutions.
Well-designed genetic operators can help maintain diversity by preserving a mix of both
exploratory and exploitative solutions [29].

4. Fitness Sharing: Fitness sharing is a technique that promotes diversity by adjusting the
fitness of individuals based on their similarities to others in the population. It introduces
a penalty or reduction factor for individuals too similar to others, thereby encouraging the
preservation of different solutions. By incorporating fitness sharing, the algorithm incentivises
the exploration of different regions of the solution space, preventing the population from
becoming dominated by a few highly fit individuals [30].

5. Niching Methods: Niching methods are designed to maintain diversity by partitioning
the population into distinct niches or subgroups. These methods aim to allocate individuals
to different niches based on their similarities and prevent overcrowding of solutions in any
single niche. Niching methods allow the exploration of diverse regions of the solution space,
enabling the algorithm to uncover a broader range of potential formulas [31].

Approaches for Formula Discovery 9

2.3 Approaches for Formula Discovery
The discipline of formula discovery can be broad, and every small difference in the problem

gave birth to a new method.

2.3.1 Statistical Regression Models
Statistical regression models are widely used for formula discovery and have a long history in

data analysis. They aim to establish a relationship between a dependent variable and one or more
independent variables by fitting a mathematical equation to the data. The most common types of
statistical regression models include linear regression, polynomial regression, and support vector
regression.

1. Linear Regression: Linear regression is a popular and straightforward statistical model
that assumes a linear relationship between the independent and dependent variables. It seeks
to find the best-fit line that minimises the sum of squared residuals. The resulting formula
is a linear equation: y represents the dependent variable, x1, x2, ..., xn are the independent
variables, and b0, b1, b2, ..., bn are the estimated coefficients[7].

y = b0 +
n∑

i=1
bixi (2.2)

Linear regression models provide interpretable formulas that quantify the relationships be-
tween the variables. The estimated coefficients reveal the direction and magnitude of the
effects of the independent variables on the dependent variable. Additionally, statistical infer-
ence techniques, such as hypothesis testing and confidence intervals, can be applied to assess
the significance of the coefficients and the overall model.

2. Polynomial Regression: Polynomial regression extends linear regression by introducing
polynomial terms of the independent variables. This allows for capturing non-linear rela-
tionships between the variables. The resulting formula becomes a polynomial equation by
including higher-order polynomial terms (e.g., quadratic, cubic). Polynomial regression can
approximate more complex data patterns and provide a better fit when the relationship be-
tween variables is non-linear[32].
Polynomial regression models offer flexibility in capturing curvilinear trends and interactions
between variables. However, as the degree of the polynomial increases, the model can become
more prone to overfitting, leading to complex formulas that may not generalise well to new
data.

3. Support Vector Regression: Support Vector Regression (SVR) is a machine learning
technique that combines elements of statistical regression and support vector machines[33].
SVR aims to find a hyperplane that maximises the margin around the training data while
satisfying a specified tolerance level, or ”epsilon.” The resulting formula can take different
forms depending on the kernel function, such as linear, polynomial, or radial basis functions.
SVR models provide flexibility in handling non-linear relationships using kernel functions.
The formulas derived from SVR capture complex patterns in the data and offer accurate
predictions. However, interpreting the formulas directly can be challenging due to the nature
of the support vector machine framework.

4. Symbolic Regression: Symbolic regression is a machine learning technique to discover
mathematical formulas or expressions that accurately represent the relationships within a
given dataset. Unlike traditional regression methods that rely on predefined functional forms,

10 Context of the thesis

symbolic regression aims to automatically search and evolve mathematical expressions that
best fit the data[31].
It explores a vast search space of possible formulas, incorporating variables, constants, and
elementary functions to find the most suitable representation. Symbolic regression provides
a powerful tool for modelling and understanding complex phenomena, allowing researchers
and practitioners to uncover interpretable and insightful mathematical relationships from
empirical data.

In summary, statistical regression models provide interpretable formulas representing variables’
relationships. Linear regression offers simplicity and transparency, while polynomial and support
vector regression can capture more complex non-linear patterns. These models allow researchers
to discover formulas that can be easily understood and provide insights into the underlying
mechanisms driving the data.

2.3.2 Neural Networks
Neural networks have emerged as powerful models for various data-driven tasks, including

formula discovery. Inspired by the structure and functioning of the human brain, neural networks
are composed of interconnected nodes, or ”neurons,” organised into layers. Each neuron receives
input signals, processes them through an activation function, and produces an output signal.
The strength of the connections between neurons, represented by weights, determines the impact
of each neuron’s input on the final output[34].

Neural networks capture complex relationships and patterns in data, making them suitable for
formula discovery tasks. They can learn linear and non-linear relationships between variables,
allowing them to uncover intricate mathematical formulas governing the data.

The architecture of a neural network is the main component. Deep neural networks with
multiple hidden layers effectively learn complex representations and capture non-linear interac-
tions between variables. The hidden layers enable the network to automatically extract relevant
features from the input data, reducing the need for manual feature engineering.

During training, neural networks adjust their weights using optimisation algorithms such as
gradient descent. By minimising a specified loss function, neural networks iteratively update the
weights to improve their predictions and accurately fit the data. The chosen loss function depends
on the specific formula discovery task, such as mean squared error for regression problems.

