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Abstract

A proper input data representation is essential for the successful application of learning mod-
els. While for homogeneous data like images, text, or sounds, end-to-end models capable of
learning directly from raw data have already been developed, for heterogeneous data, such as
JavaScript Object Notation (JSON) documents, manually designed feature representations are
still the norm. Designing features by hand is, however, time-consuming and often suboptimal
because not all of the discriminative information that a model could use is always extracted, even
by domain experts. Moreover, this extra step in the machine learning pipeline might quickly be-
come a bottleneck when experimenting with new data sources and/or in fast-evolving environ-
ments where the importance of individual features is subject to change and the whole process
needs to be repeated again and again.

To address this issue, we propose a fully automated end-to-end approach for learning models
on hierarchically structured data in JSON format, which eliminates the need for manual in-
tervention. Collecting all the available information about each examined object into a single
JSON file is all that is required. Then, depending on the task, a model will automatically de-
cide which information is relevant and which can be discarded. To achieve this, we developed
a JSON2bag tool that maps the problem of learning on JSONs into a Multiple Instance Learn-
ing (MIL) problem, as well as two independent MIL models that can be applied to general MIL
problems: Bag-level Randomized Trees (BLRT) and Instance Selection Randomized Trees (ISRT).

On publicly available benchmark datasets, we demonstrate that each of the proposed meth-
ods outperforms prior-art solutions, even without careful hyper-parameter tuning. More impor-
tantly, we show on five real-world cybersecurity applications that MIL and learning on JSONs
address a number of important problems in that field. Specifically, the flexibility of the JSON for-
mat makes it possible to combine weak signals of different types, sizes, and quality to improve
the overall accuracy of predictions. Next, working with higher-level entities (represented by the
JSONs) instead of the individual lower-level weak signals reduces label acquisition costs since
there is less to annotate. Lastly, despite having labels only for high-level entities, the proposed
method can naturally explain alerts by pointing out which low-level signals cause the alerts.

Keywords: end-to-end learning, JSON documents, tree-structured data, combining heteroge-
neous data sources, heterogeneous data types, learning with contextual information, multiple
instance learning, decision tree ensembles, explainability, cybersecurity.
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Abstrakt

Vhodná reprezentace vstupních dat je pro úspěšnou aplikaci učících se modelů klíčová. Za-
tímco pro homogenní data, jako jsou obrázky, text nebo zvuk, již byly vyvinuty end-to-end
modely schopné učit se přímo z nezpracovaných dat, pro heterogenní data, jako jsou doku-
menty JavaScript Object Notation (JSON), jsou stále standardem ručně navrhované příznakové
reprezentace. Ruční navrhování příznaků je však časově náročné a často neoptimální, protože
ne vždy se podaří vyextrahovat veškerou relevantní informaci, kterou by model mohl využít, a
to ani expertům v dané oblasti. Navíc se tento dodatečný krok v procesu strojového učení může
rychle stát úzkým hrdlem při experimentování s novými zdroji dat nebo v dynamicky se vyvíje-
jících prostředích, kde význam jednotlivých příznaků podléhá změnám a celý proces je potřeba
neustále opakovat.

Jako řešení tohoto problému navrhujeme plně automatizovaný end-to-end způsob učení mod-
elů nad hierarchicky strukturovanými daty ve formátu JSON, který eliminuje nutnost manuál-
ního zásahu. Stačí pouze sesbírat veškeré dostupné informace o každém zkoumaném objektu
do samostatného JSON souboru. Model pak v závislosti na konkrétní úloze automatizovaně
rozhodne, které informace jsou relevantní a které lze vyřadit. K dosažení tohoto cíle jsme
vyvinuli nástroj JSON2bag, který převádí problém učení nad soubory typu JSON na problém
multi-instančního učení (MIL), a také dva samostatné MIL modely, které lze využít k řešení
obecných MIL problémů: Bag-level Randomized Trees (BLRT) a Instance Selection Randomized
Trees (ISRT).

Na veřejně dostupných referenčních datových sadách prokazujeme, že každá z navrhovaných
metod překonává dosavadní známá řešení, a to i bez pečlivého ladění hyperparametrů. Co je
však důležitější, na pěti reálných aplikacích v oblasti kybernetické bezpečnosti ukazujeme, že
multi-instanční učení a učení nad soubory JSON řeší řadu důležitých problémů v této oblasti.
Konkrétně flexibilita formátu JSON umožňuje kombinovat slabé signály různých typů, velikostí
a kvality a zlepšit tak celkovou přesnost predikcí. Dále práce s entitami vyšší úrovně (reprezen-
tovanými soubory JSON) namísto jednotlivých nízkoúrovňových slabých signálů redukuje nák-
lady na anotaci dat, jelikož je díky agregaci méně entit k anotaci. A nakonec, přestože jsou k
dispozici pouze anotace pro entity vyšší úrovně, navrhovaná metoda dokáže přirozeně vysvětlit
pozitivní predikce poukázáním na signály nižší úrovně, které predikce způsobují.

Kličová slova: end-to-end učení, dokumenty JSON, stromově strukturovaná data, kombinování
heterogenních zdrojů dat, heterogenní typy dat, učení s využitím kontextuální informace, multi-
instanční učení, rozhodovací stromy, vysvětlitelnost, kybernetická bezpečnost.
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Chapter 1

Introduction

Mathematical models play an essential role in numerous scientific and engineering applications
as they help to understand and predict the behavior of complex natural and human-made sys-
tems. One type of mathematical model is a classification model, which assigns a given object
into one of the predefined classes based on data representing the object. Even for the most basic
form of two-class (binary) classification and one specific cybersecurity domain, there are tons of
practical applications, such as distinguishing between spam and non-spam emails, malware and
goodware files, fraudulent and legitimate transactions, forgery and genuine documents, crimi-
nal and regular customers, malicious and benign domains, malware-infected and clean network
users, etc. In the current data-driven era, such classification models are typically constructed
with supervised machine learning (ML) algorithms that extract discriminative patterns from
provided datasets of sample pairs of objects and their respective classes. The final accuracy of
the model depends on many factors, but it is known that the quality of data representation is
among the most important ones, if not the most important [37].

ML algorithms usually request that every object be represented with a fixed set of numerical
features, known as a feature vector. Since representation is critical to the success of ML, many
years of research have gone into creating techniques for extracting relevant features from raw
input data. Throughout the years, we have seen howhuman-defined features are being gradually
outperformed by learned features derived automatically from raw data as part of the learning
process. The most illustrative case is image analysis, where computer vision experts spent many
years fine-tuning their definitions of various color-based and edge-based features [78, 30, 13],
only to be radically overcome by Convolutional Neural Networks (CNN) [74]. Similar advances
have also been made in modeling text with various word embedding techniques [81, 87] and
transformer-based language models [95, 34, 21] or in the audio domain with speech-to-text deep
neural network models [51, 11]. Arguably, methods in each of these domains benefit from (1)
the regular nature of the data — image and video having a straightforward representation as
tensors of constant dimensions, and audio and text having the form of a stream of numerical
values of one type — and (2) the availability of massive datasets [33, 73, 111, 96, 85] — utilized
for unsupervised [54] or self-supervised [36] model pretraining.

However, not every domain offers the same level of regularity in the data, nor the same abun-
dance of large-scale datasets. For example, in the cybersecurity domain, the datasets are typi-
cally proprietary due to privacy issues, and the data have a difficult structure, posing a problem
to existing learning techniques. To outline what we mean by a difficult structure, consider the
task of classifying network users as either malware-infected or clean based on their connec-
tions with servers on the Internet. Since the number of contacted servers may vary from user to
user (without any meaningful upper bound), it is rather difficult to represent users as fixed-size
feature vectors. A small feature count may lead to information loss on users with many con-
nections, while sufficiently large (if even possible) to over-parametrization and memory issues.
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CHAPTER 1. INTRODUCTION

Moreover, each server may be described by yet another variable number of entities (e.g. users,
files, domains) that are related to the particular server and are known to be malicious, leading to
tree-structured data. Additionally, it might be important to model the entities as permutation-
invariant, meaning that the order in which they appear should not affect themodel’s predictions.
Furthermore, each entity type may have its own unique set of features, which can be of various
data types, such as numerical, string, or Boolean values. Some features might also be missing oc-
casionally. For instance, a domain reputation score feature may rely on an external service that
could be temporarily unavailable or impose daily query limits. Finally, the whole data structure
might not be fully under our control, and some sub-structures may change over time, requiring
the model to exhibit robustness and/or fast retraining capabilities on modified data structures.

Since such hierarchically structured objects are commonly found in many other domains be-
yond cybersecurity, various data formats have been developed to represent them effectively.
The JavaScript Object Notation (JSON) is currently among the most widely used [105]. It is a
text-based, self-describing format that can store strings, numbers, Booleans, and null values in
a tree-like structure of arbitrary depth and breadth, making it extremely versatile and useful for
capturing many real-world phenomena. However, while JSONs are ubiquitous in the field of
computer engineering and database management, they are rarely considered in the context of
ML. This is because there is no universal method for fitting JSON data samples of variable tree
structure into fixed-size feature vectors without significant information loss.

Therefore, objects of difficult structure are often represented in the JSON format for the con-
venience of storage, analysis, and human readability; but when ML is to be applied, a custom
feature vector representation of the JSONs must be manually created for each particular task.
However, explicit manual extraction of information is exactly the step that has been proven in-
ferior to automatic extraction as part of the learning process. All mainstream large-scale models
beat human-defined features. Moreover, hand-crafted features not only tend to be suboptimal,
as humans struggle with identifying relevant information in complex data structures and are
subject to bias, but the process is also costly and time-consuming, requiring domain experts
and adding an extra bottleneck when experimenting with new data sources or adapting extrac-
tors to sudden changes in the JSON structure. Note that although relational learning [12] and
particularly Graph Neural Networks (GNN) [114, 101] also address the problem of learning on
structured data, they are not directly applicable to the JSON format and, therefore, do not make
use of large amounts of already existing JSON datasets.

For this reason, we see a significant gap in the current state-of-the-art of ML in cybersecurity
and beyond. The problem we aim to address in this thesis is to define scalable and easily oper-
ationalizable models that can utilize maximum information contained in JSON data common in
cybersecurity — data usually collected from multiple sources of various quality, of a tree struc-
ture with unknown and potentially unstable schema, with a mix of various data types, a variable
number of records, occasionally missing values and order-independent elements.

Unfortunately, the ability to model complex data structures does not necessarily resolve all
practical issues when applying ML to fields like cybersecurity. Another critical problem we
usually face is an asymmetry in labeling requirements with respect to the learning/application
phase. A model must be able to learn using only incomplete non-specific high-level positive
labels, but when applied, it must provide specific low-level explanations for positive high-level
predictions. Let us clarify.

To recognize a malware infection, it is often necessary to analyze a combination of multiple
data sources, including network traffic captures, operating system event logs, and file meta-data.
Interpreting the data from any of these sources is, however, difficult and time-demanding, even
for experts in the field. Moreover, the positive signal is often fragmented into numerous weaker
ones that are easier to hide in a mass of background noise. Typically, the more important the
signal is, the more attackers invest into hiding it. Due to these high labeling costs, and the ever-
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CHAPTER 1. INTRODUCTION

increasing volume of new malware and data samples, it is practically impossible to compile a
fully-labeled dataset that would be both representative and up-to-date. Supplying incomplete
high-level labels (e.g. infected/clean user) without specifying the positive low-level signals (e.g.
individual user’s network communications responsible for the infection) is then one of the ways
how at least significantly reduce the label acquisition costs.

On the other hand, in the application phase, it is generally not enough to just provide non-
specific high-level decisions, because the alerts generated by the model cannot be blindly trusted
and must be well justified. This is especially true when subsequent acting upon the raised alerts
is associated with a high cost, such as reimaging a user’s infected computer. In such cases, it
is essential to provide explanations for the high-level positive predictions by identifying the
specific low-level signals within the structured data that triggered the alarms. Given the poten-
tially vast size of data structures, accurate identification of relevant low-level signals can greatly
minimize the time human operators spend on validating predictions. This real-world need is
often overlooked by traditional ML approaches, as the process of transforming complex data
structures into fixed-size feature vectors renders the backward identification of positive signals
within the original structures particularly challenging.

In this thesis, we will utilize the paradigm of Multiple Instance Learning (MIL) [5] to tackle
both of the aforementioned key challenges: learning on data of difficult structure and dealing
with the asymmetry in labeling requirements. MIL is an emerging branch of ML, where individ-
ual data samples (called bags in MIL terminology) are represented with multiple feature vectors
(called instances) instead of single feature vectors (characteristics for the traditional so-called
Single Instance Learning). Instances inside bags are independent of their order, and their count
(i.e. bag size) may vary from bag to bag. Class labels are then available only for bags, not the
inner instances.

Our strategy throughout the thesis is, therefore, to initially focus on developing universal MIL
models that can effectively learn from training MIL datasets consisting of labeled bags to accu-
rately classify new (previously unseen) bags. Since there is no supervision indicating which
instances inside training bags are accountable for the bag label and which are irrelevant, the
learning algorithms have to figure it out on their own. Then, by forcing the algorithm to ex-
plicitly select only the relevant instances and ignore the rest during the classification, we will
address the issue of identifying low-level signals (i.e. instances) in positively classified high-
level data structures (i.e. bags). After successfully tackling the problem of learning on bags,
we will propose a transformation that maps the unsolved problem of learning on JSONs to the
solved problem of learning on bags. Unlike the traditional ML approaches fitting arbitrary com-
plex JSON samples into single fixed-size feature vectors, this dynamic-size multi-feature vector
representation can be created with a minimum (to none) information loss and enable backward
identification of low-level signals (specific JSON values) in positively classified high-level JSONs
comprising many values.

1.1 Problem Statement

The key questions to be answered in this thesis can be summarized as follows:
1. Can we build MIL classifiers on top of flexible data structures where objects are repre-

sented as bags of instances that would outperform prior-art MIL methods in accuracy,
simplicity (single-step methods), and robustness (performing well over a broad range of
problems without extensive hyper-parameter tuning)?

2. Can we build MIL classifiers that can explicitly identify the subset of relevant instances
within positively classified bags (and effectively prioritize the instances within the subset),
so that we minimize the time of human operators verifying the findings?

3



CHAPTER 1. INTRODUCTION

3. Can we build MIL classifiers on top of JSONs in an end-to-end fashion with an auto-
mated JSON-to-bag conversion that extracts maximum available information from every
JSON without relying on expensive human-defined task-specific feature extraction, nor
the availability or even existence of common JSON schema?

4. Can we build MIL classifiers on top of JSONs that are robust against typical JSON distor-
tions such as schema drift, pollution with noisy values, and positive signal displacement?

5. Can we build MIL classifiers that outperform traditional ML techniques as well as spe-
cialized prior-art MIL-based, JSON-based, and GNN-based methods on several real-world
cybersecurity MIL/JSON datasets?

1.2 Proposed Solution

Addressing the above-defined problems requires the construction of powerful MIL classification
models. In this thesis, we propose two independent algorithms, Bag-level Randomized Trees
(BLRT) and Instance Selection Randomized Trees (ISRT), as potential solutions for deriving such
models from datasets of labeled bags.

Both algorithms, as their names suggest, are based on ensembles of (non-boosted) decision
trees, which are still widely used in the cybersecurity industry and other fields, even in this
neural network age. The reason for this is easy scalability to large datasets [1] (individual trees
can be built in parallel, independently), and usually good, if not excellent, out-of-the-box per-
formance that can be achieved over a wider range of problems without the need for problem-
specific hyper-parameter tuning or data preprocessing (e.g. feature rescaling) [42]12. One of the
key factors responsible for the robust performance of decision trees is the built-in feature selec-
tion mechanism that robustly seeks the locally optimal feature-threshold split for each node in
the tree during the learning process. Not only it decreases the complexity of a model and the
risk of overfitting by excluding irrelevant and noisy features, but it can also provide feature im-
portance rankings, which might help to understand the decision-making process. As such, our
goal within the BLRT and ISRT algorithms is to adjust the traditional tree node-splitting mech-
anism to the MIL setting, where samples (i.e. bags) may consist of multiple feature vectors (i.e.
instances). Particularly, within ISRT, we further aim to extend the feature-selection mechanism
onto instances (therefore the name Instance Selection Randomized Trees) and thus recognize
which instances inside bags are important for the decision.

Learning on JSONs is then approached bymapping individual JSON objects toMIL bags. Since
JSONs possess a variable breadth and depth tree structure, andMIL bags provide only a one-level
dynamic structure, we propose a tool called JSON2bag that disassembles the JSON tree structure
into branches and represents each branch as a single instance within a bag. The objective of the
JSON2bag mapping is to fully harvest the information contained in JSONs to bags so that MIL
models can decide themselves what information is important and what is not in relation to a
given task, without relying on human judgment. Converting all JSON values into bag instances,
without imposing any count limitation, also paves the way for the ISRTmodel to retrospectively
pinpoint the relevant ones.

1The consistently good performance of models, such as Breiman’s Random Forests [18], over a wide range of
conditions, presents a distinct advantage in practical ML applications. The robustness, especially when the model is
periodically retrained with new data, mitigates the sudden risk of producing inaccurate models (e.g. due to concept
drift in the new data [57]) that could generate an excessive number of false alarms, thereby making the entire security
system useless.

2On the other hand, unlike neural networks, decision tree-based algorithms cannot create pre-trained models that
can be later reused as building blocks for various other tasks, as exemplified by https://huggingface.co/ project. In
other words, each time a new problem needs to be solved, a new model must be trained from scratch.

4
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1.3 Contributions

This thesis has four main contributions:
1. Bag-level Randomized Trees (BLRT) (Chapter 3) We propose a novel classification

model as an extension of traditional (single instance) decision trees to the MIL setting,
where samples (called bags) are represented as sets of feature vectors (called instances).
To be able to decide in every tree node, whether a bag should continue to the left or right
branch, during the propagation from the root node to the leaves, we extend the standard
decision tree condition evaluating — if a value of a specific feature is greater than a cer-
tain threshold — by an additional parameter judging the percentage of instances within
the bag that accomplish the condition. The added parameter is learned for each node sep-
arately along with the standard feature index and threshold value parameters during the
tree construction process. Surprisingly, despite conceptual simplicity, the BLRT model is
demonstrated to outperform 28 prior-art MIL classifiers on 29 publicly accessible bench-
mark datasets, even without hyper-parameter tuning.

2. Instance Selection Randomized Trees (ISRT) (Chapter 4) is another MIL classifier pro-
posed in this thesis which addresses one additional requirement beyond the capabilities
of BLRT — regularizing the model to minimize the number of instances that the model se-
lects for building its decision boundary. This requirement is motivated by the real needs
of cybersecurity systems where analyzed entities are typically described by large amounts
of complex data that are difficult and costly to interpret by humans, but at the same time,
the verdicts upon positively classified entities must be well justified using the data. There-
fore we need to train classifiers that minimize the amount of information based on which
decisions are made and thus to save time of human operators post-processing such deci-
sions. To achieve that we implement an instance-selection mechanism explicitly selecting
only the most informative instance in each tree node upon which the standard feature-
threshold condition is evaluated. On benchmark datasets, we demonstrate that ISRT in-
deed exhibits a strong instance reduction effect without sacrificing accuracy. We also
show that the number of times an instance is selected reflects its importance and that the
introduced regularization may also lead to higher accuracy by eliminating the influence
of noisy and irrelevant instances from the decision-making process.

3. JSON2bag (Chapter 5) is an automated feature extraction algorithm that we propose for
converting JSON documents to MIL bags, thereby enabling learning on top of JSONs.
Given an arbitrary complex JSON sample, JSON2bag decomposes its JSON tree topology
into a set (i.e. bag) of instances, where each instance represents a single JSON value along
with its location within the tree topology. Unlike the closest prior-art method, JSON2bag
does not assume the existence of a schema that all JSONs from a dataset must obey. This
allows us to model even schema-less problems, which we illustrate in classifying web
pages, where every page may have a different structure of the HTML source code. We
also examine the robustness of the proposed representation against two types of common
JSON distortions: pollution with irrelevant noisy values and signal displacement (i.e. a
move of JSON subtree to another position within the same tree in future samples). Fi-
nally, we show that, while JSON2bag is compatible with any MIL model, in conjunction
with ISRT, it can explain decisions by means of the top most important JSON values.

