
Dissertation thesis

A STRING AUTOMATA
APPROACH TO TREE
PATTERN MATCHING AND
INDEXING

Ing. Eliška Šestáková

Submitted to
Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics
Department of Theoretical Computer Science
Supervisor: doc. Ing. Jan Janoušek, Ph.D.
August 18, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Ing. Eliška Šestáková. All rights reserved.
This dissertation thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology. The dissertation
thesis is protected by the Copyright Act and its usage without author’s permission is prohibited (with
exceptions defined by the Copyright Act).

Citation of this dissertation thesis: Šestáková Eliška. A string automata approach to tree pattern matching
and indexing. Dissertation thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Contents

Acknowledgments v

Abstract vi

Notation and conventions viii

Abbreviations x

1 Introduction 1
1.1 Aim of the dissertation thesis . 2
1.2 Contribution of the dissertation thesis . 3
1.3 Structure of the dissertation thesis . 4

2 Preliminaries 5
2.1 Alphabets, strings, languages, and grammars . 5

2.1.1 Aphabets . 5
2.1.2 Strings . 5
2.1.3 Languages . 6
2.1.4 Grammars . 6

2.2 Finite and pushdown automata . 7
2.2.1 Finite automata . 7
2.2.2 Pushdown automata . 11

2.3 Trees . 11
2.3.1 Operations on trees . 14
2.3.2 Tree parts . 23

2.4 Tree languages . 24
2.4.1 Prefix bar notation for ordered labeled trees 25
2.4.2 Path notation for ordered labeled trees . 28
2.4.3 XML and XPath . 30

3 Tree pattern matching 33
3.1 Classification of tree pattern matching problems 34

3.1.1 Structure of the pattern . 34
3.1.2 Nature of the pattern . 35
3.1.3 Integrity of the pattern . 38
3.1.4 Number of patterns . 39
3.1.5 Way of matching the pattern . 39
3.1.6 Exactness of matching the pattern . 39

3.2 Describing tree pattern matching problems using the classification 40
3.3 Possible extensions to the classification . 40
3.4 Summary . 42

iii

iv Contents

4 Previous results and related work 43
4.1 Inexact pattern matching . 43

4.1.1 Strings . 43
4.1.2 Trees . 49

4.2 Indexing . 56
4.2.1 Strings . 56
4.2.2 Trees . 63

5 Main results in inexact tree pattern matching 67
5.1 Constrained 1-degree edit distance . 68
5.2 Problem statement . 71
5.3 Automata approach . 72
5.4 1-degree matching automaton for the constrained simple 1-degree edit distance . 76

5.4.1 Deterministic automaton . 81
5.4.2 Simulation by dynamic programming . 83

5.5 1-degree matching automaton for the simple 1-degree edit distance 88
5.5.1 Pushdown automaton . 90
5.5.2 Finite automaton with ε-transitions . 95
5.5.3 Simulation of the 1-degree matching ε-NFA by dynamic programming . . 100

5.6 1-degree matching automaton for the (constrained) 1-degree edit distance 107
5.6.1 Constrained 1-degree edit distance . 107
5.6.2 1-degree edit distance . 110

5.7 Summary . 118

6 Main results in tree indexing 121
6.1 Problem statement . 122
6.2 Automata approach . 124
6.3 Rootpath automaton . 127
6.4 Path automaton . 130
6.5 Fully-gapped rootpath automaton . 133
6.6 Gapped rootpath automaton . 136
6.7 Summary . 140

7 Conclusions 143
7.1 Contributions of the dissertation thesis . 143
7.2 Future work . 146

A Reviewed publications of the author relevant to the dissertation thesis 159

B Remaining publications of the author relevant to the dissertation thesis 161

C Remaining publications of the author 163

This dissertation thesis has taken its time. I am tremendously grateful
to everyone who allowed for it and cheered me along the way.

I thank my supervisor, Jan Janoušek, for his support, kindness, and
patience. You are the one who inspired me to choose theoretical
computer science as my branch of study and later gave me the idea
to apply for the doctoral study program.

I also express my gratitude to my co-workers: Bořivoj Melichar, Jan
Trávníček, Jan Holub, Štěpán Plachý, Tomáš Pecka, and Ondřej
Suchý for generously sharing their wisdom in the course of my
research.

In addition, I am very grateful for the friendship of Karolina
Hrnčiříková. To her, I would like to say—Thank you for dedi-
cating many hours of your summer vacation to help me convert my
hand-drawn images to LATEX.

Last but not least, I thank Conor White-Sullivan and his team for
the Roam Research note-taking software. It helped me extensively
to complete this dissertation thesis. I also thank Sönke Ahrens for
writing the book “How to take smart notes” and thus introducing me
to the systematic approach to research called Zettelkasten.

Finally, no words will do justice to the role of my parents and
my fiancé, Ondra, in my life. Still, I would like to say that I am
ridiculously grateful for all your love and the many sacrifices you
have made to allow me to write this dissertation thesis. I am blessed
to have been born into such a wonderful family and to have such a
loving life partner. Thank you for being a constant support. Thank
you for keeping me sane. Thank you for pushing me to be the best
version of myself. As an insignificant repayment, I dedicate my work
to you.

v

Abstract

The problem of tree pattern matching can be defined as the search for all occurrences of a pattern
in an input tree. Often, this problem is declared to be analogous to the problem of pattern
matching in strings. One of the approaches used for string pattern matching involves basing
algorithms on the formalism of finite automata, which have been shown to be intuitive, efficient,
and elegant tools for understanding and solving many string pattern matching problems.

Motivated by intuitive and elegant solutions to various string pattern matching problems using
the automata theory, this dissertation thesis focuses on exploring a string automata approach
to the problem of pattern matching in ordered labeled trees. Specifically, we explore a string
automata approach to the inexact (approximate) tree pattern matching and tree indexing for
linear XPath-inspired queries.

Furthermore, this dissertation thesis deals with a classification of tree pattern matching
problems. The reason for this is that although various variants of the tree pattern matching
problem appear in the literature, no unified naming standard for the problem exists. As a result,
tree pattern matching problems are known under several names, making the comparison of
research results unnecessarily difficult.

In summary, this dissertation thesis makes three key contributions. First, we propose a
classification of tree pattern matching problems for ordered labeled trees. This classification
categorizes these problems according to six criteria: the structure of the pattern, the nature of
the pattern, the integrity of the pattern, the number of patterns, the way of matching the pattern,
and the exactness of matching the pattern. The benefit of this classification is the provision of a
unified naming standard for various tree pattern matching problems.

Second, we present novel methods based on string automata for the problem of inexact tree
pattern matching. To measure the similarity between trees, we use the 1-degree edit distance,
where elementary operations consist of node relabeling, leaf insertion, and leaf deletion. As a
solution, we present a pushdown automaton built for a string representation of a pattern tree P
and a nonnegative integer k that represents the maximum 1-degree edit distance allowed. The
automaton can locate all occurrences of P in any input tree with up to k errors. Moreover, we
discuss that the pushdown automaton can be transformed into an equivalent finite automaton due
to its restricted use of the pushdown store. The finite automaton can then be made deterministic
to obtain a linear-time search algorithm. However, this approach comes with high space complexity.
Thus, as an alternative approach, we present an algorithm based on dynamic programming, the
most widely used approach for computing tree edit distance and solving inexact tree pattern
matching problems. Moreover, we show that our dynamic programming algorithm is a simulator
of the corresponding nondeterministic finite automaton.

Third, we present a systematic approach based on string automata to the problem of indexing
trees for linear XPath-inspired queries. Specifically, we focus on three XPath constructs: node test
for node labels, /-axis (child axis), and //-axis (descendant axis). All indexes are constructed using
the same systematic approach as a finite automaton which is shown to be suitable computational
model for this problem, as all the considered queries can be represented as linear trees (paths).

Keywords: tree pattern matching, subtree matching, approximate tree pattern matching,
inexact tree pattern matching, tree indexing, path indexing, XPath, 1-degree edit distance, finite
automaton, pushdown automaton.

vi

vii

Abstrakt

Problém vyhledávání vzorků ve stromech lze definovat jako vyhledávání všech výskytů vzorku ve
vstupním stromě. Tento problém je často připodobňován k problému vyhledávání v řetězcích.
Jedním z přístupů používaném při vyhledávání v řetězcích jsou algoritmy založené na formalismu
konečných automatů, které se ukázaly být intuitivním, elegantním a efektivním nástrojem pro
pochopení a řešení mnoha problémů spojených s řetězci.

Intuitivnost a elegance automatového přístupu k problémům spojených s řetězci je motivací
pro tuto disertační práci, která se zaměřuje na prozkoumání automatového přístupu k problému
vyhledávání vzorků v uspořádaných stromech s pojmenovanými uzly. Konkrétně se tato práce
zaměřuje na použití automatů (zpracovávajících řetězce) pro přibližné vyhledávání ve stromech a
na indexování stromů pro lineární dotazy inspirované jazykem XPath.

Tato práce se dále zabývá klasifikací problémů vyhledávání ve stromech. Ačkoliv se totiž tyto
problémy v literatuře vyskytují v různých variantách, nejsou pojmenovávány jednotně. Důsledkem
toho je, že problémy vyhledávání ve stromech jsou známé pod různými názvy, což činí porovnání
výsledků výzkumu zbytečně složité.

Tato práce má tři hlavní přínosy. Prvním je návrh klasifikace problémů vyhledávání vzorků
v uspořádaných stromech s pojmenovanými uzly, a to podle šesti kritérií: struktura vzorku,
povaha vzorku, celistvost vzorku, počet vzorků, způsob hledání výskytů a přesnost vyhledávání.
Výhodou této klasifikace je, že umožňuje jednotné pojmenování různých problémů vyhledávání ve
stromech.

Druhým přínosem této práce je představení nových metod pro přibližné vyhledávání vzorků
ve stromech založených na automatech pro zpracování řetězců. Pro měření podobnosti stromů
je použita jednostupňová (Selkowova) editační vzdálenost, jejíž základní editační operace jsou:
přejmenování uzlu, vložení listu a smazání listu. Jako řešení představujeme zásobníkový automat
zkonstruovaný pro lineární zápis zadaného stromového vzorku P a nezáporné celé číslo k s vý-
znamem maximální dovolené editační vzdálenosti. Automat najde všechny výskyty vzorku P
s nejvýše k chybami v jakémkoli vstupním stromu. Navíc je ukázáno, že zmíněný zásobníkový
automat lze převést na ekvivalentní konečný automat díky omezenému použití zásobníku. Konečný
automat lze posléze převést na deterministický a získat tím algoritmus na vyhledávání v lineárním
čase. Bohužel tento přístup znamená vysokou paměťovou složitost. Proto jako alternativní
přístup představujeme algoritmus založený na dynamickém programování, což je nejrozšířenější
přístup pro výpočet stromové editační vzálenosti a pro řešení problémů přibližného vyhledávání
ve stromech. Navíc je ukázáno, že náš algoritmus s dynamickým programováním je simulátorem
nedeterministického konečného automatu.

Jako třetí přínos této práce je představený systematický automatový přístup k řešení problému
indexování stromů pro lineární dotazy inspirované jazykem XPath. Konkrétně se v práci zamě-
řujeme na tři konstrukty z XPath: test na uzel na název elementu, /-osu (osa dětí) a //-osu
(osa potomků). Všechny indexy jsou zkonstruované za použití stejného systematického přístupu
jako konečné automaty. Ty se ukazují býti vhodným modelem výpočtu pro tento problém, neboť
všechny uvažované dotazy mohou být reprezentované jako lineární stromy (cesty).

Klíčová slova: vyhledávání vzorků ve stromech, vyhledávání podstromů, přibližné vyhledá-
vání vzorků ve stromech, indexování stromů, indexování cest, XPath, jednostupňová editační
vzdálenost, konečný automat, zásobníkový automat.

Notation and conventions

Typesetting mathematics. In general, the following notation and font styles are used in this
dissertation thesis for typesetting mathematics:

A, . . . , Z upper-case letters for sets and nonterminal symbols of a grammar
a, b, c lower-case italic letters a, b, c for arbitrary set elements

i, j, k, l, m, n lower-case italic letters i, j, k, l, m, n for nonnegative integer variables
p, q lower-case italic letters p, q for states

u, v, w lower-case italic letters u, v, w for vertices (nodes)
a, . . . , z typewriter font for specific alphabet symbols
a, . . . , z lower-case bold italic letters for sequences of symbols (i.e., strings)

A, . . . , Z upper-case bold italic letters for arrays and stacks
A, . . . ,Z upper-case letters typeset with calligraphic font for composite objects;

namely, graphs, trees, automata, and grammars
prefBar sans serif font and camel case naming conventions for multi-letter function

names
d, f, δ, γ lower-case italic letters d and f or lowercase Greek letters δ and γ for

single-letter function names

Naming conventions. Moreover, the following general naming conventions often used in the
literature are also adhered in this dissertation thesis:

L for a language
M for an automaton
Σ for an alphabet
Γ for a pushdown alphabet
⊥ for the start (pushdown) symbol
Q for a set of states
F for a set of final states
δ for an automaton transition function
ε for the empty sequence of symbols chosen from an

alphabet (i.e., the empty string)
t for an input string (text)
p for a pattern string
G for a graph and a grammar
T for an input tree
P for a pattern tree
V for a set of vertices (nodes)
E for a set of edges

Names are also sometimes used with a subscript (x1), superscript
(
x1)

, prime symbol (x′),
or circumflex/hat (x̂) attached.

viii

ix

Numbers. All number variables used in this dissertation thesis are nonnegative integers. Thus,
for brevity, it is not mentioned explicitly. For example, i ≥ 2 is used instead of i ∈ N ∧ i ≥ 2.
The set of natural numbers {1, 2, 3, . . . } is denoted by N. The set of natural numbers including
zero is denoted by N0; that is N0 = N ∪ {0}.

Sets. Given sets A and B, the relation that A is subset (possibly equal) of B is denoted by
A ⊆ B. The powerset of A is denoted by 2A. A function f from A to B is denoted by f : A→ B.
By convention, every function is assumed to be total unless indicated otherwise.

Presentation of algorithms. To make the specifications of algorithms clear and easy to read,
a presentation style suggested by Zobel [1, Chapter 10] called prosecode is used in this dissertation
thesis. Thus, algorithms are described by text with embedded code rather than as code with
textual annotations that may be unnecessarily difficult to read.

Each presentation of algorithms consists of a preamble and a body. The preamble contains
specifications for the input and output and sometimes a brief explanation of the algorithm and
algorithm-specific notation used in the body. In general, the body consists of code statements
mixed with explanatory text with the following conventions:

1, 1a Instead of using block-bounding statements such as begin and
end, the algorithm’s structure is given by numbered lists in which
loops are presented as sublists with nested numbering.

i← 0 Symbol “←” denotes an assignment. For example, setting variable
i to zero is written as set i← 0.

a = b The comparison of a and b (whether they are equal or not) is
denoted by a = b. This comparison is true if a is equal to b.
Otherwise, it is false.

xi Mathematical notation is used instead of programming notation.
For example, xi is used rather x[i].

Abbreviations

DASG Directed Acyclic Subsequence Graph
DAWG Directed Acyclic Word Graph

DFA Deterministic Finite Automaton
DTD Document Type Definition
NFA Nondeterministic Finite Automaton
PDA Pushdown Automaton

SNINWE Structure Nature Integrity Number Way Exactness
XML Extensible Markup Language

XPath XML Path Language

x

Chapter 1

Introduction

The problem of tree pattern matching can be defined as the search for all occurrences of a pattern
in an input tree. This problem has applications in various areas, such as genetics [2], [3], code
generation [4], [5], term rewriting [6], and XML (Extensible Markup Language) processing [7], [8].

In the literature, tree pattern matching has several variants that differ in the type of tree
considered, the definition of the pattern, and the specification when a pattern is considered to
occur in an input tree. A tree can, for example, be free or rooted, ordered or unordered, and
labeled or unlabeled. A pattern can be described by an ordinary tree, a finite set of trees, or
a tree where nodes are labeled by special symbols such as wildcards and variables. It can also
be described as a regular tree expression or a query using the syntax of query language, such
as XPath (XML Path Language). A pattern can be considered to occur in an input tree if, for
example, a part of the input tree is the same as the pattern, or the matching process can be more
tolerant and allow some errors.

Tree pattern matching can be considered as an extension of string pattern matching. One
of the approaches used for string pattern matching is to base algorithms on the formalism of
finite automata [9]–[15], which have been shown to be intuitive, efficient, and elegant tools
for understanding and solving many string pattern matching problems. Moreover, the use of
deterministic finite automata leads to linear-time searching algorithms. Automata-based methods
also represent a systematic approach to solving string pattern matching problems and can be
considered a unifying view of algorithms for string pattern matching [9], [12]. As a result, these
algorithms are easier to understand, implement, and extend to solve similar problems. Some
existing algorithms for string processing have also been shown to be simulators of nondeterministic
finite automata that can be constructed to solve these tasks [12], [16]–[18].

In general, finite automata can be used in two ways to solve string pattern matching problems
depending on whether the pattern or the input text changes more often. In case of a fixed pattern,
efficiency is reached by preparing the pattern and creating a string matching automaton [10].
When looking for occurrences of different patterns in a fixed input text, it is suitable to preprocess
the input text and create a data structure known as index. Examples of automata-based indexes
are suffix or factor automata [19], [20].

Motivated by intuitive and elegant solutions to various string pattern matching problems using
the automata theory, researchers have been exploring the adaptation of the automata approach
to the domain of trees. One way to process a tree structure is to use a computational model
known as tree automaton [21], [22], which works directly on the tree structure and can be viewed
as the generalization of a string automaton. Another way is to encode trees as strings using linear
notation and use string automata for their processing.

In 2008, Flouri, Janoušek, and Melichar [23] founded a new algorithmic discipline representing
a systematic approach to tree pattern matching using string automata in the same way that string

1

2 Introduction

automata are used as a unified strategy for string pattern matching. Since stringology is a popular
nickname for string algorithms, Flouri, Janoušek, and Melichar called their approach arbology
[23]–[25] from the Spanish word árbol, meaning tree. As its computational model, arbology uses
a pushdown automaton that reads the linear notation of a tree and processes the underlying
tree structure using the pushdown store. One of the main results of arbology research is that
a deterministic pushdown automaton can solve any problem that can be solved by a finite tree
automaton [26]. Among other results of arbology belong methods for indexing trees [23], [27]–[33],
finding repeats of tree patterns in trees [23], [30], tree compression [34], [35], and searching
subtrees [23], [30] and patterns with subtree wildcards [30], [36] in trees.

This dissertation thesis follows in the footsteps of arbology. We1 propose systematic, elegant,
and intuitive methods based on string automata for tree pattern matching problems that have not
yet been addressed in arbology. We specify these problems in the following two sections where we
introduce the aims and contributions of this dissertation thesis. As a conclusion of this chapter,
we provide an overview of the structure of this dissertation thesis.

1.1 Aim of the dissertation thesis
In this dissertation thesis, we focus on pattern matching in rooted ordered labeled trees in which
one node is distinguished from others, sibling order matters, and each node is associated with a
label.

Although various variants of the tree pattern matching problem appear in the literature, no
unified naming standard for the problem exists. As a result, tree pattern matching problems are
known under several names, making the comparison of research results unnecessarily complex.
For example, in its most simplified form, the input of the tree pattern matching problem is
two trees, an input tree and a pattern tree, and the goal is to find all exact occurrences of
the pattern tree in the input tree. This problem is known under names such as exact tree
matching [8], subtree matching [24], [30], [33], [37], [38], or subtree isomorphism [39, Section 4.2],
[40]. A variant of this problem allows the leaves of the pattern tree to be labeled by special
symbols that match any subtree of the input tree. In the literature, these symbols are known as
wildcards [22, Section 3.1.2], (sub)tree placeholders [6], or don’t care symbols [30], [36], [41]. The
corresponding problem is called tree pattern matching [6], [33] or (tree) template matching [30],
[41]. The absence of a unified naming standard for tree pattern matching problems takes us to
the first research question that we aim to answer in this dissertation thesis.

▶ Question 1.1. How can various problems of tree pattern matching be presented together and in
a common style such that their relations become clear?

After solving the first question, our next aim is to further develop arbology research by
proposing a systematic approach based on string automata to tree pattern matching problems
that have not yet been addressed in arbology research. In particular, we are interested in two
problems: inexact (approximate) tree pattern matching and XML processing. Both of these
problems have been suggested as topics for future arbology research [25], [30].

The problem of inexact tree pattern matching is a variant of tree pattern matching that aims
to find occurrences of the pattern in the input tree with up to a given maximum number of errors.
This more tolerant type of tree pattern matching is useful if the pattern, input tree, or both can
be subjects of deformation or corruption and the data cannot be corrected beforehand. Measuring
the similarity between two trees is known as the tree edit distance problem (or tree-to-tree
correction problem). It was first introduced by Selkow [42] in the late 70’s as a generalization of

1By convention, the personal pronoun “we” is used throughout this dissertation thesis, although it is the
work of a single author. Examiners may be interested in Appendix A containing a list of reviewed publications
of the author of this dissertation thesis and a description of contributions the author has made in publications
co-authored with researchers other than the supervisor.

Contribution of the dissertation thesis 3

the well-known string edit distance problem [43]. Since then, other types of tree edit distances
have been introduced [44, Chapter 11], [45].

The problem of inexact tree pattern matching is a direct extension of inexact string pat-
tern matching for which the automata approach has been studied before [12, Section 2.2.3.2],
[9], [16], [46]–[48]. However, to our knowledge, although the problem of inexact tree pattern
matching has been addressed [49]–[52], no existing solutions are based on the formalism of string
automata. This leads to our second research question.

▶ Question 1.2. How can existing automata-based methods for solving inexact string pattern
matching be adapted to the inexact tree pattern matching problem?

The second area in which we aim to develop arbology research further is inspired by XML
processing. We aim to explore a systematic string automata approach to the problem of tree
indexing for linear XPath-inspired queries.

▶ Question 1.3. How can automata-based principles used for text indexing be adapted to the
problem of indexing trees for linear XPath-inspired queries?

These three questions are addressed in Chapters 3, 5, and 6.

1.2 Contribution of the dissertation thesis
This dissertation thesis makes three main contributions to the problem of tree pattern matching.
Specifically, the contributions correspond to the aims described in the previous section.

The first contribution is a novel method of classification of tree pattern matching problems for
ordered labeled trees called the SNINWE (Structure Nature Integrity Number Way Exactness)
classification. It categorizes tree pattern matching problems according to six criteria: the structure
of the pattern, the nature of the pattern, the integrity of the pattern, the number of patterns,
the way of matching the pattern, and the exactness of matching the pattern. This classification
benefits by providing a unified naming standard for various tree pattern matching problems.

The remaining two contributions reside in the adaptation of automata-based methods and
principles used for inexact string pattern matching and text indexing to the domain of trees.
These contributions also help to further develop arbology research. Moreover, we show that a
finite automaton is a sufficient computational model for the problems we consider.

Our second contribution presents novel methods based on string automata for inexact tree
pattern matching under the 1-degree edit distance. The 1-degree edit distance is an edit distance
for ordered labeled trees introduced by Selkow [42], where elementary operations consist of node
relabeling, leaf insertion, and leaf deletion. We consider both the unit cost and the non-unit cost
variant of this distance. In the first case, computing the distance between two trees corresponds
to seeking the minimum number of operations required to make the first tree isomorphic to
the other. In the second case, we look for the cost of a least-cost sequence of operations. As a
solution, we present a pushdown automaton built for a string representation of a pattern tree P
and a nonnegative integer k that represents the maximum 1-degree edit distance allowed. The
automaton can locate all occurrences of P in any input tree with up to k errors.

Moreover, we discuss that the pushdown automaton can be transformed into an equivalent
finite automaton due to its restricted use of the pushdown store. The finite automaton can then
be made deterministic to obtain a linear-time search algorithm. However, this approach comes
with high space complexity. Thus, as an alternative approach, we propose a simulation of the
nondeterministic finite automaton based on dynamic programming.

Our third contribution is an extension of arbology research to the domain of XML processing.
We present a systematic approach based on string automata to the problem of indexing trees for
linear XPath-inspired queries. Specifically, we focus on three XPath constructs: node test for
node labels, /-axis (child axis), and //-axis (descendant axis).

4 Introduction

First, we present a rootpath automaton that is an index of all the rootpaths (root-to-node
paths) of an ordered labeled tree. Searching for rootpaths in a tree corresponds to the evaluation
of XPath queries that consist only of the /-axis and the node test for node labels. Then, we
introduce a path automaton, which is an index of all the paths of an ordered labeled tree. Searching
for paths in a tree is analogous to evaluating XPath queries that start with the //-axis and
continue only with the /-axis. As a third indexing automaton, we present a fully-gapped rootpath
automaton that is an index of an ordered labeled tree for every linear fully-gapped pattern tree for
which there exists a matching rootpath in the indexed tree. A linear fully-gapped pattern tree is
similar to a subsequence used in the string domain. In the context of XPath, this automaton can
evaluate all queries that consist only of the //-axis and the node test for node labels. As a final
index, we introduce a gapped rootpath automaton that is an index of an ordered labeled tree for
every linear gapped pattern tree for which there exists a matching rootpath in the indexed tree.
A linear gapped pattern tree is an ordered labeled tree that can contain path wildcards. This
type of pattern is inspired by XPath queries that can contain both the /-axis and the //-axis.

All indexes are constructed using the same systematic approach as a finite automaton which
is shown to be a suitable computational model for this problem, as all the considered queries
can be represented as linear trees (paths). In other words, since the underlying tree structure of
linear queries is simple and fixed, the pushdown store for its processing is not needed.

1.3 Structure of the dissertation thesis
This dissertation thesis consists of seven chapters, including this one. Chapter 2 provides the
theoretical background. It contains definitions of basic concepts from the theory of formal string
languages, including grammars and automata. In addition, the chapter also introduces trees and
tree languages. In Chapter 3, we introduce our classification of tree pattern matching problems
for ordered labeled trees. We also provide examples of using the classification as a unified naming
standard for tree pattern matching problems and discuss some of its possible extensions. Chapter 4
provides an overview of existing methods related to the two algorithmic problems considered in
this dissertation thesis. As we represent trees as strings, we also discuss relevant methods from the
domain of strings. In Chapter 5, we propose novel methods based on string automata for solving
the inexact tree pattern matching problem under the 1-degree edit distance. In Chapter 6, we
present a systematic approach to constructing string automata indexes for linear XPath-inspired
queries. Chapter 7 concludes the dissertation thesis. Apart from providing an overview of the
main results and conclusions arrived at, a list of open problems suitable for future investigation
is also discussed in the last chapter.

Chapter 2

Preliminaries

This chapter is devoted to the theoretical background of this dissertation thesis. First, we provide
definitions of basic concepts from the theory of formal (string) languages, including grammars
and automata. Then, trees and tree languages are introduced. In addition, this chapter includes
definitions of tree parts used in tree pattern matching, such as subtree, bottom-up subtree, or
rootpath. We also present some operations on trees and discuss how trees can be represented as
strings. Finally, we briefly describe XML and its query language called XPath.

2.1 Alphabets, strings, languages, and grammars
In this section, we define basic concepts from the theory of formal (string) languages that pervade
the theory of automata. These concepts include alphabets, strings, and languages. We also
consider the characterization of languages based on the concept of grammar.

2.1.1 Aphabets
An alphabet is a finite nonempty set whose elements are called symbols. Conventionally, we use
the symbol Σ for an alphabet. For a ∈ Σ, we define {a} = Σ \ {a}. When comparing two symbols,
we say that the symbols match if they are equal; otherwise, we say that they mismatch.

2.1.2 Strings
A string over Σ is a finite sequence of elements of Σ. For simplicity of notation, we write a string
as the simple juxtaposition of symbols that compose it. For example, if Σ = {a, b, c}, then acab
is a string over Σ.

The length of a string x is the length of the sequence associated with x. We use the standard
notation |x| to denote the length of string x. For example, |acab| = 4. The sequence of zero
length is called the empty string and is denoted by ε.

When x is a nonempty string, we use xi, where i ∈ {1, . . . , |x|}, to denote the symbol at
index (position) i of x with the convention that indices begin with 1. For example, if x = acba,
then x1 = x4 = a, x2 = c, and x3 = b.

Given two strings x and y, we say that x = y if |x| = |y| and xi = yi for each i ∈ {1, . . . , |x|}.
The concatenation of string x and string y, denoted by xy or x · y, is the string of length

|x| + |y| such that xy = x1x2 . . . x|x|y1y2 . . . y|y|. In other words, the concatenation of two
strings x and y is the string composed of the symbols of x followed by the symbols of y. The
concatenation operation is associative, and the neutral element of the concatenation is ε.

5

6 Preliminaries

A string x is a substring (factor) of string y if there exist strings w and z such that y = wxz.
For w = ε, x is a prefix of y; and for z = ε, x is a suffix of y. A substring is called proper if
x ̸= y. Analogously, we define a proper prefix and a proper suffix. Given a nonempty string x,
we denote its substring xixi+1 . . . xj , where 1 ≤ i ≤ j ≤ |x|, by xi...j . A subsequence of x is a
nonempty string obtained by deleting zero or more (not necessarily adjacent) symbols from x.

Let x and y be nonempty strings such that x = yi...j , where 1 ≤ i ≤ j ≤ |y|. We say that x
occurs in y or that there is an occurrence of x in y. The position i is called the start position of
the occurrence and the position j is called the end position of the occurrence.

When we insert string y into string x at position i ∈ {1, . . . , |x|}, string x1 . . . xi−1yxi . . . x|x|
is obtained. For example, if we insert string ab into string cddc at position 2, we get cabddc.
Furthermore, inserting y into x at position 0 gives us string yx, and inserting y into x at position
|x|+ 1, gives us string xy.

▶ Definition 2.1 (Projection of a string onto a subalphabet). Let Σ be an alphabet. Let Σ′ ⊆ Σ.
We define an infix operator ↓ that projects a string over Σ onto a string over Σ′. Formally,
↓ : Σ∗ × 2Σ → Σ∗ is defined for w ∈ Σ∗ as follows:

• ε ↓ Σ′ = ε and

• (aw) ↓ Σ′ =
{

a(w ↓ Σ′) if a ∈ Σ′,

w ↓ Σ′ if a /∈ Σ′.

2.1.3 Languages
Let Σ be an alphabet. We define Σk, where k ≥ 0, to be the set of all strings over Σ of length
k. For example, if Σ = {a, b}, then Σ2 = {aa, ab, ba, bb}. Note that Σ0 = {ε}, regardless of the
symbols that alphabet Σ contains. Conventionally, the set of all strings over Σ is denoted Σ∗.
Formally, Σ∗ =

⋃∞
i=0 Σi. Since Σ0 ⊆ Σ∗, the empty string always belongs to Σ∗. Moreover, we

use Σ+ to denote the set of all nonempty strings over Σ; that is, Σ+ =
⋃∞

i=1 Σi.
Let Σ be an alphabet. Then, L ⊆ Σ∗ is a (string) language over Σ. That is, a language is

a set of strings all of which are chosen from Σ∗. A language L is called finite if it contains a
finite number of strings. Otherwise, it is called infinite. For a finite language L, the number
of its strings is denoted by |L| and called the size of L. The length of language L is defined as∑

x∈L |x|.

2.1.4 Grammars
A grammar is a quadruple G = (N, T, P, S), where N and T are finite disjoint sets (alphabets)
of nonterminal and terminal symbols, respectively; S ∈ N is the start symbol, and P is a set
of production rules of the form αAβ → γ, where A ∈ N and α, β, γ ∈ (N ∪ T)∗. When the
production rules are of the form A→ α, where A ∈ N and α ∈ (N ∪ T)∗, the grammar is called
context-free. When the production rules are of the form A→ α, where A ∈ N and α ∈ T ∗N ∪ T ∗,
the grammar is called regular.

Given a grammar G = (N, T, P, S), we write α → β1 | β2 | . . . | βn instead of α → β1, α →
β2, . . . , α→ βn, where α→ β1, α→ β2, . . . , α→ βn are production rules from P .

Given a context-free or regular grammar G = (N, T, P, S) and x, y ∈ (N ∪ T)∗, we say that x
derives y in one step, denoted by x⇒ y, if there exists (A→ α) ∈ P and β, γ ∈ (N ∪ T)∗ such
that x = βAγ and y = βαγ. Symbol⇒∗ is used for the transitive and reflexive closure of⇒. The
language generated by G, denoted by L (G), is the set of strings L (G) = {w : S ⇒∗ w ∧ w ∈ T ∗}.
A language that can be generated by a context-free grammar is called context-free. A language
that can be generated by a regular grammar is called regular.

Finite and pushdown automata 7

2.2 Finite and pushdown automata
In this section, we provide definitions of (string) automata that are computational models accepting
(string) languages. In particular, we focus on a finite automaton and a pushdown automaton as
a computational model recognizing regular languages and context-free languages, respectively.
We also describe some basic algorithms for finite automata. A more detailed exposition of the
(string) automata theory is given, for example, by Hopcroft et al. [53] or Kozen [54].

2.2.1 Finite automata
A finite automaton is a central notion in the regular string language theory. In this section, we
define three types of finite automata and present three algorithms for finite automata.

▶ Definition 2.2 (Finite automaton with ε-transitions, ε-NFA). A finite automaton with ε-transitions
is a 5-tuple M = (Q, Σ, δ, q0, F) such that

• Q is a finite set whose elements are called states;

• Σ is an alphabet called the input alphabet, and its elements are called input symbols;

• δ : Q× (Σ ∪ {ε})→ 2Q is a transition function whose elements are called transitions;

• q0 ∈ Q is the start state;

• F ⊆ Q is a set whose elements are called final states.

For simplicity, we write δ(p, a) for a ∈ Σ and δ(p, ε) instead of δ((p, a)) and δ((p, ε)), respec-
tively. When q ∈ δ(p, a), we say that there is a transition from state p to state q labeled by a,
or that if the automaton is in state p and reads input a, then it moves to state q. We also say
that p has an outgoing transition to q labeled by a or that q has an incoming transition from p
labeled by a. State p is the source state of the transition, a its label, and state q its target state.
When q ∈ δ(p, ε), we say that there is ε-transition from state p to state q.

For an ε-NFA (Q, Σ, δ, q0, F), function eClose : Q→ 2Q called ε-closure is defined recursively,
as follows:

• State q is in eClose(q).

• If p ∈ eClose(q), then all states contained in δ(p, ε) are in eClose(q). No other states are in
eClose(q) than those produced from basis using the recursive step rule.

We apply the ε-closure to a set of states by taking the union of ε-closures for individual states.
Formally, eClose(A) =

⋃
q∈A eClose(q), where A is a set of states.

Using the ε-closure, the extended transition function δ̂ : Q×Σ∗ → 2Q is defined for an ε-NFA
(Q, Σ, δ, q0, F) and a string w ∈ Σ∗ recursively, as follows:

δ̂(q, w) =
{

eClose(q) if w = ε,⋃
pi∈δ̂(q,x) eClose (δ(pi, a)) if w = xa ∧ a ∈ Σ.

In other words, δ̂(q, w) is the set of states that can be reached along a sequence of transitions
whose labels, when concatenated, form the string w.

A state q of an ε-NFA (Q, Σ, δ, q0, F) is accessible if there exists a string w ∈ Σ∗ such that
q ∈ δ̂(q0, w). A state that is not accessible is unreachable.

Given an ε-NFA M = (Q, Σ, δ, q0, F), we say that a string w is accepted by M (or that M
accepts w) if δ̂(q0, w) ∩ F ̸= ∅. Otherwise, w is rejected by M. The set of all strings accepted by
M is called the language of M (or the language accepted by M) and is denoted by L(M). Given

8 Preliminaries

q0start q1 q2

a

Σ b, c

ε

Figure 2.1 Pictorial representation of an ε-NFA M = ({q0, q1, q2}, Σ, {(q0, a, {q0, q1}), (q0, b, {q1}),
(q0, c, {q1}), (q0, ε, {q2}), (q1, a, ∅), (q1, b, {q2}), (q1, c, {q2}), (q1, ε, ∅), (q2, a, ∅), (q2, b, ∅), (q2, c, ∅),
(q2, ε, ∅)}, q0, {q2}), where Σ = {a, b, c}. Each state is illustrated as a circle. Final states are marked by a
double circle while non-final states have a single circle. If q ∈ δ(p, a) for a ∈ Σ ∪ {ε}, then we draw an
arrow labeled by a that leads from the circle that corresponds to p to the circle that corresponds to q. If
there are several input symbols that cause transitions from p to q, we use only one arrow labeled by the
list of these symbols (or a set containing these symbols). We mark the start state q0 by an arrow that
does not originate at any state and leads to the circle that corresponds to q0.

a language L, we say thatM is accepting L if L(M) = L. Two finite automata with ε-transitions
are equivalent if they accept the same language. Given qf ∈ δ̂(q0, w) and qf ∈ F , we say that qf

is the accepting state for w.
By restricting the transition function of an ε-NFA, we obtain a nondeterministic finite

automaton (NFA) and deterministic finite automaton (DFA).

▶ Definition 2.3 (Nondeterministic finite automaton, NFA). A nondeterministic finite automaton
is a 5-tuple M = (Q, Σ, δ, q0, F) where all components have their same interpretation as for an
ε-NFA, except that for each state q ∈ Q, it holds that δ(q, ε) = ∅.

By convention, we simplify the transition function of an NFA to δ : Q× Σ→ 2Q.
If we do not explicitly define δ(q, a) for a ∈ Σ or δ(q, ε) for a state q in our algorithms that

construct an NFA or ε-NFA, we assume that these transitions lead to the empty set.
By restricting the transition function of an NFA to be a function yielding a set of states that

consists of at most one state, we obtain the deterministic finite automaton.

▶ Definition 2.4 (Deterministic finite automaton, DFA). A deterministic finite automaton is a
5-tuple M = (Q, Σ, δ, q0, F) where all components have their same interpretation as for an NFA,
except that for each pair (q, a) ∈ Q× Σ, it holds that |δ(q, a)| ≤ 1.

For a DFA, it is natural to consider the transition function defined as a partial function
δ : Q × Σ → Q. In this dissertation thesis, we adopt this convention. We call a deterministic
finite automaton (Q, Σ, δ, q0, F) total when δ is defined for all pairs (q, a) ∈ Q× Σ.

A DFA is called (state) minimal if there does not exist any equivalent DFA with less number
of states. Any DFA can be converted into an equivalent minimal DFA; see Hopcroft et al. [53,
Section 4.4] for details.

Conventionally, we describe a finite automaton using a transition diagram; see Figure 2.1.

2.2.1.1 Operations on finite automata
In this section, we describe three algorithms for finite automata. First, we provide an algorithm
for eliminating ε-transitions. Second, we present an algorithm that transforms an NFA into an
equivalent DFA. Then, we describe an algorithm that for given k deterministic finite automata
M1 . . . ,Mk, returns a DFA accepting language L(M1) ∪ · · · ∪ L(Mk).

Given an ε-NFA, Algorithm 2.5 constructs an equivalent NFA. The set of states of the
automaton remains the same. The NFA only differs in the set of final states and transitions. The
computation of ε-closure of n states takes O

(
n3)

time [53, Section 4.3.1].

Finite and pushdown automata 9

▶ Algorithm 2.5 (Construction of an NFA equivalent to a given ε-NFA). Given an ε-NFA M =
(Q, Σ, δ, q0, F), the algorithm constructs an NFA M′ = (Q, Σ, δ′, q0, F ′) that is equivalent to M.

1. (Eliminate ε-transitions.) For each q ∈ Q and for each a ∈ Σ: Set δ′(q, a) =
⋃

p∈eClose(q) δ(p, a).

2. (Define the set of final states.) F ′ = {q : q ∈ Q ∧ eClose(q) ∩ F ̸= ∅}.

3. (Return.) M′ = (Q, Σ, δ′, q0, F ′).

It is well known that every NFA can be turned into an equivalent DFA using so-called subset
(or powerset) construction [55], [53, Section 2.3.5]. This algorithm involves constructing all
subsets of the set of states of the NFA. These subsets are then considered to be the states of
the corresponding DFA. Often, not all of these constructed states in the DFA are accessible. In
Algorithm 2.6, we describe a variant of the subset construction that constructs only accessible
states.

▶ Algorithm 2.6 (Subset construction of a DFA equivalent to a given NFA). Given an NFA
MN = (QN, Σ, δN, q0N, FN), the algorithm constructs a DFA MD = (Q, Σ, δ, q0, F) that is
equivalent to MN. During the construction, we use an attribute called status for each state in
MD. This attribute is either marked or unmarked.

1. (Initialize.)

a. Set q0 ← {q0N}.
b. Set status of q0 as unmarked.
c. Set Q← {q0}.

2. (Determinization.) If status of each state in Q is marked, then continue with Step 3. Otherwise,
choose an arbitrary state q from Q whose status is unmarked and execute the following steps:

a. For each a ∈ Σ, set δ(q, a)←
⋃

p∈q δN(p, a).
b. For each a ∈ Σ, set Q← Q ∪ {δ(q, a)}.
c. For each a ∈ Σ, set status of state δ(q, a) as unmarked.
d. Set status of q as marked.
e. Continue with Step 2.

3. (Define the set of final states.) F = {q : q ∈ Q ∧ q ∩ FN ̸= ∅}.

4. (Return.) Return MD = (Q, Σ, δ, q0, F).

Given an NFA with n states, the DFA constructed by Algorithm 2.6 has 2n states in the
worst case. For an arbitrary n, there is always an NFA for which there is no equivalent DFA with
less than 2n states [56]. The situation is different for some particular cases. See Theorem 2.7,
Definition 2.8, and Theorem 2.9.

▶ Theorem 2.7 (Salomaa et al. [57]). Let Σ be an alphabet such that |Σ| ≥ 2. Let M be an NFA
with n ≥ 2 states accepting a finite language over Σ. Then, the number of states of the DFA
obtained from M by the subset construction is

O
(
|Σ|

n
log |Σ|+1

)
.

▶ Definition 2.8 (Homogenous NFA [58]). Let M = (Q, Σ, δ, q0, F) be an NFA. For each a ∈ Σ,
let Q(a) = {q : q ∈ δ(p, a) ∧ p, q ∈ Q}. If for each pair of symbols a, b ∈ Σ, where a ̸= b, it holds
that Q(a) and Q(b) are disjoint sets, then M is called homogenous.

10 Preliminaries

▶ Theorem 2.9 (Champarnaud et al. [59], Melichar and Skryja [58]). Let M = (Q, Σ, δ, q0, F) be a
homogenous NFA. Then, the DFA obtained from M by the subset construction has |Q′| states,
where

|Q′| ≤
∑
a∈Σ

(
2|Q(a)|

)
− |Σ|+ 1.

Let M1 = (Q1, Σ, δ1, q01, F1) and M2 = (Q2, Σ, δ2, q02, F2) be total deterministic finite
automata. We can obtain a DFA accepting language L(M1)∪L(M2) using the standard algorithm
based on (Cartesian) product construction [54, Page 22]. Let M∪ = (Q1 ×Q2, Σ, δ, (q01, q02), F),
where

• δ ((q1, q2) , a) = (δ1 (q1, a) , δ2 (q2, a)) for all q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ and

• F = {(p, q) : p ∈ Q1 ∧ q ∈ F2} ∪ {(p, q) : p ∈ F1 ∧ q ∈ Q2}.

Then, L(M∪) = L(M1) ∪ L(M2) and M∪ is deterministic.
Assuming that |Q1| = m and |Q2| = n, automatonM∪ has mn states. However, not all these

states are always accessible. For example, if both M1 and M2 accept a finite language, then
mn− (m + n− 2) states are sufficient [60].

In this dissertation thesis, we use the Cartesian product construction for k deterministic finite
automata (not necessarily total); see Algorithm 2.10. This algorithm constructs only accessible
states. Assuming that each input DFA has (at most) n states, the resulting DFA has O

(
nk

)
states.

▶ Algorithm 2.10 (The product construction for k deterministic finite automata). Let M1, . . .Mk

be a sequence of k ≥ 1 deterministic finite automata (not necessarily total) such as Mi =
(Qi, Σ, δi, q0i, Fi) for each i ∈ {1, . . . , k}. The algorithm constructs a DFA M such that L(M) =
L(M1) ∪ · · · ∪ L(Mk).

During the construction, we use an attribute called status for each state in M. This attribute
is either marked or unmarked.

1. (Initialize.)

a. Set q0 ← (q01, . . . , q0k).

b. Set status of q0 as unmarked.

c. Set Q← {q0}.

2. (Product construction.) If status of each state in Q is marked, then continue with Step 3.
Otherwise, choose an arbitrary state q = (q1, . . . , qk) from Q whose status is unmarked and
execute the following steps:

a. For each a ∈ Σ, set δ(q, a)← (p1, . . . pk), where δi(qi, a) = pi; if δi(qi, a) is not defined or if
qi = ∅i, set pi to ∅i.

b. For each a ∈ Σ, set Q← Q ∪ {δ(q, a)}.

c. For each a ∈ Σ, set status of state δ(q, a) as unmarked.

d. Set status of q as marked.

e. Continue with Step 2.

3. (Define the set of final states.) F = {(q1, . . . , qk) : (∃qi)(qi ∈ Fi)}.

4. (Return.) Return M = (Q, Σ, δ, q0, F).

Trees 11

2.2.2 Pushdown automata
A pushdown automaton is a computational model accepting context-free languages.

▶ Definition 2.11 (Pushdown automaton, PDA). A pushdown automaton is a 7-tuple M =
(Q, Σ, Γ, δ, q0,⊥, F) such that

• Q is a finite set whose elements are called states;

• Σ is an alphabet whose elements are called input symbols;

• Γ is an alphabet called the pushdown alphabet whose elements are called stack symbols,

• δ is a mapping from Q× (Σ ∪ {ε})× Γ∗ into finite subsets of Q× Γ∗.

• q0 ∈ Q is the start state;

• ⊥∈ Γ is the start symbol;

• F ⊆ Q whose elements are called final states.

Let M = (Q, Σ, Γ, δ, q0,⊥, F) be a pushdown automaton. Triple (q, w, α) ∈ Q × Σ∗ × Γ∗

is called a configuration of M. We write the top of the pushdown store on its left hand
side. The initial configuration of M is (q0, w,⊥) for the input string w ∈ Σ∗. The relation
⊢M⊂ (Q×Σ∗×Γ∗)× (Q×Σ∗×Γ∗) is a transition ofM. It holds that (q, aw, αβ) ⊢M (p, w, γβ)
if (p, γ) ∈ δ(q, a, α). The k-th power, transitive closure, and transitive and reflexive closure of the
relation ⊢M is denoted ⊢k

M,⊢+
M,⊢∗

M, respectively.
A language L accepted by a pushdown automaton M = (Q, Σ, Γ, δ, q0,⊥, F) is defined in two

distinct ways:

• Accepting by final state: L(M) = {x : (q0, x,⊥) ⊢∗
M (q, ε, γ) ∧ x ∈ Σ∗ ∧ γ ∈ Γ∗ ∧ q ∈ F}.

• Accepting by empty pushdown store: Lε(M) = {x : (q0, x,⊥) ⊢∗
M (q, ε, ε) ∧ x ∈ Σ∗ ∧ q ∈ Q}.

If the pushdown automaton accepts the language by empty pushdown store, then by convention
we set F to be empty.

We describe pushdown automata using a transition diagram similarly as finite automata.
The difference is that the arrows that represent individual transitions are now also labeled by
pushdown operations. An arrow labeled a, α, β from state p to state q means that (q, β) ∈ δ(p, a, α).
Conventionally, we always use ⊥ as the start symbol.

2.3 Trees
Several definitions of trees appear in the literature. For example, trees can be viewed as terms
[21], [61], [54, Page 109] or defined based on the concepts of the graph theory [62, Section B.5],
[63, Section 2.3.4] or using tree domain terminology, which was introduced by Gorn [64] in 1965
(as quoted by Gallier [65, Page 13] and Cleophas [22, Page 23]. In this dissertation thesis, we
present trees using concepts from the graph theory. Thus, we first review the notion of a graph.

▶ Definition 2.12 (Graph). A graph G is a pair (V, E), where V and E are finite sets. The set V
is called the vertex set of G, and its elements are called vertices. The set of E is called the edge set
of G, and its elements are called edges. An edge {u, v} ∈ E is a set of distinct vertices u, v ∈ V .

Let G be a graph. We use V (G) and E(G) to denote its vertex set and edge set, respec-
tively. A path in G from a vertex u to a vertex u′ is a nonempty sequence of distinct vertices
v1, v2, . . . , vk−1, vk such that: (1) v1 = u, (2) vk = u′, and (3) {vi, vi+1} ∈ E(G) for every
i ∈ {1, . . . , k − 1}. If there is a path from u to u′, we also say there is a u-u′-path. A vertex v

12 Preliminaries

is on path v1, v2, . . . , vk−1, vk if there is i ∈ {1, . . . , k} such that vi = v. The length of a path is
defined as the number of edges in the path. For every vertex v ∈ V (G), there is a 0-length path
from v to v.

A graph G is connected if for every pair of vertices u, v ∈ V (G) there is a path from u to v.
For k ≥ 3, a cycle in G is a sequence of distinct vertices v1, v2, . . . , vk such as there is an edge
{vi, vi+1} ∈ E(G) for every i ∈ {1, . . . , k − 1} and {v1, vk} ∈ E(G). A graph with no cycles is
acyclic.

Based on the graph notion, we can now formally define the concept of a tree. In the literature,
various tree types are used. Trees can, for example, be free or rooted, ordered or unordered,
labeled or unlabeled, and ranked or unranked. The most general type of tree is a free tree, which
is simply an acyclic connected graph. A free tree in which one node is distinguished from others
is called a rooted tree. In this dissertation thesis, we consider all trees to be rooted, and our main
focus is on ordered labeled trees. By convention, we call a vertex of a tree a node, and we say
node set instead of vertex set.

▶ Definition 2.13 (Rooted tree). A rooted tree is a triple T = (V, E, r), where (V, E) is an acyclic
connected graph and r ∈ V (T) is a node called the root of the tree.

Let T = (V, E, r) be a rooted tree. We use |T | to denote the size of T , which we define as the
number of nodes in the tree. It follows from Definition 2.13 that the size of a rooted tree is at
least one since its node set always contains the root. Apart from r, we also often use root(T) to
denote the root of T . The edges of a rooted tree can be assigned a natural orientation, either
away from or towards the root. Hence, rooted trees are in the literature also known as oriented
trees. In this dissertation thesis, we consider edges in a rooted tree to be undirected, that is,
without orientation. The alternative literature terminology used for rooted trees also includes the
notion of an unordered tree. We often call a tree unordered instead of rooted to emphasize that
the order of children is not significant.

Before formally defining ordered trees, we review some properties of a rooted tree and establish
terminology that allows us to distinguish between the nodes of a rooted tree. Given a rooted
tree T , there exists a unique path from root(T) to every other node in T . The length of a
root(T)-v-path, where v ∈ V (T), is called the depth of node v, and it is denoted by depth(v).
The depth of tree T is the maximum among the depths of all nodes in T . A level of a rooted tree
consists of all nodes at the same depth. For example, there is always only one node at level 0,
which is the root of the tree. Furthermore, we can impose (vertical) partial ordering ⪯V on V (T)
by letting u ⪯V v for every pair of nodes u, v ∈ V (T) if and only if u is on the root(T)-v-path.
Let u, v ∈ V (T) be two distinct nodes such that u ≺V v, then node u is called an ancestor of v
and node v is called a descendant of u. If node u is an ancestor of node v and {u, v} ∈ E(T),
then u is the parent of v and v is a child of u. Nodes with the same parent are called siblings. To
reference the parent of node u, we use parent(u). The root is the only node without the parent.
The number of children of node u is the degree of u, denoted by degree(u). We use children(u)
to denote the set of nodes, each of which is a child of u. If degree(u) = 1, we also use child(u)
to denote the (only) child node of u. A node u ∈ V (T) for which the set children(u) is empty is
called a leaf. The set of all leaves in a rooted tree T is denoted by leaves(T). A node that is not
a leaf is called an internal node. A rooted tree is called linear if its node set contains only one
leaf. We use leaf(T) to denote the (only) leaf of a linear rooted tree T .

Now, we can define the notion of an ordered tree. Informally, an ordered tree is a rooted tree,
where the order of children for each node is significant.

▶ Definition 2.14 (Ordered tree). An ordered tree is a quadruple T = (V, E, r,⪯S), where (V, E, r)
is a rooted tree and (V,⪯S) is a partially ordered set such that two distinct nodes are comparable
in ≺S if and only if they are siblings. The partial order relation ⪯S is called the sibling order.

The terminology established for rooted trees can also be used for ordered trees. Moreover, we
say that a node u of an ordered tree T precedes node v in T if u ≺S v.

Trees 13

For both ordered and unordered trees, we can choose to have labels on nodes, edges, or both.
Our focus is on trees that have labels only on nodes. Thus, we omit the word “node” in the
further text when referencing (un)ordered node labeled trees. We also say labeled tree(s) whenever
the underlying trees can be ordered or unordered.

▶ Definition 2.15 (Ordered labeled tree). Let Σ be an alphabet. An ordered labeled tree over Σ is
a quintuple T = (V, E, r,⪯S, label), where (V, E, r,⪯S) is an ordered tree and label : V → Σ is a
labeling function. For every node v ∈ V (T), the symbol label(v) is called a label of v.

Similarly, we define an unordered labeled tree as a quadruple T = (V, E, r, label) containing a
labeling function label and the underlying rooted tree (V, E, r).

We now define a variant of a labeled tree in which labels restrict the number of children a node
can have. For such trees, labels come from a ranked alphabet, where each symbol is associated
with a nonnegative integer called rank (or arity).

▶ Definition 2.16 (Ranked alphabet). Let Σ be an alphabet. A ranked alphabet is a pair (Σ, rank),
where rank is a ranking function such that rank : Σ→ N0. For every a ∈ Σ, the number rank(a)
is called the rank of symbol a.

For a ranked alphabet (Σ, rank), we use Σk, where k ≥ 0, to denote all symbols of Σ which
rank is equal to k.

Ranked alphabets are used to define ranked trees, which are labeled trees, where labels come
from a ranked alphabet and the degree of each node is determined by its label. Note that for
ranked trees over a ranked alphabet (Σ, rank) to exist, the set Σ0 should be nonempty.

▶ Definition 2.17 (Ordered ranked tree). Let (Σ, rank) be a ranked alphabet. An ordered ranked
tree over (Σ, rank) is an ordered labeled tree T = (V, E, r,⪯S, label) over Σ such that for every
node v ∈ V , it holds that degree(v) = rank(label(v)).

Similarly, we define an unordered ranked tree as an unordered labeled tree T where the degree
of every node v ∈ V (T) is equal to the rank of the symbol label(v).

In addition to the notion of a ranked tree, we also say unranked tree(s) to denote labeled trees
where the node labels do not determine the number of children. That is, an unranked tree can
have two nodes with the same label but with a different number of children. Furthermore, we
sometimes speak of trees without being explicit about orderedness, labeling, or rankedness. When
this might confuse, we explicitly mention which specific tree type is meant.

By convention, we use Tr(Σ) to denote the set of all ordered labeled trees over Σ. If Σ is
equipped with a ranking function, then Tr(Σ) denotes the set of all ordered ranked trees over
(Σ, rank); otherwise, it denotes the set of all ordered unranked trees over Σ.

We often use a pictorial representation of ordered labeled trees; see Figure 2.2. Let T be
an ordered labeled tree, then every node v ∈ V (T) is represented as a circle, and each edge
{u, v} ∈ E(T) is represented as a line between u and v. The root of T is at the top, and other
nodes are partitioned beneath it according to their depths. Thus, if for two distinct nodes
u, v ∈ V (T) we have u ≺V v, then the circle corresponding to node u appears higher in the
drawing than the circle corresponding to node v. The horizontal order of nodes at each level of T
is given by the sibling order relation: if for two distinct nodes u, v ∈ V (T) we have u ≺S v, then
the circle corresponding to u is drawn to the left of v. For every node v ∈ V (T), its corresponding
circle contains information about its label a and a unique identifier i in the form ai. Identifiers
allow us to easily reference individual nodes in the text since we introduce examples of ordered
labeled trees only by its pictorial representation. Without loss of generality, we assign identifiers
to nodes using the preorder numbering scheme, which is based on the preorder tree traversal1

with the convention that the identifier of the root is equal to one.
1In the preorder traversal of a tree, the root is visited first, followed by the traversal of the bottom-up subtree

rooted in turn at each of the children of the root. Specifically, the bottom-up subtree rooted at the first child is
traversed first, followed by the bottom-up subtree rooted at the next sibling, etc. For precise definition, see, for
example, Valiente [39, Section 3.1].

14 Preliminaries

a1

a2

c3 b4

c5

b6

c7

T1: a1

b2

a3 b4

a5

a6

b7

T2:

Figure 2.2 Pictorial representation of an ordered ranked tree T1 over a ranked alphabet
({a, b, c}, {(a, 2), (b, 1), (c, 0)}) and an ordered unranked tree T2 over alphabet {a, b}. Nodes are numbered
according to the order in which they are visited during the preorder traversal.

2.3.1 Operations on trees
In this section, we present some operations on ordered labeled trees. First, we define when two
trees are considered to be the same tree using the concept of tree isomorphism. Then, we discuss
how to measure similarity between two non-isomorphic trees using tree edit distance. Finally, we
define different kinds of tree substitution.

2.3.1.1 Tree isomorphism
Isomorphism expresses when two trees are said to be the same tree. Informally, we consider two
ordered labeled trees to be the same if they contain the same number of nodes connected and
labeled in the same way.

▶ Definition 2.18 (Tree isomophism). Let T1 = (V1, E1, r1,⪯S1 , label1) and T2 = (V2, E2, r2,⪯S2 ,
label2) be ordered labeled trees. A mapping φ : V1 → V2 is a tree isomorphism of T1 and T2 if

• φ is a bijective mapping,

• {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2 for every pair of nodes u, v ∈ V1,

• φ(r1) = r2,

• u ⪯S1 v if and only if φ(u) ⪯S2 φ(v) for every pair of nodes u, v ∈ V1, and

• label1(u) = label2 (φ(u)) for every node u ∈ V1.

We call two ordered labeled trees T1 and T2 isomorphic if there is a tree isomorphism φ of T1
and T2. We denote this by T1 ≃ T2.

The problem of deciding whether two trees are isomorphic or not is called the tree isomorphism
problem (or the tree equivalence problem). The tree isomorphism problem is closely related to the
problem of editing trees since sometimes one of the trees (or both) can be subject to deformation
or corruption, which means that we need to be more tolerant when comparing them. The problem
of editing trees is called the tree edit distance problem (or the tree-to-tree correction problem),
and we discuss it in the following section.

2.3.1.2 Tree edit distance
The tree edit distance problem measures the similarity between two trees. Informally, given two
trees, we seek the minimum number (or cost) of changes required to make one tree isomorphic

Trees 15

to the other. This problem is a generalization of the well-known string edit distance problem;
see Section 4.1.1. Similarly, as for strings, there are various types of tree edit distance based
on the set of edit operations allowed [44, Chapter 15.4]. In this section, we describe a tree edit
distance for ordered labeled trees considered by Selkow [42], where elementary operations consist
of node relabeling, leaf insertion, and leaf deletion. Following a naming convention used in the
literature [45], [44, Page 203], we call this distance the 1-degree edit distance. We use this distance
in Chapter 5, where we introduce our main results for inexact tree pattern matching. A brief
overview of other edit distances for trees is given in Section 4.1.2, where we discuss previous
results in inexact tree pattern matching.

Before we define the 1-degree edit distance, we formally specify its elementary edit operations.

▶ Definition 2.19 (1-degree edit operations). Let Σ be an alphabet, and let T = (V, E, r,⪯S, label)
be an ordered labeled tree over Σ. A 1-degree edit operation on T is either

• the deletion of a node v ∈ leaves(T) \ {r}, denoted by del(v);

• the insertion of a new leaf v labeled by a ∈ Σ as the i-th child of a node u ∈ V (T), where
i ∈ {1, . . . , degree(u) + 1}, denoted by ins(a, i, u); or

• the relabeling of node v ∈ V (T) into a ∈ Σ \ {label(v)} that sets label(v) = a, denoted by
rel(v, a).

The operation del(v) implies the deletion of the edge {parent(v), v} from E. Similarly, the
operation ins(a, i, u) that inserts a new leaf v labeled by a implies insertion of an edge {u, v} into
E and including v in the sibling order ⪯S so that there are i− 1 children of u that percede v.

In other words, both deletion and insertion operations can be made only on leaves. Therefore,
to delete an internal node v, for example, all descendants of v have to be deleted first so that v
itself becomes a leaf. Even though insertion and deletion are restricted this way, any ordered
labeled tree can be transformed into any other.

▶ Theorem 2.20. Given a pair of ordered labeled trees T1 and T2, there is always a sequence of
1-degree edit operations that makes T1 isomorphic to T2.

Proof. This proof is based on the Valiente’s proof [39, Lemma 2.2]. The difference is that Valiente
allows deletion of the root. Let ⪯post be a total ordering imposed on V (T1) by letting u ≺post v if
and only if u is visited before v in the postorder traversing2 of T1. Furthermore, u ⪯post v if and
only if u ≺post v or u = v. Similarly, let ⪯pre be a total ordering imposed on V (T2) by letting
u ≺pre v if and only if u is visited before v in the preorder traversing of T2. Also, u ⪯pre v if and
only if u ≺pre v or u = v. We can transform T1 into T2 as follows: (1) Delete all non-root nodes
from T1 one-by-one in ascending order; that is, if u ≺post v, delete u before deleting v. (2) If
label(root(T1)) ̸= label(root(T2)), then relabel root(T1) into label(root(T2)). (3) Insert all non-root
nodes from T2 in ascending order into T1; that is, if u ≺pre v, then insert u before inserting v.
Inserting a node u means inserting a new leaf labeled by label(u) as a child of an appropriate
node. ◀

Given ordered labeled trees T1 and T2, a sequence of operations that makes T1 isomorphic
to T2 is called an edit script between T1 and T2, denoted by ed(T1, T2), and we say that T1 can
be transformed into T2 via ed(T1, T2). We define the length of an edit script as the number of
operations in the script. See an example of an edit script in Figure 2.3.

A cost can accompany the 1-degree edit operations. In this dissertation thesis, we assume the
cost of operations to be dependent on the labels involved and independent of the positions at

2In the postorder traversal of a tree, the bottom-up subtree rooted in turn at each of the children of the root is
traversed first, and the root of the tree is visited last. Specifically, the bottom-up subtree rooted at the first child
is traversed first, followed by the bottom-up subtree rooted at the next sibling, etc. For precise definition, see, for
example, Valiente [39, Section 3.2].

16 Preliminaries

a
1

b
2

c
3

c
4

c
5

a
6

a
7

a
8

c
1

b
2

c
3

c
4

c
5

a
6

a
7

a
8

c
1

b
2

c
3

c
4

c
5

a
6

a
7

c
1

b
2

c
3

c
4

c
5

a
6

c
1

a
2

b
3

c
4

c
5

c
6

a
7

c
1

a
2

a
3

b
4

c
5

c
6

c
7

a
8

−→
−→

−→
−→

−→
rel(a

1,c)
del(a

8)
del(a

7)
ins(a

,1,c
1)

ins(a
,1,a

2)

rel(a
1,c),

del(a
8),

del(a
7),

ins(a
,1,c

1),
ins(a

,1,a
2)

ed(T
1 ,T

2)=

a

b

c
c

c
a

aa

T
1 :

c

aa

b

c
c

c
a

T
2 :

Figure
2.3

A
n

exam
ple

of
tw

o
ordered

labeled
trees

T
1

and
T

2
over

alphabet
{a

,b
,c}

w
ith

an
edit

script
betw

een
T

1
and

T
2 .

N
ote

that
the

preorder
num

bers
uniquely

identifying
each

node
that

w
e

use
in

the
edit

script
do

not
alw

ays
correspond

to
the

node
identifiers

in
the

originaltree
T

1 .
T

he
preorder

num
bers

change
together

w
ith

the
structure

change
ofT

1 .

Trees 17

a b c λ
a 0 1 4 9
b 1 0 3 8
c 4 3 0 5
λ 9 8 5 0

Table 2.1 An example of a cost function γ that is a metric on {a, b, c} ∪ {λ}.

which operations take place. Before we define the cost of the operations, we define a cost function
on an alphabet representing the set of possible labels in an ordered labeled tree. Conventionally,
we extend the alphabet by a special symbol λ, called the blank symbol, that helps us later when
assigning a cost to the insertion and deletion operations.

▶ Definition 2.21 (Alphabet with the blank symbol, cost function). Let Σ be an alphabet. Let λ
be a symbol, called blank symbol, such that λ /∈ Σ. We define Σλ = Σ ∪ {λ} and refer to the Σλ

as the alphabet with the blank symbol λ. A cost function is a function γ : Σλ × Σλ → R.