Interpreting the resulting formulas from neural networks can be challenging due to their in-
herent complexity and black-box nature. While the network’s weights represent the learned
relationships between variables, they are not easily translatable into explicit mathematical ex-
pressions. However, lately, heterogenous neural networks are being developed where each node
in a layer is an elementary function[34].

Researchers have developed methods such as heterogeneous neural networks to improve the
interpretability of neural network models. These approaches aim to combine the power of neural
networks in capturing complex patterns with the interpretability of symbolic regression, resulting
in accurate and human-readable formulas.

Neural networks offer great flexibility and the ability to discover formulas in a data-driven
manner. Their ability to handle large-scale and high-dimensional datasets and their capacity to
model complex relationships make them valuable tools for formula discovery in various domains.

Fitness Evaluation and Objective Functions 11

2.3.3 Bayesian Methods
Bayesian methods provide a principled and probabilistic framework for formula discovery.

These methods are rooted in Bayesian inference, which involves updating prior beliefs based on
observed data to obtain posterior probability distributions. In the context of formula discovery,
Bayesian methods allow for estimating uncertainty and provide a flexible approach to model
selection and parameter estimation[35].

One of the major advantages of Bayesian methods is their ability to handle uncertainty explic-
itly. Bayesian models can quantify the confidence or uncertainty associated with the estimated
formulas by representing uncertainty as probability distributions. This is particularly useful
when dealing with limited data or complex and noisy phenomena.

Bayesian formula discovery typically involves specifying a prior distribution over possible for-
mulas and updating it using observed data. This allows for a more robust and flexible approach
than traditional frequentist methods. Bayesian methods can handle small sample sizes more
effectively and incorporate prior knowledge or beliefs into the modelling process.

Markov chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings algorithm and
Gibbs sampling, are commonly used in Bayesian formula discovery. These methods generate
samples from the posterior distribution of the formulas, allowing for exploring the formula space
and estimating model parameters. By sampling from the posterior distribution, Bayesian meth-
ods can provide point estimates and credible intervals that capture the uncertainty associated
with the estimated formulas.

Another advantage of Bayesian methods is their ability to perform model selection. Through
Bayesian model selection, different candidate formulas or models can be compared based on their
posterior probabilities, considering the goodness of fit and model complexity. This approach helps
avoid overfitting and provides a principled way to choose the most suitable formula for a given
dataset.

Bayesian methods in formula discovery can also incorporate hierarchical structures, where
formulas at different levels of the hierarchy capture different aspects of the phenomenon being
modelled. This allows for integrating domain knowledge or prior information, providing a more
structured and interpretable approach to formula discovery.

Interpreting the resulting formulas from Bayesian methods is often straightforward since the
formulas are represented explicitly as mathematical expressions. The uncertainty estimates as-
sociated with the formulas provide insights into the reliability of the estimates, allowing for
informed decision-making.

Overall, Bayesian methods offer a robust framework for formula discovery by providing a
probabilistic approach that incorporates uncertainty, performs model selection and allows for
the integration of prior knowledge. They are particularly useful in scenarios where uncertainty
quantification, small sample sizes, or the incorporation of prior beliefs are important considera-
tions.

2.4 Fitness Evaluation and Objective Functions

12 Context of the thesis

2.4.1 Fitness Evaluation Metrics
Evaluating the fitness of candidate solutions relies on metrics that provide insights into the

performance and quality of the evolved formulas. These metrics guide the evolutionary process
and help us understand how well the generated solutions fit the data.

One commonly used metric is the mean square error (MSE), which measures the average
squared difference between the predicted values of the evolved formula and the actual observed
values from the data. The MSE gives us an idea of how well the formula fits the data overall[31].

For formulas bellow yi denotes observed value of i-th sample, ŷi denotes predicted value of
i-th sample and n represents number of samples

MSE = 1
n

n∑
i=1

(yi − ŷi)2

To complement the MSE, we often consider the root mean square error (RMSE), which is
obtained by taking the square root of the MSE. The RMSE provides a more interpretable measure
of the average size of the errors.

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

Another helpful metric is the mean absolute error (MAE), which calculates the average ab-
solute difference between the predicted values and the actual values. The MAE provides a
straightforward measure of the average magnitude of the errors without squaring them. It can
offer a more intuitive understanding of the absolute accuracy of the evolved formula. It is im-
portant to mention that this metric differs from the other two. It is less prone to outliers as its
error is not squared. This might be a desired quality for certain problems.

MAE = 1
n

n∑
i=1

|yi − ŷi|

Utilising these metrics, including MSE, RMSE, and MAE, we can assess different aspects of
the performance of the evolved formulas. The MSE and RMSE help us understand how well the
formulas fit the data regarding squared errors, while the MAE provides insight into the average
absolute deviation from the actual values. Examining these metrics allows us to compare and
evaluate different solutions and make informed decisions in the symbolic regression process.

It’s important to note that these fitness evaluation metrics are not the only considerations
in symbolic regression. Other metrics, such as R-squared and complexity-based measures, also
provide valuable insights into the quality and interpretability of the evolved formulas. By consid-
ering multiple metrics, we can gain a comprehensive understanding of the fitness of the formulas
and make well-informed choices in the evolutionary search process.