4. Applications to cybersecurity (Chapter 6) We demonstrate the effectiveness of our pro-
posed methods by comparing them to both traditional and specialized prior-art ML ap-
proaches in five real-world cybersecurity applications. The data used are authentic and
their structure has not been altered in any way to ensure the closest possible resemblance
to real-world conditions. We also place a particular emphasis on evaluation protocols to
ensure that any improvements are not simply due to overfitting.
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Chapter 2

Background and Related Work

In the previous chapter, we defined and motivated the problem of learning on data of diffi-
cult structure, including the problem of asymmetrical labeling requirements w.r.t. the learn-
ing/application phase. In this chapter, we introduce background preliminaries and review re-
lated work in the fields of Multiple Instance Learning (MIL) and learning on JavaScript Object
Notation (JSON) documents, which are both relevant for addressing the stated problems.

2.1 Multiple Instance Learning

Multiple Instance Learning (MIL) [5] generalizes the traditional data representation as it al-
lows individual data samples B1,B2, . . . (called bags) to be represented as a set of multiple d-
dimensional feature vectors B = {x1,x2, . . .}, x ∈ Rd (called instances), which are order
independent and their counts may vary across bags. In the supervised classification, it is further
assumed that each bag is associated with label y (e.g. y ∈ {−1,+1} in the binary case), and
the goal is to infer function F from datasetD = {(B, y)1, (B, y)2, . . .}, using algorithmA, such
that the function F can predict labels for new (previously unseen) bags F(B) = y.

The definition of MIL goes back to 1997 [35]. One of the first examples illustrating the concept
of MIL is the keychain problem [9]: Imagine there is a locked door and a collection of peoples’
keychains (bags), each consisting of several keys (instances). We know about certain individuals
who can or cannot open the door (labeled bags), but we do not know which key on their key-
chains makes this possible (unlabeled instances). Based on these keychains, our goal is to learn

Arthur’s keychain

cannot open

Bob’s keychain

can open

Henry’s keychain

can open

bag

instance

Figure 2.1: Multiple Instance Learning (MIL) illustrated on keychain problem. Unlike traditional
learning, the task is to learn from high-level, labeled bags (keychains) rather than low-level
instances (keys). A model should learn to classify keychains as ’can open’ if contain a green key.
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to identify who else’s keychain can open the door (bag classifier F ). In the context of Figure 2.1,
the correct inference would be that any keychain with the green key can unlock the door.

While MIL’s primary objective is to predict labels for high-level bags (Can a given keychain
unlock the door?), in some applications, it is more important to identify the low-level "posi-
tive" instances that cause positive bag labels (Can a given key unlock the door?). As such, MIL
formalism is typically utilized to address one of these two seemingly distinct problems:

• Learning on variable-sized data: The aim is to classify objects of variable size (e.g. key-
chains) that can be represented as bags - that is, objects divisible into order-independent
components, or instances, which are characterized using the same set of features, but their
count may vary from object to object.

• Learning on weakly labeled data: In this scenario, the objects of interest are the in-
stances themselves (e.g. keys). The aim is to construct an instance-level classifier f(x)→
{−1,+1} using the bag-level labels only, thus reducing the number of labels required for
training. Interestingly, as we will see in the next Section 2.1.1, this can be viewed as a spe-
cial case of the previous problem, assuming that the discriminative information lies solely
on the level of instances and that there is an explicit relation between bag and instance
labels, e.g., F(B) = maxx∈B f(x).

Although MIL can still be seen as an emerging branch of Machine Learning, there is already
a decent amount of prior art available [9, 23, 53, 119]. Amores [5] proposes a taxonomy of MIL
algorithms, categorizing them based on whether they extract discriminative information from
local, instance-level (Instance-space paradigm 2.1.1) or global, bag-level; and in the later case
whether they operate in the original non-vectorial bag-space (Bag-space paradigm 2.1.2) or map
non-vectorial bags into a vectorial embedded space (Embedded-space paradigm 2.1.3).

2.1.1 Instance-space Paradigm

In the Instance-space paradigm, the discriminative information is considered to lie at the level of
instances. In other words, to determine a bag’s label, it is enough to classify its instances one by
one in isolation and aggregate the verdicts. This holds, for example, for the keychain problem
as outlined in Figure 2.1, where recognizing the green key suffices for the entire keychain to be
labeled as "can open". Methods based on this paradigm, therefore, aim to infer an instance-level
classifier:

f(x)→ {−1,+1} (2.1)

from a dataset of labeled bags D = {(B, y)1, (B, y)2, . . .}, where B = {x1,x2, . . .}, x ∈ Rd.
Since the labels y ∈ {−1,+1} are assigned to bags of instances instead of individual instances,
an assumptionmust be made about their relationship to instances, in order to solve this problem.
The most commonly used assumption is referred to as the standard multi-instance assumption.
Standard multi-instance assumption: In every positive bag, there is at least one positive in-
stance (i.e. an instance carrying a discriminative positive signal), while in negative bags there is no
such instance — all of the instances are negative (i.e. not carrying the positive signal).

By denoting instance labels as yx ∈ {−1,+1}, the assumption can be formalized as follows:

y = max
x∈B

yx, F(B) = max
x∈B

f(x), (2.2)

where the max rule ensures that a bag B is positive if at least one of its instances x is positive.
The fact that one instance with some desirable properties makes the whole bag positive nat-

urally occurs in many real-world situations. For example, in the drug activity prediction prob-
lem [35], each classified chemical molecule can take multiple shapes — represented as a bag of
instances. If a molecule can take a shape that strongly binds to a target protein, then it is an
effective drug. Otherwise, the drug is ineffective.
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Another example is the detection of malware-infected devices [107], where each device, stor-
ing multiple files, is represented as a bag of instances. If any file within a device is classified
as malicious, then the entire device is deemed infected (and might be isolated from the net-
work). Based on this assumption, MIL can vastly reduce labeling costs by enabling the creation
of standard file-centric anti-virus models (capable of explicitly identifying malicious files) us-
ing only device-level labels, effectively avoiding the need to annotate every single file in the
training dataset. Moreover, to obtain a positive device-level label, it is enough to observe just a
manifestation of malicious behavior like excessive pop-up advertisements, unwanted redirects
to unfamiliar websites, intrusive toolbars, screen lockdowns, ransomware payment demands,
etc. that might not be necessarily file-related.

One of the first instance-space algorithms following the standard assumption is the Axis-
Parallel-Rectangle (APR) method [35]. To identify the type of instances that cause the positive
bag label, the method builds an instance-level classifier f(x;R) of the form:

f(x;R) =

{
+ 1, if x ∈ R
− 1, otherwise,

(2.3)

whereR denotes an axis-parallel hyper-rectangle in the instance space. By shrinking and grow-
ing, the parameter R is optimized to simultaneously maximize the number of positive bags in
the training set that contain at least one instance in R and minimize the number of negative
bags that contain any instance inR.

Yang et al. [115] propose Asymmetrical-SVM (ASVM), an extension of the traditional Sup-
port Vector Machines (SVM) to the MIL setting under the standard assumption. ASVM converts
a MIL problem to the conventional single-instance learning problem, by letting all instances xi

inherit their bag label ỹxi and searching for a separating hyperplane (w, b) that maximizes mar-
gins between the positive and negative instances subject to the introduced asymmetrical loss
function. ASVM assigns a higher misclassification cost to false positives than false negatives,
because a false positive instance in a negative bag always means an error in the bag label pre-
diction, while a false negative instance in a positive bag does not necessarily result in an error
if there are further positive instances in the bag. The optimization problem is defined as:

min
w,b,ξ

1

2
∥w∥2 + C

∑
i

ξi

s.t. ỹxi(⟨w,xi⟩+ b) ≥ 1− ỹxi + 1

2
· ξi

ξi ≥ 0 ,

(2.4)

where w ∈ Rd is the normal vector of the separating hyperplane, b ∈ R is the hyperplane
offset, ξi ≥ 0 are slack variables allowing classification errors, and C > 0 is a hyper-parameter
balancing the bias-variance trade-off between fitting the training data and the generalization
capability. The introduced term ỹxi+1

2 ensures that all negative instances are on the negative
side of the hyperplane (no false positives) while minimizing false negative predictions.

Andres et al. [7] present MI-SVM, a MIL variant of SVM that directly incorporates the max
rule from the standard assumption (Equation 2.2) into the loss function. The objective is to avoid
forcing SVM to assign a positive value to all the instances of a positive bag, but only to at least
one of the instances:

min
w,b,ξ

1

2
∥w∥2 + C

∑
B

ξB

s.t. y ·max
x∈B

(⟨w,x⟩+ b) ≥ 1− ξB

ξB ≥ 0 .

(2.5)
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It is a bag-centered formulation, where only one instance per bag matters. For a positive bag,
the margin is defined by the most positive instance, while for a negative bag, the margin is
defined by the least negative instance. Unlike ASVM, MI-SVM is a non-convex problem, making
it challenging to solve using traditional optimization methods. Andres et al. [7] cast the problem
to a mixed-integer programming problem and suggest optimization heuristics.

Zucker and Chevalier [29] introduce ID3-MI, the first adaptation of the popular Iterative Di-
chotomiser 3 (ID3) algorithm [94] for building decision trees to the MIL setting. ID3 uses a
top-down, greedy strategy to construct a tree structure model f(x). It recursively divides train-
ing instances into subsets based on attributes that yield the highest information gain at each
step. This process continues until either a pure classification is achieved or no more attributes
are available. ID3-MI then uses a redefined version of the information gain measure accounting
for the fact that multiple instances might belong to one bag:

Entropy(S) = − P(S)
P(S) + N(S)

log2

(
P(S)

P(S) + N(S)

)
− N(S)
P(S) + N(S)

log2

(
N(S)

P(S) + N(S)

) (2.6)

InfoGain(S, A) = Entropy(S)−
∑

v∈Values(A)

P(Sv) + N(Sv)
P(S) + N(S)

· Entropy(Sv), (2.7)

where P(S) andN(S) denote, respectively, the number of positive and negative bags having in-
stances in subset S . SymbolA stands for an attribute partitioning the subset S into {S1, . . . ,Sv}
based on its values v ∈ Values(A). Since instances of a bag may be dispersed across various
branches of the tree, in the prediction phase, a bag is classified as positive if at least of its in-
stances reaches a positive leaf node.

Blockeel et al. [15] propose Multi-Instance Tree Inducer (MITI), an improved version of ID3-
MI that implements heuristics to address issues related to the dispersion of instances. MITI
grows a tree in the best-first order, prioritizing the expansion of nodes with instances belonging
to a higher number of positive bags. A priority queue of nodes that have not yet been expanded
is maintained. When the head node contains instances of positive bags only, it is transformed
into a leaf and all instances of bags associated with this leaf are removed from the remaining
nodes in the queue. The second heuristic is the use of a weighted Gini impurity measure [19] to
give more weight to instances of smaller bags.

Leistner et al. [75] present MIForest, an ensemble of multiple-instance decision trees inspired
by the Random Forest algorithm [18]. Ensembles of trees are typically more accurate than in-
dividual trees, as they reduce the characteristic high variance of individual decision trees by
combining their predictions. To ensure that the trees within an ensemble are different from one
another, Random Forest injects randomness into their growing process by (1) training each tree
on a randomly resampled dataset (sampling with replacement) and (2) by considering only a
random subset of features for selection at each split. MIForest then follows the standard multi-
instance assumption (Equation 2.2) and considers labels of instances in positive bags as random
variables defined over a space of probability distributions. To find their true but hidden labels,
MIForest searches for distributions that minimize the overall learning objective. Since this is
a non-convex optimization problem, a deterministic annealing technique [98] is employed to
solve it iteratively.

Straehle et al. [108] propose MIOForest, a multiple-instance response-optimized Random For-
est. MIOForest builds upon and extends the previous MITI algorithm [15] in four aspects. First,
a forest is trained instead of a single tree. Second, the traditional axis-orthogonal splitting rules
are replaced with non-linear ones to consider multiple features at a time. Third, mechanisms for
tree regularization and instance weight redistribution are implemented to increase robustness
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against noise in positive bags. Finally, an optimal combination of decision outputs of all trees in
the forest is learned under the standard assumption.
Collective MI assumption: Every instance in a bag contributes equally to the bag’s label.

Consider the following redefinition of the keychain problem to illustrate the situation in which
the standard assumption is no longer appropriate while the collective assumption is. Imagine
that you have to blindly select one key from a keychain to open a door, and you only have one
try. Then, a positively labeled keychain is one with a high probability (let’s say ≥ 90%) that a
randomly selected key will open the door. In this scenario, each key on a keychain contributes
equally to the ratio of (positive) green keys, which can open the door, and (negative) non-green
keys, which cannot. This ratio then determines the keychain’s final label, indicating the likeli-
hood of picking a successful key. In other words, it is necessary to consider each instance-level
classification equally to determine the final bag’s label correctly. Note that deciding based on
the first positively classified instance (the standard assumption) would produce false positive
predictions on keychains with fewer green keys than non-green ones.

Frank and Xu [46] present a Wrapper MI algorithm for estimating the instance-level classifier
f(x) under the collective assumption. It simply trains a standard supervised classifier on a
training set of instances where each instance inherits the label of its parent bag. Before training,
the instances are weighted so that each bag receives the same total weight in the training. Given
a new bag B, the bag-level classifier F(B) is obtained using the sum as the aggregation rule:

F(B) = 1

|B|
∑
x∈B

f(x). (2.8)

Foulds [44] further generalizes the collective assumption to a weighted collective assumption
and specifies a weight function over the instance space. This function w(x) assigns weights
to individual instances, enabling bag-level predictions to be calculated as the weighted sum of
instance-level responses: F(B) = 1∑

x∈B w(x)

∑
x∈B w(x)f(x). The assumption states that each

instance contributes to the bag’s label independently, but not necessarily equally. It provides
a smooth transition between the standard and the collective assumption. If zero weights are
assigned to all negative instances and non-zero weights to positive instances, we achieve the
standard assumption. And, if an equal weight is assigned to all instances, we end up with the
collective assumption.

2.1.2 Bag-space Paradigm

In the Bag-space paradigm, the discriminative information is considered to lie at the level of bags.
In other words, to determine a bag’s label, the bag is classified directly as a whole entityF(B)→
{−1,+1} based on global bag-level information extracted from possibly all bag’s instances, in-
stead of classifying individual instances one by one based on local instance-level information
f(x) and aggregating the verdicts F(B) = aggx∈Bf(x) (i.e. Instance-space paradigm 2.1.1).
Hence, the assumption that there are labels at the instance level is no longer held, and only a
bag-level classifier F is inferred. This allows for more informed decisions about the class of B.

As an example of when local instance-level information is insufficient and global bag-level
must be used, consider the redefined keychain problem in Figure 2.2. Now, two different locks,
green and blue, secure the door. For access, you need a keychain with both a green key and a
blue key on it. If you have just one key or none of them on the keychain, you won’t be able to
open the door. Put into MIL terminology, there are two types of "positive" instances (keys) that
must co-occur in a bag (keychains) to be labeled as positive. A negative bag, on the other hand,
does not contain any such instance, or either just instance(s) of the first type (a green key) or
the second type (a blue key), but not both at the same time. Therefore, aggregating instance-
level decisions is not enough as it would lead to false positives when there is only one type of
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"positive" instance in a bag. To prevent this, we must extract the global bag-level information,
taking into account the composition of the entire bag, prior to making the class prediction.

Locked door

Arthur’s keychain

cannot open

Bob’s keychain

cannot open

Henry’s keychain

can open

Figure 2.2: Redefinition of the MIL keychain problem, emphasizing the necessity of extracting
global bag-level information over local instance-level one. At this time, the door is secured by
two distinct locks. To open it, one requires a keychain that holds both the green and blue keys.
Having neither or only one of these two keys on the keychain means the door cannot be opened.
Therefore, aggregating instance-level decisions (Instances-space paradigm 2.1.1) is insufficient
as it would lead to false positive predictions in the case of Arthur’s and Bob’s keychains.

The common strategy for classifying non-vectorial entities, like bags (i.e. sets of d-dimensional
vectors x ∈ Rd), is defining a distance function D(Bi,Bj)→ R≥0 that compares any two bags
Bi and Bj , and integrating it into a conventional distance-based classifier, such as the K-Nearest
Neighbor (K-NN) or SVM algorithm. The bag-to-bag distance function D(Bi,Bj) is usually de-
fined as an aggregation of distances between each bag’s instances d(xi,xj) → R≥0. While
the Euclidean distance d(xi,xj) =

√∑d
f=1(x

i
f − xjf )

2 is commonly used for this purpose, alternative
measures like Manhattan, Minkowski, and Chebyshev distances can be utilized as well [24].

Minimal Hausdorff distance [112] is one example of such distance functionD. It is defined as
the minimal distance between an instance from Bi and an instance from Bj :

DMin
Hausdorff(Bi,Bj) = min

xi∈Bi

min
xj∈Bj

d(xi,xj). (2.9)

The Minimal Hausdorff distance might be problematic in many contexts, as it focuses only on
the closest instances between the bags and ignores the rest of the information contained in the
bags. Also, it is not a metric as it does not satisfy the identity property, meaning a zero distance
does not imply Bi = Bj .
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Maximal Hausdorff distance [112] is another typical measure. It captures the maximum of all
the distances from an instance in bag Bi to the closest instance in bag Bj and vice versa:

DMax
Hausdorff(Bi,Bj) = max

{
max
xi∈Bi

min
xj∈Bj

d(xi,xj), max
xj∈Bj

min
xi∈Bi

d(xi,xj)

}
. (2.10)

For each instance, the closest instance in the other bag is located and the maximum of these
distances is used as the bag distance. Unlike the minimal Hausdorff distance, this distance is a
metric as it satisfies the identity, symmetry, and triangle inequality properties. However, it is
known to be sensitive to outliers.

Chamfer distance [40] is a measure developed for digital geometry, specifically for point
cloud modeling where sets of points (i.e. bags of 2D/3D-dimensional instances) constitute dig-
ital shapes in images. It is computed as the average distance between an instance in Bi and its
closest instance in Bj and vice versa:

DChamfer(Bi,Bj) =
1

|Bi|
∑
xi∈Bi

min
xj∈Bj

d(xi,xj) +
1

|Bj |
∑

xj∈Bj

min
xi∈Bi

d(xi,xj). (2.11)

For each instance from one bag, the nearest neighbor instance in the other bag is found, and the
computed distances are summed up. The Chamfer distance is low if two bags Bi and Bj have
the same or similar types of instances. In contrast to the Hausdorff distance, it is less sensitive
to noise and outliers.

Earth Mover’s Distance (EMD) [117] is another popular measure that was originally devel-
oped for content-based image retrieval. EMD can be interpreted as a metric between two multi-
variate probability distributions that are represented as bags of instances within a given instance
space. The computed distance corresponds to the minimal cost that must be paid to transform
(move) one distribution (pile of the earth) into the other (hole in the ground) in a defined sense:

DEMD(Bi,Bj) =
∑

xi∈Bi

∑
xj∈Bj

wij d(x
i,xj)∑

xi∈Bi

∑
xj∈Bj

wij
, (2.12)

where the weights wij are obtained through an optimization process that, given specified re-
strictions [99], aims to globally minimize D(Bi,Bj). While the calculation of EMD is resource-
intensive due to the involved optimization, Amores [5] demonstrates its effectiveness on 11 MIL
datasets, where the EMD+SVM approach significantly outperforms all four representative meth-
ods of the Instance-space paradigm and yields consistently good results.