In the literature, it is often assumed that γ is a metric on Σλ [44, Page 202], [39, Definition 2.5],
[45]; that is, γ satisfies for any a, b, c ∈ Σλ the following conditions:

• (non-negativity, positivity) γ(a, b) ≥ 0,

• (self-identity, separation) γ(a, b) = 0 if and only if a = b,

• (symmetry) γ(a, b) = γ(b, a), and

• (triangle inequality) γ(a, b) ≤ γ(a, c) + γ(c, b).

We show an example of a cost function that satisfies the metric conditions in Table 2.1.
In this dissertation thesis, we often use a particular definition of a cost function where the

costs for any pair of distinct symbols are set to 1, and the costs for two identical symbols are set
to 0. We distinguish between this cost function and others by using the terms unit cost function
and non-unit cost function.

▶ Definition 2.22 (Unit cost function, non-unit cost function). Let Σλ be an alphabet with the
blank symbol λ equipped with a cost function γ. If for every a, b ∈ Σλ it holds that

γ(a, b) =
{

0 if a = b,

1 if a ̸= b,

then γ is called the unit cost function. Otherwise, it is called a non-unit cost function.

Note that the unit cost function satisfies the metric conditions. In the literature, the unit cost
function is also known as the discrete metric or the trivial metric [44, Page 21].

Let γ be a cost function defined on Σλ. We use it to define the cost of 1-degree edit operations.
Given (a, b) ∈ Σλ × Σλ, it holds that if a ̸= b ̸= λ, then γ(a, b) corresponds to the cost of
relabeling operation that changes the label of a node from a to b. If a = λ and b ̸= λ, then γ(a, b)
corresponds to the cost of the insertion operation that inserts a new leaf labeled by b. Finally, if
a ̸= λ and b = λ, then γ(a, b) denotes the cost of the deletion operation that deletes a leaf labeled
by a. Note that the pairs (a, a) ∈ Σλ × Σλ do not correspond to any operation and thus do not
play a role in defining the cost of 1-degree edit operations.

▶ Definition 2.23 (Cost of 1-degree edit operations). Let Σλ be an alphabet with the blank symbol
λ equipped with a cost function γ. Let T = (V, E, vr,⪯S, label) be an ordered labeled tree over
Σ. Given u, v ∈ V and a ∈ Σ, we define the cost of 1-degree edit operations as follows:

18 Preliminaries

• the cost of operation del(v) is equal to γ(label(v), λ);

• the cost of operation ins(a, i, u), where i ∈ {1, 2, . . . , degree(u) + 1} is equal to γ(λ, a); and

• the cost of operation rel(v, a) is equal to γ(label(v), a).

We say that the 1-degree edit operations have the unit cost if γ is the unit cost function.
Otherwise, we say that the 1-degree edit operations have a non-unit cost.

Using the cost of 1-degree edit operations, we define the cost of an edit script as the sum of
the costs of operations in the script. An optimal edit script between two ordered labeled trees
T1 and T2 is an edit script between T1 and T2 with the minimal cost and this cost is called the
1-degree edit distance between T1 and T2.

▶ Definition 2.24 (1-degree edit distance). Let Σλ be an alphabet with the blank symbol λ
equipped with a cost function. Given two ordered labeled trees T1 and T2 over Σ, the 1-degree
edit distance is a function d : Tr(Σ)× Tr(Σ)→ R such that d(T1, T2) is the cost of an optimal
edit script between T1 and T2.

Since we use a cost function γ defined on Σλ to define the cost of 1-degree edit operations, it
holds that if γ is a metric function, then the set of all ordered labeled trees with the 1-degree edit
distance also forms a metric space.

Given two ordered labeled trees T1 and T2, seeking the cost of an optimal edit script between
T1 and T2 in the case where 1-degree edit operations have the unit cost correspond to seeking
the minimum number of 1-degree edit operations required to make T1 isomorphic to T2. In other
words, the goal is to find the length of a shortest edit script between T1 and T2. We refer to this
variant of the 1-degree edit distance as the simple 1-degree edit distance.

▶ Definition 2.25 (Simple 1-degree edit distance). Let Σ be an alphabet. Given two ordered labeled
trees T1 and T2 over Σ, the simple 1-degree edit distance is a function ds : Tr(Σ)× Tr(Σ)→ N0
such that ds(T1, T2) is the length of a shortest edit script between T1 and T2.

▶ Example 2.26 (1-degree edit distance, simple 1-degree edit distance). Let T1 and T2 be the
ordered labeled trees illustrated in Figure 2.3. We need at least five operations in order to
transform T1 into T2. Thus, the edit script illustrated in Figure 2.3 is a shortest one which makes
ds(T1, T2) = 5. Assuming that the 1-degree edit operations come with a cost as described by the
cost function illustrated in Table 2.1, the cost of the edit script illustrated in Figure 2.3 is 40.
That does not make the edit script optimal since we can also transform T1 into T2 via an edit
script illustrated in Figure 2.4 which cost is 36. We easily check that we cannot do better which
makes d(T1, T2) = 36.

2.3.1.3 Tree substitution
In this section, we define four different kinds of tree substitution in an ordered labeled tree:

• Substitution of all occurrences of leaves labeled by the same symbol for possibly distinct
trees, where every occurrence is replaced by a tree that may be different from trees used as
replacements for other occurrences.

• Substitution of all occurrences of internal nodes labeled by the same symbol for possibly
distinct linear trees or empty trees, where every occurrence is replaced either by the empty tree
or by a linear tree that may be different from trees used as replacements for other occurrences.

• Concurrent substitution at leaves, where the same tree replaces all occurrences of leaves
labeled by the same symbol.

• Concurrent substitution at internal nodes, where all occurrences of internal nodes labeled by
the same symbol are replaced by the same linear tree or the empty tree.

Trees 19

a1

b2

c3
c4

c5
a6

a7 a8

c1

b2

c3
c4

c5
a6

a7 a8

c1

b2 a3

a4 a5

c1

a2 a3

a4 a5

c1

a2 a3

b4 a5

c1

a2 a3

b4

c5
c6

c7
a8

−→
−→

−→
−→

−→
re

l(a
1 ,

c)

de
l(c

5)
de

l(c
4)

de
l(c

3)
re

l(b
2 ,

a)
re

l(a
4 ,

b)

in
s(

c,
1,

b4)
in

s(
c,

1,
b4)

in
s(

c,
1,

b4)

re
l(a

1 ,
c)

,
de

l(c
5)

,
de

l(c
4)

,
de

l(c
3)

,
re

l(b
2 ,

a)
,

re
l(a

4 ,
b)

,
in

s(
c,

1,
b4)

,
in

s(
c,

1,
b4)

,
in

s(
c,

1,
b4)

ed
(T

1,
T 2

)=

T 1
:

T 2
:

Fi
gu

re
2.

4
A

n
ex

am
pl

e
of

tw
o

or
de

re
d

la
be

le
d

tr
ee

s
T 1

an
d

T 2
ov

er
al

ph
ab

et
{a

,b
,c

}
w

ith
an

ed
it

sc
rip

t
be

tw
ee

n
T 1

an
d

T 2
.

A
ss

um
in

g
th

at
1-

de
gr

ee
ed

it
op

er
at

io
ns

ar
e

as
si

gn
ed

co
st

s
ac

co
rd

in
g

to
th

e
co

st
fu

nc
tio

n
γ

de
sc

rib
ed

in
Ta

bl
e

2.
1,

th
e

co
st

of
th

e
ed

it
sc

rip
t

is
36

w
hi

ch
m

ak
es

it
op

tim
al

.

20 Preliminaries

a a a

T : T ′ = T [T1, T2, T3]a:

T1

T2

T3

Figure 2.5 Illustration of substitution of all occurrences of leaves labeled by symbol a in an ordered
labeled tree T for possibly distinct ordered labeled trees T1, T2, and T3.

We note that our illustrative examples of the substitutions and the notation we introduce in
the definitions are inspired by Cleophas [22, Section 3.1.1.1].

We start with the simplest substitution, which is the substitution of all occurrences of leaves
labeled by the same symbol for possibly distinct trees. See Definition 2.27 and the illustration in
Figure 2.5. We refer to this kind of tree substitution in Section 3.1.2, where we use it to specify
when a pattern tree with subtree wildcards matches another tree.

▶ Definition 2.27 (Substitution of all occurrences of leaves labeled by the same symbol for possibly
distinct trees). Let Σ be an alphabet. Let a be a symbol of Σ. Let T = (V, E, r,⪯S, label) be
an ordered labeled tree over Σ, where precisely k ≥ 0 leaves is labeled by a. Let l1, . . . , lk be
those leaves in preorder. Let (T1, . . . , Tk) be a sequence of ordered labeled trees over Σ such that
Ti = (Vi, Ei, ri,⪯Si , labeli). The tree substitution in T of the occurrences of a for (T1, . . . , Tk),
denoted by T [T1, . . . , Tk]a, is an ordered labeled tree T ′ defined as follows:

• If |V | = 1 and k = 1, then T ′ = T1.

• Otherwise, T ′ = (V ′, E′, r′,⪯′
S, label′), where

– V ′ = V \ {l1, . . . , lk} ∪ V1 ∪ · · · ∪ Vk,
– E′ = E \ {{l1, parent(l1)} , . . . , {lk, parent(lk)}} ∪ E1 ∪ · · · ∪ Ek ∪ {r1, parent(l1)} ∪ · · · ∪
{rk, parent(lk)},

– r′ = r,
– label′ = label \ {(l1, a), . . . , (lk, a)} ∪ label1 ∪ · · · ∪ labelk, and
– for every pair of distinct nodes u, v ∈ V ′, it holds that u ≺′

S v if and only if one of the
following conditions is satisfied:
∗ u ≺S v,
∗ u ≺Si

v for some i ∈ {1, . . . , k},
∗ u = ri and li ≺S v, or
∗ v = ri and u ≺S li.

Next, we define the substitution of all occurrences of a symbol in the internal nodes. For
simplicity, we assume that the internal nodes that are being substituted are not in the parent-child
relationship. An internal node can be substituted for a linear ordered labeled tree. Additionally,
we allow substitution for the empty tree, which we define as a graph where the vertex set and
the edge set are empty. Intuitively, the substitution of an internal node v in a tree T for the
empty tree corresponds to deleting v from T which makes the children of v to become children of

Trees 21

a c

b

a a c

T : T ′ = T [T1, T2, T3]a:

T1: T2: T3:b

c

c

Figure 2.6 Illustration of substitution of all occurrences of internal nodes labeled by symbol a in an
ordered labeled tree T for trees T1, T2, and T3. Note that T2 is the empty tree.

parent(v). Since the root of a tree is also an internal node, it can also be substituted. However, if
the root is to be substituted for the empty tree, we assume it has only one child, which becomes
the new root.

▶ Definition 2.28 (Substitution of all occurrences of a symbol in internal nodes by possibly distinct
linear trees or empty trees). Let Σ be an alphabet. Let a be a symbol of Σ. Let T = (V, E, r,⪯S,
label) be an ordered labeled tree over Σ, where precisely k ≥ 0 internal nodes is labeled by a. Let
w1, . . . , wk be those nodes in preorder. Assume that there are no nodes wi, wj for i, j ∈ {1, . . . , k}
such that parent(wi) = wj . Let (T1, . . . , Tk) be a sequence, where Ti for each i ∈ {1, . . . , k} is
either a linear ordered labeled tree (Vi, Ei, ri,⪯Si , labeli) over Σ or the empty tree. Assume
that if wi = r and Ti is the empty tree for some i ∈ {1, . . . , k}, then degree(wi) = 1. The tree
substitution in T of the occurrences of a for (T1, . . . , Tk), denoted by T [T1, . . . , Tk]a, is an ordered
labeled tree T ′ defined by:

• If |V | = 1, then T ′ = T .

• Otherwise, T ′ = (V ′, E′, r′,⪯′
S, label′) defined as follows:

– V ′ = V \ {w1, . . . , wk} ∪ V1 ∪ · · · ∪ Vk.
– E′ = E \ {{wi, u} : i ∈ {1, . . . , k} ∧ u ∈ V } ∪ E1 ∪ · · · ∪ Ek ∪X1 ∪ · · · ∪Xk, where

Xi =

{{parent(wi), u} : u ∈ children(wi)} if wi ̸= r ∧ V (Ti) = ∅,
{parent(wi), ri} ∪ {{leaf(Ti), u} : u ∈ children(wi)} if wi ̸= r ∧ V (Ti) ̸= ∅,
∅ if wi = r ∧ V (Ti) = ∅,
{{leaf(Ti), u} : u ∈ children(wi)} if wi = r ∧ V (Ti) ̸= ∅.

– r′ =

r if wi ̸= r for every i ∈ {1, . . . , k},
child(wi) if wi = r ∧ V (Ti) = ∅,
ri if wi = r ∧ V (Ti) ̸= ∅.

– label′ = label \ {(w1, a), . . . , (wk, a)} ∪ {labeli : i ∈ {1, . . . , k} ∧ V (Ti) ̸= ∅}.
– For every pair of distinct nodes u, v ∈ V ′, it holds that u ≺′

S v if and only if one of the
following conditions is satisfied:
∗ u ≺S v,

22 Preliminaries

a b a

T : T ′ = T [a← T1, b← T2]:

T1

T2

T1

Figure 2.7 Concurrent substitution at leaves labeled by symbols a and b in an ordered labeled tree T
for trees T1 and T2, respectively.

∗ u = ri and wi ≺S v for some i ∈ {1, . . . , k}, or
∗ v = ri and u ≺S wi for some i ∈ {1, . . . , k}.

We illustrate the substitution of all occurrences of a symbol in internal nodes in Figure 2.6.
We refer to this kind of tree substitution in Section 3.1.2, where we use it to specify when a
pattern tree with path wildcards matches another tree.

We can now define two substitutions called concurrent. To define the concurrent substitution
at leaves, where the same tree replaces all occurrences of leaves labeled by the same symbol,
we refer to the tree substitution introduced by Definition 2.27. See the illustrative example
in Figure 2.7. Then, we use the tree substitution introduced by Definition 2.28 to define the
concurrent substitution at internal nodes—all occurrences of internal nodes labeled by the same
symbol are replaced by the same linear tree or the empty tree. See the example in Figure 2.8.
We use concurrent substitutions in Section 3.1.2 to specify when a pattern with subtree variables
or path variables matches another tree.

▶ Definition 2.29 (Concurrent substitution at leaves). Let Σ1 and Σ2 be disjoint alphabets. Let
Σ2 = {a1, . . . , am}. Let T be an ordered labeled tree over Σ1 ∪Σ2. Assume that all nodes labeled
by symbols from Σ2 (if any) are leaves. Let | occ(ai)| for i ∈ {1, . . . , m} denote the number of
leaves in T labeled by ai. Let (T1, . . . , Tm) be a sequence of ordered labeled trees over Σ1. The
tree substitution of a1, . . . , am for T1, . . . , Tm in T , denoted T [a1 ← T1, . . . , am ← Tm], is an
ordered labeled tree T ′ defined as follows:

• If m = 1, then T ′ = T [T1, . . . , T1︸ ︷︷ ︸
| occ(a1)|

]a1 .

• If m ≥ 2, then T ′ = T̂ [a2 ← T2, . . . , am ← Tm], where T̂ = T [T1, . . . , T1︸ ︷︷ ︸
| occ(a1)|

]a1 .

▶ Definition 2.30 (Concurrent substitution at internal nodes). Let Σ1 and Σ2 be disjoint alphabets.
Let Σ2 = {a1, . . . , am}. Let T be an ordered labeled tree over Σ1 ∪ Σ2. Assume that all
nodes labeled by symbols from Σ2 (if any) are internal nodes. Assume that there are no
nodes u, v ∈ T labeled by the same symbol of Σ2 such that parent(u) = v. Let | occ(ai)| for
i ∈ {1, . . . , m} denote the number of nodes in T labeled by ai. Let (T1, . . . , Tm) be a sequence,
where Ti for each i ∈ {1, . . . , m} is either a linear ordered labeled tree over Σ1 or the empty tree.
Assume that if the root of T is labeled by ai and Ti is the empty tree for some i ∈ {1, . . . , m},
then degree (root(T)) = 1. The tree substitution of a1, . . . , am for T1, . . . , Tm in T , denoted
T [a1 ← T1, . . . , am ← Tm], is an ordered labeled tree T ′ defined as follows:

Trees 23

a c

b a c

T : T ′ = T [a← T1, b← T2]:

T1: T2:c

Figure 2.8 Concurrent substitution at internal nodes labeled by symbols a and b in an ordered labeled
tree T for trees T1 and T2, respectively. Note that T2 is the empty tree.

• If m = 1, then T ′ = T [T1, . . . , T1︸ ︷︷ ︸
| occ(a1)|

]a1 .

• If m ≥ 2, then T ′ = T̂ [a2 ← T2, . . . , am ← Tm], where T̂ = T [T1, . . . , T1︸ ︷︷ ︸
| occ(a1)|

]a1 .

2.3.2 Tree parts
This section contains definitions of several tree parts used in tree pattern matching. Moreover,
we discuss similarities between tree parts and string parts defined in Section 2.1.2.

Given an ordered labeled tree, we first define its subtree, bottom-up subtree, and top-down
subtree. Our definitions agree with the ones given by Valiente [39]. Then, we define notions of
stringpath and rootpath. This terminology has been used, for example, by Cleophas [22]. In
addition, we define a path of an ordered labeled tree as a special case of subtree.

▶ Definition 2.31 (Subtree). Let T = (V, E, r,⪯S, label) be an ordered labeled tree with imposed
vertical partial ordering ⪯V on V . A subtree of T is an ordered labeled tree T ′ = (V ′, E′, r′,⪯′

S,
label′), where

• V ′ ⊆ V ,

• E′ ⊆ E,

• r′ ∈ V ′ such that there is no node v ∈ V ′ for which v ≺V r′,

• ⪯′
S is the restriction of ⪯S to V ′, and

• label′ is the restriction of label to V .

A subtree is a concept similar to that of a substring because in both cases, we are interested in
a connected part of a given object: substrings are contiguous sequences of symbols, and subtrees
are connected subgraphs. Furthermore, if we represent a string x as a linear ordered labeled tree
T , these two notions can be used interchangeably: a substring of x corresponds to a subtree of T
and vice versa. See an illustration in Figure 2.9a.

A particular case of a subtree is a bottom-up subtree. If a node is part of a bottom-up subtree,
so are all its descendants.

▶ Definition 2.32 (Bottom-up subtree). Let T be an ordered labeled tree and S be its subtree. If
children(v) ⊆ V (S) for every node v ∈ V (S), then S is called a bottom-up subtree of T .

24 Preliminaries

Given an ordered labeled tree T , a bottom-up subtree of T can be uniquely described by
choosing a node v ∈ V (T) to be its root. We denote a bottom-up subtree of T with the root
v ∈ V (T) by T /v. A bottom-up subtree T /v is called proper if v ̸= root(T).

A bottom-up subtree is similar to a suffix since we are interested in a connected part at the
end of a given object in both cases. Furthermore, if we again represent a string x as a linear
ordered labeled tree T , every suffix of x corresponds to a bottom-up subtree of T and vice versa.
Moreover, just as every suffix is a substring, it holds that every bottom-up subtree is a subtree.
See an illustration in Figure 2.9b.

Another particular case of a subtree is a top-down subtree for which it holds that if a node is
in its node set, so is its parent. Therefore, the root of a top-down subtree of a tree T is always
the root of T .

▶ Definition 2.33 (Top-down subtree). Let T be an ordered labeled tree and S be its subtree. If
parent(v) ∈ V (S) for every node v ∈ V (S) \ {root(S)}, then S is called a top-down subtree of T .

A top-down subtree of a tree is similar to a prefix of a string in the following way: a prefix is
a contiguous sequence of symbols that starts at the beginning of a string; similarly, a top-down
subtree is a connected part of a tree that starts at the beginning of the tree, that is, with its root.
Moreover, every prefix is a substring, just as every top-down subtree is a subtree. Also, for a string
x represented as a linear ordered labeled tree T , we can use both notions interchangeably—every
prefix of x is a top-down subtree of T and vice versa. See an illustration in Figure 2.9c.

Apart from a subtree, a bottom-up subtree, and a top-down subtree, we also define three
other parts of a tree which can be seen as paths in its underlying graph. Specifically, we define a
path, a rootpath, and a stringpath.

▶ Definition 2.34 (Path). Let T be an ordered labeled tree. A subtree of T is said to be a path
of T if it is a linear tree.

▶ Definition 2.35 (Rootpath). Let T be an ordered labeled tree. A path of T is said to be a
rootpath of T if its root is the root of T .

A rootpath of an ordered labeled tree T can be uniquely described by choosing a node
v ∈ V (T) to be the leaf of the rootpath. We denote the rootpath of T with the leaf v by T |v. To
uniquely describe a path of a tree, we need two nodes since its root can be different from the root
of the tree. We denote a path of T with the root u and the leaf v by T |uv .

▶ Definition 2.36 (Stringpath). Let T be an ordered labeled tree. A rootpath T |v, where
v ∈ V (T), is said to be a stringpath of T if v is a leaf of T .

2.4 Tree languages
In this section, we extend the notion of a (string) language to trees. We also show that tree
languages can be represented as string languages by encoding trees as strings using a linear tree
notation. Specifically, we show how to unambiguously represent ordered labeled trees as strings
using prefix bar notation and path notation. Moreover, we briefly discuss XML as another way of
tree representation and its query language XPath.

In general, just as string languages are defined as sets of strings, tree languages are defined as
sets of trees. Since our focus is on ordered labeled trees, we define the tree language as a set of
ordered labeled trees.

▶ Definition 2.37 (Tree language). Let Σ be an alphabet. A tree language over Σ is a subset of
Tr(Σ).

In this dissertation thesis, we propose methods that process trees using (string) automata.
As a result, we need to encode trees as strings. A function that for a given tree returns its

Tree languages 25

a b a c b a

b

a

c

b

(a) Examples of subtrees and the correspondence to substrings.

a b a c b a

b

a

c

b

(b) Examples of bottom-up subtrees and the correspondence to suffixes.

a b a c b a

b

a

c

b

(c) Examples of top-down subtrees and the correspondence to prefixes.

Figure 2.9 Examples of subtrees, bottom-up subtrees, and top-down subtrees of an ordered labeled
tree and the correspondence to string parts.

string representation is called a linear tree notation. A well-known linear tree notation for
ordered labeled trees is the nested parenthesis notation in which an ordered labeled tree over
an alphabet Σ is represented as a string over alphabet Σ ∪ {(,)}. The notation is based on
the preorder tree traversal, where every internal node is described by its label followed by an
ordered list of its children. For example, the parenthesis notation of tree T2 in Figure 2.2 is
a (b (a(), b(a())) , a (b())).

In this dissertation thesis, we use two linear notations for ordered labeled trees, called the
prefix bar notation and the path notation. We describe both of these notations in the following
sections.

2.4.1 Prefix bar notation for ordered labeled trees
Stoklasa, Janoušek, and Melichar introduced the prefix bar notation at London Stringology
Days in 2010 [66]; see also Janoušek [23, Chapter 5] or Flouri [30, Chapter 3]. The notation
is a simplified variant of the nested parentheses notation. The simplification is based on the
observation that the left parenthesis is redundant since there is always the root of a bottom-up

26 Preliminaries

subtree immediately preceding it. The prefix bar notation also does not use commas since, even
without them, there is only one way to parse such strings as ordered labeled trees.

▶ Definition 2.38 (Prefix bar notation for ordered labeled trees [30]). Let Σ be an alphabet such
that ↑ /∈ Σ. The prefix bar notation is a function prefBar : Tr(Σ) → (Σ ∪ {↑})+ defined for an
ordered labeled tree T = (V, E, r,⪯S, label) over Σ as follows:

prefBar(T) =
{

label(r) ↑ if r is a leaf,
label(r) prefBar(T /v1) prefBar(T /v2) . . . prefBar(T /vk) ↑ otherwise,

where {v1, . . . , vk} = children(r) such that v1 ≺S v2 ≺S · · · ≺S vk.

In other words, the prefix bar notation of an ordered labeled tree lists the node labels using
the preorder traversal of the tree where a special symbol called bar, denoted by “↑”, is used to
encode hierarchical relationships between nodes in the tree—every bar symbol indicates the end
of a bottom-up subtree. For example, the prefix bar notations of trees T1 and T2 illustrated in
Figure 2.2 are aac ↑ bc ↑↑↑ bc ↑↑↑ and aba ↑ ba ↑↑↑ ab ↑↑↑, respectively. Note that the length of
prefBar(T) is equal to 2|T | for every ordered labeled tree T .

▶ Convention 2.39. We assume in the further text that the bar symbol is not included in any
alphabet. That is, ↑ /∈ Σ for every alphabet Σ. Moreover, we abbreviate Σ ∪ {↑} to Σ↑.

Let T be an ordered labeled tree. Every node v ∈ V (T) is in prefBar(T) associated with
two positions that we call label position and bar position. The label position corresponds to the
position of the label of v in prefBar(T), and the bar position corresponds to the position of the
bar symbol in prefBar(T) indicating the end of the bottom-up subtree T /v. Thus, every node v
can be associated with a pair (i, j), called a label-bar pair, where i is the label position and j is
the bar position.

It is easy to see that two ordered labeled trees have the same prefix bar notation if and only if
they are isomorphic. Thus, we can unambiguously transform any ordered labeled tree over Σ
into a string over Σ↑ and back using the prefix bar notation. However, not every string over Σ↑
represents an ordered labeled tree. The correspondence between strings over Σ↑ and the prefix
bar notation of ordered labeled trees over Σ is summarized by Definition 2.40 and Lemma 2.41.

▶ Definition 2.40 (Bar checksum [30]). Let Σ be an alphabet. The bar checksum is a func-
tion barCheck : Σ+

↑ → N0 that is for a nonempty string x over Σ↑ defined as barCheck(x) =∑|x|
i=1 bc(xi), where

bc(xi) =
{

1 if xi =↑,
−1 if xi ∈ Σ.

▶ Lemma 2.41 (Correspondence between strings over Σ↑ and ordered labeled trees). Let Σ be an
alphabet. A nonempty string x over Σ↑ is the prefix bar notation of an ordered labeled tree over Σ
if and only if barCheck(x) = 0 and barCheck(y) < 0 for every proper prefix y of x.

Proof. The proof is divided into two parts.

(=⇒) Assume x is the prefix bar notation of an ordered labeled tree T = (V, E, r,⪯S, label).
We show that barCheck(x) = 0 and barCheck(y) < 0 for every proper prefix y of x by induction
on the depth of T :

• Assume depth(T) = 0. Then, x = label(r) ↑. Thus, barCheck(x) = −1 + 1 = 0. Also, the only
proper prefix of x is string y = label(r) for which barCheck(y) = −1 < 0. Hence, the claim
holds for tree with depth 0.

Tree languages 27

• Assume depth(T) ≥ 1 and that the claim holds for trees with depths 0, . . . , depth(T)−1. Then,
x = label(r) prefBar(T /v1) prefBar(T /v2) . . . prefBar(T /vk) ↑, where {v1, . . . , vk} = children(r)
such that v1 ≺S v2 ≺S · · · ≺S vk. Thus,

barCheck(x) = −1 +
k∑

i=1
barCheck(prefBar(T /vi)) + 1.

By the induction hypothesis, we get that barCheck(prefBar(T /vi)) = 0 for each i ∈ {1, . . . , k}.
Thus, barCheck(x) = 0. Also, since barCheck(y) < 0 for every proper prefix of prefBar(T /vi)
for each i ∈ {1, . . . , k}, it follows that the bar checksum is also negative for every proper prefix
of x. Hence, the claim holds.

(⇐=) Assume barCheck(x) = 0 and barCheck(y) < 0 for every proper prefix y of x. Since each
xi either increases the checksum by 1 (for xi =↑) or reduces it by 1 (for xi ∈ Σ), it follows that x
contains the same number of bar symbols as symbols from Σ in order to barCheck(x) = 0. Thus,
|x| is even. We show that x is the prefix bar notation of an ordered labeled tree by induction on
the length of x:

• Assume |x| = 2. Then, the only possible form for x is x = a ↑, where a ∈ Σ, which is the
prefix bar notation of an ordered labeled tree. Hence, the claim holds for |x| = 2.

• Assume |x| ≥ 4 and that the claim holds for strings with lengths 2, 4, 6, . . . , |x| − 2. Since
barCheck(y) < 0 for every proper prefix y of x, we get that x1 ∈ Σ. Moreover, we get that
x|x| =↑, because if barCheck(x1x2 . . . x|x|−1) < 0, the only possibility for barCheck(x) = 0
to hold is that barCheck(x1x2 . . . x|x|−1) = −1 and x|x| =↑. Let w = x2x3 . . . x|x|−1. Since
bc(x1) = −1 and bc(x|x|) = 1, we have that barCheck(w) = 0. Moreover, we get that
barCheck(z) ≤ 0 for every prefix z of w. Our goal is to show that we can split w into k ≥ 1
parts such that w = w1w2 . . . wk, where barCheck(wi) = 0 and barCheck(zi) < 0 for every
proper prefix zi of wi and every i ∈ {1, . . . , k}. The splitting process is as follows: We obtain
w1 by finding the first position j ∈ {1, . . . , |w|} in w for which barCheck(w1,...,j) = 0. For the
remaining nonempty string wj+1wj+2 . . . w|w| (if any), it again holds that its bar checksum
is 0 and that its every prefix has the bar checksum less or equal to 0. Thus, we obtain w2

by again finding the first position such that the prefix ending at that position has the bar
checksum 0. We continue in this fashion until the end of the string w is reached. By the
induction hypothesis, we have that strings w1, . . . , wk are prefix bar notations of ordered
labeled trees T1, . . . , Tk, respectively. Therefore, x = a prefBar(T1) prefBar(T2) . . . prefBar(Tk) ↑,
where a ∈ Σ, which is the prefix bar notation of an ordered labeled tree. Hence, the claim
holds. ◀

We use L(Σ, ↑) to denote the (string) language over Σ↑ consisting of all strings that represent
the prefix bar notation of ordered labeled trees over Σ. Since we can unambiguously convert
every ordered labeled tree T ∈ Tr(Σ) to a string x ∈ L(Σ, ↑) and vice versa, every tree language
can be represented as a string language using the prefix bar notation.

The prefix bar notation comes with a useful property that we call a substring property. The
substring property is used in tree pattern matching methods that are part of arbology research.
We also use this property in Chapter 5, where we propose automata-based methods for inexact
tree pattern matching.

▶ Lemma 2.42 (Substring property of the prefix bar notation [30]). Let T be an ordered labeled
tree and let S be its bottom-up subtree. Then prefBar(S) is a substring of prefBar(T).

However, not every substring of prefBar(T) is a bottom-up subtree of tree T . This is because
T has |T | bottom-up subtrees (each node is the root of one bottom-up subree) but the maximum
number of substrings occurring in a string (the prefix bar notation of T) can be quadratic to

28 Preliminaries

the length of the string. Only substrings which themselves are trees in the prefix bar notation
represent bottom-up subtrees.

▶ Lemma 2.43 (Correspondence between substrings of the prefix bar notation and bottom-up subtrees
[30]). Let T be an ordered labeled tree. A substring x of prefBar(T) represents a bottom-up subtree
of T if and only if x ∈ L(Σ, ↑).

The prefix bar notation can be used for both ranked and unranked trees. However, since labels
in ranked trees determine the number of children of each node, we can simplify the notation by
omitting the bar symbol. This simplified notation is called the prefix notation [30, Definition 52],
[23, Section 3.3]. We note that the resulting strings are also known as (ordered ranked) ground
terms in the literature [54, Page 109].

2.4.2 Path notation for ordered labeled trees
An ordered labeled tree can be described by a string representation that is based on its stringpath
set. We call this notation the path notation. In the literature, it is also known as the path language
[21, Page 43], [67], or referred to as tree stringpaths [22, Definition 3.1.17].

The path notation for an ordered labeled tree is a set of strings where each string is an
encoded stringpath. Specifically, each stringpath is encoded in the form of a1i1a2i2 . . . al−1il−1al,
where l is the number of nodes in the stringpath, a1, . . . , al are its node labels, and ij for each
j ∈ {1, . . . , l − 1} is a number indicating that aj+1 is the label of the node that is ij-th child of
node represented by aj .

▶ Definition 2.44 (Path notation for ordered labeled trees). Let Σ be an alphabet such that
Σ ∩ N = ∅. The path notation is a function path : Tr(Σ)→ 2X , where X = (Σ · N)∗ · Σ, defined
for an ordered labeled tree T = (V, E, r,⪯S, label) over Σ as follows:

path(T) =

{label(r)} if r is a leaf,
degree(r)⋃

i=1
{label(r)iw : w ∈ path(T /vi)} otherwise,

where {v1, . . . , vdegree(r)} = children(r) such that v1 ≺S v2 ≺S · · · ≺S vdegree(r).

In other words, the path notation for an ordered labeled tree over Σ is a string language
over Σ ∪ {1, 2, . . . , k} where numbers are used to encode the order of siblings and k denotes
the maximum degree of nodes in the tree. For example, the path notation for trees T1 and T2
illustrated in Figure 2.2 is {a1a1c, a1a2b1c, a2b1c} and {a1b1a, a1b2b1a, a2a1b}, respectively.
▶ Convention 2.45. To avoid confusion, we assume that no alphabet contains numbers as symbols.
That is, sets Σ and N are disjoint for every alphabet Σ. Moreover, we abbreviate Σ∪ {1, 2, . . . , k}
to Σ≤k.

Clearly, path notation is an unambiguous representation of an ordered labeled tree. Two
ordered labeled trees have the same path notation if and only if they are isomorphic. Thus, we
can transform any ordered labeled tree over Σ where k denotes the maximum degree of nodes
into a string language over Σ≤k and back using the path notation. However, not every string
language over Σ≤k represents an ordered labeled tree. We examine the correspondence between
ordered labeled trees and string languages over Σ≤k in Lemma 2.46. Moreover, we note that the
numbers are necessary for the path notation to be an unambiguous representation of a tree. For
example, consider a tree whose path notation is {a1a1b, a1a2c}. If we omit the numbers, we get
{aab, aac}. However, this set represents two non-isomorphic trees: the tree {a1a1b, a1a2c} and
the tree {a1a1b, a2a1c}.

▶ Lemma 2.46 (Correspondence between string languages over Σ≤k and ordered labeled trees). Let
Σ be an alphabet. Let k ≥ 1. A nonempty string language L over Σ≤k is the path notation of an
ordered labeled tree over Σ if and only if all of the following five conditions hold:

Tree languages 29

1. (root) x1 = y1 for every pair of strings x, y ∈ L;

2. (form) for every x ∈ L, we have that |x| = 2n+1 for some n ∈ N0 and for each i ∈ {1, . . . , |x|},
we have that

xi =
{

a ∈ Σ if i is odd,

i ∈ {1, . . . , k} if i is even.

3. (sibling) for every x ∈ L and every i ∈ {2, 4, 6 . . . , |x| − 1}, we have that if xi = c, where
c ∈ {2, 3, . . . , k}, then there exists y ∈ L such that y1...(i−1) = x1...(i−1) and yi = c− 1;

4. (integrity) for every pair of strings x, y ∈ L and every position i ∈ {2, 4, 6 . . . , min(|x|, |y|)− 1},
we have that if x1...i = y1...i and xi, yi ∈ {1, . . . , k}, then xi+1 = yi+1; and

5. (prefix) for every pair of distinct strings x, y ∈ L such that |x| < |y|, we have that x is not
prefix of y.

Proof. The proof is divided into two parts.

(=⇒) Assume L is the path notation of an ordered labeled tree T = (V, E, r,⪯S, label). We
show that all five conditions hold for L by induction on the depth of T :

• Assume depth(T) = 0. Then, L = {label(r)}. It is easy to check that all five conditions hold
for L. Thus, the claim holds for tree with depth 0.

• Assume depth(T) ≥ 1 and that the claim holds for trees with depths 0, . . . , depth(T) − 1.
Then,

L =
degree(r)⋃

i=1
{label(r)iw : w ∈ path(T /vi)} ,

where {v1, . . . , vdegree(r)} = children(r) such that v1 ≺S v2 ≺S · · · ≺S vdegree(r). By the induc-
tion hypothesis, we have that all conditions hold for path(T /vi) for every i ∈ {1, . . . , degree(r)}.
It is easy to check that by adding label(r)i as the prefix to strings w ∈ path(T /vi) for every
i ∈ {1, . . . , degree(r)} the conditions still hold. Hence, the claim holds.

(⇐=) Assume that all five conditions hold for L. We show that L is the path notation of an
ordered labeled tree by induction on the size of L:

• Assume |L| = 1. We show that L is the path notation of an ordered labeled tree by induction
on the length of the string x ∈ L:

– Assume |x| = 1. Then, the only possible form for x is x = a, where a ∈ Σ. Thus, L = {a}
which is the path notation of an ordered labeled tree.

– Assume |x| ≥ 3 and that the claim holds for strings with lengths 1, 3, 5, . . . , |x| − 2. String
x is of the form x = x11w, where x1 ∈ Σ and w ∈ Σ+

≤k. Let L1 = {w}. Since all five
conditions hold for L, it follows easily that they also hold for L1. By induction hypothesis,
we have that L1 is the path notation of an ordered labeled tree. Thus,

L =
1⋃

i=1
{x1iw : w ∈ L1} ,

which is the path notation of an ordered labeled tree. Hence, the claim holds for any L,
where |L| = 1.

30 Preliminaries

a

a

b

T :

path(T) = {a1a1b} and simplePath(T) = aab

Figure 2.10 A linear ordered labeled tree T over {a, b}, its path notation, and its simple path notation.

• Assume |L| ≥ 2 and that the claim holds for languages with lengths 1, 2, 3, . . . , |L| − 1. Since
the root condition and prefix condition hold for L, we get that |x| ̸= 1 for every x ∈ L.
Moreover, since the form condition holds for L, it follows that |x| ≥ 3 for every x ∈ L. Our
goal is to show that we can split L into j ∈ {1, . . . , k} nonempty languages L1, . . . Lj where
for each of them the five conditions hold. The splitting process is as follows: String x ∈ L
goes to language Li if x2 = i. Since the form condition and the sibling condition hold for L,
we get that {x2 : x ∈ L} = {1, 2, . . . , j} for some j ≤ k. Thus, there is always at least one
string x such that x2 = i for every i ∈ {1, . . . , j}. Thus, every Li is nonempty. Now, for every
Li and every string y ∈ Li, we remove the first two symbols from y. Since |x| ≥ 3 for every
string x ∈ L, it follows that no Li contains the empty string. We can easily check that the
five conditions hold for each Li: The root condition holds for each Li because L complies with
the integrity condition. The remaining conditions hold for each Li because they hold for L.
By the induction hypothesis, we have that languages L1, . . . , Lj are path notations of ordered
labeled trees T1, . . . , Tj , respectively. Therefore,

L =
j⋃

i=1
{aiw : w ∈ path(Ti)} ,

where a ∈ Σ, which is the path notation of an ordered labeled tree. Hence, the claim holds. ◀

We use L(Σ, k) to denote a string language over Σ≤k, which is the path notation of an ordered
labeled tree over Σ.

The size of L(Σ, k) corresponds to the number of leaves in the underlying tree. Thus, if the
size of L(Σ, k) is 1, then L(Σ, k) represents a linear tree. We can simplify the path notation for a
linear tree by omitting numbers. We call such a notation the simple path notation and denote it
by simplePath(T), where T is a linear ordered labeled tree. See Figure 2.10.

The path notation can be used for both ranked and unranked trees. For an ordered ranked
tree over Σ, where (Σ, rank) is a ranked alphabet, its path notation is a string language over Σ≤k,
where k corresponds to the maximum rank of the symbols in Σ.

2.4.3 XML and XPath
In this section, we discuss the relationship between ordered labeled trees and XML documents.
We also describe some constructs of an XML query language called XPath. There are two reasons
why we include this section. First, ordered labeled trees can be taken as a formal model for
data represented by XML documents. Thus, we can see XML as a linear tree notation. Second,
querying an XML document can be viewed as a practical use case for the tree pattern matching
problem, which we consider in Chapter 3, where we propose a classification for this problem. We
note that this section does not aim to give a comprehensive description of XML and XPath but
rather to describe the necessary features that we use later in the dissertation thesis.

XML is a markup language that defines a set of marks for encoding documents. The set of
marks is not fixed and can be defined in various ways for each document. The key constructs of

Tree languages 31

<a>

<a>

<a>

<a>

Figure 2.11 An XML document described as a sequence of tags.

an XML document are tags, elements, and attributes. A tag is a markup construct that begins
with < (start-tag) or </ (end-tag) and ends with >. An element is a logical document component
that begins with a start tag and ends with a matching end-tag such as <a> and . The
symbols between the start-tag and end-tag are the element’s content. An attribute is a markup
construct consisting of a name-value pair separated by the equality sign within a start tag. In
this dissertation thesis, we only consider the structure of XML documents and, therefore, ignore
attributes and the content of elements. See an example of such an XML document in Figure 2.11.

The nested structure of XML documents gives a natural tree structure: each element represents
a node in the tree; as the root, we consider the most outer element; and element-subelement
relationships represent edges between the corresponding nodes. Although the order of the data
stored in XML document might not be significant, its linear representation as a document naturally
enforces order. Thus, we can view XML documents as ordered labeled trees. Note that an XML
document described as a sequence of tags is a similar representation of an ordered labeled tree
as the nested parenthesis notation. We can map the start-tag to a label with the consecutive
open parenthesis and the end-tag to the corresponding closing parenthesis. The XML document
described in Figure 2.11 can be seen as a representation of tree T2 illustrated in Figure 2.2.

Several languages, called XML schema languages, allow us to describe structure requirements
on XML documents, such as DTD (Document Type Definition), which can be seen as an extended
context-free grammar. Such a description, called a schema, can be taken as a description of a
tree language that consists of trees representing all XML documents that satisfy a given schema.

Various query languages such as XPath have been designed to retrieve data from XML
documents. In this dissertation thesis, we focus on three XPath constructs: node test for node
labels, /-axis (child axis), and //-axis (descendant axis). Each query is a sequence of steps where
each step consists of an axis and a node test. Specifically, given an alphabet Σ representing all
possible element names in an XML document, we consider three types of queries:

• XPath(/) queries defined by the following regular grammar:

({S, A}, Σ ∪ {/}, {S → /A} ∪ {A→ a | aS : a ∈ Σ}, S) .

• XPath(//) queries defined by the following regular grammar:

({S, A}, Σ ∪ {//}, {S → //A} ∪ {A→ a | aS : a ∈ Σ}, S) .

• XPath(/, //) queries defined by the following regular grammar:

({S, A}, Σ ∪ {/, //}, {S → /A | //A} ∪ {A→ a | aS : a ∈ Σ}, S) .

Every string in a language generated by one of the three grammars represents a query that
selects nodes from an XML document when evaluated. Evaluation occurs with respect to a

32 Preliminaries

current node in the XML tree at which the processor is looking. An axis gives the direction to
navigate from the current node and selects an initial node set. The node test is then used to filter
the node set by specifying the desired element names. If a query starts with the /-axis, it selects
the root (sets it as the current node); supposing that its label matches the label given by the
consecutive node test in the query; otherwise, the empty set of nodes is returned as the answer.
If a query starts with the //-axis, it selects all nodes with the label given by the consecutive node
test, no matter where they are in the tree. For example, consider the XML document described
in Figure 2.11 and its tree representation T2 illustrated in Figure 2.2. XPath query //a/b//a first
looks for nodes labeled by a anywhere in the tree. Thus, selecting nodes a1, a3, a5, and a6. From
there, it looks for children labeled by b. Thus, selecting nodes b2 and b7. Finally, it proceeds to
select all descendants labeled by a and, hence, returning nodes a3 and a5 as the answer.

Chapter 3

Tree pattern matching

As stated earlier, the problem of tree pattern matching can be defined as the search for all
occurrences of a pattern in an input tree. In the literature, tree pattern matching has several
variants that differ in the type of tree considered, the definition of the pattern, and the specification
when a pattern is considered to occur in an input tree. A tree can, for example, be free or rooted,
ordered or unordered, and labeled or unlabeled. A pattern can be described by an ordinary tree,
a finite set of trees, or a tree where nodes are labeled by special symbols such as wildcards and
variables. It can also be described as a regular tree expression or a query using the syntax of
query language, such as XPath. A pattern can be considered to occur in an input tree if, for
example, a part of the input tree is the same as the pattern, or the matching process can be more
tolerant and allow some errors.

In this dissertation thesis, we focus on the tree pattern matching problem for ordered labeled
trees. In its most simplified form, the input of this problem is two ordered labeled trees, an input
tree and a pattern tree, and the goal is to find all bottom-up subtrees in the input tree that are
isomorphic to the pattern tree. In the literature, this problem is also known as the bottom-up
subtree isomorphism problem [39, Section 4.2.3], [40] or (bottom-up) subtree matching [24], [30],
[33], [38].

▶ Problem 3.1 (The basic problem of tree pattern matching). Given ordered labeled trees T and
P, return the set of all nodes v ∈ V (T) such that P ≃ T /v.

Another variant of the tree pattern matching problem that is frequently used, often called
tree template matching, allows leaves of the pattern tree to be labeled by subtree wildcards [22,
Section 3.1.2], [33, Section 2.2], [30], [36]. A node labeled by the subtree wildcard matches any
bottom-up subtree of the input tree. We note that the subtree wildcard is also called (sub)tree
placeholder [6] or don’t care symbol [30], [36], [41] in the literature.

▶ Problem 3.2 (Tree pattern matching problem with subtree wildcards). Let T and P be ordered
labeled trees such that P contains k leaves labeled by subtree wildcard ν. Given T and P , return
the set of all nodes v ∈ V (T) such that P[T1, . . . , Tk]ν ≃ T /v for some ordered labeled trees
T1, T2, . . . , Tk.

There is also the notion of a nonlinear tree pattern matching problem, where nodes can be
labeled by subtree variables [33], [68]. The difference between the wildcard and a variable is
that the same tree must substitute occurrences of the same variable in the pattern. Apart from
the basic variant of tree pattern matching and its variants with wildcards and variables, there
are other variants of the tree pattern matching problem in the literature, such as inexact (or
approximate) tree pattern matching [49], [50], [52], [69]. Moreover, some practical problems, such
as querying XML documents, can be seen as variants of tree pattern matching problems [7], [8].

33

34 Tree pattern matching

Although there exist various variants of the tree pattern matching problem, we have not found
any unified naming standard for the problem. This can make the comparison of research results
unnecessarily complex. In this chapter, we address this deficiency by proposing a classification of
tree pattern matching problems.

Classification of pattern matching problems has already been used in the domain of strings.
Melichar and Holub [70] classified the string pattern matching problem using six criteria: nature of
the pattern, integrity of the pattern, number of patterns, way of matching, importance of symbols,
and number of instances of the pattern. We can use these criteria to reference a particular variant
of the string pattern matching problem using an abbreviation such as SFOECO problem, which
represents the problem of exact string matching of one string: (S) the nature of the pattern is
string, (F) we consider the full pattern in matching, (O) there is one pattern only, (E) we look
for exact occurrences, (C) take care of all symbols (no don’t care symbols are involved), and (O)
there is one sequence of the pattern. In this chapter, we apply a similar approach to the problem
of tree pattern matching.

This chapter is divided into four sections. First, we introduce our classification of tree pattern
matching problems for ordered labeled trees. The following two sections are devoted to examples
of using the classification as a unified naming standard for tree pattern matching problems and a
discussion of some possible extensions of the classification. Finally, we conclude this chapter with
a summary.

3.1 Classification of tree pattern matching problems
In this section, we present a classification of tree pattern matching problems for ordered labeled
trees. We use the following criteria:

• structure of the pattern,

• nature of the pattern,

• integrity of the pattern,

• number of patterns,

• way of matching the pattern, and

• exactness of matching the pattern.

Each of the criteria is described in a separate section.

3.1.1 Structure of the pattern
As the first criterion, we consider the tree structure of the pattern. Specifically, we distinguish
between two types of patterns:

(L) linear patterns, where patterns can be represented as linear trees, and

(N) nonlinear patterns, where representations of patterns are arbitrary trees (the degree of nodes
can be greater than one).

We see the usefulness of creating a separate category for linear patterns because such problems
tend to be easier to solve, and thus special methods for such patterns exist. A practical example
of linear patterns are simple XPath queries such as /a/b/c. This query can be represented as a
linear ordered labeled tree illustrated in Figure 3.1. We can also use a similar representation for
XPath queries containing //-axis such as /a//b. However, these queries need special treatment
because //-axis signifies that a is an ancestor of b (not necessarily its parent). This can be

Classification of tree pattern matching problems 35

a

b

c

Figure 3.1 The linear ordered labeled tree that corresponds to XPath query /a/b/c.

handled, for example, by adding a special type of edges to a tree representation of the query or
by adding a special wildcard label for nodes. We use the latter method and discuss it in the
following section.

3.1.2 Nature of the pattern
As the second criterion, we consider the nature of the pattern. This criterion helps us define
patterns that, when represented as trees, are allowed to contain special symbols as their node
labels. In this category, we distinguish between the following variants of patterns:

(F) fixed pattern,

(LW) pattern with label wildcards,

(PW) pattern with path wildcards,

(SW) pattern with subtree wildcards,

(LV) pattern with label variables,

(PV) pattern with path variables, and

(SV) pattern with subtree variables.

A fixed pattern can be represented as an ordinary ordered labeled tree where each node has a
specific, fixed label. We say that a fixed pattern matches a tree T if the tree representation of the
pattern is isomorphic to T . An example of such a pattern is the XPath query /a/b/c illustrated
in Figure 3.1.

A pattern with label wildcards can have some of the nodes in its tree representation labeled by
special symbol called label wildcard, the meaning of which is similar to the one used in string
matching [71, Chapter 8]. The label wildcard matches all symbols of the alphabet representing
possible node labels. An example of such a pattern is XPath query /a/ ∗ /b that can be represented
by a linear tree with three nodes: the root labeled by a, its (only) child labeled by the label
wildcard ∗, and a leaf labeled by b. This pattern matches any linear tree with three nodes where
the root is labeled by a and the leaf is labeled by b.

▶ Definition 3.3 (Tree with label wildcards). Let Σ be an alphabet and let ∗ be a special symbol,
called label wildcard, such that ∗ /∈ Σ. The tree with label wildcards over Σ ∪ {∗} is an ordered
labeled tree over Σ ∪ {∗}.

▶ Definition 3.4 (Function LWMatch). Let Σ be an alphabet. Let T1 = (V1, E1, r1,⪯S1 , label1) be
a tree with label wildcards over Σ ∪ {∗}. Let T2 = (V2, E2, r2,⪯S2 , label2) be an ordered labeled
tree over Σ. A function LWMatch is defined for T1 and T2 such that LWMatch(T1, T2) is true if
there exists a mapping φ : V1 → V2 such that

• φ is a bijective mapping,

36 Tree pattern matching

a

≀

b

Figure 3.2 An example of a gapped tree over {a, b} ∪ {≀}.

• {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2 for every pair of nodes u, v ∈ V1,
• φ(r1) = r2,
• u ⪯S1 v if and only if φ(u) ⪯S2 φ(v) for every pair of nodes u, v ∈ V1, and
• label1(u) = label2(φ(u)) for every node u ∈ V1 where label1(u) ̸= ∗.

Otherwise, LWMatch(T1, T2) is false.

A pattern with path wildcards have some of the internal nodes in its tree representation labeled
by special symbol called path wildcard, the meaning of which is inspired by the XPath //-axis.
We call an ordered labeled tree where internal nodes can be labeled by path wildcards a tree with
path wildcards or a gapped tree.

▶ Definition 3.5 (Tree with path wildcards, gapped tree). Let Σ be an alphabet and let ≀ be a
special symbol, called path wildcard, such that ≀ /∈ Σ. The tree with path wildcards (or gapped tree)
over Σ ∪ {≀} is an ordered labeled tree T over Σ ∪ {≀} such that if label(v) = ≀, where v ∈ V (T),
then v is an internal node and for each of its children u ∈ children(v) we have that label(u) ̸= ≀.

Note that it follows from the definition that there is at least one node in every gapped tree
not labeled by the path wildcard. It also follows that the path wildcard can be used as the label
of the root. In Figure 3.2, we illustrate an example of a gapped tree. This tree can be seen as a
representation of XPath query /a//b.

We say that a gapped tree T matches another tree T ′ if T ′ is isomorphic to some extension
of T , which is obtained by substituting each occurrence of path wildcard for appropriate path
of T ′ or the empty tree. We recall that the substitution of an internal node v for the empty
tree corresponds to deleting v, which makes the children of v become children of parent(v); see
Definition 2.28.

▶ Definition 3.6 (Function PWMatch). Let Σ be an alphabet. Let T be a gapped tree over
Σ ∪ {≀} with k ≥ 0 occurrences of path wildcard. Let T ′ be an ordered labeled tree over Σ. A
function PWMatch is defined for T and T ′ such that PWMatch(T , T ′) is true if there exists a
sequence T1, . . . , Tk, where Ti for each i ∈ {1, . . . , k} is either a linear ordered labeled tree over Σ
or the empty tree such that T [T1, . . . , Tk]≀ ≃ T ′. Otherwise, PWMatch(T , T ′) is false.

For example, the gapped tree illustrated in Figure 3.2 matches every linear ordered labeled
tree over {a, b} where the root is labeled by a and the leaf is labeled by b. We illustrate several
such trees in Figure 3.3.

Another possible nature of the pattern is the pattern with subtree wildcards. We can represent
such a pattern by ordered labeled trees whose leaves are allowed to be labeled by subtree wildcards.
In the literature, a notion tree template is sometimes used when at least one node is labeled
by the subtree wildcard [23], [25], [33, Section 2.2], [30, Definition 64]. The subtree wildcard is
usually represented by the symbol S or ν. In this dissertation thesis, we use the latter notation.

▶ Definition 3.7 (Tree with subtree wildcards). Let Σ be an alphabet and let ν be a special
symbol, called subtree wildcard, such that ν /∈ Σ. The tree with subtree wildcards over Σ ∪ {ν} is
an ordered labeled tree T over Σ∪{ν} such that if label(u) = ν, where u ∈ V (T), then u is a leaf.

Classification of tree pattern matching problems 37

a

b

a

a

b

a

b

b

a

a

a

b

a

a

b

b

a

b

a

b

a

b

b

b

a

a

a

a

b

, , , , , , , , . . .

Figure 3.3 Ordered labeled trees over {a, b} that match the gapped tree illustrated in Figure 3.2.

The subtree wildcard serves as a placeholder for an arbitrary subtree. That is, a tree with
subtree wildcards T matches another tree T ′ if T ′ is isomorphic to some extension of T , which
is obtained by substituting each occurrence of subtree wildcard by an appropriate bottom-up
subtree of T ′.

▶ Definition 3.8 (Function SWMatch). Let Σ be an alphabet. Let T be a tree with subtree
wildcards over Σ ∪ {ν} with k ≥ 0 occurrences of subtree wildcard. Let T ′ be an ordered labeled
tree over Σ. A function SWMatch is defined for T and T ′ such that SWMatch(T , T ′) is true if
there exists ordered labeled trees T1, . . . , Tk over Σ such that T [T1, . . . , Tk]ν ≃ T ′. Otherwise,
SWMatch(T , T ′) is false.

The last three natures of patterns we consider in our classification are trees with variables.
The difference between a wildcard and a variable is that the same label or tree must substitute
for occurrences of the same variable in the pattern.

▶ Definition 3.9 (Tree with label variables). Let Σ1 and Σ2 be disjoint alphabets. Symbols from
Σ2 are called label variables. A tree with label variables over Σ1 ∪ Σ2 is an ordered labeled tree
over Σ1 ∪ Σ2.

▶ Definition 3.10 (Tree with path variables). Let Σ1 and Σ2 be disjoint alphabets. Symbols from
Σ2 are called path variables. A tree with path variables over Σ1 ∪ Σ2 is an ordered labeled tree T
over Σ1 ∪ Σ2 such that if label(v) ∈ Σ2, where v ∈ V (T), then v is an internal node and for each
of its children u ∈ children(v), we have that label(u) ̸= label(v).

Assume that there are no nodes u, v ∈ T labeled by the same symbol of Σ2 such that
parent(u) = v.

▶ Definition 3.11 (Tree with subtree variables). Let Σ1 and Σ2 be disjoint alphabets. Symbols
from Σ2 are called subtree variables. A tree with subtree variables over Σ1 ∪ Σ2 is an ordered
labeled tree T over Σ1 ∪ Σ2 such that if label(u) ∈ Σ2, where u ∈ V (T), then u is a leaf.

A tree with subtree variables containing at least two nodes labeled by the same subtree
variable is sometimes called a nonlinear tree template [33, Section 2.2].

Similarly, as for wildcards, we define what it means for a tree with variables to match another
tree. For the tree with label variables, we adjust the conditions of tree isomorphism. In the
case of the tree with path or subtree variables, we use the concurrent substitutions defined in
Section 2.3.1.3.

▶ Definition 3.12 (Function LVMatch). Let Σ1 and Σ2 be disjoint alphabets. Let T1 = (V1, E1, r1,
⪯S1 , label1) be a tree with label variables over Σ1 ∪ Σ2. Let T2 = (V2, E2, r2,⪯S2 , label2) be an

38 Tree pattern matching

ordered labeled tree over Σ1. A function LVMatch is defined for T1 and T2 such that LVMatch(T1, T2)
is true if there exists a mapping φ : V1 → V2 such that

• φ is a bijective mapping,

• {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2 for every pair of nodes u, v ∈ V1,

• φ(r1) = r2,

• u ⪯S1 v if and only if φ(u) ⪯S2 φ(v) for every pair of nodes u, v ∈ V1, and

• for every node u ∈ V1, it holds that:

– If label1(u) ∈ Σ1, then label1(u) = label2(φ(u)).
– If label1(u) ∈ Σ2, then label2(φ(u)) = label2(φ(v)) for every node v ∈ V1 where label1(u) =

label1(v).

Otherwise, LVMatch(T1, T2) is false.

▶ Definition 3.13 (Function PVMatch). Let Σ1 and Σ2 be disjoint alphabets. Let Σ2 =
{≀1, . . . , ≀m}. Let T be a tree with path variables over Σ1 ∪ Σ2. Let T ′ be an ordered la-
beled tree over Σ1. A function PVMatch is defined for T and T ′ such that PVMatch(T , T ′) is true
if there exists a sequence T1, . . . , Tm, where Ti for each i ∈ {1, . . . , m} is either a linear ordered
labeled tree over Σ1 or the empty tree such that T [≀1 ← T1, . . . , ≀m ← Tm] ≃ T ′. Otherwise,
PVMatch(T , T ′) is false.

▶ Definition 3.14 (Function SVMatch). Let Σ1 and Σ2 be disjoint alphabets. Let Σ2 =
{ν1, . . . , νm}. Let T be a tree with subtree variables over Σ1 ∪ Σ2. Let T ′ be an ordered labeled
tree over Σ1. A function SVMatch is defined for T and T ′ such that SVMatch(T , T ′) is true if
there exists ordered labeled trees T1, . . . , Tm over Σ1 such that T [ν1 ← T1, . . . , νm ← Tm] ≃ T ′.
Otherwise, SVMatch(T , T ′) is false.

3.1.3 Integrity of the pattern
Until now, we have considered matching the full pattern. Our interest was, for example, whether a
pattern tree (as a whole) is isomorphic to another tree. However, we can sometimes be interested
only in some parts of the pattern tree. For example, we can say that a pattern matches another
tree if some subtree or rootpath of the pattern tree matches the tree. Whether we choose to
match a full pattern or some of its parts can be used as another criterion for classifying tree
pattern matching problems. We call this criterion the integrity of the pattern. This criterion
includes the following variants:

(F) full pattern,

(SS) subpattern: subtree,

(SB) subpattern: bottom-up subtree,

(ST) subpattern: top-down subtree,

(SP) subpattern: path,

(SR) subpattern: rootpath, or

(SG) subpattern: stringpath.

Classification of tree pattern matching problems 39

3.1.4 Number of patterns
A pattern does not always have to be represented as a single tree. It can sometimes be described
as a finite or infinite set of trees. If that is the case, then we say that a pattern matches tree T
if at least one of the trees in the set representing the pattern matches T . Using the number of
trees representing a given pattern, we distinguish between three variants of tree pattern matching
problems:

(O) one, in which the pattern is represented as a single tree,

(F) a finite number greater than one, in which a finite set of trees represents the pattern, and

(I) an infinite number, in which the pattern is represented by an infinite set of trees.

An infinite number of patterns can be given, for example, by a pattern in the form of a
regular tree expression. Regular tree expressions can be seen as an extension of regular (string)
expressions; for a more detailed exposition of the regular tree expressions, see Comen et al. [21,
Section 2.2].

3.1.5 Way of matching the pattern
Until now, the criteria considered the description and interpretation of the pattern. For another
criterion, we turn our attention to input trees. We distinguish between three variants of tree
pattern matching problems according to which part of the input tree we match the pattern:

(S) subtrees,

(T) top-down subtrees, or

(B) bottom-up subtrees.

Subtrees, top-down subtrees, and bottom-up subtrees are the three main tree parts that we
defined in Section 2.3.2. This criterion allows us to control to which of them in an input tree
we match a given pattern. For example, consider a fixed, full pattern P represented as a single
tree. If we choose subtrees as the way of matching, then there is an occurrence of P in a given
input tree if P is isomorphic to some of its subtrees. Note that if the structure of P is linear,
then matching it to subtrees corresponds to matching it to paths of the input tree. Similarly,
matching patterns with the linear structure to top-down subtrees corresponds to matching it to
rootpaths. For example, evaluation of XPath(/) queries corresponds to matching linear, fixed,
full patterns represented as a single tree to top-down subtrees (rootpaths) of an input tree.

3.1.6 Exactness of matching the pattern
In some cases, a pattern rarely matches an input tree exactly. Pattern, input tree, or both can
suffer from some undesirable corruption. Thus, we can classify tree pattern matching problems
according to the exactness of matching into two variants:

(E) exact matching, in which a pattern must match parts of an input tree exactly, and

(I) inexact matching, in which we consider as occurrences all parts of an input tree where the
pattern matches with up to a given maximum number of errors.

For inexact matching, we also need to specify which error model is used to define how different
two trees are. For this purpose, a tree edit distance is often used. Apart from the 1-degree edit
distance we defined in Section 2.3.1.2, there are other variants, and we discuss them briefly in
Section 4.1.2.

40 Tree pattern matching

Structure
of pattern

Nature
of pattern

Integrity
of pattern

Number
of patterns

Way
of matching

Exactness
of matching

L F F O S E
N (LW) (SS) F T I

(PW) (SB) I B
(SW) (ST)
(LV) (SP)
(PV) (SR)
(SV) (SG)

Table 3.1 Overview of the SNINWE classification.

3.2 Describing tree pattern matching problems using the clas-
sification

We have defined six criteria to classify tree pattern matching problems. Table 3.1 gives an
overview of the individual criteria and their possible values. Using the first letter of each criterion,
we call this classification the SNINWE classification of tree pattern matching problems. In this
section, we show how the classification can be used as a unified naming standard for tree pattern
matching problems.

A particular tree pattern matching problem can be referenced using abbreviations of values in
individual criteria. For example, Problem 3.1 corresponds to the NFFOBE tree pattern matching
problem. As a second example, consider Problem 3.2. Using the SNINWE classification, we can
refer to this problem as the N(SW)FOBE tree pattern matching problem. Moreover, we can give
an alternative definition that uses the function SWMatch, see Problem 3.15.

▶ Problem 3.15 (N(SW)FOBE tree pattern matching problem). Given an ordered labeled tree T
and a tree with subtree wildcards P , the N(SW)FOBE tree pattern matching problem is to return
the set of all nodes v ∈ V (T) such that SWMatch(P, T /v) is true.

As the third example in this section, we define the NFFOBI tree pattern matching problem, a
variant of inexact tree pattern matching problems. This problem is about finding all bottom-up
subtrees in an input tree whose distance from the pattern tree is at most a given maximum
number of errors. We revisit this problem in Chapter 5, where we present our automata-based
solutions to this problem under the 1-degree edit distance.

▶ Problem 3.16 (NFFOBI tree pattern matching problem). Let Σ be an alphabet. Let T and P
be ordered labeled trees over Σ. Let k be a non-negativity integer that represents the maximum
number of errors allowed. Let f be a tree edit distance. Given T ,P, k, and f , the NFFOBI tree
pattern matching problem is to return the set of all nodes v ∈ V (T) such that f(P, T /v) ≤ k.

We give more examples of tree pattern matching problems described by the SNINWE classifi-
cation when we discuss related work and introduce our results in tree indexing.