2.4.2 Testing techniques
1. Cross-Validation: Cross-validation is a widely used technique in machine learning for

evaluating the performance of models. It involves dividing the dataset into multiple subsets
or folds, typically with a predefined ratio, such as k-fold cross-validation. Each fold is used
as a validation set, while the remaining folds are used for training. This process is repeated

Fitness Evaluation and Objective Functions 13

k times, with each fold being the validation set once. By averaging the performance across
all folds, cross-validation provides a robust estimate of the model’s performance on unseen
data.
The benefit of cross-validation lies in its ability to assess how well a model generalises to
different data samples. It helps mitigate the risk of overfitting, where a model performs well
on the training data but fails to generalise to new instances. Cross-validation provides a more
realistic evaluation of the model’s capabilities by testing it on various subsets of the data,
providing insights into its performance under different conditions.
A popular variation of cross-validation is k-fold cross-validation, where the dataset is divided
into k equally sized folds. The model is trained on k-1 folds and validated on the remaining
fold. This process is repeated k times, ensuring each fold is the validation set once. The
performance metrics from each iteration are then averaged to obtain an overall estimate of
the model’s performance. K-fold cross-validation is commonly used when a larger dataset
is available and provides a more robust assessment of the model’s generalisation capabilities
than traditional cross-validation.

2. Holdout Testing: Holdout testing is another standard method used for evaluating machine
learning models. In holdout testing, a portion of the dataset is set aside and not used during
training. Once the model has been trained on the remaining data, it is evaluated on the
holdout set. This allows for an unbiased assessment of the model’s performance on unseen
data.
The holdout set is a proxy for real-world data, indicating how the model will perform in
practice. It helps identify potential issues such as overfitting or underfitting and measures
the model’s ability to generalise. However, it is crucial to ensure that the holdout set is
representative of the overall data distribution to obtain reliable performance estimates.

3. Bootstrapping: Bootstrapping is a statistical resampling technique commonly used in
machine learning testing. It involves randomly sampling the dataset with replacement to
create multiple bootstrap samples. Each bootstrap sample is used to train a separate model,
and the performance metrics are computed on each model. The variability in the performance
metrics across the bootstrap samples estimates the uncertainty and robustness of the model’s
performance.
Bootstrapping is particularly useful when the available dataset is limited. It allows for gener-
ating additional samples, mimicking the process of drawing new samples from the population.
This helps to mitigate the impact of data scarcity and provides a more reliable estimate of
the model’s performance.

14 Context of the thesis

Chapter 3

Solution

3.1 Single Node Genetic Programming
SNGP is a graph-based GP technique that evolves a population organized as an ordered linear

array of individuals, each representing a single program node [3].

Each node contains information about its placement in the pool of graphs and its type. In
addition to the attributes encoding connections with other members, each individual has data
structures recording the outputs it produces when evaluated; more importantly, it has its own
distinct fitness value. It, therefore, makes much more sense to view the population as a set of
graphs, with each individual holding the root node of an expression or program to be evaluated
[36].

3.2 Co-evolution in SNGP
In this section, I would like to introduce the proposed changes and their implementation based
on the assignment. To-be augmented implementation was described in the section 2.1.1

3.2.1 Inputs and outputs of SNGP
The central part of this thesis revolves around the research of a method that co-evolves models
and their sub-parts called features. As mentioned above, a few simple steps exist to implement
this idea.

The program uses many parameters which enable fine customisation of the evolution. Here
are all parameters used in the augmented version of the algorithm. These arguments are passed
in a configuration file; the most important ones can be passed through the command line.

runs - number of times the program will run, incrementing the seed each time

seed - starting seed

DEPTHLIMIT - sets the maximum depth of an expression

data file - path to the training data

experiment - type of problem to be solved (resistors, magman, pendulum, turtle bot)

15

16 Solution

out file - path to the output file

constants - list of constants to be used

functions - list of implemented elementary functions to be used

nbOfMutations - number of feature mutations within one model

num iterations models - number of mutations and crossovers done on models

model size - number of nodes in each SNGP population

pop size - number of SNGP populations and models

num generations - number of generations

tournament tsize - size of the tournament for tournament selection

max duplicates - number of models passed to the next generation originating from the
same model

head nodes - number of constant nodes in each SNGP population

tail nodes - number of non-constant function nodes

identity nodes - number of identity nodes

p head - probability of mutating head node

p mod mutation - probability of mutating the model

p mod crossover - probability of performing model crossover

The output of the program is stored in a specified file. It has the following structure:

mse = mse

f(x0, ..., xn) = β0 + β1 * I1 + . . . + βi * Ii

The output represents the best model in a given run. If runs exceeds 1, multiple models are
saved using the naming convention model seed=seed.txt.

3.2.2 Separating features and models
Knowing what goes in and out of the program, we can continue with the implementation. To
let two distinct populations evolve by themselves, they must be created. So far, there is only
one population of SNGPs. The proposal is to take these SNGPs and separate identity nodes
representing models and the parts with function, variable, and constant nodes.

Splitting these populations includes many changes to the current working program. It involves
changing the structure of nodes and introducing coordinates to successors and predecessors com-
pared to the previous simple index linking only inside one SNGP. This allows nodes to point
through indices to the desired node correctly. Note that the feature node may only point to
other nodes inside its own feature part of the former SNGP or to an identity node. These coordi-
nates are combined with another attribute that deems if there if the pointed node is an identity
node, thus needing additional coordinates. Conversely, the identity node may point to a feature
outside the original model, thus requiring additional coordinates for its successor.