2.1.3 Embedded-space Paradigm

In the Embedded-space paradigm, the discriminative information is also considered to lie at
the global bag level, similar to the previous Bag-space paradigm 2.1.2. However, unlike the
latter where methods operate in the original non-vectorial bag space, methods following the
Embedded-space paradigm transform the non-vectorial bags into a vectorial "embedded" space,
where the traditional single-instance learning is carried out. In other words, embedded-space
approaches, rely on a mappingΦ(B)→ RD that summarizes global bag-level information from
multiple instances of bag B into a single D-dimensional feature vector, allowing the bag-level
classifier F to be defined as a conventional single-instance model f :

F(B) = f(Φ(B)). (2.13)

Given a new bag B to be classified with F(B) → {−1,+1}, we first map the bag into a single
feature vector representation using the mapping Φ(B), and then apply the classifier f . The
mapping functionΦ can be constructed in a number of different ways, each focusing on different
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types of information. The choice of the way can significantly influence the effectiveness of this
approach.

Dong [38] uses a straightforwardmean aggregation, calculated for each feature f ∈ {1, . . . , d}
across all instances in a bag, as the mapping function. Following this, Gärtner et al. [49] propose
a Min-Max kernel. This mapping employs both the minimum and maximum aggregation and
concatenates them into one feature vector that is twice the length of the instance dimension:

Φ(B) = (min
x∈B

x1, . . . ,min
x∈B

xd,max
x∈B

x1, . . . ,max
x∈B

xd). (2.14)

These univariate statistics-based mappings, while simple to use, might overlook crucial details
within the bags by not capturing dependencies between the features. If discriminative aspects do
not significantly impact the overall statistics, they might be marginalized out in the aggregation,
potentially leading to a loss of critical information for classification.

For example, the following two distinct bags B1 and B2 are indistinguishable after being
embedded into a vector space using the above-defined mappings (Equation 2.14):

Φ(B1) = Φ

({
(0, 0)
(1, 1)

})
= (0, 0, 1, 1), Φ(B2) = Φ

({
(0, 1)
(1, 0)

})
= (0, 0, 1, 1). (2.15)

Moreover, if one of the bags contained a unique, discriminative signal in the form of an instance
x = (0.5, 0.5), that signal would not be extracted and consequently lost with these mappings.

More sophisticated vocabulary-based mappings, therefore, analyze how much a given bag B
matches specific (possibly multivariate) patterns Φi, referred to as "words", from a pre-defined
vocabulary {Φ1,Φ2, . . . ,ΦD}:

Φ(B) = (ϕ(B; Φ1), ϕ(B; Φ2), . . . , ϕ(B; ΦD)), (2.16)

where ϕ(B; Φi) → R denotes a measure quantifying the matching between the bag B and the
pattern Φi. This measure typically takes the form of ϕ(B; Φi) = aggx∈Bk(x; Φi), where agg
stands for an aggregation function (e.g. minimum, mean or maximum), often called a pooling
function, and k(x; Φ) → R is some sort of an instance-level "pattern-matching" measure, as-
sessing the degree of correspondence or similarity between the instance x and the pattern Φi.
Individual vocabulary-based methods then differ in the selection of the aggregation function,
the pattern-matching measure, and the definition of vocabulary patterns.

Chen et al. [26] propose a MILES algorithm, where raw instances from positive training bags
are used as the vocabulary patterns. Let us denote them as {xΦ1,xΦ2, . . . ,xΦD}. To measure
the similarity between the bag B and a certain pattern xΦi (i.e. a training instance), MILES uses
the Gaussian basis function:

ϕ(B; Φi) = max
x∈B

exp

(
−∥x− xΦi∥2

σ2

)
, (2.17)

where ∥xi−xj∥2 is the squared Euclidean distance between two feature vectors xi and xj , and
σ > 0 is a scaling hyper-parameter. Observe that by identifying individual training instances
within a given (testing) bag, we can effectively address the redefined keychain problem illus-
trated in Figure 2.2. Recall that in the redefined problem, a bag (keychain) must contain two
specific types of instances (keys) to be labeled as positive. With this MILES approach, at least
one pattern would be certainly associated with the green key, and one with the blue key, as both
instances are present in the training set. This guarantees the extraction of the discriminative
information needed for resolving the problem.

Sivic et al. [104] employ the K-Means algorithm to generate a vocabulary of prototype in-
stances, rather than using all training instances. This helps to avoid scenarios where large train-
ing bags result in excessively large vocabularies crowded with many redundant/irrelevant pat-
terns. The K-Means algorithm is used to group instances from all training bags into a predefined
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number of D-distinct clusters, based on their similarity in the instance space. Centroids of these
clusters, calculated as the mean of the instances in each cluster, then serve as the prototype
instances: {xΦ1,xΦ2, . . . ,xΦD}. To create a single feature vector representation of bag B, re-
flecting relations to individual vocabulary patterns Φi, the following computation is performed:

ϕ(B; Φi) =
1

|B|
∑
x∈B

1

[
i = argmin

j=1,...,D
∥x− xΦj∥

]
, (2.18)

where symbol 1 stands for an indicator function that equals one if its argument is true and zero
otherwise. The argument of the minimum argmin ensures that each instance x is assigned to
exactly one pattern Φj from the vocabulary based on the minimal Euclidean distance ∥x−xΦj∥
(i.e. hard assignment). This technique is known under the name of Histogram Bag-of-Words
(H-BoW) because values of ϕ(B; Φi), where i ∈ {1, . . . , D}, correspond to bins in a histogram
Φ(B) counting the number of instances in the bag that belong to each cluster (i.e. pattern). These
counts are then optionally normalized by the bag size |B|. H-BoW is a well-known technique
with broad use in ML, particularly in the field of Computer Vision [83].

A popular variant of the H-BoWmapping technique is to generate the vocabulary of patterns
using the probabilistic GaussianMixtureModel (GMM) instead of the K-Means algorithm. In this
approach, the Expectation-Maximization (EM) algorithm is applied to estimate the distribution
of training instances as a sum of weighted Gaussian components: P(x) =

∑D
i=1wi G(x|µi,Σi),

where wi ∈ R is a weight, µi ∈ Rd a center, andΣi ∈ Rd×d a covariance matrix of Gi-th Gaus-
sian component. These components then form the vocabulary of patterns {GΦ1,GΦ2, . . . ,GΦD}.
Since GMM is a probabilistic model, the partial mappings ϕ(B; Φi) of the final mapping function
Φ(B) = (ϕ(B; Φ1), . . . , ϕ(B; ΦD)) are computed as follows:

ϕ(B; Φi) =
1

|B|
∑
x∈B

P(GΦi|x), P(GΦi|x) =
wΦi G(x|µΦi,ΣΦi)∑D

j=1wΦj G(x|µΦj ,ΣΦj)
, (2.19)

where P(GΦi|x) is a posterior probability that instance x belongs to component GΦi (i.e. soft-
assignment). We successfully used this H-BoW-GMM technique in our prior work [60] for mod-
eling encrypted HTTPS communications between network users and servers (bags), each con-
sisting of multiple HTTPS requests (4-dimensional instances) made during these communica-
tions. It proved to be better in distinguishing between malicious and legitimate communications
than a previously applied approach based on soft-histograms [121].

Pevný and Somol [91] propose MIL-NN, a neural network formalism for embedding and solv-
ingMIL problems. The architecture of the networks is as follows. One (or more) lower "instance"
layers project instances x of bag B from the instance space Rd to the embedded bag space RD

where a pooling function (e.g. maximum) aggregates them into a single feature vector represen-
tation. This embedded bag representation is then projected to the output (classification) layer by
higher "bag" layer(s) of the network as usual. Hence, each neuron in the introduced aggregation
layer can be viewed as one vocabulary pattern:

ϕ(B; Φi) = max
x∈B

ReLU (⟨wΦi,x⟩+ bΦi) , (2.20)

where ReLU(x) = max{0, x} is Rectified Linear Unit, an activation function of a particular
choice, along with the maximum pooling function. But, other options for these functions can be
used as well. Using the formula from Equation 2.13, all vocabulary patterns (neurons) constitute
the mapping (aggregation) layer Φ(B) = (ϕ(B; Φ1), . . . , ϕ(B; ΦD)) ∈ RD , on top of which
other layers implement the classifier f(Φ(B))→ {−1,+1} that already uses the embedded sin-
gle feature vector representation of the bag B. The key advantage of this approach is that the
back-propagation simultaneously optimizes the classifier and the embedding, effectively learn-
ing the optimal bag representation that suits the classification task. In Chapter 3, we will aim to
develop a similar approach for ensembles of decision trees.
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2.2 Hierarchical Multiple Instance Learning

Pevný, Somol, and Mandlík [90, 80] take the MIL formalism a step further by allowing individual
data samples to be represented as hierarchical tree structures of variable breadth and depth. In
addition to the standard MIL bag structureB = {x1,x2, . . .}, designed to hold a flexible number
of order-independent, equal-dimension instances x ∈ Rd, they introduce a product structure
P that can store a fixed number of order-dependent instances of potentially varying dimensions
through vector concatenation: P = (ẋ, . . . ,

...
x) ∈ Rḋ+...+

...
d , ẋ ∈ Rḋ, . . . ,

...
x ∈ R

...
d . Moreover,

individual instances xwithin both structures may represent either the atomic elements (strings,
numbers, Boolean values, etc.) of the corresponding data sample (leaves of the tree) or (higher-
level) embeddings of potential deeper sub-structures within the tree. This allows organizing the
(lowest level) atomic instances into a tree structure by wrapping them into increasingly higher-
level nested Bag/Product structures.

To process such structured data, a Hierarchical MIL Neural Network (HMIL-NN) model is
built with an architecture that reflects the HMIL samples’ tree topology. The idea is to create a
hierarchy of embeddings — using feed-forward networks, permutation invariant aggregations,
and vector concatenations — that gradually map atomic instances and subsequent higher-level
Bag/Product structures to fixed-size vectors. Figure 2.3 depicts this process in a graphical form.

H
||

P

ẋ1 ḟI

Ḃ ẋ11 ḟI

mean

˙fB

ẍ1 f̈I

B̈ ẍ24 f̈I

max

f̈B

...
x

...
x ...

fI

p

f -1
+1

Figure 2.3: Classification of a hierarchically structured data sample H by a HMIL-NN
model, where: H = ({ẋ1, . . . , ẋ11}, {ẍ1, . . . , ẍ24},

...
x) = (Ḃ, B̈, ...x). Instances, denoted as ẋ,

have the same dimensionality ẋ ∈ R5, their order within bag Ḃ does not influence the classi-
fication outcome, and their quantity may vary across samples in the dataset. The same applies
to instances ẍ within B̈, except for their dimensionality, which is ẍ ∈ R4. The last type of in-
stance, denoted as ...

x ∈ R6, appears only once in each sample within the dataset. All these types
of instances may represent either atomic elements (e.g. string, numbers, etc.) or higher-level em-
beddings of potential deeper sub-structures. The entities Ḃ, B̈, and ...

x are further wrapped into
a product P , which respects element order and permits the embeddings of its elements to have
varying dimensionalities. The data flow through the HMIL-NN model is as follows: First,
instance-level feed-forward networks ḟI : R5 → R4 and f̈I : R4 → R3 project instances of
Ḃ and B̈ into new embedded spaces in which they are aggregated by mean and max pooling
functions, respectively. Then, the final fixed-size vector representations of the bags are created
by projecting the resulting vectors once more, with bag-level networks ˙fB : R4 → R3 and
f̈B : R3 → R2. Finally, the concatenation function p combines the representations of the bags
with the representation of the third instance type ...

x , which is obtained by feed-forward network...
fI : R6 → R5. This results in a final feature vector that represents the entire data sample H.
This vector is then fed into a classification network f : R10 → R2 with two output class units.
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2.3 Learning on JavaScript Object Notation documents

JavaScript Object Notation, or JSON for short, is a popular text-based data format for capturing
structured information in a flexible tree-like form1. It is built upon six value types: four primitive
data types, namely string (e.g. "Hello World"), number (e.g. 42), boolean value (i.e. either
true or false), and null (i.e. null); along with two collection types:

• array: A collection of ordered elements, each of which is one of the six JSON value types.
The square brackets "[]" are used to symbolize JSON arrays, with individual elements
separated by commas. For example, ["McKay", "Keller", "Carter"].

• object: A collection of unordered key-value pairs, where keys are strings and values are
any of the six JSON value types. The curly braces "{}" are used to symbolize JSON ob-
jects, with each key-value pair separated by a colon and individual pairs distinguished by
commas. For example, {"name": "McKay", "age": 54}.

Moreover, by nesting objects and arrays within each other, one can create more complex, hier-
archical data structures, resembling a tree-like topology. In this tree topology, the leaves corre-
spond to the primitive data types, while the higher-level nodes represent the objects and arrays
that organize the data in leaves into a structured hierarchy.

1 {
2 "name": "McKay",
3 "age": 55,
4 "career": "scientist",
5 "retired": false,
6 "friends" : [
7 {
8 "name": "Keller",
9 "born": 1968
10 },
11 {
12 "name": "Carter",
13 "born": 1965
14 }
15 ]
16 }

Figure 2.4: An illustrative JSON data sam-
ple, capturing information about a person
namedMcKay, aswell as details regarding his
friends, arranged in a 3-level JSON structure.

Figure 2.4 shows an example of a JSON data
sample with a simple 3-level hierarchy. It is
a JSON object that captures information about
a person named McKay, together with details
about his friends. The root of the tree hier-
archy stands for the "person" object, which
has five key-value pairs that represent differ-
ent properties of the person. The key "name"

holds the string "McKay", "age" has the number
54, "career" contains the string "scientist",
"retired" is a Boolean with the value false,
and "friends" has an array of objects as its
value. In the "friends" array, there are two ob-
jects, each representing a friend ofMcKay. These
objects represent the second level of the hierar-
chy, while their corresponding values represent
the third, and lowest, level within this structure.
The first "friend" object contains "name" as
"Keller" and "born" as 1968, while the second
has "name" as "Carter" and "born" as 1965.

Although this is a simplistic example and real-world JSONs are typically much more complex
and varied (refer to Chapter 6 for cybersecurity applications and Figures 6.4, 6.7, 6.9, and 6.11),
it already illustrates the key advantages of the JSON format:

• JSON syntax is lightweight and designed for simple machine and human readability.
• JSON format is self-describing, meaning there is no need for separate schema definitions
for used structures.

• JSON exhibits high mutability, allowing for in-place modifications and additions of key-
value pairs directly within a particular JSON sample as required.

• JSON arrays offer size flexibility, capable of handling an arbitrary number of elements
without an upper limit.

1https://www.json.org
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• JSON has inherent support for missing values, meaning that not all key-value pairs need
to be specified in every JSON sample.

• JSON, thanks to its versatile structure and variety of supported data types, can represent
a broad spectrum of complex objects, scenarios, and relationships.

While these characteristics make JSON an excellent format for data representation and manip-
ulation, they also contribute to its non-vectorial nature, which complicates its use in ML ap-
plications. To the best of our knowledge, there are only two existing methods that facilitate
automated model learning directly on JSON data, thus eliminating the need for expensive and
often lossy manual feature engineering.

Woof and Chen [113] present STRLA, a Semantic Tree-structured Recursive Learning Archi-
tecture for end-to-end learning on generic semantic tree-structured data of arbitrary topologies
and heterogeneous data types, such as data expressed in JSON. Inspired by the concept of a re-
cursive neural network, STRLA assigns each node in a tree a latent hidden-state vector. This
vector depends on the data linked to the current node and the hidden states of its children
nodes, if any. The same neural network component is recursively applied to each node of the
tree, starting from the leaves and moving upwards to the root. This ensures that every node in
the tree eventually gets assigned a hidden state. To manage data heterogeneity in JSON leaves,
the framework incorporates a range of embedding functions to handle different primitive types
separately. These functions are mapping the four JSON primitive data types (i.e. number, string,
Boolean, and null) to a d-dimensional latent representation. As for JSON objects and arrays, the
framework employs another set of functions that can manage input from an arbitrary number
of latent vectors. There are two main implementations of the STRLA algorithm, resulting from
different types of these functions: implementation based on Deep-set networks [116] and Long
Short-Term Memory (LSTM)-based implementation [56], here and after denoted as JSON-NN.
The ability to take into account the order of elements in JSON arrays is the main advantage of
JSON-NN over the deep-set-based approach.

Mandlík et al. [122] introduce JsonGrinder, an automated feature extraction technique for
JSONs that leverages the Hierarchical MIL paradigm (Section 2.2) and the capabilities of HMIL-
NN models [80]. Given a dataset of JSON samples, JsonGrinder first estimates the JSON schema
shared by the samples. Based on this schema, it transforms each JSON sample into an HMIL data
sample — a nested composition of bag and product structures encapsulating atomic instances
that represent the underlying values stored in JSON leaves. The conversion process translates
JSON arrays into bag structures, and JSON objects into product structures. Values in JSON leaves
are transformed into instances through various methods, utilizing either custom extractors or
suggested extractors by JsonGrinder. These are based on heuristics derived from the statistical
profile of the JSON leaf values in the sample corpus. For example, diverse collections of strings
are represented as n-gram histograms and small collections of unique string values as one-hot
encoded categorical variables; numbers are maintained in their original form. Potentially miss-
ing JSON values (i.e. individual leaves or even entire JSON sub-structures) relative to the deduced
JSON schema are managed in JsonGrinder by explicitly storing them as missing values. Then,
during training and prediction, these missing values are replaced with unique, trainable impu-
tations unique to each Bag/Product structure. Finally, JsonGrinder suggests an architecture for
the HMIL-NN model, capable of processing the generated HMIL samples. Figure 2.5 depicts a
simplified visualization of the JSON sample from Figure 2.4 being processed by JsonGrinder and
HMIL-NN.
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"name": "McKay", p2
"age": 54,

"career": "scientist",

"retired": false,

"friends":

"name": "Keller",
p1

"born": 1982

f1

"name": "Carter",
p1

"born": 1965

f1

g

f2 -1
+1

Figure 2.5: A diagram illustrating the process of classifying a JSON sample (seen in Figure 2.4)
using JsonGrinder and HMIL-NN. Initially, JsonGrinder transforms the JSON sample into
an HMIL structure that is compatible with HMIL-NN. In doing so, each leaf in the JSON tree
(containing a primitive data type) is converted into a numerical instance. This conversion uses
suitable feature extraction techniques, such as n-grams for strings (i.e. the "name" fields), direct
value representation for numbers and the Boolean value (i.e. the "age", "born" and "retired"
fields), and one-hot encoding for the categorical value (i.e. "scientist"). These atomic instances
are then encapsulated into respective higher-level bag/product HMIL structures (see Section 2.2)
according to the type of collection they belong to — bag structure for JSON arrays and product
structure for JSON objects. The lowest-level instances of the two "friend" objects (specifically, the
"name" and "born" fields) are first wrapped into the product structure, which corresponds to the
JSON "friend" object. These are then packaged into the bag structure, which alignswith the JSON
"friends" array. Ultimately, in conjunction with the remaining highest-level instances, they are
all integrated into the product structure (analogous to the root "person" object) that represents
the entire JSON sample. Then, HMIL-NN processes the newly created HMIL representation
of the JSON sample. The architecture of this classifier is specifically designed (by JsonGridner)
to mirror the schema of the JSON sample and other samples from a respective dataset. First,
the instances within the "friend" product structures are concatenated with p1 and projected
into a new embedded space via the first feed-forward network f1 : R4 → R3 (which is shared
for all "friend" objects). These instances are then aggregated using a pooling function g (e.g.
mean or maximum) to form a single feature vector representation of the top-level "friends" field.
Finally, all instances representing the top-level fields of the "person" object (being classified) are
concatenated by p2 and sent to the second feed-forward network f2 : R13 → R2 performing
the class label prediction.
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Chapter 3

Bag-level Randomized Trees

In this chapter, we present our first tree-based algorithm for solving MIL problems, where indi-
vidual data samplesB1,B2, . . . (called bags) are represented by groups of multiple d-dimensional
feature vectors B = {x1,x2, . . .}, x ∈ Rd (called instances), instead of single feature vectors.