3.3 Possible extensions to the classification
The SNINWE classification covers many tree pattern matching problems. Using the values in
individual criteria illustrated in Table 3.1, we can specify 2 · 7 · 7 · 3 · 3 · 2 = 1764 tree pattern
matching problems. However, the SNINWE classification is not exhaustive. It can be extended by
adding additional values to its criteria or by adding brand new criteria. To keep our classification
clear, we chose to discuss some possible extensions in this section instead of trying to create

Possible extensions to the classification 41

a universal complex classification. Possible extensions to existing criteria are, for example, as
follows:

Structure of the pattern It could be helpful to consider structures other than linear and
arbitrary trees. For example, we could know that patterns form trees in the shape of a star or
that each node has a restricted number of children. This fact could be used when proposing
solutions to the corresponding tree pattern matching problem; thus, it would be a reasonable
extension of this criterion.

Nature of the pattern We can easily extend this criterion by allowing patterns to contain not
only one type of special symbol but a combination, for example, a tree with path wildcards
and subtree variables. We could also add parameters to path and subtree wildcards and
variables that would set the minimum and the maximum number of nodes in a path or subtree
that can be used as a substitution. For example, the path wildcard ≀(1, 3) would mean that
we can only substitute it for a path containing one, two, or three nodes. Moreover, we could
define special label wildcards or variables that match only a subset of an alphabet.

Integrity of matching Other tree parts, such as leafpaths (paths leading from a node in a tree
to one of its leaves) or ordered (top-down) subtrees [39, Definition 4.5] could be used as other
forms of subpatterns.

Way of matching We could match a given linear pattern to stringpaths of an input tree. Or
we could use other tree parts that we have not defined in this dissertation thesis, such as the
above-mentioned ordered (top-down) subtrees and leafpaths.

Exactness of matching Apart from exact and inexact matching, we could add oracle matching
[28], [72] as another value. Oracle matching can report some false positives as matches.

We can also extend the classification by adding other criteria. One of the possible candidates
is the sequence of patterns that Melichar and Holub [70] used in their classification of string
pattern matching problems. In the context of strings, this criterion indicates that a pattern can
be represented as a sequence of strings that must match consecutively. For example, a pattern
(abb, ba) occurs in a given text if an occurrence of abb is followed by an occurrence of ba (with
some possible gap in between). In the context of trees, we could allow a pattern to be represented
as a sequence of trees. Such a pattern would match an input tree if, for example, the input tree
contains the trees in the sequence consecutively as its bottom-up subtrees.

The so-called online and offline variants of pattern matching problems are often discussed in
the literature. In the online variant, the input tree cannot be preprocessed, whereas in the offline
version, it can, and we can thus build a data structure, known as index, on it. The index can
then be used to speed up the searching phase. Whether we consider the online or offline variant
can be added as another classification criterion.

We can also classify tree pattern matching problems according to their output specification.
The output can take several forms similar to the output forms of string pattern matching problems.
Crochemore et al. [71, Page 20] give an example of three output forms for string pattern matching:
a boolean value encoding whether a pattern occurs or does not in a text, a binary string of the
same length of the input text encoding right positions of occurrences, and a set of right or left
positions of occurrences of a pattern in a text. Similarly, a tree pattern matching problem can
also be formulated as a decision problem where the aim is only to test whether a pattern occurs
in an input tree or not without specifying the positions of the possible occurrences. The advanced
version of the output we have used so far is to formulate tree pattern matching problems as search
problems, which entails searching for all pattern occurrences in the input tree. The output can be
a set of nodes representing the positions of occurrences or even take the form of the binary string
encoding the occurrences if an input tree is represented as a string using a linear tree notation.
Moreover, the output of the search problem can also only be the number of occurrences and not
the occurrences themselves, or the output can be only the first or last occurrence.

42 Tree pattern matching

Even more variants for the output are possible in the case of inexact tree pattern matching.
We can formulate such a problem as an optimization problem where the aim is to report in some
sense an optimal occurrence. Concerning the desired output, we can distinguish between the
following variants of inexact tree pattern matching problems:

Bounded matches Given a desired maximum distance, all matches with a distance less than
or equal to this distance are considered.

Best match Only the best match with the least distance is considered.

Top k matches Only the best k matches for a given tree edit distance are considered.

3.4 Summary
In this chapter, we addressed the absence of a unified naming standard for tree pattern matching
problems by proposing a classification called the SNINWE classification It categorizes tree pattern
matching problems according to six criteria: the structure of the pattern, the nature of the
pattern, the integrity of the pattern, the number of patterns, the way of matching the pattern,
and the exactness of matching the pattern. For designing the classification, we applied a similar
approach that Melichar and Holub [70] used to classify string pattern matching problems.

The SNINWE classification can be used to reference various tree pattern matching problems
using abbreviations such as LFFOSE problem, which corresponds to a tree pattern matching
problem where

L the representation of a pattern is a Linear tree,

F all nodes in the pattern tree are labeled by specific, Fixed labels (no nodes are labeled by
special symbols such as wildcards or variables),

F the Full pattern is considered during the matching,

O the pattern can be represented as One tree,

S we search for occurrences in the Subtrees of a given input tree, and

E we search for Exact occurrences.

Although the SNINWE classification covers many tree pattern matching problems, it is not
exhaustive. In this chapter, we also discussed its possible extensions, which can be done by adding
values to existing criteria or introducing new criteria. We refer to the SNINWE classification
throughout this dissertation thesis when we discuss related work and introduce our results in
inexact tree pattern matching and tree indexing.

Chapter 4

Previous results and related work

The main scope of this dissertation thesis is pattern matching in ordered labeled trees. Since
there is a rather large body of work devoted to this problem, we do not attempt to list all existing
results here. Instead, we focus on the most relevant work in the domain of inexact tree pattern
matching and tree indexing, the two problems for which we propose automata-based solutions in
the following two chapters. Moreover, since this dissertation thesis focuses on the string automata
approach, we pay more attention to existing methods that are based on string automata.

This chapter consists of two sections. First, we focus on the problem of inexact pattern
matching. Specifically, we discuss existing matching algorithms that preprocess a given pattern
and not the input data. Second, we pay attention to the problem of indexing, where algorithms
preprocess the input data and build a data structure known as an index. In both of these sections,
we discuss relevant work in the domain of trees and strings. We mention the string results because
many stringology algorithms and principles can be, with some care, adapted to handle trees
represented as strings. For strings, we describe mainly established work that is the basis of our
automata-based methods proposed in the following two chapters.

4.1 Inexact pattern matching

Pattern matching is the problem of finding all occurrences of a pattern in the input data. However,
sometimes the pattern, the input data, or both can be subject to deformation or corruption,
which means that matching algorithms need to be designed to be tolerant and allow the presence
of some errors. In other words, the goal is to locate all occurrences within the input data that
are similar to the pattern. This problem is called inexact (or approximate) pattern matching.

This section gives an overview of previous results for inexact pattern matching. Specifically,
we focus on online searching when only a pattern can be preprocessed and not the input data to
build an index. First, we pay attention to the inexact string pattern matching problem. Then,
we describe existing approaches to inexact pattern matching in trees.

4.1.1 Strings
The problem of inexact string pattern matching is about searching for occurrences of a given
pattern in other strings (or texts, to be less formal) that are similar to a given pattern under
some similarity measure. Various variants of the inexact string pattern matching problem are
discussed in the literature, and they differ mainly by the error model used [73].

43

44 Previous results and related work

An error model defines how different two strings are, and a well-known one is the so-called
edit distance. The notion of distance between two strings was defined by Wagner and Fisher in
1974 [43]. They considered three elementary edit operations:

• renaming (also called substitution or replacement) of a symbol by a different symbol,

• deletion of a symbol, and

• insertion of a symbol.

This most prominent distance for strings is also known as the Levenshtein distance [74].
Similarly, as in the case of 1-degree edit operations discussed in Section 2.3.1.2, a cost can

be assigned to the elementary edit operations mentioned above using an alphabet with the
blank symbol equipped with a cost function. If all operations cost one, we speak of the simple
Levenshtein distance. The problem of computing the simple Levenshtein distance between two
strings is thus to find the minimum number of operations to transform one string into the other.
The notions of an edit script, the cost of an edit script, the length of an edit script, an optimal edit
script, and a shortest edit script that we established in Section 2.3.1.2 can be used analogously in
the context of strings.

▶ Definition 4.1 (simple Levenshtein distance). Let Σ be an alphabet. Given two strings x and y
over Σ, the simple Levenshtein distance is a function sLev : Σ∗ ×Σ∗ → N0 such that sLev(x, y) is
the length of a shortest edit script between x and y.

▶ Definition 4.2 (Levenshtein distance). Let Σλ be an alphabet with the blank symbol λ equipped
with a cost function. Given two strings x and y over Σ, the Levenshtein distance is a function
Lev : Σ∗ × Σ∗ → R such that Lev(x, y) is the cost of an optimal edit script between x and y.

The Levenshtein distance is not the only distance between strings that has been used [44,
Chapter 11]. Other well-known string edit distances are, for example, the Hamming distance [75],
the Damerau distance [76], the longest common subsequence distance [77], [78], or the episode
distance [79].

In this section, we narrow our focus to the previous work on the inexact string pattern
matching under the simple Levenshtein distance, also known as the problem of string matching
with k differences [16], [73], [80], [81]. Particularly, we pay attention to the results on which we
build in Chapter 5, where we introduce our automata-based approach to the inexact pattern
matching in trees.

▶ Problem 4.3 (Inexact string pattern matching under the simple Levenshtein distance). Let Σ
be an alphabet. Let p and t be strings over Σ. Let k ≥ 0 represent the maximum number of
errors allowed. Given p, t, and k, the inexact string pattern matching problem under the simple
Levenshtein distance is to return the set of all positions j in t for which there exists j′ such that
sLev(p, tj′...j) ≤ k.

There are currently four approaches to the problem of inexact string pattern matching under
the (simple) Levenshtein distance: dynamic programming [43], [82] [12, Section 6.2.2.3], automata
[16], [46] [12, Section 2.2.3.2], bit-parallelism [47], [48], [83] [12, Section 6.3.2.3], and filtering [48].
In the rest of this section, we pay attention to the results of the first two approaches. For an
overview of all approaches, we refer the reader to the survey by Navarro [73].

4.1.1.1 Dynamic programming approach
The dynamic programming approach (see, for example, Cormen et al. [62, Chapter 15]) is the
oldest approach to the problem of inexact string pattern matching under the (simple) Levenshtein
distance. It builds on the basic algorithm that computes the simple Levenshtein distance; see
Algorithm 4.4 and Figure 4.1. The computation of the (simple) Levenshtein distance between
two strings can be attributed to Wagner and Fisher [43] or Needleman and Wunsch [77].

Inexact pattern matching 45

D j 0 1 2 3 4 5 6 7

i - - a d c a b c a

0 - 0 1 2 3 4 5 6 7

1 a 1 0 1 2 3 4 5 6

2 d 2 1 0 1 2 3 4 5

3 b 3 2 1 1 2 2 3 4

4 b 4 3 2 2 2 2 3 4

5 c 5 4 3 2 3 3 2 3

6 a 6 5 4 3 2 3 3 2

Figure 4.1 Computing the simple Levenshtein distance between strings adbbca and adcabca using
Algorithm 4.4. The blue entries show the paths to the final result.

▶ Algorithm 4.4 (The dynamic programming approach to computing the simple Levenshtein distance
[43]). Let Σ be an alphabet. Given strings x and y over Σ, the algorithm computes sLev(x, y).
The principal internal data structure is a two-dimensional array D in which the dimensions have
ranges 0 to |x| and 0 to |y|, respectively. By Di,j , where i ∈ {0, . . . , |x|} and j ∈ {0, . . . |y|}, we
denote the value at row i and column j. When the array is filled, Di,j contains sLev(x1...i, y1...j).
Thus, D|x|,|y| contains sLev(x, y).

1. (Initialize array.)

a. Set D0,0 ← 0.
b. For each position i in x, set Di,0 ← i.
c. For each position j in y, set D0,j ← j.

2. (Fill array.) For each position j in y and i in x:

a. The cost of renaming xi to yj (or match) is c1 ←

{
Di−1,j−1 if xi = yj ,

Di−1,j−1 + 1 otherwise.

b. The cost of deleting xi from x is c2 ←Di−1,j + 1.

c. The cost of inserting symbol yj into x is c3 ←Di,j−1 + 1.

d. Set Di,j ← min(c1, c2, c3).

3. (Return.) Return D|x|,|y|.

A slightly different variant of Algorithm 4.4 also appears in the literature [73, Section 5.1.1],
[16]. In this variant, the observation that Di−1,j + 1 or Di,j−1 + 1 cannot be smaller than
Di−1,j−1 [84], [71, Section 8.2] is used and Step 2 is changed as follows:

2. (Fill array.) For each position j in y and i in x: If xi = yj , then Di,j ←Di−1,j−1. Otherwise,
set Di,j ← 1 + min(c1, c2, c3), where

• c1 ←Di−1,j−1 is the cost of renaming xi to yj ,
• c2 ←Di−1,j is the cost of deleting xi from x, and
• c3 ←Di,j−1 is the cost of inserting symbol yj into x.

46 Previous results and related work

D j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i - - a d c a b c a a b a d b b c a

0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0

2 d 2 1 0 1 1 1 2 1 1 1 1 0 1 2 2 1

3 b 3 2 1 1 2 1 2 2 2 1 2 1 0 1 2 2

4 b 4 3 2 2 2 2 2 3 3 2 2 2 1 0 1 2

5 c 5 4 3 2 3 3 2 3 4 3 3 3 2 1 0 1

6 a 6 5 4 3 2 3 3 2 3 4 3 4 3 2 1 0

Figure 4.2 Search for p = adbbca in t = adcabcaabadbbca with k = 2 under the simple Levenshtein
distance. The occurrences are found in t at positions 4, 7, 13, 14, and 15 which correspond to end
positions of occurrences. The blue entries show the paths to the final result.

Since the size of the array is (|x|+1)·(|y|+1) and each value can be computed in constant time,
Algorithm 4.4 works in time O(|x| · |y|). Assuming |x| < |y|, the algorithm can be implement
to use O(|x|) space because for each pair i, j ≥ 1, the value Di,j depends only on the values at
the three neighbor positions: Di−1,j−1, Di,j−1, and Di−1,j . Thus, two columns are sufficient for
computation.

Several researchers aimed to improve Algorithm 4.4 since 1970s. For example, Masek and
Paterson [85] presented an algorithm that works in O

(
n2/ log n

)
time for strings x and y of the

same length equal to n. In 2015, Backurs and Indyk [86] provided evidence that the near-quadratic
searching time for the problem of computing the simple Levenshtein distance might be tight.

Given strings x and y, Algorithm 4.4 computes sLev(x, y). To obtain the corresponding edit
script between x and y, we can perform the computation by tracking back the array from D|x|,|y|
to D0,0 as illustrated in Figure 4.1. Note that multiple paths may exist. This computation takes
O(|x|+ |y|) additional time and space. For details, see Algorithm Y by Wagner and Fischer [43]
or Section 11.3.3 by Gusfield [87].

The algorithm for computing the (simple) Levenshtein distance was converted into a searching
algorithm by Sellers [82]. Assuming that x is the pattern and y is the input text, the algorithm
can locate all substrings y′ of y such that sLev(x, y′) ≤ k, where k is a given maximum number
of errors. The algorithm is basically the same as Algorithm 4.4. The only difference is that any
position in the input text is now a potential start, which corresponds to initializing the values of
the first row of the array to zero. The positions of the occurrences can then be found in the last
row where the values are not greater than k. Specifically, given strings x (the pattern) and y
(the text) and k ≥ 0, Algorithm 4.4 can be converted into a searching algorithm as follows:

• Change Step 1c as follows: For each position j in y, set D0,j ← 0.

• Change Step 3 (Report occurrences.) as follows: For each position j in y: If D|x|,j ≤ k,
output j.

From now on, we use p and t instead of x and y, respectively, to denote the pattern and the
input text. We illustrate the dynamic programming approach to the problem of inexact string
pattern matching under the simple Levenshtein distance in Figure 4.2.

Given p, t, and k, the searching algorithm mentioned above works in time O(|p| · |t|) since
the array of size (|p|+ 1) · (|t|+ 1) is filled and each value can be computed in constant time.
Assuming that |p| < |t|, the computation can be performed in O(|p|) space for similar reasons as
in the case of Algorithm 4.4.

Inexact pattern matching 47

The dynamic programming approach turned out to be very flexible. For example, it can be
adapted to the Levenshtein distance (when operations do not have the unit cost). The main idea
behind this adaptation lies in changing the value added when an edit operation is applied to
the current position. When matching under the simple Levenshtein distance, we always add one.
In the case of non-unit cost operations, the operation cost is added instead. See, for example,
Wagner and Fisher [43] or Section 11.5 by Gusfield [87] for details. The algorithm can also be
modified for another set of edit operations [84] such as to allow transpositions (two consecutive
symbols can be swapped; each symbol can be involved only in one transpose) [12, Section 6.2.2.4].
By considering only substitutions, the algorithm computes the Hamming distance [88].

The two-dimensional array that is filled during the matching under the simple Levenshtein
distance has some properties such as that two adjacent values on a column, row, and diagonal
differ by at most one [84], [71, Section 8.2]. Moreover, Ukkonen [46] observed that all the values
in the array that are larger than k + 1 can be replaced by k + 1 without affecting the output of
the search. These properties have been used to design more efficient algorithms that process the
text in time O(k · |t|) [89], [90].

4.1.1.2 Automata approach
An alternative approach to the problem of inexact string pattern matching under the simple
Levenshtein distance is to use a finite automaton [9], [16], [46]–[48], [12, Section 2.2.3.2]. Using
a deterministic finite automaton, all inexact occurrences of pattern p in text t can be found in
time O(|t|). The disadvantage of this approach, however, is its space complexity.

The finite automaton for the problem of inexact string pattern matching under the simple
Levenshtein distance can be constructed using the so-called Levenshtein automaton that accepts
the set of all strings which are at most at distance k to p, where p is the pattern and k represent
the maximum number of errors. The nondeterministic Levenshtein automaton has a regular
structure; see Algorithm 4.5 and Figure 4.3. The automaton has (k + 1) · (|p|+ 1) states and can
be built in time O(k · |p|).

▶ Algorithm 4.5 (Construction of the Levenshtein automaton). Let Σ be an alphabet. Let p be
a string over Σ. Let k ≥ 0. Given p and k, the algorithm constructs an ε-NFA M such that
L(M) = {p′ : sLev(p, p′) ≤ k}.

1. (Define the set of states.) Each state is labeled by il, where i ∈ {0, . . . , |p|} and l ∈ {0, . . . , k}.
Specifically, states are labeled so they can be arranged into rows and columns as illustrated in
Figure 4.3. We say that a state labeled by il it is at depth i and on level l.

Set Q←
{

il : 0 ≤ i ≤ |p| ∧ 0 ≤ l ≤ k
}

.

2. (Define the start state.) Set q0 ← 00.

3. (Define the set of final states.) Every state at depth |p| is final.

Set F ←
{
|p|l : 0 ≤ l ≤ k

}
.

4. (Add transitions indicating match.) For each position i ∈ {1, . . . , |p|} and number of errors
l ∈ {0, . . . , k}, set δ

(
(i− 1)l, pi

)
←

{
il

}
.

5. (Add transitions for renaming operations.) For each position i ∈ {1, . . . , |p|}, number of errors
l ∈ {0, . . . , k − 1}, and symbol a ∈ Σ \ {pi}, set δ

(
(i− 1)l, a

)
←

{
il+1}

.

6. (Add transitions for insertion operations.) For each i ∈ {0, . . . , |p|}, number of errors
l ∈ {0, . . . , k − 1}, and symbol a ∈ Σ, set δ

(
il, a

)
← δ

(
il, a

)
∪

{
il+1}

.

48 Previous results and related work

00start 10 20 30 40 50 60

01 11 21 31 41 51 61

02 12 22 32 42 52 62

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

a d b b c a

a d b b c a

a d b b c a

ε

{a}

ε

{d}

ε

{b}

ε

{b}

ε

{c}

ε

{a}

ε

{a}

ε

{d}

ε

{b}

ε

{b}

ε

{c}

ε

{a}

Figure 4.3 Levenshtein automaton for p = adbbca and k = 2. Horizontal transitions represent matches.
Each of the remaining transitions represents using an edit operation. Vertical transitions correspond
to insertion operation, diagonal ε-transitions represent deletion operation, and the remaining diagonal
transitions represent renaming operation.

7. (Add transitions for deletion operations.) For each position i ∈ {1, . . . , |p|} and number of
errors l ∈ {0, . . . , k − 1}, set δ

(
(i− 1)l, ε

)
←

{
il+1}

.

8. (Return.) Return M = (Q, Σ, δ, q0, F).

Given a string p over alphabet Σ and k ≥ 0, the Levenshtein automaton for p and k can be
turned into a matching automaton by simply adding a loop transition to its start state for each
symbol of Σ. To locate all occurrences of p in given text t with up to k errors, it is sufficient to
run the automaton on t and report an occurrence every time a final state is active. The position
in the input text corresponds to the end position of the occurrence. Note that more than one final
states can be active at the same time; the distance between p and its occurrence in t corresponds
to the level of the topmost active final state.

The automata-based approach is similarly flexible as the dynamic programming approach.
The ε-NFA can be adapted to different costs of operations by changing the level of the target state
of transitions that correspond to non-unit cost operations. For example, if deletion costs 2 instead
of 1, we make the ε-transitions move from a state at level l to a state at level l + 2 instead of l + 1.
The automaton can also be adapted for other edit operations such as the Hamming distance [9],
[88] or to allow transpositions by introducing auxiliary states [12, Section 2.2.3.3]. The ε-NFA
can also be modified to the problem of inexact string pattern matching under distances based on
an ordered alphabet in which the order of symbols matters [12, Section 2.2.4].

There is a connection between the ε-NFA and the dynamic programming approach to the
inexact string pattern matching problem under the simple Levenshtein distance. As observed,
for example, by Melichar [16], [12, Theorem 6.11], the two-dimensional array computed in the
dynamic programming algorithm simulates the ε-NFA in the following way:

• Value Di,j ≤ k corresponds to the level of the topmost active state in depth i of the ε-NFA
and step j of the run of the ε-NFA.

• Value Di,j > k signals that there is no active state in depth i of the ε-NFA and step j of the
run of the ε-NFA.

The ε-NFA can be made deterministic (by eliminating ε-transitions and using subset construc-
tion) to obtain linear search time in the length of a given input text. However, the practicality of
this approach is reduced due to the space requirements for the DFA.

Melichar [12, Section 2.4] showed that the number of states of the DFA that is obtained from
the ε-NFA for inexact matching under the simple Levenshtein distance is O

(
|Σ|k · |p|k+1)

, where
p is the pattern over alphabet Σ and k is the maximum number of errors allowed. To prove this
state complexity, Melichar used some existing results from dictionary matching.

Inexact pattern matching 49

Given a finite set D of nonempty strings over alphabet Σ called dictionary and a string t ∈ Σ∗,
the problem of dictionary matching is to locate all occurrences of strings of D in t [71, Chapter 2].
The dictionary automaton is then a finite automaton accepting language Σ∗D.

Given a dictionary D, let pref(D) be the set of all strings such that each string is a prefix
of some string in D. Clearly, | pref(D)| is at most 1 +

∑
x∈D |x|. The deterministic dictionary

automaton for D can be constructed according to Proposition 5.1 given by Crochemore et al.
[10, Section 5.2]. The set of states of this automaton corresponds pref(D). Later, Melichar [12,
Theorem 2.34] proved the equivalence of this automaton to the DFA that is created using three
steps:

1. Create a deterministic finite automaton with a tree-like structure that accepts all strings in
D. The set of states of this automaton corresponds to pref(D).

2. Add a loop transition to the start state of the automaton created in Step 1 for all alphabet
symbols.

3. Use subset construction to convert the NFA from Step 2 to an equivalent DFA.

Moreover, Melichar discussed that the consequence of the proof is that during the transfor-
mation of the NFA to DFA the number of states does not increase. Therefore, the DFA has
1 +

∑
x∈D |x| states in the worst case.

Clearly, a deterministic dictionary automaton can be built from any finite automaton accepting
a finite language D by adding a loop transition to its start state for all symbols of the alphabet
and using subset construction. Melichar [12, Theorem 2.35] proved that the number of states of
such a DFA is also 1 +

∑
x∈D |x| states in the worst case.

▶ Theorem 4.6 (Upper bound for the number of states of the deterministic dictionary automaton
[12]). Let D be a dictionary. Let M be an NFA accepting D. Let M′ be the NFA obtained from
M by adding a loop transition to its start state for all symbols of the alphabet. Then, the number
of states of DFA obtained from M by the subset construction is

O
(∑

x∈D

|x|
)
.

Using these results from dictionary matching, Melichar [12, Theorem 2.42] proved that the
DFA obtained from the ε-NFA for the problem of inexact string pattern matching under the
simple Levenshtein distance has O

(
|Σ|k · |p|k+1)

states, where p is the pattern over alphabet Σ
and k is the maximum number of errors allowed.

In addition to obtaining the DFA from the ε-NFA, other researchers have studied the direct
construction of the DFA. For example, Ukkonen [46] proposed the idea of a construction of
the DFA directly from the dynamic programming array. Each state of the DFA corresponds
to a possible column which can occur in the array. Ukkonen proved that the space complexity
of this DFA is O

(
|Σ| · min

(
3|p|, 2k · |Σ|k · |p|k+1))

, where p is the pattern over alphabet Σ
and k is the maximum number of errors allowed. Later, Melichar [16] refined the bound to
O

(
(k + 2)|p|−k · (k + 1)! ·min(|Σ|, |p|+ 1)

)
.

Because of the space requirement of the DFA, Navarro [91] studied the computation of the
automaton in lazy form; that is, only the states actually reached when the text is read are
generated. An alternative approach is to use bit-parallel simulation of the (ε-)NFA instead of
turning it into the equivalent DFA [47], [48], [83].

4.1.2 Trees
The problem of inexact tree pattern matching is a direct extension of inexact string pattern
matching. Similarly, as in the case of strings, this problem is connected with the well-known tree
edit distance problem, which is about measuring the similarity between two trees.

50 Previous results and related work

There are various types of tree edit distance based on the set of edit operations allowed and
the type of trees considered [44, Chapter 15.4], [45]. We recall that in Section 2.3.1.2, we described
the 1-degree edit distance introduced in 1977 by Selkow [42], where the set of elementary edit
operations consists of node relabeling, leaf insertion, and leaf deletion. A natural extension of
this distance is called degree-2 distance [92], where one can delete either a leaf or a node with one
child; the insertion operation is then the complement to the deletion operation. One of the most
studied edit distances between ordered labeled trees was introduced two years later, in 1979, by
Tai [93] who considered the following set of elementary edit operations:

• relabeling of a node which changes the label of a node into a different one,

• deletion of a node which deletes a non-root node v making the children of v become children
of parent(v), and

• insertion of a node v as a child of u making v the parent of a consecutive subsequence of the
children of u.

A metric cost function is also assumed to assign each edit operation a non-negative real
number. We refer to this type of edit distance as the general tree edit distance.

Tai also described a graphical specification of how a sequence of edit operations transforms
one tree into another called mapping. Several authors used a restriction of the mapping between
two trees to define a new type of edit distance between trees [94]–[97]. Another restricted variant
of the general tree edit distance was considered, for example, by Shasha and Zhang [98] or Akmal
and Jin [99]. They assumed that all operations come with the unit cost. Some authors considered
a different set of operations, such as Lu [100], who used operations node split and node merge, or
Klein [101], who considered edge-labeled trees and edit operations on edges.

The algorithmic nature of the tree edit distance problem and inexact tree pattern matching
depends on the type of edit operations allowed and the type of trees considered [45]. For example,
the tree edit distance problem is NP-hard for unordered labeled trees and the set of operations
that consists of node relabeling, node deletion, and node insertion [102]. In the rest of this section,
we narrow our attention to ordered labeled trees, which are the main focus of this dissertation
thesis.

4.1.2.1 Dynamic programming approach
The majority of existing methods that solve the tree edit distance problem for ordered labeled
trees are based on the dynamic programming approach [45]. The algorithms can be seen as an
extension of the dynamic programming approach to the string edit distance problem that we
described in Section 4.1.1.1.

Let T1 and T2 be two ordered labeled trees. Let l1 and l2 be the number of leaves in T1 and T2,
respectively. Also, let h1 and h2 be the depth of T1 and T2, respectively. The first algorithm for
computing the general tree edit distance between two ordered labeled trees was given by Tai [93].
Zhang and Shasha [69] gave a faster and more space-efficient dynamic programming algorithm that
works in O(|T1| · |T2| ·min(l1, h1) ·min(l2, h2)) time and O(|T1| · |T2|) space. Klein [103] improved
the algorithm to run in O(|T1|2 · |T2| · log |T2|). Dulucq and Touzet [104] generalized the previous
decomposition algorithms to a decomposition strategy framework and proved a lower bound
time for any such strategy. In 2001, Chen [105] presented an algorithm that uses a reduction
to a matrix multiplication problem. Chen’s algorithm works in O

(
|T1| · |T2|+ l2

1 · |T2|+ l2.5
1 · l2

)
time and O

((
|T1| + l2

1
)
· min(l2, h2) + |T2|

)
space. In 2010, Demaine et al. [106] presented

O
(
|T1| · |T2|2 · (1 + log(|T1|/|T2|))

)
time algorithm working in O(|T1| · |T2|) space that is based on

dynamic programming and falls into the same decomposition strategy framework of Dulucq and
Touzet [104], Klein [103], and Zhang and Shasha [69]. When both T1 and T2 has n nodes, the
algorithm time complexity is O

(
n3)

. According to a recent result [107], it is unlikely that there is
a truly subcubic algorithm for the ordered tree edit distance problem.

Inexact pattern matching 51

Better time complexity can be achieved for restricted variants of the general tree edit distance
[42], [95], [98], [99]. For example, Selkow [42] gave an algorithm running in O(|T1| · |T2|) time
and space to compute the 1-degree edit distance between two ordered labeled trees T1 and T2.
The algorithm is again based on the dynamic programming approach in which the input trees
are decomposed recursively into smaller subproblems. Since we use the 1-degree edit distance
in Chapter 5 in which we introduce our automata-based approach to the inexact tree pattern
matching under this distance, we present Selkow’s algorithm in detail. Specifically, we provide a
version of Selkow’s algorithm where we assume that all operations have the unit cost.

▶ Algorithm 4.7 (The dynamic programming approach to computing the simple 1-degree edit distance
[42]). Let Σ be an alphabet. Let T1 and T2 be two ordered labeled trees over Σ. Let r1 = root(T1)
and r2 = root(T2). Given T1 and T2, the algorithm computes ds(T1, T2).

The principal internal data structure is a two-dimensional array D in which the dimensions have
ranges 0 to degree(r1) and 0 to degree(r2), respectively. By Di,j , where i ∈ {0, . . . , degree(r1)}
and j ∈ {0, . . . degree(r2)}, the value at row i and column j is denoted. When the array is filled
Di,j contains ds(T i

1 , T j
2), where T i

1 denotes the subtree of T1 that consists of the root of T1 and
bottom-up subtrees T1/v1, . . . , T1/vi, where vi is the i-th child of r1 and T j

2 denotes the subtree
of T2 that consists of the root of T2 and bottom-up subtrees T2/u1, . . . , T2/uj , where uj is the
j-th child of r2. Thus, Ddegree(r1),degree(r2) contains ds(T1, T2).

1. (Initialize array.)

a. Set D0,0 ←

{
0 if label(r1) = label(r2),
1 otherwise.

b. For each i ∈ {1, . . . , degree(r1)}, set Di,0 ←Di−1,0 + |T1/vi|, where vi is the i-th child of
r1.

c. For each j ∈ {1, . . . , degree(r2)}, set D0,j ←D0,j−1 + |T2/vj |, where vj is the j-th child of
r2.

2. (Fill array.) For each j ∈ {1, . . . , degree(r2)} and i ∈ {1, . . . , degree(r1)}:

a. The cost of transforming T1/vi to T2/vj is c1 ←Di−1,j−1 + ds(T1/vi, T2/vj).
b. The cost of deleting T1/vi from T1 is c2 ←Di−1,j + |T1/vi|.
c. The cost of inserting T2/vj into T1 is c3 ←Di,j−1 + |T2/vj |.
d. Set Di,j ← min(c1, c2, c3).

3. (Return.) Return Ddegree(r1),degree(r2).

▶ Example 4.8 (The dynamic programming approach to computing the simple 1-degree edit distance).
Let T1 and T2 be the ordered labeled trees illustrated in Figure 4.4. Algorithm 4.7 computes
ds(T1, T2) as follows:

1. (Initialize array.) The two-dimensional array D in which the dimensions have ranges 0 to 3
and 0 to 2, respectively, is created. Since label(root(T1)) = label(root(T2)), value D0,0 is set
to 0. Other initialization steps are as follows (see also Figure 4.5a):

• D1,0 = D0,0 +
∣∣T1/b2

∣∣ = 0 + 1 = 1,
• D2,0 = D1,0 +

∣∣T1/b3
∣∣ = 1 + 1 = 2,

• D3,0 = D2,0 +
∣∣T1/a4

∣∣ = 2 + 2 = 4,
• D0,1 = D0,0 +

∣∣T2/b2
∣∣ = 0 + 1 = 1, and

• D0,2 = D0,1 +
∣∣T2/b3

∣∣ = 1 + 3 = 4.

52 Previous results and related work

a1

b2 b3 a4

c5

T1: a1

b2 b3

a4

c5

T2:

Figure 4.4 Pictorial representation of ordered labeled trees used in Example 4.8.

D a1

a1

b2

a1

b2 b3

a4

c5

a1

a1

b2

a1

b2 b3

a1

b2 b3 a4

c5

0 1 4

1

2

4

(a) Initialization of the array.

D a1

a1

b2

a1

b2 b3

a4

c5

a1

a1

b2

a1

b2 b3

a1

b2 b3 a4

c5

0 1 4

1 0 3

2 1 2

4 3 4

(b) Filled array showing that ds(T1, T2) = 4.

Figure 4.5 Computation of the simple 1-degree edit distance between trees T1 and T2 illustrated in
Figure 4.4. Let r1 and r2 be the root of T1 and T2, respectively. By Di,j , where i ∈ {0, . . . , degree(r1)}
and j ∈ {0, . . . degree(r2)

}
, the value at row i and column j is denoted. When the array is filled Di,j

contains ds(T i
1 , T j

2), where T i
1 denotes the subtree of T1 that consists of the root of T1 and its bottom-up

subtrees T1/v1, . . . , T1/vi, where vi is the i-th child of r1 and T j
2 denotes the subtree of T2 that consists

of the root of T2 and its bottom-up subtrees T2/u1, . . . , T2/uj , where uj is the j-th child of r2. Therefore,
Ddegree(r1),degree(r2) contains ds(T1, T2).

Inexact pattern matching 53

2. (Fill array.) Other values are computed column-wise.

D1,1 = min

D0,0 + ds

(
T1/b2, T2/b2)

0 + 0 = 0,

D0,1 +
∣∣T1/b2

∣∣ 1 + 1 = 2,

D1,0 +
∣∣T2/b2

∣∣ 1 + 1 = 2,

where ds
(
T1/b2, T2/b2)

is computed recursively as illustrated in Figure 4.6a.

D2,1 = min

D1,0 + ds

(
T1/b3, T2/b2)

1 + 0 = 1,

D1,1 +
∣∣T1/b3

∣∣ 0 + 1 = 1,

D2,0 +
∣∣T2/b2

∣∣ 2 + 1 = 3,

where ds
(
T1/b3, T2/b2)

is computed recursively as illustrated in Figure 4.6c.

D3,1 = min

D2,0 + ds

(
T1/a4, T2/b2)

2 + 2 = 4,

D2,1 +
∣∣T1/a4

∣∣ 1 + 2 = 3,

D3,0 +
∣∣T2/b2

∣∣ 4 + 1 = 5,

where ds
(
T1/a4, T2/b2)

is computed recursively as illustrated in Figure 4.6g.

D1,2 = min

D0,1 + ds

(
T1/b2, T2/b3)

1 + 2 = 3,

D0,2 +
∣∣T1/b2

∣∣ 4 + 1 = 5,

D1,1 +
∣∣T2/b3

∣∣ 0 + 3 = 3,

where ds
(
T1/b2, T2/b3)

is computed recursively as illustrated in Figure 4.6d.

D2,2 = min

D1,1 + ds

(
T1/b3, T2/b3)

0 + 2 = 2,

D1,2 +
∣∣T1/b3

∣∣ 3 + 1 = 4,

D2,1 +
∣∣T2/b3

∣∣ 1 + 3 = 4,

where ds
(
T1/b3, T2/b3)

is computed recursively as illustrated in Figure 4.6e.

D3,2 = min

D2,1 + ds

(
T1/a4, T2/b3)

1 + 3 = 4,

D2,2 +
∣∣T1/a4

∣∣ 2 + 2 = 4,

D3,1 +
∣∣T2/b3

∣∣ 3 + 3 = 6,

where ds
(
T1/a4, T2/b3)

is computed recursively as illustrated in Figure 4.6f and Figure 4.6b.

3. (Return.) ds(T1, T2) = 4. See Figure 4.5b.

Every tree edit distance can be used to define an inexact tree pattern matching problem [49],
[52]. Moreover, existing algorithms for computing tree edit distance can be generalized to solve
the inexact tree pattern matching problem [50], [69]. For example, Zhang and Shasha [69] gave
a dynamic programming algorithm to compute the general tree edit distance and also showed
how to adapt it with the same time complexity to inexact tree pattern matching. Later, Zhang
[95] proposed a dynamic programming algorithm for computing the constrained edit distance
and also discussed how the algorithm can be generalized to inexact tree matching with the same
complexity. However, in most cases, the generalization of algorithms computing tree edit distance
to algorithms solving inexact tree pattern matching is not explicitly discussed. For example, to
the best of our knowledge, the extension of Selkow’s algorithm to inexact tree pattern matching
has not been addressed in the literature.

54 Previous results and related work

D

b2

b2

0

(a)

D a4

a4

c5

c5 1 2

(b)

D

b3

b2

0

(c)

D b3

b3

a4

c5

b2 0 2

(d)

D b3

b3

a4

c5

b3 0 2

(e)

D b3

b3

a4

c5

a4

a4

c5

1 3

2 3

(f)

D b2

a4 1

a4

c5

2

(g)

Figure 4.6 Recursive calls of Algorithm 4.7 for the computation of the simple 1-degree edit distance
between trees T1 and T2 illustrated in Figure 4.4.

Inexact pattern matching 55

4.1.2.2 Automata approach
The automata approach to inexact pattern matching has been studied in the string domain, as
discussed in Section 4.1.1.2. Moreover, it has been shown that there is a connection between
this approach and the dynamic programming approach: the dynamic programming algorithm
simulates the corresponding nondeterministic finite automaton. Therefore, it is natural to wonder
whether the same approach can be applied to the inexact pattern matching in trees. However, to
our knowledge, although the problem of inexact tree pattern matching has been addressed before
[49]–[52], no existing solution is based on the automata-based approach.

In general, two automata-based approaches to inexact tree pattern matching problems may
be explored. One way to process a tree structure is to use a computational model known as
tree automaton [21], [22], which works directly on the tree structure and can be viewed as the
generalization of a string automaton. As a textbook reference on finite tree automata, see the
so-called “TATA book” by Comon et al. [21]. Another way is to encode trees as strings using
linear notation and use string automata for their processing.

Research on the automata-based approach to tree pattern matching has mainly focused on
exact matching. Below, we give an overview of problems addressed by arbology research using
string automata. Since this dissertation thesis focuses on string automata, we do not discuss
methods based on finite tree automata. For the finite tree automata approach to tree pattern
matching, we recommend the work of Cleophas [22], who presents a systematic approach to
solving the tree pattern matching problem using finite tree automata.

In general, string automata have been used in arbology to address online versions of three
tree pattern matching problems: NFFOBE tree pattern matching problem (subtree matching),
NFFFBE tree pattern matching problem (multiple subtree matching), and N(SW)FOBE tree
pattern matching (tree template matching).

Flouri, Janoušek, and Melichar [23]–[25], [30], [38], [108] introduced a solution to the NFFOBE
tree pattern matching problem that is based on a pushdown automaton called subtree matching
PDA. They consider ordered ranked trees and represent them in prefix notation (or postfix
notation [38]). Given an ordered ranked tree P, the subtree matching PDA constructed for the
prefix notation of P accepts all matches of P in any given input tree by final state. The subtree
matching PDA is input-driven, which means that each pushdown operation is determined only
by the input symbol and that the PDA can be transformed into an equivalent deterministic
PDA. The deterministic subtree matching PDA has |P|+ 1 states, one pushdown symbol and
|Σ| · (|P|+ 1) transitions. It finds all bottom-up subtrees in a given input that are isomorphic to
P in time linear to the size of the input tree.

Moreover, as briefly discussed by Lahoda and Žďárek [36], a finite automaton can also be
used for the NFFOBE tree pattern matching problem. Given an ordered labeled tree P, a finite
automaton for exact string pattern matching is constructed for the prefix bar notation of P . This
automaton reads the prefix bar notation of an input tree T and locates all bottom-up subtrees in
T that match P. The automaton can be constructed in time O(|P|) and find all occurrences in
time O(|T |).

Flouri, Janoušek, and Melichar [23], [24], [30], [38], [109] generalized the subtree matching
PDA to allow matching with multiple patterns. Given a set of ordered ranked trees P1, . . . ,Pm,
the (multiple) subtree matching PDA constructed for the prefix notation of these trees accepts
all matches of P1, . . . ,Pm in any given input tree by final state. The (multiple) subtree matching
PDA is input-driven, which means that it can be transformed into an equivalent deterministic
PDA. The deterministic (multiple) subtree matching PDA finds all bottom-up subtrees in a given
input that are isomorphic to some of the pattern trees in time linear to the size of the input tree
and its space complexity is Θ

(
|Σ| ·

∑m
i=1 |Pi|

)
.

Flouri et al. [30], [110] considered the N(SW)FOBE tree pattern matching problem for
ordered ranked trees in postfix notation and proposed a pushdown automaton called tree template
matching PDA. The PDA belongs to the class of height-deterministic PDA [111], which means
that it can be transformed into an equivalent deterministic PDA. Given a tree with subtree

56 Previous results and related work

wildcards P , the tree template PDA constructed for the postfix notation of P finds all bottom-up
subtrees in a given input that match P in time linear to the size of the input tree. In general,
the space required for preprocessing the pattern tree with subtree wildcards is exponential to its
size. However, the authors also discuss a specific class of pattern trees with subtree wildcards for
which the space required is linear. Lahoda and Žďárek [36] studied a similarly stated problem
using a pushdown automaton for trees represented in the prefix bar notation.

Several methods based on string automata have also been introduced for the offline variant of
the tree pattern matching problem, in which the input tree is preprocessed instead of the pattern.
We give an overview of these methods in Section 4.2.2.

4.2 Indexing

Standard approaches to pattern matching problems involve various methods for preprocessing a
given pattern pattern so that its occurrences in the input data can be located fast. However, the
search time depends on the size of the input data, which is inefficient when we search for many
different patterns in the fixed input data. In this case, it is desirable to preprocess the input data,
building an auxiliary data structure known as an index.

An index is an abstract data structure that provides efficient methods for answering queries
related to the content of the input data, such as

• method for query membership that tests whether a given query has the empty or a nonempty
set of answers in the data,

• method for query position that gives the position of the first or last occurrence of the query
in the data,

• method for the number of occurrences of the query that gives the number of how many times
the query occurs in the data, and

• methods for the list of all occurrences of the query that gives the list of all positions where
the query occurs in the input data.

This chapter includes two sections. First, we describe some methods for string indexing. Then,
we focus on the problem of indexing trees.

4.2.1 Strings
The theory of string indexing is well-researched [71], [112], [12, Chapter 3] and uses various
data structures for efficient access to parts of a string, such as suffix trees [71, Section 5.2], [87,
Part II], [113] or suffix arrays [114]. Since this dissertation thesis focuses on automata-based
methods, we narrow our attention to automata indexes in this section. Specifically, we describe
the automata indexes used in Chapter 6, in which we address the problem of indexing trees for
linear XPath-inspired queries.

In general, indexes based on deterministic finite automata solve the membership problem
for any given query in time linear to the length of the query (assuming that the time necessary
to compute a transition from each state is constant). The issue could be the size of the index.
However, as we discuss in this section, the remarkable result has been demonstrated that the
size of a DFA indexing all substrings of a string is linear. The surprise is due to the maximum
number of substrings occurring in a string which can be quadratic to the length of the string.

Indexing 57

0start 1 2 3

MNFA:

a b b

b
b

0start 1 2 3

2, 3

MDFA:

a b b

b
b

Figure 4.7 The nondeterministic suffix automaton for string x = abb constructed by Algorithm 4.9
and its (minimal) deterministic variant obtained by the subset construction.

4.2.1.1 Suffix automaton
In the literature, the notion of suffix automaton is often reserved for the minimal deterministic
finite automaton that accepts the set of all suffixes of a string [10, Section 7], [115]. In this
dissertation thesis, we use a more general definition: a suffix automaton is any finite automaton
that accepts the set of all suffixes of a string.

A nondeterministic suffix automaton can be constructed to have a regular structure [12,
Algorithm 3.10]. See Algorithm 4.9.

▶ Algorithm 4.9 (Construction of a nondeterministic suffix automaton [12]). Let Σ be an alphabet.
Let x be a nonempty string over Σ. Given x, the algorithm constructs a nondeterministic finite
automaton accepting the set of all suffixes of x.

1. (Define the set of states.) Set Q← {i : 0 ≤ i ≤ |x|}.

2. (Define the start state.) Set q0 ← 0.

3. (Define the set of final states.) Set F ← {0, |x|}.

4. (Define transitions.) For each position i in x:

a. Set δ ((i− 1), xi)← {i}.
b. Set δ(0, xi)← δ(0, xi) ∪ {i}.

5. (Return.) Return M = (Q, Σ, δ, q0, F).

We can turn the nondeterministic suffix automaton constructed by Algorithm 4.9 into a
deterministic one using the subset construction; see Algorithm 2.6. Moreover, as we show in
Theorem 4.10, the resulting DFA is minimal. The minimal deterministic suffix automaton has a
linear number of states and transitions to the length of the input string [19], [20]. The minimal
deterministic suffix automaton can also be constructed for a given input string online in time
linear to the length of the string [19], [71, Theorem 5.29]. In Figure 4.7, we illustrate an example
of the nondeterministic suffix automaton constructed by Algorithm 4.9 for string x = abb and its
(minimal) deterministic variant obtained by the subset construction.

58 Previous results and related work

▶ Theorem 4.10. Let Σ be an alphabet. Let x be a nonempty string over Σ. Let M be the
nondeterministic suffix automaton for x constructed by Algorithm 4.9. Then, the deterministic
suffix automaton M′ obtained from M by the subset construction is minimal.

Proof. We show that M′ is minimal using some results given by Blumer et al. [19]. Thus, we
begin by recalling a few notions they defined.

Let w ∈ Σ+. Then, endSetx(w) = {i : w = xi−|w|+1...i}. Moreover, endSetx(ε) =
{0, 1, . . . , |x|}. It is said that y, z ∈ Σ∗ are end-equivalent on x, denoted by y ≡x z, if
endSetx(y) = endSetx(z). The equivalence class of w with respect to ≡x is denoted by [w]x.
Using these notions, Blumer et al. defined a deterministic finite automaton Sx = (Q, Σ, δS , q0, F)
for x as follows:

• Q = {[w]x : w is a substring of x},

• q0 = [ε]x,

• F = {[w]x : w is a suffix of x}, and

• δS([w]x, a) = [wa]x, where w and wa are substrings of x and a ∈ Σ.

For Sx, Blumer et al. proved that it is the minimal deterministic suffix automaton for x [19,
Proposition 1.3]. To prove that M′ is minimal, we show that it is isomorphic1 to Sx.

It is easy to see that M and Sx can read a string (without failing due to a nonexisting
transition) if and only if the string is a substring of x. Let w be a nonempty substring of x.
For Sx, we clearly get that δ̂S([ε]x, w) = [w]x. For M, we show that δ̂(0, w) = {i : xi−|w|+1...i},
where δ is the transition function of M. We use induction on the length of w:

• Assume |w| = 1. From Step 4 of Algorithm 4.9, we get that δ(0, a) = {i : xi = a}. Thus, the
claim holds for |w| = 1.

• Assume |w| ≥ 2 and that the claim holds for all shorter substrings. Clearly, w = za, where
z ∈ Σ+ and a ∈ Σ. By the induction hypothesis, we have that δ̂(0, z) = {i : xi−|z|+1...i}.
Since there is a transition in M labeled by a from state j to state j + 1 only if xj+1 = a (see
Step 4a of Algorithm 4.9, we get that δ̂(0, za) = {i : xi−|za|+1...i}. Thus, the claim holds.

Since the subset construction creates only states such that each corresponds to a subset of
NFA states that are active after reading some input string, it follows that the set of states of M′

consists of state {0} and states in the form of {i : xi−|w|+1...i}. Clearly, state {0} corresponds to
state [ε]x and each state {i : xi−|w|+1...i} corresponds to state [w]x. Furthermore, the state in
M′ is final if it contains |x| in its subset. This corresponds to the condition that the state in Sx

is final if it contains a suffix of x in its equivalence class. Therefore, M′ is isomorphic to Sx, and
since Sx is minimal, M′ is minimal too. ◀

▶ Theorem 4.11 (Number of states of the minimal deterministic suffix automaton [19], [71]). Let Σ
be an alphabet. Let x be a string over Σ such that |x| ≥ 2. The number of states of the minimal
deterministic suffix automaton for x is at least |x|+ 1 and at most 2|x| − 1.

▶ Theorem 4.12 (Number of transitions of the minimal deterministic suffix automaton [19], [71]).
Let Σ be an alphabet. Let x be a string over Σ such that |x| ≥ 3. The number of transitions of
the minimal deterministic suffix automaton for x is at least |x| and at most 3|x| − 4.

The deterministic suffix automaton can also be constructed for a given string so that its
underlying graph structure forms a tree and where final states have a one-to-one correspondence
with suffixes. This can be done, for example, by successively adding the suffixes into the tree,

1Two deterministic finite automata are isomorphic if they are the same up to the renaming of states. For
precise definition, see, for example, Kozen [54, Page 89].

Indexing 59

starting from the longest to the empty string. The resulting automaton is called the suffix trie
[71, Section 5.1]. The main disadvantage of the suffix trie is that its number of states can be
quadratic to the length of the string.

An automaton with a linear number of states can be obtained from the suffix trie by application
of the standard minimization algorithm or by the process called compaction where non-final states
with only one outgoing transition are deleted. Strings then label the transitions instead of symbols.
This data structure is called suffix tree [113], [71, Section 5.2], [87, Part II]. Assuming that the
string is stored in memory together with the suffix tree, its transition labels can be encoded so
that the total size of the suffix tree is linear to the length of the string [71, Proposition 5.4].

Compaction can also be applied to the minimal deterministic suffix automaton to obtain an
automaton with a smaller number of states and transitions [116], [117], [71, Page 202]. The
compact minimal deterministic suffix automaton for a string x of length greater than two has at
most |x|+ 1 states and at most 2|x| − 2 transitions.

4.2.1.2 Factor automaton
A factor automaton is a finite automaton that accepts the set of all substrings (factors) of a given
string. We note that our definition is again more general since we do not reserve this notion for
the minimal DFA, as it is often used in the literature [10, Section 7.6], [115].

Since every substring is a prefix of some suffix, the factor automaton can be constructed as a
suffix automaton with all states final [12, Section 3.3]. See Algorithm 4.13. In other words, the
suffix automaton gives us not only direct access to suffixes of a string but also its substrings. In
the literature, both suffix automaton and factor automaton are also known under the name of
Directed Acyclic Word Graph (DAWG) [19], [73], [11, Chapter 6].

▶ Algorithm 4.13 (Construction of a nondeterministic factor automaton [12]). Let Σ be an alphabet.
Let x be a nonempty string over Σ. Given x, the algorithm constructs a nondeterministic finite
automaton accepting the set of all substrings of x.

1. (Define the set of states.) Set Q← {i : 0 ≤ i ≤ |x|}.

2. (Define the start state.) Set q0 ← 0.

3. (Define the set of final states.) Set F ← Q.

4. (Define transitions.) For each position i in x:

a. Set δ ((i− 1), xi)← {i}.
b. Set δ(0, xi)← δ(0, xi) ∪ {i}.

5. (Return.) Return M = (Q, Σ, δ, q0, F).

We can turn the nondeterministic factor automaton constructed by Algorithm 4.13 into an
equivalent deterministic one using the subset construction. However, the resulting DFA does
not have to be minimal. In Figure 4.8, we illustrate an example of the nondeterministic factor
automaton constructed by Algorithm 4.13 for string x = abb and its deterministic variant
obtained by the subset construction. Note that states {2} and {2, 3} are equivalent. Using the
standard minimization algorithm, we can obtain the minimal deterministic factor automaton.

Although the maximum number of substrings occurring in a string can be quadratic to the
length of the string, the number of states and transitions of the minimal deterministic factor
automaton is linear to the length of the input string [19], [20]. Moreover, the minimal deterministic
factor automaton can also be constructed directly online in time linear to the length of the input
string [19], [20].

60 Previous results and related work

0start 1 2 3

MNFA:

a b b

b
b

0start 1 2 3

2, 3

MDFA:

a b b

b
b

Figure 4.8 The nondeterministic factor automaton for string x = abb constructed by Algorithm 4.13
and its deterministic variant obtained by the subset construction.

▶ Theorem 4.14 (Number of states of the minimal deterministic factor automaton [19]). Let Σ be
an alphabet. Let x be a string over Σ such that |x| ≥ 3. The number of states of the minimal
deterministic factor automaton for x is at least |x|+ 1 and at most 2|x| − 2.

▶ Theorem 4.15 (Number of transitions of the minimal deterministic factor automaton [19]). Let
Σ be an alphabet. Let x be a string over Σ such that |x| ≥ 3. The number of transitions of the
minimal deterministic factor automaton for x is at least |x| and at most 3|x| − 4.

4.2.1.3 Prefix automaton
A prefix automaton is a finite automaton that accepts the set of all prefixes of a given string. Since
every prefix is a substring, the prefix automaton can be constructed using the simplified version of
the algorithm that builds the factor automaton [12, Section 3.1]. See Algorithm 4.16. The resulting
automaton is deterministic and minimal. We illustrate an example of the prefix automaton
constructed by this algorithm for string x = abb in Figure 4.9. The minimal deterministic prefix
automaton for string x has clearly |x|+ 1 states and |x| transitions.

▶ Algorithm 4.16 (Construction of a minimal deterministic prefix automaton [12]). Let Σ be an
alphabet. Let x be a nonempty string over Σ. Given x, the algorithm constructs the minimal
deterministic finite automaton accepting the set of all prefixes of x.

1. (Define the set of states.) Set Q← {i : 0 ≤ i ≤ |x|}.

2. (Define the start state.) Set q0 ← 0.

3. (Define the set of final states.) Set F ← Q.

4. (Define transitions.) For each position i in x, set δ ((i− 1), xi)← {i}.

5. (Return.) Return M = (Q, Σ, δ, q0, F).

Indexing 61

0start 1 2 3

MDFA:

a b b

Figure 4.9 The (minimal deterministic) prefix automaton for string x = abb constructed by Algo-
rithm 4.16.

4.2.1.4 Subsequence automaton
A subsequence automaton is a finite automaton that accepts the set of all subsequences of a given
string. We note that our definition is again more general since we do not reserve this notion for
the minimal DFA. The (minimal) automaton solving the problem of subsequences is also in the
literature referred to as the Directed Acyclic Subsequence Graph (DASG) [118], [119].

A nondeterministic subsequence automaton can be constructed to have a regular structure
[12, Section 3.5]. See Algorithm 4.17. The process can be seen as an extension of the algorithm
that builds the nondeterministic suffix (or factor) automaton.

▶ Algorithm 4.17 (Construction of a nondeterministic subsequence automaton [12]). Let Σ be an
alphabet. Let x be a nonempty string over Σ. Given x, the algorithm constructs a nondeterministic
finite automaton accepting the set of all subsequences of x.

1. (Define the set of states.) Set Q← {i : 0 ≤ i ≤ |x|}.

2. (Define the start state.) Set q0 ← 0.

3. (Define the set of final states.) Set F ← Q.

4. (Define transitions.) For each position i in x and for each j ∈ {0, . . . , i− 1}, set δ(j, xi)←
δ(j, xi) ∪ {i}.

5. (Return.) Return M = (Q, Σ, δ, q0, F).

We can turn the nondeterministic subsequence automaton constructed by Algorithm 4.17
into an equivalent deterministic one using the subset construction. As we show in Theorem 4.18,
the resulting DFA is minimal. In Figure 4.10, we illustrate an example of the nondeterministic
subsequence automaton constructed by Algorithm 4.17 for string x = abbaccabc and its (minimal)
deterministic variant obtained by the subset construction.

▶ Theorem 4.18. Let Σ be an alphabet. Let x be a nonempty string over Σ. Let M be
the nondeterministic subsequence automaton for x constructed by Algorithm 4.17. Then, the
deterministic subsequence automaton obtained from M by the subset construction has |x| + 1
states and thus is minimal.

Proof. Let Q be the set of states of M. First, the subset construction creates the start state of
the DFA, which is the state {0}. Then, for each a ∈ Σ, the subset construction creates a state
qa such as δ ({0}, a) = qa. It is easy to check that qa = {i : xi = a} for each a ∈ Σ and that⋃

a∈Σ qa = Q \ {0}. Moreover, for each a, b ∈ Σ such that a ≠ b, we get that the sets qa and qb

are disjoint. Since every state in M has all the incoming transitions labeled by the same symbol
(homogeneous automaton), it follows that all other states created during the subset construction
are subsets of qa for some a ∈ Σ. Moreover, from the structure of M, it follows that if the subset
construction creates a state (a subset) which contains state i of M, then the state (subset) must
also contain every state j > i of M, where xi = xj . Therefore, the maximum number of states
(subsets) that can be created during the subset construction is as follows: 1 (the start state) +

62 Previous results and related work

0start 1 2 3 4 5 6 7 8 9

MNFA:

a b b a c c a b c

b
b

a

c

c

a

b

c

b
a

c

c

a

b

c

a
c

c

a

b

c

c
c

a

b

c

c
a

b

c

a

b
c

b
c

c

0start 1, 4, 7 2, 3, 8 3, 8 4, 7 5, 6, 9 6, 9 7 8 9

MDFA: c

a

b

a

b

c

c

b

a

b

a

c

b

c

a
b

c

a

b

a

c

c

b c

Figure 4.10 The nondeterministic subsequence automaton for string x = abbaccabc constructed by
Algorithm 4.17 and its (minimal) deterministic variant obtained by the subset construction.

|Σ| (the target states of transitions leading from the start state) +
∑

a∈Σ(|qa| − 1) (the maximum
number of other states that can be created). This results in |Q| = |x|+ 1 states. The minimum
number of states of the DFA is also |x|+ 1 since the automaton has to accept the complete string
(the longest subsequence), and this requires |x|+ 1 states in the automaton accepting a finite
language. Thus, the DFA has exactly |x|+ 1 states, and it is minimal. ◀

The (state) minimal deterministic subsequence automaton for a string x has |x|+ 1 states
and O(|Σ| · |x|) transitions [118]. This is a remarkable result since the maximum number of
subsequences occurring in a string can be exponential to the length of the string. However, as
discussed by Baeza-Yates [118], the minimal state automaton is in general not the minimal space
automaton because of the large number of transitions. To reduce the number of transitions,
Baeza-Yates introduced an encoding technique that results in O(|x| · log |Σ|) space representation
of the subsequence automaton.

4.2.1.5 Patterns with gaps
In this section, we explore the previous results that address the problem of string indexing for
patterns with gaps (or gapped patterns)2. This is because the problem of indexing trees for linear
gapped pattern trees, the focus of Chapter 6, can be seen as a variant of this problem. Specifically,
the problem that arises in Chapter 6 can be seen as the problem of indexing a string (or a set of
strings) for prefixes with unbounded gaps. Formally, given a string x over alphabet Σ, the index
should be able to recognize all gapped patterns that match a prefix of x. By a gapped pattern,
we denote a string over Σ ∪ {≀} of the form g1p1g2p2 . . . gnpn, where gi is either the empty string
or ≀ and pi ∈ Σ. During matching, the symbol ≀ is interpreted to match an arbitrary substring of

2We assume that the text does not contain gaps.

Indexing 63

x of any length (even zero). For example, given a text w = abbaabcbba, there is one occurrence
of the gapped pattern abb ≀ c (end position 7), and there are three occurrences of the gapped
pattern ≀aa ≀ b (end positions 6, 8, and 9).

In the literature, a gap in a pattern is usually interpreted as follows:

• A gap is a special symbol that matches any symbol in the alphabet. This type of gap is also
called don’t care symbol or wildcard [120]–[123]. Moreover, there is also the notion of optional
wildcard, which is a special symbol that matches any symbol as well as no symbol [124].

• A gap comes with a lower and upper bound, which specifies the minimum and maximum length
of a substring it can match. Patterns with this type of gaps are called variable-length-gapped
patterns [125]–[127]. Note that a don’t care symbol is equivalent to the gap with bounds equal
to one.

• A gap is unbounded which means that it matches a substring of any length (even zero). The
unbounded gap corresponds to the gap with the lower bound equal to zero and the upper
bound equal to the length of text in which the pattern is being searched.

Usually, the problem of matching gapped patterns is about finding substrings in the text that
match a given gapped pattern. Therefore, gaps are usually allowed to be present only inside the
pattern and not at its beginning.

There has been extensive research on the non-indexing variant of the matching pattern with
gaps [125], [128], [129]. As for the indexing variant, Rahman and Iliopoulos [121], Lam et al. [124]
and Bille et al. [130] have, for example, proposed an index for matching patterns with don’t care
symbols. The indexing variant of the variable-length-gap pattern matching has been considered,
for example, by Lewenstein [126], Bader et al. [131], and Cáceres et al. [127]. Solutions have also
been proposed for the case of one gap where patterns are called gapped-factors. A gapped factor
is a concatenation of a factor, a gap of a given length, and another factor [122], [132]. However, to
our knowledge, no one has studied an automata-based approach to the problem of string indexing
for patterns (prefixes) with unbounded gaps. The most relevant existing work we have found is
the automata-based index for the problem of indexing the common motifs3 with gaps in a set of
strings proposed by Antoniou et al. [13]. The index uses factor automata constructed for each
input string and an automaton that accepts the union of languages accepted by these automata.

4.2.2 Trees
In this section, we give an overview of existing methods for the problem of tree indexing that
are related to the focus of this dissertation thesis. First, we describe previous automata-based
indexes for trees that have been a result of arbology research. Then, we discuss approaches to
tree indexing used in the XML domain.

In general, string automata have been used in arbology to address offline (indexing) versions of
four tree pattern matching problems: NFFOBE tree pattern matching problem (subtree matching),
NFFFBE tree pattern matching problem (multiple subtree matching), N(SW)FOBE tree pattern
matching (tree template matching), and N(SV)FOBE tree pattern matching (non-linear tree
template matching). These methods are based on pushdown automata accepting by empty
pushdown store, and their construction is inspired by the existing approach to string indexing
discussed in the previous section.

For the offline variant of the NFFOBE tree pattern matching problem, Janoušek [133]
introduced a pushdown automaton called subtree PDA, which is an index for all bottom-up
subtrees of an ordered ranked tree in prefix notation. The subtree PDA has both nondeterministic
and deterministic variant. In its underlying graph structure, the nondeterministic subtree PDA

3Given a set of input strings, the problem of finding common motifs is the problem of finding similar substrings
that are shared by all (or some) of the input strings.

64 Previous results and related work

is analogous to the nondeterministic suffix automaton constructed by Algorithm 4.9. However,
due to the pushdown operations, some of the states and transitions that are present in the
deterministic suffix automaton obtained by the subset construction need not be present in the
deterministic subtree PDA. This is because the corresponding pushdown operations cannot be
performed; therefore, such states are unreachable. The total size of the deterministic subtree PDA
is not greater than 2|T |+ 1 states and 3|T | transitions, where T is the indexed tree. Assuming
that the time necessary to compute a transition from each state is constant, the search phase of
all occurrences of a subtree is performed in time linear to the size of a given query and does not
depend on the size of the indexed tree. The subtree PDA for ordered unranked trees in the prefix
bar notation was presented by Flouri et al. [27], who also showed how to use this automaton to
find all subtree repeats.