Co-evolution in SNGP 17

The population of sets of identity nodes had to be stored in a whole new class, giving birth
to the modelId class. This class was designed to mirror as much as it could a previous SNGP
population. Objective function calculation stayed as 2.1, and model construction remains un-
changed.

What changed, however, were evolutionary techniques. Smut of identity nodes in this distinct
population allows to node to alter its successor to a different feature population. A curious design
choice is that if an identity node points to the constant node or a node with a constant value, it
is not disregarded as an invalid successor. Instead, this identity node is not passed to the least
squares method since it bears no meaning for another constant in the solution. Another addition
is the crossover method. Implemented crossover method is a One-point crossover which chooses
a random point in the vector and swaps the content on one side generating [9], contrary to the
original algorithm, only one model is returned. Implementation does not allow empty crossover.
If crossover should happen according to probability, it will yield a meaningful result.

One generation in modelId displays the 3.1 pattern.

Code listing 3.1 One generation of modelId evolution
for i in range(number_of_iterations):

old_models = modelIds_list .copy ()
id = tournament_selection (modelIds_list)
new_model = modelIds_list [id]. evolve ()
new_model . calculate_output ()
new_model . calculate_fitness ()
new_model_list . append (new_model)

modelIds_list = merge(old_models , new_model_list)
relinkIds ()

In one generation, numerous models are chosen based on the number of iterations through
tournament selection. The tournament selection takes a subset of the tournament size and
chooses the individual model with the best fitness [9]. This helps maintain diversity but more
about that later. The new model is created with either crossover, smut or just passed down as it
is. However, evolve method has an internal loop changing the model multiple times. Afterwards,
outputs and coefficient βi in equation 2.1 must be updated. The model is appended to the
list of new potential models. The merge happens into a new population of models based on
their objective function with a condition. More about it in the subsection. 3.2.4. It finishes by
verifying all changed links.

3.2.3 Features evaluation and evolution
So far, apart from the crossover, there are no functional changes. To get the co-evolution running,
a way to evaluate individual features must be designed and inserted into the framework. The
proposal is to calculate the fitness of features derived from the models it is captured in. The
next step is the modified evolution.

The fitness of the feature is calculated with aggregation function (median, average, minimum)
of models it is contained in. A node not connected to any model is given a very high-value fitness.
A change inside the features population will change the fitness of every feature connected to that
given model and any other predecessors. Similarly, a change to a model will adjust the fitness of
all connected features. As many changes are made each generation, calculating this value could
significantly lower the speed of evolution. It is paramount to evaluate fitness only when needed
for comparing fitness before and after mutation to accept or reject the proposal.

18 Solution

This pseudocode could denote one generation of feature mutation:

Code listing 3.2 One generation of feature evolution
iterations = generate_random_number (from = 0, to = nbOfMutations)
features_to_mutate_indices = create_random_permutation (iterations)
for i in features_to_mutate_indices :

old_features = features_list [i]. copy ()
new_features , mutated_node_index = features_list [i]. mutate ()
new_features . evaluate_outputs
features_list [i] = new_features
models . update ()
models . feed_fitness_values ()
features_list [i]. nodes[mutated_node_index]. fitness_update ()
if old_features [mutated_node_index]. fitness >=

features_list [i]. nodes[mutated_node_index]:
features_list [i] = old_features
models . update ()

In each generation, a random number of iterations is generated up to nbOfMutations, and
then indices for feature population to mutate are generated. A snapshot of the original feature
population before mutation is taken for possible reversion of the change. Successor mutation is
performed on a random node inside the population. The new feature population must evaluate
its outputs first; afterwards, it replaces the old population. It then calculates the fitness of all af-
fected model populations (identity node populations). Since models’ fitness influences individual
features’ fitness, it is passed back to the feature populations. At last, fitness is updated within the
node; if it yields better fitness, the population is kept as is; otherwise, rollback to snapshot takes
place. I would like to point out that we keep calculations to a minimum, evaluating only needed
values at any given time. Because of the frequency with which population changes, feature fitness
is calculated each time as its only purpose is to accept or deny the proposed mutation.

3.2.4 Maintaining diversity
As already mentioned, there are a few mechanisms that stop premature convergence from

happening. This algorithm’s search space is smaller than other types of symbolic regressions.
All nodes are created initially; the only changes during evolution are the successor replacement.
This implies that no nodes are lost or made, only relinked. Combined with the maximum depth
for expression and the maximum number of expressions included in the model, we have limited
our search space to a subset of possible solutions. The first layer of maintaining diversity is that
no nodes are ruled out of the population, and possible relink can effortlessly explore this part of
space.

Mutations, even though usually exploitative [37], in the case of mutating a node not being
used in a model, are accepted, eliminating the possibility that the node was already chosen by
a model but rejected. Since no valid criterion is used to deem the mutation of a non-used node
beneficial, it is accepted somewhat mindlessly.

The next layer comes with the implementation of crossover, which is viewed as an explorative
operator [38]. The model to which genetic operators are applied is chosen using tournament
selection which alleviates selection pressure [31] because the fittest individual is selected from a
subset called the tournament.

Co-evolution in SNGP 19

When the merge happens, there lies another method. As we can spot at the start of subsec-
tion 3.2.1, there is a parameter called max duplicates. This method ensures that only up to
max duplicates models will be selected, originating from the same one for the next generation.
Initially, the fittest models are chosen, and if the threshold is reached, it will disregard any other
model with that origin. Combined with the tournament selection, this already poses a significant
diversity control.