Although many MIL algorithms have been already developed, most of them work well only
in their specific application domains. As demonstrated in the recent study of MIL problems [28]
(and Table 3.2 shows it too), existing MIL classifiers do not perform as well over a broader range
of problems and/or require very careful hyper-parameter tuning. Ensembles of decision trees
like Breiman’s Random Forests [18] or Extremely Randomized Trees [47] are, on the other hand,
known to be reasonably effective over many domains even with their default hyper-parameter
settings [42], which makes them a good case for MIL adaptation. However, the prior-art adapta-
tions of decision trees to the MIL setting like MITI [15], MIForest [75] and MIOForest [108], with
the exception of RELIC [100], are representatives of the early instance-level era. Methods from
this period of research are generally outperformed by their later bag-level counterparts working
under the more realistic assumption that the discriminative information can be scattered across
more than one instance in a bag [5]. This fact inspired us to propose a new MIL algorithm based
on the ensemble of decision trees that would operate on the bag-level and so combine the best of
both worlds.

3.1 Algorithm Description

The Bag-level Randomized Trees (BLRT) are trained according to the classical top-down greedy
procedure for building ensembles of unpruned decision trees. Individual tree learners recur-
sively partition a training dataset by choosing binary splitting rules until pure sample sets are
obtained (Figure 3.1).

The key difference, however, lies in the conditions that are evaluated inside the splitting
nodes. While nodes of standard single-instance decision treesNSIL (Equation 3.1) evaluate only
whether feature f of a given sample x is greater than certain value v, nodes of the proposed
bag-level randomized trees NBLRT also count the number of instances within the sample (i.e.
bag) that accomplish the condition. This absolute count is then normalized by bag size |B| and
compared to value r ∈ [0, 1) (Equation 3.2).

NSIL(x; f, v) =

{
left, if xf > v,

right, otherwise.
(3.1)
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NBLRT(B; f, v, r︸ ︷︷ ︸
Φ

) =


left, if

[
1

|B|
∑
x∈B

1 [xf > v]

]
> r,

right, otherwise.

(3.2)

Parameter r denotes a relative count of instances x inside bag B that must satisfy the inner
conditionxf > v to be thewhole bag passed to the left branch. It is the only additional parameter
that needs to be learned from the training data together with f and v. Symbol 1 stands for an
indicator function that equals one if its argument is true and zero otherwise.

N ( · ,Φ1)

N ( · ,Φ2)

−1

left

+1

right

left

−1

right

Figure 3.1: Ensemble of decision trees
with a learned structure and splitting
parameters {Φ1,Φ2, . . . }.

Note that if bags are of size one, nodes NBLRT be-
have like the traditional NSIL regardless of the value of
r parameters. The next special case is when the relative
count takes extreme values, i.e. r ∈ {0, 0.9̄}1. The pro-
posed algorithm then becomes equivalent to the prior
art solution known as RELIC [100]. Under this condi-
tion, the splitting rules act as either the universal or
the existential quantifier. In particular, bags are tested
in two possible ways: if there exists at least one in-
stance that fulfills the inner condition or if the condi-
tion is satisfied by all instances. An experiment in Sec-
tion 3.2 (Figure 3.3), however, shows that the ability of
the proposed algorithm to test situations also between
these two extreme cases is highly beneficial on many
datasets.

The search for optimal splitting parameters Φ∗ =
(f, v, r) during the tree growth is implemented in a ran-
domized manner. At each node construction, a set of
candidate splitting rules R = {Φ1, . . .} is generated
(based on local training subset S ⊆ D) among which the best one Φ∗ is selected according to
a score obtained by an impurity measure such as Information gain [94] or Gini impurity [19].
Specifically, for each feature f out of K randomly selected ones, T values of parameter v are
drawn uniformly from interval [xmin

f , xmax
f ), where xmin

f and xmax
f denote the minimum and the

maximum value of feature f across all bags within the local sample set S . For each such pair
(f, v), other T values of parameter r are generated uniformly from interval [0, 1)2. In total,
there are K × T × T candidate splitting rules at maximum3. A detailed description of the tree
induction procedure is outlined in Algorithm 1 in the form of pseudo-code.

The above randomized approach is adopted from Extremely4 Randomized Trees [47] and gen-
eralized to MIL setting by adding the third parameter r (i.e. the relative count). Unlike CART
algorithm, used e.g. in Breiman’s Random Forests [18], the randomized search does not require
going through all possible splitting points on selected features, which could be prohibitively
expensive in this MIL variant of trees. Furthermore, the explicit randomization in combination
with ensemble averaging makes the decision boundary more smooth, resulting in models with
better or equal accuracy than that of Random Forests [47].

1Technically, the value of 0.9̄ should be one minus the smallest representable value.
2Interestingly, a slight but consistent improvement in performance can be obtained by independent generation

of v and r values. Similarly, when using stochastic hyper-parameter search as opposed to grid one, more distinct
values of each parameter are explored given the same amount of trials [14].

3If xmin
f equals to xmax

f , no splitting rules are generated on feature f .
4Term extremely corresponds to setting T = 1.
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Algorithm1: Induction algorithm for Bag-level Randomized Trees (binary classification
problem y ∈ {−1,+1} and numerical features are assumed).

Function Train(D;M,K, T )
Input : Training set D = {(B, y)1, . . .},

number of trees to growM ,
number of randomly selected featuresK ,
number of generated thresholds T .

Output: Ensemble of Bag-level Randomized Trees E .
1 E = ∅
2 foreach tree in 1 . . .M do
3 E = E ∪ {BuildTree(D;K,T )}
4 return E

Function BuildTree(S;K,T )
Input : Local training subset S ⊆ D.
Output: A node with left and right followers or a leaf.

5 if all y in S are equal then
6 return leaf(y)
7 R = GenerateCandidateSplittingRules(S;K,T )
8 Φ∗ = argmaxΦ∈R Score(S,Φ)
9 Sleft = {B ∈ S|NBLRT(B; Φ∗) = left}

10 Sright = S \ Sleft
11 if Sleft = ∅ or Sright = ∅ then
12 return leaf( 1

|S|
∑

y∈S y)

13 return node(NBLRT( · ; Φ∗), BuildTree(Sleft), BuildTree(Sright))

Function GenerateCandidateSplittingRules(S;K,T )
Output: Set of candidate splitting rulesR = {Φ1, . . .}.

14 R = ∅
15 foreach feature f inK randomly selected ones (without replacement) do
16 Find extremes xmin

f and xmax
f on given feature f across all bags B ∈ S

17 if xmin
f ̸= xmax

f then
18 foreach value v in T uniformly drawn values from [xmin

f , xmax
f ) do

19 foreach value r in T uniformly drawn values from [0, 1) do
20 R = R∪ {Φ}, Φ = (f, v, r)

21 returnR
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Algorithm 1 buildsM fully grown decision trees. Each tree is trained on the whole sample set
rather than a bootstrap replica5 as realized e.g. in Random Forests. The reason is that training
on the full sample set minimizes bias. Variance is reduced by the strong randomization in the
splitting parameters combined with the output aggregation across multiple trees. Additional
randomization in the form of bagging (with the aim to further increase independence among
trees and thus reduce the variance of the ensemble) is therefore unnecessary for Randomized
Trees and usually only deteriorates performance due to the increased bias [47]6.

From the computational point of view, the time complexity of the learning procedure is, as-
suming balanced trees, Θ(MKT 2NI logNB), where NB and NI denote the number of bags
and the number of instances within the bags, respectively. When bags are of size one (i.e.
NI = NB = N ) and T = 1, the complexity is equivalent to the complexity of Extremely
Randomized Trees Θ(MKN logN) [47].

In the testing mode, assuming a binary classification problem (i.e. y ∈ {−1,+1}), predictions
of individual trees are aggregated by a simple arithmetic average to produce a final prediction
score ŷ ∈ [−1, 1].

3.2 Evaluation on Public Datasets

The proposed BLRT algorithm is evaluated on 29 real-life datasets that are publicly available, for
instance, at https://doi.org/10.6084/m9.figshare.6633983.v1. The datasets with meta descriptions
are listed in Table 3.1. These classification problems are well known and cover a wide range
of conditions in terms of application domains (molecule, scene, image, text, audio spectrogram,
etc.), ratios of positive and negative samples (e.g. Corel datasets with 0.05 imbalance ratio),
feature dimensions (from 9 to 6519) and average numbers of bag instances (from 4 to 185). More
details about the datasets can be found in the recent study of MIL datasets [28].

The same collection of datasets was also used in the evaluation of 28MIL classifiers (including
their variants) implemented in the MIL toolbox [109]. The last two columns of Table 3.1 sum-
marize the results from the evaluation available also through http://homepage.tudelft.nl/n9d04/
milweb/. We report only those classifiers that achieved the highest performance by means of
AUC metric7 at least on one problem. This selection results in 13 classifiers that are listed in
Table 3.2 together with references to their original papers.

Since an exact experimental protocol is provided as a part of the referenced evaluation, we
followed that protocol precisely. For each dataset, the protocol provides indexes of all splits in
5-times repeated 10-fold cross-validation. The material, however, does not specify any approach
for hyper-parameter optimization. Therefore, we evaluated the proposed model using default
parameter settings. We set the number of trees to grow to M = 500 which should ensure
convergence of the ensemble, the number of randomly selected features at each split to the
square root of the feature dimensionK =

√
D, which is the default value for tree-based models,

and the number of uniformly drawn values of v and r to T = 8.
Table 3.1 summarizes results from the evaluation in terms of average scores and standard

deviations. Although among the prior art (28 MIL classifiers) there is no single winning solu-
tion and almost every problem is associated with a different classifier, which demonstrates the

5Tree bagging [18] is a training procedure where each tree is grown from a bootstrap replica obtained by ran-
dom sampling with replacement in the original training sample set. Perturbations in the training set introduce a
randomization effect reducing the variance of ensemble models. This variance reduction, however, comes at expense
of increased bias.

6When working on [62], we observed that tree bagging can still be useful in scenarios with noisy labels. Training
on bootstrap replicas ensures that not every tree is affected by all mislabeled samples. Bagging is therefore an optional
parameter in our BLRT implementation.

7Area Under a ROC Curve showing the true positive rate as a function of the false positive rate. AUC is agnostic
to class imbalance and classifier’s threshold setting.
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Dataset BLRT Best prior-art
Name Bags +/- Feat. Avg.inst. AUC AUC Algorithm

Musk1 47/45 166 5 96.8 (1.6) * 92.9 (1.3) MI-SVM g
Musk2 39/63 166 65 91.2 (1.8) * 95.3 (1.5) MILES g
C. African 100/1900 9 4 96.2 (0.2) 95.7 (0.4) minmin
C. Beach 100/1900 9 4 98.9 (0.2) * 90.7 (0.9) RELIC
C. Historical 100/1900 9 4 99.2 (0.1) * 92.9 (0.5) EM-DD
C. Buses 100/1900 9 4 97.4 (0.2) * 99.5 (0.1) minmin
C. Dinosaurs 100/1900 9 4 96.4 (0.1) * 99.9 (0.0) MILES p
C. Elephants 100/1900 9 4 97.1 (0.1) 96.9 (0.2) minmin
C. Food 100/1900 9 4 99.4 (0.1) * 97.2 (0.2) minmin
Fox 100/100 230 7 73.3 (1.4) * 69.8 (1.7) MILES g
Tiger 100/100 230 6 92.6 (1.0) * 87.2 (1.7) MILES g
Elephant 100/100 230 7 95.8 (0.9) * 91.1 (1.2) MI-SVM g
Protein 25/168 9 138 74.9 (2.3) * 89.5 (1.4) minmin
Harddrive1 191/178 61 185 99.6 (0.2) * 98.6 (0.1) MILES g
Harddrive2 178/191 61 185 99.5 (0.1) * 98.6 (0.2) RELIC
Mutagenesis1 125/63 7 56 92.1 (1.3) 91.0 (0.5) cov-coef
Mutagenesis2 13/29 7 51 86.0 (3.5) 84.0 (3.4) EMD
B. BrownCreeper 197/351 38 19 99.5 (0.0) * 96.5 (0.5) RELIC
B. WinterWren 109/439 38 19 99.8 (0.1) * 99.3 (0.1) summin
B. Pacifics. 165/383 38 19 96.1 (0.2) * 95.7 (0.3) MILES g
B. Red-breasted. 82/466 38 19 99.2 (0.2) 98.7 (0.4) MILBoost
UCSBBreast. 26/32 708 35 84.5 (2.5) * 92.2 (3.1) cov-coef
Newsgroups1 50/50 200 54 78.8 (2.6) * 89.8 (1.6) meanmin
Newsgroups2 50/50 200 31 63.0 (4.0) * 78.1 (1.4) meanmean
Newsgroups3 50/50 200 52 76.3 (4.1) 77.4 (1.5) meanmean
Web1 21/54 5863 29 86.5 (2.6) * 91.9 (0.0) MI-SVM g
Web2 18/57 6519 30 50.7 (7.8) * 90.1 (0.5) MI-SVM g
Web3 14/61 6306 34 73.4 (6.7) * 91.8 (0.4) MI-SVM g
Web4 55/20 6059 31 80.0 (4.2) * 99.4 (0.0) mean-inst

Table 3.1: Metadata about 29 used datasets together with classification scores and standard
deviations presented in percent (AUC × 100). The best results are in boldface. Stars denote
statistically significant (α = 0.05) differences according to Welch’s t-test.

24



CHAPTER 3. BAG-LEVEL RANDOMIZED TREES

Rank position Avg.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. rank N/A Algorithm

17 1 0 3 2 2 1 1 0 0 2 0 0 0 3.1 0 BLRT ours

0 2 1 4 2 1 0 5 3 0 3 0 1 2 7.5 5 EM-DD [118]
0 1 1 6 4 1 1 1 3 2 2 3 1 1 7.5 2 MILBoost [110]
3 3 3 5 1 1 0 2 2 1 0 3 1 1 6.0 3 MI-SVM g [7]
1 0 2 2 5 2 6 6 1 2 0 1 0 0 6.5 1 MILES p [26]
2 5 6 1 0 2 1 1 2 0 1 3 0 4 6.5 1 MILES g [26]
1 5 3 1 2 2 2 1 4 2 2 1 1 2 6.9 0 mean-inst [49]
1 2 1 2 0 0 8 4 1 5 0 3 2 0 7.8 0 cov-coef [49]
0 3 2 0 0 3 0 1 3 6 3 4 4 0 8.9 0 RELIC [100]
2 3 2 1 3 4 4 0 0 2 5 0 1 1 6.7 1 minmin [27]
0 2 2 2 0 2 3 1 2 2 5 4 2 1 8.6 1 summin [27]
0 2 3 4 5 3 0 1 1 2 2 2 1 1 6.7 2 meanmin [27]
3 0 0 1 2 1 0 3 3 4 1 3 5 1 8.9 2 meanmean [27]
0 1 2 1 2 1 2 0 2 0 2 1 2 0 7.5 13 EMD [117]

Table 3.2: Number of times that each algorithm obtained each rank in the evaluation on 29
benchmark datasets. For clarity, the table shows only a subset of 13 out of 29 prior-art classifiers
that qualified for the evaluation. Letters p/g next to MI-SVM and MILES algorithms denote the
used polynomial/Gaussian kernel, respectively. Column N/A indicates the number of absent
evaluations for a particular method. Our BLRT has the best average rank of 3.1. The second
lowest rank is nearly twice as high (6.0) and belongs to MI-SVM with a Gaussian kernel.

difficulty and diversity of MIL problems, the proposed model was able to outperform the best
prior art algorithm for a given dataset in 17 out of 29 cases. The most significant improvement
with respect to the prior art is on the group of image classification problems (Fox, Tiger and
Elephant) and on some scene classification problems (Corel Beach and Corel Historical). On the
other hand, the proposal is less accurate on text classification problems (Newsgroups8 andWeb),
Protein and Breast datasets.

FromTable 3.2 showing the ranking of algorithms in the evaluation, it can be observed that the
second best classifier with the lowest average rank (MI-SVM [7] with Gaussian kernel) ranked
first only three times. Overall, the proposed algorithm works very reliably even without any
hyper-paramter tuning. Indeed, the proposal never ended on any of the last three positions,
which is unique among all classifiers. It should be stressed though that not all prior art classifiers
were evaluated on all 29 datasets. Column N/A of Table 3.2 indicates the number of missing
evaluations.

The non-parametric Wilcoxon signed ranks test [32] (testing whether two classifiers have
equal performance) confirmed at significance level α = 0.05 that the proposed bag-level ran-
domized trees are superior to any other involved method. The test compared pair-wisely the
proposal with every prior art method, each time using an intersection of their available datasets.
The two most similarly performing methods are mean-inst [49] (p-value 0.037) and MI-SVM [7]
with Gaussian kernel (p-value 0.022).

Besides the above evaluation, we also provide a comparison to other tree-based MIL algo-
rithms in Table 3.3, namely RELIC [100], MIOForest [108], MIForest [75], MITI [15] and RF [18].
Except for RELIC, all of them operate on instance-level; labels are assigned to instances and a
bag is positive if it contains at least one positive instance. RF represents a naive approach where

8Except for Newsgroup3 where the proposal is competitive with the best prior art.
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standard single-instance Random Forests are trained directly on instances that inherited bag la-
bels. Reported classification accuracies in Table 3.3 are taken from the work of MIOForest [108].
Unfortunately, the classifiers were evaluated only on five pioneering datasets (i.e. Musk1-2 and
the image classification problems) and their implementations are not publicly available. Nev-
ertheless, as can be seen from Table 3.3, the proposal outperforms all the prior tree-based MIL
solutions on these datasets.

Dataset BLRT ours RELIC MIOForest MIForest MITI RF

Musk1 96 83 89 85 84 85
Musk2 91 81 87 82 88 78
Fox 75 66 68 64 N/A 60
Tiger 90 78 83 82 N/A 77
Elephant 93 80 86 84 N/A 74

Table 3.3: Comparison with other tree-based MIL classifiers. Scores refer to accuracy in percent
(ACC × 100). The prior art results are taken from the work of MIOForest [108].

3.3 Ablation Study

In Figure 3.2, we assess various variants of the proposed algorithm. Dots in each subplot rep-
resent the 29 datasets. Their (x, y) coordinates are given by AUC scores obtained by the tested
variants. If a dot lies on the diagonal (i.e. x = y line), there is no difference between the two
tested variants from that particular dataset perspective. The first two subplots (a-b) illustrate
the influence of the ensemble size. It can be observed that it is significantly better to use 100 trees
than 10 trees, but building 500 trees usually does not bring any additional performance. Also,
according to subplot (c), there is almost no difference between Information gain [94] and Gini
impurity measure [19] scoring functions for selecting splitting rules. The next subplot (d) indi-
cates that using higher values (e.g. 16 instead of the default 8) for parameter T (i.e. the number
of randomly generated values for parameters v and r at each split) might lead to over-fitting on
some datasets. In subplot (e) we tested a variant with an absolute count9 instead of the relative
one used in Equation 3.2. However, the variant with the absolute count performed significantly
worse on most datasets. The last subplot (f) compares the proposed algorithm with its simpli-
fied alternative, where traditional Random Forests are trained on a non-optimized bag represen-
tation. To do so, all bags {B1,B2, . . .} are transformed into single feature vectors {b1,b2, . . .} of
values b(f,v)B = 1

|B|
∑

x∈B 1 [xf > v], where for each feature f eight equally-spaced values v are
generated from interval [xmin

f , xmax
f ) that is estimated beforehand on the whole training sample

set. As a result, the non-optimized bag representation is eight times longer than the dimension-
ality of instances. As seen from subplot (f), the Random Forests trained on the non-optimized
bag representation are far inferior to the proposed algorithm on all datasets except one. This
result highlights the importance to simultaneously optimize the representation parameters with
the classification ones as proposed in Section 3.1.