Inspired by the oracle4 modification [72] to the factor automaton used in stringology, Plicka,
Janoušek, and Melichar [28] modified the subtree PDA and introduced the subtree oracle PDA
for ordered labeled trees (both ranked and unranked). The subtree oracle PDA has n + 1 states,
where n is the length of the corresponding linear notation of the indexed tree. The automaton
can also accept strings that do not represent a bottom-up subtree in the indexed tree. However,
as discussed by the authors, the number of such false positive matches is smaller than in the case
of the (string) factor oracle automaton.

Later, Poliak et al. [34], [35] made use of regularities that often occur in trees and proposed
a deterministic PDA called tree compression automaton. This automaton is built for a set of
ordered unranked trees in prefix bar notation and accepts all bottom-up subtrees of given trees by
empty pushdown store. In the worst case, the construction algorithm creates a tree compression
automaton whose size is linear to the size of the indexed tree(s). In the best case, the size of the
tree compression automaton is logarithmic. Thus, the tree compression automaton can also be
used for compressing the input tree.

As an extension of subtree PDA, Melichar, Janoušek, Flouri, and Trávníček [23], [24], [30],
[31] proposed the tree pattern PDA which is an index for all trees with subtree wildcards (we
recall Definition 3.7) for which there exists a matching bottom-up subtree in the input tree. As
discussed by the authors, searching for tree patterns when trees are encoded using a linear tree
notation can be seen as a variant of string matching with variable-length gaps that we briefly
discussed in Section 4.2.1.5. The subtree wildcard represents a gap in the string representation
of the pattern tree. However, such gaps are of unknown size, and a condition is placed on the
matched string to be a valid linear representation of a tree.

The nondeterministic tree pattern PDA is input-driven and thus can be transformed to an
equivalent deterministic PDA. Assuming that the time necessary to compute a transition from
each state is constant, the deterministic tree pattern PDA finds all occurrences of a tree pattern in
time linear to the size of the pattern and not depending on the size of the indexed tree. However,
the total size of the deterministic tree pattern PDA can be exponential to the size of the indexed
tree. Poliak [35] showed that there exists a tree T such that the minimal deterministic tree
pattern PDA for T is of size O

(
2|T |/4)

.
Although the size of the deterministic tree pattern PDA is exponential, the size of its

nondeterministic variant is linear. Janoušek et al. [32] used this property and proposed a
simulation algorithm with linear space complexity consisting of the compact suffix automaton
and an auxiliary structure called the subtree jump table. The subtree jump table is a data
structure that provides information on the start and end positions of the bottom-up subtrees. In
Section 4.2.2.2, we present the precise definition, examples, and properties of the subtree jump
table since we use it for our automata-based methods introduced in Chapter 5.

As an extension of tree pattern PDA, Trávníček et al. [29], [31] proposed the nonlinear tree
pattern PDA, which is an index for all trees with subtree variables (we recall Definition 3.11) for
which there exists a matching bottom-up subtree in the input tree. The automaton is constructed
for the prefix notation of an ordered ranked tree, and since it is input-driven, it can be transformed

4Oracle matching can report some false positives as matches.

Indexing 65

into an equivalent deterministic PDA. However, the exact space complexity of the deterministic
nonlinear tree pattern PDA is an open question. Later, Trávníček [33] extended the linear index
presented by Janoušek et al. [32] to provide a linear space tree index for all trees with subtree
variables.

4.2.2.1 Linear patterns
To date, arbology research has not addressed the problem of indexing trees for linear patterns;
that is, queries that can be represented as linear trees. However, this problem has attracted
considerable attention from database researchers [134]–[138] since linear patterns naturally arise,
for example, in querying XML using the XPath query language. For a survey on indexing XML
documents, see, for example, Luk et al. [139], Catania et al. [140], or Mohammad [141].

Catania et al. [140] classified XML document indexes based on the types of supported queries
and the indexing strategies. The authors considered three criteria for classifying XML queries: a
tree structure, starting node, and node types. According to its tree structure, XML queries can
be either simple path or branching. In this dissertation thesis, we call these types of queries linear
patterns and non-linear patterns, respectively. The starting node criterion distinguishes between
queries whose matching starts from the root (total matching) or any node (partial matching).
We note that total matching corresponds to the top-down subtree way of matching, and partial
matching can be interpreted as the subtree way of matching; see Section 3.1.5. The last criterion
for the XML query classification considered by the authors, called node types, concerns the
element content, not the graph structure. The proposed classification of XML document indexes
distinguishes between three techniques called summary [134], [135], [137], [142], [143], structural
join [136], [144], and sequence-based indexes [145], [146].

The most relevant to the focus of this dissertation thesis are summary indexes that provide
efficient support for simple path queries (linear patterns). Branching queries (nonlinear patterns)
are usually decomposed into simple path queries, whose results are then merged. Goldman and
Widom [134] proposed a summary index called DataGuides. The theory behind DataGuides is
that its construction over a database can be seen as a transformation of an NFA to an equivalent
DFA, which in the case of tree-like database takes linear time [147]. Milo et al. [135] proposed an
index called 1-index, which can be seen as a nondeterministic version of DataGuide.

String automata found their application in XML not only as summary indexes. Segoufin and
Vianu [148], for example, considered finite automata in the context of XML validation. String
automata have also been used for pattern matching and filtering [149] in which the query (or a
set of queries) is preprocessed. For example, Green et al. [150], [151] converted a set of XPath
queries into a DFA that was then used for query evaluation of the input XML stream. Later,
Kumar et al. [152] proposed visibly pushdown automata as the model suitable for processing
streaming XML. Apart from string automata, tree automata also found their application in XML
[153]–[155].

4.2.2.2 Subtree jump table
In this section, we focus on the data structure proposed by Janoušek et al. [32] called the
subtree jump table. Specifically, we focus on the variant of the subtree jump table proposed by
Trávníček [33, Section 5.2.2] that contains start and end positions for all the bottom-up subtrees
of an ordered labeled tree in the prefix bar notation. See Definition 4.19 and Figure 4.11.

▶ Definition 4.19 (Subtree jump table for prefix bar notation [33]). Let Σ be an alphabet. Let
x ∈ L(Σ, ↑). The subtree jump table for x is an array Sx in which the dimension has ranges
1 to |x|. Values in Sx are defined as follows: Sx

i = j + 1 and Sx
j = i − 1 for each substring

xi...j ∈ L(Σ, ↑), where 1 ≤ i < j ≤ |x|.

Trávníček [33, Algorithm 23] proposed an algorithm constructing the subtree jump table for
ordered ranked trees in the prefix ranked bar notation in which each node has a precomputed

66 Previous results and related work

a b a ↑ b b ↑ ↑ ↑ a b ↑ ↑ ↑
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 10 5 2 9 8 5 4 1 14 13 10 9 0

Figure 4.11 The subtree jump table for the prefix bar notation of the ordered labeled tree T2 illustrated
in Figure 2.2.

arity (number of children). In Chapter 5, we propose an alternative algorithm that works directly
with the prefix (unranked) bar notation of trees.
▶ Remark 4.20 (Properties of the subtree jump table for prefix bar notation). Let Σ be an alphabet.
Let x ∈ L(Σ, ↑). Let Sx be the subtree jump table for x. Then, for each i ∈ {1, . . . , |x|} such
that xi ∈ Σ, it holds that

• Sx
i − 1 is the bar position corresponding to the label at position i and

• (Sx
i − i)/2 is the size of the bottom-up subtree xi...Sx

i
−1.

Moreover, for each i ∈ {1, . . . , |x|} such that xi = ↑, it holds that

• Sx
i + 1 is the label position corresponding to the bar at position i and

• (i− Sx
i)/2 is the size of the bottom-up subtree xSx

i
+1...i.

Chapter 5

Main results in inexact tree pattern
matching

In this chapter, we focus on the problem of tree pattern matching that allows errors, also known as
the inexact (or approximate) tree pattern matching. Specifically, given ordered labeled (unranked)
trees P and T , our goal is to find all the bottom-up subtrees of T that match P with up to k errors.
To measure the number of errors, we use the 1-degree edit distance described in Section 2.3.1.2.
Thus, in the SNINWE classification terminology, this chapter focuses on the NFFOBI tree pattern
matching problem under the 1-degree edit distance.

Our solution is motivated and inspired by the elegant automata-based approach to the problem
of inexact pattern matching in strings discussed in Section 4.1.1. In this chapter, we adapt these
principles to the domain of trees and propose novel automata-based methods that solve the
NFFOBI tree pattern matching problem under the 1-degree edit distance. Moreover, we show
that a finite automaton is a sufficient computational model for this problem.

Before we introduce our automata-based approach to the NFFOBI tree pattern matching
problem under the 1-degree edit distance, we first focus on a simpler variant of the problem under
the constrained 1-degree edit distance in which the insertion and deletion operations cannot be
used recursively to insert or delete a subtree of any size. We introduce the constrained 1-degree
edit distance and its relation to the 1-degree edit distance in Section 5.1. In Section 5.2, we
formally define four variants of the NFFOBI tree pattern matching problem that we aim to solve
in this chapter; aside from distinguishing between the 1-degree edit distance and its constrained
variant, we also distinguish between the unit cost (simple) and the non-unit cost variant. In
Section 5.3, we present a general overview of our automata approach. Then, in the following three
sections, we provide details of the proposed methods for the four variants of the NFFOBI tree
pattern matching problem: our solution to the problem under the constrained simple 1-degree
edit distance is introduced in Section 5.4, the solution to the problem under the simple 1-degree
edit distance is described in Section 5.5, and finally, we propose an adaptation of our methods
for the non-unit cost variant of both distances in Section 5.6. This chapter is concluded with a
summary in Section 5.7.

We note that we originally presented most of the results described in this chapter as two
conference papers [156], [157] and submitted them as a journal article [158]. However, this chapter
explains the results in more detail and describes the relationship with the SNINWE classification.
We also present slightly different variants of some algorithms.

Throughout this chapter, we demonstrate our approach on the pattern tree and the input
tree illustrated in Figure 5.1. When we assume that 1-degree edit operations have non-unit costs,
we use either the cost function described in Table 2.1 or the cost function described in Table 5.1.
Both functions are metrics on {a, b, c} ∪ {λ}.

67

68 Main results in inexact tree pattern matching

a1

b2 b3 a4

c5

(a) Pattern tree P.

a1

a2

a3

c4

a5

b6 b7

a8

c9

a10

c11

(b) Input tree T .

Figure 5.1 Two ordered labeled trees over alphabet {a, b, c} that we use throughout this chapter
as an example of a pattern tree and an input tree.

a b c λ
a 0 2 1 1
b 2 0 1 2
c 1 1 0 1
λ 1 2 1 0

Table 5.1 A metric cost function γ on {a, b, c} ∪ {λ} that we use throughout this chapter as an
example cost function for assigning costs to 1-degree edit operations.

5.1 Constrained 1-degree edit distance
In Section 2.3.1.2, we described the 1-degree edit distance between two ordered labeled trees T1
and T2 as the cost of a least-cost sequence of elementary edit operations, called 1-degree edit
operations, that transform T1 into T2. In this section, we introduce a novel variant of the 1-degree
edit distance, called the constrained 1-degree edit distance, in which we use the same elementary
operations as in the case of 1-degree edit distance; however, we constrain the use of both insertion
and deletion operations. We also discuss the relationship between the constrained 1-degree edit
distance and the 1-degree edit distance.

The constrained use of insertion and deletion operations in the constrained 1-degree edit
distance does not permit them to be used recursively to insert or delete a subtree of any size.
Specifically, when transforming a tree T1 into a tree T2, only leaves initially present in T1 can be
deleted, and only a bottom-up subtree of size one can be inserted into T1. For example, consider
the tree P illustrated in Figure 5.1a. Nodes b2, b3, and c5 can be deleted during a transformation
of P into another tree. However, we cannot delete node a4 since it is not initially a leaf present in
P ; in other words, even if node c5 is deleted and node a4 becomes a leaf, we are still not allowed
to delete it. Regarding the insertion operation, there are currently, for example, four positions
where a new leaf can be inserted as a child of the root. However, if we add a new leaf v as a child
of the root, we cannot add a new leaf as a child of v. In other words, new leaves can only be
added as children of the nodes initially present in the tree. We refer to an edit script in which
insertion and deletion operations are constrained in this way as the constrained edit script.

▶ Definition 5.1 (Constrained edit script). Let T1 and T2 be ordered labeled trees. An edit script
between T1 and T2 is constrained if the following two conditions are satisfied:

• every deletion operation in the script refers to a node v ∈ leaves(T1) and

• every insertion operation in the script refers to a node v ∈ V (T1).

Constrained 1-degree edit distance 69

Constrained edit scripts are particular cases of edit scripts defined in Section 2.3.1.2. However,
in contrast to an edit script that always exists for any pair of ordered labeled trees, there can
sometimes be no constrained edit scripts. For example, there is no constrained edit script between
tree P and tree T illustrated in Figure 5.1a and Figure 5.1b, respectively.

Using constrained edit scripts, we define the constrained 1-degree edit distance and the
constrained simple 1-degree edit distance.

▶ Definition 5.2 (Constrained 1-degree edit distance). Let Σλ be an alphabet with the blank
symbol λ equipped with a cost function. Given two ordered labeled trees T1 and T2 over Σ, the
constrained 1-degree edit distance is a function dc : Tr(Σ)×Tr(Σ)→ R∪{∞} such that dc(T1, T2)
is either the cost of an optimal constrained edit script between T1 and T2 or ∞ if no constrained
edit script between T1 and T2 exists.

▶ Definition 5.3 (Constrained simple 1-degree edit distance). Let Σ be an alphabet. Given two
ordered labeled trees T1 and T2 over Σ, the constrained simple 1-degree edit distance is a function
dc

s : Tr(Σ)×Tr(Σ)→ N0 ∪ {∞} such that dc
s(T1, T2) is either the length of a shortest constrained

edit script between T1 and T2 or ∞ if no constrained edit script between T1 and T2 exists.

▶ Example 5.4 (Constrained (simple) 1-degree edit distance). Let P be the tree illustrated in
Figure 5.1a. A constrained edit script between P and another tree can contain only following
edit operations:

• deletion of leaf b2, b3, and c5;

• insertion of new leaves as children of node a1, b2, b3, a4, and c5; and

• relabeling node a1, b2, b3, a4, and c5.

Given the bottom-up subtree T /a5 of tree T illustrated in Figure 5.1b, tree P cannot be
turned into T /a5 using only the transformations described above. Therefore, dc

s
(
P, T /a5)

=∞.
We can, however, transform P into T /a5 by inserting a new leaf labeled by a as a child of b3

followed by inserting a new leaf with label c as a child of the node a that was inserted in the
previous step. Thus, ds

(
P, T /a5)

= 2.
Given the bottom-up subtree T /b7 of tree T illustrated in Figure 5.1b, we get dc

s
(
P, T /b7)

=
3 = ds

(
P, T /b7)

since P can be transformed into T /b7 by deleting leaves b2 and b3 and relabeling
its root to b. Assuming that the 1-degree edit operations are assigned their costs using the
cost function γ illustrated in Table 2.1, it follows that dc(

P, T /b7)
= 17 = d

(
P, T /b7)

since an
optimal (constrained) edit script between P and T /b7 consists of two deletion operation each of
which costs 8 (leaves b2 and b3) and one relabel operation for the root (a to b) that costs 1.

In the rest of this section, we discuss the relationship between the 1-degree edit distance d, the
simple 1-degree edit distance ds, and the constrained variants dc

s and dc. We use these results in
the following section, where we formally define the four problems we aim to solve in this chapter.

▶ Lemma 5.5. Let T1 and T2 be two ordered labeled trees. Assume that dc
s(T1, T2) ̸=∞. Then,

dc
s(T1, T2) ≥ ds(T1, T2).

Proof. To obtain a contradiction suppose that dc
s(T1, T2) < ds(T1, T2) for some ordered labeled

trees T1 and T2. Then the length of a shortest constrained edit script between T1 and T2 is smaller
than the length of a shortest edit script between T1 and T2. However, since every constrained
edit script is also an edit script, we can use a shortest constrained edit script as a shortest edit
script which contradicts that dc

s(T1, T2) < ds(T1, T2). ◀

In the following lemmas, we assume that the 1-degree edit operations come with a cost
described by a metric cost function γ. Moreover, we assume that γ(a, b) ≥ 1 for all distinct
symbols a, b ∈ Σλ.

70 Main results in inexact tree pattern matching

c1

c2

c3 c4 c14

c15

c16

T5:

. . .

c1

c2

c3

c4

c5 c6 c16

T6:

. . .

11 11

Figure 5.2 Two ordered labeled trees that we use in the proof of Lemma 5.9.

▶ Lemma 5.6. Let T1 and T2 be two ordered labeled trees. Assume that dc(T1, T2) ̸=∞. Then,
dc(T1, T2) ≥ d(T1, T2).

Proof. Analogue to the proof of Lemma 5.5 with a slight change that we consider the cost of an
optimal (constrained) edit script instead of the length of a shortest (constrained) edit script. ◀

▶ Lemma 5.7. Let T1 and T2 be two ordered labeled trees. Assume that dc
s(T1, T2) ̸=∞. Then,

dc(T1, T2) ≥ dc
s(T1, T2).

Proof. To obtain a contradiction suppose that dc(T1, T2) < dc
s(T1, T2) for some ordered labeled

trees T1 and T2. Then the cost of an optimal constrained edit script between T1 and T2 is smaller
than the length of a shortest constrained edit script between T1 and T2. Consider an optimal
constrained edit script of minimal length; we know that the costs of each operation in the script
have to be greater than or equal to 1. Therefore, the length of this script has to be smaller than
the length of a shortest constrained edit script, which means that we can use it as a shortest
constrained edit script which contradicts dc(T1, T2) < dc

s(T1, T2). ◀

▶ Lemma 5.8. Let T1 and T2 be two ordered labeled trees. Then, d(T1, T2) ≥ ds(T1, T2).

Proof. Analogue to the proof of Lemma 5.7 with a slight change that we consider edit scripts
instead of constrained edit scripts. ◀

▶ Lemma 5.9. There exist ordered labeled trees T1, T2, T3, T4, T5, and T6 and costs assigned to
edit operations such that dc

s(T1, T2) < d(T1, T2), dc
s(T3, T4) = d(T3, T4), and dc

s(T5, T6) > d(T5, T6).

Proof. Assume that edit operations are assigned costs according to the cost function γ described
by Table 2.1. Example 5.4 proves there exist trees T1 and T2 such that dc

s(T1, T2) < d(T1, T2). To
show that there exist trees T3 and T4 such that dc

s(T3, T4) = d(T3, T4), consider that T3 and T4
differ only in labels of their roots: the root of T3 is labeled by a and the root of T4 is labeled by
b. An edit script that contains one relabel operation from a to b is both shortest and optimal
and both its length and cost equals to 1. Finally, Figure 5.2 proves that there exist trees T5 and
T6 such that dc

s(T5, T6) > d(T5, T6). We get d(T5, T6) = 20 by deleting nodes c16 and c15 and
inserting two nodes labeled by c, and dc

s(T5, T6) = 22 since we need to delete 11 leaves from the
first bottom-up subtree of the root and insert 11 leaves to the second. ◀

▶ Lemma 5.10. Let T1 and T2 be two ordered labeled trees. Assume that dc(T1, T2) ̸=∞. Then,
dc(T1, T2) ≥ ds(T1, T2).

Proof. By Lemma 5.7, we get dc(T1, T2) ≥ dc
s(T1, T2). By Lemma 5.5, we get dc

s(T1, T2) ≥
ds(T1, T2). Therefore, it follows that dc(T1, T2) ≥ ds(T1, T2). ◀

Problem statement 71

5.2 Problem statement
In Section 3.2, we formally defined the problem of NFFOBI tree pattern matching for ordered
labeled trees, in which the goal is to find all the bottom-up subtrees in an input tree that match
a given pattern tree with up to k errors; see Problem 3.16. All inexact tree pattern matching
problems considered in this chapter are variants of this problem, each using a different tree edit
distance to measure the number of errors. As the tree edit distance we use either the constrained
simple 1-degree edit distance, the simple 1-degree edit distance, the constrained 1-degree edit
distance, or the 1-degree edit distance. In this section, we formally define the four variants of the
NFFOBI tree pattern matching problem; and discuss their mutual relationships.
▶ Convention 5.11. In this chapter, we use k as a nonnegative integer that denotes the maximum
number of errors (the maximum tree edit distance) allowed.

▶ Problem 5.12 (NFFOBI tree pattern matching problem under dc
s). The NFFOBI tree pattern

matching problem under dc
s is the NFFOBI tree pattern matching problem where the constrained

simple 1-degree edit distance dc
s is used as the tree edit distance.

▶ Problem 5.13 (NFFOBI tree pattern matching problem under ds). The NFFOBI tree pattern
matching problem under ds is the NFFOBI tree pattern matching problem where the simple
1-degree edit distance ds is used as the tree edit distance.

▶ Problem 5.14 (NFFOBI tree pattern matching problem under dc). The NFFOBI tree pattern
matching problem under dc is the NFFOBI tree pattern matching problem where the constrained
1-degree edit distance dc is used as the tree edit distance.

▶ Problem 5.15 (NFFOBI tree pattern matching problem under d). The NFFOBI tree pattern
matching problem under d is the NFFOBI tree pattern matching problem where the 1-degree edit
distance d is used as the tree edit distance.

▶ Example 5.16 (NFFOBI tree pattern matching problem under dc
s , ds, dc, or d). Let P be the

pattern tree illustrated in Figure 5.1a, T be the input tree illustrated in Figure 5.1b, and let
k = 2. Given P, T , and k, the solution to the NFFOBI tree pattern matching problem is as
follows: First, if the constrained simple 1-degree edit distance dc

s is used, then the solution is
{

a2}
.

That is, with respect to the maximum number of errors allowed, T /a2 is the only occurrence
of P in T . Second, if the simple 1-degree edit distance ds is used, then the solution is

{
a2, a5}

.
Finally, assume that 1-degree edit operations are assigned costs according to the cost function γ
described in Table 5.1. If the constrained 1-degree edit distance dc is used, we get the empty set
of nodes as the solution. That is, there are no nodes v in the input tree such that dc(P, T /v) ≤ k.
However, if we use the 1-degree edit distance d, then the solution is

{
a5}

.

Example 5.16 suggests the existence of relationships between the problems. For example, we
can see that the solution for the problem under the constrained simple 1-degree edit distance is a
subset of the solution for the problem under the simple 1-degree edit distance. The following
theorem describes the mutual relationships between the four variants of the NFFOBI tree pattern
matching problem that we focus on in this chapter.

▶ Theorem 5.17 (Relationships between the four variants of the NFFOBI tree pattern matching
problem). Let T and P be ordered labeled trees. Let k be the maximum number of errors allowed.
Let

• Xc
s = {v : v ∈ V (T) ∧ dc

s(P, T /v) ≤ k},

• Xs = {v : v ∈ V (T) ∧ ds(P, T /v) ≤ k},

• Xc = {v : v ∈ V (T) ∧ dc(P, T /v) ≤ k}, and

72 Main results in inexact tree pattern matching

• X = {v : v ∈ V (T) ∧ d(P, T /v) ≤ k}.

Then, Xc ⊆ Xc
s ⊆ Xs and Xc ⊆ X ⊆ Xs. However, Xc

s ̸⊆ X and X ̸⊆ Xc
s in general.

Proof. If v ∈ Xc, then dc(P, T /v) ≤ k. Applying Lemma 5.7 we can conclude that dc
s(P, T /v) ≤

k. That is, if v ∈ Xc, then v ∈ Xc
s —in other words, Xc ⊆ Xc

s . Using Lemma 5.5, the similar
reasoning applies to the case Xc

s ⊆ Xs. Similarly, we can prove Xc ⊆ X and X ⊆ Xs by applying
Lemma 5.6 and Lemma 5.8, respectively. Finally, application of Lemma 5.9 enables us to prove
that Xc

s ̸⊆ X and X ̸⊆ Xc
s in general. ◀

5.3 Automata approach
In this section, we give a general overview of our automata-based approach to the four variants of
the NFFOBI tree pattern matching problem defined in the previous section. We base our approach
on reducing the NFFOBI tree pattern matching problem to a problem of string matching. For
string representation of trees, we use the prefix bar notation. Using the substring property of this
notation, see Lemma 2.42, we know that if a pattern tree P matches a bottom-up subtree S of an
input tree T , then prefBar(P) matches prefBar(S), which is a substring of prefBar(T). In order
to recognize that prefBar(P) matches prefBar(S), we need to be able to compute the distance
between those strings that corresponds to the distance between P and S. In Definition 5.18 and
Theorem 5.19, we examine how 1-degree edit operations work on trees in the prefix bar notation.

▶ Definition 5.18 (1-degree string edit operations). Let Σ be an alphabet. Let x ∈ L(Σ, ↑). A
1-degree string edit operation on x is either

• the deletion of substring pipi+1 such that pi ∈ Σ and pi+1 = ↑, where i ∈ {2, . . . , |p| − 2},
denoted by strDel(i);

• the insertion of substring a ↑, where a ∈ Σ at position i ∈ {2, . . . , |p|}, denoted by strIns(i, a);
or

• the substitution (or relabeling) of symbol pi, where pi ∈ Σ and i ∈ {1, . . . , |p| − 1}, for
a ∈ Σ \ {pi}, denoted by strRel(i, a).

▶ Theorem 5.19 (Application of 1-degree edit operations on trees in the prefix bar notation). Let Σ
be an alphabet. Let P = (V, E, r,⪯S, label) be an ordered labeled tree over Σ. Let p = prefBar(P).
The 1-degree edit operations on P correspond to 1-degree string edit operations on p as follows:

• Operation del(v) corresponds to operation strDel(i), and vice versa, where i is the label position
of v.

• Operation ins(a, j, u) corresponds to operation strIns(i, a), and vice versa, where

i =
{

1 + the label position of u if j = 1,

1 + the bar position of (j − 1)-th child of u otherwise.

• Operation rel(v, a) corresponds to operation strRel(i, a), and vice versa, where i denotes the
label position of v.

Proof. The proof is divided into three parts; one part for each operation.

Deletion. First, we show that del(v) corresponds to strDel(i). It follows from the definition of the
prefix bar notation and the assumption that i is the label position of v that v is in p represented
by substring label(v) ↑= pipi+1. Thus, deleting v corresponds to deleting pipi+1. Operation
strDel(i) deletes substring pipi+1 if the following conditions are satisfied:

Automata approach 73

1. symbol pi ∈ Σ, symbol pi+1 = ↑, and

2. i ∈ {2, . . . , |p| − 2}.

It is easy to check that the first condition is satisfied. The second condition is satisfied due to the
following:

• Since node v is not the root, it follows that the label position of v is not equal to one. Thus,
i ≥ 2.

• Since node v is not the root, it also follows that P has at least two nodes. It is easy to see that
the prefix bar notation of each tree with at least two nodes ends with at least two bar symbols.
Therefore, the label position of v cannot be equal to |p| nor |p| − 1. Thus, i ≤ |p| − 2.

Since all conditions for operation strDel(i) are satisfied, the operation deletes substring pipi+1.
Therefore, del(v) corresponds to strDel(i).

Now, we show that strDel(i) corresponds to del(v). Operation strDel(i) deletes string pipi+1
such that pi ∈ Σ and pi+1 = ↑, where i ∈ {2, . . . , |p| − 2}. Since pi ∈ Σ and pi+1 = ↑, we get that
pipi+1 ∈ L(Σ, ↑). Thus, by applying Lemma 2.43, we have that pipi+1 represents a bottom-up
subtree of P. The size of this subtree is clearly equal to one. Thus, substring pipi+1 represents
a leaf. Moreover, since i ̸= 1 and i ̸= |p| − 1, it follows that the leaf is not the root. Therefore,
operation strDel(i) corresponds to operation del(v), where v is the non-root leaf whose label
position is i.

Insertion. First, we show that ins(a, j, u) corresponds to strIns(i, a). Operation ins(a, j, u) inserts
a new leaf labeled by a ∈ Σ as the j-th child of a node u, where j ∈ {1, . . . , degree(u) + 1}.
The prefix bar notation of a leaf labeled by a is a ↑. Thus, inserting a leaf labeled by a into
P corresponds to inserting substring a ↑ into p. From the definition of the prefix bar notation,
it follows that the label position of the first child of u is equal to 1 + the label position of u.
Thus, insertion of a new leaf labeled by a as the first child of u corresponds to inserting substring
a ↑ at position i that is equal to 1 + the label position of u. It is easy to see that i ≥ 2 in this
case. Moreover, the label position of the j-th child of u, where j ≥ 2 is equal to 1 + the bar
position of (j − 1)-th child of u. Thus, insertion of a new leaf a as the j-th child of u, where
j ≥ 2 corresponds to insertion of substring a ↑ at position i that is equal to 1 + the bar position
of (j − 1)-th child of u. In this case, it also holds that i ≥ 2. Since all conditions for operation
strIns(i, a) are satisfied, the operation inserts substring a ↑ at position i that corresponds to the
label position of the j-th child of u. Therefore, ins(a, j, u) corresponds to strIns(i, a).

Now, we show that strIns(i, a) corresponds to ins(a, j, u). Operation strIns(i, a) inserts substring
a ↑, where a ∈ Σ at position i ∈ {2, . . . , |p|}. Since a ↑ belongs to L(Σ, ↑), we have that this
substring represents a tree. Clearly, size of this tree is equal to one. Thus, insertion of substring
a ↑ corresponds to insertion of a leaf into the underlying tree. If pi−1 ∈ Σ, then from the definition
of the prefix bar notation follows that i− 1 is the label position of a node that is the parent of
the new inserted leaf. Thus, the new leaf is the first child of its parent. This operation on p
corresponds to operation ins(a, 1, u), where u is the node whose label position is i− 1. If pi−1 = ↑,
then from the definition of the prefix bar notation follows that i− 1 is the bar position of the
sibling that immediately precedes the new inserted leaf. Thus, the new leaf is j-th child of its
parent, where j ≥ 2. Therefore, this operation on p corresponds to operation ins(a, j, u), where
the bar position of (j − 1)-th child of u is i− 1.

Relabeling. First, we show that rel(v, a) corresponds to strRel(i, a). From the assumption that
i is the label position of v, we have that pi = label(v). Thus, relabeling node v corresponds to
substitution of symbol pi. Operation strRel(i, a) can be applied if the following conditions are
satisfied:

1. pi ∈ Σ,

74 Main results in inexact tree pattern matching

2. i ∈ {1, . . . , |p| − 1}, and

3. a ∈ Σ \ {pi}.

The first condition and third conditions are clearly satisfied. The second condition is also
satisfied because the label position cannot be equal to |p| (there is always the bar symbol at that
position). Since all conditions for operation strRel(i, a) are satisfied, the operation substitutes
symbol pi for a. Therefore, rel(v, a) corresponds to strRel(i, a).

Now, we show that strRel(i, a) corresponds to rel(v, a). Operation strRel(i, a) substitutes
symbol pi, where pi ∈ Σ and i ∈ {1, . . . , |p| − 1}, for a ∈ Σ \ {pi}. Since pi ∈ Σ, it follows from
the definition and properties of the prefix bar notation that symbol pi corresponds to the label
of a node whose label position is i. Therefore, operation strRel(i, a) corresponds to operation
rel(v, a), where v is the node whose label position is i. ◀

▶ Example 5.20 (Application of 1-degree edit operations on trees in the prefix bar notation). Let T1
and T2 be the ordered labeled trees illustrated in Figure 2.3. The figure also shows that we can
transform T1 into T2 using a sequence of five 1-degree edit operations. Assume that both T1 and
T2 are represented as strings in the prefix bar notation, that is

• prefBar(T1) = abc ↑ c ↑ c ↑ a ↑↑ aa ↑↑↑, and

• prefBar(T2) = caa ↑↑ bc ↑ c ↑ c ↑ a ↑↑↑.

Then, the edit script between T1 and T2 illustrated in Figure 2.3 corresponds to the following
sequence of 1-degree string edit operations:

abc ↑ c ↑ c ↑ a ↑↑ aa ↑↑↑ strRel(1,c)−−−−−−−→ cbc ↑ c ↑ c ↑ a ↑↑ aa ↑↑↑

cbc ↑ c ↑ c ↑ a ↑↑ aa ↑↑↑ strDel(13)−−−−−−→ cbc ↑ c ↑ c ↑ a ↑↑ a ↑↑

cbc ↑ c ↑ c ↑ a ↑↑ a ↑↑ strDel(12)−−−−−−→ cbc ↑ c ↑ c ↑ a ↑↑↑

cbc ↑ c ↑ c ↑ a ↑↑↑ strIns(2,a)−−−−−−→ ca ↑ bc ↑ c ↑ c ↑ a ↑↑↑

ca ↑ bc ↑ c ↑ c ↑ a ↑↑↑ strIns(3,a)−−−−−−→ caa ↑↑ bc ↑ c ↑ c ↑ a ↑↑↑

Let t1, t2 ∈ L(Σ, ↑). We define an edit script between t1 and t2 similarly as we did for trees
in Section 2.3.1.2, that is, as a sequence of 1-degree string edit operations that transform t1 into
t2. Analogously, the length of an edit script between t1 and t2 is the number of operations in the
script, and a shortest edit script between t1 and t2 is an edit script with the minimum number of
operations required to transform t1 into t2. We use the length of a shortest edit script between
t1 and t2 to define the simple 1-degree string edit distance.

▶ Definition 5.21 (Simple 1-degree string edit distance). Let Σ be an alphabet. Given two strings
t1, t2 ∈ L(Σ, ↑), the simple 1-degree string edit distance is a function ds : L(Σ, ↑)× L(Σ, ↑)→ N0
such that ds(t1, t2) is the length of a shortest edit script between t1 and t2.

A cost function γ defined on Σλ can be used to define the cost of 1-degree string edit operations
as follows: Let (a, b) ∈ Σλ ×Σλ. If a ̸= b ̸= λ, then γ(a, b) corresponds to the cost of substituting
symbol a for symbol b. If a = λ and b ̸= λ, then γ(a, b) corresponds to the cost of inserting
substring b ↑. Finally, if a ̸= λ and b = λ, then γ(a, b) denotes the cost of deleting substring a ↑.
Similarly as for the cost of 1-degree (tree) edit operations, the pairs (a, a) ∈ Σλ × Σλ do not
correspond to any 1-degree string edit operation and thus do not play a role in defining their
costs. Cost of an edit script between t1 and t2 is the sum of costs of operations in the script, and
an optimal edit script between t1 and t2 is an edit script between t1 and t2 with the minimal
cost. We use the cost of an optimal edit script between t1 and t2 to define the 1-degree string
edit distance.

Automata approach 75

▶ Definition 5.22 (1-degree string edit distance). Let Σλ be an alphabet with the blank symbol λ
equipped with a cost function. Given two strings t1, t2 ∈ L(Σ, ↑), the 1-degree string edit distance
is a function ds : L(Σ, ↑)× L(Σ, ↑)→ R such that ds(t1, t2) is the cost of an optimal edit script
between t1 and t2.

From Theorem 5.19, it follows that we can convert every edit script between strings t1 and
t2 from L(Σ, ↑) to an edit script between the underlying trees, and vice versa. From this, we
conclude that ds(t1, t2) = ds(T1, T2) and d(t1, t2) = d(T1, T2) for every pair t1, t2 ∈ L(Σ, ↑) and
trees T1, T2 ∈ Tr(Σ) such that t1 = prefBar(T1) and t2 = prefBar(T2). Moreover, we say that
an edit script between t1 and t2 is constrained if the edit script between the underlying trees
is constrained. We use constrained edit scripts to define constrained versions for the (simple)
1-degree string edit distance.

▶ Definition 5.23 (Constrained 1-degree string edit distance). Let Σλ be an alphabet with the
blank symbol λ equipped with a cost function. Given two strings t1, t2 ∈ L(Σ, ↑), the constrained
1-degree string edit distance is a function ds : L(Σ, ↑)× L(Σ, ↑)→ R ∪ {∞} such that ds(t1, t2) is
either the cost of an optimal constrained edit script between t1 and t2 or ∞ if no constrained
edit script between t1 and t2 exist.

▶ Definition 5.24 (Constrained simple 1-degree string edit distance). Let Σ be an alphabet. Given
two strings t1, t2 ∈ L(Σ, ↑), the constrained simple 1-degree string edit distance is a function
ds : L(Σ, ↑)×L(Σ, ↑)→ N0 ∪ {∞} such that ds(t1, t2) is either the length of a shortest edit script
between t1 and t2 or ∞ if no constrained edit script between t1 and t2 exists.

We can see that dc
s(t1, t2) = dc

s(T1, T2) and dc(t1, t2) = dc(T1, T2) for every pair t1, t2 ∈ L(Σ, ↑)
and trees T1, T2 ∈ Tr(Σ) such that t1 = prefBar(T1) and t2 = prefBar(T2).

We can now reduce the NFFOBI tree pattern matching to a string matching problem as
follows:

• Using the prefix bar notation, encode pattern tree P over Σ and input tree T over Σ as strings
p and t from L(Σ, ↑), respectively.

• Instead of tree edit distance function f , where f is ds, dc
s , d, or dc, use the corresponding string

edit distance function f .

• Find every substring tj′...j of t, where 1 ≤ j′ < j ≤ |t|, such that tj′...j ∈ L(Σ, ↑) and
f(p, tj′...j) ≤ k, where k is the given maximum number of errors allowed.

Specifically, we focus on finding end positions of occurrences of p in t. Every end position
corresponds to the bar position of a unique node v ∈ V (T) such that f(P, T /v) ≤ k.

Given a pattern tree P and a maximum number of allowed errors k, the main idea of our
automata-based approach is to identify the pattern dictionary, the set of all strings representing
the trees whose distance from P is at most k. Then, we built a dictionary automaton called the
1-degree matching automaton.

▶ Definition 5.25 (Pattern dictionary). Let Σ be an alphabet. Let P be an ordered labeled tree
over Σ. Let p = prefBar(P). Let k ≥ 0. Let f be equal to either ds, dc

s , d, or dc. A pattern
dictionary for p, k and f , denoted by L(p, k, f), is a (string) language defined as follows:

L(p, k, f) = {p′ : p′ ∈ L(Σ, ↑) ∧ f(p, p′) ≤ k} .

▶ Definition 5.26 (1-degree matching automaton). Let Σ be an alphabet. Let P be an ordered
labeled tree over Σ. Let p = prefBar(P). Let k ≥ 0. Let f be equal to ds, dc

s , d, or dc. A 1-degree
matching automaton for p, k, and f , denoted by M(p, k, f), is a string automaton accepting the
following language: {

xp′ : x ∈ Σ∗
↑ ∧ p′ ∈ L(p, k, f)

}
.

76 Main results in inexact tree pattern matching

The 1-degree matching automaton accepts an infinite language. It can read (not necessarily
accept) any ordered labeled tree in the prefix bar notation. To find the positions of all the
occurrences of the pattern tree in a given input tree T , the automaton is run on prefBar(T).
The automaton then reports a match every time it goes through a final state. In this way, the
automaton works similarly to a transducer, where we output a flag that signals an occurrence
every time we follow a transition into a final state. Algorithm 5.27 describes the process. If the
automaton is deterministic and the time necessary to compute a transition from each state is
constant, then all pattern occurrences are located in time linear to the size of the input.

▶ Algorithm 5.27 (String automata approach to the NFFOBI tree pattern matching problem).
Let Σ be an alphabet. Let P and T be ordered labeled trees over Σ. Let p = prefBar(P) and
t = prefBar(T). Let k ≥ 0. Let f be equal to ds, dc

s , d, or dc. Assuming that the 1-degree matching
automatonM(p, k, f) is given, the algorithm uses it to find every bottom-up subtree S in T such
that f(P,S) ≤ k.

1. (Look for occurrences.) Using M(p, k, f), read each symbol tj in t: If a final state is reached,
then output j.

In the following sections, we present the construction of the 1-degree matching automaton.
Moreover, we discuss that the automaton can also be used to report the number of errors for
each occurrence.

5.4 1-degree matching automaton for the constrained simple
1-degree edit distance

The NFFOBI tree pattern matching problem under the constrained simple 1-degree edit distance
is the simplest of the four problems defined in Section 5.2. Let us recall that the constrained
simple 1-degree edit distance between two ordered labeled trees is given by the length of a shortest
constrained edit script between them (or ∞ if no such script exists). In other words, deletion and
insertion operations in edit scripts can only refer to nodes initially present in the tree, and we
assume that all edit operations come with the unit cost.

In this section, we present our solution to the NFFOBI tree pattern matching problem under
dc

s that is based on a string automaton. We do this by reducing Problem 5.12 to a string matching
problem, as described in the previous section. First, we show that the 1-degree automaton can be
constructed as an ε-NFA. Then, we discuss its deterministic variant and show a simulation of the
ε-NFA by dynamic programming.

Let P be a pattern tree. Let p = prefBar(P). Let k ≥ 0. We describe the construction of the
1-degree matching ε-NFA for dc

s in two parts. First, we present an algorithm that constructs an
ε-NFA accepting the pattern dictionary L(p, k, dc

s); see Algorithm 5.28. Then, we transform it
into the 1-degree matching ε-NFA; see Algorithm 5.30. Both automata have |p|+ 1 + k (2|p| − 1)
states and can be built in time O(k · |p|).

▶ Algorithm 5.28 (Construction of an ε-NFA accepting a pattern dictionary for dc
s). Let Σ be an

alphabet. Let k ≥ 0. Let P be an ordered labeled tree over Σ. Let p = prefBar(P). Given p and
k, the algorithm constructs an ε-NFA M = (Q, Σ↑, δ, q0, F) accepting language L(p, k, dc

s), the
pattern dictionary for p, k, and dc

s .

1. (Define the set of states.) Each state is labeled by il or il
1, where i ∈ {0, . . . , |p|} and

l ∈ {0, . . . , k}. Specifically, states are labeled so they can be arranged into rows and columns
as illustrated in Figure 5.3. We say that a state labeled by il (or il

1) it is at depth i and at
level l; states labeled by il

1 are called auxiliary.

Set Q←
{

00}
∪

{
il : 1 ≤ i ≤ |p| ∧ 0 ≤ l ≤ k

}
∪

{
il
1 : 1 ≤ i ≤ |p| − 1 ∧ 1 ≤ l ≤ k

}︸ ︷︷ ︸
auxiliary states

.

1-degree matching automaton for the constrained simple 1-degree edit distance 77

00

startstart

10 20 (|p| − 1)0 |p|0

11
1 21

1 (|p| − 1)1
1

11 21 (|p| − 1)1 |p|1

1k
1 2k

1 (|p| − 1)k
1

1k 2k (|p| − 1)k |p|k

level 0

level 1

level k

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .depth 0 depth 1 depth 2 depth (|p| − 1) depth |p|

Figure 5.3 The regular structure of the ε-NFA constructed by Algorithm 5.28. Given k ≥ 1 and a
pattern string p ∈ L(Σ, ↑), the set of states can be arranged into rows and columns. There are (k + 1)
main rows, one for each level l ∈ {0, . . . , k}, and k auxiliary rows, one for each level greater than or equal
to 1. Auxiliary rows are placed between two main rows. Each main row, except the one for level 0, is
composed of |p| states with depth 1, 2, . . . , |p|. In the row for level 0, there are |p| + 1 states of depth
0, 1, 2, . . . , |p|. Each auxiliary row is composed of |p| − 1 states of depth 1, 2, . . . , |p| − 1.

2. (Define the start state.) Set q0 ← 00.

3. (Define the set of final states.) Every state at depth |p| is final. That is, every main row ends
in one of the final states.

Set F ←
{
|p|l : 0 ≤ l ≤ k

}
.

4. (Add transitions indicating match.)

a. Set δ
(
00, p1

)
←

{
10}

.

b. For each position i ∈ {2, . . . , |p|} and number of errors l ∈ {0, . . . , k}, set δ
(
(i− 1)l, pi

)
←{

il
}

.

5. (Add transitions for relabeling operations.)

a. If k ≥ 1, then for each a ∈ Σ \ {p1}, set δ
(
00, a

)
←

{
11}

.
b. For each position i ∈ {2, . . . , |p| − 1} and number of errors l ∈ {0, . . . , k − 1}: If pi ̸= ↑,

then for each a ∈ Σ \ {pi}, set δ
(
(i− 1)l, a

)
←

{
il+1}

.

6. (Add transitions for insertion operations.) Insertion operations are modelled by auxiliary
states and two consecutive transitions: insertion of a ∈ Σ and the corresponding bar symbol.
For each position i ∈ {2, . . . , |p|}, number of errors l ∈ {0, . . . , k − 1}, and symbol a ∈ Σ:

a. Set δ
(
(i− 1)l, a

)
← δ

(
(i− 1)l, a

)
∪

{
(i− 1)l+1

1
}

.

b. Set δ
(
(i− 1)l+1

1 , ↑
)
←

{
(i− 1)l+1}

.

78 Main results in inexact tree pattern matching

7. (Add transitions for deletion operations.) For each position i ∈ {2, . . . , |p| − 2} and number
of errors l ∈ {0, . . . , k − 1}: If pi ∈ Σ and pi+1 = ↑, then set δ

(
(i− 1)l, ε

)
←

{
(i + 1)l+1}

.

8. (Return.) Return M = (Q, Σ↑, δ, q0, F).

▶ Lemma 5.29 (Correctness of Algorithm 5.28). Given an ordered labeled tree P and k ≥ 0, the
ε-NFA M constructed by Algorithm 5.28 accepts the pattern dictionary L(prefBar(P), k, dc

s).

Proof. Let p = prefBar(P). The procedure is to show that L(M) = L(p, k, dc
s). Thus, the proof

falls naturally into two steps.

(⊆) Assume x ∈ L(M). Thus, there exists l ∈ {0, . . . , k} such that |p|l ∈ δ̂
(
00, x

)
and there is

no l′ < l such that |p|l′ ∈ δ̂
(
00, x

)
. We show that x ∈ L(p, k, dc

s) by showing that dc
s(p, x) = l.

We use induction on the maximum number of errors k.

• Assume k = 0. Then, |p|0 ∈ δ̂
(
00, x

)
. Thus, M reads x using transitions created in Step 4.

Therefore, x = p, and it follows that dc
s(p, x) = 0 and x ∈ L(p, k, dc

s).

• Assume k ≥ 1 and that the claim holds for errors smaller than k. For each x ∈ L(M), there
exists l ∈ {0, . . . , k} such that |p|l ∈ δ̂

(
00, x

)
and there is no l′ < l such that |p|l′ ∈ δ̂

(
00, x

)
.

For l ∈ {0, . . . , k − 1}, we get that dc
s(p, x) = l by the induction hypothesis. Our goal is to

show that if |p|k ∈ δ̂
(
00, x

)
, where for no k′ < k holds that |p|k′ ∈ δ̂

(
00, x

)
, then dc

s(p, x) = k.
To accept x in state |p|k, automaton M must use exactly k transitions created in Steps 5,
6, or 7 (for simplicity, we view the pair of transitions created in Step 6 as one transition).
Let y be the shortest prefix of x such that M gets to a state at level k − 1 after reading y.
From that state, we can continue to state |p|k−1 using a sequence of transitions created in
Step 4. It is easy to check that this sequence corresponds to reading a nonempty suffix z of p.
Thus, |p|k−1 ∈ δ̂

(
00, yz

)
. Since there is no k′ < k such that |p|k′ ∈ δ̂

(
00, x

)
, there is also no

l < k − 1 such that |p|l ∈ δ̂
(
00, yz

)
(otherwise, we could set k′ = l + 1). Therefore, we get

that dc
s(p, yz) = k − 1 by the induction hypothesis. Since p can written as p = wz, we get

that each of the k − 1 edit operations were applied to w in order to change it to y. To read
x, automaton M reads y followed by string z′. We need to show that z can be transformed
to z′ using one edit operation. To read z′, automaton uses a sequence of transitions created
in Step 4 (at level k − 1) followed by a transition created in Steps 5, 6, or 7 and a sequence
of transitions created in Step 4 (at level k). Using a transition created in Steps 5, 6, or 7
corresponds to using an operation relabeling, insertion, or deletion on z, respectively. It
follows that dc

s(p, x) = k. Therefore, x ∈ L(p, k, dc
s), and the claim holds.

(⊇) Assume x ∈ L(p, k, dc
s). Thus, there exists l ∈ {0, . . . , k} such that dc

s(p, x) = l. We show
that x ∈ L(M) by showing that |p|l ∈ δ̂

(
00, x

)
. We use induction on the maximum number of

errors k.

• Assume k = 0. Then, L(p, k, dc
s) = {p}. From Step 4 of the algorithm, it follows that

|p|0 ∈ δ̂
(
00, p

)
. From Step 3, we get that |p|0 is a final state. Thus, p ∈ L(M).

• Assume k ≥ 1 and that the claim holds for errors smaller than k. Then, L(p, k, dc
s) =

L(p, k − 1, dc
s) ∪ {y : y ∈ L(Σ, ↑) ∧ dc

s(p, y) = k}. By the induction hypothesis, we have that
L(p, k − 1, dc

s) ⊆ L(M). Our goal is to show that {y : y ∈ L(Σ, ↑) ∧ dc
s(p, y) = k} ⊆ L(M).

We know that for each such y, there is a constrained edit script between p and y with k
operations. These operations can be sorted from left to right according to which position in
p they refer to. This way we can transform p to y by traversing p from its beginning to its
end. If we remove the rightmost operation from such a script, then we clearly transform p to
string y′, where dc

s(p, y′) = k − 1. For each such y′, we have that |p|k−1 ∈ δ̂
(
00, y′) by the

induction hypothesis. It is easy to check that there is a nonempty suffix of p that is intact

1-degree matching automaton for the constrained simple 1-degree edit distance 79

(not changed by any of the first k − 1 edit operations) whose length depends on the set of the
k − 1 operations that transformed p to y′. Similarly, since |p|k−1 ∈ δ̂

(
00, y′), the automaton

must at some point go to a state at level k − 1 from which only transitions created in Step 4
are used. Now we apply the operation that has been removed. This operation can be one of
the following:

– The deletion of substring pipi+1 such that pi ∈ Σ and pi+1 = ↑, where i ∈ {2, . . . , |p| − 2}.
In the automaton, a symbol pi is read by transitions leading from a state at depth i− 1 to
a state at depth i. Thus, deletion of substring pipi+1 corresponds to ε-transition that leads
from a state at depth i− 1 to a state at depth i + 1. These transitions are created in Step 7
of the algorithm. Moreover, the state level is increased by 1. After that, the automaton
reads the rest of the string using transitions created in Step 4 and accepts it by the final
state |p|k.

– The substitution of symbol pi, where pi ∈ Σ and i ∈ {1, . . . , |p| − 1}, for a ∈ Σ \ {pi}. In
the automaton, this corresponds to transitions that increase level by 1 and lead from a
state at depth i− 1 to a state at depth i. These transitions are created in Step 5 of the
algorithm. After that, the automaton reads the rest of the string using transitions created
in Step 4 and accepts it by the final state |p|k.

– The insertion of substring a ↑, where a ∈ Σ, at position i ∈ {2, . . . , |p|}. In the automaton,
this corresponds to pairs of transitions that increase level by 1 and do not change the state
depth. These transitions are created in Step 6 of the algorithm. After that, the automaton
reads the rest of the string using transitions created in Step 4 and accepts it by the final
state |p|k.

Since for every operation there is a corresponding transition (or a pair of transitions) that
also increases the state level by one, we have that |p|k ∈ δ̂

(
00, y

)
for every y ∈ L(p, k, dc

s),
where dc

s(p, y) = k. Hence, the claim holds. ◀

We are now in a position to construct the 1-degree matching ε-NFA for dc
s . We do this by

first constructing the ε-NFA accepting the pattern dictionary, and then adding a loop transition
to its start state that enables the automaton to read the prefix bar notation of any input tree.
See Algorithm 5.30.

We show an example of the ε-NFA constructed by Algorithm 5.28 and the 1-degree matching
ε-NFA constructed by Algorithm 5.30 in Figure 5.4. Insertion operations are represented by two
consecutive vertical transitions that go through an auxiliary state; diagonal ε-transitions represent
deletion operations, and the remaining diagonal transitions represent relabeling operations.

▶ Algorithm 5.30 (Construction of 1-degree matching ε-NFA for dc
s). Let Σ be an alphabet. Let P

be an ordered labeled tree over Σ. Let k ≥ 0. Let p = prefBar(P). Given p and k, the algorithm
constructs the 1-degree matching ε-NFA for p, k, and dc

s .

1. (Construct automaton for the pattern dictionary.) Construct an ε-NFA (Q, Σ↑, δ, q0, F)
accepting the pattern dictionary L(p, k, dc

s) using Algorithm 5.28.

2. (Add loop to the start state.) For each symbol a ∈ Σ↑, set δ(q0, a)← δ(q0, a) ∪ {q0}.

3. (Return.) Return M = (Q, Σ↑, δ, q0, F).

▶ Theorem 5.31 (Correctness of Algorithm 5.30). Let Σ be an alphabet. Let P be an ordered
labeled tree over Σ. Let k ≥ 0. Given prefBar(P) and k, Algorithm 5.30 constructs the 1-degree
matching ε-NFA for prefBar(P), k, and dc

s.

Proof. Let p = prefBar(P). Let M be the automaton that is returned by the algorithm in
Step 3. We show that L(M) =

{
xp′ : x ∈ Σ∗

↑ ∧ p′ ∈ L(p, k, dc
s)

}
. In Step 1, we create an

80 Main results in inexact tree pattern matching

0
0

start

Σ
∪

{↑}

1
0

1
11

1
1

Σ↑1
21

1
2

Σ↑

2
0

2
11

2
1

Σ↑2
21

2
2

Σ↑

3
0

3
11

3
1

Σ↑3
21

3
2

Σ↑

4
0

4
11

4
1

Σ↑4
21

4
2

Σ↑

5
0

5
11

5
1

Σ↑5
21

5
2

Σ↑

6
0

6
11

6
1

Σ↑6
21

6
2

Σ↑

7
0

7
11

7
1

Σ↑7
21

7
2

Σ↑

8
0

8
11

8
1

Σ↑8
21

8
2

Σ↑

9
0

9
11

9
1

Σ↑9
21

9
2

Σ↑

10
0

10
1

10
2

a{a}

b
↑

b
↑

a
c

↑
↑

↑

b
↑

b
↑

a
c

↑
↑

↑

b
↑

b
↑

a
c

↑
↑

↑

{b}

{b}

{a}

{c}

ε

ε

ε

{b}

{b}

{a}

{c}

ε

ε

ε

Figure
5.4

T
he

ε-N
FA

constructed
by

A
lgorithm

5.28
accepting

the
pattern

dictionary
or

the
1-degree

m
atching

ε-N
FA

constructed
by

A
lgorithm

5.30
for

distance
d

cs ,m
axim

um
num

ber
oferrors

k
=

2,and
pattern

tree
P

illustrated
in

Figure
5.1a.

Ifthe
autom

aton
contains

loop
transitions

in
the

start
state,it

is
the

1-degree
m

atching
ε-N

FA
M

(prefBar(P
),k

,d
cs).

Ifthe
loop

transitions
in

the
start

state
are

rem
oved,it

is
the

ε-N
FA

accepting
the

pattern
dictionary

L
(prefBar(P

),k
,d

cs).

1-degree matching automaton for the constrained simple 1-degree edit distance 81

ε-NFA accepting language {p′ : p′ ∈ L(p, k, dc
s)}. The correctness of this automaton is given

by Lemma 5.29. In Step 2, we add a loop transition to its start state for each symbol a ∈ Σ↑.
Thus, the automaton can read arbitrary many symbols and stay at the start state. At any
point, the nondeterminism allows the automaton to proceed to another state and read string
p′ such that dc

s(p, p′) ≤ k. This automaton is returned in Step 3 as automaton M. Therefore,
L(M) =

{
xp′ : x ∈ Σ∗

↑ ∧ p′ ∈ L(p, k, dc
s)

}
. ◀

There are two ways how to use the automaton constructed by Algorithm 5.30 as a basis for a
matching algorithm. First, we can transform it into an equivalent DFA to obtain a linear-time
searching algorithm (assuming that the time necessary to compute a transition from each state is
constant). However, this approach comes with a high state complexity; see Section 5.4.1. An
alternative approach using less space but with higher time complexity for searching is based on
simulating the 1-degree matching ε-NFA. In Section 5.4.2, we propose such a simulation algorithm
based on dynamic programming.

5.4.1 Deterministic automaton
The 1-degree matching ε-NFA can be turned into an equivalent DFA by eliminating ε-transitions
and using the subset construction. If the time necessary to compute a transition from each state
is constant, then the deterministic automaton can locate all pattern occurrences in time linear to
the size of the input tree.

▶ Theorem 5.32 (Time complexity of the searching phase for the 1-degree matching DFA for dc
s).

Let T and P be ordered labeled trees. Assuming that the time necessary to compute a transition
from each state is O(1), the 1-degree matching DFA for dc

s solves Problem 5.12 in time Θ(|T |).

Proof. String prefBar(T) is in the searching phase read exactly once, symbol by symbol from
left to right. The appropriate transition is taken each time a symbol is read, resulting in exactly
2|T | transitions. An occurrence of P is reported every time the DFA enters a final state. ◀

Given a pattern tree over alphabet Σ with m nodes and k ≥ 0, the state complexity of the
1-degree matching DFA is trivially O

(
2mk

)
since the 1-degree matching (ε-)NFA has Θ(mk)

states. In the rest of this section, we prove a non-trivial upper bound on the state complexity
of the 1-degree matching DFA that is O

(
|Σ|k · k · mk+1)

. We do so by using the previous
results by Crochemore and Melichar concerning the dictionary automaton that we discussed
in Section 4.1.1.2. Recall that Theorem 4.6 shows that the state complexity of a deterministic
dictionary automaton that is created from an (ε-)NFA accepting dictionary D by adding the loop
transitions to its start state and using the subset construction, is O

(∑
w∈D |w|

)
. Therefore, the

1-degree matching DFA for dc
s has O

(∑
p′∈L(p,k,dc

s) |p′|
)

states, where L(p, k, dc
s) is the pattern

dictionary for pattern tree P, where p = prefBar(P), maximum number of errors k, and distance
dc

s . Hence, our goal is to determine the length of the pattern dictionary. We do so by first
discussing its size; that is, the number of ordered labeled trees whose distance from P is at most k.

▶ Lemma 5.33 (Number of ordered labeled trees created by relabeling operations). Let Σ be an
alphabet. Let P be an ordered labeled tree over Σ with m nodes. The number of strings where each
represents the prefix bar notation of an ordered labeled tree over Σ that is created from prefBar(P)
by at most k relabeling operations is O

(
|Σ|kmk

)
.

Proof. Let p = prefBar(P). The set of strings created from p by l relabeling operations, where
0 ≤ l ≤ k ≤ m, is made by substituting l symbols a ∈ Σ in p for other symbols. There are(

m
l

)
possibilities for choosing l such symbols from p and |Σ| − 1 possibilities for choosing the

new symbol. Hence, the number of such strings is at most
(

m
l

)
(|Σ| − 1)l = O

(
ml

)
(|Σ| − 1)l =

O
(
|Σ|lml

)
. Therefore, the number of strings where each represents the prefix bar notation of

an ordered labeled tree over Σ that is created from p by at most k relabeling operations is∑k
l=0O

(
|Σ|lml

)
= O

(
|Σ|kmk

)
. ◀

82 Main results in inexact tree pattern matching

In the following two lemmas, we use the notion of a constrained deletion operation and a
constrained insertion operation. We call a deletion operation constrained if it can be included in
a constrained edit script. In other words, the constrained deletion operation refers only to leaves
initially present in a given tree. Similarly, we call an insertion operation constrained if it can be
included in a constrained edit script; that is, the insertion operation refers only to nodes initially
present in a given tree.

▶ Lemma 5.34 (Number of ordered labeled trees created by constrained deletion operations). Let
Σ be an alphabet. Let P be an ordered labeled tree over Σ with m nodes. The number of strings
where each represents the prefix bar notation of an ordered labeled tree over Σ that is created from
prefBar(P) by at most k constrained deletion operations is O

(
| leaves(P)|k

)
.

Proof. Let p = prefBar(P). The set of strings created from p by l constrained deletion operations,
where 0 ≤ l ≤ k ≤ | leaves(P)|, is made by deleting l substrings a ↑, where a ∈ Σ from
p. There are

(| leaves(P)|
l

)
= O

(
| leaves(P)|l

)
possibilities for choosing l such substrings from p.

Therefore, the number of strings where each represents the prefix bar notation of an ordered
labeled tree over Σ that is created from p by at most k constrained deletion operations is∑k

l=0O
(
| leaves(P)|l

)
= O

(
| leaves(P)|k

)
. ◀

▶ Lemma 5.35 (Number of ordered labeled trees created by constrained insertion operations). Let
Σ be an alphabet. Let P be an ordered labeled tree over Σ with m nodes. The number of strings
where each represents the prefix bar notation of an ordered labeled tree over Σ that is created from
prefBar(P) by at most k constrained insertion operations is O

(
|Σ|kmk

)
.

Proof. Let p = prefBar(P). The set of strings created from p by l constrained insertion operations,
where 0 ≤ l ≤ k corresponds to the set of start-final dipaths that can be found in the ε-NFA
constructed by Algorithm 5.28 in which all the relabeling and constrained deletion transitions are
removed. A start-final dipath is a sequence of transitions that starts in the start state, ends in a
final state, and respects the transition orientations. There are 2m steps needed to be done to the
right (reading the pattern) and l steps down (constrained insertion operations; the two transitions
representing a constrained insertion operation can be viewed as one step). Hence, every start-final
dipath can be represented by a string containing 2m letters R (right) and l letters D (down).
Moreover, every start-final dipath must start and end with letter R. It follows that the number
of start-final dipaths is

(2m−2+l
l

)
. Since each letter D can represent |Σ| inserted substrings a ↑,

where a ∈ Σ, we conclude that the number of strings created from p by exactly l constrained
insertion operations is at most

(2m+l−2
l

)
|Σ|l = O

(
ml|Σ|l

)
. Therefore, the number of strings where

each represents the prefix bar notation of an ordered labeled tree over Σ that is created from p
by at most k constrained insertion operations is

∑k
l=0O

(
|Σ|lml

)
= O

(
|Σ|kmk

)
. ◀

▶ Lemma 5.36 (Size of the pattern dictionary). Let Σ be an alphabet. Let P be an ordered labeled
tree over Σ with m nodes. The size the pattern dictionary L(prefBar(P), k, dc

s) is O
(
|Σ|kmk

)
.

Proof. Let p = prefBar(P). The size of the pattern dictionary L(p, k, dc
s) corresponds to the

number of strings created from p by at most k edit operations where each edit operation is either
relabeling, constrained deletion, or constrained insertion. Using Lemmas 5.33, 5.34, and 5.35, it
follows that this number can be computed for i + j + l ≤ k as follows:

relabel i nodes︷ ︸︸ ︷
O

(
|Σ|imi

) insert j leaves︷ ︸︸ ︷
O

(
|Σ|jmj

) delete l leaves︷ ︸︸ ︷
O

(
| leaves(P)|l

)
= O

(
|Σ|i+jmi+j | leaves(P)|l

)
O

(
|Σ|i+jmi+j | leaves(P)|l

)
= O

(
|Σ|i+jmi+j+l

)
= O

(
|Σk|mk

)
.

Therefore, |L(p, k, dc
s)| = O

(
|Σk|mk

)
. ◀

▶ Theorem 5.37 (Number of states of the 1-degree matching DFA for dc
s). Let Σ be an alphabet.

Let P be an ordered labeled tree over Σ with m nodes. Let k ≥ 0 be the maximum number of

1-degree matching automaton for the constrained simple 1-degree edit distance 83

errors allowed. The number of states of the 1-degree matching DFA M(prefBar(P), k, dc
s) that

is obtained (by eliminating ε-transitions and using the subset construction) from the 1-degree
matching ε-NFA constructed by Algorithm 5.30 is O

(
|Σ|k · k ·mk+1)

.

Proof. Let p = prefBar(P). The 1-degree matching DFA is constructed using three steps:
(1) Using Algorithm 5.28, construct the ε-NFA that accepts the pattern dictionary L(p, k, dc

s).
(2) Add a loop transition to the start state for every symbol a ∈ Σ∪{↑}. (3) Remove ε-transitions
and use the subset construction to obtain the 1-degree matching DFA. It follows from Theorem 4.6
that the number of states of such an automaton is at most the length of the pattern dictionary.
Since for every string p′ ∈ L(p, k, dc

s), we have that |p′| ≤ 2m + 2k, the length of language
L(p, k, dc

s) is

O
(∑

p′∈L(p,k,dc
s)

|p′|
)

= O
(
(2m + 2k) · |Σ|k ·mk

)
= O

(
|Σ|k · k ·mk+1)

.