3.2.5 Implementation of co-evolution
Described parts build the program. The main evolution loop looks like this:

Code listing 3.3 One generation of feature changes
for i in range(generations):

new_models_list = []
run_generation_features () #Code 3.2
run_generation_models () #Code 3.1
best_model_in_generation_list . append (best_model)

After defining the construction block, the code is simple. It clears the list for the new
population. It evolves features since our main objective is to have a well-performing model.
Feature evolution may not lead to better-performing models. This is the reason why models
evolve second. Currently, there already are ”better” features, and it could build models of better
quality. Even though the building blocks might be better models, they may lead to worse ones.
That is why keep a snapshot of the best model for each generation, as the final generation might
not be the best.

3.2.6 Used technologies
Python was used to create the program code and test scripts. These libraries have been used:

numpy for computations;

matplotlib for visualisation;

sklearn for metrics.

20 Solution

Chapter 4

Experiments

4.1 Tested problems
For these three problems, these parameters were used. Feature evaluation aggregation function
was minimum.

Number of runs: 50

Maximum feature’s depth: nf = 4

Elementary Functions: F = +,-,*,/,square,cube,sine,tanh

Population size: M = 50

Tournament size: 4

Number of generations: 20

Number of identity nodes: 10

Maximum number of duplicates: 2

Model size: 500

4.1.1 Parallel resistors
The first test problem is deriving a formula for the total resistance of parallel resistors in the
circuit.

Which is
Rtotal = R1 · R2

R1 + R2
(4.1)

This experiment aims to find a good approximation of this model. R1 and R2 are generated
uniformly from the interval [0.0001, 20] Ω (Ohm). The variables and the target values are
disturbed with up to 0.005 noise [4]. The training dataset has 200 records, and testing has 100
records.

Analysing the figure and table results, we can see that our method was success. Observing
the maximum value, we can see that at least one model is overfitted. As expected, train MSE is
slightly lower than test MSE. This difference is acceptable.

21

22 Experiments

0 10 20 30 40 50
Seed

0.00

0.05

0.10

0.15

0.20

0.25

0.30
M

ea
n

Sq
ua

re
d

Er
ro

r

Resistor Train and Test MSE
Train MSE
Test MSE

Figure 4.1 Resistor Train and Test MSE

Table 4.1 MSE Resistor Results

Train MSE Test MSE
Mean 0.061434 1.520110
Median 0.052040 0.078714
Standard Deviation 0.035773 8.183154
Minimum 0.014890 0.015126
Maximum 0.223400 57.281279

4.1.2 Magnetic Manipulation
An electromagnet is static beneath the rail, and an iron ball is in motion along the rail in the
magnetic manipulation system. The objective is to find a model of the nonlinear magnetic force
acting on the ball [4]. f(x), as a function of the horizontal distance, x, between the iron ball
and the activated coil, given a constant current through the coil, i. Data is generated with the
following formula [39]:

f̃(x) = − ic1x

(x2 + c2)3 (4.2)

Training data are sampled from the interval [-0.075,0.075] m, and again both are disturbed by
noise.
According to the figure and table, the method yielded good results. There were no outliers inside
the best models of each run. What is strange is better performance on the test data than on
train data. If we look at figure 4.5 we can see similar curves.

Tested problems 23

0 10 20 30 40 50
Seed

0.0005

0.0010

0.0015

0.0020

M
ea

n
Sq

ua
re

d
Er

ro
r

Magman Train and Test MSE

Train MSE
Test MSE

Figure 4.2 Magman Train and Test MSE

Table 4.2 MSE Magman Results

Train MSE Test MSE
Mean 0.001264 0.001055
Median 0.000975 0.000694
Standard Deviation 0.000774 0.000639
Minimum 0.000146 0.000148
Maximum 0.002313 0.001933

24 Experiments

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
x0

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
y

Magman Minimum
Test
Prediction

Figure 4.3 Magman plot with a minimum as fitness evaluation function

Table 4.3 MSE Turtle Bot Results

Train MSE Test MSE
Mean 0.000044 32.049991
Median 0.000039 0.000040
Standard Deviation 0.000020 226.627355
Minimum 0.000015 0.000014
Maximum 0.000106 1602.497436

4.1.3 Turtle Bot
A turtle bot is a small two-wheeled robot. Its state is described by a vector x = (xpos, ypos,ϕ)
where xpos and ypos are the position coordinates and ϕ is the robot’s direction. The control input
is u = (vf ,va)T where vf and va are desired forward and angular velocity. Models for the three
state variables have the following form [40].

xpos,k+1 = fxpos(xpos,k, ypos,k, ϕk, vf,k, va,k), (4.3)

ypos,k+1 = fypos(xpos,k, ypos,k, ϕk, vf,k, va,k), (4.4)

ϕk+1 = fϕpos(xpos,k, ypos,k, ϕk, vf,k, va,k). (4.5)

Experimental data were collected during the operation of the real robot. Five sequences of
samples starting from the initial state x0 = (0,0,0)T were generated with a sampling period Ts

= 0.2 s. In each sequence, the robot was steered by 30 different pairs of random inputs vf , va,
keeping each pair of inputs constant for 5 samples. This yielded 150 samples per sequence. The
random inputs were drawn from the domain vf ∈ [0,0.3] m·s−1, va ∈ [-1,1] rad·s−1 [40].