Finally, Figure 3.3 shows histograms of learned values of r parameters for some datasets.
The first observation is that datasets from the same source (e.g. Fox, Tiger and Elephant) have
very similar distributions. This demonstrates that the learned knowledge of randomized trees
is not as random as it might appear from the algorithm description. The next observation is
that in almost all histograms (except for Mutagenesis problems), one or both extreme values of
the parameter (i.e. r ∈ {0, 0.9̄}) are the most frequent ones. As discussed in Section 3.1, the

9The sum in Equation 3.2 is not normalized by bag size |B| and parameter r can take values from interval
[1, argmaxB∈S |B|).
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Figure 3.2: Pair-wise comparisons of various configurations of the proposed algorithm on the
29 datasets. Subplots (a-b) illustrate the influence of the ensemble size, subplot (c) the impact of
selected impurity measure, subplot (d) the effect of parameter T , subplot (e) the performance of
the variant with the absolute count and subplot (f) compares the proposed algorithm with RF
trained on the non-optimized bag representation.

behavior of splitting rules (Equation 3.2) with extreme values is approaching the behavior of
the universal or existential quantifier. On Web and Newsgroup datasets, this behavior is even
dominant, meaning that the algorithm reduces to the prior art solution RELIC [100]. In the rest
cases, however, the added parameter enabled learning of important dataset properties, which is
supported by the high-level performance of BLRT.
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Figure 3.3: Histograms of learned values of r parameter (Equation 3.2) as collected across
all tree-nodes in trained BLRT on a dataset. Datasets from the same source (e.g. Musk1-2,
Harddrive1-2 and so forth) typically have very similar distributions that differ from the oth-
ers. Although utilizing a randomized optimization in BLRT, this demonstrates consistency in
learning dataset features. The dominance of extreme values on Web and Newsgroups means
that BLRT behaves like RELIC [100] on these datasets.

3.4 Summarizing Comments

We have proposed a new tree-based algorithm for solving MIL problems called Bag-level Ran-
domized Trees (BLRT). The algorithmnaturally extends traditional single-instance decision trees,
since bags with single instances are processed in the regular single-instance tree way. Multiple
instance bags are judged by counting the percent of their instances that accomplish the stan-
dard condition testing whether a feature value is greater than a certain threshold. Judging this
percent value is done through an additional parameter learned during the tree-building process.

Extreme values of the parameter reduce BLRT to the prior art solution RELIC [100]. Unlike
other prior art tree-based algorithms, BLRT operates on the bag-level. The ability to analyze
global bag-level information is most likely responsible for the superior performance. On the
other hand, the algorithm is unable to identify instances that are responsible for positive bag
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predictions, which may be required in some applications such as detecting malware-infected
users in computer networks [64] or object tracking [10].

The algorithm falls into the category of embedded-space methods, since the learning proce-
dure can be decoupled into two steps: embedding bags into single feature vectors and training
traditional decision trees on top of the new representation. Features of the new single-vector
representation then correspond to the counted percent values, which may alternatively be in-
terpreted as quantile-based embedding. To obtain a meaning-full representation, a large set
of candidate features can be firstly randomly generated and subsequently reduced to reason-
able numbers using a fast feature selection method (e.g. CMIM [43]) as we did in our previous
works [69, 68, 66]. However, the herein-presented approach optimizes both the representation
and the tree classifier in a single step.

As a side effect, the algorithm inherits all desirable properties of tree-based learners. It is
assumption-free, scale-invariant and robust to noisy and missing features. It can handle both
numerical and categorical features. And, it can be easily extended to multi-class and regression
problems.
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Chapter 4

Instance Selection Randomized Trees

In this chapter, we introduce our second tree-based algorithm for solving multiple-instance clas-
sification problems. This time with an emphasis on explainability.

Since MIL formalism only requires labels for bags and not for the more numerous instances,
it is especially useful in fields with high label acquisition costs. However, in domains where
inference transparency is demanded, such as in cybersecurity, the sample attribution require-
ments are often asymmetric with respect to the training/application phase. While in the training
phase it is very convenient to supply labels only for bags, in the application phase it is generally
not enough to just provide decisions on the bag-level because the inferred verdicts need to be
explained on the level of individual instances.

Unfortunately, the majority of MIL classifiers do not focus on this real-world need. On one
end of the spectrum, there are instance-level methods (e.g. MI-SVM [7]) making decisions based
on single instances, which is good for comprehension but often detrimental to prediction ac-
curacy. And on the other end, there are bag-level methods (e.g. BLRT or MIL-NN [91]) with
high accuracy but usually bad interpretability due to the usage of some aggregation blending
information from all instances together.

We, therefore, propose a novel method that is forced to select only instances that are impor-
tant for making decisions, leaving the rest untouched. Depending on the ratio of selected and
untouched instances, the model oscillates between the instance-level and bag-level approaches.
The higher the number of untouched instances, the fewer instances need to be considered dur-
ing the investigation of raised alerts. Time spent on the investigation is then further reduced
by prioritizing the order in which the instances are investigated according to their importance
during the inference.

4.1 Algorithm Description

The algorithm for learning Instance Selection Randomized Trees (ISRT) follows the standard
top-down greedy procedure for building an ensemble of unpruned decision trees. Every tree
learner recursively divides the training sample set into two subsets until class homogeneity is
reached or the samples can not be divided any further.

The main difference to the standard (single instance) tree-based learners applies in the way
the conditions are evaluated inside the splitting nodes. In the MIL setting, the decision whether
to send a sample (i.e. bag) to the left or right branch can no longer be based on a condition of
type — if feature f is greater than value v (Equation 3.1) — as the bag might contain multiple
feature vectors (i.e. instances) that may or may not fulfill that condition. To cope with this
problem, every node of ISRT (denoted as NISRT) is further parametrized with vector w, called
instance selector, in addition to the feature index f and the threshold value v (Equation 4.1). The
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purpose of the instance selector is to select a single instance x∗ from a bag B upon which the
original feature value comparison x∗f > v is made. The selection mechanism is implemented
via calculating the inner product (denoted as ⟨·, ·⟩) between the vector w and individual bag
instances x ∈ B, followed by selecting the instance x∗ associated with the maximum response:

NISRT(B; f, v,w︸ ︷︷ ︸
Φ

) =

left, if x∗f > v, x∗ = argmax
x∈B

⟨w,x⟩,

right, otherwise.
(4.1)

Note that if bags are of size one, then ISRT nodes behave like the traditional ones regardless of
the extra parameter w.

Assuming the positive class is the class of interest, we would like to train an instance selector
(on a local training subset available to the considered node) to give maximum values to the
instances of positive bags (and thus cause their selection) that are most responsible for these
bags being positive. More specifically, the selector should assign low (i.e. negative) values to
all instances of negative bags and high (i.e. positive) values to at least one instance from each
positive bag. We do not force the selector to assign high values to all instances of positive bags,
since not all of them are necessarily relevant. For example, if bags represent network users and
instances visited websites of those users, not all websites visited by a malware-infected user
within the last 24 hours are automatically malicious. In fact, the vast majority of them will
typically still be legitimate. These requirements lead to the following zero-one loss function for
a single training data point (B, y), y ∈ {−1, 1}:

ℓ01 (w; (B, y)) = 1
[
ymax

x∈B
⟨w,x⟩ < 0

]
, (4.2)

where 1 [·] stands for an indicator function, which equals one if the argument is true and zero
otherwise. If we approximate the indicator function 1 [z] with hinge loss surrogate h(z) =
max{0, 1 − z}, take average over the local training subset S ⊆ D and add regularization term
λ, we obtain Multiple Instance Support Vector Machines [7] optimization problem:

argmin
w

λ

2
∥w∥2 + 1

|S|
∑

(B,y)∈S

max{0, 1− ymax
x∈B
⟨w,x⟩}. (4.3)

To approximately solve this non-convex optimization problem in linear time, we adapted Pe-
gasos solver [102] (originally designed for conventional SVMs) to the MIL setting. The resulting
pseudo-code is given in Algorithm 2. It is a stochastic sub-gradient descent-based solver, which
at each iteration t updates the current solutionwt+1 ← wt−ηt∇t (row 9 in Algorithm 2) using
step size ηt = 1/(tλ) and sub-gradient∇t of the objective function (Equation 4.3) estimated on a
single randomly chosen training sample. To avoid building strong classifiers inside nodes, which
would go against the randomization principle for constructing diverse independent trees [18],
we restrict the selectors to operate on random low-dimensional subspaces. Input zero-one vec-
tor s ∈ {0, 1}d then serves as a mask defining the feature subspace. By taking the element-wise
product with that vector (i.e. s⊙w or s⊙x), only feature positions occupied by ones remain ef-
fective. In Section 4.3, we empirically demonstrate that using sparse selectors, where the number
of effective dimensions equals the square root of the total dimensions d rounded to the closest
integer (i.e.

∑
f sf = [

√
d]), plays a crucial role in the overall ensemble performance. This sub-

space size ensures that in high dimensions the selectors will be approximately orthogonal and
thus independent [55].

Being equipped with the routine for training selectors, we can represent bags in a local train-
ing subset {(B, y)1, . . .} with selected instances {(x∗, y)1, . . .}. Now, on top of this represen-
tation, a standard search for the best splitting parameters, based on measuring the purity of
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Algorithm 2: ISRT’s routine for training selectors.

Function TrainSelector(S;λ,E, s)
Input : Training set of bags along with labels S = {(B, y)1, . . .},

regularization λ > 0,
number of epochs E > 0,
zero-one vector defining feature subspace s.

Output: Instance-level selector wt approximately solving Problem 4.3.
1 extend all instances by a bias term [x, 1] including the subspace vector [s, 1]
2 t← 1
3 w0 ← random vector w0

f ∼ N(0, 1) // length(w) = length(x) = length(s)

4 w1 ← s⊙w0 // ⊙ element-wise product

5 for 1 in E do
6 for 1 in |S| do
7 (B, y)← (class-balanced) random draw (with replacement) from S
8 x∗ ← argmaxx∈B⟨wt,x⟩
9 wt+1 ← wt − 1

tλ

(
λwt − 1

[
y⟨wt,x∗⟩ < 1

]
y(s⊙ x∗)

)
10 t← t+ 1

11 return wt[start : end− 1] // removing the bias term

produced subsets (e.g. Information gain [94] or Gini impurity [19]), can be executed. This al-
lows us to build an ensemble of ISRT in the same way as (Extremely) Randomized Trees [47]
are. In particular, unlike e.g. Breiman’s Random Forests [18], where each tree is grown on a
bootstrap replica of the training data, the Randomized Trees (as well as our BLRT and ISRT) are
grown on the complete training set, which yields to a lower bias. Variance is then reduced by
the output aggregation of more diversified trees. The higher diversification is achieved through
stronger randomization in splitting nodes, as for each feature f out of [

√
d] randomly selected

ones, only a limited number1 T of uniformly drawn threshold values v from [xmin
f , xmax

f ) is con-
sidered for splitting rather than every sample value as realized in Breiman’s Random Forests. In
the case of ISRT, the randomization is even stronger due to the fact that selected instances may
vary from node to node. The whole training procedure of ISRT is summarized in Algorithm 3.

From the computational viewpoint, the time complexity of the algorithm, assuming balanced
trees, is Θ(M

√
d T E NI logNB), whereM is the number of constructed trees, E the number

of epochs for training selectors, NI the number of instances in bags and NB the number of
training bags.

In the testing phase, a bag to be classified is propagated through individual trees and the final
score ŷ ∈ [−1, 1] is calculated as an average of leaves scores the bag falls into (Algorithm 4).
However, besides the prediction score, the ISRT can also output a histogram of selection counts
over the bag instances i. This information might help to identify relevant instances upon which
the decision was made and thus serve as an explanation for positive bag predictions. For exam-
ple, an explanation — a user was found to be malware-infected because it has communicated with
these three domains (out of hundreds) within the last 24 hours — can greatly speed up the work of
threat analysts and reinforce their trust in the model if the domains will be shown to be indeed
malicious. On the other side, it should be noted that this approach can not explain a positive
prediction that would be based on an absence of some type of instance(s) in the bag. For exam-
ple, there might be malware, hypothetically, its only visible behaviour would be preventing an

1Term extremely in Extremely Randomized Trees [47] corresponds to setting T = 1.
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Algorithm 3: ISRT’s routine for building an ensemble of trees.

Function BuildTreeEnsemble(D;M,T,E,Λ)
Input : Training set of bags along with labels D = {(B, y)1, . . .},

number of trees to grow M > 0,
number of considered threshold values T > 0,
number of epochs E > 0 (for training selectors).

Output: Ensemble of Instance Selection Randomized Trees E .
1 E ← ∅
2 for 1 inM do
3 E ← E ∪ {BuildTree(D;T,E,Λ)}
4 return E

Function BuildTree(S;T,E)
Input : Local training subset S ⊆ D.
Output: Node with followers or Leaf with a prediction score.

5 if all class labels y in S are equal then
6 return Leaf (y)
7 Φ∗ ← FindBestSplittingParameters(S;T,E)
8 if Φ∗ = ∅ then
9 return Leaf ( 1

|S|
∑

y∈S y)

10 Sleft ← {(B, y) ∈ S | NISRT(B; Φ∗) = left}
11 Sright ← S \ Sleft
12 if Sleft = ∅ or Sright = ∅ then
13 return Leaf ( 1

|S|
∑

y∈S y)

14 return Node (Φ∗, BuildTree(Sleft), BuildTree(Sright))

Function FindBestSplittingParameters(S;T,E)
Output: Triplet of splitting parameters Φ as defined in Equation 4.1.

15 Φ∗ ← ∅
16 s← zero-one vector of length d with

[√
d
]
ones at random positions

17 w← TrainSelector(S;λ = 1, E, s)
18 (X∗,y)← represent each pair (B, y) ∈ S with (argmaxx∈B⟨w,x⟩, y)
19 foreach feature f in

[√
d
]
randomly selected ones (without replacement) having

non-constant values inX (i.e. xmin
f ̸= xmax

f ) do
20 foreach value v in T uniformly drawn values from [xmin

f , xmax
f ) do

21 Φ← (f, v,w)
22 update Φ∗ ← Φ if Score(Φ,X∗,y) is the best so far found score

23 return Φ∗
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operating system (or other applications like an anti-virus engine) from regular updates. For the
same reason, negative predictions in general can not be explained with this approach.

Algorithm 4: ISRT’s prediction routine.

Function Predict(B; E)
Input : Bag to be classified B with ensemble of trees E .
Output: Bag score ŷ ∈ [−1, 1] and histogram of instance selection counts i.

1 ŷ ← 0
2 i← zero vector of length |B|
3 foreach Tree in E do
4 P← Tree // pointer to Node and Leaf structures

5 i′ ← zero vector of length |B|
6 while P is of type Node do
7 (b, ix∗)← NISRT(B;P.Φ∗) // ix∗ index of selected instance

8 i′[ix∗ ]← i′[ix∗ ] + 1
9 P← P.b // continue in left or right branch

10 ŷ ← ŷ + P.y
11 i← i⊕ (i′/max(

∑
i i

′[i], 1)) // ⊕ element-wise addition

12 ŷ ← ŷ/|E|
13 i← i/

∑
i i[i]

14 return (ŷ, i)

4.2 Evaluation on Public Datasets

To verify the applicability of ISRT, we evaluate the algorithm on the 12 most popular MIL bench-
mark datasets that originate from six different domains2. Namely, classification of molecules
(Musk1-2), classification of images (Fox, Tiger, Elephant), text categorization (Newsgroups1-3),
protein binding site prediction (Protein), breast cancer detection (BreastCancer) and drug activ-
ity prediction (Mutagenesis1-2). Their basic meta-descriptions (i.e. counts of positive/negative
bags, average bag size and feature dimension) are given in Table 4.1. For more details, we refer
the reader to the survey of MIL datasets [28].

Since each dataset contains a predefined list of splitting indices for 5 times repeated 10-fold
cross-validation, we strictly adhere to this evaluation protocol, just as we did while evaluat-
ing BLRT in Section 3.2. We also use similar hyper-parameter configurations. In particular, to
train ISRT, we set the ensemble size toM = 500, the number of considered threshold values to
T = 8 and the number of epochs for training selectors to E = 1. The BLRT model is trained
with M = 500 and T = 8. In addition to BLRT and ISRT model, MI-SVM [7] and MIL-NN [91]
are included in the evaluation as representatives of instance-level and bag-level methods, re-
spectively. The MI-SVM model is trained using L2 regularization λ = 10−3 and 100 epochs.
The multiple instance neural network architecture then consists of a single instance layer of
size 16 with rectified linear units (ReLU) followed by the mean-max aggregation and a single
bag layer reducing the 32 units to the two output neurons. The weights are regularized with L1
regularization λ = 10−3 to decrease overfitting as suggested in [91]. The training procedure
minimizes a cross-entropy loss function using ADAM optimizer, mini-batch of size eight, and
1000 epochs at the maximum.

2Datasets are accessible at https://doi.org/10.6084/m9.figshare.6633983.v1.
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Dataset Bags +/- Inst. Feat. MI-SVM MIL-NN BLRT ours ISRT ours

Musk1 47/45 5 166 85.9 (1.9) 91.9 (1.5) 96.8 (1.6) 97.2 (1.3)
Musk2 39/63 65 166 86.9 (1.5) 90.3 (2.3) 91.2 (1.8) 92.3 (2.6)
Fox 100/100 7 230 55.2 (1.6) 65.9 (1.2) 73.3 (1.4) 74.0 (1.8)
Tiger 100/100 6 230 81.7 (2.7) 90.7 (1.7) 92.6 (1.0) 92.5 (0.8)
Elephant 100/100 7 230 84.5 (0.3) 93.9 (0.8) 95.8 (0.9) 95.0 (0.7)
Newsgroups1 50/50 54 200 82.4 (4.9) 77.0 (3.6) 78.8 (2.6) 55.4 (2.6)
Newsgroups2 50/50 31 200 70.2 (3.7) 63.3 (5.2) 63.0 (4.0) 63.8 (2.9)
Newsgroups3 50/50 52 200 54.5 (5.5) 63.9 (4.1) 76.3 (4.1) 65.0 (2.6)
Protein 25/168 138 9 81.2 (1.7) 75.2 (4.2) 74.9 (2.3) 85.8 (2.0)
BreastCancer 26/32 35 708 73.1 (2.6) 76.7 (8.1) 84.5 (2.5) 79.3 (1.9)
Mutagenesis1 125/63 56 7 53.4 (1.0) 90.2 (1.0) 92.1 (1.3) 88.6 (0.8)
Mutagenesis2 13/29 51 7 70.0 (8.2) 66.2 (2.6) 86.0 (3.5) 70.0 (6.6)

Table 4.1: Metadata about 12 public datasets. Including the number of positive/negative bags,
the average number of instances inside bags and the number of features. Plus evaluation results,
measured in AUC × 100, for individual models. Best results are shown in boldface. Multiple
models are highlighted if the difference is not statistically significant (at α = 0.05) according to
a paired t-test with Holm-Bonferroni correction (for multiple comparisons) [32] computed on
the five runs of 10-fold cross-validation.

Table 4.1 shows the performance of each model on each dataset in terms of the average Area
Under the ROC Curve (AUC)3 ± one standard deviation. It can be seen that the proposed ISRT
model significantly outperforms the other three models only on Protein dataset, whereas the
prior BLRT model significantly wins on two datasets (Newsgroup3 and Mutagenesis2). The av-
erage ranks4 of the models are: BLRT=1.8, ISRT=2.0, MIL-NN=3.0 and MI-SVM=3.2. According
to the non-parametric Friedman-Nemenyi test [32] (comparing all classifiers to each other based
on the average ranks), there is no statistically significant difference5 (at α = 0.05) among the
models, except for the pair BLRT and MI-SVM, where MI-SVM loses.
Analysis of instance-selection counts: In addition to a prediction score, ISRT also gives, for
each classified bag, a histogram of selection frequencies6 of individual bag instances. Figure 4.1
shows these selection frequencies for the ten most often selected instances from each bag av-
eraged across all bags of a particular dataset. The non-uniformity of the values, especially on
Newsgroups and Protein datasets, means that some instances are substantially more often se-
lected than others. If it holds that the more frequently an instance is selected, the larger its
impact on the final decision, then the selection counts could be a good proxy for ranking how
relevant individual instances are to analysts validating model (bag-level) decisions.