Therefore, the number of states of the 1-degree matching DFA M(p, k, dc
s) that is obtained (by

eliminating ε-transitions and using the subset construction) from the 1-degree matching ε-NFA
constructed by Algorithm 5.30 is O

(
|Σ|k · k ·mk+1)

. ◀

5.4.2 Simulation by dynamic programming
As we mentioned in Section 4.1.2.1, dynamic programming is the most often used approach for
solving the tree edit distance problem as well as the inexact tree pattern matching problem. In
this section, we present a novel dynamic programming approach to the NFFOBI tree pattern
matching problem under dc

s . Moreover, we connect this approach to our automata-based solution
by showing that it can be seen as a simulation of the 1-degree matching ε-NFA. This approach
comes with a better space complexity than the 1-degree matching DFA but at the cost of worse
time complexity for searching.

Our dynamic programming approach to the NFFOBI tree pattern matching problem under dc
s

is similar to the dynamic programming approach for strings described in Section 4.1.1.1. However,
in contrast to string matching where at each mismatched position any edit operation substitution,
deletion, or insertion is possible, there exist positions for trees in the prefix bar notation where
only some edit operations are possible. For example, we cannot use relabeling operation when
either the current symbol in the pattern or the input is equal to the bar symbol. We present our
dynamic programming approach in Algorithm 5.38.

▶ Algorithm 5.38 (Dynamic programming approach to the NFFOBI tree pattern matching problem
under dc

s .). Let Σ be an alphabet. Let P and T be ordered labeled trees over Σ. Let p = prefBar(P)
and t = prefBar(T). Let k ≥ 0. Given p, t, and k, the algorithm finds every substring tj′...j of
t, where 1 ≤ j′ < j ≤ |t|, such that tj′...j ∈ L(Σ, ↑) and dc

s(p, tj′...j) ≤ k. In other words, the
algorithm finds every bottom-up subtree S in T such that dc

s(P,S) ≤ k.
The principal internal data structure is a two-dimensional array D in which the dimensions

have ranges 0 to |p| and 0 to |t|, respectively. By Di,j , where i ∈ {0, . . . |p|} and j ∈ {0, . . . , |t|},
we denote the value at row i and column j. The value Di,j with i, j ≥ 1, depends on three
positions at most: Di−1,j−1, Di−2,j , and Di,j−2 (see Figure 5.5). When the array is filled, D|p|,j
contains dc

s(p, tj′...j), where j′ ∈ {1, . . . , j − 1}, if and only if tj′...j represents the prefix bar
notation of a bottom-up subtree of T .

1. (Initialize array.)

a. Set D0,0 ← 0.
b. For each position i in p, set Di,0 ←∞.
c. For each position j in t, set D0,j ← 0.

84 Main results in inexact tree pattern matching

Di−2,j

Di−1,j−1

Di,j−2 Di,j

Figure 5.5 The value Di,j with i, j ≥ 1, depends on three positions at most: Di−1,j−1, Di−2,j , and
Di,j−2.

2. (Fill array.) For each position j in t and i in p:

a. The cost of relabeling pi to tj (or match) is

c1 ←

Di−1,j−1 if pi = tj ,

Di−1,j−1 + 1 if pi ̸= tj ∧ pi, tj ̸= ↑,
∞ otherwise.

b. The cost of deleting substring pi−1pi from p is

c2 ←

{
Di−2,j + 1 if i ≥ 3 ∧ pi = ↑ ∧pi−1 ̸= ↑,
∞ otherwise.

c. The cost of inserting substring tj−1tj into p (at position i + 1) is

c3 ←

{
Di,j−2 + 1 if j ≥ 3 ∧ tj = ↑ ∧ tj−1 ̸= ↑ ∧ i < |p|,
∞ otherwise.

d. Set Di,j ← min(c1, c2, c3). (We assume that ∞ > c for every c ∈ N0, also that ∞+ 1 =∞,
and that min(∞,∞,∞) =∞.)

3. (Report occurrences.) For each position j in t: If D|p|,j ≤ k, output j.

We show an example of our dynamic programming approach to the NFFOBI tree pattern
matching problem in Figure 5.6. Note that if the last row contains a number, then the corre-
sponding position in the input string always contains the bar symbol. This is because the position
corresponds to the end position of a pattern occurrence, and each such occurrence is a bottom-up
subtree of the input tree whose encoding always ends with the bar symbol. For similar reasons,
each occurrence always starts at a position that does not contain the bar symbol. The start
position for each occurrence can be easily computed in time linear to its size: we start at the end
position of the occurrence and walk backward in the input string, increasing a counter each time
we see the bar symbol and decreasing it otherwise; as soon as the counter reaches 0, the current
position is the start position of the occurrence. The start positions can also be precomputed
beforehand during the transformation of the input tree to its prefix bar notation. Moreover, if
the original input tree structure is available, we can connect each bar symbol in its prefix bar
notation to the corresponding node. Thus, instead of reporting end positions in the input string
as occurrences, we can return the root nodes of the corresponding bottom-up subtrees.

In Figure 5.6, we also illustrate how edit scripts can be computed. We can obtain a corre-
sponding edit script between pattern tree P and each occurrence of P in a given input tree T by
tracking back the array from position D|p|,j ̸=∞, where p = prefBar(P), to position D0,j′−1 such
that tj′...j represents the prefix bar notation of a bottom-up subtree of T , where t = prefBar(T).

1-degree matching automaton for the constrained simple 1-degree edit distance 85

D j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

i - - a a a c ↑ ↑ ↑ a b ↑ b a c ↑ ↑ ↑ a c ↑ ↑ ↑ ↑

0 - 0

1 a ∞ 0 0 0 1 1 ∞ ∞ 0 1 1 1 0 1 1 ∞ ∞ 0 1 1 ∞ ∞ ∞

2 b ∞ ∞ 1 1 1 2 ∞ ∞ ∞ 0 ∞ 1 2 1 3 ∞ ∞ ∞ 1 ∞ ∞ ∞ ∞

3 ↑ ∞ 1 1 1 2 1 2 ∞ 1 2 0 2 1 2 1 3 ∞ 1 2 1 ∞ ∞ ∞

4 b ∞ ∞ 2 2 2 3 ∞ ∞ ∞ 1 ∞ 0 3 2 4 ∞ ∞ ∞ 2 ∞ ∞ ∞ ∞

5 ↑ ∞ 2 2 2 3 2 3 ∞ 2 3 1 3 2 3 2 4 ∞ 2 3 2 ∞ ∞ ∞

6 a ∞ ∞ 2 2 3 3 ∞ ∞ ∞ 3 ∞ 2 3 3 4 ∞ ∞ ∞ 3 ∞ ∞ ∞ ∞

7 c ∞ ∞ ∞ 3 2 4 ∞ ∞ ∞ ∞ ∞ ∞ 3 3 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

8 ↑ ∞ ∞ 3 3 4 2 4 ∞ ∞ 4 ∞ 3 4 4 3 4 ∞ ∞ 4 ∞ ∞ ∞ ∞

9 ↑ ∞ ∞ ∞ ∞ ∞ 4 2 4 ∞ ∞ 4 ∞ ∞ ∞ 4 3 4 ∞ ∞ 4 ∞ ∞ ∞

10 ↑ ∞ ∞ ∞ ∞ ∞ ∞ 4 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 3 ∞ ∞ ∞ 4 ∞ ∞

Figure 5.6 An example of dynamic programming approach to the NFFOBI tree pattern matching
problem under dc

s that finds all occurrences of pattern tree P illustrated in Figure 5.1a in input tree T
illustrated in Figure 5.1b with up to k errors. For k = 2, there is one occurrence of P in T ; the one found
at position 7 of t = prefBar(T). The corresponding edit script can be obtained by tracking back the array
from D10,7 to D0,j′−1 such that tj′...7 represents the prefix bar notation of a bottom-up subtree of T .
In this case, the tracking goes back to D0,1. The substring t2...7 corresponds to the bottom-up subtree
T /a2, and the edit script between P and T /a2 consists of two deletion operations.

Note that multiple paths can exist. For each occurrence tj′...j , where 1 ≤ j′ < j ≤ |t|, this
computation takes O(|p|+ |tj′...j |) additional time and space.

We prove the correctness of our matching algorithm by showing that it is a simulation of the
1-degree matching ε-NFA for dc

s .

▶ Theorem 5.39 (Correctness of Algorithm 5.38). The dynamic programming approach described
by Algorithm 5.38 is a simulation of the 1-degree matching ε-NFA for dc

s constructed by Algo-
rithm 5.30.

Proof. Let Σ be an alphabet. Let P and T be ordered labeled trees over Σ. Let p = prefBar(P)
and t = prefBar(T). Let k ≥ 0. We recall that in the 1-degree matching ε-NFA for p, k, and
dc

s , each state is labeled by il or il
1, where i ∈ {0, . . . , |p|} and l ∈ {0, . . . , k}. Specifically, states

are labeled so they can be arranged into rows and columns as illustrated in Figure 5.3. We say
that a state labeled by il (or il

1) it is at depth i and at level l; states labeled by il
1 are called

auxiliary. We also recall that the dynamic programming algorithm constructs a two-dimensional
array D in which the dimensions have ranges 0 to |p| and 0 to |t|, respectively. By Di,j , where
i ∈ {0, . . . |p|} and j ∈ {0, . . . , |t|}, we denote the value at row i and column j.

We prove that every value Di,j ≤ k corresponds to the level of the topmost active non-auxiliary
state in depth i of the ε-NFA and step j of the run of the ε-NFA. For Di,j that contains ∞ or a
number greater than k, we show that no non-auxiliary state is active in depth i of the ε-NFA
and step j of the run of the ε-NFA. From this proof, it follows that D|p|,j ≤ k if and only if the
final state |p|D|p|,j is active in step j of the run of the ε-NFA and there is no l < D|p|,j such that
state |p|l is also active. In other words, the dynamic programming reports an occurrence with
distance l ∈ {0, . . . , k} ending at position j in t if and only if the ε-NFA reports an occurrence
with distance l ending at position j in t.

We prove the claim mentioned above by a loop invariant proof using the following invariant:
Before the start of iteration j′ of the outer loop, for each i ∈ {0, . . . , |p|} and j′′ ∈ {0, . . . , j′ − 1},

86 Main results in inexact tree pattern matching

value Di,j′′ corresponds to the level of the topmost active non-auxiliary state in depth i of the
ε-NFA and step j′′ of the run of the ε-NFA or ∞ (or value greater than k) if no non-auxiliary
state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA is active.

Before the iteration of the first pass of the outer loop, Di,0 is initialized to 0 for i = 0 (Step 1a)
and to ∞ for each i ∈ {1, . . . , |p|} (Step 1b). At step 0 of the run of the ε-NFA, only state 00 is
active. Thus, the claim holds for j′ = 1.

If the loop invariant is true before the start of iteration j′ of the outer loop, we show that it
is true before the iteration j′ + 1. Before the iteration j′, we get that for each i ∈ {0, . . . , |p|}
and j′′ ∈ {0, . . . , j′ − 1}, value Di,j′′ corresponds to the level of the topmost active non-auxiliary
state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA or ∞ (or value greater than k)
if no non-auxiliary state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA is active.

During iteration j′ the inner loop is executed. We prove that for the inner loop, the following
invariant holds: Before the start of iteration i′ of the inner loop, for each i′′ ∈ {0, . . . , i′ − 1},
value Di′′,j′ corresponds to the level of the topmost active non-auxiliary state in depth i′′ of the
ε-NFA and step j′ of the run of the ε-NFA or ∞ (or value greater than k) if no non-auxiliary
state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA is active.

Before the iteration of the first pass of the inner loop, D0,j′ should contain the level of the
topmost active non-auxiliary state in depth 0 of the ε-NFA and step j′ of the run of the ε-NFA.
At each step j′ ∈ {0, . . . , |t|} of the run of the ε-NFA, state 00 is active due to its loop transitions.
Thus, the level of the topmost active non-auxiliary state in depth 0 of the ε-NFA and step j′

of the run of the ε-NFA is 0. This corresponds to setting value D0,j′ to 0 in Step 1c for each
j′ ∈ {1, . . . , |t|} and setting value D0,0 to 0 in Step 1a.

If the invariant is true before the start of iteration i′ of the inner loop, we show that it is
true before the iteration i′ + 1. Before the start of iteration i′ of the inner loop, we get that for
each i′′ ∈ {0, . . . , i′ − 1}, value Di′′,j′ corresponds to the level of the topmost active non-auxiliary
state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA or ∞ (or value greater than k)
if no non-auxiliary state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA is active.

During iteration i′, Step 2d is executed, and Di′,j′ is set to min(c1, c2, c3). We need to show
that if there exists an active non-auxiliary state in depth i′ of the ε-NFA and step j′ of the run
of the ε-NFA, then the level of the topmost one is equal to c1, c2, or c3; otherwise, if there is
no active non-auxiliary state in depth i′ of the ε-NFA and step j′ of the run of the ε-NFA, then
c1, c2, and c3 are equal to ∞ or contain value greater than k.

There are at most four types of transitions that lead to each non-auxiliary state in depth
i′ ∈ {1, . . . , |p|} of the ε-NFA:

• a match transition (created in Step 4 of Algorithm 5.28),

• a relabeling transition (created in Step 5 of Algorithm 5.28),

• an insertion transition (created in Step 6 of Algorithm 5.28; we can see the two consecutive
transitions leading through an auxiliary state as one transition), and

• a deletion transition (created in Step 7 of Algorithm 5.28).

Therefore, if there is an active non-auxiliary state in depth i′ of the ε-NFA and step j′ of the
run of the ε-NFA, we get to it using the above mentioned transitions. However, not all transitions
are always possible:

• The match transitions leading to depth i′ can be used in step j′ of the run of the ε-NFA only
if there is an active non-auxiliary state in depth i′ − 1 and step j′ − 1 of the run of the ε-NFA
and tj′ = pi′ .

• The relabeling transitions leading to depth i′ can be used in step j′ of the run of the ε-NFA
only if there is an active non-auxiliary state in depth i′ − 1 and step j′ − 1 of the run of the
ε-NFA and tj′ ̸= pi′ and pi′ , tj′ ̸= ↑.

1-degree matching automaton for the constrained simple 1-degree edit distance 87

• The deletion transitions leading to depth i′ for i′ ≥ 3 can be used in step j′ of the run of the
ε-NFA only if there is an active non-auxiliary state in depth i′ − 2 and step j′ of the run of
the ε-NFA and pi′ = ↑ and pi′−1 ̸= ↑.

• The pair of insertion transitions leading to depth i′ ∈ {1, . . . , |p| − 1} can be used in step j′

for j′ ≥ 3 of the run of the ε-NFA only if there is an active non-auxiliary state in depth i′ and
step j′ − 2 of the run of the ε-NFA and tj′ = ↑ and tj′−1 ̸= ↑.

Moreover, since we are interested only in the topmost active non-auxiliary state in depth
i′ and step j′ of the run of the ε-NFA, we can focus only on those transitions whose source is
the topmost active state in the corresponding depth and step of the run of the ε-NFA. If those
transitions yield different states, we choose the one with the lowest level. During iteration i′, the
algorithm simulates exactly the steps mentioned above:

• Step 2a corresponds to checking whether matching or relabeling transition is possible (note
that they are exclusive). If pi′ = tj′ , then c1 is set to Di′−1,j′−1. Value Di′−1,j′−1 contains
the level of the topmost active non-auxiliary state in depth i′ − 1 of the ε-NFA and step j′ − 1
of the run of the ε-NFA. In other words, in depth i′− 1 of the ε-NFA and step j′− 1 of the run
of the ε-NFA the topmost active non-auxiliary state is (i′ − 1)l, where l = Di′−1,j′−1. Since
pi′ = tj′ , we can move to state (i′)l using the match transition. If pi′ ̸= tj′ and pi′ , tj′ ̸= ↑,
then c1 is set to Di′−1,j′−1 + 1. This corresponds to moving from state (i′− 1)l to state (i′)l+1

using the relabeling transition. If c1 > k, then no state in depth i′ and step j′ of the run of
the ε-NFA can be reached using a match or relabeling transition since there are only k levels.
If pi′ ̸= tj′ and pi′ or tj′ is equal to the bar symbol, then no state in depth i′ and step j′ of
the run of the ε-NFA can be reached using a match or relabeling transition. This corresponds
to setting c1 to ∞ in the dynamic programming algorithm.

• Step 2b corresponds to checking whether deletion transition is possible. If i′ ≥ 3, pi′ = ↑,
and pi′−1 ̸= ↑, then c2 is set to Di′−2,j′ + 1. Value Di′−2,j′ contains the level of the topmost
active non-auxiliary state in depth i′ − 2 of the ε-NFA and step j′ of the run of the ε-NFA. In
other words, in depth i′ − 2 of the ε-NFA and step j′ of the run of the ε-NFA the topmost
active non-auxiliary state is (i′ − 2)l, where l = Di′−2,j′ . Since i′ ≥ 3, pi′ = ↑, and pi′−1 ̸= ↑,
we can move to state (i′)l+1 using the deletion transition. If i′ < 3 or pi′ ̸= ↑, or pi′−1 = ↑,
then no state in depth i′ and step j′ of the run of the ε-NFA can be reached using a deletion
transition. This corresponds to setting c2 to ∞ in the dynamic programming algorithm.

• Step 2c corresponds to checking whether a pair of insertion transitions is possible. If j′ ≥ 3,
tj′ = ↑, tj′−1 ̸= ↑, and i′ < |p|, then c3 is set to Di′,j′−2 + 1. Value Di′,j′−2 contains the level
of the topmost active non-auxiliary state in depth i′ of the ε-NFA and step j′− 2 of the run of
the ε-NFA. In other words, in depth i′ of the ε-NFA and step j′ − 2 of the run of the ε-NFA
the topmost active non-auxiliary state is (i′)l, where l = Di′,j′−2. Since j′ ≥ 3, tj′ = ↑, and
tj′−1 ̸= ↑, we can move to state (i′)l+1 using the pair of insertion transition that leads through
auxiliary state (i′)l+1

1 . If j′ < 3 or tj′ ̸= ↑ or tj′−1 = ↑, or i′ = |p|, then no state in depth i′

and step j′ of the run of the ε-NFA can be reached using a pair of insertion transitions. This
corresponds to setting c3 to ∞ in the dynamic programming algorithm.

• Step 2d executes Di′,j′ ← min(c1, c2, c3). This clearly corresponds saving the level of the
topmost active state in depth i′ and step j′ of the run of the ε-NFA (or saving value greater
than k or ∞ if there is no such state).

Thus, before the start of iteration i′ + 1, Di′′,j′ contains the level of the topmost active
non-auxiliary state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA for each
i′′ ∈ {0, . . . , i′}. At termination i = |p|+ 1, value Di′′,j′ corresponds to the level of the topmost
active non-auxiliary state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA for each
i′′ ∈ {0, . . . , |p|}.

88 Main results in inexact tree pattern matching

Thus, after the execution of the inner loop, we get that for each i ∈ {0, . . . , |p|} and j′′ ∈
{0, . . . , j′}, value Di,j′′ corresponds to the level of the topmost active non-auxiliary state in
depth i of the ε-NFA and step j′′ of the run of the ε-NFA or ∞ (or value greater than k) if no
non-auxiliary state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA is active. At
termination j = |t|+ 1, value Di,j′′ corresponds to the level of the topmost active non-auxiliary
state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA for each i ∈ {0, . . . , |p|} and
j′′ ∈ {0, . . . , |t|}. Hence the dynamic programming simulates the 1-degree matching ε-NFA. ◀

We note that all values Di,j > k in the array can be replaced by the value ∞ representing a
number of errors greater than k. This is because such values can no longer produce an occurrence.
Furthermore, Step 3 of Algorithm 5.38 can be merged with Step 2 so that we report occurrences
as we fill the array instead of waiting until the whole array is filled. We now discuss the time and
space complexity of Algorithm 5.38.

▶ Theorem 5.40 (Time complexity of Algorithm 5.38). Let P and T be ordered labeled trees with
m and n nodes, respectively. Given the prefix bar notation of P and T and k ≥ 0, the time
complexity of Algorithm 5.38 is O(m · n).

Proof. The dynamic programming approach builds a two-dimensional array D of size (2m + 1) ·
(2n + 1). The computation of the value at each position of D depends on three positions at most
and this computation executes in constant time. ◀

▶ Theorem 5.41 (Space complexity of Algorithm 5.38). Let P and T be ordered labeled trees with
m and n nodes, respectively. Assume m ≤ n. Given the prefix bar notation of P and T and
k ≥ 0, Algorithm 5.38 can be implemented to use O(m) space.

Proof. The dynamic programming approach builds a two-dimensional array D of size (2m +
1) · (2n + 1). The computation of the value at each position of D depends on three positions
at most: Di−1,j−1, Di−2,j , and Di,j−2. Thus, every column can be computed using just two
previous columns. Therefore, only 4m space is needed in order to compute all values and the
space complexity results in O(m). ◀

As stated earlier, our dynamic programming algorithm is inspired by the algorithm for the
inexact string pattern matching under the simple Levenshtein distance. We recall that the
dynamic programming algorithm for the inexact string pattern matching is an extension of the
algorithm that computes the simple Levenshtein distance between two strings; see Algorithm 4.4.
In Section 4.1.1.1, we discussed that this algorithm can be modified so that the match operation
is outside the minimum function. However, the analogous modification cannot be used for
Algorithm 5.38. This is because, it is not guaranteed that value Di−1,j−1 is always smaller than
values Di−2,j + 1 and Di,j−2 + 1. See an illustration in Figure 5.7.

5.5 1-degree matching automaton for the simple 1-degree edit
distance

In this section, we focus on the NFFOBI tree pattern matching problem under the simple 1-degree
edit distance; see Problem 5.13. In contrast to its constrained version, the distance ds is based on
the length of a shortest edit script, which always exists for any given pair of trees.

We present an automata-based solution in the same way as we did in the previous section.
However, first we show that the 1-degree matching automaton can be constructed as a pushdown
automaton since we believe that its structure is more intuitive than the structure of the finite
automaton. Then, we show that the PDA can be transformed into an ε-NFA accepting the
same language due to its restricted use of the pushdown store. Finally, we briefly discuss the
deterministic version of the 1-degree matching finite automaton and focus in detail on a simulation
of the 1-degree matching ε-NFA using dynamic programming.

1-degree matching automaton for the simple 1-degree edit distance 89

D j 0 1 2 3 4 5 6

i - - c b ↑ a ↑ ↑

0 - 0 0 0 0 0 0 0

1 c ∞ 0 1 1 1 2 ∞

2 b ∞ ∞ 0 ∞ 2 ∞ ∞

3 ↑ ∞ 1 2 0 2 1 ∞

4 ↑ ∞ ∞ ∞ 2 ∞ 2 1

Figure 5.7 An example of dynamic programming approach to the NFFOBI tree pattern matching
problem under dc

s that finds all occurrences of pattern tree P in input tree T with up to k errors, where
prefBar(P) = cb ↑↑ and prefBar(T) = cb ↑ a ↑↑. For k = 1, there is one occurrence of P in T ; the one
found at position 6 of t = prefBar(T). The corresponding edit script consists of one insertion operation
illustrated in the table by blue entries. Note that although p3 = t5, it is more favorable to apply insertion
operation than copy value D2,4 which indicates the match.

Our algorithm constructing the 1-degree matching automaton for the simple 1-degree edit
distance uses the subtree jump table as an auxiliary data structure. We recall that we described this
data structure in Section 4.2.2.2. Janoušek et al. [32] presented an algorithm computing the subtree
jump table for ordered ranked trees in the prefix notation. Later, Trávníček [33, Algorithm 23]
proposed an algorithm constructing the subtree jump table for ordered ranked trees in the prefix
ranked bar notation in which each node has a precomputed arity (number of children). In this
section, we propose an alternative algorithm that works directly with the prefix (unranked) bar
notation of trees; see Algorithm 5.42.

The central idea of Algorithm 5.42 is to use a stack to record the labels’ positions. When the
bar symbol is found, the position of the corresponding label is popped from the stack. Given an
ordered labeled tree P, the algorithm constructs the subtree jump table for prefBar(P) in time
linear to the length of prefBar(P).

▶ Algorithm 5.42 (Computation of the subtree jump table for an ordered labeled tree in the prefix
bar notation). Let P be an ordered labeled tree. Given p = prefBar(P), the algorithm constructs
the subtree jump table for p which is represented as a one-dimensional array Sp with ranges 1 to
|p|. The principal internal data structure is a stack Y with operations push that inserts a symbol
on its top and pop that returns and deletes the top symbol.

1. (Initialize data structures.)

a. Create an empty stack Y .
b. Create an array Sp of size |p|.

2. (Fill array.) For each position i in p:

a. If pi ̸= ↑, then push(i) into Y .
b. Otherwise, set Sp

i ← pop(Y)− 1 and set Sp
i′ ← i + 1, where i′ = Sp

i + 1.

3. (Return.) Return Sp.

▶ Lemma 5.43 (Correctness of Algorithm 5.42). Let P be an ordered labeled tree. Given prefBar(P),
Algorithm 5.42 constructs the subtree jump table for prefBar(P).

Proof. Let p = prefBar(P). To prove that Sp is the subtree jump table for p, we need to show
that for each position i in p the following holds: If pi ∈ Σ, then Sp

i = j such that j is the first
position in p after the bar symbol corresponding to pi; and if pi = ↑, then Sp

i = j such that j is
the first position in p before the label corresponding to pi.

90 Main results in inexact tree pattern matching

The algorithm reads p from left to right, and uses stack Y to save each position i, where
pi ∈ Σ. Therefore, when the bar symbol symbol is encountered, its corresponding label position is
at the top of Y . The algorithm retrieves it and subtracts one (to retrieve the preceding position
in p). Thus, Sp

i contains correct values if pi = ↑.
The value i′ is the original number popped from Y . Therefore, i′ is the label position that

corresponds to the bar symbol at position i. Moreover, value i + 1 points to the first position
after the bar symbol. Thus, Sp

i contains correct values if pi ∈ Σ. ◀

5.5.1 Pushdown automaton
We introduce the algorithm that constructs the 1-degree matching automaton for ds in the same
was as we did in the case of the 1-degree matching automaton for dc

s . First, we construct an
automaton accepting the pattern dictionary for a given pattern tree, maximum number of errors,
and distance ds. Then, we extend it by adding loop transitions to its start state to enable the
automaton to read the prefix bar notation of any input tree.

As stated earlier, we first construct the 1-degree matching automaton as a pushdown automaton,
see Algorithms 5.44 and 5.46. The transitions for match and relabeling operations are constructed
similarly as we explained in the previous section. The difference is in the construction of the
insertion and deletion transitions that are now allowed to insert or delete a bottom-up subtree
of any size up to the maximum number of errors. Insertion operations are created using the
pushdown store which is used to match label-bar pairs. Deletion transitions use the subtree jump
table constructed for the prefix bar notation of a given pattern tree.

We show an example of the PDA constructed by Algorithm 5.44 and the 1-degree matching
PDA constructed by Algorithm 5.46 for p = ab ↑ b ↑ ac ↑↑↑ and k = 2 in Figure 5.8. Insertion
operations are represented by vertical transitions and loop transitions in states il, where i ∈
{1, . . . , |p| − 1} and l ∈ {1, . . . , k}; diagonal ε-transitions represent deletion operations, and the
remaining diagonal transitions represent relabeling operations.

The pushdown automata constructed by Algorithms 5.44 and 5.46 have 1 + |p| · (k + 1) states
and can be built in time O(k · |p|), where p is the prefix bar notation of a given pattern tree and
k represents the maximum number of errors allowed.

▶ Algorithm 5.44 (Construction of a PDA accepting the pattern dictionary for ds). Let Σ be an
alphabet. Let P be an ordered labeled tree over Σ. Let p = prefBar(P). Let k ≥ 0. Given p and
k, the algorithm constructs a PDA M = (Q, Σ↑, Γ, δ, q0,⊥, F) such that L(M) = L(p, k, ds).

1. (Compute the subtree jump table for p.) Compute the subtree jump table Sp for p using
Algorithm 5.42.

2. (Define the set of states.) Each state is labeled by il, where i ∈ {0, . . . , |p|} and l ∈ {0, . . . , k}.
Specifically, states are labeled so they can be arranged into rows and columns similarly as
illustrated in Figure 5.3. The difference is that auxiliary states are not used this time. We say
that a state labeled by il is at depth i and at level l. There are (k + 1) rows, one for each
level. Each row, except the one for level 0, is composed of |p| states of depths 1, 2, . . . , |p|. In
the row for level 0, there are |p|+ 1 states of depths 0, 1, 2, . . . , |p|.

Set Q←
{

00}
∪

{
il : 1 ≤ i ≤ |p| ∧ 0 ≤ l ≤ k

}
.

3. (Define the start state.) Set q0 ← 00.

4. (Define the set of final states.) Every state at depth |p| is final. That is, every row ends in
one of the final states.

Set F ←
{
|p|l : 0 ≤ l ≤ k

}
.

1-degree matching automaton for the simple 1-degree edit distance 91

5. (Initialize pushdown alphabet.) Set Γ = {s,⊥}.

6. (Add transitions indicating match.)

a. Set δ
(
00, p1,⊥

)
←

{(
10,⊥

)}
.

b. For each position i ∈ {2, . . . , |p|} and number of errors l ∈ {0, . . . , k}, set δ
(
(i− 1)l, pi,⊥

)
←{(

il,⊥
)}

.

7. (Add transitions for relabeling operations.)

a. If k ≥ 1, then for each a ∈ Σ \ {p1}, set δ
(
00, a,⊥

)
←

{(
11,⊥

)}
.

b. For each position i ∈ {2, . . . , |p|} and number of errors l ∈ {0, . . . , k − 1}: If pi ̸= ↑, then
for each a ∈ Σ \ {pi}, set δ

(
(i− 1)l, a,⊥

)
←

{
(il+1,⊥)

}
.

8. (Add transitions for insertion operations.) Two types of transitions represent insertion
operations: insertion of a symbol a ∈ Σ and the corresponding bar symbol. Since we can
insert a bottom-up subtree of any size smaller than or equal to k, the corresponding bar
symbol does not need to follow the symbol immediately. Thus, for each a ∈ Σ, we push the
pushdown symbol s to the pushdown store, and for each bar symbol, one pushdown symbol s
is popped. Hence, by reading a symbol a ∈ Σ, we start inserting a bottom-up subtree with
the root labeled by a, and the subtree insertion is complete as soon as the pushdown store
does not contain any symbols s. Note that another insertion can immediately occur once the
insertion of a bottom-up subtree is complete.
For each position i ∈ {2, . . . , |p|}, number of errors l ∈ {0, . . . , k − 1}, and symbol a ∈ Σ:

a. Set δ
(
(i− 1)l, a, ε

)
←

{(
(i− 1)l+1, s

)}
.

b. Set δ
(
(i− 1)l+1, ↑, s

)
←

{(
(i− 1)l+1, ε

)}
.

9. (Add transitions for deletion operations.) Deletion operations are represented by ε-transitions.
These transitions allow deletion of any bottom-up subtree whose size is smaller than or
equal to k, and are constructed using the subtree jump table Sp and its properties shown in
Remark 4.20.
For each position i ∈ {2, . . . , |p| − 2} and number of errors l ∈ {0, . . . , k − 1}: If pi ∈ Σ and
l + size ≤ k, where size = (Sp

i − i)/2, then the proper bottom-up subtree of p that starts at
position i can be deleted. This can be done by setting

δ
(
(i− 1)l, ε,⊥

)
←

{(
(Sp

i − 1)l+size,⊥
)}

.

10. (Return.) Return M = (Q, Σ↑, Γ, δ, q0,⊥, F).

▶ Lemma 5.45 (Correctness of Algorithm 5.44). Given an ordered labeled tree P and k ≥ 0, Algo-
rithm 5.44 constructs a PDA M = (Q, Σ↑, Γ, δ, q0,⊥, F) such that L(M) = L(prefBar(P), k, ds).

Proof. Let p = prefBar(P). The proof falls naturally into two parts.

(⊆) Assume x ∈ L(M). Thus, there exists l ∈ {0, . . . , k} such that
(
00, x,⊥

)
⊢∗

M
(
|p|l, ε, α

)
,

where α ∈ Γ∗ and there is no l′ < l such that
(
00, x,⊥

)
⊢∗

M
(
|p|l′

, ε, β
)
, where β ∈ Γ∗. It is easy

to check that it always holds that α = β =⊥. We show that x ∈ L(p, k, ds) by showing that
ds(p, x) = l. We use induction on the maximum number of errors k.

• Assume k = 0. Then,
(
00, x,⊥

)
⊢∗

M
(
|p|0, ε,⊥

)
. Thus, M reads x using transitions created

in Step 6. Therefore, x = p, and it follows that ds(p, x) = 0.

92 Main results in inexact tree pattern matching

0 0

start

Σ
∪

{
↑

}
,

⊥
,

⊥

1 01 1

Σ,ε,s

↑
,

s
,

ε

1 2

Σ,ε,s

↑
,

s
,

ε

2 02 1

Σ,ε,s

↑
,

s
,

ε

2 2

Σ,ε,s

↑
,

s
,

ε

3 03 1

Σ,ε,s

↑
,

s
,

ε

3 2

Σ,ε,s

↑
,

s
,

ε

4 04 1

Σ,ε,s

↑
,

s
,

ε

4 2

Σ,ε,s

↑
,

s
,

ε

5 05 1

Σ,ε,s

↑
,

s
,

ε

5 2

Σ,ε,s

↑
,

s
,

ε

6 06 1

Σ,ε,s

↑
,

s
,

ε

6 2

Σ,ε,s

↑
,

s
,

ε

7 07 1

Σ,ε,s

↑
,

s
,

ε

7 2

Σ,ε,s

↑
,

s
,

ε

8 08 1

Σ,ε,s

↑
,

s
,

ε

8 2

Σ,ε,s

↑
,

s
,

ε

9 09 1

Σ,ε,s

↑
,

s
,

ε

9 2

Σ,ε,s

↑
,

s
,

ε

10 0

10 1

10 2

a
,

⊥
,

⊥
b
,

⊥
,

⊥

b
,

⊥
,

⊥

b
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

b
,

⊥
,

⊥

b
,

⊥
,

⊥

b
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

a
,

⊥
,

⊥

a
,

⊥
,

⊥

a
,

⊥
,

⊥

c
,

⊥
,

⊥

c
,

⊥
,

⊥

c
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

↑
,

⊥
,

⊥

{a}
,⊥

,⊥

{b}
,⊥

,⊥

{b}
,⊥

,⊥

{b}
,⊥

,⊥

{b}
,⊥

,⊥

{a}
,⊥

,⊥

{a}
,⊥

,⊥

{c}
,⊥

,⊥

{c}
,⊥

,⊥

ε,⊥
,⊥

ε,⊥
,⊥

ε,⊥
,⊥

ε,⊥
,⊥

ε,⊥
,⊥

ε,⊥
,⊥

ε
,

⊥
,

⊥

Figure
5.8

T
he

P
D

A
constructed

by
A

lgorithm
5.44

accepting
the

pattern
dictionary

or
the

1-degree
m

atching
P

D
A

constructed
by

A
lgorithm

5.46
for

distance
d

s ,m
axim

um
num

ber
oferrors

k
=

2,and
pattern

tree
P

illustrated
in

Figure
5.1a.

Ifthe
autom

aton
contains

loop
transitions

in
the

start
state,it

is
the

1-degree
m

atching
P

D
A

M
(prefBar(P

),k
,d

s).
Ifthe

loop
transitions

in
the

start
state

are
rem

oved,it
is

the
P

D
A

accepting
the

pattern
dictionary

L
(prefBar(P

),k
,d

s).

1-degree matching automaton for the simple 1-degree edit distance 93

• Assume k ≥ 1 and that the claim holds for errors smaller than k. For each x ∈ L(M),
there exists l ∈ {0, . . . , k} such that

(
00, x,⊥

)
⊢∗

M
(
|p|l, ε,⊥

)
and there is no l′ < l such that(

00, x,⊥
)
⊢∗

M
(
|p|l′

, ε,⊥
)
. For l ∈ {0, . . . , k − 1}, we get that ds(p, x) = l by the induction

hypothesis. Let x′ be a string such that
(
00, x′,⊥

)
⊢∗

M
(
|p|k, ε,⊥

)
, where there is no k′ < k

such that
(
00, x′,⊥

)
⊢∗

M
(
|p|k′

, ε,⊥
)
. Our goal is to show that it follows that ds(p, x′) = k.

If
(
00, x′,⊥

)
⊢∗

M
(
|p|k, ε,⊥

)
, where there is no k′ < k such that

(
00, x′,⊥

)
⊢∗

M
(
|p|k′

, ε,⊥
)
,

thenM must use (at some point) a transition created in Steps 7, 8, or 9 to read x′. Let z′ be
the longest suffix of x′ such that that M reads it on level k using only transitions created in
Step 6. It is easy to check that this sequence of transitions corresponds to reading a nonempty
proper suffix of p, and that the source state of the transition reading the first symbol of z′ is
state (|p| − |z′|)k. Automaton M moves to state (|p| − |z′|)k using one of the following ways:

– using a transition created in Step 7,
– using a transition created in Step 9, or
– using a sequence of transitions created in Step 8 so that the pushdown store contains only

one symbol (which is the start symbol) immediately before the sequence is initiated and
after it is executed.

The source state of this transition (or a sequence of transitions) is state ql, where q ∈
{0, . . . , |p| − |z′|} and l ∈ {0, . . . , k − 1}. Thus, we can divide x′ into three parts as follows:
x′ = yuz′, where z′ is the longest suffix of x′ such that M reads it on level k using only
transitions created in Step 6, u is the immediately preciding part of x′ that is read while
M moves from ql to (|p| − |z′|)k, and y is the remaining prefix of x′ that moves M from
00 to ql. From ql, we can use transitions created in Step 6 and move to the final state |p|l.
It easy to check that this sequence of transitions corresponds to reading a nonempty suffix
z of p. Thus,

(
00, yz,⊥

)
⊢∗

M
(
|p|l, ε,⊥

)
. Moreover, it can be shown that there cannot be

l′ < l such that
(
00, yz,⊥

)
⊢∗

M
(
|p|l′

, ε,⊥
)
; otherwise, there would exist k′ < k such that(

00, x′,⊥
)
⊢∗

M
(
|p|k′

, ε,⊥
)
. Therefore, we get that ds(p, yz) = l by the induction hypothesis.

Since p can be written as p = wz, it follows that each of the l edit operations were applied to
w in order to change it to y. Thus, in order to prove that ds(p, x′) = k, we need to show that
reading uz′ corresponds to applying k − l edit operations on z (recall that x′ = yuz′).
It is easy to see that reading z′ corresponds to reading suffix of z. Reading u corresponds
to reading one of the following strings: string of length one, ε, or a string from L(Σ, ↑).
Reading string of length one corresponds to the situation when k − l = 1 and when M uses a
transition created in Step 7 to move from qk−1 to (|p| − |z′|)k, where q = |p| − |z′| − 1. This
corresponds to applying relabeling operation on the first symbol of z. Reading ε corresponds
to the situation when M uses a transition created in Step 9 to move from ql to (|p| − |z′|)k,
where q = |p| − |z′| − 2(k− l). This corresponds to using k− l deletion operations on z which
result into deleting the prefix of z of length 2(k − l) representing a bottom-up subtree of P
of size k − l. Finally, reading a string from L(Σ, ↑) corresponds to the situation when M
uses a sequence of transitions created in Step 8 so that the pushdown store contains only one
symbol (which is the start symbol) immediately before the sequence is initiated and after
it is executed. This moves M from ql to (|p| − |z′|)k, where q = |p| − |z′|, and corresponds
to using k − l insertion operations on z which result into inserting the prefix to z of length
2(k − l) representing a tree of size k − l. Thus, reading uz′ corresponds to applying k − l edit
operations on z. It follows that ds(p, x) = k.

(⊇) Assume x ∈ L(p, k, ds). Thus, there exists l ∈ {0, . . . , k} such that ds(p, x) = l. We show
that x ∈ L(M) by showing that

(
00, x,⊥

)
⊢∗

M
(
|p|l, ε, α

)
, where α ∈ Γ∗. We use induction on

the maximum number of errors k.

94 Main results in inexact tree pattern matching

• Assume k = 0. Then, L(p, k, ds) = {p}. From Step 6 of the algorithm, it follows that(
00, p,⊥

)
⊢∗

M
(
|p|0, ε,⊥

)
. Thus, p ∈ L(M).

• Assume k ≥ 1 and that the claim holds for errors smaller than k. Then, L(p, k, ds) =
L(p, k − 1, ds) ∪ {y : y ∈ L(Σ, ↑) ∧ ds(p, y) = k}. By the induction hypothesis, we have that
L(p, k − 1, ds) ⊆ L(M). Our goal is to show that {y : y ∈ L(Σ, ↑) ∧ ds(p, y) = k} ⊆ L(M).
We know that for each such y, there is an edit script between p and y with k operations.
If there are multiple (leaf) deletion operations in the edit script that result in deleting a
bottom-up subtree of P, they can be represented by one (subtree) deletion operation whose
cost is the number of (leaf) deletion operations it represents. The similar representation can
be used for potential multiple (leaf) insertion operations that inserts a new bottom-up subtree
into P. The relabeling operations, (subtree) deletion operations, and (subtree) insertion
operations in the edit script can be sorted from left to right according to which node in P they
refer to (a subtree deletion operation refers to the root of the subtree that is being deleted, a
subtree insertion operations refers to a node in P that is the parent of the root of the subtree
that is being inserted). This way we can transform p to y by traversing p from its beginning
to its end.
If we remove the rightmost operation from such a script, then we clearly transform p to
string y′, where ds(p, y′) = l such that l ∈ {0, . . . , k − 1}. For each such y′, we have that(
00, y′,⊥

)
⊢∗

M
(
|p|l, ε, α

)
, where α ∈ Γ∗ by the induction hypothesis. It is easy to check that

it always holds that α =⊥, and that there is a nonempty suffix z of p that is intact (not
changed by any of the remaining operations in the edit script). The intact suffix z is read
using transitions created in Step 6. Now we apply on z the operation that has been removed.
This operation can be one of the following:

– The relabeling operation in which case ds(p, y′) = k − 1 and thus the suffix z is read
using transitions created in Step 6 between states on level k − 1. Applying the relabeling
operation to pi corresponds to using a transition that increases level by one and lead from
a state at depth i− 1 to a state at depth i. These transitions are created in Step 7 of the
algorithm.

– The (subtree) deletion operation in which case ds(p, y′) = k − size, where size is the size
of the subtree that is being deleted. Moreover, it follows that z is read using transitions
created in Step 6 between states on level k−size. Let pi...j represent the substring of z that
is being deleted by the operation. Applying the (subtree) deletion operation corresponds
to using an ε-transition that increases level by size and lead from a state at depth (i− 1)
to a state at depth j. Value j corresponds to the value Sp

i − 1, where Sp is the subtree
jump table for p. These transitions are created in Step 9 of the algorithm.

– The (subtree) insertion operation in which case ds(p, y′) = k − size, where size is the size
of the subtree that is being inserted. Moreover, it follows that z is read using transitions
created in Step 6 between states on level k−size. Applying the (subtree) insertion operation
corresponds to using a sequence of transitions that reads a string w ∈ L(Σ, ↑) of length
2 · size. This sequence of transitions increases level by size and leads between states at
depth i − 1, where i ∈ {2, . . . , |p|} is the position in p where the new subtree is being
inserted. These transitions are created in Step 8 of the algorithm. The automaton verifies
that w ∈ L(Σ, ↑) by using the pushdown store: for each a ∈ Σ, it pushes the pushdown
symbol s to the pushdown store, and for each bar symbol, one pushdown symbol is popped.
No other transition can be used until all symbols s are popped.

After using the transition (or the sequence of transitions) that corresponds to the rightmost
operation in the edit script, the automaton reads the rest of z using transitions created in
Step 6 and accepts it by the final state |p|k. Thus,

(
00, y,⊥

)
⊢∗

M
(
|p|k, ε,⊥

)
for each y in

{y : y ∈ L(Σ, ↑) ∧ ds(p, y) = k}. Hence, the claim holds. ◀

1-degree matching automaton for the simple 1-degree edit distance 95

▶ Algorithm 5.46 (Construction of the 1-degree matching PDA for ds). Let Σ be an alphabet.
Let P be an ordered labeled tree over Σ. Let k ≥ 0. Let p = prefBar(P). Given p and k, the
algorithm constructs the 1-degree matching PDA for p, k, and ds that accepts the language{

xp′ : x ∈ Σ∗
↑ ∧ p′ ∈ L(p, k, ds)

}
by final state.

1. (Construct automaton for the pattern dictionary.) Construct a PDA (Q, Σ↑, Γ, δ, q0,⊥, F)
accepting the pattern dictionary L(p, k, ds) by final state using Algorithm 5.44.

2. (Add loop to the start state.) For each symbol a ∈ Σ↑, set δ(q0, a,⊥)← δ(q0, a,⊥)∪{(q0,⊥)}.

3. Return M = (Q, Σ↑, Γ, δ, q0,⊥, F) .

▶ Theorem 5.47 (Correctness of Algorithm 5.46). Let Σ be an alphabet. Let P be an ordered
labeled tree over Σ. Let k ≥ 0. Given prefBar(p) and k, Algorithm 5.46 constructs the 1-degree
matching PDA for p, k, and ds.

Proof. Let p = prefBar(P). LetM be the automaton that is returned by the algorithm in Step 3.
We show that L(M) =

{
xp′ : x ∈ Σ∗

↑ ∧ p′ ∈ L(p, k, ds)
}

. In Step 1, we create a PDA accepting
language {p′ : p′ ∈ L(p, k, ds)} by final state. The correctness of this automaton is given by
Lemma 5.45. In Step 2, we add a loop transition to its start state for each symbol a ∈ Σ↑. These
loop transitions do not change the content of the pushdown store. Thus, the automaton can read
arbitrary many symbols and stay at the start state. At any point, the nondeterminism allows the
automaton to proceed to another state and read string p′ such that ds(p, p′) ≤ k. This automaton
is returned in Step 3 as automatonM. Therefore, L(M) =

{
xp′ : x ∈ Σ∗

↑ ∧p′ ∈ L(p, k, ds)
}

. ◀

5.5.2 Finite automaton with ε-transitions
We can observe that the 1-degree matching PDA for ds uses its pushdown store in a restricted
way. First, only two pushdown symbols are used: the start symbol and symbol s. Second, only
insertion operations change the content of the pushdown store. Third, since the sum of costs of
edit operations is limited by k, the size of the pushdown store is also bounded by k. In other
words, the pushdown store serves as a bounded counter. Therefore, we can represent each possible
content of the pushdown store by a state instead and construct the 1-degree matching automaton
for ds as a finite automaton.

We present a construction of the 1-degree matching ε-NFA for ds again in two parts. First, we
construct an ε-NFA accepting the pattern dictionary L(prefBar(P), k, dc

s) for a given pattern tree
P and a maximum number of errors k; see Algorithm 5.48. This algorithm reuses the structure
of the PDA constructed by Algorithm 5.44. The difference is that we use auxiliary states for
insertion operations instead of the pushdown store. Then, we can construct the 1-degree matching
ε-NFA by extending the automaton built by Algorithm 5.48 by adding a loop transition for every
symbol a ∈ Σ↑ to its start state. For brevity, we do not explicitly present such an algorithm
since it is almost identical to Algorithm 5.30. The only difference is that we use Algorithm 5.48
in the first step instead of Algorithm 5.28. We show an example of the ε-NFA constructed by
Algorithm 5.48 and its corresponding 1-degree matching ε-NFA in Figure 5.10. Both automata
have 1 + (k + 1) · |p|+ (|p| − 1) · k(k+1)

2 = Θ
(
k2 · |p|

)
states and can be built in time O

(
k2 · |p|

)
.

▶ Algorithm 5.48 (Construction of an ε-NFA accepting the pattern dictionary for ds). Let Σ be an
alphabet. Let P be an ordered labeled tree over Σ. Let p = prefBar(P). Let k ≥ 0. Given p and
k, the algorithm constructs an ε-NFA M = (Q, Σ↑, δ, q0, F) accepting language L(p, k, ds).

1. (Compute the subtree jump table for p.) Compute the subtree jump table Sp for p using
Algorithm 5.42.

2. (Define the set of states.) Each state is labeled by il or il
s, where i ∈ {0, . . . , |p|}, l ∈ {0, . . . , k}

and s ∈ {1, . . . , k}. We say that a state labeled by il or il
s is at depth i and at level l; states

96 Main results in inexact tree pattern matching

1l 2l (|p| − 1)l |p|l

1l+1
l+1 2l+1

l+1 (|p| − 1)l+1
l+1

1l+1
l 2l+1

l (|p| − 1)l+1
l

1l+1
2 2l+1

2 (|p| − 1)l+1
2

1l+1
1 2l+1

1 (|p| − 1)l+1
1

1l+1 2l+1 (|p| − 1)l+1 |p|l+1

main
row at
level l

auxiliary
rows for
level l +1

main
row at
level l +1

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5.9 The regular structure of the ε-NFA constructed by Algorithm 5.48. Given k ≥ 0 and a
pattern string p ∈ L(Σ, ↑), the set of states can be arranged into rows and columns. There are (k + 1)
main rows, one for each level l ∈ {0, . . . , k}; the figure illustrates two main rows at levels 0 < l < k and
l + 1. Moreover, there are l + 1 auxiliary rows between every two main rows at levels 0 ≤ l < k and l + 1.
Each main row, except the one for level 0, is composed of |p| states of depths 1, 2, . . . , |p|. In the row for
level 0, there are |p| + 1 states of depths 0, 1, 2, . . . , |p|. Each auxiliary row is composed of |p| − 1 states
of depths 1, 2, . . . , |p| − 1.

labeled by il
s are called auxiliary. Specifically, states are labeled so they can be arranged into

rows and columns similarly as illustrated in Figure 5.3. The difference is that there are more
auxiliary states this time. In the case of dc

s , there was one auxiliary row between each two
consecutive main rows. This time, there are l + 1 auxiliary rows between main rows at level l
and l + 1; see Figure 5.9. Thus, there are 1 + 2 + 3 + · · ·+ k auxiliary rows in the automaton
in total.

Set Q←
{

00}
∪

{
il : 1 ≤ i ≤ |p| ∧ 0 ≤ l ≤ k

}
∪

{
il
s : 1 ≤ i ≤ |p| − 1 ∧ 1 ≤ s ≤ l ≤ k

}︸ ︷︷ ︸
auxiliary states

.

3. (Define the start state.) Set q0 ← 00.

4. (Define the set of final states.) Every state at depth |p| is final. That is, every main row ends
in one of the final states.

Set F ←
{
|p|l : 0 ≤ l ≤ k

}
.

5. (Add transitions indicating match.) Match transitions are created similarly as in the case
of the PDA constructed by Algorithm 5.44. The only difference is that we do not use the
pushdown store.

a. Set δ
(
00, p1

)
←

{
10}

.

1-degree matching automaton for the simple 1-degree edit distance 97

b. For each position i ∈ {2, . . . , |p|} and number of errors l ∈ {0, . . . , k}, set δ
(
(i− 1)l, pi

)
←{

il
}

.

6. (Add transitions for relabeling operations.) Transitions for relabeling operations are created
similarly as in the case of the PDA constructed by Algorithm 5.44. The only difference is that
we do not use the pushdown store.

a. If k ≥ 1, then for each a ∈ Σ \ {p1}, set δ
(
00, a

)
←

{
11}

.
b. For each position i ∈ {2, . . . , |p|} and number of errors l ∈ {0, . . . , k − 1}: If pi ̸= ↑, then

for each a ∈ Σ \ {pi}, set δ
(
(i− 1)l, a

)
←

{
il+1}

.

7. (Add transitions for insertion operations.) Similarly, as in the PDA constructed by Algo-
rithm 5.44, two types of transitions represent insertion operations: insertion of a symbol
a ∈ Σ and the corresponding bar symbol. However, instead of pushing the symbol s to the
pushdown store for each symbol a ∈ Σ, we use auxiliary states for counting. An auxiliary state
il
s represents a situation in which we need to read s bar symbols to complete the insertion of

a subtree that is currently being inserted.

a. (Add transitions from/into states at main rows.) For each position i ∈ {2, . . . , |p|}, number
of errors l ∈ {0, . . . , k − 1}, and symbol a ∈ Σ:
i. Set δ

(
(i− 1)l, a

)
← δ

(
(i− 1)l, a

)
∪

{
(i− 1)l+1

1
}

.
ii. Set δ

(
(i− 1)l+1

1 , ↑
)
←

{
(i− 1)l+1}

.
b. (Add transitions between auxiliary states.) For each position i ∈ {2, . . . , |p|}, number of

errors l ∈ {1, . . . , k − 1}, value s ∈ {1, . . . , l}, and symbol a ∈ Σ:
i. Set δ

(
(i− 1)l

s, a
)
←

{
(i− 1)l+1

s+1
}

.
ii. Set δ

(
(i− 1)l+1

s+1, ↑
)
←

{
(i− 1)l+1

s

}
.

8. (Add transitions for deletion operations.) Deletion operations are represented by ε-transitions
in a similar way as in the case of the PDA constructed by Algorithm 5.44. The only difference
is that we do not use the pushdown store.
For each position i ∈ {2, . . . , |p| − 2} and number of errors l ∈ {0, . . . , k − 1}: If pi ∈ Σ and
l + size ≤ k, where size = (Sp

i − i)/2, then the proper bottom-up subtree of p that starts at
position i can be deleted. This can be done by setting

δ
(
(i− 1)l, ε

)
←

{
(Sp

i − 1)l+size}
.

9. (Return.) Return M = (Q, Σ↑, δ, q0, F).

▶ Lemma 5.49 (Correctness of Algorithm 5.48). Given an ordered labeled tree P and k ≥ 0, the
ε-NFA constructed by Algorithm 5.48 accepts the pattern dictionary L(prefBar(P), k, ds).

Proof. The lemma can be proved analogously as Lemma 5.45. However, since Algorithm 5.48
is very similar to Algorithm 5.44, we prove its correctness by showing that the two automata
constructed by the above-mentioned algorithms accept the same language. The similarity between
the two automata is as follows:

• Non-auxiliary states created in Step 2 of Algorithm 5.48 correspond to states created in Step 2
of Algorithm 5.44.

• The start state and the set of final states in both automata are the same since Steps 3 and 4
are the same in both algorithms.

98 Main results in inexact tree pattern matching

0 0

start

Σ
∪

{
↑

}

1 01 111 11 221 211 2 Σ↑

Σ

Σ

↑

↑

2 02 112 12 222 212 2 Σ↑

Σ

Σ

↑

↑

3 03 113 13 223 213 2 Σ↑

Σ

Σ

↑

↑

4 04 114 14 224 214 2 Σ↑

Σ

Σ

↑

↑

5 05 115 15 225 215 2 Σ↑

Σ

Σ

↑

↑

6 06 116 16 226 216 2 Σ↑

Σ

Σ

↑

↑

7 07 117 17 227 217 2 Σ↑

Σ

Σ

↑

↑

8 08 118 18 228 218 2 Σ↑

Σ

Σ

↑

↑

9 09 119 19 229 219 2 Σ↑

Σ

Σ

↑

↑

10 0

10 1

10 2

a
bbb

↑↑↑

bbb

↑↑↑

aaa

ccc

↑↑↑

↑↑↑

↑↑↑

{a}

{b}{b}

{b}{b}

{a}{a}

{c}{c}

ε

ε

ε

ε

ε

ε

ε

Figure
5.10

T
he

ε-N
FA

constructed
by

A
lgorithm

5.48
accepting

the
pattern

dictionary
or

the
1-degree

m
atching

ε-N
FA

for
distance

d
s ,m

axim
um

num
ber

oferrors
k

=
2,and

pattern
tree

P
illustrated

Figure
5.1a.

Ifthe
autom

aton
contains

loop
transitions

in
the

start
state,it

is
the

1-degree
m

atching
autom

aton
M

(prefBar(P
),k

,d
s).

Ifthe
loop

transitions
in

the
start

state
are

rem
oved,it

is
the

ε-N
FA

accepting
the

pattern
dictionary

L
(prefBar(P

),k
,d

s).

1-degree matching automaton for the simple 1-degree edit distance 99

• Transitions created in Step 5 of Algorithm 5.48 correspond to transitions created in Step 6
of Algorithm 5.44. The only difference is that the former transitions are not equipped with
pushdown operations. However, the transitions created in Step 6 of Algorithm 5.44 do not
change the content of the pushdown store. Thus, these transitions are the same. Similarly,
transitions created in Step 6 of Algorithm 5.48 correspond to transitions created in Step 7 of
Algorithm 5.44, and transitions created in Step 8 of Algorithm 5.48 correspond to transitions
created in Step 9 of Algorithm 5.44.

Therefore, the algorithms differ only in two aspects: Step 2 of Algorithm 5.48 creates extra
states called auxiliary, and the two algorithms create the transitions that correspond to insertion
operations differently. However, we can observe that auxiliary states in the ε-NFA are used
only by transitions corresponding to insertion operations. Therefore, our goal is to show that
transitions created in Step 7 of Algorithm 5.48 correspond to transitions created in Step 8 of
Algorithm 5.44.

In Algorithm 5.44, Step 8a corresponds to reading a node label (inserting a node): the level
is increased by one, and the depth is not changed. Therefore, its corresponding bar must be
read before the insertion operation is complete. This corresponds to pushing the symbol s to
the pushdown store. Thus, the number of symbols s in the pushdown store corresponds to the
number of bar symbols that must be read before the insertion operation is complete. Transitions
that correspond to reading the bar symbol are created in Step 8b. Each of these transitions pops
one symbol s from the pushdown store. These transitions do not change the level (or depth).

In Algorithm 5.48, Steps 7(a)i and 7(b)i correspond to Step 8a of Algorithm 5.44. Step 7(a)i
creates transitions that read a node label corresponding to the root of the subtree that is being
inserted. Transitions that read labels of other nodes are created in Step 7(b)i. Pushing symbol s
to the pushdown store is in the ε-NFA simulated by the increased value s (the lower index) in the
label of the target state (it is assumed that the non-auxiliary states have the lower index equal to
zero). Similarly, the popping symbol s from the pushdown is simulated by decreasing the value s
(the lower index) in the label of the target state. Steps 7(a)ii and 7(b)ii correspond to Step 8b of
Algorithm 5.44. Step 7(a)ii creates transitions that read the bar symbol corresponding to the
root of the subtree being inserted, and Step 7(b)ii creates transitions that read the remaining bar
symbols.

Therefore, it is now easy to see that the transitions created in Step 7 of Algorithm 5.48
correspond to transitions created in Step 8 of Algorithm 5.44. Thus, the automaton created by
Algorithm 5.48 accepts the same language, the pattern dictionary L(prefBar(P), k, ds), as the
automaton created by Algorithm 5.44. ◀

Analogously as in the case of the 1-degree matching ε-NFA for dc
s , there are two ways how

to use the 1-degree matching ε-NFA for ds as a basis for a matching algorithm. We can either
transform it into an equivalent deterministic automaton or simulate it in a deterministic way.
The former approach comes with a high space complexity. Since the number of states of the
(ε-)NFA is Θ

(
k2 · |p|

)
, the trivial upper bound on the number of states is O

(
2k2·|p|). We have not

yet studied the non-trivial upper bound on the number of states of the equivalent deterministic
automaton. An analysis analogous to the one described in Section 5.4.1 would be more complex,
especially for the insertion operation. This is because we can insert an ordered labeled forest (a
sequence of ordered labeled trees) of at most k nodes at each position inside the pattern string,
and there are 1

k+1
(2k

k

)
ordered (unlabeled) forests with k nodes [159, Theorem 6.2]. For labeled

ordered forests, we need to consider that each of the forests comes in |Σ|k variants since there are
k nodes, and each can have |Σ| labels. Moreover, insertion can occur at several positions, but
the total number of nodes inserted cannot exceed the maximum number of errors. For example,
we can insert a forest of 3 nodes at position two and a forest of 2 nodes at position four if the
maximum number of errors is greater than or equal to 5. An alternative approach to constructing
a deterministic automaton is to simulate the ε-NFA in a deterministic way. In the following

100 Main results in inexact tree pattern matching

DSp
i

,j

Di−1,j−1

Di,St
j

Di,j

..
.

. . .

Figure 5.11 The value Di,j , where i, j ≥ 1, depends on three positions at most: Di−1,j−1, DS
p
i

,j ,
and Di,St

j
.

section, we propose a simulation based on dynamic programming. This algorithm can be seen as
an extension of the algorithm presented for the distance dc

s in Section 5.4.2.

5.5.3 Simulation of the 1-degree matching ε-NFA by dynamic
programming

Similarly, as in the case of the constrained simple 1-degree edit distance, we can simulate the
1-degree matching ε-NFA for ds in a deterministic way using a dynamic programming approach.
The algorithm introduced in this section is an extension of the algorithm presented in Section 5.4.2.
The extension lies in how insertion and deletion operations are handled since a bottom-up subtree
of any size can now be inserted or deleted. We use the subtree jump table for both the pattern
and the input tree to fill in the values in the array. This suggests that we need to read the
input tree in the prefix bar notation twice: to build the subtree jump table and to compute the
array used in dynamic programming. However, as we discuss later in this section, the subtree
jump table can be computed on the fly while filling the array. Again, the algorithm reports end
positions of pattern occurrences in the input, but start positions can also be (pre)computed. We
describe the dynamic programming approach in Algorithm 5.50.

▶ Algorithm 5.50 (Dynamic programming approach to the NFFOBI tree pattern matching problem
under ds). Let Σ be an alphabet. Let P and T be ordered labeled trees over Σ. Let p = prefBar(P)
and t = prefBar(T). Let k ≥ 0. Given p, t, and k, the algorithm finds every substring tj′...j of
t, where 1 ≤ j′ < j ≤ |t|, such that tj′...j ∈ L(Σ, ↑) and ds(p, tj′...j) ≤ k. In other words, the
algorithm finds every bottom-up subtree S in T such that ds(P,S) ≤ k.

The principal internal data structure is a two-dimensional array D in which the dimensions
have ranges 0 to |p| and 0 to |t|. By Di,j , where i ∈ {0, . . . |p|} and j ∈ {0, . . . , |t|}, we denote
the value at row i and column j. The value Di,j with i, j ≥ 1, depends on three positions at most;
see Figure 5.11. When the array is filled, D|p|,j contains ds(p, tj′...j), where j′ ∈ {1, . . . , j − 1}, if
and only if tj′...j represents the prefix bar notation of a bottom-up subtree of T .

1. (Initialization.)

a. Set D0,0 ← 0.
b. For each position i in p, set Di,0 ←∞.
c. For each position j in t, set D0,j ← 0.

2. (Compute the subtree jump table for p and t.)

a. Compute the subtree jump table Sp for p using Algorithm 5.42.
b. Compute the subtree jump table St for t using Algorithm 5.42.

1-degree matching automaton for the simple 1-degree edit distance 101

3. (Fill array) For each position j in t and i in p:

a. The cost of relabeling pi to tj (or match) is

c1 ←

Di−1,j−1 if pi = tj ,

Di−1,j−1 + 1 if pi ̸= tj ∧ pi, tj ̸= ↑,
∞ otherwise.

b. The cost of deleting a substring pi′...i from p, where i′ ∈ {2, . . . , i− 1} and pi′...i represents
a proper bottom-up subtree of P, is

c2 ←

{
Dpos,j + size if 3 ≤ i < |p| ∧ pi = ↑,
∞ otherwise,

where
• size = (i− Sp

i)/2 represents the size of the bottom-up subtree pi′...i and
• pos = Sp

i represents the position of the symbol in p that immediately precedes the
substring pi′...i; that is, the position i′ − 1.

c. The cost of inserting a substring tj′...j into p (at position i + 1), where 2 ≤ j′ < j and
tj′...j represents a proper bottom-up subtree of T , is

c3 ←

{
Di,pos + size if 3 ≤ j < |t| ∧ i < |p| ∧ tj = ↑,
∞ otherwise,

where
• size = (j − St

j)/2 represents the size of the bottom-up subtree tj′...j and
• pos = St

j represents the position of the symbol in t that immediately precedes the
substring tj′...j ; that is, the position j′ − 1.

d. Set Di,j ← min(c1, c2, c3). (We assume that ∞ > c and ∞+ c =∞ for every c ∈ N0 and
that min(∞,∞,∞) =∞.)

4. (Report occurrences.) For each position j in t: If D|p|,j ≤ k, output j.

We show an example of our dynamic programming approach to the NFFOBI tree pattern
matching problem in Figure 5.12. Similarly, as for the approach described in the previous section,
if the last row contains a number, then the corresponding position in the input string always
contains the bar symbol. However, this time the other implication is also true. If the corresponding
position in the input string contains the bar symbol, then the last row contains a number. This is
because an edit script always exists between the pattern tree and each bottom-up subtree of the
input tree. The corresponding edit script can be computed similarly as described in the previous
section.

We prove the correctness of our matching algorithm by showing that it is a simulation of the
1-degree matching ε-NFA for ds.