Tested problems 25

0 10 20 30 40 50
Seed

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

M
ea

n
Sq

ua
re

d
Er

ro
r

Turtle Train and Test MSE
Train MSE
Test MSE

Figure 4.4 Turtle Bot Train and Test MSE

From the table, it is noticeable that there was one overfitted run and the test MSE is enormous
because of that. If we look at the median, we can see that this was an exception. Otherwise, the
results are acceptable.

26 Experiments

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
x0

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y
Magman Minimum

Test
Prediction

Figure 4.5 Magman with the minimum as aggregation function for node fitness

4.2 Evaluation Metric
Another experiment is the different evaluation metrics used for node fitness. The proposal was
minimum, average and median.

Evaluation Metric 27

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
x0

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y

Magman Average
Test
Prediction

Figure 4.6 Magman with the average as aggregation function for node fitness

Taking a closer look, the median and minimum methods look very similar. On the other
hand, the average took a different approach. Let’s look closer at the tables
Judging from the tables, differences are negligible.

Table 4.4 MSE Magman Median Results

Train MSE Test MSE
Mean 0.001257 0.001035
Median 0.000853 0.000652
Standard Deviation 0.000762 0.000640
Minimum 0.000360 0.000345
Maximum 0.002304 0.001942

28 Experiments

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
x0

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y

Magman Median
Test
Prediction

Figure 4.7 Magman with the median as aggregation function for node fitness

Table 4.5 MSE Magman Minimum Results

Train MSE Test MSE
Mean 0.001264 0.001055
Median 0.000975 0.000694
Standard Deviation 0.000774 0.000639
Minimum 0.000146 0.000148
Maximum 0.002313 0.001933

Table 4.6 MSE Magman Average Results

Train MSE Test MSE
Mean 0.001429 0.001202
Median 0.001463 0.001324
Standard Deviation 0.000760 0.000638
Minimum 0.000224 0.000209
Maximum 0.002305 0.002008

Evaluation Metric 29

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
x0

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y

Magman Comparison
Test
Prediction Median
Prediction Average
Prediction Minimum

Figure 4.8 Magman Plots

30 Experiments

Chapter 5

Conclusion

The proposed method works in given conditions; it is essential to realise that evolving a second
population takes some time. Even though I did not measure performance differences, it took
around twice the time as before. The conducted research was for single objective optimisation,
which is not the main scope of the previous work. Different from some deep neural networks,
conducted experiments yielded good results without the tedious fine-tuning of parameters, and
models took a short time to produce. The correlation between individual features might be
too complex to properly implement as the linkage[9] is hard to grasp. Judging from the last
experiment, I do not deem this as a good direction to continue, as feature evolution can be
highly unpredictable. The complexity of the models was of the correct size. As I could spot, any
larger would lead only to very complex models, further away from the ideal formula. This can
be said as my primary research focused on magnetic manipulation, which has only one variable,
and resistors, which have elementary formulas.

5.1 Future work
The work could be extended to multi-objective optimisation, considering the prior knowledge
and introducing constraints[4]. Longer training times, more extensive datasets and more complex
models could be introduced to increase the likelihood of finding a model with good fitness. More
complex models could tackle better problems like turtle bot or inverted pendulum[41], which are
more complex. More methods to sustain diversity could be deployed, like diversity metrics or
encouraging the models to choose nodes which were never used. The work could be compared
to the N4SR[34] as I had the honour to test the previous multi-objective version of this SNGP
and the N4SR.

31

32 Conclusion

Bibliography

1. AUGUSTO, Douglas Adriano; BARBOSA, Helio JC. Symbolic regression via genetic pro-
gramming. In: Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks. IEEE,
2000, pp. 173–178.

2. WANG, Yiqun; WAGNER, Nicholas; RONDINELLI, James M. Symbolic regression in ma-
terials science. MRS Communications. 2019, vol. 9, no. 3, pp. 793–805.

3. KUBALÍK, Jǐŕı; DERNER, Erik; BABUŠKA, Robert. Enhanced symbolic regression through
local variable transformations. In: Proceedings of the 9th International Joint Conference on
Computational Intelligence. 2017, vol. 1, pp. 91–100.

4. KUBALÍK, Jǐŕı; DERNER, Erik; BABUŠKA, Robert. Symbolic regression driven by train-
ing data and prior knowledge. In: Proceedings of the 2020 Genetic and Evolutionary Com-
putation Conference. 2020, pp. 958–966.

5. KUBALÍK, Jǐŕı; DERNER, Erik; ŽEGKLITZ, Jan; BABUŠKA, Robert. Symbolic regres-
sion methods for reinforcement learning. IEEE Access. 2021, vol. 9, pp. 139697–139711.

6. BYRNE, Barbara M. Structural equation modeling with EQS: Basic concepts, applications,
and programming. Routledge, 2013.

7. KOZA, John R; ANDRE, David; KEANE, Martin A; BENNETT III, Forrest H. Genetic
programming III: Darwinian invention and problem solving. Vol. 3. Morgan Kaufmann,
1999.