Unfortunately, we can not assess the quality of this ranking criteria here, because annotations
for instances are not provided with the used datasets. Nevertheless, we can study the worst-case
scenario where the relevant instances would be among the least frequently selected ones. In
such cases, analysts must go through all the instances that potentially affected a decision to find
evidence for the raised alarm or to declare a false alarm. Going through all such instances in
the ranked order corresponds to a cumulative sum approaching one on the ordered histogram
of selection frequencies. Table 4.2 shows average percentages of bag instances that need to be
analyzed to reach certain levels (e.g. 0.8, 0.9, 0.99) of the cumulative sum. For example, on the

3AUC is agnostic to class imbalance and classifier’s decision threshold value.
4The best model is assigned the lowest rank (i.e. one).
5The performance of any two classifiers is significantly different if the corresponding average ranks differ by at

least the critical difference, which is (for 12 datasets, four methods and α = 0.05) ∼ 1.35.
6The histogram values (i.e. selection counts) are normalized to sum to one (Row 13 in Algorithm 4).
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Figure 4.1: Ten highest values from the histogram of instance selection frequencies as produced
by ISRT’s prediction routine (Row 13 in Algorithm 4) averaged across all bags of a particular
dataset. The rapid decrease of values in the case of Newsgroups1-3 and Protein datasets means
that only a tiny fraction of instances are frequently selected and the rest is mainly ignored. This
knowledge about the most often selected instances upon which the decision was made might
considerably speed up any further investigation of positive bag predictions.

Protein dataset with the largest bag sizes (138 instances on average), only 21% of bag instances
would need to be analyzed on average, since the remaining instances could not alter the model
outcomes in any significant way (cumulative sum= 0.99). This already represents a substantial
workload reduction for analysts, even under the worst-case scenario. If we admit a slightly more
optimistic scenario that the relevant instances would be among the 80% of the most selected
instances (i.e. cumulative sum = 0.8), then only 5% of bag instances need to be analyzed.

Dataset / CuSum 0.5 0.8 0.9 0.95 0.99 Avg. Inst.

Musk1 45% (2) 80% (3) 92% (4) 97% (5) 100% (5) 5
Musk2 34% (7) 61% (16) 73% (21) 82% (25) 90% (29) 65
Fox 42% (3) 73% (5) 87% (6) 95% (6) 99% (7) 7
Tiger 42% (2) 73% (4) 87% (5) 95% (6) 100% (6) 6
Elephant 39% (3) 70% (5) 85% (6) 94% (6) 99% (7) 7
Newsgroups1 3% (1) 10% (5) 18% (10) 27% (14) 41% (22) 54
Newsgroups2 4% (1) 5% (2) 10% (3) 18% (5) 36% (11) 31
Newsgroups3 2% (1) 4% (2) 9% (4) 15% (7) 29% (14) 52
Protein 1% (1) 5% (6) 9% (11) 13% (17) 21% (26) 138
BreastCancer 10% (4) 24% (8) 34% (12) 44% (15) 59% (20) 35
Mutagenesis1 6% (3) 14% (7) 18% (9) 22% (11) 27% (14) 56
Mutagenesis2 7% (3) 13% (6) 18% (8) 22% (10) 28% (13) 51

Table 4.2: Relative (and absolute) counts of top instances that analysts validating model de-
cisions must process on average to reach a certain cumulative sum (e.g. 0.8, 0.9, 0.99) on the
histogram of selection frequencies. On the Protein dataset, even under the worst-case scenario
(i.e. ranking based on the selection frequencies is contrary to the best one), only 21% of bag
instances would need to be analyzed on average, since the rest of the 79% instances were almost
(CuSum = 0.99) untouched during the label inference.
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4.3 Ablation Study

As the last experiment, we investigate the influence of individual model components and pa-
rameters on the final performance. Figure 4.2 shows results from this ablation study as a series
of eight pair-wise comparisons. Each subplot compares two different variants (horizontal and
vertical axis) of the proposed ISRT algorithm on the 12 datasets (dots on the scatter plot). X and
Y coordinates of each dot are determined by the achieved AUCs of the corresponding variants
on that particular dataset. Therefore, if a dot lies above the main diagonal, the variant associ-
ated with the vertical axis outperforms the other one associated with the horizontal axis and
vice versa.

The first two Subplots (A-B) illustrate the effect of the ensemble size. While it is almost
always better to build 100 trees than 5, building 500 trees usually does not bring any additional
performance compared to 100. In Subplot (C), we examine the model stability with respect to
different random seeds (1234 vs. 42) and as can be seen, there is almost no difference. Sub-
plot (D) shows a slight improvement that can be achieved by considering more thresholds
for splitting (T = 8) than one as it is characteristic for Extremely Randomized Trees [47]. It
is also worth experimenting with the sparse vs. dense selectors because, as can be observed
from Subplot (E), this option has different effects on different datasets. Subplot (F) then sup-
ports the idea that strongly randomized trees, unlike Breiman’s Random Forests, do not have
to be trained on the bootstrapped datasets. In Subplot (G) we analyze whether the search of
splitting parameters Φ = (f, v,w) over multiple selectors with different regularization values
λ ∈ {10−4, 10−3, . . . , 1} instead of one λ = 1 can help. Finally, the last Subplot (H) indicates
that there is no need to train selectors with a large number of epochs.
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Figure 4.2: Ablation study assessing the influence of individual model components and param-
eters on 12 datasets. It illustrates the effect of the ensemble size (A-B), the stability wrt. random
seed (C), the slight improvement caused by consideringmore thresholds for splitting (D), the im-
pact of sparse vs. dense selectors (E), the no need for using bagging (F), multiple regularization
values (G), nor a large number of epochs for training selectors (H).
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4.4 Summarizing Comments

We have proposed a novel tree-based algorithm called Instance Selection Randomized Trees
(ISRT) for solving binary classification MIL problems. The algorithm naturally extends tradi-
tional randomized trees, since bags of size one are processed in the standard way by evaluating
single feature value conditions at each node. However, when bags contain multiple instances,
every node selects one instance from the bag, upon which the decision of whether to send the
bag to the left or right branch is made. The instance selection mechanism is implemented in
tree nodes via an additional vector of parameters that are optimized during the tree construc-
tion process.

Making decisions upon deliberately selected instances at each step is essential for the algo-
rithm as this forces to extract patterns from relevant instances while leaving the irrelevant ones
untouched. Analysts validating positive predictions in production may then focus only on the
selected instances and disregard the remainder, resulting in a substantial decrease in workload
on large bags. Although we could not evaluate the prioritization of instances based on their
selection counts due to the non-existing instance-level labels on the public datasets, later in
Section 6.1 (Figure 6.3), we demonstrate on a real-world problem from cybersecurity that this
ranking criterion not only works well and further reduces the time spent on the investigation,
but it also helps to discover new, previously unknown positive instances.

On the Protein dataset, we could see that ISRT outperformed BLRT significantly. Chapter 6
on applications of BLRT and ISRT in cybersecurity shows that this is more of the norm than
the exception. We provide three reasons for why ISRT might be superior to BLRT even though
ISRT decides based on information from fewer instances. The first two reasons assume that the
unselected instances represent mainly a background noise that is often subject to change, espe-
cially in the presence of concept-drift [57]. The instance selection constraint then works as a
regularization preventing from overfitting to the noisy background data by simply not learn-
ing from these instances. During the label inference, the same mechanism also works as a noise
reduction filter eliminating the impact of newly incoming noisy instances on the decision-
making process by non-selecting such instances. The third reason is ISRT’s extended capability
to extract local multivariate patterns from specific bag instances while BLRT can extract only
global univariate statistics computed across all instances. As an illustration, BLRT cannot sepa-
rate the following two bags: {(0, 0), (1, 1)} and {(0, 1), (1, 0)}. Similarly, max-mean-min-std
embedding methods [38, 49, 22] can’t do that as the computed global statistics of both bags are
indistinguishable from each other. ISRT achieves this by selecting specific bag instances (e.g.
(1, 1) and (1, 0)) multiple times and testing the necessary conditions on their feature values one
by one (i.e. x1 > 0 ∧ x2 > 0). Global patterns are extracted in ISRT by accumulating knowl-
edge during the sequential decision-making process. The ability to extract information from
both ends of the spectrum, the local instance-level and the global bag-level, together with the
regularization and input noise reduction mechanism, is most likely what will make ISRT excel
in cybersecurity applications.
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Chapter 5

JSON2bag Representation

This chapter introduces our JSON2bag method for converting arbitrary JavaScript Object No-
tation (JSON) documents to multiple instance bags, thereby enabling machine learning directly
on raw JSON data.

JSON is a widely used data format designed to represent structured information in the form of
a tree of arbitrary depth and breadth using recursive composition of objects and arrays with four
primitive data types: string, number, boolean and null which makes it extremely useful for large
amounts and types of data. However, despite being one of the most popular data transmission
formats on the Internet [105], JSON is rarely used by machine learning practitioners. This is
striking because JSON is strictly more expressive than, for example, the commonly used tabular
Comma-Separated Values (CSV) format. In addition to a fixed-size set of attributes, JSON can
easily accommodate further optional attributes, structured contextual information or knowledge
about relationships with other entities without any pre-specified upper limit on their counts.
And, although it is widely known that enriching the underlying data with such additional bits
of available information can considerably improvemodels’ prediction performance [4, 59, 61, 71],
this practice is seldom realized via the JSON format.

We attribute this to the fact that there is no clear way how to derivemodels from non-vectorial
JSON objects. Manual feature engineering is usually very time-consuming and error-prone be-
cause humans struggle to accurately estimate the importance of individual pieces of information
in large volumes of complex data. Moreover, the variability in sizes of JSON arrays and objects
between samples calls for using aggregation functions which might cause information loss. On
top of that, any futuremodifications to the topology of processed JSON samplesmust be reflected
in feature extractors accordingly, requiring additional human effort. Addressing the problem as
sequence modeling [34] is also inappropriate due to the permutation invariances of key-value
pairs in JSON objects and the diversity of JSON value data types. We therefore propose a simple
yet effective MIL-based strategy for automated pattern extraction from raw JSON data. Results
from an empirical evaluation show that the proposed approach is more robust to signal dis-
placement in JSON structure and is applicable even to schema-less problems when compared
with prior-art JSON-specific ML methods: JSON-NN [113] and JsonGrinder [122].

5.1 Algorithm Description

JSON2bag is a feature extraction algorithm for representing JSONs as sets of d-dimensional
feature vectors (called bags of instances). This representation is MIL-compatible and allows
learning models, such as BLRT (Chapter 3), ISRT (Chapter 4), and MIL-NN [91] to be built upon
the converted JSON samples.
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To handle the dynamic nature of the JSON format, JSON2bag takes advantage of the MIL
paradigm, where the number of instances in bags is allowed to vary freely from bag to bag, just
like the number of values accommodated inside individual JSON samples. Therefore, JSON2bag
maps JSON values (i.e. leaves of the JSON trees) to instances. For this reason, the size of a
bag representing a specific JSON sample equals the number of values stored in that sample.
Since the location of a value in the JSON tree structure is essential as well, a respective instance
(i.e. feature vector associated with that value) also encodes this information, in addition to the
information about the value itself. As a result, every instance can be viewed as a path-value pair,
where the path specifies the placement of a value in the JSON tree structure relative to the root
node. Representing individual path-value pairs numerically as feature vectors (i.e. instances)
is then far simpler to do without losing much information than trying to condense the whole
JSON structure into a single feature vector.

Figure 5.1 illustrates the JSON2bag conversion as a two-step process. First, the tree structure
of an input JSON sample is decomposed into a collection of path-value pairs, where the path
is a sequence of object key names and array indices determining a position of a value (i.e. a
string, a number, a Boolean or a null value1) with respect to the JSON root node. This process
of decomposing hierarchically nested objects and arrays into a one-level structure is known
as tree-flattening. Then, each path-value pair is converted into a feature vector by applying a
battery of feature extractors to form an output bag (i.e. a set of feature vectors).

{
"name": "McKay",
"born": 1968,
"friends" : [
{
"name": "Keller",
"born": 1982

},
{
"name": "Carter",
"born": 1965

}
]

}

(/name, "McKay")
(/born, 1968)
(/friends/1/name, "Keller")
(/friends/1/born, 1982)
(/friends/2/name, "Carter")
(/friends/2/born, 1965)



(1, . . . , 0, 0, . . . , 5)
(1, . . . , 0, 1968, . . . , 0)
(3, . . . , 1, 0, . . . , 6)
(3, . . . , 1, 1982, . . . , 0)
(3, . . . , 2, 0, . . . , 6)
(3, . . . , 2, 1965, . . . , 0)
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Figure 5.1: Two-step JSON2bag procedure for automated conversion of arbitrary JSON docu-
ments into sets of d-dimensional feature vectors (i.e. bags) suitable for MIL algorithms. The
first step is to flatten an input JSON sample into a collection of path-value pairs. In the second
step, a battery of path/value extractors extracts d features from each path-value pair to create
an output set of feature vectors (i.e. a bag of instances).

There are two types of feature extractors: path feature extractors (encoding path character-
istics like its length or the number of array indices in the path) and value feature extractors
(encoding value properties like its type or the value itself if it is a number). A complete list of
default extractors, including their parameter values (i.e. n-gram sizes and bucket counts for the
hash-based extractors), is given in Table 5.1. They are designed to cover all common ways of
using the JSON format so that they can be applied universally without needing to first go over
the data. The aim is to preserve as much information as possible while keeping the feature di-
mensions reasonable. In total, 119 features are extracted from each path-value pair using this
default battery of universal feature extractors with the default parameter values. This setting is
used in all experiments in this thesis, unless stated otherwise.

1In the implementation, empty objects and arrays are also treated as values in order to distinguish the state of
the present but empty container from the absence of the container.
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Type Features Description

Path 1 Length of the path.
Path 1 Number of array indices in the path.
Path 1 Number of object key names in the path.
Path 1 Does the path terminate with an array index?
Path 1 Index of the first array in the path, or zero if none exists.
Path 1 Index of the last array in the path, or zero if none exists.
Path 32 Hashing individual object key names into 32 buckets.
Value 1 Is the value an empty array?
Value 1 Is the value an empty object?
Value 1 Is the value of type null?
Value 1 Is the value of type Boolean?
Value 1 Is the value of type Boolean and equals true?
Value 1 Is the value of type Number?
Value 1 Is the value of type Number and equals NaN?
Value 1 Is the value of type Number and equals positive infinity?
Value 1 Is the value of type Number and equals negative infinity?
Value 1 Value itself, if the value is a number.
Value 1 Value of log2(∥x∥+ 1), if the value is a number.
Value 1 Is the value of type String?
Value 1 Length of the string, if the value is a string.
Value 1 Ratio of digits, if the value is a string.
Value 1 Ratio of uppercase letters, if the value is a string.
Value 1 Ratio of punctual characters, if the value is a string.
Value 1 Ratio of non-ASCII characters, if the value is a string.
Value 32 Hashing n-grams (of size 3) of the string into 32 buckets.
Value 32 Hashing the lowercase version of the string into 32 buckets.

Table 5.1: List of path and value feature extractors including their feature ranges.

Note that potentially discriminative information can only be lost under two circumstances:
when multiple object key names or string values fall into the same bucket, or when a path
contains more than two array indices. The former case can be addressed by increasing the
bucket counts and/or by using multiple hashing seeds and the latter by adding additional path
extractors of type: “Index of the N-th array in the path, or zero if none exists.”

In the JSON2bag library, there are also available non-universal extractors that require some
prior knowledge about the paths or values that can be encountered in a dataset of JSON samples.
For example, one-hot encoding path/value extractors with predefined vocabularies of possible
string values or object key names. Although such extractors are not among the default extrac-
tors, they are implemented in the library and can be included in order to tune the JSON2bag rep-
resentation to the needs of a particular dataset. Furthermore, the existing battery of extractors
can be easily expanded with additional custom implementations of (domain-specific) extractors,
e.g., “Is the string value a public or private IP address?”. Finally, the library also provides con-
venient ways for transforming and/or removing specific JSON values (e.g. unique identifiers,
timestamps, class labels, etc.) based on their path or value type before converting the JSON
samples to MIL bags.
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5.2 Evaluation on Public Datasets

Firstly, we evaluate the proposed approach on Mutagenesis problem [31], for which a JSON-
based representation2, as well as a prior-art MIL-based representation3, is publicly available.
Our intention is, therefore, to compare the performance of models trained on the prior-art
(task-specific) MIL representation with those trained on the MIL representation derived from
the raw JSONs using our (generic) JSON2bag converter. The Mutagenesis problem is about
classifying molecules trialed for mutagenicity on Salmonella typhimurium as either active (i.e.
having positive log mutagenicity) or inactive (i.e. zero or negative log mutagenicity). Of the
188 molecules in the dataset, 125 are active and 63 inactive. Each molecule is described by the
chemical properties of the entire moleculeM, its atoms {A1,A2, . . .} and the bonds between
the atoms {b1,2, b2,1, . . .}, as shown in Figure 5.2.
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Figure 5.2: An illustration of a molecule from Mutagenesis dataset (on the left) and its two
representations: the prior-art MIL representation (in the middle) and the JSON-based represen-
tation (on the right). The MIL-based representation simplifies the molecule graph structure into
a set of atom pairs connected by a bond, whereas the JSON-based representation uses the JSON
tree structure to semantically encode information about the molecule as a whole, its atoms and
their adjacent neighbors.

In the prior-art MIL representation, each bagB = {x1,x2, . . .} corresponds to amolecule and
each instance x to a pair of atoms in that molecule, which held together by a bond, i.e., instance
x = (A1

1,A2
1,A3

1, b1,2,A1
2,A2

2,A3
2), where Af , f ∈ {1, 2, 3} is f -th atom feature. Example

values of the three atom features (i.e. "atom_type", "element" and "charge") and the one
bond feature (i.e. "bond_type") are given in Figure 5.3 showing a molecule represented in the
JSON format. Apparently, the prior-art MIL representation fails to capture the molecule-level
properties (i.e. the missing "lumo", "logp", "ind1" and "inda" features when compared with
the JSON-based representation) and reduces the complex molecule graph structure to just atom
pairs. On the other hand, Figure 5.3 shows how the JSON-based representation semantically
integrates information from all three levels of the structure (i.e. molecule, atoms and bonds) into
a single JSON object representing a whole molecule. At the top level of the JSON hierarchy, there
are molecule-related attributes; at the second level, there are attributes of individual molecule’s
atoms; and at the last third level, there are attributes of bonds and connected atoms. However,
because JSON is a tree-structured format, and hence cannot fully reflect the structure of general
graphs with possible loops, which are typical for the molecules, the JSON-based representation
only stores information about a 1-step neighborhood of each molecule’s atom. A notable side
effect of both representations is the redundancy of atom-level attributes, as a single atom might
be a neighbor of multiple atoms, which causes its features to appear numerous times in different

2https://juliaml.github.io/MLDatasets.jl/stable/datasets/misc/#MLDatasets.Mutagenesis
3https://doi.org/10.6084/m9.figshare.6633983.v1
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parts of the representations. Figure 5.2 also illustrates both explored representations in addition
to the molecule structure.

1 {
2 "lumo": -1.246,
3 "logp": 4.23,
4 "ind1": 1,
5 "inda": 0,
6 "atoms": [
7 {
8 "atom_type": 3,
9 "element": "h",
10 "charge": 0.142,
11 "bonds": [
12 {
13 "atom_type": 22,
14 "element": "c",
15 "charge": -0.117,
16 "bond_type": 1
17 }
18 /... other bonds /
19 ]
20 }
21 /... other atoms /
22 ]
23 }

Figure 5.3: JSON-based representation of a molecule in the Mutagenesis problem.