▶ Theorem 5.51 (Correctness of Algorithm 5.50). The dynamic programming approach described
by Algorithm 5.50 is a simulation of the 1-degree matching ε-NFA for ds that is constructed
by adding a loop transition for every symbol a ∈ Σ↑ to the start state of the ε-NFA created by
Algorithm 5.48.

Proof. Let Σ be an alphabet. Let P and T be ordered labeled trees over Σ. Let p = prefBar(P)
and t = prefBar(T). Let k ≥ 0. We recall that in the 1-degree matching ε-NFA for p, k, and ds,
each state is labeled by il or il

s, where i ∈ {0, . . . , |p|}, l ∈ {0, . . . , k}, and s ∈ {1, . . . , k}. We

102 Main results in inexact tree pattern matching

D j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

i - - a a a c ↑ ↑ ↑ a b ↑ b a c ↑ ↑ ↑ a c ↑ ↑ ↑ ↑

0 - 0

1 a ∞ 0 0 0 1 1 2 3 0 1 1 1 0 1 1 3 4 0 1 1 6 10 ∞

2 b ∞ ∞ 1 1 1 2 3 ∞ 4 0 5 1 2 1 3 3 8 5 1 6 10 ∞ ∞

3 ↑ ∞ 1 1 1 2 1 2 3 1 2 0 2 1 2 1 3 3 1 2 1 5 10 ∞

4 b ∞ ∞ 2 2 2 3 4 ∞ 4 1 5 0 3 2 4 2 8 4 2 5 10 ∞ ∞

5 ↑ ∞ 2 2 2 3 2 3 4 2 3 1 3 2 3 2 4 2 2 3 2 4 10 ∞

6 a ∞ ∞ 2 2 3 3 4 ∞ 4 3 5 2 3 3 4 4 8 2 3 3 10 ∞ ∞

7 c ∞ ∞ ∞ 3 2 4 ∞ ∞ ∞ 5 ∞ 6 3 3 4 8 ∞ 9 2 10 ∞ ∞ ∞

8 ↑ ∞ ∞ 3 3 4 2 4 ∞ 5 4 5 3 4 4 3 4 8 3 4 2 10 ∞ ∞

9 ↑ ∞ 4 4 4 5 4 2 4 4 5 3 5 4 5 4 3 4 4 5 4 2 10 ∞

10 ↑ ∞ ∞ ∞ ∞ ∞ 5 4 2 ∞ ∞ 5 ∞ ∞ ∞ 5 4 3 ∞ ∞ 5 4 2 10

Figure 5.12 An example of dynamic programming approach to the NFFOBI tree pattern matching
problem under ds that finds all occurrences of pattern tree P illustrated in Figure 5.1a in input tree T
illustrated in Figure 5.1b with up to k errors. For k = 2, there are two occurrences of P in T ; the first
found at position 7 of t = prefBar(T) and the second found at position 21 of t. The corresponding edit
script can be obtained by tracking back the array from D10,7 to D0,1 and from D10,21 to D0,7. The
substring t2...7 corresponds to the bottom-up subtree T /a2, and the edit script between P and T /a2

consists of two deletion operations that delete the leaves from P labeled by b. The substring t8...21
corresponds to the bottom-up subtree T /a5, and the edit script between P and T /a5 consists of two
insertion operations that insert a bottom-up subtree of size 2, subtree ac ↑↑, into P.

say that a state labeled by il or il
s is at depth i and at level l; states labeled by il

s are called
auxiliary. Specifically, states are labeled so they can be arranged into rows and columns similarly
as illustrated in Figure 5.3. The difference is that there are more auxiliary states this time. In
the case of dc

s , there was one auxiliary row between each two consecutive main rows. This time,
there is l + 1 auxiliary rows between main rows at level l and l + 1, see Figure 5.9. We also recall
that the dynamic programming algorithm constructs a two-dimensional array D in which the
dimensions have ranges 0 to |p| and 0 to |t|, respectively. By Di,j , where i ∈ {0, . . . |p|} and
j ∈ {0, . . . , |t|}, we denote the value at row i and column j.

We prove that every value Di,j ≤ k corresponds to the level of the topmost active non-auxiliary
state in depth i of the ε-NFA and step j of the run of the ε-NFA. For Di,j that contains ∞ or a
number greater than k, we show that no non-auxiliary state is active in depth i of the ε-NFA
and step j of the run of the ε-NFA. From this proof, it follows that D|p|,j ≤ k if and only if the
final state |p|D|p|,j is active in step j of the run of the ε-NFA and there is no l < D|p|,j such that
state |p|l is also active. In other words, the dynamic programming reports an occurrence with
distance l ∈ {0, . . . , k} ending at position j in t if and only if the ε-NFA reports an occurrence
with distance l ending at position j in t.

We prove the claim mentioned above by a loop invariant proof using the following invariant:
Before the start of iteration j′ of the outer loop, for each i ∈ {0, . . . , |p|} and j′′ ∈ {0, . . . , j′ − 1},
value Di,j′′ corresponds to the level of the topmost active non-auxiliary state in depth i of the
ε-NFA and step j′′ of the run of the ε-NFA or ∞ (or value greater than k) if no non-auxiliary
state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA is active.

Before the iteration of the first pass of the outer loop, Di,0 is initialized to 0 for i = 0 (Step 1a)
and to ∞ for each i ∈ {1, . . . , |p|} (Step 1b). At step 0 of the run of the ε-NFA, only state 00 is
active. Thus, the claim holds for j′ = 1.

1-degree matching automaton for the simple 1-degree edit distance 103

If the loop invariant is true before the start of iteration j′ of the outer loop, we show that it
is true before the iteration j′ + 1. Before the iteration j′, we get that for each i ∈ {0, . . . , |p|}
and j′′ ∈ {0, . . . , j′ − 1}, value Di,j′′ corresponds to the level of the topmost active non-auxiliary
state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA or ∞ (or value greater than k)
if no non-auxiliary state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA is active.

During iteration j′ the inner loop is executed. We prove that for the inner loop, the following
invariant holds: Before the start of iteration i′ of the inner loop, for each i′′ ∈ {0, . . . , i′ − 1},
value Di′′,j′ corresponds to the level of the topmost active non-auxiliary state in depth i′′ of the
ε-NFA and step j′ of the run of the ε-NFA or ∞ (or value greater than k) if no non-auxiliary
state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA is active.

Before the iteration of the first pass of the inner loop, D0,j′ should contain the level of the
topmost active non-auxiliary state in depth 0 of the ε-NFA and step j′ of the run of the ε-NFA.
At each step j′ ∈ {0, . . . , |t|} of the run of the ε-NFA, state 00 is active due to its loop transitions.
Thus, the level of the topmost active non-auxiliary state in depth 0 of the ε-NFA and step j′

of the run of the ε-NFA is 0. This corresponds to setting value D0,j′ to 0 in Step 1c for each
j′ ∈ {1, . . . , |t|} and setting value D0,0 to 0 in Step 1a.

If the invariant is true before the start of iteration i′ of the inner loop, we show that it is
true before the iteration i′ + 1. Before the start of iteration i′ of the inner loop, we get that for
each i′′ ∈ {0, . . . , i′ − 1}, value Di′′,j′ corresponds to the level of the topmost active non-auxiliary
state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA or ∞ (or value greater than k)
if no non-auxiliary state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA is active.

During iteration i′, Step 3d is executed, and Di′,j′ is set to min(c1, c2, c3). We need to show
that if there exists an active non-auxiliary state in depth i′ of the ε-NFA and step j′ of the run
of the ε-NFA, then the level of the topmost one is equal to c1, c2, or c3; otherwise, if there is
no active non-auxiliary state in depth i′ of the ε-NFA and step j′ of the run of the ε-NFA, then
c1, c2, and c3 are equal to ∞ or contain value greater than k.

There are at most four types of transitions that lead to each non-auxiliary state in depth
i′ ∈ {1, . . . , |p|} of the ε-NFA:

• a match transition (created in Step 5 of Algorithm 5.48),

• a relabeling transition (created in Step 6 of Algorithm 5.48),

• a subtree insertion “transition” (created in Step 7 of Algorithm 5.48; we can see a sequence
of consecutive transitions leading through auxiliary states from one non-auxiliary state to
another as one transition labeled by a string instead of a symbol), and

• a deletion transition (created in Step 8 of Algorithm 5.48).

Therefore, if there is an active non-auxiliary state in depth i′ of the ε-NFA and step j′ of the
run of the ε-NFA, we get to it using the above mentioned transitions. However, not all transitions
are always possible:

• The match transitions leading to depth i′ can be used in step j′ of the run of the ε-NFA only
if there is an active non-auxiliary state in depth i′ − 1 and step j′ − 1 of the run of the ε-NFA
and tj′ = pi′ .

• The relabeling transitions leading to depth i′ can be used in step j′ of the run of the ε-NFA
only if there is an active non-auxiliary state in depth i′ − 1 and step j′ − 1 of the run of the
ε-NFA and tj′ ̸= pi′ and pi′ , tj′ ̸= ↑.

• The deletion transitions leading to depth i′ for i′ ≥ 3 can be used in step j′ of the run of
the ε-NFA only if pi′ = ↑ and there is an active non-auxiliary state in depth pos and step
j′ of the run of the ε-NFA, where pos = Sp

i′ represents the position of the symbol in p that
immediately precedes the substring pî...i′ representing the corresponding bottom-up subtree
in P.

104 Main results in inexact tree pattern matching

• The subtree insertion “transition” (a sequence of transitions created in Step 7 of Algorithm 5.48
leading to depth i′ ∈ {1, . . . , |p| − 1} can be used in step j′ for j′ ≥ 3 of the run of the ε-NFA
only if tj′ = ↑ and there is an active non-auxiliary state in depth i′ and step pos of the run
of the ε-NFA, where pos = St

j′ represents the position of the symbol in t that immediately
precedes the substring tĵ...j′ representing the corresponding bottom-up subtree in T .

Since we are interested only in the topmost active non-auxiliary state in depth i′ and step
j′ of the run of the ε-NFA, we can focus not only on the available transitions, but also only on
those whose source is the topmost active state in the corresponding depth and step of the run of
the ε-NFA. Moreover, if those transitions yield different states, we choose the one with the lowest
level. During iteration i′, the algorithm simulates exactly the steps mentioned above:

• Step 3a corresponds to checking whether matching or relabeling transition is possible (note
that they are exclusive). If pi′ = tj′ , then c1 is set to Di′−1,j′−1. Value Di′−1,j′−1 contains
the level of the topmost active non-auxiliary state in depth i′ − 1 of the ε-NFA and step j′ − 1
of the run of the ε-NFA. In other words, in depth i′− 1 of the ε-NFA and step j′− 1 of the run
of the ε-NFA the topmost active non-auxiliary state is (i′ − 1)l, where l = Di′−1,j′−1. Since
pi′ = tj′ , we can move to state (i′)l using the match transition. If pi′ ̸= tj′ and pi′ , tj′ ̸= ↑,
then c1 is set to Di′−1,j′−1 + 1. This corresponds to moving from state (i′− 1)l to state (i′)l+1

using the relabeling transition. If c1 > k, then no state in depth i′ and step j′ of the run of
the ε-NFA can be reached using a match or relabeling transition since there are only k levels.
If pi′ ̸= tj′ and pi′ or tj′ is equal to the bar symbol, then no state in depth i′ and step j′ of
the run of the ε-NFA can be reached using a match or relabeling transition. This corresponds
to setting c1 to ∞ in the dynamic programming algorithm.

• Step 3b corresponds to checking whether deletion transition is possible. If 3 ≤ i′ < |p| and
pi′ = ↑, then c2 is set to Dpos,j′ + size, where size represents the size of the bottom-up subtree
of P that ends at position i′ (the subtree that is being deleted). Value Dpos,j′ contains the
level of the topmost active non-auxiliary state in depth pos of the ε-NFA and step j′ of the
run of the ε-NFA, where pos = Sp

i′ represents the position of the symbol in p that immediately
precedes the substring pî...i′ representing the bottom-up subtree that is being deleted. In
other words, in depth pos of the ε-NFA and step j′ of the run of the ε-NFA the topmost
active non-auxiliary state is (pos)l, where l = Dpos,j′ . Since 3 ≤ i′ < |p| and pi′ = ↑, we can
move to state (i′)l+size using the deletion transition. If i′ = |p| or pi′ ̸= ↑, then no state in
depth i′ and step j′ of the run of the ε-NFA can be reached using a deletion transition. This
corresponds to setting c2 to ∞ in the dynamic programming algorithm.

• Step 3c corresponds to checking whether a subtree insertion “transition” is possible. If
3 ≤ j′ < |t|, i′ < |p|, and tj′ = ↑, then c3 is set to Di′,pos + size, where size represents the size
of the bottom-up subtree of T that ends at position j′ (the subtree that is being inserted into
p). Value Di′,pos contains the level of the topmost active non-auxiliary state in depth i′ of the
ε-NFA and step pos of the run of the ε-NFA, where pos = St

j′ represents the position of the
symbol in t that immediately precedes the substring tĵ...j′ representing the bottom-up subtree
that is being inserted. In other words, in depth i′ of the ε-NFA and step pos of the run of the
ε-NFA the topmost active non-auxiliary state is (i′)l, where l = Di′,pos. Since 3 ≤ j′ < |t|,
i′ < |p|, and tj′ = ↑, we can move to state (i′)l+size using the subtree insertion “transition”
that leads through auxiliary states. If j′ < 3 or j′ = |t| or i′ = |p|, or tj′ ̸= ↑, then no state
in depth i′ and step j′ of the run of the ε-NFA can be reached using a subtree insertion
“transition”. This corresponds to setting c3 to ∞ in the dynamic programming algorithm.

• Step 3d executes Di′,j′ ← min(c1, c2, c3). This clearly corresponds saving the level of the
topmost active state in depth i′ and step j′ of the run of the ε-NFA (or saving value greater
than k or ∞ if there is no such state).

1-degree matching automaton for the simple 1-degree edit distance 105

Thus, before the start of iteration i′ + 1, Di′′,j′ contains the level of the topmost active
non-auxiliary state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA for each
i′′ ∈ {0, . . . , i′}. At termination i = |p|+ 1, value Di′′,j′ corresponds to the level of the topmost
active non-auxiliary state in depth i′′ of the ε-NFA and step j′ of the run of the ε-NFA for each
i′′ ∈ {0, . . . , |p|}.

Thus, after the execution of the inner loop, we get that for each i ∈ {0, . . . , |p|} and j′′ ∈
{0, . . . , j′}, value Di,j′′ corresponds to the level of the topmost active non-auxiliary state in
depth i of the ε-NFA and step j′′ of the run of the ε-NFA or ∞ (or value greater than k) if no
non-auxiliary state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA is active. At
termination j = |t|+ 1, value Di,j′′ corresponds to the level of the topmost active non-auxiliary
state in depth i of the ε-NFA and step j′′ of the run of the ε-NFA for each i ∈ {0, . . . , |p|} and
j′′ ∈ {0, . . . , |t|}. Hence the dynamic programming simulates the 1-degree matching ε-NFA. ◀

Given an input tree and its prefix bar notation t, Algorithm 5.50 computes the subtree jump
table for t beforehand in Step 2b. However, as we show in Lemma 5.52, the subtree jump table
can be computed on the fly while filling the array.

▶ Lemma 5.52. Given the prefix bar notation t of an input tree, the values provided by the subtree
jump table for t can be computed in Algorithm 5.50 on the fly so that Step 2b can be deleted.

Proof. We modify Algorithm 5.50 and discuss its correctness. To avoid computing the subtree
jump table for t beforehand, we use a stack Y with operations push that inserts a symbol on its
top and pop that returns and deletes the top symbol, and we modify Algorithm 5.50 as follows:

1. (Initialization.)

a. Set D0,0 ← 0.
b. For each position i in p, set Di,0 ←∞.
c. For each position j in t, set D0,j ← 0.
d. Create an empty stack Y .

2. (Compute the subtree jump table for p.) Compute the subtree jump table Sp for p using
Algorithm 5.42.

3. (Fill array) For each position j in t:

a. If tj ̸= ↑, then push(j) into Y . Otherwise, value ← pop(Y).
b. For each position i in p:

i. The cost of relabeling pi to tj (or match) is

c1 ←

Di−1,j−1 if pi = tj ,

Di−1,j−1 + 1 if pi ̸= tj ∧ pi, tj ̸= ↑,
∞ otherwise.

ii. The cost of deleting a substring pi′...i from p, where i′ ∈ {2, . . . , i − 1} and pi′...i

represents a proper bottom-up subtree of P, is

c2 ←

{
Dpos,j + size if 3 ≤ i < |p| ∧ pi = ↑,
∞ otherwise,

where
• size = (i− Sp

i)/2 represents the size of the bottom-up subtree pi′...i and
• pos = Sp

i represents the position of the symbol in p that immediately precedes the
substring pi′...i; that is, the position i′ − 1.

106 Main results in inexact tree pattern matching

iii. The cost of inserting a substring tj′...j into p (at position i + 1), where 2 ≤ j′ < j and
tj′...j represents a proper bottom-up subtree of T , is

c3 ←

{
Di,pos + size if 3 ≤ j < |t| ∧ i < |p| ∧ tj = ↑,
∞ otherwise,

where
• pos = value − 1 represents the position of the symbol in t that immediately precedes

the substring tj′...j ; that is, the position j′ − 1, and
• size = (j − pos)/2 represents the size of the bottom-up subtree tj′...j .

iv. Set Di,j ← min(c1, c2, c3). (We assume that ∞ > c and ∞ + c = ∞ for every c ∈ N0
and that min(∞,∞,∞) =∞.)

4. (Report occurrences.) For each position j in t: If D|p|,j ≤ k, output j.

The main difference between Algorithm 5.50 and its modified version mentioned above is
the computation of the cost for insertion operation; compare Step 3(b)iii above and Step 3c
in Algorithm 5.50. In Algorithm 5.50, the variables pos and size for insertion operations are
computed from St

j . In the modified algorithm, the same values are obtained from stack Y . The
equality of these values follows from Algorithm 5.42. ◀

Additionally, we can apply the same improvements to Algorithm 5.50 as we did to Algo-
rithm 5.38 in the previous section:

• All values Di,j > k can be replaced by the value ∞ representing a number of errors greater
than k. This is because such values can no longer produce an occurrence.

• Step 4 of Algorithm 5.50 can be merged with Step 3 so that we report occurrences as we fill
the array instead of waiting until the whole array is filled.

We now discuss the time and space complexity of Algorithm 5.50.

▶ Theorem 5.53 (Time complexity of Algorithm 5.50). Let P and T be ordered labeled trees with
m and n nodes, respectively. Given the prefix bar notation of P and T and k ≥ 0, the time
complexity of Algorithm 5.50 is O(mn).

Proof. The algorithm builds the subtree jump table for prefBar(P) and prefBar(T) in time Θ(m)
and Θ(n), respectively. Then, a two-dimensional array D of size (2m + 1) · (2n + 1) is built.
The computation of the value at each position of D depends on three positions at most and this
computation executes in constant time. ◀

▶ Theorem 5.54 (Space complexity of Algorithm 5.50). Let P and T be ordered labeled trees with
m and n nodes, respectively. Assume m ≤ n. Given the prefix bar notation of P and T and
k ≥ 0, Algorithm 5.50 can be implemented to use O(km) space.

Proof. The dynamic programming approach builds a two-dimensional array D of size (2m +
1) · (2n + 1). The computation of the value at each position of D depends on three positions
at most: Di−1,j−1, DSp

i
,j , and Di,St

j
. Since algorithm performs the computation column-wise,

values in Sp are accessed repeatedly. Thus, the algorithm precomputes these values (Step 2)
and stores them in the array of size 2m. To compute column j ∈ {1, . . . , |t|} (values Di,j for
i ∈ {0, . . . , |p|}), we need values in column given by St

j . However, storing the whole subtree jump
table for t is not necessary as we described in the proof of Lemma 5.52. The necessary values can
be computed on the fly using stack Y . Still, Y needs n space in the worst case (the case where
T is a linear tree). However, Y is used only to compute the start position of possibly inserted
subtree. Thus, the length (number of stored elements) in Y can be limited to k (implemented by

1-degree matching automaton for the (constrained) 1-degree edit distance 107

removing the oldest element from the bottom of the stack). In other words, we can restrict the
number of previous columns that are needed to compute column j by 2k because values in the
remaining preceding columns correspond to a situation that a tree of size larger than k is being
inserted into p and these insertions can be ignored. Therefore, O(km) space is needed in order to
compute all values. ◀

We note that we also proposed an alternative version of Algorithm 5.50 [157], [158]. The main
idea behind the alternative algorithm is to simulate insertion operations transition-by-transition.
This is done by adding one dimension to the array, so we use a three-dimensional array instead of
the two-dimensional one. The third dimension range is from 0 to k, and values 1 to k are used to
simulate insertion transitions that lead to auxiliary states. As a result, the subtree jump table
for the input tree is not needed, and the algorithm can be implemented to use O(km) space.
However, the time complexity of this approach is O(kmn), where k is the maximum number of
errors allowed, m is the number of nodes in the pattern tree, and n is the number of nodes in the
input tree.

We recall that at the end of Section 5.4.2, we discussed that the dynamic programming
algorithm cannot be modified so that the match operation is outside the minimum function. The
same also holds for Algorithm 5.50. For example, in Figure 5.12, it is more favorable to apply
deletion operation (that deletes the subtree ac ↑↑ from the pattern) when computing value D9,10
than to copy value D8,9 which corresponds to match.

5.6 1-degree matching automaton for the (constrained) 1-
degree edit distance

In this section, we pay attention to adapting our methods proposed in the previous two sections
to the variant where different costs may accompany the edit operations. First, we focus on the
constrained 1-degree edit distance and then on the 1-degree edit distance. Given two ordered
labeled trees over alphabet Σ, we assume that the edit operations are assigned their costs using
a metric cost function on Σλ. Moreover, we assume that costs are nonnegative integers. For
examples presented in this section, we assume that 1-degree edit operations are assigned their
costs using the metric cost function described by Table 5.1.

The main idea behind the adaptation of constructing the 1-degree matching automaton resides
in changing the target states for transitions corresponding to the edit operations. For example,
in matching under dc

s and ds, applying a relabeling operation always corresponds to using a
transition from a state at level l ∈ {0, . . . , k− 1} to a state at level l + 1, where k is the maximum
number of errors allowed. When operations are assigned non-unit costs, transitions must lead
into states at a level increased accordingly by the cost of the operation.

The main idea behind adapting the dynamic programming algorithm lies in changing the
value that is added when an edit operation can be applied to the current position. In matching
under dc

s and ds, we always add one. In the case of non-unit cost operations, we add the operation
cost instead.

In the following section, we discuss an adaptation of our methods proposed in Section 5.4 to
the case where operations are assigned non-unit costs. Then, in Section 5.6.2, we follow a similar
approach for the 1-degree edit distance.

5.6.1 Constrained 1-degree edit distance
In this section, we focus on the NFFOBI tree pattern matching problem under the constrained
1-degree edit distance; see Problem 5.14. Our solution is an extension of algorithms presented
in Section 5.4, in which we focused on the simpler variant of this problem where no costs were

108 Main results in inexact tree pattern matching

involved. First, we describe a modification of the 1-degree matching automaton. Then, we
describe a modification of the dynamic programming algorithm.

5.6.1.1 1-degree matching ε-NFA for the constrained 1-degree edit distance
Let Σ be alphabet. Let γ be a metric cost function defined on Σλ. To construct the 1-degree
matching ε-NFA for dc, we make three changes to Algorithm 5.28:

• We change Step 5 (Add transitions for relabeling operations.) as follows:

– For each a ∈ Σ \ {p1}: If γ(p1, a) ≤ k, then set δ
(
00, a

)
←

{
1γ(p1,a)}.

– For each position i ∈ {2, . . . , |p|} and number of errors l ∈ {0, . . . , k − 1}: If pi ̸= ↑, then
for each a ∈ Σ \ {pi} such that l + γ(pi, a) ≤ k, set δ

(
(i− 1)l, a

)
←

{
il+γ(pi,a)}.

• We change Step 6 (Add transitions for insertion operations.) as follows:

– For each position i ∈ {2, . . . , |p|}, number of errors l ∈ {0, . . . , k − 1}, and symbol a ∈ Σ
such that l + γ(λ, a) ≤ k:

1. Set δ
(
(i− 1)l, a

)
← δ

(
(i− 1)l, a

)
∪

{
(i− 1)l+γ(λ,a)

1
}

.
2. Set δ

(
(i− 1)l+γ(λ,a)

1 , ↑
)
←

{
(i− 1)l+γ(λ,a)}.

• We change Step 7 (Add transitions for deletion operations.) as follows:

– For each position i ∈ {2, . . . , |p| − 2} and number of errors l ∈ {0, . . . , k − 1}: If pi ∈ Σ,
pi+1 = ↑ and l + γ(pi, λ) ≤ k, then set δ

(
(i− 1)l, ε

)
←

{
(i + 1)l+γ(pi−1,λ)}.

By applying the changes described above to Algorithm 5.28, we construct an ε-NFA accepting
the pattern dictionary L(prefBar(P), k, dc) for a pattern tree P and a given maximum number
of errors k. To transform this automaton into the 1-degree matching ε-NFA for dc, we add a
loop transition to its start state for every possible input symbol. These modifications do not
change the number of states of the automaton nor the construction time complexity. Therefore,
the number of states of the 1-degree matching ε-NFA is |p|+ 1 + k(2|p| − 1) and the automaton
can be built in time O(k · |p|). However, we note that some states can be unreachable and thus,
can be removed. For example, if γ(λ, a) ≥ 2 for each a ∈ Σ, then no incoming transition leads to
auxiliary states i1

1, where i ∈ {1, . . . , |p| − 1}. Moreover, if the cost of each operation is greater
than or equal to some value l ≤ k, then all states at levels 1 to l − 1 are unreachable.

The proof of the correctness of algorithms that build the ε-NFA accepting the pattern
dictionary for dc and the 1-degree matching ε-NFA for dc is similar to the proof of Lemma 5.29
and Lemma 5.31, respectively. For brevity, we do not include them. We show an example of the
1-degree matching ε-NFA for dc in Figure 5.13.

5.6.1.2 Simulation of the 1-degree matching ε-NFA for the constrained
1-degree edit distance by dynamic programming

The 1-degree matching ε-NFA for dc can be used again as a basis for the matching algorithm in
two ways: by transforming it into an equivalent deterministic automaton or by simulating it in a
deterministic way. In this dissertation thesis, we do not study the size of the corresponding DFA.
We only say that its size is not greater than the size of the 1-degree matching DFA for dc

s . This is
because there cannot be a greater number of strings created using individual edit operations. For
example, in the case of 1-degree matching DFA for dc

s , we can relabel at most k symbols and each
to |Σ| options. In the case of 1-degree matching DFA for dc there are no more variants. On the
contrary, using k relabeling operations might be impossible since these operations can have a cost
greater than or equal to 2. In this section, we discuss how the dynamic programming algorithm
can be modified for the case where operations have non-unit costs.

1-degree matching automaton for the (constrained) 1-degree edit distance 109

00
st

ar
t

Σ
∪

{
↑

}

10 11 1 11

{
b}

↑

12 1 12

{
b}

↑

b

20 21 1 21

{
b}

↑

22 1 22

{
b}

↑

b

30 31 1 31

{
b}

↑

32 1 32

{
b}

↑

b

40 41 1 41

{
b}

↑

42 1 42

{
b}

↑

b

50 51 1 51

{
b}

↑

52 1 52

{
b}

↑

b

60 61 1 61

{
b}

↑

62 1 62

{
b}

↑

b

70 71 1 71

{
b}

↑

72 1 72

{
b}

↑

b

80 81 1 81

{
b}

↑

82 1 82

{
b}

↑

b

90 91 1 91

{
b}

↑

92 1 92

{
b}

↑

b

10
0

10
1

10
2

a c

b

b

ε

ε

b
↑

b
↑

a
c

↑
↑

↑

b
↑

b
↑

a
c

↑
↑

↑

b
↑

b
↑

a
c

↑
↑

↑

c

c

c

{c}

ε

c

c

c

{c}

ε

a

a

Fi
gu

re
5.

13
T

he
1-

de
gr

ee
m

at
ch

in
g

ε-
N

FA
fo

r
di

st
an

ce
d

c ,m
ax

im
um

nu
m

be
r

of
er

ro
rs

k
=

2,
an

d
pa

tt
er

n
tr

ee
P

ill
us

tr
at

ed
Fi

gu
re

5.
1a

.
T

he
1-

de
gr

ee
ed

it
op

er
at

io
ns

ar
e

as
si

gn
ed

th
ei

r
co

st
s

us
in

g
th

e
m

et
ric

co
st

fu
nc

tio
n

de
sc

rib
ed

in
Ta

bl
e

5.
1.

110 Main results in inexact tree pattern matching

Let Σ be alphabet. Let γ be a metric cost function defined on Σλ. A simulation of the
1-degree matching ε-NFA for dc can be based on the dynamic programming approach described
by Algorithm 5.38 by changing computation of c1, c2, and c3 as follows:

Step 2a The cost of relabeling pi to tj (or match) is

c1 ←

Di−1,j−1 if pi = tj ,

Di−1,j−1 + γ(pi, tj) if pi ̸= tj ∧ pi, tj ̸= ↑,
∞ otherwise.

Step 2b The cost of deleting substring pi−1pi from p is

c2 ←

{
Di−2,j + γ(pi−1, λ) if i ≥ 3 ∧ pi = ↑ ∧pi−1 ̸= ↑,
∞ otherwise.

Step 2c The cost of inserting substring tj−1tj into p (at position i + 1) is

c3 ←

{
Di,j−2 + γ(λ, tj−1) if j ≥ 3 ∧ tj = ↑ ∧ tj−1 ̸= ↑ ∧ i < |p|,
∞ otherwise.

By applying these changes to Algorithm 5.38, we obtain a dynamic programming algorithm
for the NFFOBI tree pattern matching problem under dc. Its correctness can be proved similarly
as the correctness of Algorithm 5.38. Moreover, we can apply the same improvements as we did
for Algorithm 5.38:

• All values Di,j > k in the array can be replaced by the value ∞ representing a number of
errors greater than k.

• Occurrences can be reported on the fly while filling the array instead of waiting until the
whole array is filled.

• Since every column can be computed using just two previous columns, the algorithm can be
implemented to use only O(m) space, where m is the number of nodes of a given pattern tree.

It is also easy to see that the time and space complexity of the extended dynamic programming
approach described in this section remains the same as those given by Theorem 5.40 and
Theorem 5.41.

5.6.2 1-degree edit distance
The NFFOBI tree pattern matching problem under the 1-degree edit distance is the most advanced
of the four problems defined in Section 5.2. Let us recall that the 1-degree edit distance between
two ordered labeled trees is given by the cost of a least-cost edit script between them. We present
a solution to this problem as an extension of the solution proposed in Section 5.5. First, we
present an adaptation of the 1-degree matching PDA. Then, we show an adaption of the 1-degree
matching ε-NFA. Finally, we discuss how the dynamic programming approach can be modified to
simulate the 1-degree matching ε-NFA for distance d.

5.6.2.1 1-degree matching PDA for the 1-degree edit distance
The construction of the 1-degree matching PDA for distance d can be based on a modification
of Algorithm 5.44. If operations have non-unit costs, each transition that corresponds to an
edit operation must lead to a target state with a level increased accordingly by the cost of the

1-degree matching automaton for the (constrained) 1-degree edit distance 111

a b ↑ b ↑ a c ↑ ↑ ↑
1 2 3 4 5 6 7 8 9 10

1 11 4 1 6 3 10 9 6 5 0
2 1 3 3 5 5 6 7 7 7 7

Figure 5.14 The weighted subtree jump table for prefBar(P), where P is the tree illustrated in
Figure 5.1a, and 1-degree edit operations are assigned costs according to the cost function γ described in
Table 5.1.

operation. Such target states can be easily computed for relabeling and insertion operations since
the corresponding transitions handle one node at a time. However, a deletion transition can
represent multiple deletion operations since we are allowed to delete a proper bottom-up subtree
of any size up to a given maximum number of errors. Therefore, to correctly determine target
states for these transitions, we need to know the cost of deleting proper bottom-up subtrees of a
given tree. For this purpose, we introduce a new data structure called a weighted subtree jump
table, an extension of the subtree jump table; see Definition 5.55. The extension is based on
adding another dimension to the table that can be used to compute the cost of deleting bottom-up
subtrees. We illustrate an example of the weighted subtree jump table in Figure 5.14.

▶ Definition 5.55 (Weighted subtree jump table). Let Σ be an alphabet. Let x ∈ L(Σ, ↑). Let γ
be a cost function defined on Σλ. Moreover, we define γ(↑, λ) = 0. The weighted subtree jump
table for x is a two-dimensional array W x in which the dimensions have ranges 1 to 2 and 1 to
|x|, respectively. Values in W x are defined as follows:

• W x
1,i = j + 1 and W x

1,j = i− 1 for each substring xi...j ∈ L(Σ, ↑), where 1 ≤ i < j ≤ |x|.

• W x
2,i =

∑i
j=1 γ(xj , λ) for each i ∈ {1, . . . , |x|}.

In Lemma 5.56, we explain how the weighted subtree jump table can be used to compute
the cost of deleting individual proper bottom-up subtrees of a given tree. Note that if the cost
function satisfies the symmetry condition, then for each bottom-up subtree, the cost of its deletion
is the same as the cost of its insertion.

▶ Lemma 5.56 (Computation of the cost of deleting a proper bottom-up subtree using the weighted
subtree jump table). Let Σ be an alphabet. Let P be an ordered labeled tree over Σ. Let p =
prefBar(P). Let γ be a cost function defined on Σλ. Let W p be the weighted subtree jump table
for p. Let pi′...i, where 1 < i′ < i < |p| represents a proper bottom-up subtree of P. Then, the
cost of deleting this subtree can be computed as follows:

W p
2,i −W p

2,i′−1.

Proof. Recall that W p
2,i =

∑i
j=1 γ(pj , λ). It holds that

W p
2,i −W p

2,i′−1 =
i∑

j=1
γ(pj , λ)−

i′−1∑
j=1

γ(pj , λ) =
i∑

j=i′

γ(pj , λ).

Since we defined γ(↑, λ) = 0, the last sum represents the total cost of deleting all symbols from
pi′...i that correspond to node labels in the subtree pi′...i. Therefore, the sum computes the cost
of deleting this subtree. ◀

We now present an algorithm for computing the weighted subtree jump table for the prefix bar
notation of a given ordered labeled tree. The algorithm is an extension of Algorithm 5.42. The
only difference is that we additionally need to compute values in the second dimension. The time
complexity of the extended algorithm remains the same as the time complexity of Algorithm 5.42;
it constructs the weighted subtree jump table in time linear to the length of a given string that
represents the prefix bar notation of an ordered labeled tree.

112 Main results in inexact tree pattern matching

▶ Algorithm 5.57 (Computation of the weighted subtree jump table for an ordered labeled tree in
the prefix bar notation). Let Σ be an alphabet. Let P be an ordered labeled tree over Σ. Let
p = prefBar(P). Let γ be a cost function defined on Σλ. Moreover, we define γ(↑, λ) = 0. Given
p and γ, the algorithm constructs the weighted subtree jump table for p which is represented as
a two-dimensional array W p with ranges 1 to 2 and 1 to |p|, respectively. The principal internal
data structure is a stack Y with operations push that inserts a symbol on its top and pop that
returns and deletes the top symbol.

1. (Initialize.)

a. Create an empty stack Y .
b. Create a two-dimensional array W p with ranges 1 to 2 and 1 to |p|, respectively.
c. Set sum = 0.

2. (Fill array.) For each position i in p:

a. Set sum ← sum + γ(pi, λ).
b. Set W p

2,i ← sum.
c. If pi ̸= ↑, then push(i) into Y . Otherwise, set W p

1,i ← pop(Y)− 1 and set W p
1,i′ ← i + 1,

where i′ = W p
1,i + 1.

3. (Return.) Return W p.

▶ Lemma 5.58 (Correctness of Algorithm 5.57). Let Σ be an alphabet. Let P be an ordered labeled
tree over Σ. Let p = prefBar(P). Let γ be a cost function defined on Σλ. Moreover, we define
γ(↑, λ) = 0. Given p and γ, Algorithm 5.57 constructs the weighted subtree jump table for p.

Proof. It is easy to see that W p
1 is the same as Sp constructed by Algorithm 5.42. Thus, the

correctness of W p
1 follows from Lemma 5.43.

Recall that by definition W p
2,i =

∑i
j=1 γ(pj , λ) for each i ∈ {1, . . . , |p|}. We prove correctness

for W p
2 by a loop invariant proof using the following invariant: Before the start of iteration l of the

loop, the variable sum contains
∑l−1

j=1 γ(pj , λ). The loop invariant is true before the first iteration
of the loop (true for i = 1). Before the iteration of the first pass of the loop, sum is initialized to
zero which is

∑0
j=1 γ(pj , λ). Thus, the variable sum holds the correct sum before the first pass

of the loop. If the loop invariant is true before the iteration l, we show that it is true before the
iteration l + 1. Before the iteration l of the loop, we get that sum contains

∑l−1
j=1 γ(pj , λ). During

iteration l, we execute Step 2a so that sum contains
∑l−1

j=1 γ(pj , λ) + γ(pl, λ). Thus, before the
start of iteration l + 1, the variable sum holds

∑l
j=1 γ(pj , λ). At termination, i = |p|+ 1, the

variable sum holds
∑|p|

j=1 γ(pj , λ) which is the desired value for W p
2,|p|. Hence the algorithm

correctly computes values in W p
2 . ◀

We are now in a position to introduce an algorithm that constructs the 1-degree matching
PDA for d. Let Σ be alphabet. Let γ be a metric cost function defined on Σλ. To construct the
1-degree matching PDA for d, we make four changes to Algorithm 5.44:

• In Step 1, we compute the weighted subtree jump table W p for p using Algorithm 5.57 instead
of the subtree jump table Sp for p.

• We change Step 7 (Add transitions for relabeling operations.) as follows:

1. For each a ∈ Σ \ {p1}: If γ(p1, a) ≤ k, then set δ
(
00, a,⊥

)
←

{(
1γ(p1,a),⊥

)}
.

2. For each position i ∈ {2, . . . , |p|} and number of errors l ∈ {0, . . . , k − 1}: If pi ̸= ↑, then
for each a ∈ Σ \ {pi} such that l + γ(pi, a) ≤ k, set δ

(
(i− 1)l, a,⊥

)
←

{(
il+γ(pi,a),⊥

)}
.

1-degree matching automaton for the (constrained) 1-degree edit distance 113

• We change Step 8 (Add transitions for insertion operations.) as follows:

– For each position i ∈ {2, . . . , |p|}, number of errors l ∈ {0, . . . , k − 1}, and symbol a ∈ Σ
such that l + γ(λ, a) ≤ k:
1. Set δ

(
(i− 1)l, a, ε

)
←

{(
(i− 1)l+γ(λ,a), s

)}
.

2. Set δ
(
(i− 1)l+γ(λ,a), ↑, s

)
←

{(
(i− 1)l+γ(λ,a), ε

)}
.

• We change Step 9 (Add transitions for deletion operations.) as follows: Instead of setting the
level of a target state using the size of the proper bottom-up subtree being deleted, we set the
level using the cost of deleting the subtree. The cost is given by the weighted subtree jump
table using Lemma 5.56.

– For each position i ∈ {2, . . . , |p| − 2} and number of errors l ∈ {0, . . . , k− 1}: If pi ∈ Σ and
l + cost ≤ k, where

cost = W p
2,W p

1,i
−1 −W p

2,i−1,

then the proper bottom-up subtree of p that starts at position i can be deleted. This can
be done by setting

δ
(
(i− 1)l, ε,⊥

)
←

{(
(W p

1,i − 1)l+cost ,⊥
)}

.

By applying the changes described above to Algorithm 5.44, we construct a pushdown
automaton accepting the pattern dictionary L(prefBar(P), k, d) for a pattern tree P and a given
maximum number of errors k. By adding a loop transition to its start state for every possible
input symbol, we transform it into the 1-degree matching PDA for d. For the same reasons
as we discussed in Section 5.6.1, it can happen that some states of the pushdown automaton
are unreachable. These states can be removed. However, the 1-degree matching PDA for d
has the same number of states as the 1-degree matching PDA for ds in the worst case; that is,
|p| + 1 + k(2|p| − 1) states. The automaton can be built in time O(k · |p|). The proof of the
correctness of the algorithm that builds the pushdown automaton accepting the pattern dictionary
for d and the algorithm that constructs the 1-degree matching PDA for d is analogous to the
proof of Lemma 5.45 and Theorem 5.47, respectively. We do not include these proofs for brevity.
In Figure 5.15, we show an example of the 1-degree matching PDA for d.

5.6.2.2 1-degree matching ε-NFA for the 1-degree edit distance
We now proceed to a construction of the 1-degree matching ε-NFA for d. The construction
is analogous to the construction of the 1-degree matching ε-NFA for ds—instead of using the
pushdown store for the insertion operations, we use auxiliary states. This is possible since the
size of the pushdown store is again bounded by a given maximum number of errors k. Moreover,
if costs assigned to insertion operations are higher than 1, then the size of the pushdown store
is bounded by a number smaller than k. Therefore, the 1-degree matching ε-NFA for d can in
some cases need smaller number of auxiliary states than the number of states of the 1-degree
matching ε-NFA for ds. In the worst case, the number of states of the 1-degree matching ε-
NFA for d is the same as the number of states of the 1-degree matching ε-NFA for ds; that is,
1 + (k + 1) · |p|+ (|p| − 1) · k(k+1)

2 = Θ
(
k2 · |p|

)
states.

Let Σ be alphabet. Let γ be a metric cost function defined on Σλ. To construct the 1-degree
matching ε-NFA for d, we make four changes to Algorithm 5.48:

• In Step 1, we compute the weighted subtree jump table W p for p using Algorithm 5.57 instead
of the subtree jump table Sp for p.

• We change Step 6 (Add transitions for relabeling operations.) as follows:

1. For each a ∈ Σ \ {p1}: If γ(p1, a) ≤ k, then set δ
(
00, a

)
←

{
1γ(p1,a)}.

114 Main results in inexact tree pattern matching

0 0

start

Σ
∪

{
↑

}
,

⊥
,

⊥

1 0

b, ε, s1 1

{b},ε,s

↑
,

s
,

ε

1 2

{b},ε,s

↑
,

s
,

ε

2 0

b, ε, s2 1

{b},ε,s

↑
,

s
,

ε

2 2

{b},ε,s

↑
,

s
,

ε

3 0

b, ε, s3 1

{b},ε,s

↑
,

s
,

ε

3 2

{b},ε,s

↑
,

s
,

ε

4 0

b, ε, s4 1

{b},ε,s

↑
,

s
,

ε

4 2

{b},ε,s

↑
,

s
,

ε

5 0

b, ε, s5 1

{b},ε,s

↑
,

s
,

ε

5 2

{b},ε,s

↑
,

s
,

ε

6 0

b, ε, s6 1

{b},ε,s

↑
,

s
,

ε

6 2

{b},ε,s

↑
,

s
,

ε

7 0

b, ε, s7 1

{b},ε,s

↑
,

s
,

ε

7 2

{b},ε,s

↑
,

s
,

ε

8 0

b, ε, s8 1

{b},ε,s

↑
,

s
,

ε

8 2

{b},ε,s

↑
,

s
,

ε

9 0

b, ε, s9 1

{b},ε,s

↑
,

s
,

ε

9 2

{b},ε,s

↑
,

s
,

ε

10 0

10 1

10 2

a
,

⊥
,

⊥

c,⊥
,⊥b,⊥

,⊥

b,⊥
,⊥

ε,⊥
,⊥

ε,⊥
,⊥

ε
,⊥

,⊥

b
,

⊥
,

⊥
↑

,
⊥

,
⊥

b
,

⊥
,

⊥
↑

,
⊥

,
⊥

a
,

⊥
,

⊥
c
,

⊥
,

⊥
↑

,
⊥

,
⊥

↑
,

⊥
,

⊥
↑

,
⊥

,
⊥

b
,

⊥
,

⊥
↑

,
⊥

,
⊥

b
,

⊥
,

⊥
↑

,
⊥

,
⊥

a
,

⊥
,

⊥
c
,

⊥
,

⊥
↑

,
⊥

,
⊥

↑
,

⊥
,

⊥
↑

,
⊥

,
⊥

b
,

⊥
,

⊥
↑

,
⊥

,
⊥

b
,

⊥
,

⊥
↑

,
⊥

,
⊥

a
,

⊥
,

⊥
c
,

⊥
,

⊥
↑

,
⊥

,
⊥

↑
,

⊥
,

⊥
↑

,
⊥

,
⊥

c,⊥
,⊥

c,⊥
,⊥

c,⊥
,⊥

{c}
,⊥

,⊥

ε
,⊥

,⊥

c,⊥
,⊥

c,⊥
,⊥

c,⊥
,⊥

{c}
,⊥

,⊥

ε
,⊥

,⊥

a,⊥
,⊥

a,⊥
,⊥

Figure
5.15

T
he

1-degree
m

atching
P

D
A

for
distance

d,m
axim

um
num

ber
oferrors

k
=

2,and
pattern

tree
P

illustrated
Figure

5.1a.
T

he
1-degree

edit
operations

are
assigned

their
costs

using
the

m
etric

cost
function

described
in

Table
5.1.

1-degree matching automaton for the (constrained) 1-degree edit distance 115

2. For each position i ∈ {2, . . . , |p|} and number of errors l ∈ {0, . . . , k − 1}: If pi ̸= ↑, then
for each a ∈ Σ \ {pi} such that l + γ(pi, a) ≤ k, set δ

(
(i− 1)l, a

)
←

{
il+γ(pi,a)}.

• We change Step 7 (Add transitions for insertion operations.) as follows:

1. (Add transitions from/into states at main rows.) For each position i ∈ {2, . . . , |p|}, number
of errors l ∈ {0, . . . , k − 1}, and symbol a ∈ Σ such that l + γ(λ, a) ≤ k:

a. Set δ
(
(i− 1)l, a

)
← δ

(
(i− 1)l, a

)
∪

{
(i− 1)l+γ(λ,a)

1
}

.

b. Set δ
(
(i− 1)l+γ(λ,a)

1 , ↑
)
←

{
(i− 1)l+γ(λ,a)}.

2. (Add transitions between auxiliary states.) For each position i ∈ {2, . . . , |p|}, number of
errors l ∈ {1, . . . , k − 1}, value s ∈ {1, . . . , l}, and symbol a ∈ Σ such that l + γ(λ, a) ≤ k:

a. Set δ
(
(i− 1)l

s, a
)
←

{
(i− 1)l+γ(λ,a)

s+1
}

.

b. Set δ
(
(i− 1)l+γ(λ,a)

s+1 , ↑
)
←

{
(i− 1)l+γ(λ,a)

s

}
.

• We change Step 8 (Add transitions for deletion operations.) as follows:

– For each position i ∈ {2, . . . , |p| − 2} and number of errors l ∈ {0, . . . , k− 1}: If pi ∈ Σ and
l + cost ≤ k, where

cost = W p
2,W p

1,i
−1 −W p

2,i−1,

then the proper bottom-up subtree of p that starts at position i can be deleted. This can
be done by setting

δ
(
(i− 1)l, ε

)
←

{
(W p

1,i − 1)l+cost} .

By applying the changes described above to Algorithm 5.48, we construct an ε-NFA accepting
the pattern dictionary L(prefBar(P), k, d) for a pattern tree P, maximum number of errors k,
and distance d. The automaton is built in time O

(
k2 · |p|

)
. The proof of the correctness of the

algorithm can be based on reasoning similar to that presented in the proof of Lemma 5.49. By
adding a loop transition for every possible input symbol to the start state of the ε-NFA, we create
the 1-degree matching ε-NFA for d. See Figure 5.16 for an example.

5.6.2.3 Simulation of the 1-degree matching ε-NFA for the 1-degree edit
distance by dynamic programming

We can use the 1-degree matching ε-NFA for d as a basis for the matching algorithm by
transforming it into a DFA or simulating it in a deterministic way. In this dissertation thesis,
we focus on the latter approach. We present an algorithm based on dynamic programming that
can be seen as a simulation of the ε-NFA. Given a pattern tree P and an input tree T in the
prefix bar notation, the algorithm uses the weighted subtree jump table for both prefBar(P) and
prefBar(T). The former table gives us the cost of deleting each proper bottom-up subtree of P,
and the latter table gives the cost of inserting each proper bottom-up subtree of T into P. Note
that the weighted subtree jump table for prefBar(T) contains in fact the cost of subtree deletion
not insertion. However, these costs are equal since we assume that a given cost function is a
metric.

Let Σ be alphabet. Let γ be a metric cost function defined on Σλ. A simulation of the
1-degree matching ε-NFA for d can based on the dynamic programming approach described by
Algorithm 5.50 by applying four changes:

• In Step 1, we compute the weighted subtree jump table W p for p and W t for t using
Algorithm 5.57 instead of the subtree jump table Sp for p and St for t.

116 Main results in inexact tree pattern matching

0 0
start

Σ
∪

{
↑

}

1 01 111 11 221 211 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

2 02 112 12 222 212 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

3 03 113 13 223 213 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

4 04 114 14 224 214 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

5 05 115 15 225 215 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

6 06 116 16 226 216 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

7 07 117 17 227 217 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

8 08 118 18 228 218 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

9 09 119 19 229 219 2 {
b}

↑

{
b}

{
b}

↑ ↑

b

10 0

10 1

10 2

ac

b

b

ε

ε

ε

b
↑

b
↑

a
c

↑
↑

↑

b
↑

b
↑

a
c

↑
↑

↑

b
↑

b
↑

a
c

↑
↑

↑

c

c

c

{c}

c

c

c

{c}

ε

ε

a

a

Figure
5.16

T
he

1-degree
m

atching
ε-N

FA
for

distance
d,m

axim
um

num
ber

oferrors
k

=
2,and

pattern
tree

P
illustrated

Figure
5.1a.

T
he

1-degree
edit

operations
are

assigned
their

costs
using

the
m

etric
cost

function
described

in
Table

5.1.

1-degree matching automaton for the (constrained) 1-degree edit distance 117

• We change Step 3a, the computation of the cost of relabeling pi to tj (or match), as follows:

c1 ←

Di−1,j−1 if pi = tj ,

Di−1,j−1 + γ(pi, tj) if pi ̸= tj ∧ pi, tj ̸= ↑,
∞ otherwise.

• We change Step 3b, the computation of the cost of deleting a substring pi′...i from p, where
i′ ∈ {2, . . . , i− 1} and pi′...i represents a proper bottom-up subtree of P, as follows:

c2 ←

{
Dpos,j + cost if 3 ≤ i < |p| ∧ pi = ↑,
∞ otherwise,

where

– cost = W p
2,i −W 2,W p

1,i
represents the cost of deleting the bottom-up subtree pi′...i and

– pos = W p
1,i represents the position of the symbol in p that immediately precedes the

substring pi′...i; that is the position i′ − 1.

• We change Step 3c, the computation of the cost of inserting a substring tj′...j into p (at
position i + 1), where 2 ≤ j′ < j and tj′...j represents a proper bottom-up subtree of T , as
follows:

c3 ←

{
Di,pos + cost if 3 ≤ j < |t| ∧ i < |p| ∧ tj = ↑,
∞ otherwise,

where

– cost = W t
2,j −W 2,W t

1,j
represents the cost of inserting the bottom-up subtree tj′...j and

– pos = W t
1,j represents the position of the symbol in t immediately preceding the substring

tj′...j ; that is the position j′ − 1.

By applying these changes to Algorithm 5.50, we obtain a dynamic programming algorithm for
the NFFOBI tree pattern matching problem under d. Its correctness can be proved analogously
as the correctness of Algorithm 5.50. Moreover, we can apply the same improvements as we did
for Algorithm 5.50:

• All values Di,j > k in the array can be replaced by the value ∞ representing a number of
errors greater than k.

• Occurrences can be reported on the fly while filling the array instead of waiting until the
whole array is filled.

• The weighted subtree jump table for t can be computed on the fly so that string t is by the
algorithm read only once. First, values in the first dimension correspond to values of the
ordinary subtree jump table and these values can be computed on the fly; see Lemma 5.52.
Second, each value in the second dimension depends only on preceding values.

• For similar reasons as discussed in the proof of Theorem 5.54, every column can be computed
using at most 2k previous columns. Thus, we do not need to store the whole weighted subtree
jump table for t but only the previous 2k values.

Using these improvements, it is easy to see that the algorithm can be implemented so that
the time and space complexity of the dynamic programming approach remain the same as those
given by Theorems 5.53 and 5.54, respectively.

We note that we also proposed an alternative version of the simulation of the 1-degree matching
ε-NFA for d by dynamic programming [158]. The main idea behind the alternative algorithm is

118 Main results in inexact tree pattern matching

the same as the idea of the alternative version of the simulation of the 1-degree matching ε-NFA
for ds that we described at the end of Section 5.5.3. The alternative approach does not need
the weighted subtree jump table for the input tree. It can be implemented to use O(km) space.
However, the time complexity of this approach is O(kmn), where k is the maximum number of
errors allowed, m is the number of nodes in the pattern tree, and n is the number of nodes in the
input tree.

5.7 Summary
Inspired by techniques for the problem of inexact string pattern matching described in Section 4.1.1,
we showed that the string automata approach could also be used to solve the inexact tree pattern
matching problem. Specifically, we focused on the online version of the NFFOBI tree pattern
matching problem for ordered unranked trees. To measure the similarity between trees, we used
four different edit distances: the constrained simple 1-degree edit distance dc

s , the constrained
1-degree edit distance dc, the simple 1-degree edit distance ds, and the 1-degree edit distance
d. The first two distances are novel variants of the 1-degree edit distance in which deletion
and insertion operations cannot be used recursively to insert or delete a subtree of any size.
We introduced the constrained simple 1-degree edit distance and the constrained 1-degree edit
distance in Section 5.1.

We based our approach on reducing the NFFOBI tree pattern matching problem to a string
matching problem; see Problem 5.59. For string representation of trees, we used the prefix
bar notation. It follows from the substring property of this notation that if a pattern tree P
matches a bottom-up subtree S of an input tree T , then prefBar(P) matches prefBar(S), which
is a substring of prefBar(T). To recognize that prefBar(P) matches prefBar(S), we defined four
novel (string) edit distances so that the distance between two strings encoding trees is the same
as the corresponding (tree) edit distance between the underlying trees.

▶ Problem 5.59 (NFFOBI tree pattern matching problem for ordered unranked trees in the prefix
bar notation). Let Σ be an alphabet. Let t, p ∈ L(Σ, ↑). Let k ≥ 0. Let f be equal either to
ds, dc

s , d, or dc. Given t, p, k, and f , the NFFOBI tree pattern matching problem under f for
ordered unranked trees in the prefix bar notation is to find every substring tj′...j of t, where
1 ≤ j′ < j ≤ |t|, such that tj′...j ∈ L(Σ, ↑) and f(p, tj′...j) ≤ k.

Our proposed solution extends arbology research by adapting the principles of the string
automata approach to the inexact string pattern matching in trees. In the inexact string pattern
matching, the goal is to find positions j in the text t such that there is a suffix of t1,...,j that
matches a given pattern p with k or fewer errors. The same holds for our inexact tree pattern
matching problem. However, it follows from the prefix bar notation that each of the reported
positions corresponds to a position of the bar symbol in the input tree. This is because the
position corresponds to the end position of a pattern occurrence, and each such occurrence is a
bottom-up subtree of the input tree whose encoding always ends with the bar symbol. For similar
reasons, each occurrence always starts at a position that does not contain the bar symbol. The
start position for each occurrence can be easily computed in time linear to its size, or they can be
precomputed beforehand while transforming the input tree to its prefix bar notation. Moreover,
if the original input tree structure is available, we can connect each bar symbol in its prefix bar
notation to the corresponding node. Thus, instead of reporting end positions in the input string
as occurrences, we can return the root nodes of the corresponding bottom-up subtrees.

Given a pattern tree P and a maximum number of allowed errors k, the main idea of our
automata-based approach was to identify the pattern dictionary, the set of all strings representing
the trees whose distance from P is at most k. Then, we built a dictionary automaton called a
1-degree matching automaton.

Because the pattern dictionary is always a finite language, it is possible to construct the
1-degree matching automaton as a finite automaton. To find the positions of all the occurrences

Summary 119

of the pattern tree in a given input tree T , the 1-degree matching automaton is run on prefBar(T).
The automaton then reports a match every time it goes through a final state. In other words,
the automaton can locate all occurrences of a pattern tree in any given input tree. However, we
note that a finite automaton cannot recognize whether the input string is the valid prefix bar
representation of a tree. This is because the language L(Σ, ↑) is not regular.

For each of the four variants of the NFFOBI tree pattern matching problems, we presented
an algorithm that constructed the 1-degree matching automaton as an ε-NFA. This automaton
can then be transformed into an equivalent DFA. Assuming that the time necessary to compute
a transition from each state is constant, the DFA can locate all pattern occurrences in time that
is linear to the input size. However, this approach comes with high state complexity that limits
its practicality. In Section 5.4.1, we proved a non-trivial upper bound on the state complexity of
the 1-degree matching DFA for dc

s , which is O
(
|Σ|k · k ·mk+1)

, where m is the number of nodes
of the pattern tree and k is the maximum number of errors allowed.

As an alternative approach, we presented an algorithm based on dynamic programming
for each of the four variants of the NFFOBI tree pattern matching problem. As discussed in
Section 4.1.2, dynamic programming is the most commonly used approach for computing tree
edit distance and solving inexact tree pattern matching problems. However, existing methods
lack clear references to a systematic approach to the standard theory of formal languages and
automata. We showed that each of our dynamic programming algorithms could be seen as a way
of simulating the corresponding 1-degree matching ε-NFA. Given a pattern tree and an input
tree with m and n nodes, respectively, our dynamic programming approach comes with O(mn)
time complexity and O(mk) space complexity. For the NFFOBI tree pattern matching problem
under dc

s , the space complexity is O(m).
In this chapter, we assumed trees to be unranked. We note that ranked trees can be also

represented using the prefix bar notation and processed using the methods proposed in this
chapter. However, insertion and deletion operations change the arity of the parent of the node
that is being inserted or deleted. Thus, applying a set of edit operations can produce an invalid
ranked tree. This issue can be addressed, for example, by changing the set of edit operations so
that each insertion and deletion operations also change the parent’s label. Moreover, relabeling
operations should only change the label of a node to a label with the same rank. This can be a
subject of further research.

In the domain of string automata approach to the problem of inexact tree pattern matching,
we suggest the following directions for future research:

• an experimental evaluation of algorithms introduced in this chapter,

• an exploration of bit parallelism as a way of simulating the proposed nondeterministic finite
automata,

• an investigation of the properties of the dynamic programming array and an exploration of
whether the properties can be used to improve the algorithms introduced in this chapter,

• an exploration of automata approach to inexact tree pattern matching under other edit
distances and for different types of trees, and

• further inspection of the space complexity of the deterministic finite automata.

Moreover, to our knowledge, there are no known solutions to the inexact tree pattern matching
problems that are based on tree automata. Thus, future research can address this gap.

120 Main results in inexact tree pattern matching

Chapter 6

Main results in tree indexing

In this chapter, we focus on the problem of tree pattern matching, where patterns are linear
and allowed to contain path wildcards. Given such a pattern, we look for its exact occurrences
in top-down subtrees or subtrees of a given input tree. Specifically, using the SNINWE classi-
fication terminology, we focus on three tree pattern matching problems: LFFOTE, LFFOSE,
and L(PW)FOTE. Apart from these problems, we also propose a solution to a variant of the
L(PW)FOTE tree pattern matching problem where pattern trees are assumed to be fully-gapped;
that is, they contain the maximum number of path wildcards. Our primary focus is on ordered
unranked trees. However, in the last section of this chapter, we briefly discuss adjusting our
methods for trees that are ranked, unordered, or both.

We assume that all tree pattern matching problems considered in this chapter come in the
offline variant. In other words, we focus on indexed searching: a given input tree is preprocessed
and its index, which can be used to speed the search later, is built. Specifically, we propose four
indexing structures that are based on string automata. Namely, we present

rootpath automaton that is an index of all the rootpaths of an ordered labeled tree,

path automaton that is an index of all the paths of an ordered labeled tree,

fully-gapped rootpath automaton that is an index of an ordered labeled tree for every linear
fully-gapped tree for which there exists a matching rootpath in the indexed tree, and

gapped rootpath automaton that is an index of an ordered labeled tree for every linear
gapped tree for which there exists a matching rootpath in the indexed tree.

Our proposed solutions extend arbology research by adapting the principles of the automata
approach to string indexing discussed in Section 4.2.1 for trees.

The content of this chapter is partially based on our two conference papers [160], [161] and a
journal article [162]. However, in those publications, we tailored the methods discussed in this
chapter specifically to XML. In this chapter, we present our results more generally considering
arbitrary ordered labeled (unranked) trees. The explanation of individual methods is also much
more detailed, and we present them in the context of the SNINWE classification. Moreover,
the path automaton is only described in this dissertation thesis and not in the above-mentioned
publications.

Before we introduce our automata-based indexing methods, we first formally define the
problems that they aim to solve; see Section 6.1. Then, in Section 6.2, we provide a general
overview of our automata approach. In the four sections that follow, we present our automata-
based indexes: rootpath automaton in Section 6.3, path automaton in Section 6.4, fully-gapped

121

122 Main results in tree indexing

a1

a2

a3

c4

a5

b6 b7

a8

c9

a10

c11

b12

b13

b14

T :

Figure 6.1 An ordered labed tree T over alphabet {a, b, c} that we use throughout this chapter as an
example of the input tree that is being indexed.

a

a

a

P1: a

b

P2: a

a

b

P3:

Figure 6.2 Linear ordered labeled (pattern) trees over alphabet {a, b, c}.

rootpath automaton in Section 6.5, and gapped rootpath automaton in Section 6.6. Finally, we
conclude this chapter with a summary in Section 6.7.

Throughout this chapter, we demonstrate our approach on the input tree illustrated in
Figure 6.1.

6.1 Problem statement
This chapter focuses on the exact tree pattern matching problem for ordered labeled trees and
linear patterns. In this section, we formally define four variants of this problem based on whether
pattern trees are allowed to contain path wildcards and whether we look for occurrences in the
top-down subtrees or subtrees of the input tree. We use the SNINWE classification introduced in
Section 3.1 to define these problems.

We start with the LFFOTE tree pattern matching problem, the simplest of the four problems
we aim to solve in this chapter. In this problem, we consider patterns to be linear and fixed. Such
a pattern matches the input tree if there exists a corresponding isomorphic rootpath in the input
tree.

▶ Problem 6.1 (LFFOTE tree pattern matching problem). Let T and P be ordered labeled trees.
Furthermore, let P be linear. The LFFOTE tree pattern matching problem is to return the set of
all nodes v ∈ V (T) such that P ≃ T |v.

In other words, a node v ∈ V (T) is included in the output of the LFFOTE tree pattern
matching problem if and only if the pattern tree and the rootpath T |v are isomorphic trees. For
example, consider the pattern trees P1,P2, and P3 illustrated in Figure 6.2 and the input tree T
illustrated in Figure 6.1. There are two occurrences of P1 in T since P ≃ T |a3 and P ≃ T |a10 .
For pattern tree P2, there is one occurrence since P2 ≃ T |b12 . Finally, there are two occurrences
of P3 in T since P3 ≃ T |b6 and P3 ≃ T |b7 .

In the context of XML and XPath, the LFFOTE tree pattern matching problem corresponds
to evaluating XPath(/) queries; that is, queries that consist only of the /-axis and the node test

Problem statement 123

for node labels. For example, the pattern trees P1,P2, and P3 illustrated in Figure 6.2 can be
seen as queries /a/a/a, /a/b, and /a/a/b, respectively.

The next problem we aim to solve in this chapter is similar to the one we just defined. However,
we change the way of matching, so instead of matching patterns to the top-down subtrees of the
input tree, we match them to its subtrees.

▶ Problem 6.2 (LFFOSE tree pattern matching problem). Let T and P be ordered labeled trees.
Furthermore, let P be linear. The LFFOSE tree pattern matching problem is to return the set of
all nodes v ∈ V (T) for which there exists a node u ∈ V (T) such that P ≃ T |uv .

In other words, we look for the subtrees in the input tree that are isomorphic to a given pattern
tree, and since the pattern tree is linear, we are interested only in linear subtrees of the input
tree. That is, we are interested in its paths. As the output of the LFFOSE tree pattern matching
problem, we return nodes such that each of them corresponds to the leaf of an isomorphic path.
For example, consider the pattern trees P1,P2, and P3 illustrated in Figure 6.2 and the input
tree T illustrated in Figure 6.1. There are two occurrences of P1 and P3 in T for similar reasons
as we explained in the context of the LFFOTE tree pattern matching problem. However, P2
occurs not only at node b12, but also at nodes b6 and b7 since P2 ≃ T |a

5

b6 and P2 ≃ T |a
5

b7 . As
the example suggests, there is a relationship between the LFFOTE problem and the LFFOSE
problem. For a pattern tree P and an input tree T , each node included in the output of the
former problem signals the occurrence of P in T for the latter problem. This is because every
top-down subtree is a subtree.