8. SHARMA, s; CHAHAR, Vijay. A Comprehensive Review on Multi-objective Optimization
Techniques: Past, Present and Future. Archives of Computational Methods in Engineering.
2022, vol. 29, p. 3. Available from doi: 10.1007/s11831-022-09778-9.

9. LUKE, Sean. Essentials of metaheuristics. 2009.
10. LANTZ, Brett. Machine learning with R: expert techniques for predictive modeling. Packt

publishing ltd, 2019.
11. Y., Chen; H., Jiang; C., Li; Z., Jiang; P., Ghamisi. Deep Feature Extraction and Classifi-

cation Of Hyperspectral Images Based On Convolutional Neural Networks. IEEE Trans.
Geosci. Remote Sensing. 2016, vol. 54, pp. 6232–6251. Available from doi: 10.1109/tgrs.
2016.2584107.

12. Y., Xu; R., Goodacre. On Splitting Training and Validation Set: A Comparative Study Of
Cross-validation, Bootstrap And Systematic Sampling For Estimating The Generalization
Performance Of Supervised Learning. J. Anal. Test. 2018, vol. 2, pp. 249–262. Available
from doi: 10.1007/s41664-018-0068-2.

13. A., Song L. Smola A. Gretton; K., Borgwardt; J., Bedo. Supervised Feature Selection Via
Dependence Estimation. 2007. Available from doi: 10.1145/1273496.1273600.

33

https://doi.org/10.1007/s11831-022-09778-9
https://doi.org/10.1109/tgrs.2016.2584107
https://doi.org/10.1109/tgrs.2016.2584107
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1145/1273496.1273600

34 Bibliography

14. J., Suykens; J., Brabanter; L., Lukas; J., Vandewalle. Weighted Least Squares Support
Vector Machines: Robustness and Sparse Approximation. Neurocomputing. 2002, vol. 48,
pp. 85–105. Available from doi: 10.1016/s0925-23120100644-0.

15. ŽEGKLITZ, Jan; POŠIK, Petr. Benchmarking state-of-the-art symbolic regression algo-
rithms. Genetic programming and evolvable machines. 2021, vol. 22, pp. 5–33.

16. WEBB, G. Opus: An Efficient Admissible Algorithm For Unordered Search. jair. 1995,
vol. 3, pp. 431–465. Available from doi: 10.1613/jair.227.

17. ZHANG, R.; LENSEN, A.; SUN, Y. Speeding Up Genetic Programming Based Symbolic
Regression Using Gpus. 2022, pp. 519–533. Available from doi: 10.1007/978- 3- 031-
20862-1_38.

18. CHEN, Q.; ZHANG, M.; XUE, B. Feature Selection To Improve Generalization Of Genetic
Programming For High-dimensional Symbolic Regression. IEEE Trans. Evol. Computat.
2017, vol. 21, pp. 792–806. Available from doi: 10.1109/tevc.2017.2683489.

19. MERTIKOPOULOS, P.; PAPADIMITRIOU, C.; PILIOURAS, G. Cycles In Adversarial
Regularized Learning. 2018, pp. 2703–2717. Available from doi: 10.1137/1.9781611975031.
172.

20. VUL, E.; GOODMAN, N.; GRIFFITHS, T.; TENENBAUM, J. One and Done? Optimal
Decisions From Very Few Samples. Cogn Sci. 2014, vol. 38, pp. 599–637. Available from
doi: 10.1111/cogs.12101.

21. PETERSEN, B.; LANDAJUELA, M.; MUNDHENK, T.; SANTIAGO, C.; KIM, S.; KIM,
J. Deep Symbolic Regression: Recovering Mathematical Expressions From Data Via Risk-
seeking Policy Gradients. 2019. Available from doi: 10.48550/arxiv.1912.04871.

22. MITCHELL, M.; WU, S.; ZALDIVAR, A.; BARNES, P.; VASSERMAN, L.; HUTCHIN-
SON B.and . . . Gebru, T. Model Cards For Model Reporting. 2019. Available from doi:
10.1145/3287560.3287596.

23. KOZA, J. Genetic Programming As a Means For Programming Computers By Natural
Selection. Stat Comput. 1994, vol. 4. Available from doi: 10.1007/bf00175355.

24. AZMI, E.; EHRET, U.; WEIJS, S.; RUDDELL, B.; PERDIGÃO, R. Technical Note: Bit By
Bit: a Practical And General Approach For Evaluating Model Computational Complexity
Vs. Model Performance. 2020. Available from doi: 10.5194/hess-2020-128.

25. ZHAO, Q.; HASTIE, T. Causal Interpretations Of Black-box Models. Journal of Business
Economic Statistics. 2019, vol. 39, pp. 272–281. Available from doi: 10.1080/07350015.
2019.1624293.

26. BUN, J.; BOUCHAUD, J.; POTTERS, M. Cleaning Large Correlation Matrices: Tools
From Random Matrix Theory. Physics Reports. 2017, vol. 666, pp. 1–109. Available from
doi: 10.1016/j.physrep.2016.10.005.

27. WANG, Z.; ZHAN, Z.; LIN, Y.; YU, W.; YUAN, H.; GU, T.; ZHANG, J. Dual-strategy
Differential Evolution With Affinity Propagation Clustering For Multimodal Optimization
Problems. IEEE Trans. Evol. Computat. 2018, vol. 22, pp. 894–908. Available from doi:
10.1109/tevc.2017.2769108.