While an average bag in the prior-art MIL representation has 56 instances of size 7 features
(three atom features two times plus one bond feature), an average bag in the MIL representation
obtained by converting the JSON objects with our JSON2bag technique has 305 instances of
size 119 features. We assess the quality of both representations by measuring the prediction
performance of three MIL models, BLRT (Chapter 3), ISRT (Chapter 4) and MIL-NN [91], trained
on both types of bags. To train BLRT, we set the number of examined feature threshold values
to 8 and the ensemble size to 100. The ISRT model is trained with identical parameter settings as
BLRT plus the number of epochs for training instance selectors is set to 10. The MIL-NN model
architecture consists of a single instance layer of size 32 with mean-max aggregation followed by
a bag layer reducing the 64 rectified linear units (ReLU) to the two output neurons. The network
weights are optimized via AdaBelief [120] optimizer with default values and mini-batches of
size 10 to minimize cross-entropy loss with L1 regularization λ = 10−3 for 100 epochs. We
also evaluate the performance of two more ML algorithms designed specifically for JSON data:
JsonGrinder [122] coupled with HMIL-NN [80] and JSON-NN [113]. JsonGrinder (JG) converts
JSON data to hierarchical MIL bags that can be subsequently processed by Hierarchical MIL
Neural Networks (HMIL-NN). To create the HMIL-NN model reflecting the JSON schema of
molecules, we set the size of the inner dense layers to 10 and used AdaBelief optimizer with
mini-batches of size 10 to optimize the network weights for 100 epochs. JSON-NN denotes Long
Short-Term Memory (LSTM) [56] based implementation of Semantic Tree-structure Recursive
Learning Algorithm (STRLA) adapted to JSON format [113] that we trained using the hidden
layers of size 32, ADAM optimizer with the learning rate 0.01, mini-batches of size 10 and the
epoch count set to 104. Due to the small dataset size, all evaluations are conducted using the 5
times repeated 10-fold cross-validation schema, as mostly done in other studies dealing with the
Mutagenesis dataset [77].

4Due to the JSON-NN’s high computing needs, we reduced the number of epochs to 10 (from 100). While BLRT
and ISRT were evaluated in less than five minutes, the evaluation of JSON-NNwas completed in more than six hours,
using the same computational power.
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Mutagenesis problem
Prior-art JSONs

MIL features Raw JSONs JsonGrinder JSON2bag ours

ISRT ours 88.7 (0.9) × × 94.9 (0.9)
BLRT ours 92.5 (1.1) × × 95.3 (1.1)
MIL-NN 90.6 (0.3) × × 94.1 (1.0)
HMIL-NN × × 94.1 (1.6) ×
JSON-NN × 94.4 (0.4) × ×

Table 5.2: Classification performance (measured in AUC × 100) of models evaluated on two
different representations of the same Mutagenesis problem. Models built on top of the JSON-
based representation outperform those trained on the prior-art MIL features.

Table 5.2 shows results from the evaluation in terms of the average Area Under the ROCCurve
(AUC)5 ± one standard deviation. It can be observed that although there is no significant differ-
ence between the models trained on JSONs, they clearly outperform those trained on the prior-
art MIL representation. The ISRT model exhibits the highest relative improvement of 7% when
trained on converted JSONs with JSON2bag instead of the prior-art MIL representation, which
was used before (e.g. in Section 4.2). Surprisingly, the performance of BLRT and ISRT models
trained on converted JSONs remains significantly superior even when we remove the molecule-
level properties (missing in the prior-art MIL representation) from the JSONs in order to balance
the amount of captured information in both representations. In particular, after removing the
molecule-level attributes (i.e. "lumo", "logp", "ind1" and "inda"), the performance of BLRT
is (95.2 ± 1.1)% and of ISRT is (93.7 ± 1.5)%. The classifiers, therefore, appear to generalize
better in the higher dimensional MIL feature space induced by the proposed JSON2bag method
(on average, 305 119-dimensional instances per bag/molecule) than in the lower-dimensional
prior-art MIL feature space (on average, 56 7-dimensional instances per bag/molecule).
Robustness towards JSON distortions: In the next experiment, we analyze the resilience of
the JSON methods (i.e. JSON-NN, JsonGrinder and JSON2bag) against two types of data dis-
tortions on the Mutagenesis dataset. In the first test, each training JSON sample (denoted as
{signal}) is polluted with a randomly chosen negative/inactive sample (denoted as {noise}) to
create a new noisy sample: {a : {signal}, b : {noise}}. This type of distortion simulates adding
irrelevant background data to the JSON representation that does not alter the class label. While
the first test applies the same distortion for both the training and the testing set, the second
test additionally swaps the signal with the noise for the testing set: {a : {noise}, b : {signal}}.
This second type of distortion simulates signal displacement within a JSON structure. Being
able to correctly classify JSON samples under this type of distortion can be advantageous, par-
ticularly in cybersecurity, where the displacement of a (malicious) signal can be viewed as a
detection evasion technique [3]. Table 5.3 summarizes results from the experiments, including
the reference values for comparison with no data distortion.

As can be seen from Table 5.3, all approaches are able to cope with the added noise. When
compared to the reference performance of each method (i.e. the first and the second column of
the results), there are only statistically non-significant differences. In the case of the JSON2bag
+ ISRT pair, there is almost no difference: (94.9 ± 0.9)% vs. (94.9 ± 0.7)%. Specifically, ISRT
on the noisy dataset still selects just a small fraction of instances, 29 on average (instead of 26),
despite the fact that there are now 526 instances per bag on average (instead of 305) due to the
added noise. This means that most of the time, the added irrelevant instances are successfully

5AUC is agnostic to class imbalance and classifier’s decision threshold value.
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ignored. The second test (signal displacement), on the other hand, is only passed by the proposed
JSON2bagmethod as the prediction performance of JSON-NN and JsonGrinder drops to the level
of random guessing (i.e. AUC around 50%). This demonstrates that the prior-art approaches are
oversensitive to the signal position within the JSON structure. In the case of the JsonGrinder +
HMIL-NN pair, this is expected behavior because the hierarchical network architecture mirrors
the JSON tree structure, so values in different leaves of the JSON tree are processed by different
network layers6. Therefore, a layer cannot detect a (positive) signal during testing if it never saw
it during training (since it was somewhere else in the JSON tree). In contrast, non-hierarchical
MIL-NN built on top of the bags produced by JSON2bag (AUC of (88.7 ± 0.8)%) processes
every bag instance (i.e. JSON path-value pair) using the same network weights optimized on
all training samples. Therefore, changes in the position of a signal are reflected only in the
feature values of respective instances and not in the route the signal goes through the network.
Moreover, based on how JSON2bag works, a small change in the signal position (e.g. a different
object key name: "b" instead of "a") affects only a small quantity of path feature values of
respective instances. This is probably why BLRT compares favorably to other methods (AUC
of (93.8 ± 0.9)%), as each tree in the forest usually considers only a subset of features, which
limits the impact of the affected features on the ensemble outcomes. ISRT then performs slightly
worse (AUC of (90.1 ± 0.7)%) because the selectors in tree nodes consider a larger subset of
features during the prediction (by default, each selector looks at the square root of the number
of features), causing the affected features to have a higher impact on the final decision than in
the case of BLRT.

Mutagenesis problem with added distortions
Training {signal} {a : {signal},b : {noise}}

Testing {signal} {a : {signal},b : {noise}} {a : {noise}, b : {signal}}

J2b ours + ISRT ours 94.9 (0.9) 94.9 (0.7) 90.1 (0.7)
J2b ours + BLRT ours 95.3 (1.1) 94.1 (0.6) 93.8 (0.9)
J2b ours + MIL-NN 94.1 (1.0) 92.8 (1.1) 88.7 (0.8)
JG + HMIL-NN 94.1 (1.6) 92.4 (1.6) 47.4 (9.8)
JSON-NN 94.4 (0.4) 93.7 (1.1) 51.7 (7.4)

Table 5.3: Assessment of the robustness of JSON-based methods against two types of data dis-
tortions. The first column shows reference values (no distortion); the second column results
when JSON samples are polluted with irrelevant noise, and the last column shows when the
signal and the noise are swapped in the testing set. All techniques can handle the additional
noise, but only JSON2bag can handle the signal displacement.

Modeling schema-less JSONs: Finally, we investigate the applicability of the JSON-specific
ML methods to the problem of categorizing generic semi-structured documents. For this task,
we use a publicly available Industry Sector dataset from http://www.iesl.cs.umass.edu/datasets.
html consisting of 9,569 corporate web pages classified into 12 top-level categories, such as
basic materials, capital goods, conglomerates, consumer cyclical and non-cyclical sectors, etc.
See Table 5.4 for the complete list of the categories. We split the dataset into 6,048 training
and 3,521 testing web pages. Prior to applying the ML methods, we convert the HTML source
code of each web page into the JSON format, using the html-to-json Python package from
https://pypi.org/project/html-to-json/. This conversion should preserve all information about
the pages’ content, structure, and style formatting. The average complexity of the resulting
JSONs representing the web pages is 180 leaves (i.e. values) of depth (i.e. path length) 17.

6This is true unless the values are elements of the same array.
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To create a numerical representation of the JSON samples, we employ JSON2bag. Since the
JSONs contain mostly general (non-categorical) string values, we adjust the default parameter
settings of JSON2bag’s feature extractors as follows. The number of buckets for the n-gram
hashing is increased to 64 (from 32), and the number of buckets for the whole string hashing is
decreased to 16 (from 32). As a result, 135 features are extracted from each path-value pair to
form one bag instance. We train BLRT and ISRT models of size 64 trees, using the default eight
trials for feature thresholding and 50 epochs for fitting selectors in the case of ISRT. The multi-
class problem is addressed via the one-vs-rest strategy, where one model per class is trained. We
also train MIL-NN consisting of a single hidden layer of size 200 neurons with ReLU activation
functions followed by mean-max aggregation and an output layer reducing the 400 units to 12
output (class) neurons. The network weights are optimized using the AdaBelief optimizer with
mini-batches of size 100 for 200 epochs. The technique based on JsonGrinder and HMIL-NN is
inapplicable to this task because the web pages (and the corresponding JSONs) do not follow
any common schema that could be reflected in the network architecture. In other words, for
every web page, it is possible to be structured differently. Unfortunately, neither the JSON-NN
method is evaluated here because of its high computational demands for processing complex
data structures such as those of web pages7. Though, unlike HMIL-NN, it does not require
all JSONs to obey a fixed schema. Therefore, to have a baseline for comparison, we evaluated
the Random Forest classifier trained on n-grams that are built from a textual representation of
the web pages provided by the html2text Python package available at https://pypi.org/project/
html2text/. Identical to the feature extractors of JSON2bag, n-grams of three (trigrams) are used.
Each web page’s n-grams are hashed into 1024 buckets to create feature vectors of the same
length. Table 5.4 then gives a summary of outcomes from the evaluations.

From Table 5.4, it can be observed that the best result in terms of the accuracy over all classes
(78.10%) is achieved by the ISRT model trained on the bags obtained by the proposed JSON2bag
converter. MIL-NN (also trained on these bags) gives a comparable overall result (76.85%)
and better per-class results for half of the classes. When compared with the overall accuracy
(64.75%) of the baseline model (i.e. Random Forest trained on n-grams), it is evident that the
JSON-based representation preserving the semantic structure and the formatting styles of pages
is more advantageous than the plain textual representation. The inferior accuracy of BLRT
(55.15%) is likely attributable to the use of non-specific global statistics (computed across all in-
stances) in splitting nodes of BLRT (discussed in Section 4.4)8. Note that a dummymodel always
predicting the most frequent class (i.e. Services) would achieve the accuracy of 28.09%.
Explainability of JSON2bag and ISRT: A great advantage of ISRT is its native ability to pro-
vide explanations of model bag-level decisions in the form of the top-k most selected instances
(Algorithm 4). In conjunction with JSON2bag, where instances correspond to JSON path-value
pairs, this gives analysts easily comprehensible insights into model decisions upon individual
JSONs. For the qualitative assessment, Table 5.5 shows examples of such explanations on the
current task of categorizing corporate web pages. From each class (i.e. industry sector), one
correctly classified JSON sample is chosen, and its top-k most selected path-value pairs (i.e. in-
stances) are shown. As can be seen from the table, among the most selected path-value pairs,
there are page titles, background images and colors, text and link colors. Such behavior makes
sense since these values are typically the same for all pages of a company and different from
pages of other companies. This also indicates that the model learned to recognize identities of

7One forward pass of the dataset through JSON-NN took more than four hours. According to the method de-
scription: “The current iteration of this code is highly unoptimised, and hence is very slow for complex data structures”.
Available at: https://github.com/EndingCredits/json2vec (accessed: 2022-12-24).

8Unlike the previous experiment with synthetically added noise, here, the ratio and the nature of noisy instances
inside bags vary dramatically due to the substantial structural differences among the JSON samples (i.e. source codes
of web pages). Therefore, taking into account every instance during the decision-making like in BLRT is misleading,
and some instance selection mechanism in models is needed. Both ISRT and MIL-NN use the maximum aggregation
function in tree nodes (Equation 4.1) or network neurons to retain just the signals of desired instances.
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Web page classification problem
HTML2TEXT HTML2JSON

N-grams JSON JsonGrinder JSON2bag ours

RF JSON-NN HMIL-NN MIL-NN BLRT ours ISRT ours

Basic materials 68.63 ? — 76.41 42.90 79.36
Capital goods 51.43 ? — 69.80 40.41 70.61
Conglomerates 22.86 ? — 42.86 22.86 40.00
C. cyclical 52.52 ? — 72.41 45.89 73.74
C. non-cyclical 52.88 ? — 73.82 50.26 80.10
Energy 37.12 ? — 73.48 40.91 74.24
Financial 49.13 ? — 70.35 40.99 65.70
Healthcare 27.39 ? — 65.61 32.48 57.96
Services 96.06 ? — 87.06 89.79 97.88
Technology 63.83 ? — 80.10 41.99 68.69
Transportation 50.00 ? — 78.31 42.17 72.29
Utilities 34.00 ? — 58.00 29.00 50.00

Overall 64.75 ? — 76.85 55.15 78.10

Table 5.4: Accuracy of the baseline (Random Forest trained on n-grams) and JSON-specific
methods on the web page classification problem with 12 classes. The JSON-based represen-
tation (produced by HTML2JSON) preserves not only the textual content of web pages (like
HTML2TEXT) but also their semantic structure and formatting styles. This seems to be ad-
vantageous since JSON2bag in conjunction with ISRT yields the highest overall accuracy of
78.10%. Results for JSON-NN are unknown (denoted with symbol "?") due to the method’s ex-
cessive time requirements on such complex data. The JsonGrinder + HMIL-NN technique is
inapplicable since the structure of pages does not follow a single schema but varies from page to
page. A dummy model always predicting the majority class (Services) would have an accuracy
of 28.09%.

web pages of individual companies rather than characteristics of entire sectors, even though key-
words like "bank" (Financial sector), "oil" (Energy sector), "hardware" (Technology sector),
"pharmacy" (Healthcare sector), etc., in the titles, may generalize beyond the particular compa-
nies. Moreover, this also supports the above justification of the superiority of ISRT and MIL-NN
over the baseline Random Forest as the missing information about the colors, backgrounds, and
other formatting styles in the textual representation of web pages, indeed, seems to be crucial.
Insights like these, in general, may not only facilitate the validation of model predictions but
also provide a deeper understanding of the importance of individual pieces of information in
complex data structures.
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Class Score Top k most selected bag instances (i.e. JSON path - value pairs)

Basic materials
0.14 /html/1/head/1/title/1/_value/ Intertape Polymer Group
0.13 /html/1/body/1/_attributes/bgcolor/ white
0.11 /html/1/body/1/_attributes/link/ #004080

Capital goods
0.23 /html/1/head/1/title/1/_value/ New Holland - Asia Pacific
0.14 /html/1/head/1/head/1/body/1/center/1/br/1/ EmptyObject()
0.13 /html/1/head/1/head/1/body/1/_attributes/background/grafica/ wall3.gif

Conglomerates
0.19 /html/1/body/1/_attributes/bgcolor/ #FFFFFF
0.12 /html/1/body/1/_attributes/link/ #2E26B2
0.10 /html/1/title/1/_value/ Stone & Webster, Commercial Cold Storage

C. cyclical
0.22 /html/1/body/1/_attributes/background/img/ backgrnd.gif
0.11 /html/1/body/1/table/1/tr/1/td/1/br/2/ EmptyObject()
0.08 /html/1/head/1/title/1/_value/ Goodyear North American Tires

C. non-cyclical
0.18 /html/1/head/1/title/1/_value/ Te-Amo
0.17 /html/1/body/1/_attributes/vlink/ #728400
0.08 /html/1/body/1/_attributes/link/ #00007a

Energy
0.14 /html/1/head/1/title/1/_value/ Pennzoil
0.10 /html/1/body/1/_attributes/alink/ #009900
0.08 /html/1/body/1/_attributes/link/ #FF0000

Financial
0.24 /head/1/title/1/_value/ Summit Bank
0.23 /frameset/1/_attributes/rows/ 75,*
0.14 /frameset/1/_attributes/frameborder/ NO

Healthcare
0.10 /html/1/body/1/_attributes/background/ sky.jpg
0.10 /html/1/body/1/_attributes/bgcolor/ #CCCCFF
0.08 /html/1/head/1/title/1/_value/ Vitalink Pharmacy Services...

Services
0.23 /html/1/frameset/1/_attributes/cols/ 19%,81%
0.14 /html/1/head/1/title/1/_value/ Attorney Murthy : U.S. Immigration Law
0.12 /html/1/head/1/meta/1/_attributes/name/ GENERATOR

Technology
0.25 /html/1/body/1/_attributes/bgcolor/ #FFFFFF
0.11 /html/1/head/1/title/1/_value/ Junior Hardware Engineer
0.10 /html/1/head/1/meta/1/_attributes/name/ GENERATOR

Transportation

0.16 /html/1/body/1/_attributes/bgcolor/ #000000
0.13 /html/1/body/1/_attributes/text/ #BDB9AD
0.09 /html/1/body/1/_attributes/vlink/ #9425E6
0.06 /html/1/body/1/_attributes/link/ #DE5208
0.03 /html/1/head/1/title/1/_value/ FedEx Dropoff Locations...

Utilities
0.27 /html/1/body/1/_attributes/bgcolor/ #F9EAD0
0.11 /html/1/body/1/_attributes/background/../images/ bk2.gif
0.08 /html/1/head/1/title/1/_value/ National Fuel - Utility Operations

Table 5.5: Explainability of ISRT trained to categorize corporate web pages into 12 classes (in-
dustry sectors). For each class, one correctly classified web page (JSON/bag) is picked, and its
top k most selected bag instances (i.e. JSON path-value pairs) including their selection frequen-
cies (denoted as Score) are displayed. Apparently, the model decides mostly based on the title
(usually containing the company name) and colors of texts/links/backgrounds which are typi-
cally shared across all company’s pages and, at the same time, distinct from other companies’
pages.
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5.3 Comparing JSON2bag to JsonGrinder

When comparing JSON2bag to state-of-the-art JsonGrinder [122], the key difference lies in the
structure of produced numerical representations. While JSON2bag produces non-hierarchical
(one-level) bags following the traditional MIL paradigm [5] (Section 2.1), where samples are
defined as sets of feature vectors, JsonGrinder follows the Hierarchical Multiple Instance Learn-
ing (HMIL) paradigm [89] (Section 2.2), where HMIL samples are defined as arbitrarily nested
compositions of bag and product structures.

Contrary to non-hierarchical JSON2bag, the hierarchical JsonGrinder approach requires JSON
samples to obey a fixed schema that serves as a structural template for the HMIL samples and
the corresponding model (i.e. HMIL-NN [80]), giving rise to the following drawbacks:

1. Not every dataset of JSONs adheres to a specific schema. A prime example of this is the
Industry Sector dataset of web pages discussed in Section 5.2, where each page may have
its own unique HTML structure.

2. The hierarchical approach is designed to support only homogeneous JSON arrays, where
elements share the same type or structure. This is because uniformity in the numerical
representation across all array elements facilitates their subsequent aggregation within
the bag structure that is used to model JSON arrays in JsonGrinder.

3. In every JSON object, key names must originate from a finite super-set and cannot be
used to store arbitrary string values. Although using key names as values is generally
considered poor practice, one does not always have control over the JSONs she/he has to
work with.

4. As dictated by JSON schema, every dataset sample must maintain the same type of values
for object key names located at particular positions within the particular JSON topology.

5. To the best of our knowledge, there is only one specific type of model (i.e. HMIL-NN [80])
that can be trained on top of the HMIL data samples.

6. Model complexity grows with schema complexity, regardless of the simplicity or com-
plexity of the discriminative signal. Consequently, one might end up with a complicated
model even when a simple discriminatory rule exists9.