Again, we can look at the LFFOSE tree pattern matching problem in the context of XML
and XPath. In this case, we are interested in evaluating a set of queries that is a subset of
XPath(/, //) queries. Specifically, given an alphabet Σ representing all possible element names in
an XML document, the LFFOSE tree pattern matching problem corresponds to the evaluation of
XPath queries generated by the following regular grammar:(

{S, A, B}, Σ ∪ {/, //}, {S → //A} ∪ {A→ a | aB : a ∈ Σ} ∪ {B → /A}, S
)
.

In other words, we consider queries that start with //-axis and continue only with /-axis.
For example, the pattern trees P1,P2, and P3 illustrated in Figure 6.2 can be seen as queries
//a/a/a, //a/b, and //a/a/b, respectively.

The next problem we consider in this chapter allows patterns to contain path wildcards. We
recall that function PWMatch(P, T |v) is true if and only if T |v is isomorphic to some extension
of P, which is obtained by substituting each occurrence of path wildcard for appropriate path in
of T or the empty tree. See Definition 3.6 and Definition 2.28.

▶ Problem 6.3 (L(PW)FOTE tree pattern matching problem). Let T be an ordered labeled tree.
Let P be a linear gapped tree. The L(PW)FOTE tree pattern matching problem is to return the
set of all nodes v ∈ V (T) such that PWMatch(P, T |v) is true.

For example, consider the linear gapped pattern trees P4,P5 and P6 in Figure 6.3. There is one
occurrence of P4 in T at node c9 because if the path wildcard is substituted for a linear tree of size
one whose root is labeled by a, then P4 isomorphic to T |c9 . Next, there are five occurrences of P5
in T at nodes a2, a3, a5, a8, and a10. Both PWMatch(P5, T |a2) and PWMatch(P5, T |a5) are true
because if the path wildcard in P5 is substituted for the empty tree, then P5 becomes isomorphic
to both T |a2 and T |a5 . As for the remaining three occurrences, both PWMatch(P5, T |a3) and
PWMatch(P5, T |a10) are true because P5[a]≀ ≃ T |a3 ≃ T |a10 , and PWMatch(P5, T |a8) is true
because P5[ab]≀ ≃ T |a8 . Finally, P6 matches the input tree at node c9 since P6[aa, a]≀ ≃ T |c9 .

In the context of XML and XPath, we can see linear gapped pattern trees as XPath(/, //)
queries. For example, the pattern trees P4,P5, and P6 illustrated in Figure 6.3 can be seen as
queries /a/a/b//c, /a//a, and //b//c, respectively.

Note that if a given pattern tree does not contain any path wildcard, then the output of the
L(PW)FOTE tree pattern matching problem is the same as the output of the LFFOTE tree

124 Main results in tree indexing

a

a

b

≀

c

P4: a

≀

a

P5: ≀

b

≀

c

P6:

Figure 6.3 Linear gapped (pattern) trees over alphabet {a, b, c}∪{≀}. Note that tree P6 is fully-gapped.

pattern matching problem. Moreover, suppose that a given pattern tree contains only one path
wildcard in its root. In that case, the output of the L(PW)FOTE tree pattern matching problem
is the same as the output of the LFFOSE tree pattern matching if we consider the input of the
latter problem to be the pattern tree from the former without the path wildcard.

The last problem we define is a variant of the L(PW)FOTE tree pattern matching problem
where every pattern tree is assumed to be linear and fully-gapped. A linear fully-gapped tree is a
linear gapped tree with the maximum number of path wildcards. An example of a linear fully-
gapped tree is the tree P6 in Figure 6.3. In the context of XML and XPath, linear fully-gapped
trees correspond to XPath(//) queries.

▶ Problem 6.4 (L(PW)FOTE tree pattern matching problem for linear fully-gapped pattern trees).
Let T be an ordered labeled tree. Let P be a linear fully-gapped tree. The L(PW)FOTE tree
pattern matching problem for linear fully-gapped pattern trees is to return the set of all nodes
v ∈ V (T) such that PWMatch(P, T |v) is true.

In the rest of this chapter, we present our automata-based solutions to these problems.
Specifically, we present indexing methods based on string automata that can be used for the
input tree to speed up the searching phase.

6.2 Automata approach
This section contains a general overview of our automata-based approach to problems defined in
the previous section. In order to solve these problems with string automata, we need to encode
trees as strings. We start this section by discussing a convenient linear tree notation. Then, we
describe string versions of problems defined in the previous section and conclude by presenting
the main ideas behind our automata-based approach.

When representing trees as strings, we always want to choose a linear tree notation suitable for
the problems we aim to solve. For example, it is now not convenient to represent trees using the
prefix bar notation as we did in the previous chapter. This is because we are now not interested
in the bottom-up subtrees of the input tree but in matching pattern trees on the (top-down)
subtrees of the input tree. Since not every (top-down) subtree in the prefix bar notation is a
substring of the prefix bar notation of the input tree, solving our problems with this notation
would be unnecessarily complicated.

To choose a convenient linear tree notation, we use the fact that our pattern trees are linear.
Therefore, matching to top-down subtrees corresponds to matching to rootpaths, and matching
to subtrees corresponds to matching to paths. In other words, it seems helpful to decompose the
input tree into its (root)paths and match our patterns on them. Moreover, since both rootpaths
and paths are parts of stringpaths, we can decompose the input tree into stringpaths. Thus, in

Automata approach 125

this chapter, we represent trees using the path notation described in Section 2.4.2. Moreover, we
use the fact that all pattern trees are linear, and for them, we use the simpler variant of the path
notation called the simple path notation. This notation was also described in Section 2.4.2.

The next step is to determine the relationship between linear pattern trees in the simple path
notation and an input tree in the path notation. Specifically, we need to examine what it means
for a pattern tree to match a (top-down) subtree when we represent them as strings using the
notation mentioned above.

First, we consider linear fixed patterns such as those illustrated in Figure 6.2. We can see
the process of matching a given linear fixed pattern to the top-down subtrees (rootpaths) of the
input tree as matching the simple path notation of the pattern tree to “prefixes” of strings in
the path notation of the input tree. Specifically, if a pattern tree P over alphabet Σ matches
a rootpath in the input tree T over Σ that is a part of a stringpath S, then simplePath(P)
matches a prefix of t ↓ Σ (recall Definition 2.1), where t ∈ path(T) represents the stringpath
S. For example, consider the pattern tree P1 illustrated in Figure 6.2 whose simple path
notation is aaa. Let T be the input tree illustrated in Figure 6.1. It holds that path(T) =
{a1a1a1c, a2a1b, a2a2b1a1c, a2a3a1c, a3b1b1b}. There are two occurrences of P1 in T because
aaa is a prefix of a1a1a1c ↓ {a, b, c} and a2a3a1c ↓ {a, b, c}. In other words, Problem 6.1 for
trees in the path notation corresponds to matching patterns on “prefixes” of strings in the path
notation of the input tree.

Now, consider that instead of matching a linear fixed pattern to the top-down subtrees of the
input tree, we match it to its subtrees (paths). This problem corresponds to matching the simple
path notation of the pattern to “substrings” of strings in the path notation of the input tree.
Precisely, if a pattern tree P matches a path in the input tree T that is a part of a stringpath S,
then simplePath(P) matches a substring of t ↓ Σ, where t ∈ path(T) represents the stringpath
S. For example, there are three occurrences of the pattern tree P2 illustrated in Figure 6.2
in the input tree illustrated in Figure 6.1 because simplePath(P) = ab is a substring of strings
a2a1b ↓ {a, b, c}, a2a2b1a1c ↓ {a, b, c}, and a3b1b1b ↓ {a, b, c}. In other words, Problem 6.2 for
trees in the path notation corresponds to matching patterns on “substrings” of strings in the path
notation of the input tree.

In Problems 6.3 and 6.4, pattern trees are allowed to contain path wildcards. First, we examine
what it means for a linear fully-gapped pattern tree to match a (top-down) subtree of the input
tree when trees are represented using the path notation. Given a linear fully-gapped pattern tree P
over Σ∪{≀}, the length of its simple path notation is always even. Furthermore, each odd position
contains the path wildcard, and each even position contains a symbol from Σ. This property can
be used to simplify the encoding of the pattern. We can omit the path wildcards in its string
representation and only keeping them in mind during the searching phase. If P matches a top-down
subtree (rootpath) in a given input tree T that is a part of a stringpath S, then simplePath(P) ↓ Σ
matches a subsequence of t ↓ Σ, where t ∈ path(T) represents the stringpath S. For example,
consider the pattern tree P6 illustrated in Figure 6.3, where simplePath(P6) = ≀b ≀ c. There is one
occurrence of P6 in the input tree illustrated in Figure 6.1 since simplePath(P6) ↓ {a, b, c} is a
subsequence of a2a2b1a1c ↓ {a, b, c}. In other words, Problem 6.4 for trees in the path notation
corresponds to matching patterns on “subsequences” of strings in the path notation of the input
tree.

Finally, we examine Problem 6.3, where pattern trees are also allowed to contain path wildcards,
but they do not have to be fully-gapped. In this case, we cannot ignore path wildcards in the
string representation of the pattern. A path wildcard is during the searching interpreted as an
unbounded gap; it can match an arbitrary substring of any length (even zero). If a gapped
pattern tree P matches a top-down subtree (rootpath) in a given input tree T that is a part of
a stringpath S, then simplePath(P) matches a prefix of t ↓ Σ, where t ∈ path(T) represents the
stringpath S. For example, there is one occurrence of pattern tree P4 illustrated in Figure 6.3,
where simplePath(P4) = aab ≀ c in the input tree illustrated in Figure 6.1 because aab ≀ c matches
a prefix of a2a2b1a1c ↓ {a, b, c} (the path wildcard is substituted by string a). In other words,

126 Main results in tree indexing

Problem 6.3 corresponds to the problem of matching patterns with unbounded gaps on prefixes
of strings in the path notation of the input tree.

We are ready to describe string versions of the four problems defined in the previous section.
Since we focus on offline variants of these problems, we formulate them as indexing problems.
We assume that strings in the path notation of the input tree are numbered. Recall that we use
L(Σ, k) to denote a string language over Σ≤k, which is the path notation of an ordered labeled
tree over Σ.

▶ Problem 6.5 (Rootpath indexing problem for ordered labeled trees in the path notation). Let Σ
be an alphabet. Let L(Σ, k) =

{
t1, t2, . . . , t|L(Σ,k)|}. The roothpath indexing problem for ordered

labeled trees in the path notation is to build an indexing structure for L(Σ, k) that can be queried
as follows: given a nonempty string p over Σ, return the set of all pairs (i, j) such that p is a
prefix of ti ↓ Σ that ends at position j in ti ↓ Σ.

▶ Problem 6.6 (Path indexing problem for ordered labeled trees in the path notation). Let Σ be an
alphabet. Let L(Σ, k) =

{
t1, t2, . . . , t|L(Σ,k)|}. The path indexing problem for ordered labeled trees

in the path notation is to build an indexing structure for L(Σ, k) that can be queried as follows:
given a nonempty string p over Σ, return the set of all pairs (i, j) such that p is a substring of
ti ↓ Σ that ends at position j in ti ↓ Σ.

▶ Problem 6.7 (Indexing problem for ordered labeled trees in the path notation and linear fully-gapped
pattern trees). Let Σ be an alphabet. Let L(Σ, k) =

{
t1, t2, . . . , t|L(Σ,k)|}. The indexing problem

for ordered labeled trees in the path notation and linear fully-gapped pattern trees is to build an
indexing structure for L(Σ, k) that can be queried as follows: given a nonempty string p over Σ,
return the set of all pairs (i, j) such that p is a subsequence of ti ↓ Σ that ends at position j in
ti ↓ Σ.

▶ Problem 6.8 (Indexing problem for ordered labeled trees in the path notation and linear gapped
pattern trees). Let Σ be an alphabet. Let L(Σ, k) =

{
t1, t2, . . . , t|L(Σ,k)|}. The indexing problem

for ordered labeled trees in the path notation and linear gapped pattern trees is to build an indexing
structure for L(Σ, k) that can be queried as follows: given a nonempty string p over Σ ∪ {≀} that
is the simple path notation of a linear gapped tree over Σ ∪ {≀}, return the set of all pairs (i, j)
such that p matches ti

1...j ↓ Σ. During the matching, symbol ≀ is interpreted as an unbounded
gap that matches any substring of ti ↓ Σ of any length (even zero).

The output of each of the problems mentioned above is a set of pairs (i, j), where i denotes an
occurrence in the i-th stringpath and j points us to the end position of the occurrence. However,
the end position corresponds to a position in the stringpath projected into (sub)alphabet Σ. The
position in the “original” stringpath can be computed by adding (j − 1) to j since there are j − 1
numbers in each stringpath preceding the symbol at position j. Moreover, suppose that to each
non-numerical symbol in every stringpath, we assign a link to the corresponding node. In that
case, we can return nodes that represent the end of the occurrences instead of pairs (i, j).

▶ Lemma 6.9. Let Σ be an alphabet. Let L(Σ, k) =
{

t1, t2, . . . , t|L(Σ,k)|}. Let p be a nonempty
string over Σ (or Σ ∪ {≀}). If p occurs at ti ↓ Σ with end position j, then the corresponding end
position in ti is j + (j − 1).

Proof. This follows from the definition of the path notation; see Definition 2.44. ◀

In the rest of this section, we describe the main ideas of our automata-based solutions to the
problems defined above. First, we explain the construction process. Then, we describe how our
automata-based indexes can be used in the searching phase.

Since every ordered labeled tree has a finite number of rootpaths and paths, it follows that
the indexing structure for Problems 6.5 and 6.6 can be based on a finite automaton. Similarly,
only a finite number of linear (fully-)gapped pattern trees match a given input tree. That is,

Rootpath automaton 127

automata-based indexes for Problems 6.7 and 6.8 have to accept a finite number of strings. Thus,
these indexes can be implemented as finite automata as well.

Let T be an ordered labeled tree over alphabet Σ. Given path(T), we construct a deterministic
finite automaton for every string t ↓ Σ, where t ∈ path(T) such that the automaton accepts the
desired types of patterns. For example, consider Problem 6.5. In this problem, we are interested
in prefixes of strings from path(T). Therefore, we create a deterministic prefix automaton for
each string t ↓ Σ, where t ∈ path(T). These automata can then be combined using the product
construction (see Algorithm 2.10) to obtain a deterministic finite automaton that can be used
as a full index of all the rootpaths of T . The advantage of this approach is the fast searching
phase. If the time necessary to compute a transition from each state is constant, then all pattern
occurrences are located in time linear to the size of the pattern. The disadvantage can be, in
some cases, the space complexity of the index. Alternatively, all deterministic automata can be
traversed simultaneously instead of using the product construction. This approach saves us some
space at the cost of worse time complexity for searching, which is O(| leaves(T)| · |P|), where T is
the indexed tree and P is the pattern tree. However, in parallel systems, each automaton can be
handled by a different computing node.

Our automata-based indexes can be queried as follows: Given the simple path notation
simplePath(P) of a linear pattern tree P, the automaton is run for simplePath(P). If there is
an occurrence of P, then the automaton accepts simplePath(P); otherwise it does not. Our
automata-based indexes can also give the locations of occurrences that can be obtained by
investigating the label of the accepting state.

In the following sections, we present details about constructing our automata-based indexes.
We assume that the ordered labeled tree that is being indexed is unranked. However, in the
last section of this chapter, we briefly discuss adjusting our methods for trees that are ranked,
unordered, or both.

6.3 Rootpath automaton
As a warm-up, we start with the simplest problem, Problem 6.5. Our aim is to build an automaton
that serves as a full index of all the rootpaths of an ordered labeled tree. We call this index the
rootpath automaton. The rootpath automaton can be used to solve the LFFOTE tree pattern
matching problem; see Problem 6.1.

▶ Definition 6.10 (Rootpath automaton). Let T be an ordered labeled tree. The rootpath
automaton for path(T) accepts all the rootpaths of T in the simple path notation.

As outlined in the previous section, we construct all of our automata-based indexes using the
same systematic approach. Given the path notation path(T) of an ordered labeled tree T , we first
construct a deterministic finite automaton for every stringpath in path(T) taking into account
the type of patterns for which we are building the index. Then, we combine these automata using
the product construction. Since rootpaths in the simple path notation correspond to prefixes of
stringpaths in the simple path notation, the first step is to build the prefix automaton for each
stringpath. This construction is described by Algorithm 6.11. The combining step is described by
Algorithm 6.12.

▶ Algorithm 6.11 (Construction of a DFA accepting all the rootpaths of a single stringpath). Let Σ
be an alphabet. Let T be an ordered labeled tree over Σ. Let path(T) =

{
t1, t2, . . . , t| path(T)|}.

Given a string ti ∈ path(T), the algorithm constructs a DFA accepting all the rootpaths in the
simple path notation of the stringpath represented by ti.

1. (Define the set of states.) Every state has a label ji, where i uniquely identifies one stringpath
ti from path(T) and j ∈ {1, . . . , |ti ↓ Σ|} corresponds to a position within ti ↓ Σ.

Set Q← {ji : 0 ≤ j ≤ |ti ↓ Σ|}.

128 Main results in tree indexing

01start 11 21 31 41

M1: a1 a2 a3 c4

02start 12 22 32

M2: a1 a5 b6

03start 13 23 33 43 53

M3: a1 a5 b7 a8 c9

04start 14 24 34 44

M4: a1 a5 a10 c11

05start 15 25 35 45

M5: a1 b12 b13 b14

a a a c

a a b

a a b a c

a a a c

a b b b

Figure 6.4 Deterministic finite automata constructed by Algorithm 6.11 for individual stringpaths
of path(T), where T is the tree illustrated in Figure 6.1. The path notation of T contains following
strings: t1 = a1a1a1c, t2 = a2a1b, t3 = a2a2b1a1c, t4 = a2a3a1c, and t5 = a3b1b1b. By accepting all
nonempty prefixes of ti ↓ {a, b, c}, automaton Mi accepts all the rootpaths in the simple path notation
of stringpath ti.

2. (Define the start state.) Set q0 ← 0i.

3. (Define the set of final states.) Set F ← Q \ {q0}.

4. (Define transitions.) Let x = ti ↓ Σ. For each position j in x, set δ
(
(j − 1)i, xj

)
← ji.

5. (Return.) Return M = (Q, Σ, δ, q0, F).

The correctness of Algorithm 6.11 follows from two observations. First, as we discussed in
Section 6.2, the simple path notation of a rootpath that is a part of stringpath S of an input
tree T corresponds to a prefix of t ↓ Σ, where t ∈ path(T) represents the stringpath S. Second,
Algorithm 6.11 is a simple modification of Algorithm 4.16.

Consider the ordered labeled tree T illustrated in Figure 6.1. We show the deterministic finite
automata constructed by Algorithm 6.11 for individual stringpaths of path(T) in Figure 6.4.

▶ Algorithm 6.12 (Construction of deterministic rootpath automaton). Let Σ be an alphabet. Let
T be an ordered labeled tree over Σ. Given path(T), the algorithm constructs a deterministic
rootpath automaton for path(T). The stringpaths in path(T) are assumed to be numbered from
1 to | path(T)|. We denote the i-th stringpath of path(T) by ti.

1. (Construct automata for stringpaths.) For each stringpath ti in path(T), build a DFA Mi by
Algorithm 6.11.

2. (Product construction.) Combine automata M1, . . . ,M| path(T)| using Algorithm 2.10 into a
deterministic finite automaton M.

3. (Return.) Return M.

▶ Theorem 6.13 (Correctness of Algorithm 6.12). Let Σ be an alphabet. Let T be an ordered
labeled tree over Σ. Given path(T), Algorithm 6.12 constructs a deterministic rootpath automaton
for path(T).

Rootpath automaton 129

01, 02, 03, 04, 05

start

11, 12, 13, 14, 15 21, 22, 23, 24, ∅5 31, ∅2, ∅3, 34, ∅5 41, ∅2, ∅3, 44, ∅5

∅1, 32, 33, ∅4, ∅5

∅1, ∅2, 43, ∅4, ∅5

∅1, ∅2, 53, ∅4, ∅5

∅1, ∅2, ∅3, ∅4, 25

∅1, ∅2, ∅3, ∅4, 35

∅1, ∅2, ∅3, ∅4, 45

a1 a2, a5 a3, a10 c4, c11

b6, b7

a8

c9

b12

b13

b14

a a a c

b

a

c

b

b

b

Figure 6.5 The deterministic rootpath automaton constructed by Algorithm 6.12 for the ordered
labeled tree T illustrated in Figure 6.1, where path(T) = {a1a1a1c, a2a1b, a2a2b1a1c, a2a3a1c, a3b1b1b}.

Proof. In Step 1, a DFA Mi is constructed for each stringpath ti in path(T) so that it accepts
all the rootpaths in the simple path notation of the stringpath represented by ti. In Step 2,
the automata are combined so that the resulting automaton accepts language L(M1) ∪ · · · ∪
L

(
M| path(T)|

)
. Thus, the resulting automaton accepts every rootpath of T in the simple path

notation. Moreover, since automata M1 . . . ,Mk are deterministic, their combination using
Algorithm 2.10 also yields a deterministic automaton. ◀

It is not hard to see that the underlying graph structure of the rootpath automaton constructed
by Algorithm 6.12 is a tree. See an example in Figure 6.5. Every state is a quintuple since we
combined five automata using the product construction. Every i-th element in a quintuple in a
final state reports a possible occurrence of a pattern. For example, the pattern aaa is accepted
by the automaton in the final state (31, ∅2, ∅3, 34, ∅5). The label 31 denotes an occurrence of the
pattern in the first stringpath, that is a1a1a1c, in position 5. Recall that to obtain this position,
we need to add (3 − 1) to 3; see Lemma 6.9. Similarly, label 34 reports an occurrence of the
pattern in the fourth stringpath, that is a2a3a1c, also in position 5. The labels ∅2, ∅3, and ∅5
indicate that there is no occurrence of the pattern in the second, third nor fifth stringpath. The
occurrence in the first and fourth stringpath corresponds to node a3 and a10 in the tree illustrated
in Figure 6.1, respectively. However, it is not always the case that elements in a tuple report
different occurrences. For example, the state (11, 12, 13, 14, 15) reports occurrences of pattern a
in each stringpaths in the first position. However, all these occurrences correspond to the same
node, the root node a1. This can be addressed in the implementation, so the space complexity of
individual states is lower. For example, we can label states by pointers to nodes representing
the occurrences instead of numbers identifying the position in a stringpath. Then, states can be
labeled by tuples of various sizes, where the size of a tuple corresponds to the number of unique
occurrences.

Apart from the approach described by Algorithm 6.12, we may take a more direct approach
and construct a deterministic rootpath automaton in a similar way the suffix trie is built; see
Section 4.2.1.1. In other words, the deterministic rootpath automaton can be constructed by
successively processing individual stringpaths and adding them to the automaton. We described
the former approach because we use the same systematic approach in the following sections,
where more complex automata are constructed.

▶ Theorem 6.14 (Number of states of the deterministic rootpath automaton constructed by
Algorithm 6.12). Let Σ be an alphabet. Let T be an ordered labeled tree over Σ. Given path(T),
the automaton constructed by Algorithm 6.12 for path(T) has at most |T |+ 1 states.

130 Main results in tree indexing

Proof. Apart from the start state, every state in the automaton is final. From Definition 6.10,
it follows that every final state of the automaton corresponds to a rootpath in the simple path
notation or a set of isomorphic rootpaths in the simple path notation. Each node v in T uniquely
characterize a rootpath T |v. If each node of T has a distinct label, then no rootpaths are
isomorphic. Thus, there at most |T | non-isomorphic rootpaths. ◀

▶ Theorem 6.15 (Number of transitions of the deterministic rootpath automaton constructed by
Algorithm 6.12). Let Σ be an alphabet. Let T be an ordered labeled tree over Σ. Given path(T),
the automaton constructed by Algorithm 6.12 for path(T) has at most |T | transitions.

Proof. The automaton has a tree-like structure and accepts a finite language. Apart from the
start state, every state has exactly one incoming transition. ◀

In this section, we showed the construction of a deterministic rootpath automaton. In the
following section, we use the same systematic approach as outlined in Algorithm 6.12 in order
to construct a finite automaton that represents a full index of all the paths of a given ordered
labeled tree.

6.4 Path automaton
In this section, we present the path automaton, a finite automaton that serves as a full index of
all the paths of an ordered labeled tree. This automaton can thus be used to solve LFFOSE tree
pattern matching problem; see Problem 6.2.

▶ Definition 6.16 (Path automaton). Let T be an ordered labeled tree. The path automaton for
path(T) accepts all the paths of T in the simple path notation.

We use the same systematic approach to construct the path automaton as we did in the
previous section. Given the path notation path(T) of an ordered labeled tree T , we first construct
a deterministic finite automaton for every stringpath in path(T) taking into account the type of
patterns for which we are building the index. Then, we combine these automata using the product
construction. As we discussed in Section 6.2, paths correspond to substrings of stringpaths if we
represent them as strings using the simple path notation. Thus, the first step is to construct the
factor automaton for every stringpath. We describe this construction in Algorithm 6.17.

▶ Algorithm 6.17 (Construction of an NFA accepting all the paths of a single stringpath). Let Σ
be an alphabet. Let T be an ordered labeled tree over Σ. Let path(T) =

{
t1, t2, . . . , t| path(T)|}.

Given a string ti ∈ path(T), the algorithm constructs an NFA accepting all the paths in the
simple path notation of the stringpath represented by ti.

1. (Define the set of states.) Every state has a label ji, where i uniquely identifies one stringpath
ti from path(T) and j ∈ {1, . . . , |ti ↓ Σ|} corresponds to a position within ti ↓ Σ.

Set Q← {ji : 0 ≤ j ≤ |ti ↓ Σ|}.

2. (Define the start state.) Set q0 ← 0i.

3. (Define the set of final states.) Set F ← Q \ {q0}.

4. (Define transitions.) Let x = ti ↓ Σ. For each position j in x:

a. Set δ((j − 1)i, xj)← {ji}.
b. Set δ(0i, xj)← δ(0i, xj) ∪ {ji}.

5. (Return.) Return M = (Q, Σ, δ, q0, F).

Path automaton 131

03start 13 23 33 43 53

MNFA:

a a b a c

a
b

a
c

03start 13, 23, 43 23 33 43 53

MDFA:

a a b a c

b

c

b
c

Figure 6.6 The nondeterministic finite automaton MNFA constructed by Algorithm 6.17 for stringpath
t3 = a2a2b1a1c from path(T), where T is the tree illustrated in Figure 6.1. The figure also illustrates its
deterministic variant MDFA. By accepting all the nonempty substrings of t3 ↓ {a, b, c}, both automata
accept all the paths in the simple path notation of stringpath t3.

Algorithm 6.17 is a direct modification of Algorithm 4.13. The only difference is in state
labeling and acceptance of the empty string; we assume the set of nodes of pattern trees to be
nonempty.

The finite automaton constructed by Algorithm 6.17 is nondeterministic. To obtain its
equivalent deterministic version, we can use the standard construction algorithm based on the
subset construction; see Algorithm 2.6. In this way, the labels of states of the DFA represent the
end positions of occurrences. For example, consider Figure 6.6, where we illustrate both the NFA
constructed by Algorithm 6.17 and its deterministic variant obtained by the subset construction.
Given the input a, the NFA accepts it in states 13, 23, and 43 which denotes that there are three
occurrences of the path a in the stringpath a2a2b1a1c at position 1 + 0, position 2 + 1, and
position 4 + 3. The DFA gives us the same result since its states contain the corresponding states
in the NFA that led to their construction.

Recall that the DFA obtained by the subset construction does not necessarily have to
be minimal. For example, in Figure 6.7, we show the NFA constructed by Algorithm 6.17
for stringpath t5 = a3b1b1b of the tree illustrated in Figure 6.1. The figure also shows its
corresponding DFA obtained by the subset construction. The DFA is not minimal since states {25}
and {25, 35, 45} are equivalent as well as states {35} and {35, 45}. By merging the corresponding
equivalent states, we save space; however, we lose the ability to correctly report end positions
for some patterns. Namely, for patterns ab and abb. Thus, if we want not only to recognize all
the paths in the input tree but also to correctly report the end positions of occurrences for all
patterns, we cannot minimize the DFA.

The DFA can also be constructed without first constructing the NFA. However, we need to
ensure that states in the DFA are labeled the same way as they would be if we created them
from the NFA. Otherwise, the automaton would only be able to recognize all the paths but not
return the end positions of occurrences.

We can construct the deterministic path automaton similarly as we constructed the determin-
istic rootpath automaton in the previous section. See Algorithm 6.18.

132 Main results in tree indexing

05start 15 25 35 45

MNFA:

a b b b

b
b

b

05start 15 25 35 45

25, 35, 45 35, 45

MDFA:

a b b b

b

b

b

Figure 6.7 The nondeterministic finite automaton MNFA constructed by Algorithm 6.17 for stringpath
t5 = a3b1b1b from path(T), where T is the tree illustrated in Figure 6.1. The figure also illustrates its
deterministic variant MDFA.

▶ Algorithm 6.18 (Construction of the deterministic path automaton). Let Σ be an alphabet. Let
T be an ordered labeled tree over Σ. Given path(T), the algorithm constructs the deterministic
path automaton for path(T). Stringpaths in path(T) are assumed to be numbered from 1 to
| path(T)|. We denote the i-th stringpath of path(T) by ti.

1. (Construct automata for stringpaths.) For each stringpath ti in path(T), build a nondeter-
ministic finite automaton Mi

NFA by Algorithm 6.17.

2. (Turn NFA into DFA.) For each Mi
NFA, construct its equivalent deterministic variant Mi

DFA
using Algorithm 2.6.

3. (Product construction.) Combine automata M1
DFA, . . . ,M| path(T)|

DFA using Algorithm 2.10 into
a deterministic finite automaton M.

4. (Return.) Return M.

Algorithm 6.18 is analogous to Algorithm 6.12. Thus, its correctness can be proved using
similar arguments as those used in the proof of Theorem 6.13.

Given an ordered labeled tree with l leaves, Algorithm 6.18 combines l automata in Step 3.
Thus, every state of the resulting deterministic path automaton is an l-tuple. However, each
element in such a tuple is a set. This is because there can be multiple occurrences of a given
pattern in a single stringpath in contrast to the rootpath automaton, where the pattern can occur
at most at one position in every stringpath. If the path automaton accepts a given pattern, it
follows that the pattern is the simple path notation of a path in the indexed tree. We can obtain
the end positions of the occurrences by investigating the label of the accepting state similarly as
we did in the case of the rootpath automaton.

To prove the state complexity of the deterministic path automaton, we first need to study
the state complexity of the automaton obtained by using the subset construction to the NFA
constructed by Algorithm 6.17. Recall that Theorem 4.14 gives us the number of states of the
minimal deterministic factor automaton. However, as we discussed, we do not want to minimize
our DFA because we would lose the ability to report occurrences.

Fully-gapped rootpath automaton 133

▶ Lemma 6.19 (Number of states of the DFA constructed by Algorithm 6.17 accepting all the paths
of a single stringpath). Let Σ be an alphabet. Let T be an ordered labeled tree over Σ such that
|T | ≥ 2. Let path(T) =

{
t1, t2, . . . , t| path(T)|}. Given a string ti ∈ path(T), the DFA obtained by

the subset construction from the NFA constructed by Algorithm 6.17 for ti has at least |ti ↓ Σ|+ 1
states and at most 2 · |ti ↓ Σ| − 1 states.

Proof. LetM be the NFA constructed by Algorithm 6.17 for ti. LetM′ be the nondeterministic
suffix automaton constructed by Algorithm 4.9 for |ti ↓ Σ|. Clearly, the underlying (unlabeled)
graph structure (the set of states and transitions) of M is isomorphic to the graph structure of
M′; compare Algorithms 6.17 and 4.9. In other words, the two automata differ only in state
labels and their sets of final states. The DFA obtained from M′ using the subset construction
is according to Theorem 4.10 minimal, which means that it has at least |ti ↓ Σ|+ 1 states and
at most 2 · |ti ↓ Σ| − 1 states (see Theorem 4.11). Neither the state labels nor the indication
of final states affect the set of states (and transitions) created during the subset construction.
Thus, the DFA obtained using the subset construction from M has the same underlying graph
structure (the same number of states and transitions) as the DFA obtained from M′ using the
subset construction. ◀

▶ Theorem 6.20 (Number of states of the deterministic path automaton constructed by Algo-
rithm 6.18). Let Σ be an alphabet. Let T be an ordered labeled tree over Σ. Given path(T), the
automaton constructed by Algorithm 6.18 for path(T) has O

(
depth(T)| leaves(T)|) states.

Proof. The automaton constructed by Algorithm 6.18 for path(T) is the result of product of
| path(T)| = | leaves(T)| deterministic finite automata each of which has O(depth(T)) states; see
Lemma 6.19. ◀

Since each state of the deterministic path automaton constructed by Algorithm 6.18 has at
most |Σ| transitions, the automaton has O

(
|Σ| · depth(T)| leaves(T)|) transitions.

In this section, we addressed the problem of path indexing for ordered labeled trees; see
Problem 6.6. In the following two sections, we present automata-based indexes for linear pattern
trees that are allowed to contain path wildcards.

6.5 Fully-gapped rootpath automaton
In this section, we present the fully-gapped rootpath automaton that is an index of an ordered
labeled tree for every linear fully-gapped tree for which there exists a matching rootpath in the
indexed tree. We recall that a linear fully-gapped tree is a linear gapped tree with the maximum
number of path wildcards. An example of a linear fully-gapped tree is the tree P6 in Figure 6.3.
We also recall that since path wildcards are in every linear fully-gapped tree arranged predictably,
we can omit the path wildcards in its string representation and only keep them in mind during
the searching phase. That is, we interpret the pattern string as a sequence of symbols rather than
a compact string.

▶ Definition 6.21 (Fully-gapped rootpath automaton). Let Σ be an alphabet. Let T be an
ordered labeled tree over Σ. The fully-gapped rootpath automaton for path(T) accepts every linear
fully-gapped tree P over Σ∪ {≀} represented as string p where PWMatch(P, T |v) is true for some
v ∈ V (T) and p = simplePath(P) ↓ Σ.

We use the same systematic approach to build the fully-gapped rootpath automaton as we
did in the previous two sections. Given the path notation path(T) of an ordered labeled tree T ,
we first construct a finite automaton for every stringpath in path(T) taking into account the type
of patterns for which we are building the index. See Algorithm 6.22.

134 Main results in tree indexing

▶ Algorithm 6.22 (Construction of an NFA accepting all the linear fully-gapped trees that match
a single stringpath). Let Σ be an alphabet. Let T be an ordered labeled tree over Σ. Let
path(T) =

{
t1, t2, . . . , t| path(T)|}. Given a string ti ∈ path(T), the algorithm constructs a

nondeterministic finite automaton accepting every string p such that p = simplePath(P) ↓ Σ,
where P is a linear fully-gapped tree over Σ ∪ {≀} and PWMatch(P, T |v) is true for some node v
that is a part of stringpath ti.

1. (Define the set of states.) Every state has a label ji, where i uniquely identifies one stringpath
ti from path(T) and j ∈ {1, . . . , |ti ↓ Σ|} corresponds to a position within ti ↓ Σ.

Set Q← {ji : 0 ≤ j ≤ |ti ↓ Σ|}.

2. (Define the start state.) Set q0 ← 0i.

3. (Define the set of final states.) Set F ← Q \ {q0}.

4. (Define transitions.) Let x = ti ↓ Σ. For each position j in x:

a. For each k ∈ {0, . . . , j − 1}, set δ(ki, xj)← δ(ki, xj) ∪ {ji}.

5. (Return.) Return M = (Q, Σ, δ, q0, F).

The correctness of Algorithm 6.22 can be proved using two observations. First, as we discussed
in Section 6.2, matching a linear fully-gapped pattern tree in the simple path notation from which
path wildcards are removed corresponds to looking for a subsequence in stringpaths. Second,
Algorithm 6.22 is a direct modification of Algorithm 4.17.

The finite automaton constructed by Algorithm 6.22 is nondeterministic. To obtain its
equivalent deterministic version, we can use the standard construction algorithm based on the
subset construction; see Algorithm 2.6. The labels of states of such a DFA represent the end
positions of occurrences. For example, consider Figure 6.8, where we illustrate both the NFA
constructed by Algorithm 6.22 and its deterministic variant obtained by the subset construction.
Given the input aa, the NFA accepts it in states 23 and 43. Thus, there are two occurrences of
the linear fully-gapped pattern tree ≀a ≀ a in stringpath a2a2b1a1c at positions 2 + 1 and 4 + 3.
The DFA gives us the same result.

We can construct the deterministic fully-gapped rootpath automaton in the same systematic
approach as we used in the previous two sections. See Algorithm 6.23. The correctness of
Algorithm 6.23 can be proved using similar arguments as those used in the proof of Theorem 6.13.

▶ Algorithm 6.23 (Construction of the deterministic fully-gapped rootpath automaton). Let Σ be an
alphabet. Let T be an ordered labeled tree over Σ. Given path(T), the algorithm constructs the
deterministic fully-gapped rootpath automaton for path(T). Stringpaths in path(T) are assumed
to be numbered from 1 to | path(T)|. We denote the i-th stringpath of path(T) by ti.

1. (Construct automata for stringpaths.) For each stringpath ti in path(T), build a nondeter-
ministic finite automaton Mi

NFA by Algorithm 6.22.

2. (Turn NFA into DFA.) For each Mi
NFA, construct its equivalent deterministic variant Mi

DFA
using Algorithm 2.6.

3. (Product construction.) Combine automata M1
DFA, . . . ,M| path(T)|

DFA using Algorithm 2.10 into
a deterministic finite automaton M.

4. (Return.) Return M.

Fully-gapped rootpath automaton 135

03start 13 23 33 43 53

MNFA:

a a b a c

a
b

a
c

a
c

b
a

c

c

03start 13, 23, 43 23, 43 33 43 53

MDFA:

a a b a c

b

c

b

c

c

a

c

Figure 6.8 The nondeterministic finite automaton MNFA constructed by Algorithm 6.22 for stringpath
t3 = a2a2b1a1c from path(T), where T is the tree illustrated in Figure 6.1. The figure also illustrates its
deterministic variant MDFA. By accepting all nonempty subsequences of t3 ↓ {a, b, c}, both automata
accept all linear fully-gapped trees that match stringpath t3; assuming that each linear fully-gapped tree
is represented in the simple path notation with path wildcards removed.

Similarly, as in the case of the path automaton, the labels of states of the automaton
constructed by Algorithm 6.23 are l-tuples, where l is the number of leaves (and stringpaths) of
the indexed tree. If the automaton accepts a given pattern, we can investigate the label of the
accepting state to obtain the end positions of the occurrences.

In the following theorem, we discuss the state complexity of the deterministic fully-gapped
rootpath automaton constructed for the path notation of an ordered labeled tree. The upper
bound for the number of transitions can then be obtained by multiplying the result by the size of
the alphabet.

▶ Theorem 6.24 (Number of states of the deterministic fully-gapped rootpath automaton constructed
by Algorithm 6.23). Let Σ be an alphabet. Let T be an ordered labeled tree over Σ. Given path(T),
the automaton constructed by Algorithm 6.23 for path(T) has O

(
depth(T)| leaves(T)|) states.

Proof. LetM be the NFA constructed by Algorithm 6.22 for ti. LetM′ be the nondeterministic
subsequence automaton constructed by Algorithm 4.17 for |ti ↓ Σ|. Clearly, the underlying
(unlabeled) graph structure (the set of states and transitions) of M is isomorphic to the graph
structure ofM′; compare Algorithms 6.22 and 4.17. In other words, the two automata differ only
in state labels and their sets of final states. According to Theorem 4.18, the DFA obtained from
M′ using the subset construction has |ti ↓ Σ|+1 states. Neither the state labels nor the indication
of final states affect the set of states (and transitions) created during the subset construction.
Thus, the DFA obtained using the subset construction from M has the same underlying graph
structure (the same number of states and transitions) as the DFA obtained from M′ using the
subset construction. Therefore, the automaton constructed by Algorithm 6.23 for path(T) is
the result of product of | path(T)| = | leaves(T)| deterministic finite automata each of which has
O(depth(T)) states. ◀

136 Main results in tree indexing

In this section, we addressed the indexing problem for ordered labeled trees and linear fully-
gapped pattern trees; see Problem 6.7. In the next section, we look at the last of our indexing
problems, where pattern trees can also contain path wildcards, but they are not necessarily
fully-gapped as we assumed in this section.

6.6 Gapped rootpath automaton
In this section, we address Problem 6.8 by presenting the gapped automaton, a finite automaton
that serves as a full index of an ordered labeled tree T for every linear gapped tree (recall
Definition 3.5) for which there exists a matching rootpath in T . Examples of linear gapped trees
are illustrated in Figure 6.3.

A linear gapped tree in the simple path notation can be seen as a string with gaps. Gaps are
represented by a special symbol ≀, and they are unbounded. Each gap matches a string of any
length (even zero).

▶ Definition 6.25 (Gapped rootpath automaton). Let Σ be an alphabet. Let T be an ordered
labeled tree over Σ. The gapped rootpath automaton for path(T) accepts every linear gapped tree
P over Σ∪{≀} in the simple path notation for which PWMatch(P, T |v) is true for some v ∈ V (T).

We construct the gapped rootpath automaton as a finite automaton using the same systematic
approach as we did in the previous sections. First, we introduce a method for building an
automaton that accepts all linear gapped pattern trees in the simple path notation matching
a rootpath of a given stringpath. See Algorithm 6.26. Given a string ti ∈ path(T), the NFA
constructed by Algorithm 6.26 has 2|ti ↓ Σ|+ 1 states.

▶ Algorithm 6.26 (Construction of an NFA accepting all the linear gapped pattern trees that
match a single stringpath). Let Σ be an alphabet. Let T be an ordered labeled tree over Σ.
Let path(T) =

{
t1, t2, . . . , t| path(T)|}. Given a string ti ∈ path(T), the algorithm constructs an

NFA accepting every linear gapped tree P over Σ ∪ {≀} in the simple path notation such that
PWMatch(P, T |v) is true for some node v that is a part of stringpath ti.

1. (Define the set of states.) Every state has a label ji or j′
i, where i uniquely identifies one

stringpath ti from path(T) and j ∈ {1, . . . , |ti ↓ Σ|} corresponds to a position within ti ↓ Σ.

Set Q← {ji : 0 ≤ j ≤ |ti ↓ Σ|} ∪ {j′
i : 0 ≤ j < |ti ↓ Σ|}.

2. (Define the start state.) Set q0 ← 0i.

3. (Define the set of final states.) Set F ← {ji : 1 ≤ j ≤ |ti ↓ Σ|}.

4. (Define transitions.) States labeled by ji can be seen as states in the prefix automaton for
ti ↓ Σ, and states labeled by j′

i can be seen as states in the subsequence automaton for ti ↓ Σ.
Let x = ti ↓ Σ. For each position j in x:

a. Set δ((j − 1)i, xj)← {ji}.
b. Set δ((j − 1)i, ≀)← {(j − 1)′

i}.
c. For each k ∈ {0, . . . , j − 1}, set δ(k′

i, xj)← δ(k′
i, xj) ∪ {ji}.

5. (Return.) Return M = (Q, Σ, δ, q0, F).

The finite automaton constructed by Algorithm 6.26 can be seen as a combination of the prefix
and the nondeterministic subsequence automaton. States ji correspond to states in the prefix
automaton, and states j′

i correspond to states in the subsequence automaton. The automaton
can read path wildcards only from states labeled by ji, then changes its behavior from the prefix

Gapped rootpath automaton 137

05start 15 25 35 45

0′
5 1′

5 2′
5 3′

5

MNFA:

a b b b

≀ ≀ ≀ ≀a b b b

b b b

b b
b

05start 15 25 35 45

0′
5 1′

5 2′
5 3′

5

25, 35, 45 35, 45

2′
5, 3′

5

MDFA:

a b b b

≀ ≀ ≀ ≀

≀

≀

b
b b

ba

b

b

b

Figure 6.9 The nondeterministic finite automaton MNFA constructed by Algorithm 6.26 for stringpath
t5 = a3b1b1b from path(T), where T is the tree illustrated in Figure 6.1. The figure also illustrates its
deterministic variant MDFA. Both automata accept all linear gapped pattern trees in the simple path
notation that match the stringpath t5.

to the subsequence automaton. In a state that corresponds to the subsequence automaton, we
can read a symbol (not path wildcard) from the input. After that, the automaton returns to its
behavior as the prefix automaton until the next path wildcard.

We show an example of the NFA constructed by Algorithm 6.26 in Figure 6.9. In this figure,
we also illustrate its corresponding DFA obtained using the subset construction. Note that the
DFA is not minimal since, for example, states {35} and {35, 45} are equivalent. However, as in
the case of the path automaton, we do not want to minimize the DFA since we would lose the
ability to report end positions for some patterns correctly.

▶ Theorem 6.27 (Correctness of Algorithm 6.26). Let Σ be an alphabet. Let T be an ordered
labeled tree over Σ. Let path(T) =

{
t1, t2, . . . , t| path(T)|}. Given a string ti ∈ path(T), the

nondeterministic finite automaton constructed by Algorithm 6.26 accepts every linear gapped tree
P over Σ ∪ {≀} in the simple path notation such that PWMatch(P, T |v) is true for some node v
that is a part of stringpath ti.

Proof. The proof falls into two steps. First, we assume that P is a linear gapped tree over
Σ ∪ {≀} such that PWMatch(P, T |v) is true for some node v that is a part of stringpath ti. We
show that simplePath(P) is accepted by the automaton using induction in the size of P:

138 Main results in tree indexing

• Assume |P| = 1. Then, P contains only one node, and the node is not labeled by the path
wildcard. Since PWMatch(P, Tv) is true for some v that is a part of stringpath ti, we get that
simplePath(P) is the prefix of ti ↓ Σ of length one. The automaton accepts this string using
the transition created in Step 4a that leads from the start state 0i to the final state 1i.

• Assume |P| = 2. Then, simplePath(P) = ≀a, where a ∈ Σ, or simplePath(P) = ab, where
a, b ∈ Σ. In the latter case, we get that simplePath(P) is the prefix of ti ↓ Σ of length two.
The automaton accepts this string using two transitions created in Step 4a: the first one leads
from the start state 0i to state 1i and the second one leads from state 1i to the final state 2i.
In the former case, we get that simplePath(P) is a gapped prefix of ti ↓ Σ; symbol ≀ matches a
prefix of ti ↓ Σ of any length (even zero). In the automaton this corresponds to using the
transition created in Step 4b that leads from the start state 0i to state 0′

i. Then, from this
state, the automaton can read any symbol from ti ↓ Σ using a transition created in Step 4c.
Since each new transition created in Step 4c lead to a final state, the automaton accepts the
string.

• Assume |P| ≥ 3 and that the claim holds for every linear gapped tree over Σ ∪ {≀} of smaller
size. The leaf of P is labeled by a symbol from Σ. The parent of the leaf can be labeled either
by symbol from Σ or ≀. If the latter case is true, then let P ′ be the tree obtained from P by
removing its leaf and the parent of the leaf. It is easy to check that P ′ is a linear gapped tree
over Σ ∪ {≀} and PWMatch(P ′, T |u) is true for some node u that is a part of stringpath ti. It
holds that simplePath(P) = simplePath(P ′) ≀ a, where a ∈ Σ. From the induction hypothesis,
it follows that the automaton accepts simplePath(P ′), and thus ends in a final state ji. Since
the suffix of simplePath(P) is ≀a, the automaton can move from state ji to state j′

i using a
transition created in Step 4b and then to some final state using a transition created in Step 4c.
Thus, the automaton accepts simplePath(P).
Assume that the parent of the leaf of P is labeled by symbol from Σ. Then, let P ′ be the
tree obtained from P by removing its leaf. It is easy to check that P ′ is a linear gapped tree
over Σ ∪ {≀} and PWMatch(P ′, T |u) is true for some node u that is a part of stringpath ti. It
holds that simplePath(P) = simplePath(P ′)a, where a ∈ Σ. From the induction hypothesis, it
follows that the automaton accepts simplePath(P ′), and thus ends in a final state ji. Since
the suffix of simplePath(P) is a ∈ Σ, the automaton moves from state ji to state (j + 1)i using
a transition created in Step 4a. Thus, the automaton accepts simplePath(P).

Now, we assume that string x is accepted by the automaton. We show that x is the simple
path notation of a linear gapped tree P over Σ ∪ {≀} and PWMatch(P, T |v) is true for some node
v that is a part of stringpath ti. We use induction in the length of x.

• Assume |x| = 1. Then, x is accepted in state 1i using the transition created in Step 4a that
leads from 0i to 1i. Thus, x = a, where a ∈ Σ. This string is the simple path notation of a
linear gapped tree over Σ∪ {≀} that contains only one node, and the node is labeled by a. Let
P be that tree. Since the label of the transition that leads from 0i to 1i corresponds to the
label of the root of stringpath ti, we get that PWMatch(P, T |v) is true for v equal to the root
of stringpath ti.

• Assume |x| = 2. Then, there are two possible sequences of transitions that the automaton
used in order to accept x. First, x can be accepted using a pair of transitions created in
Step 4a that leads from 0i to 2i. Second, x can be accepted by using a transition created in
Step 4b that leads to a state 0′

i followed by a transition created in Step 4c. In the first case,
x = ab, where a, b ∈ Σ. This string is the simple path notation of a linear gapped tree over
Σ ∪ {≀} that contains two nodes, the root labeled by a and its child labeled by b. Let P be
that tree. Since the label of transition that leads from 0i to 1i and 1i to 2i corresponds to
the label of the root of stringpath ti and the label of the child of the root of the stringpath
ti, respectively, we get that PWMatch(P, T |v) is true for v equal to the child of the root of

Gapped rootpath automaton 139

stringpath ti. In the second case, x = ≀a, where a ∈ Σ. This string is the simple path notation
of a linear gapped tree over Σ∪{≀} that contains two nodes, the root labeled by path wildcard
and its child labeled by a. Let P be that tree. Since the label of each transition that leads
from 0′

i corresponds to the label of some node in stringpath ti, we get that PWMatch(P, T |v)
is true for v equal to a node of stringpath ti labeled by a.

• Assume |x| ≥ 3 and that the claim holds for shorter strings. Let ji be the final state where
the automaton accepts x. It is easy to check that the last symbol of x is not path wildcard.
After reading the prefix x1...|x|−1, the automaton is either in a state (j− 1)i or state k′

i, where
k ∈ {0, . . . , j − 1}:

– In the first case, we have that x1...|x|−1 is accepted by the automaton. Thus, by the
induction hypothesis, we get that this string is the simple path notation of a linear gapped
tree P over Σ∪{≀} and PWMatch(P, T |v) is true for some node v that is a part of stringpath
ti. Moreover, it is easy to check that v is the node of stringpath ti whose preorder identifier
is equal to (j − 1)i. Since there is a transition from (j − 1)i to ji labeled by x|x|, we have
that the child of v in stringpath ti is labeled by x|x|. Let u be that child of v. Appending
the last symbol of x to x1...|x|−1 corresponds to adding a leaf node to P labeled by symbol
x|x|. Therefore, x is the simple path notation of a linear gapped tree that matches a
rootpath of stringpath ti with the leaf node u.

– In the second case, we have that x|x|−1 = ≀. It is easy to check that x|x|−2 ∈ Σ and that
the automaton accepts string x1...|x|−2 in state ki. Thus, by the induction hypothesis, we
get that x1...|x|−2 is the simple path notation of a linear gapped tree P over Σ ∪ {≀} and
PWMatch(P, T |v) is true for some node v that is a part of stringpath ti. Moreover, it is
easy to check that v is the node of stringpath ti whose preorder identifier is equal to k.
Appending the last two symbols of x to x1...|x|−2 corresponds to inserting a tree with the
root labeled by ≀ and its child labeled by x|x| under the leaf of P . Since there is a transition
from k′

i to ji labeled by x|x|, we have that the there is a descendant of v in stringpath ti

labeled by x|x|. Let u be one of that descendants. Therefore, x is the simple path notation
of a linear gapped tree that matches a rootpath of stringpath ti with the leaf node u. ◀

We can now construct the deterministic gapped rootpath automaton by combining the
automata constructed for individual stringpaths. See Algorithm 6.28. Its correctness can be
proved using similar arguments as those used in the proof of Theorem 6.13.

▶ Algorithm 6.28 (Construction of the deterministic gapped rootpath automaton). Let Σ be an
alphabet. Let T be an ordered labeled tree over Σ. Given path(T), the algorithm constructs the
deterministic gapped rootpath automaton for path(T). Stringpaths in path(T) are assumed to be
numbered from 1 to | path(T)|. We denote the i-th stringpath of path(T) by ti.

1. (Construct automata for stringpaths.) For each stringpath ti in path(T), build a nondeter-
ministic finite automaton Mi

NFA by Algorithm 6.26.

2. (Turn NFA into DFA.) For each Mi
NFA, construct its equivalent deterministic variant Mi

DFA
using Algorithm 2.6.

3. (Product construction.) Combine automata M1
DFA, . . . ,M| path(T)|

DFA using Algorithm 2.10 into
a deterministic finite automaton M.

4. (Return.) Return M.

The state labels of the DFA constructed by Algorithm 6.28 are l-tuples, where l is the number
of leaves of the tree that has been indexed. Similarly, as in the case of the path automaton and
the fully-gapped rootpath automaton, we can investigate the label of the accepting state to obtain
the end position of occurrences of a given pattern.

140 Main results in tree indexing

Before we study the state complexity of the deterministic gapped rootpath automaton for an
arbitrary input tree, we first study its state complexity for a linear tree. In other words, we study
the number of states of the DFA constructed for a single stringpath.

▶ Theorem 6.29 (Number of states of the DFA accepting all the linear gapped pattern trees in
the simple path notation that match a single stringpath). Let Σ be an alphabet. Let T be an
ordered labeled tree over Σ. Let path(T) =

{
t1, t2, . . . , t| path(T)|}. Let M = (Q, Σ, δ, q0, F) be

the NFA constructed by Algorithm 6.26 for ti ∈ path(T). Then, the DFA obtained by the subset
construction from M has |Q′| states, where

|Q|′ =
{

2|Q| − 3 if |Σ| = 1,

O
(

min
(
|Σ||Q|/(log |Σ|+1),

∑
a∈Σ

(
2|Q(a)|)− |Σ|+ 1

))
if |Σ| ≥ 2.

Proof. Let n = |ti ↓ Σ|. If |Σ| = 1, then it is easy to check that the set of states of the DFA
obtained by the subset construction from M is equal to Q1 ∪Q2 ∪Q3 ∪Q4, where

• Q1 = {{0}, {1}, . . . , {n}},

• Q2 = {{0′}, {1′}, . . . , {(n− 1)′}},

• Q3 = {{1, 2, 3 . . . , n}, {2, 3 . . . , n}, {3 . . . , n}, . . . , {n− 1, n}}, and

• Q4 = {{1′, 2′, 3′ . . . , n′}, {2′, 3′ . . . , n′}, {3 . . . , n′}, . . . , {(n− 1)′, n′}}.

Clearly, |Q1|+ |Q2| = 2n + 1 = |Q|. Moreover, |Q3| = |Q4| = n− 1. Thus, |Q1|+ |Q2|+ |Q3|+
|Q4| = 2|Q| − 3.

The bound for |Σ| ≥ 2 comes from the observation that M is a homogenous nondeterministic
finite automaton that accepts a finite language. Thus, according to Theorems 2.7 and 2.9, it has
O

(
|Σ||Q|/(log |Σ|+1)) states and at most

∑
a∈Σ

(
2|Q(a)|)− |Σ|+ 1 states, respectively. ◀

▶ Theorem 6.30 (Number of states of the deterministic gapped rootpath automaton constructed by
Algorithm 6.28). Let Σ be an alphabet such that |Σ| ≥ 2. Let T be an ordered labeled tree over Σ.
Given path(T), the automaton constructed by Algorithm 6.28 for path(T) has O

(
|Q′|| leaves(T)|)

states, where |Q′| = |Σ|| depth(T)|/(log |Σ|+1).

Proof. The automaton constructed by Algorithm 6.18 for path(T) is the result of product of
| path(T)| = | leaves(T)| deterministic finite automata each of which has O

(
|Σ|| depth(T)|/(log |Σ|+1))

states; see Theorem 6.29. ◀

Since there are at most |Σ|+ 1 outgoing transitions for each state, it follows that the upper
bound for the number of transitions can be obtained by multiplying this number by the number
of states.

This section addressed the indexing problem for ordered labeled trees and linear gapped
pattern trees. The gapped rootpath automaton can be used to speed up the searching phase in
the L(PW)FOTE tree pattern matching problem. In the following section, we summarize the
results presented in this chapter.

6.7 Summary
In this chapter, we expanded arbology research by proposing a string automata approach to the
problem of indexing ordered labeled trees for linear pattern trees. Specifically, given an ordered
labeled tree T , we introduced four indexing structures that are based on string automata:

rootpath automaton that is an index for all the rootpaths of T ,

path automaton that is an index for all the paths of T ,

Summary 141

fully-gapped rootpath automaton that is an index for every linear fully-gapped tree for
which there exists a matching rootpath in T , and

gapped rootpath automaton that is an index for every linear gapped tree for which there
exists a matching rootpath in T .

To solve tree indexing problems using string automata, we encoded trees as strings using
the path notation. The convenience of this notation resides in the observation that matching
linear pattern trees to rootpaths or paths of the input tree corresponds to looking for specific
string parts such as prefixes, suffixes, or subsequences when trees are represented in this notation.
Therefore, the principles of existing automata-based indexes for strings described in Section 4.2.1
can be used to solve the problems of tree indexing for linear patterns.

Since every ordered labeled tree has a finite number of rootpaths and paths, it follows that the
structure for indexing all the rootpaths and paths can be based on a finite automaton. Similarly,
only a finite number of linear (fully-)gapped pattern trees match a given input tree. Thus, indexes
for these types of patterns can also be implemented as finite automata.

We used a systematic approach that involved two steps for building our automata-based
indexes. First, given the path notation path(T) of an ordered labeled tree T over alphabet Σ, we
built a deterministic finite automaton for every string t ↓ Σ, where t ∈ path(T) such that the
automaton recognizes the desired types of patterns. Then, we combined these automata using
the product construction. The resulting finite automaton is deterministic and can be queried as
follows: Given the simple path notation simplePath(P) of a linear pattern tree P , the automaton is
run for simplePath(P). If there is an occurrence of P , then the automaton accepts simplePath(P);
otherwise, it does not. If the time necessary to compute a transition from each state is constant,
then the answer is given in time linear to the size of the pattern. Moreover, our automata-based
indexes can also give the number of occurrences and the list of end positions for these occurrences.
Both can be obtained by investigating the label of the accepting state.

The state complexity of the path and fully-gapped rootpath automaton isO
(

depth(T)| leaves(T)|).
For the rootpath automaton, we get at most |T | + 1 states and |T | transitions. The gapped
rootpath automaton has O

(
|Q′|| leaves(T)|) states, where |Q′| = |Σ|| depth(T)|/(log |Σ|+1).

Alternatively, all deterministic automata built in the first step can be traversed simultaneously
instead of combining them by the product construction. This approach saves us some space at
the cost of worse time complexity for searching, which is O(| leaves(T)| · |P|), where T is the
indexed tree and P is the pattern tree. However, in parallel systems, each automaton can be
handled by a different computing node.

In the SNINWE classification terminology introduced in Section 3.1, our automata-based
indexes address four tree pattern matching problems: LFFOTE, LFFOSE, L(PW)FOTE, and
a variant of the L(PW)FOTE tree pattern matching problem where pattern trees are assumed
to be fully-gapped. These problems can be seen as a theoretic abstraction of evaluating XPath
queries. Specifically,

• the LFFOTE tree pattern matching problem corresponds to the evaluation of XPath(/) queries
that consist only of the /-axis and the node test for node labels;

• the LFFOSE tree pattern matching problem can be seen as the evaluation of a set of queries
that are a subset of XPath(/, //), where queries start with //-axis and continue only with
/-axis, such as query //a/b/b;

• the L(PW)FOTE tree pattern matching problem corresponds to the evaluation of
XPath(/, //) queries; and

• the variant of L(PW)FOTE tree pattern matching problem, where pattern trees are assumed
to be fully-gapped, can be seen as the evaluation of XPath(//) queries.

142 Main results in tree indexing

Therefore, our automata-based indexes can be used as auxiliary data structures that enable
answering the sets of queries mentioned above for a given XML document.

From the viewpoint of database technology, the underlying idea of the rootpath automaton
is the same as strong DataGuide [134] and 1-Index [135], in the sense that the index associates
every distinct path from the root to the set of destination nodes. However, we believe that
our description in the context of the systematic automata approach makes the ideas more
comprehensible.

In this chapter, we assumed that our trees were ordered and unranked. However, it is easy
to see that our automata-based indexes can also be applied to unordered trees. Since we are
interested only in linear patterns, we can choose any fixed order of children and then use the
methods described in this chapter. Our methods could also be applied to ranked trees. However,
to look for occurrences of a linear pattern inside an input ranked tree, we may want to allow the
pattern tree to not respect the rank of node labels, as linear ranked trees can only contain nodes
labeled by symbols with rank 1 and one node (the leaf) with rank 0. Thus, if such a tree matches
a ranked input tree, it can only match its bottom-up subtrees.

In the domain of string automata approach to indexing trees for linear patterns, we suggest
the following direction for future research:

• an experimental evaluation of algorithms introduced in this chapter,

• a further analysis of the non-trivial upper bound for the number of states of the determin-
istic gapped rootpath automaton (using the knowledge of the NFA structure for individual
stringpaths could lead to a better upper bound on the number of states of the equivalent
DFA),

• an adaptation of the indexes to support more complex queries such as linear pattern trees
with path variables, label wildcards, and label variables,

• exploration of possible oracle modification of the indexes, in the same way it is used for factor
automaton [72] and subtree pushdown automaton [28], and

• an investigation of how the automata-based indexes introduced in this chapter can be used
for computing repeats in an input tree.

Moreover, the proposed indexes are currently helpful only for non-volatile input trees, as the
construction algorithms are not incremental. Therefore, future research could focus on developing
iterative algorithms for the indexes.

Chapter 7

Conclusions

Motivated by intuitive and elegant solutions to various string pattern matching problems using
the automata theory, this dissertation thesis explored a string automata approach to the problem
of pattern matching in ordered labeled trees. Specifically, we addressed the problem of inexact
tree pattern matching under the 1-degree edit distance and tree indexing for linear XPath-inspired
queries. In both cases, we presented a systematic approach that is based on finite automata. We
consider our results to be a part and further development of arbology research, an algorithmic
discipline that focuses on the use of string automata for tree matching in the same way that
string automata are used as a unifying strategy for string pattern matching.

In this chapter, we turn to the research questions formulated in Chapter 1 and discuss the
answers and contributions provided by this dissertation thesis. We also list possible future work
that can extend the results reported in this dissertation thesis.

7.1 Contributions of the dissertation thesis
As stated earlier, the problem of tree pattern matching can be defined as the search for all
occurrences of a pattern in an input tree. In this dissertation thesis, we discussed that although
various variants of this problem have been described in the literature, no unified naming standard
for the problem exists. As a result, tree pattern matching problems are often known under several
names, making the comparison of research results unnecessarily complex. This deficiency led to
our first research question, Question 1.1.

We addressed Question 1.1 in Chapter 3, in which we proposed the SNINWE classification
of tree pattern matching problems for ordered labeled trees. The classification categorizes tree
pattern matching problems according to six criteria: the structure of the pattern, the nature
of the pattern, the integrity of the pattern, the number of patterns, the way of matching the
pattern, and the exactness of matching the pattern.

The SNINWE classification can be used to reference various tree pattern matching problems
using abbreviations such as the LFFOSE problem, which corresponds to a tree pattern matching
problem where

L the representation of a pattern is a Linear tree,

F all nodes in the pattern tree are labeled by specific, Fixed labels (no nodes are labeled by
special symbols such as wildcards or variables),

F the Full pattern is considered during the matching,

O the pattern can be represented as One tree,

143

144 Conclusions

S we search for occurrences in the Subtrees of a given input tree, and

E we search for Exact occurrences.

The other two research questions, Questions 1.2 and 1.3, concerned the further development of
arbology research. In particular, we explored a string automata approach to inexact tree pattern
matching and XML processing. Both of these problems have been suggested as topics for future
arbology research [25], [30]. From the domain of XML processing, we chose to explore the string
automata approach to the problem of tree indexing for linear XPath-inspired queries.