28. LIU, Y.; GONG, D.; SUN, J.; JIN, Y. A Many-objective Evolutionary Algorithm Using a
One-by-one Selection Strategy. IEEE Trans. Cybern. 2017, vol. 47, pp. 2689–2702. Available
from doi: 10.1109/tcyb.2016.2638902.

29. ALBADR, M.; TIUN, S.; AYOB, M.; AL-DHIEF, F. Genetic Algorithm Based On Natural
Selection Theory For Optimization Problems. Symmetry. 2020, vol. 12, p. 1758. Available
from doi: 10.3390/sym12111758.

https://doi.org/10.1016/s0925-2312 01 00644-0
https://doi.org/10.1613/jair.227
https://doi.org/10.1007/978-3-031-20862-1_38
https://doi.org/10.1007/978-3-031-20862-1_38
https://doi.org/10.1109/tevc.2017.2683489
https://doi.org/10.1137/1.9781611975031.172
https://doi.org/10.1137/1.9781611975031.172
https://doi.org/10.1111/cogs.12101
https://doi.org/10.48550/arxiv.1912.04871
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1007/bf00175355
https://doi.org/10.5194/hess-2020-128
https://doi.org/10.1080/07350015.2019.1624293
https://doi.org/10.1080/07350015.2019.1624293
https://doi.org/10.1016/j.physrep.2016.10.005
https://doi.org/10.1109/tevc.2017.2769108
https://doi.org/10.1109/tcyb.2016.2638902
https://doi.org/10.3390/sym12111758

Bibliography 35

30. AIVALIOTIS-APOSTOLOPOULOS, P.; LOUKIDIS, D. Swarming Genetic Algorithm: a
Nested Fully Coupled Hybrid Of Genetic Algorithm And Particle Swarm Optimization.
PLoS ONE. 2022, vol. 17, e0275094. Available from doi: 10.1371/journal.pone.0275094.

31. O’NEILL, Michael. Riccardo Poli, William B. Langdon, Nicholas F. McPhee: A Field Guide
to Genetic Programming: Lulu. com, 2008, 250 pp, ISBN 978-1-4092-0073-4. Springer,
2009.

32. OSTERTAGOVÁ, Eva. Modelling using polynomial regression. Procedia Engineering. 2012,
vol. 48, pp. 500–506.

33. SMOLA, Alex J; SCHÖLKOPF, Bernhard. A tutorial on support vector regression. Statis-
tics and computing. 2004, vol. 14, pp. 199–222.

34. KUBALÍK, Jǐŕı; DERNER, Erik; BABUŠKA, Robert. Toward Physically Plausible Data-
Driven Models: A Novel Neural Network Approach to Symbolic Regression. IEEE Access.
2023.

35. CARLIN, Bradley P; LOUIS, Thomas A. Bayesian methods for data analysis. CRC press,
2008.

36. JACKSON, David. A new, node-focused model for genetic programming. In: Genetic Pro-
gramming: 15th European Conference, EuroGP 2012, Málaga, Spain, April 11-13, 2012.
Proceedings 15. Springer, 2012, pp. 49–60.

37. VAFAEE, Fatemeh; TURÁN, György; NELSON, Peter C; BERGER-WOLF, Tanya Y. Bal-
ancing the exploration and exploitation in an adaptive diversity guided genetic algorithm.
In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014, pp. 2570–2577.

38. QI, Xiaofeng; PALMIERI, Francesco. Theoretical analysis of evolutionary algorithms with
an infinite population size in continuous space. Part II: Analysis of the diversification role
of crossover. IEEE Transactions on Neural Networks. 1994, vol. 5, no. 1, pp. 120–129.

39. HURÁK, Zdeněk; ZEMÁNEK, Jǐŕı. Feedback linearization approach to distributed feedback
manipulation. In: 2012 American Control Conference (ACC). IEEE, 2012, pp. 991–996.

40. KUBALÍK, Jǐŕı; DERNER, Erik; BABUŠKA, Robert. Multi-objective symbolic regression
for physics-aware dynamic modeling. Expert Systems with Applications. 2021, vol. 182,
p. 115210.

41. DERNER, Erik; KUBALÍK, Jǐŕı; ANCONA, Nicola; BABUŠKA, Robert. Constructing
parsimonious analytic models for dynamic systems via symbolic regression. Applied Soft
Computing. 2020, vol. 94, p. 106432.

https://doi.org/10.1371/journal.pone.0275094

	Acknowledgement
	Declaration
	Abstract
	list of Abbreviations
	Introduction
	Context of the thesis
	Problem definition
	Original SNGP implementation

	Challenges in Finding Formulas for Models
	Search Space Exploration
	Overfitting and Underfitting
	Computational Efficiency
	Interpretability and Model Complexity
	Maintaining Diversity

	Approaches for Formula Discovery
	Statistical Regression Models
	Neural Networks
	Bayesian Methods

	Fitness Evaluation and Objective Functions
	Fitness Evaluation Metrics
	Testing techniques

	Solution
	Single Node Genetic Programming
	Co-evolution in SNGP
	Inputs and outputs of SNGP
	Separating features and models
	Features evaluation and evolution
	Maintaining diversity
	Implementation of co-evolution
	Used technologies

	Experiments
	Tested problems
	Parallel resistors
	Magnetic Manipulation
	Turtle Bot

	Evaluation Metric

	Conclusion
	Future work