Question 1.2 has been addressed in Chapter 5. To measure the similarity between trees, we
used four variants of the 1-degree edit distance: the constrained simple 1-degree edit distance dc

s ,
the constrained 1-degree edit distance dc, the simple 1-degree edit distance ds, and the (non-unit
cost) 1-degree edit distance d. In other words, we addressed four variants of inexact tree pattern
matching:

• inexact tree pattern matching under the constrained simple 1-degree edit distance,

• inexact tree pattern matching under the simple 1-degree edit distance,

• inexact tree pattern matching under the constrained 1-degree edit distance, and

• inexact tree pattern matching under the 1-degree edit distance.

In the SNINWE classification terminology, we addressed the NFFOBI tree pattern matching
problem under four different similarity measures. Specifically, we focused on online searching.

To base our algorithms on string automata, we represented trees as strings using the prefix
bar notation. Given a pattern tree P and a maximum number of allowed errors k, the main
idea of our automata-based approach was to identify the pattern dictionary, the set of all strings
representing the trees whose distance from P is at most k. Then, we built a dictionary automaton
called the 1-degree matching automaton.

To find the positions of all the occurrences of the pattern tree in a given input tree T , the
1-degree matching automaton is run on the prefix bar notation of T . The automaton then reports
a match every time it goes through a final state.

Because the pattern dictionary is always a finite language, we constructed the 1-degree
matching automaton as a finite automaton. However, this means that the automaton cannot
recognize whether the input string truly represents a tree. This is because such a language is not
regular.

For each of the four variants of the inexact tree pattern matching problem, we presented
an algorithm that constructed the 1-degree matching automaton as a finite automaton with
ε-transitions. This automaton can then be transformed into an equivalent DFA. Assuming that
the time necessary to compute a transition from each state is constant, the DFA can locate all
pattern occurrences in time that is linear to the size of the input tree. However, this approach
comes with high state complexity that limits its practicality. We proved a non-trivial upper
bound on the state complexity of the 1-degree matching DFA for dc

s , which is O
(
|Σ|k · k ·mk+1)

,
where Σ is the alphabet of all possible node labels, m is the number of nodes of the pattern tree,
and k is the maximum number of errors allowed.

As an alternative approach, we presented an algorithm based on dynamic programming, the
most widely used approach for computing tree edit distance and solving inexact tree pattern
matching problems. However, existing methods lack clear references to a systematic approach of
the standard theory of formal languages and automata. We showed that each of our dynamic
programming algorithms is a simulator of the corresponding 1-degree matching ε-NFA. Given
a pattern tree and an input tree with m and n nodes, respectively, our dynamic programming
approach comes with O(mn) time complexity and O(mk) space complexity. For the inexact tree
pattern matching problem under dc

s , the space complexity is O(m).

Contributions of the dissertation thesis 145

In Chapter 6, we addressed Question 1.3 by presenting a systematic automata-based approach
to tree indexing for linear XPath-inspired queries. All the queries we considered could be
represented as linear trees. Therefore, the pushdown store for processing the underlying tree
structure, as used in existing arbology indexes, is not needed in this case. Thus, we used a
finite automaton as the computational model. Specifically, given an ordered labeled tree T , we
introduced four indexing structures that are based on finite automata:
• the rootpath automaton that is an index for all the rootpaths of T ,

• the path automaton that is an index for all the paths of T ,

• the fully-gapped rootpath automaton that is an index for every linear fully-gapped tree for
which there exists a matching rootpath in T , and

• the gapped rootpath automaton that is an index for every linear gapped tree for which there
exists a matching rootpath in T .
In the SNINWE classification terminology, our automata-based indexes address the follow-

ing tree pattern matching problems: LFFOTE, LFFOSE, L(PW)FOTE, and a variant of the
L(PW)FOTE tree pattern matching problem where pattern trees are assumed to be fully-gapped.
These problems can be seen as a theoretic abstraction of evaluating XPath queries. Specifically,
• the LFFOTE tree pattern matching problem corresponds to the evaluation of XPath(/) queries

that consist only of the /-axis and the node test for node labels;

• the LFFOSE tree pattern matching problem can be seen as the evaluation of a set of queries
that are a subset of XPath(/, //), where queries start with //-axis and continue only with
/-axis, such as query //a/b/b;

• the L(PW)FOTE tree pattern matching problem corresponds to the evaluation of
XPath(/, //) queries; and

• the variant of L(PW)FOTE tree pattern matching problem, where pattern trees are assumed
to be fully-gapped, can be seen as the evaluation of XPath(//) queries.
Therefore, our automata-based indexes can be used as auxiliary data structures that enable

answering the sets of queries mentioned above for a given XML document.
To solve the problems of tree indexing using string automata, we encoded trees as strings using

the path notation. The convenience of this notation resides in the observation that matching
linear pattern trees to rootpaths or paths of the input tree corresponds to looking for specific
string parts such as prefixes, suffixes, or subsequences when trees are represented in this notation.
Therefore, the principles of existing automata-based indexes for strings can be used to solve the
problems of tree indexing for linear patterns.

Given an ordered labeled tree T , the searching phase uses the index built for T , reads a linear
tree query of size m, and finds the answer in time O(m), assuming that the time necessary to
compute a transition from each state is constant. In other words, the searching time does not
depend on the size of the indexed tree.

The state complexity of the path and fully-gapped rootpath automaton isO
(

depth(T)| leaves(T)|).
For the rootpath automaton, we get at most |T | + 1 states and |T | transitions. The gapped
rootpath automaton has O

(
|Q′|| leaves(T)|) states, where |Q′| = |Σ|| depth(T)|/(log |Σ|+1).

When we addressed the tree indexing problem, we assumed that the trees were ordered and
unranked. However, our automata-based indexes can also be applied to unordered trees. This is
because any fixed order of children in the indexed tree can be chosen to evaluate linear patterns.
Our methods can also be applied to ranked trees. However, to look for occurrences of a linear
pattern inside an input ranked tree, we may want to allow the pattern tree to not respect the
rank of node labels, as linear ranked trees can only contain nodes labeled by symbols with rank 1
and one node (the leaf) with rank 0. Thus, if such a tree matches a ranked input tree, it can only
match its bottom-up subtrees.

146 Conclusions

7.2 Future work
In the domain of string automata approach to inexact tree pattern matching, we suggest the
following direction for future research:

• an experimental evaluation of algorithms introduced in this dissertation thesis,

• an exploration of bit parallelism as a way of simulating the proposed nondeterministic finite
automata,

• an investigation of the properties of the dynamic programming array and an exploration of
whether the properties can be used to improve the algorithms introduced in this dissertation
thesis,

• an exploration of automata approach to inexact tree pattern matching under other edit
distances and for different types of trees, and

• further inspection of the space complexity of the deterministic finite automata.

Moreover, to our knowledge, there are no known solutions to the inexact tree pattern matching
problems that are based on tree automata. Thus, future research can address this gap.

In the domain of string automata approach to indexing trees for linear patterns, we suggest
the following direction for future research:

• an experimental evaluation of algorithms introduced in this dissertation thesis,

• a further analysis of the non-trivial upper bound for the number of states of the determin-
istic gapped rootpath automaton (using the knowledge of the NFA structure for individual
stringpaths could lead to a better upper bound on the number of states of the equivalent
DFA),

• an adaptation of the indexes to support more complex queries such as linear pattern trees
with path variables, label wildcards, and label variables,

• exploration of possible oracle modification of the indexes, in the same way it is used for factor
automaton [72] and subtree pushdown automaton [28], and

• an investigation of how the automata-based indexes introduced in this dissertation thesis can
be used for computing repeats in an input tree.

Moreover, the proposed indexes are currently helpful only for non-volatile input trees, as the
construction algorithms are not incremental. Therefore, future research could focus on developing
iterative algorithms for the indexes.

Bibliography

[1] J. Zobel, Writing for Computer Science. Springer, London, 2014, isbn: 9781447166382.
doi: 10.1007/978-1-4471-6639-9.

[2] B. A. Shapiro and K. Z. Zhang, “Comparing multiple RNA secondary structures using tree
comparisons,” Computer applications in the biosciences: CABIOS, vol. 6, no. 4, pp. 309–
318, Oct. 1990, issn: 0266-7061. doi: 10.1093/bioinformatics/6.4.309.

[3] J.-F. Dufayard, L. Duret, S. Penel, M. Gouy, F. Rechenmann, and G. Perrière, “Tree
pattern matching in phylogenetic trees: Automatic search for orthologs or paralogs in
homologous gene sequence databases,” Bioinformatics, vol. 21, no. 11, pp. 2596–2603, Jun.
2005, issn: 1367-4803. doi: 10.1093/bioinformatics/bti325.

[4] A. V. Aho and M. Ganapathi, “Efficient tree pattern matching (extended abstract): An
aid to code generation,” in Proceedings of the 12th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, ser. POPL ’85, New Orleans, Louisiana, USA:
Association for Computing Machinery, Jan. 1985, pp. 334–340, isbn: 9780897911474. doi:
10.1145/318593.318663.

[5] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang, “Code generation using tree matching
and dynamic programming,” ACM Transactions on Programming Languages and Systems,
vol. 11, no. 4, pp. 491–516, Oct. 1989, issn: 0164-0925. doi: 10.1145/69558.75700.

[6] C. M. Hoffmann and M. J. O’Donnell, “Pattern matching in trees,” Journal of the ACM,
vol. 29, no. 1, pp. 68–95, Jan. 1982, issn: 0004-5411, 1557-735X. doi: 10.1145/322290.
322295.

[7] J. Lu, T. W. Ling, Z. Bao, and C. Wang, “Extended XML tree pattern matching: Theories
and algorithms,” IEEE transactions on knowledge and data engineering, vol. 23, no. 3,
pp. 402–416, Mar. 2011, issn: 1041-4347. doi: 10.1109/TKDE.2010.126.

[8] M. A. Tahraoui, K. Pinel-Sauvagnat, C. Laitang, M. Boughanem, H. Kheddouci, and
L. Ning, “A survey on tree matching and XML retrieval,” Computer Science Review, vol. 8,
pp. 1–23, May 2013, issn: 1574-0137, 1876-7745. doi: 10.1016/j.cosrev.2013.02.001.

[9] R. Baeza-Yates, “A unified view to string matching algorithms,” in SOFSEM’96: Theory
and Practice of Informatics, Springer Berlin Heidelberg, 1996, pp. 1–15. doi: 10.1007/
BFb0037393.

[10] M. Crochemore and C. Hancart, “Automata for matching patterns,” in Handbook of Formal
Languages: Volume 2. Linear Modeling: Background and Application, G. Rozenberg and
A. Salomaa, Eds., vol. 2, Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 399–462,
isbn: 9783662076750. doi: 10.1007/978-3-662-07675-0_9.

[11] M. Crochemore and W. Rytter, Jewels of Stringology: Text Algorithms. World Scientific
Publishing, 2003, isbn: 9789810247829. doi: 10.1142/4838.

147

https://doi.org/10.1007/978-1-4471-6639-9
https://doi.org/10.1093/bioinformatics/6.4.309
https://doi.org/10.1093/bioinformatics/bti325
https://doi.org/10.1145/318593.318663
https://doi.org/10.1145/69558.75700
https://doi.org/10.1145/322290.322295
https://doi.org/10.1145/322290.322295
https://doi.org/10.1109/TKDE.2010.126
https://doi.org/10.1016/j.cosrev.2013.02.001
https://doi.org/10.1007/BFb0037393
https://doi.org/10.1007/BFb0037393
https://doi.org/10.1007/978-3-662-07675-0_9
https://doi.org/10.1142/4838

148 Bibliography

[12] B. Melichar, J. Holub, and T. Polcar, Text Searching Algorithms-Volume I: Forward
String Matching. 2005. [Online]. Available: https://www.stringology.org/athens/
TextSearchingAlgorithms/tsa-lectures-1.pdf.

[13] P. Antoniou, J. Holub, C. S. Iliopoulos, B. Melichar, and P. Peterlongo, “Finding common
motifs with gaps using finite automata,” in Implementation and Application of Automata,
Springer Berlin Heidelberg, 2006, pp. 69–77. doi: 10.1007/11812128_8.

[14] J. Holub, “Finite automata in pattern matching,” Algorithms in Computational Molec-
ular Biology: Techniques, Approaches and Applications, pp. 51–71, 2011. doi: 10.1002/
9780470892107.ch3.

[15] J. Holub, “The finite automata approaches in stringology,” Kybernetika, vol. 48, no. 3,
pp. 386–401, 2012, issn: 0023-5954. [Online]. Available: https://eudml.org/doc/246462.

[16] B. Melichar, “String matching with k differences by finite automata,” in Proceedings of
13th International Conference on Pattern Recognition, vol. 2, ieeexplore.ieee.org, Aug.
1996, 256–260 vol.2. doi: 10.1109/ICPR.1996.546828.

[17] J. Holub, “Simulation of nondeterministic finite automata in pattern matching,” Ph.D.
dissertation, Czech Technical University, Prague, Faculty of Electrical Engineering, 2000.

[18] M. Šimůnek and B. Melichar, “Borders and finite automata,” in Implementation and
Application of Automata, Springer Berlin Heidelberg, 2006, pp. 58–68. doi: 10.1007/
11812128_7.

[19] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas, “The
smallest automation recognizing the subwords of a text,” Theoretical computer science,
vol. 40, pp. 31–55, Jan. 1985, issn: 0304-3975. doi: 10.1016/0304-3975(85)90157-4.

[20] M. Crochemore, “Transducers and repetitions,” Theoretical computer science, vol. 45,
pp. 63–86, 1986, issn: 0304-3975. doi: 10.1016/0304-3975(86)90041-1.

[21] H. Comon, M. Dauchet, R. Gilleron, et al., Tree automata: Techniques and applications.
2008. [Online]. Available: https://hal.inria.fr/hal-03367725.

[22] L. G. W. A. Cleophas, “Tree algorithms: Two taxonomies and a toolkit,” Ph.D. dissertation,
2008, isbn: 9789038612287. doi: 10.6100/IR633481.

[23] J. Janoušek, Arbology: Algorithms on trees and pushdown automata, Habilitation thesis,
Brno University of Technology, Faculty of Information Technology, 2010.

[24] B. Melichar, “Arbology: Trees and pushdown automata,” in Language and Automata
Theory and Applications, Springer Berlin Heidelberg, 2010, pp. 32–49. doi: 10.1007/978-
3-642-13089-2_3.

[25] B. Melichar, J. Janoušek, and T. Flouri, “Arbology: Trees and pushdown automata,”
Kybernetika, vol. 48, no. 3, pp. 402–428, 2012, issn: 0023-5954. [Online]. Available: https:
//eudml.org/doc/246452.

[26] J. Janoušek and B. Melichar, “On regular tree languages and deterministic pushdown
automata,” Acta Informatica, vol. 46, no. 7, p. 533, Sep. 2009, issn: 0001-5903, 1432-0525.
doi: 10.1007/s00236-009-0104-9.

[27] T. Flouri, C. S. Iliopoulos, J. Janoušek, B. Melichar, and S. P. Pissis, “Tree indexing by
pushdown automata and subtree repeats,” in 2011 Federated Conference on Computer
Science and Information Systems (FedCSIS), ieeexplore.ieee.org, Sep. 2011, pp. 899–902.

[28] M. Plicka, J. Janoušek, and B. Melichar, “Subtree oracle pushdown automata for ranked
and unranked ordered trees,” in 2011 Federated Conference on Computer Science and
Information Systems (FedCSIS), ieeexplore.ieee.org, Sep. 2011, pp. 903–906.

[29] J. Trávníček, J. Janoušek, and B. Melichar, “Indexing trees by pushdown automata for
nonlinear tree pattern matching,” in 2011 Federated Conference on Computer Science and
Information Systems (FedCSIS), ieeexplore.ieee.org, Sep. 2011, pp. 871–878.

https://www.stringology.org/athens/TextSearchingAlgorithms/tsa-lectures-1.pdf
https://www.stringology.org/athens/TextSearchingAlgorithms/tsa-lectures-1.pdf
https://doi.org/10.1007/11812128_8
https://doi.org/10.1002/9780470892107.ch3
https://doi.org/10.1002/9780470892107.ch3
https://eudml.org/doc/246462
https://doi.org/10.1109/ICPR.1996.546828
https://doi.org/10.1007/11812128_7
https://doi.org/10.1007/11812128_7
https://doi.org/10.1016/0304-3975(85)90157-4
https://doi.org/10.1016/0304-3975(86)90041-1
https://hal.inria.fr/hal-03367725
https://doi.org/10.6100/IR633481
https://doi.org/10.1007/978-3-642-13089-2_3
https://doi.org/10.1007/978-3-642-13089-2_3
https://eudml.org/doc/246452
https://eudml.org/doc/246452
https://doi.org/10.1007/s00236-009-0104-9

Bibliography 149

[30] T. Flouri, “Pattern matching in tree structures,” Ph.D. dissertation, Czech Technical
University in Prague, Faculty of Information Technology, 2012.

[31] J. Trávníček, J. Janoušek, and B. Melichar, “Indexing ordered trees for (nonlinear) tree
pattern matching by pushdown automata,” Computer Science and Information Systems,
vol. 9, no. 3, pp. 1125–1153, 2012. doi: 10.2298/CSIS111220024T.

[32] J. Janoušek, B. Melichar, R. Polách, M. Poliak, and J. Trávníček, “A full and linear index
of a tree for tree patterns,” in Descriptional Complexity of Formal Systems, Springer
International Publishing, 2014, pp. 198–209. doi: 10.1007/978-3-319-09704-6_18.

[33] J. Trávníček, “(Nonlinear) tree pattern indexing and backward matching,” Ph.D. disserta-
tion, Czech Technical University in Prague, Faculty of Information Technology, 2018.

[34] J. Janoušek, B. Melichar, and M. Poliak, “Tree compression pushdown automaton,”
Kybernetika, vol. 48, no. 3, pp. 429–452, 2012, issn: 0023-5954. [Online]. Available: https:
//eudml.org/doc/247233.

[35] M. Poliak, “On indexes of ordered trees for subtrees and tree patterns and their space com-
plexities,” Ph.D. dissertation, Czech Technical University in Prague, Faculty of Information
Technology, 2017.

[36] J. Lahoda and J. Žďárek, “Simple tree pattern matching for trees in the prefix bar
notation,” Discrete applied mathematics, vol. 163, pp. 343–351, Jan. 2014, issn: 0166-218X,
1872-6771. doi: 10.1016/j.dam.2013.07.018.

[37] P. Cserkuti, T. Levendovszky, and H. Charaf, “Survey on subtree matching,” in 2006
International Conference on Intelligent Engineering Systems, Jun. 2006, pp. 216–221. doi:
10.1109/INES.2006.1689372.

[38] T. Flouri, J. Janoušek, and B. Melichar, “Subtree matching by pushdown automata,”
Computer Science and Information Systems, vol. 7, no. 2, pp. 331–357, 2010, issn: 1820-
0214, 2406-1018. doi: 10.2298/csis1002331f.

[39] G. Valiente, Algorithms on Trees and Graphs, second, ser. Texts in Computer Science.
Springer International Publishing, 2021, isbn: 9783030818852. doi: 10.1007/978-3-030-
81885-2.

[40] A. Abboud, A. Backurs, T. D. Hansen, V. Vassilevska Williams, and O. Zamir, “Subtree
isomorphism revisited,” ACM Transactions on Algorithms, vol. 14, no. 3, pp. 1–23, Jun.
2018, issn: 1549-6325. doi: 10.1145/3093239.

[41] M. Christou, T. Flouri, C. S. Iliopoulos, et al., “Tree template matching in unranked
ordered trees,” Journal of discrete algorithms, vol. 20, pp. 51–60, May 2013, issn: 1570-8667.
doi: 10.1016/j.jda.2013.02.001.

[42] S. M. Selkow, “The tree-to-tree editing problem,” Information processing letters, vol. 6, no. 6,
pp. 184–186, Dec. 1977, issn: 0020-0190, 1872-6119. doi: 10.1016/0020-0190(77)90064-
3.

[43] R. A. Wagner and M. J. Fischer, “The String-to-String correction problem,” Journal of the
ACM, vol. 21, no. 1, pp. 168–173, Jan. 1974, issn: 0004-5411. doi: 10.1145/321796.321811.

[44] M.-M. Deza and E. Deza, Dictionary of Distances. Elsevier, Nov. 2006, isbn:
9780080465548.

[45] P. Bille, “A survey on tree edit distance and related problems,” Theoretical computer science,
vol. 337, no. 1, pp. 217–239, Jun. 2005, issn: 0304-3975. doi: 10.1016/j.tcs.2004.12.030.

[46] E. Ukkonen, “Finding approximate patterns in strings,” Journal of algorithms & computa-
tional technology, vol. 6, no. 1, pp. 132–137, Mar. 1985, issn: 1748-3018, 0196-6774. doi:
10.1016/0196-6774(85)90023-9.

https://doi.org/10.2298/CSIS111220024T
https://doi.org/10.1007/978-3-319-09704-6_18
https://eudml.org/doc/247233
https://eudml.org/doc/247233
https://doi.org/10.1016/j.dam.2013.07.018
https://doi.org/10.1109/INES.2006.1689372
https://doi.org/10.2298/csis1002331f
https://doi.org/10.1007/978-3-030-81885-2
https://doi.org/10.1007/978-3-030-81885-2
https://doi.org/10.1145/3093239
https://doi.org/10.1016/j.jda.2013.02.001
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1145/321796.321811
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1016/0196-6774(85)90023-9

150 Bibliography

[47] R. Baeza-Yates and G. Navarro, “Faster approximate string matching,” Algorithmica. An
International Journal in Computer Science, vol. 23, no. 2, pp. 127–158, Feb. 1999, issn:
0178-4617. doi: 10.1007/PL00009253.

[48] S. Wu and U. Manber, “Fast text searching: Allowing errors,” Communications of the ACM,
vol. 35, no. 10, pp. 83–91, Oct. 1992, issn: 0001-0782. doi: 10.1145/135239.135244.

[49] F. Luccio and L. Pagli, “Simple solutions for approximate tree matching problems,” in
TAPSOFT ’91, Springer Berlin Heidelberg, 1991, pp. 193–201. doi: 10.1007/3-540-
53982-4_11.

[50] J. Tsong-Li Wang, K. Zhang, K. Jeong, and D. Shasha, “A system for approximate tree
matching,” IEEE transactions on knowledge and data engineering, vol. 6, no. 4, pp. 559–
571, Aug. 1994, issn: 1041-4347, 1558-2191. doi: 10.1109/69.298173.

[51] K. Z. Zhang, D. Shasha, and J. T. L. Wang, “Approximate tree matching in the presence
of variable length don’t cares,” Journal of algorithms & computational technology, vol. 16,
no. 1, pp. 33–66, Jan. 1994, issn: 1748-3018. doi: 10.1006/jagm.1994.1003.

[52] F. Luccio and L. Pagli, “Approximate matching for 2 families of trees,” Information and
Computation, vol. 123, no. 1, pp. 111–120, Nov. 1995, issn: 0890-5401. doi: 10.1006/inco.
1995.1160.

[53] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages,
and Computation, 3rd ed. Pearson Education, 2014, isbn: 9781292039053.

[54] D. C. Kozen, Automata and Computability. Springer Science & Business Media, Dec. 2012,
isbn: 9781461218449.

[55] M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM Journal
of Research and Development, vol. 3, no. 2, pp. 114–125, Apr. 1959, issn: 0018-8646. doi:
10.1147/rd.32.0114.

[56] F. R. Moore, “On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata,” IEEE transactions on
computers. Institute of Electrical and Electronics Engineers, vol. C-20, no. 10, pp. 1211–
1214, Oct. 1971, issn: 0018-9340, 1557-9956. doi: 10.1109/T-C.1971.223108.

[57] K. Salomaa and S. Yu, “NFA to DFA transformation for finite languages,” in Automata
Implementation, Springer Berlin Heidelberg, 1997, pp. 149–158. doi: 10.1007/3-540-
63174-7_12.

[58] B. Melichar and J. Skryja, “On the size of deterministic finite automata,” in Implementation
and Application of Automata, Springer Berlin Heidelberg, 2002, pp. 202–213. doi: 10.
1007/3-540-36390-4_17.

[59] J.-M. Champarnaud, D. Ziadi, and J.-L. Ponty, “Determinization of glushkov automata,”
in Automata Implementation, Springer Berlin Heidelberg, 1999, pp. 57–68. doi: 10.1007/3-
540-48057-9_5.

[60] S. Yu, “State complexity of regular languages,” Journal of Automata, Languages and
Combinatorics, vol. 6, no. 2, pp. 221–234, 2001, issn: 1430-189X. doi: 10.25596/jalc-
2001-221.

[61] J. W. Thatcher and J. B. Wright, “Generalized finite automata theory with an application
to a decision problem of second-order logic,” Mathematical Systems Theory, vol. 2, no. 1,
pp. 57–81, Mar. 1968, issn: 0025-5661, 1433-0490. doi: 10.1007/bf01691346.

[62] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
third edition. MIT Press, Jul. 2009, isbn: 9780262033848.

[63] D. Knuth, The art of computer programming, 3rd ed. Reading, Mass: Addison-Wesley,
1997, isbn: 9780201853940.

https://doi.org/10.1007/PL00009253
https://doi.org/10.1145/135239.135244
https://doi.org/10.1007/3-540-53982-4_11
https://doi.org/10.1007/3-540-53982-4_11
https://doi.org/10.1109/69.298173
https://doi.org/10.1006/jagm.1994.1003
https://doi.org/10.1006/inco.1995.1160
https://doi.org/10.1006/inco.1995.1160
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1109/T-C.1971.223108
https://doi.org/10.1007/3-540-63174-7_12
https://doi.org/10.1007/3-540-63174-7_12
https://doi.org/10.1007/3-540-36390-4_17
https://doi.org/10.1007/3-540-36390-4_17
https://doi.org/10.1007/3-540-48057-9_5
https://doi.org/10.1007/3-540-48057-9_5
https://doi.org/10.25596/jalc-2001-221
https://doi.org/10.25596/jalc-2001-221
https://doi.org/10.1007/bf01691346

Bibliography 151

[64] S. Gorn, “Explicit definitions and linguistic dominoes,” in Proceedings of a Conference
held at the University of Western Ontario September 10-11, 1965, University of Toronto
Press, 1965, pp. 77–115. doi: 10.3138/9781487592769-008.

[65] J. H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem Proving,
Second Edition. Courier Dover Publications, Jun. 2015, isbn: 9780486780825.

[66] J. Stoklasa, J. Janoušek, and B. Melichar, Subtree pushdown automata for trees in bar
notation, London Stringology Days (2010), London, 2010.

[67] J. Cristau, C. Löding, and W. Thomas, “Deterministic automata on unranked trees,” in
Fundamentals of Computation Theory, Springer Berlin Heidelberg, 2005, pp. 68–79. doi:
10.1007/11537311_7.

[68] R. Ramesh and I. V. Ramakrishnan, “Nonlinear pattern matching in trees,” Journal of
the ACM, vol. 39, no. 2, pp. 295–316, Apr. 1992, issn: 0004-5411. doi: 10.1145/128749.
128752.

[69] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance between trees
and related problems,” SIAM Journal on Computing, vol. 18, no. 6, pp. 1245–1262, Dec.
1989, issn: 0097-5397. doi: 10.1137/0218082.

[70] B. Melichar and J. Holub, 6D classification of pattern matching problems, The
Prague Stringology Club Workshop ’97, Prague, 1997. [Online]. Available: https :
//www.stringology.org/event/1997/p3.html.

[71] M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings. Cambridge University
Press, Nov. 2014, isbn: 9781107670990. doi: 10.1017/CBO9780511546853.

[72] C. Allauzen, M. Crochemore, and M. Raffinot, “Factor oracle: A new structure for pattern
matching,” in SOFSEM’99: Theory and Practice of Informatics, Springer Berlin Heidelberg,
1999, pp. 295–310. doi: 10.1007/3-540-47849-3_18.

[73] G. Navarro, “A guided tour to approximate string matching,” ACM Comput. Surv., vol. 33,
no. 1, pp. 31–88, Mar. 2001, issn: 0360-0300. doi: 10.1145/375360.375365.

[74] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,”
in Soviet physics doklady, vol. 10, 1966, pp. 707–710. [Online]. Available: https://nymity.
ch/sybilhunting/pdf/Levenshtein1966a.pdf.

[75] R. W. Hamming, “Error detecting and error correcting codes,” The Bell System Technical
Journal, vol. 29, no. 2, pp. 147–160, Apr. 1950, issn: 0005-8580. doi: 10.1002/j.1538-
7305.1950.tb00463.x.

[76] F. J. Damerau, “A technique for computer detection and correction of spelling errors,”
Communications of the ACM, vol. 7, no. 3, pp. 171–176, 1964, issn: 0001-0782. doi:
10.1145/363958.363994.

[77] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins,” Journal of molecular biology, vol. 48,
no. 3, pp. 443–453, Mar. 1970, issn: 0022-2836. doi: 10.1016/0022-2836(70)90057-4.

[78] A. Apostolico and C. Guerra, “The longest common subsequence problem revisited,”
Algorithmica. An International Journal in Computer Science, vol. 2, no. 1-4, pp. 315–336,
Nov. 1987, issn: 0178-4617, 1432-0541. doi: 10.1007/bf01840365.

[79] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kärkkäinen, “Episode matching,”
in Combinatorial Pattern Matching, Springer Berlin Heidelberg, 1997, pp. 12–27. doi:
10.1007/3-540-63220-4_46.

[80] G. M. Landau and U. Vishkin, “Fast string matching with k differences,” Journal of
Computer and System Sciences, vol. 37, no. 1, pp. 63–78, Aug. 1988, issn: 0022-0000. doi:
10.1016/0022-0000(88)90045-1.

https://doi.org/10.3138/9781487592769-008
https://doi.org/10.1007/11537311_7
https://doi.org/10.1145/128749.128752
https://doi.org/10.1145/128749.128752
https://doi.org/10.1137/0218082
https://www.stringology.org/event/1997/p3.html
https://www.stringology.org/event/1997/p3.html
https://doi.org/10.1017/CBO9780511546853
https://doi.org/10.1007/3-540-47849-3_18
https://doi.org/10.1145/375360.375365
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1145/363958.363994
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1007/bf01840365
https://doi.org/10.1007/3-540-63220-4_46
https://doi.org/10.1016/0022-0000(88)90045-1

152 Bibliography

[81] Y. Chen and H. H. Nguyen, “On the string matching with k differences in DNA databases,”
Proceedings of the VLDB Endowment International Conference on Very Large Data Bases,
vol. 14, no. 6, pp. 903–915, Feb. 2021, issn: 2150-8097. doi: 10.14778/3447689.3447695.

[82] P. H. Sellers, “The theory and computation of evolutionary distances: Pattern recognition,”
Journal of algorithms & computational technology, vol. 1, no. 4, pp. 359–373, Dec. 1980,
issn: 1748-3018, 0196-6774. doi: 10.1016/0196-6774(80)90016-4.

[83] G. Myers, “A fast bit-vector algorithm for approximate string matching based on dynamic
programming,” Journal of the ACM, vol. 46, no. 3, pp. 395–415, May 1999, issn: 0004-5411.
doi: 10.1145/316542.316550.

[84] E. Ukkonen, “Algorithms for approximate string matching,” Information and Control,
vol. 64, no. 1, pp. 100–118, Jan. 1985, issn: 0019-9958. doi: 10.1016/S0019-9958(85)
80046-2.

[85] W. J. Masek and M. S. Paterson, “A faster algorithm computing string edit distances,”
Journal of Computer and System Sciences, vol. 20, no. 1, pp. 18–31, Feb. 1980, issn:
0022-0000. doi: 10.1016/0022-0000(80)90002-1.

[86] A. Backurs and P. Indyk, “Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false),” in Proceedings of the forty-seventh annual ACM symposium on
Theory of Computing, ser. STOC ’15, Portland, Oregon, USA: Association for Computing
Machinery, Jun. 2015, pp. 51–58, isbn: 9781450335362. doi: 10.1145/2746539.2746612.

[87] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press, May 1997, isbn: 9780521585194.

[88] B. Melichar, “Approximate string matching by finite automata,” in Computer Analysis
of Images and Patterns, Springer Berlin Heidelberg, 1995, pp. 342–349. doi: 10.1007/3-
540-60268-2_315.

[89] G. M. Landau and U. Vishkin, “Fast parallel and serial approximate string matching,”
Journal of algorithms & computational technology, vol. 10, no. 2, pp. 157–169, Jun. 1989,
issn: 1748-3018, 0196-6774. doi: 10.1016/0196-6774(89)90010-2.

[90] Z. Galil and K. Park, “An improved algorithm for approximate string matching,” SIAM
Journal on Computing, vol. 19, no. 6, pp. 989–999, Dec. 1990, issn: 0097-5397. doi:
10.1137/0219067.

[91] G. Navarro, “A partial deterministic automaton for approximate string matching,” in In
Proceedings of Fourth South American Workshop on String Processing (WSP’97), Carleton
University Press, 1997, pp. 112–124.

[92] K. Zhang, J. T. L. Wang, and D. Shasha, “On the editing distance between undirected
acyclic graphs and related problems,” in Combinatorial Pattern Matching, Springer Berlin
Heidelberg, 1995, pp. 395–407. doi: 10.1007/3-540-60044-2_58.

[93] K.-C. Tai, “The tree-to-tree correction problem,” Journal of the ACM, vol. 26, no. 3,
pp. 422–433, Jul. 1979, issn: 0004-5411. doi: 10.1145/322139.322143.

[94] S. Lu, “A tree-to-tree distance and its application to cluster analysis,” IEEE transactions
on pattern analysis and machine intelligence, vol. PAMI-1, no. 2, pp. 219–224, Apr. 1979,
issn: 0162-8828, 1939-3539. doi: 10.1109/TPAMI.1979.6786615.

[95] K. Zhang, “Algorithms for the constrained editing distance between ordered labeled trees
and related problems,” Pattern recognition, vol. 28, no. 3, pp. 463–474, Mar. 1995, issn:
0031-3203. doi: 10.1016/0031-3203(94)00109-Y.

[96] J. T. L. Wang and K. Zhang, “Finding similar consensus between trees: An algorithm and
a distance hierarchy,” Pattern recognition, vol. 34, no. 1, pp. 127–137, Jan. 2001, issn:
0031-3203. doi: 10.1016/S0031-3203(99)00199-5.

https://doi.org/10.14778/3447689.3447695
https://doi.org/10.1016/0196-6774(80)90016-4
https://doi.org/10.1145/316542.316550
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1007/3-540-60268-2_315
https://doi.org/10.1007/3-540-60268-2_315
https://doi.org/10.1016/0196-6774(89)90010-2
https://doi.org/10.1137/0219067
https://doi.org/10.1007/3-540-60044-2_58
https://doi.org/10.1145/322139.322143
https://doi.org/10.1109/TPAMI.1979.6786615
https://doi.org/10.1016/0031-3203(94)00109-Y
https://doi.org/10.1016/S0031-3203(99)00199-5

Bibliography 153

[97] T. Yoshino and K. Hirata, “Tai mapping hierarchy for rooted labeled trees through common
subforest,” Theory of Computing Systems, vol. 60, no. 4, pp. 759–783, May 2017, issn:
1432-4350, 1433-0490. doi: 10.1007/s00224-016-9705-1.

[98] D. Shasha and K. Zhang, “Fast algorithms for the unit cost editing distance between
trees,” Journal of algorithms & computational technology, vol. 11, no. 4, pp. 581–621, Dec.
1990, issn: 1748-3018, 0196-6774. doi: 10.1016/0196-6774(90)90011-3.

[99] S. Akmal and C. Jin, “Faster algorithms for bounded tree edit distance,” in 48th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2021), Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 12:1–12:15. doi: 10.4230/LIPIcs.
ICALP.2021.12.

[100] S. Y. Lu, “A tree-matching algorithm based on node splitting and merging,” IEEE
transactions on pattern analysis and machine intelligence, vol. 6, no. 2, pp. 249–256, Feb.
1984, issn: 0162-8828, 0098-5589. doi: 10.1109/tpami.1984.4767511.

[101] P. Klein, S. Tirthapura, D. Sharvit, and B. B. Kimia, “A tree-edit-distance algorithm for
comparing simple, closed shapes,” in Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, ACM/SIAM,
2000, pp. 696–704. [Online]. Available: https://dl.acm.org/citation.cfm?id=338219.
338628.

[102] K. Zhang, R. Statman, and D. Shasha, “On the editing distance between unordered
labeled trees,” Information processing letters, vol. 42, no. 3, pp. 133–139, May 1992, issn:
0020-0190. doi: 10.1016/0020-0190(92)90136-J.

[103] P. N. Klein, “Computing the Edit-Distance between unrooted ordered trees,” in Algorithms
— ESA’ 98, Springer Berlin Heidelberg, 1998, pp. 91–102. doi: 10.1007/3-540-68530-8_8.

[104] S. Dulucq and H. Touzet, “Analysis of tree edit distance algorithms,” in Combinatorial
Pattern Matching, Springer Berlin Heidelberg, 2003, pp. 83–95. doi: 10.1007/3-540-
44888-8_7.

[105] W. Chen, “New algorithm for ordered tree-to-tree correction problem,” Journal of algo-
rithms & computational technology, vol. 40, no. 2, pp. 135–158, Aug. 2001, issn: 1748-3018,
0196-6774. doi: 10.1006/jagm.2001.1170.

[106] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An optimal decomposition
algorithm for tree edit distance,” ACM Transactions on Algorithms, vol. 6, no. 1, pp. 1–19,
Dec. 2010, issn: 1549-6325. doi: 10.1145/1644015.1644017.

[107] K. Bringmann, P. Gawrychowski, S. Mozes, and O. Weimann, “Tree edit distance cannot be
computed in strongly subcubic time (unless APSP can),” ACM Transactions on Algorithms,
vol. 16, no. 4, 2020, issn: 1549-6325. doi: 10.1145/3381878.

[108] T. Flouri, B. Melichar, and J. Janoušek, “Subtree matching by deterministic pushdown
automata,” in 2009 International Multiconference on Computer Science and Information
Technology, Mragowo: ieeexplore.ieee.org, Oct. 2009, pp. 659–666, isbn: 9781424453146.
doi: 10.1109/IMCSIT.2009.5352769.

[109] T. Flouri, B. Melichar, and J. Janoušek, “Aho-Corasick like multiple subtree matching by
pushdown automata,” in Proceedings of the 2010 ACM Symposium on Applied Computing,
ser. SAC ’10, Sierre, Switzerland: Association for Computing Machinery, Mar. 2010,
pp. 2157–2158, isbn: 9781605586397. doi: 10.1145/1774088.1774543.

[110] T. Flouri, C. S. Iliopoulos, J. Janoušek, B. Melichar, and S. P. Pissis, “Tree template
matching in ranked ordered trees by pushdown automata,” in Implementation and Ap-
plication of Automata, vol. 17, Springer Berlin Heidelberg, Dec. 2012, pp. 273–281. doi:
10.1007/978-3-642-22256-6_25.

https://doi.org/10.1007/s00224-016-9705-1
https://doi.org/10.1016/0196-6774(90)90011-3
https://doi.org/10.4230/LIPIcs.ICALP.2021.12
https://doi.org/10.4230/LIPIcs.ICALP.2021.12
https://doi.org/10.1109/tpami.1984.4767511
https://dl.acm.org/citation.cfm?id=338219.338628
https://dl.acm.org/citation.cfm?id=338219.338628
https://doi.org/10.1016/0020-0190(92)90136-J
https://doi.org/10.1007/3-540-68530-8_8
https://doi.org/10.1007/3-540-44888-8_7
https://doi.org/10.1007/3-540-44888-8_7
https://doi.org/10.1006/jagm.2001.1170
https://doi.org/10.1145/1644015.1644017
https://doi.org/10.1145/3381878
https://doi.org/10.1109/IMCSIT.2009.5352769
https://doi.org/10.1145/1774088.1774543
https://doi.org/10.1007/978-3-642-22256-6_25

154 Bibliography

[111] D. Nowotka and J. Srba, “Height-Deterministic pushdown automata,” in Mathematical
Foundations of Computer Science 2007, Springer Berlin Heidelberg, 2007, pp. 125–134.
doi: 10.1007/978-3-540-74456-6_13.

[112] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval. New York: ACM press,
1999, isbn: 9780201398298.

[113] P. Weiner, “Linear pattern matching algorithms,” in 14th Annual Symposium on Switching
and Automata Theory (swat 1973), IEEE, Oct. 1973, pp. 1–11. doi: 10.1109/SWAT.1973.
13.

[114] U. Manber and G. Myers, “Suffix arrays: A new method for on-line string searches,”
SIAM Journal on Computing, vol. 22, no. 5, pp. 935–948, Oct. 1993, issn: 0097-5397. doi:
10.1137/0222058.

[115] M. Mohri, P. Moreno, and E. Weinstein, “General suffix automaton construction algorithm
and space bounds,” Theoretical computer science, vol. 410, no. 37, pp. 3553–3562, Sep.
2009, issn: 0304-3975. doi: 10.1016/j.tcs.2009.03.034.

[116] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht, “Complete inverted
files for efficient text retrieval and analysis,” Journal of the ACM, vol. 34, no. 3, pp. 578–595,
Jul. 1987, issn: 0004-5411. doi: 10.1145/28869.28873.

[117] M. Crochemore and R. Vérin, “On compact directed acyclic word graphs,” Structures in
logic and computer science, 1997. doi: 10.1007/3-540-63246-8_12.

[118] R. A. Baeza-Yates, “Searching subsequences,” Theoretical computer science, vol. 78, no. 2,
pp. 363–376, Jan. 1991, issn: 0304-3975, 1879-2294. doi: 10.1016/0304-3975(91)90358-
9.

[119] M. Crochemore, B. Melichar, and Z. Troníček, “Directed acyclic subsequence graph—
overview,” Journal of discrete algorithms, vol. 1, no. 3, pp. 255–280, Jun. 2003, issn:
1570-8667. doi: 10.1016/S1570-8667(03)00029-7.

[120] M. J. Fischer and M. S. Paterson, “String matching and other products,” Tech. Rep., 1974.
[Online]. Available: http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-
041.pdf.

[121] C. S. Iliopoulos and M. S. Rahman, “Pattern matching algorithms with don’t cares,” in
SOFSEM 2007: Theory and Practice of Computer Science, 33rd Conference on Current
Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic, January
20-26, 2007, Proceedings Volume II, Institute of Computer Science AS CR, Prague, 2007,
pp. 116–126.

[122] C. S. Iliopoulos and M. S. Rahman, “Indexing factors with gaps,” Algorithmica. An
International Journal in Computer Science, vol. 55, no. 1, pp. 60–70, Sep. 2009, issn:
0178-4617, 1432-0541. doi: 10.1007/s00453-007-9141-3.

[123] P. Bille and I. L. Gørtz, “Substring range reporting,” Algorithmica. An International
Journal in Computer Science, vol. 69, no. 2, pp. 384–396, Jun. 2014, issn: 0178-4617,
1432-0541. doi: 10.1007/s00453-012-9733-4.

[124] T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-M. Yiu, “Space efficient indexes for string
matching with don’t cares,” in Algorithms and Computation, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 846–857, isbn: 9783540771180. doi: 10.1007/978-3-540-
77120-3_73.

[125] P. Bille, I. L. Gørtz, H. W. Vildhøj, and D. K. Wind, “String matching with variable
length gaps,” Theoretical computer science, vol. 443, pp. 25–34, Jul. 2012, issn: 0304-3975.
doi: 10.1016/j.tcs.2012.03.029.

[126] M. Lewenstein, “Indexing with gaps,” in String Processing and Information Retrieval,
Springer Berlin Heidelberg, 2011, pp. 135–143. doi: 10.1007/978-3-642-24583-1_14.

https://doi.org/10.1007/978-3-540-74456-6_13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1137/0222058
https://doi.org/10.1016/j.tcs.2009.03.034
https://doi.org/10.1145/28869.28873
https://doi.org/10.1007/3-540-63246-8_12
https://doi.org/10.1016/0304-3975(91)90358-9
https://doi.org/10.1016/0304-3975(91)90358-9
https://doi.org/10.1016/S1570-8667(03)00029-7
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-041.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-041.pdf
https://doi.org/10.1007/s00453-007-9141-3
https://doi.org/10.1007/s00453-012-9733-4
https://doi.org/10.1007/978-3-540-77120-3_73
https://doi.org/10.1007/978-3-540-77120-3_73
https://doi.org/10.1016/j.tcs.2012.03.029
https://doi.org/10.1007/978-3-642-24583-1_14

Bibliography 155

[127] M. Cáceres, S. J. Puglisi, and B. Zhukova, “Fast indexes for gapped pattern matching,”
in SOFSEM 2020: Theory and Practice of Computer Science, Springer International
Publishing, 2020, pp. 493–504. doi: 10.1007/978-3-030-38919-2_40.

[128] K. Fredriksson and S. Grabowski, “Efficient algorithms for pattern matching with general
gaps, character classes, and transposition invariance,” Information retrieval, vol. 11, no. 4,
pp. 335–357, Aug. 2008, issn: 1386-4564, 1573-7659. doi: 10.1007/s10791-008-9054-z.

[129] T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen, “Online dictionary matching
with Variable-Length gaps,” in Experimental Algorithms, Springer Berlin Heidelberg, 2011,
pp. 76–87. doi: 10.1007/978-3-642-20662-7_7.

[130] P. Bille, I. L. Gørtz, H. W. Vildhøj, and S. Vind, “String indexing for patterns with
wildcards,” Theory of Computing Systems, vol. 55, no. 1, pp. 41–60, Jul. 2014, issn:
1432-4350, 1433-0490. doi: 10.1007/s00224-013-9498-4.

[131] J. Bader, S. Gog, and M. Petri, “Practical variable length gap pattern matching,” in
Experimental Algorithms, Springer International Publishing, 2016, pp. 1–16. doi: 10.1007/
978-3-319-38851-9_1.

[132] P. Peterlongo, J. Allali, and M.-F. Sagot, “Indexing gapped-factors using a tree,” Interna-
tional Journal of Foundations of Computer Science, vol. 19, no. 01, pp. 71–87, Feb. 2008,
issn: 0129-0541. doi: 10.1142/S0129054108005541.

[133] J. Janoušek, “String suffix automata and subtree pushdown automata,” in Proceedings of
the Prague Stringology Conference 2009, J. Holub and J. Žďárek, Eds., vol. 2009, Prague,
2009, pp. 160–172, isbn: 9788001044032. [Online]. Available: https://www.stringology.
org/event/2009/p15.html.

[134] R. Goldman and J. Widom, “DataGuides: Enabling query formulation and optimization
in semistructured databases,” Tech. Rep., 1997. [Online]. Available: http://ilpubs.
stanford.edu:8090/264/.

[135] T. Milo and D. Suciu, “Index structures for path expressions,” in Database Theory —
ICDT’99, Springer Berlin Heidelberg, 1999, pp. 277–295. doi: 10.1007/3-540-49257-
7_18.

[136] Q. Li and B. Moon, “Indexing and querying XML data for regular path expressions,”
in Proceedings of the 27th International Conference on Very Large Data Bases, Morgan
Kaufmann Publishers Inc., 2001, pp. 361–370. [Online]. Available: https://dl.acm.org/
doi/10.5555/645927.672035.

[137] C.-W. Chung, J.-K. Min, and K. Shim, “APEX: An adaptive path index for XML data,”
in Proceedings of the 2002 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’02, Madison, Wisconsin: Association for Computing Machinery, Jun.
2002, pp. 121–132, isbn: 9781581134971. doi: 10.1145/564691.564706.

[138] N. Tang, J. X. Yu, M. T. Ozsu, and K. Wong, “Hierarchical indexing approach to
support XPath queries,” in 2008 IEEE 24th International Conference on Data Engineering,
ieeexplore.ieee.org, Apr. 2008, pp. 1510–1512. doi: 10.1109/ICDE.2008.4497606.

[139] R. W. P. Luk, H. V. Leong, T. S. Dillon, A. T. S. Chan, W. B. Croft, and J. Allan, “A
survey in indexing and searching XML documents,” Journal of the American Society for
Information Science and Technology, vol. 53, no. 6, pp. 415–437, 2002, issn: 1532-2882,
1532-2890. doi: 10.1002/asi.10056.

[140] B. Catania, A. Maddalena, and A. Vakali, “XML document indexes: A classification,”
IEEE Internet Computing, vol. 9, no. 5, pp. 64–71, Sep. 2005, issn: 1089-7801, 1941-0131.
doi: 10.1109/MIC.2005.115.

[141] S. A. Mohammad, “Index structures for XML databases,” Ph.D. dissertation, Queen’s
University Kingston, Ontario, Canada, 2011.

https://doi.org/10.1007/978-3-030-38919-2_40
https://doi.org/10.1007/s10791-008-9054-z
https://doi.org/10.1007/978-3-642-20662-7_7
https://doi.org/10.1007/s00224-013-9498-4
https://doi.org/10.1007/978-3-319-38851-9_1
https://doi.org/10.1007/978-3-319-38851-9_1
https://doi.org/10.1142/S0129054108005541
https://www.stringology.org/event/2009/p15.html
https://www.stringology.org/event/2009/p15.html
http://ilpubs.stanford.edu:8090/264/
http://ilpubs.stanford.edu:8090/264/
https://doi.org/10.1007/3-540-49257-7_18
https://doi.org/10.1007/3-540-49257-7_18
https://dl.acm.org/doi/10.5555/645927.672035
https://dl.acm.org/doi/10.5555/645927.672035
https://doi.org/10.1145/564691.564706
https://doi.org/10.1109/ICDE.2008.4497606
https://doi.org/10.1002/asi.10056
https://doi.org/10.1109/MIC.2005.115

156 Bibliography

[142] Q. Zou, S. Liu, and W. W. Chu, “Ctree: A compact tree for indexing XML data,” in
Proceedings of the 6th annual ACM international workshop on Web information and data
management, ser. WIDM ’04, Washington DC, USA: Association for Computing Machinery,
Nov. 2004, pp. 39–46, isbn: 9781581139785. doi: 10.1145/1031453.1031462.

[143] P. M. Pettovello and F. Fotouhi, “MTree: An XML XPath graph index,” in Proceedings of
the 2006 ACM symposium on Applied computing, ser. SAC ’06, Dijon, France: Association
for Computing Machinery, Apr. 2006, pp. 474–481, isbn: 9781595931085. doi: 10.1145/
1141277.1141389.

[144] H. Jiang, H. Lu, W. Wang, and B. C. Ooi, “XR-tree: Indexing XML data for efficient
structural joins,” in Proceedings 19th International Conference on Data Engineering (Cat.
No.03CH37405), ieeexplore.ieee.org, Mar. 2003, pp. 253–264. doi: 10.1109/ICDE.2003.
1260797.

[145] P. Rao and B. Moon, “PRIX: Indexing and querying XML using prufer sequences,” in
Proceedings. 20th International Conference on Data Engineering, ieeexplore.ieee.org, Apr.
2004, pp. 288–299. doi: 10.1109/ICDE.2004.1320005.

[146] H. Wang, S. Park, W. Fan, and P. S. Yu, “ViST: A dynamic index method for querying
XML data by tree structures,” in Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’03, San Diego, California: Association
for Computing Machinery, Jun. 2003, pp. 110–121, isbn: 9781581136340. doi: 10.1145/
872757.872774.

[147] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe, “Representative objects: Concise
representations of semistructured, hierarchical data,” in Proceedings 13th International
Conference on Data Engineering, ieeexplore.ieee.org, Apr. 1997, pp. 79–90. doi: 10.1109/
ICDE.1997.581741.

[148] L. Segoufin and V. Vianu, “Validating streaming XML documents,” in Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, ser. PODS ’02, Madison, Wisconsin: Association for Computing Machinery, Jun.
2002, pp. 53–64, isbn: 9781581135077. doi: 10.1145/543613.543622.

[149] Y. Diao, P. Fischer, M. J. Franklin, and R. To, “YFilter: Efficient and scalable filtering
of XML documents,” in Proceedings 18th International Conference on Data Engineering,
ieeexplore.ieee.org, Feb. 2002, pp. 341–342. doi: 10.1109/ICDE.2002.994748.

[150] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu, “Processing XML streams with
deterministic automata,” in Database Theory — ICDT 2003, Springer Berlin Heidelberg,
2003, pp. 173–189. doi: 10.1007/3-540-36285-1_12.

[151] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu, “Processing XML streams
with deterministic automata and stream indexes,” ACM Trans. Database Syst., vol. 29,
no. 4, pp. 752–788, Dec. 2004, issn: 0362-5915. doi: 10.1145/1042046.1042051.

[152] V. Kumar, P. Madhusudan, and M. Viswanathan, “Visibly pushdown automata for
streaming XML,” in Proceedings of the 16th international conference on World Wide Web,
ser. WWW ’07, Banff, Alberta, Canada: Association for Computing Machinery, May 2007,
pp. 1053–1062, isbn: 9781595936547. doi: 10.1145/1242572.1242714.

[153] F. Neven, “Automata theory for XML researchers,” SIGMOD Rec., vol. 31, no. 3, pp. 39–46,
Sep. 2002, issn: 0163-5808. doi: 10.1145/601858.601869.

[154] F. Neven, “Automata, logic, and XML,” in Computer Science Logic, Springer Berlin
Heidelberg, 2002, pp. 2–26. doi: 10.1007/3-540-45793-3_2.

[155] T. Schwentick, “Automata for XML—A survey,” Journal of Computer and System Sciences,
vol. 73, no. 3, pp. 289–315, May 2007, issn: 0022-0000. doi: 10.1016/j.jcss.2006.10.003.

https://doi.org/10.1145/1031453.1031462
https://doi.org/10.1145/1141277.1141389
https://doi.org/10.1145/1141277.1141389
https://doi.org/10.1109/ICDE.2003.1260797
https://doi.org/10.1109/ICDE.2003.1260797
https://doi.org/10.1109/ICDE.2004.1320005
https://doi.org/10.1145/872757.872774
https://doi.org/10.1145/872757.872774
https://doi.org/10.1109/ICDE.1997.581741
https://doi.org/10.1109/ICDE.1997.581741
https://doi.org/10.1145/543613.543622
https://doi.org/10.1109/ICDE.2002.994748
https://doi.org/10.1007/3-540-36285-1_12
https://doi.org/10.1145/1042046.1042051
https://doi.org/10.1145/1242572.1242714
https://doi.org/10.1145/601858.601869
https://doi.org/10.1007/3-540-45793-3_2
https://doi.org/10.1016/j.jcss.2006.10.003

Bibliography 157

[156] E. Šestáková, B. Melichar, and J. Janoušek, “Constrained approximate subtree matching
by finite automata,” in Proceedings of the Prague Stringology Conference 2018, J. Holub
and J. Žďárek, Eds., Prague, 2018, pp. 79–90, isbn: 9788001064849. [Online]. Available:
https://www.stringology.org/event/2018/p08.html.

[157] E. Šestáková, O. Guth, and J. Janoušek, “Automata approach to inexact tree pattern
matching using 1-degree edit distance,” in Proceedings of the Prague Stringology Conference
2021, J. Holub and J. Žďárek, Eds., Czech Technical University in Prague, Czech Republic,
2021, pp. 1–15, isbn: 9788001068694. [Online]. Available: https://www.stringology.
org/event/2021/p01.html.

[158] E. Šestáková, O. Guth, and J. Janoušek, “Inexact tree pattern matching with 1-degree edit
distance using finite automata,” Discrete applied mathematics, submitted for publication,
issn: 0166-218X.

[159] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms. Createspace
Independent Pub, Oct. 2014, isbn: 9781502575869.

[160] E. Šestáková and J. Janoušek, “Tree string path subsequences automaton and its use
for indexing XML documents,” in Languages, Applications and Technologies, Springer
International Publishing, 2015, pp. 171–181, isbn: 9783319276533. doi: 10.1007/978-3-
319-27653-3_17.

[161] E. Šestáková and J. Janoušek, “Indexing XML documents using tree paths automaton,” in
6th Symposium on Languages, Applications and Technologies (SLATE 2017), ser. OpenAc-
cess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017, 10:1–10:14, isbn: 9783959770569. doi: 10.4230/OASIcs.SLATE.2017.10.

[162] E. Šestáková and J. Janoušek, “Automata approach to XML data indexing,” Information,
vol. 9, no. 1, p. 12, Jan. 2018, issn: 2078-2489. doi: 10.3390/info9010012.

https://www.stringology.org/event/2018/p08.html
https://www.stringology.org/event/2021/p01.html
https://www.stringology.org/event/2021/p01.html
https://doi.org/10.1007/978-3-319-27653-3_17
https://doi.org/10.1007/978-3-319-27653-3_17
https://doi.org/10.4230/OASIcs.SLATE.2017.10
https://doi.org/10.3390/info9010012

158 Bibliography

Appendix A

Reviewed publications of the author
relevant to the dissertation thesis

This section contains a list of reviewed publications relevant to the dissertation thesis in which I1

am an author. In most of the publications, I am the only author (apart from my supervisor, Jan
Janoušek). However, some of my research has been collaborative. If that is the case, I describe
my contribution and the contribution of the remaining authors. These clarifications are intended
for the examiners of this dissertation thesis.

The content of Chapter 5 is partially based on the following publications:

1. E. Šestáková, B. Melichar, and J. Janoušek, “Constrained approximate subtree matching
by finite automata,” in Proceedings of the Prague Stringology Conference 2018, J. Holub
and J. Žďárek, Eds., Prague, 2018, pp. 79–90, isbn: 9788001064849. [Online]. Available:
https://www.stringology.org/event/2018/p08.html

2. E. Šestáková, O. Guth, and J. Janoušek, “Automata approach to inexact tree pattern matching
using 1-degree edit distance,” in Proceedings of the Prague Stringology Conference 2021, J.
Holub and J. Žďárek, Eds., Czech Technical University in Prague, Czech Republic, 2021,
pp. 1–15, isbn: 9788001068694. [Online]. Available: https://www.stringology.org/event/
2021/p01.html

3. E. Šestáková, O. Guth, and J. Janoušek, “Inexact tree pattern matching with 1-degree edit
distance using finite automata,” Discrete applied mathematics, submitted for publication, issn:
0166-218X

In this dissertation thesis, I explain the results in more detail than it is done in the above-
mentioned publications and describe the relationship with the SNINWE classification proposed
in Chapter 3. I also present slightly different variants of some algorithms as discussed below.

I co-authored the first publication mentioned above with Bořivoj Melichar. He was the one
who came up with an idea to explore the string automata approach to inexact tree pattern
matching. Melichar also supervised my work, gave me feedback, and read my drafts.

I co-authored the second and third publication with Ondřej Guth. He is the main author
behind the idea of dynamic programming algorithm for the (simple) 1-degree edit distance.
However, in this dissertation thesis, I present a slightly different version which has better space
complexity and it is, in my opinion, conceptually simpler.

1The personal pronoun “I” instead of “we” is used in this part for the purpose of describing the contributions
of the author of this dissertation thesis.

159

https://www.stringology.org/event/2018/p08.html
https://www.stringology.org/event/2021/p01.html
https://www.stringology.org/event/2021/p01.html

160 Reviewed publications of the author relevant to the dissertation thesis

The content of Chapter 6 is partially based on the following publications:

1. E. Šestáková and J. Janoušek, “Tree string path subsequences automaton and its use for in-
dexing XML documents,” in Languages, Applications and Technologies, Springer International
Publishing, 2015, pp. 171–181, isbn: 9783319276533. doi: 10.1007/978-3-319-27653-3_17

2. E. Šestáková and J. Janoušek, “Indexing XML documents using tree paths automaton,” in
6th Symposium on Languages, Applications and Technologies (SLATE 2017), ser. OpenAccess
Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017,
10:1–10:14, isbn: 9783959770569. doi: 10.4230/OASIcs.SLATE.2017.10

3. E. Šestáková and J. Janoušek, “Automata approach to XML data indexing,” Information,
vol. 9, no. 1, p. 12, Jan. 2018, issn: 2078-2489. doi: 10.3390/info9010012

This article has been cited in

• P. Sijin and H. N. Champa, “Dynamic document localization for efficient mining,” in
Sentimental Analysis and Deep Learning, Springer Singapore, 2022, pp. 15–29. doi: 10.
1007/978-981-16-5157-1_2

• R. Chen, Z. Wang, H. Su, et al., “Parallel XPath query based on cost optimization,” The
Journal of supercomputing, vol. 78, no. 4, pp. 5420–5449, Mar. 2022, issn: 0920-8542,
1573-0484. doi: 10.1007/s11227-021-04074-y

• P. Sijin and H. N. Champa, “Data conceptualization for semantic search diversification over
XML data,” in 2021 2nd International Conference on Smart Electronics and Communication
(ICOSEC), Oct. 2021, pp. 875–882. doi: 10.1109/ICOSEC51865.2021.9591868

In the above publications, the methods are specifically tailored to XML. In this dissertation
thesis, I present the results more generally considering arbitrary ordered labeled trees. The
explanation of individual methods is also much more detailed, and the methods are presented
in the context of the SNINWE classification of the tree pattern matching problems proposed
in Chapter 3. Moreover, the path automaton described in Section 6.4 is only described in this
dissertation thesis and not in the above-mentioned publications.

https://doi.org/10.1007/978-3-319-27653-3_17
https://doi.org/10.4230/OASIcs.SLATE.2017.10
https://doi.org/10.3390/info9010012
https://doi.org/10.1007/978-981-16-5157-1_2
https://doi.org/10.1007/978-981-16-5157-1_2
https://doi.org/10.1007/s11227-021-04074-y
https://doi.org/10.1109/ICOSEC51865.2021.9591868

Appendix B

Remaining publications of the author
relevant to the dissertation thesis

• E. Šestáková, Automaty a gramatiky: sbírka řešených příkladů, cs. Czech Technical University
in Prague, 2017, isbn: 9788001063064

• E. Šestáková, Automata and grammars: A collection of exercises and solutions. Czech Technical
University in Prague, 2018, isbn: 9788001064627

• E. Šestáková and O. Guth, Lecture notes on automata, languages, and grammars, cs. 2021

• E. Šestáková, “Indexing XML documents and tree data structures,” Czech Technical University
in Prague, Tech. Rep., 2017

• E. Šestáková, “Automata approach to processing tree data structures,” Czech Technical
University in Prague, Tech. Rep., 2017

161

162 Remaining publications of the author relevant to the dissertation thesis

Appendix C

Remaining publications of the author

• C. Piech, L. Yan, L. Einstein, et al., “Co-Teaching computer science across borders: Human-
Centric learning at scale,” in Proceedings of the Seventh ACM Conference on Learning @
Scale, ser. L@S ’20, Virtual Event, USA: Association for Computing Machinery, Aug. 2020,
pp. 103–113, isbn: 9781450379519. doi: 10.1145/3386527.3405915

163

https://doi.org/10.1145/3386527.3405915

	Acknowledgments
	Abstract
	Notation and conventions
	Abbreviations
	Introduction
	Aim of the dissertation thesis
	Contribution of the dissertation thesis
	Structure of the dissertation thesis

	Preliminaries
	Alphabets, strings, languages, and grammars
	Aphabets
	Strings
	Languages
	Grammars

	Finite and pushdown automata
	Finite automata
	Pushdown automata

	Trees
	Operations on trees
	Tree parts

	Tree languages
	Prefix bar notation for ordered labeled trees
	Path notation for ordered labeled trees
	XML and XPath

	Tree pattern matching
	Classification of tree pattern matching problems
	Structure of the pattern
	Nature of the pattern
	Integrity of the pattern
	Number of patterns
	Way of matching the pattern
	Exactness of matching the pattern

	Describing tree pattern matching problems using the classification
	Possible extensions to the classification
	Summary

	Previous results and related work
	Inexact pattern matching
	Strings
	Trees

	Indexing
	Strings
	Trees

	Main results in inexact tree pattern matching
	Constrained 1-degree edit distance
	Problem statement
	Automata approach
	1-degree matching automaton for the constrained simple 1-degree edit distance
	Deterministic automaton
	Simulation by dynamic programming

	1-degree matching automaton for the simple 1-degree edit distance
	Pushdown automaton
	Finite automaton with -transitions
	Simulation of the 1-degree matching -NFA by dynamic programming

	1-degree matching automaton for the (constrained) 1-degree edit distance
	Constrained 1-degree edit distance
	1-degree edit distance

	Summary

	Main results in tree indexing
	Problem statement
	Automata approach
	Rootpath automaton
	Path automaton
	Fully-gapped rootpath automaton
	Gapped rootpath automaton
	Summary

	Conclusions
	Contributions of the dissertation thesis
	Future work

	Reviewed publications of the author relevant to the dissertation thesis
	Remaining publications of the author relevant to the dissertation thesis
	Remaining publications of the author