7. Since separate network layers process JSON values from different sub-parts of the schema,
the overall model is not immune to shifts in signal locations as demonstrated in Section 5.2.

On the other hand, the non-hierarchical approach used by JSON2bag generates representa-
tions of considerably higher dimensions. Every instance encoding a JSON leaf value also encodes
information about its location (i.e. the path from the root node to the leaf), which is unnecessary
for the HMIL data samples as the location is reflected in the sample hierarchy. Moreover, every
JSON leaf value is encoded using a complete set of features instead of a specialized subset based
on the value type specific to the location within the schema.

5.4 Summarizing Comments

In this chapter, we have proposed a JSON2bag technique for automated end-to-end model learn-
ing on JSON data. JSON2bag converts every JSON sample into multiple feature vectors (called
bag of instances) rather than a single feature vector. Such representation is compatible with MIL
models and facilitates automated feature extraction, as every JSON can be decomposed into mul-
tiple path-value pairs that are encodable as feature vectors without losing much information. To
this end, a battery of universal path/value feature extractors is designed. By extracting a fixed

9With JSON2bag and ISRT, we expect decision trees to reach only shallow depths, and the discriminative JSON
value to appear among the most frequently selected instances.
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set of features from each path-value pair of a JSON sample, a bag of instances representing that
sample is created.

Using the JSON format and JSON2bag, we addressed two problems with complex data struc-
tures to demonstrate the applicability of this approach. The first task is about classifying graph-
structured molecules where nodes are atoms and edges are chemical bonds connecting the
atoms. Despite being a tree-structured format (unable to represent cyclic graphs completely),
the JSON-based representation describes molecules as JSON objects containing arrays of atoms
and their 1-step neighbors. Remarkably, all properties of atoms, molecules, and even bonds
are taken into account with minimal work. Compared to the prior-art MIL representation [28],
the JSON-based representation renders the task significantly easier to tackle for all employed
MIL models. The second task is to categorize web pages, which is complicated by the fact that
each page may have its own unique HTML structure. We demonstrate that JSON2bag operates
even in these challenging schema-less settings (as the only technique) and, by factoring in the
structural information, enhances the prediction performance of models.

Providing explanations may be necessary for models to be deployed in the wild, as it helps to
validate model verdicts, identify possible bias or gain insights into data. JSON2bag in conjunc-
tion with ISRT gives explanations in the form of the top most often selected (anticipated to be
the most important) JSON path-value pairs, as shown in Table 5.5 on the web page classification
problem. In study [92], the explainability of JsonGridner and HMIL-NN is investigated. It has
the form of a minimal subset of the JSON sample that is still classified to the same class as the
complete sample. While it is currently beyond the scope of this work, exploring and comparing
these two approaches both qualitatively and quantitatively presents an interesting opportunity
for future research.

In conclusion, the proposed JSON2bag producing a one-level MIL representation of JSONs
strikes a practical balance between two extremes: on one hand, the traditional non-MIL single-
feature vector human-defined representation, which, despite being popular, is challenging to
design without significant information loss, and on the other hand, the multi-level HMIL rep-
resentation provided by JsonGrinder, which, while exhaustive [89], suffers from several draw-
backs (Section 5.3) due to the requirement of a JSON schema defining the hierarchical multi-level
structure. This proposed JSON2bag approach does come with the trade-off of higher sample di-
mensionality, but we believe this to be a worthwhile cost given the benefits in other areas.
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Chapter 6

Applications to Cybersecurity

In this chapter, we address five cybersecurity problems using the techniques developed in the
previous three chapters. The aim is to demonstrate the usefulness and the broad applicability of
the proposed tools on a variety of challenging real-world problems.

The first problem, Infected User Detection Based on HTTP Logs (Section 6.1), is formulated
as a MIL task and addressed by BLRT (Chapter 3) and ISRT (Chapter 4) models, whereas the
next four problems, Infected User Detection Based on Network Events (Section 6.2), Malicious Do-
main Discovery (Section 6.3), Malicious Email Detection (Section 6.4), and Malicious Executable
Classification (Section 6.5), are formulated as a JSON classification and addressed by JSON2bag
(Chapter 5) in conjunction with BLRT and ISRT models.

6.1 Infected User Detection based on HTTP logs

When all other security measures fail, and malware gets into the network, early infected user
detection and remediation is the last resort of defense. Since the successful progress of an at-
tack requires some communication over the Internet (e.g. establishing a command and control
channel), monitoring user activity in the network might reveal whether or not a user is in-
fected. HTTP traffic log records are considered a sweet spot for the analysis because HTTP(S)
is the most popular protocol that is usually allowed in all networks and through all firewalls,
and hence frequently used by malware as well. Supervised learning then enables automated ex-
traction of behavioral patterns, from the reference samples of malicious and legitimate network
behavior, which generalize better than commonly used databases of malware signatures. For
malware actors, it is far easier to change signatures like domain names, server IP addresses, or
process hashes associated with malicious behaviors than the behaviors themselves, e.g., estab-
lishing command and control channels, sending spam, visiting advertisement servers, uploading
private data, etc. Thanks to this generalization ability, data-driven models can detect zero-day
attacks, polymorphic malware, file-less malware, and other advanced (signature-aware) threats
designed to bypass traditional security solutions before significant damage can be done. On the
other hand, supervised learning requires a significant amount of labeled data and a way of rep-
resenting users’ network behavior as numerical feature vectors, both of which are difficult to
get. The labeled data, because labeling is an expert-requiring and labor-intensive process that
can not be outsourced due to privacy issues, and the numerical representation, because it is
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Figure 6.1: Classification of network users (as malware-infected or clean) formulated as a MIL
problem. A user is modeled as a bag of instances (i.e. a set of feature vectors) that repre-
sent the user’s communications with individual domains over HTTP protocol within a time
window. Since a MIL classifier can consume bags of various sizes, it is not necessary to ag-
gregate the instances into a single (possible lossy) user-level feature vector to account for the
fact that each user can interact with a different number of domains. Moreover, embedding all
communications into a single feature vector would complicate the subsequent identification of
alarm-triggering communications during threat verification. An alternative per-communication
approach F(B) = maxx∈B f (x), using a traditional (single-instance) classifier f (x), would re-
quire a larger amount of (per-instance) labels and would be missing a global perspective on user
behavior, resulting in limited detection capabilities.

unclear how users’ network communications can be embedded into single feature vectors of a
fixed dimension as each user may communicate with a different number of servers/domains1.

We take advantage of the MIL paradigm (Section 2.1) to address both aforementioned prob-
lems. Specifically, we define that MIL bags correspond to network users and bag in-
stances to users’ communications with (second-level) domains within a 24-hour time
window (Figure 6.1). Such formulation of the problem eliminates the need to represent every
user with a single feature vector, as the flexibility of MIL in bag sizes reflects the reality that
each user can establish a different number of communications within the time window. Next,
the formulation reduces label acquisition costs because there is no need to pinpoint individual
communications responsible for the infections, but it is enough to provide labels for whole users.
Moreover, it opens new ways of acquiring labels. Since it is sufficient to know whether or not a
user was infected in a particular time period, a completely separate source of data from network
traffic data can be used for annotating (e.g. anti-virus reports) and thus benefit from cheaper
and less ambiguous labels.

The proposed ISRT model (Chapter 4) further contributes to the above-mentioned MIL ad-
vantages by providing explanations of positive (user-level) predictions on the level of individual
communications with domains. This capability is of great need, especially when the subsequent
acting upon the raised alerts is associated with high costs (e.g. re-imaging users’ computers),
and the verdicts need to be well justified. Time spent on the justification can be significantly
reduced if the top k recommended communications by the model include the relevant ones that
are responsible for the infection.

To validate the applicability of the proposed MIL approach, we created a dataset by capturing
HTTP log records from real network traffic of 100+ international corporate networks of various
types and sizes that are customers of Cisco Global Threat Alerts. The objective is to classify

1A typical workaround is to create a model classifying users’ communications rather than the users as a whole.
However, individual communicationsmay not carry enough discriminatory information tomake verdicts about them.
For example, a seemingly legitimate request to google.com might be in reality related to malicious activity when it
is issued by malware checking the Internet connection. Similarly, visiting ad servers in low numbers is considered
a legitimate behavior, but higher numbers might indicate Click-fraud infection. To make correct judgments in such
cases, the broader context of user behavior must be considered.

53

google.com


CHAPTER 6. APPLICATIONS TO CYBERSECURITY

Dataset Training set Validation set Testing set

Date range 18-22 Jan 2021 3 Feb 2021 24 Feb 2021
HTTP logs 1,186,465,181 239,079,385 264,342,073
Communications 2,829,316 581,826 554,425

Infected users 1,830 430 380
Clean users 115,700 24,987 23,695

Table 6.1: Specification of the MIL dataset representing the problem of detecting malware-
infected users in computer networks based on HTTP log records. Every user is represented as
a bag of instances that correspond to the user’s communications with individual domains. The
numerical representation of each such communication is created by extracting URL features
from respective HTTP log records. The counts in the table for HTTP logs and communications
correspond to the sum over all users and illustrate the potentially higher labeling requirements
on these lower levels.

users of these networks as either infected or clean. Each user is represented as a bag of in-
stances, where the instances correspond to the individual user’s communications with domains
within 24 hours. The numerical representation of each such communication is computed from
collected HTTP log records. The procedure is as follows. First, HTTP log records originating
from a given user and targeting a particular second-level domain are grouped. Then, each log
record is converted into a feature vector by extracting a set of prior-art features [79, 45, 76] from
individual log fields. Specifically, we use a subset of URL-based features that are designed to
differentiate between URL strings generated by malicious and legitimate applications. These
are a few examples of the features: the number of occurrences of reserved URL characters
("_","-","?","!","@","#","&","%"), the digit ratio, the lower/upper case ratio, the vowel
change ratio, the number of non-base64 characters, the maximum length of lower/upper case
stream, the maximum length of consonant/vowel/digit stream, etc. In sum, there are 359 fea-
tures. Finally, to represent the communication with a single instance, feature vectors of the
grouped HTTP log records are aggregated using a maximum as the aggregation function. The
dataset is divided into training, validation, and testing sets. The training set represents the
period of five working days in January 2021. The validation and testing set then covers one
working day of the first and the last Wednesday in February 2021, respectively. In total, there
are 118,108 unique users (i.e. bags). On average, each user communicated with 24 domains (i.e.
bag instances). More detailed statistics regarding the dataset are shown in Table 6.1.

We train the ISRTmodel (Chapter 4) with the following hyper-parameter settings: the number
of trees to grow set to 100, the number of considered threshold values set to 8, and the number
of epochs for training selectors set to 10. We also use similar hyper-parameter values (i.e. 100
trees and 8 threshold values) to train the BLRT model (Chapter 3). Furthermore, to train the
MIL-NN model [91], we perform a grid search over the following configurations: the instance
layer size {10, 30, 60}, the aggregation function type {mean, max, mean-max}, and the bag layer
size {5, 10, 20}. We use rectified linear units (ReLU), ADAM optimizer, mini-batch of size 32,
and the maximum number of epochs set to 1000. Finally, we train the MI-SVM classifier [7] for
L2 regularization values λ ∈ {10−5, 10−4, . . . , 1} and the number of epochs set to 100. The final
configuration for both prior-art models is selected based on the highest achieved performance
on the validation set in terms of the area under the Precision-Recall curve.

Using the Precision-Recall and ROC curves, Figure 6.2 shows the efficacy results of the applied
models on the validation and testing set separately. Different points on the Precision-Recall
curve correspond to different decision threshold values of a particular model and indicate the
percentage of alarms that are actually correct (precision) subject to the percentage of detected
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Figure 6.2: Precision-Recall and ROC curves of four MIL models evaluated on the validation
(Feb 3, 2021) and testing (Feb 24, 2021) set of the infected user detection (HTTP) dataset.

infected users in the whole dataset (recall / true positive rate). Perfect recall (score 1) means
that all infected users are detected, while perfect precision means that there are no false alarms.
ROC curve then provides information about the volume of false alarms as the percentage of
monitored healthy users (false positive rate)2. Points on the ROC curve might also serve for
calculating precision under different imbalance ratios of infected to clean users [17].

As can be seen from Figure 6.2, the ISRT model has clearly superior performance as it pro-
duces equal or fewer false alarms than any other involved method at any arbitrary recall on
both sets. The BLRT model ranks second best. It has a decent performance on the validation test
(Feb 3, 2021), but on the testing set (Feb 24, 2021), the performance drops notably. This decrease
in model performance over time is known as an aging effect. A model becomes obsolete as the
distribution of incoming data shifts. Resistance to that is an important model characteristic,
from an application point of view, albeit not always evaluated by researchers [86]. We attribute
this decay to the fact that the BLRT model can extract only global bag-level univariate statistics
computed across all instances within a bag. Because of this, it might be difficult to effectively
separate a multivariate malicious signal hidden in a single instance from an abundant user back-
ground, which can evolve over time. On the other hand, the discriminative signal apparently
does not lie on the local instance-level completely, as the instance-based classifier MI-SVM per-
forms poorly. Probably the ability to combine these two approaches, by selecting and judging
individual instances according to the need while collecting global evidence, might be the reason
why the ISTRmodel excels in this task. Interestingly, the MIL-NNmodel is able to reliably detect

2While precision answers to the question: “With how big percentage of false alarms the network administrators
will have to deal with?”, false positive rate gives an answer to: “How big percentage of clean users will be bothered?”.
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Figure 6.3: Assessment of ISRT’s explanations as an information retrieval task. AnyHit@TopK
(on the left) shows the percentage of bags for which at least one relevant (i.e. positively labeled)
instance appeared among the TopK most selected instances. Since bags can contain multiple
relevant instances, Recall@TopK (on the right) shows how many of them are among the TopK
instances. The perfect Recall@1 can not be achieved unless all bags have only one relevant
instance.

only a very limited number of infections, although, in the recent work [88], it has been shown
to perform well on a similar task3.
Quantitative assessment of ISRT’s explanations: As mentioned in Section 4.4, the main
benefit of the ISRTmodel over BLRT or the prior-art MIL-NNmodel, besides higher performance
on some datasets, is the ability to explain the positive bag predictions. The provided explanations
are in the form of assigned scores to individual instances (according to the number of times
they have been selected during the bag class prediction; Algorithm 4), upon which they can be
sorted and presented to the operator for judgment. Analogically to the information retrieval
task, the goal is to place the most relevant instances at top positions. To assess this ability on
the dataset, we used Cisco’s internal deny list of known malicious domains to label instances4
(i.e. communications with domains) of bags that have been classified as positive by the ISRT
model on the testing set. For the first 20, 50, and 100 most positive bags (for which we had at
least one positive instance-level label), we calculated AnyHit@TopK and Recall@TopK metrics.
Figure 6.3 presents the results for the first top ten (TopK) most selected instances.

It can be observed from the left subplot of Figure 6.3 (AnyHit@TopK) that threat analysts
investigating the first 20 most positive bags would encounter the first piece of evidence for the
infection (i.e. any malicious domain) just by analyzing the top two recommended instances from
each bag. This ability slightly decreases for the higher number of bags (i.e. 50 and 100), but it
is still very useful considering the fact that the largest bags have over 100 instances, and on
average, only two are labeled as malicious — a needle in a haystack problem. This can be also
seen from the right subplot (Recall@TopK) showing that about 50% of all positive instances in
bags can be discovered just by verifying the first (Top1) recommended instance.

The above results demonstrate that the ISRT model is capable of accurately classifying bags
as well as promoting instances inside bags that are responsible for positive bag predictions.

3These results were published in our 2019 paper [64]. In light of what we know now, we believe that the uti-
lization of standard non-balanced mini-batches throughout the learning is to blame for the poor performance of
MIL-NN. When training neural networks on imbalanced data, class-balanced mini-batches may be of essential im-
portance [103]. Unfortunately, due to data retention policy, we could not re-evaluate the MIL-NN model with class-
balanced mini-batches on this dataset again.

4This way of identifying malicious communications is not so effective in production, since new threats are not
on the deny list yet and need to be first discovered.
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6.2 Infected User Detection based on Network Events

Modern intrusion detection systems (IDS) searching for ongoing malicious activities in com-
puter networks typically use the ensemble strategy [48]. Rather than building a single, highly
sophisticated detector, the problem is addressed independently by many relatively simple de-
tectors whose findings (network events) are combined into a single final output. This allows
to integrate (high-precision but low-recall) signature-based detectors and supervised classifiers
with (low-precision but high-recall) unsupervised anomaly detectors and human-designed rule-
based detectors, which, individually, would generate too many false alarms, but when com-
bined, the ensemble outperforms any individual detector. This way, domain-expert knowledge
can be encoded into a number of narrowly focused detectors that are simple to maintain and
comprehend, without having to worry about their individual performance. Produced events
then contain information about detected users’ suspicious activities such as large data transfers,
specific file-type downloads, initiated communications with raw IP addresses (unusual for hu-
mans), communications with algorithmically generated domain names (typical for DGA-based
malware5), communication patterns that are too regular to be caused by a human, communica-
tions with domains/servers/countries that are unlikely for a given user based on its history or
the history of its network peers, etc. The objective of an ensemble technique is to learn (in a
supervised way) how to combine these network events to create a superior detector.

Several linear and non-linear combiners (classifiers) have been developed for this purpose,
with a focus either on interpretability [8, 72] or accuracy at the top of returned samples [2, 82].
However, they all combine the events based on their hard/soft scores (by treating them as input
features), ignoring any additional contextual information often present in the events, as shown
in Figure 6.4. This extra information (e.g., about the number of uploaded/downloaded bytes in
the case of LargeDataTransfer detector or a filename in the case of ArchiveDownload detector,
etc.) is primarily addressed to analysts who may utilize it during threat alert investigations. We
aim to include this contextual information into the model decision process by framing
the problem of combining network events as a classification of JSONs. The hypothesis
is that if the supporting information can be useful to threat analysts, then the model can benefit
from including it as well.

To validate this, we created a dataset from real network traffic of 20 corporate networks.
Samples in the dataset represent individual network users per 24-hour intervals and their corre-
sponding network events as detected by the Cisco Global Threat Alerts IDS. Since the events are
already JSON-formatted, no particular conversion is required. To make the problem non-trivial,
events produced by the high-precision detectors are filtered out6, and only 36 types of (weak
signal) network events are kept. Each user is represented as a JSON object containing network
events detected on that user within the 24-hour time window, as shown in Figure 6.4. If a user
has multiple events of the same type, they are merged into a single one by concatenating their
contextual JSON arrays (i.e. arrays named SERVER_IP_ADDRESSES, URLS_AND_FILENAMES, etc.).
This step preserves all important information but helps to de-duplicate some repetitive JSON
fields (i.e. eventid, detectorid, severity, etc.). The training part of the dataset spans the
first week of August 2022 and contains 236,656 users, of which 1,906 are labeled as malware-
infected. The testing part then covers the first week of the next month (September 2022) and
contains 176,124 users, of which 1,853 are labeled as malware-infected.

First, we use the JSON2bag method (Chapter 5) to convert the dataset of JSONs into MIL
bags, and then we train three MIL models: ISRT (Chapter 4), BLRT (Chapter 3), and prior-art
MIL-NN [91]. Both ISRT and BLRT are trained using the default values of hyper-parameters and

5The Domain Generating Algorithm (DGA) is used by malware to periodically generate seemingly random do-
main names in an attempt to search for command and control servers that use a subset of these domains. The fact that
the domains are not hard-coded in binaries and are constantly changing makes blocking of the malware difficult [93].

6The most reliable high-precision (signature-based) events are used as labels.
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1 {
2 "events": {
3 "NELDATT1": {
4 "detectorid": "LargeDataTransfer",
5 "severity": 6,
6 "keyvalueslong": {
7 "UPLOADED_BYTES_COUNT": [389297230,150786381,1040993298],
8 "DOWNLOADED_BYTES_COUNT": [4283298,185323,11008]
9 },
10 "keyvaluesstrings": {
11 "SERVER_IP_ADDRESSES": [
12 "XXX.XXX.XXX.XXX",
13 /.../
14 ]
15 }
16 },
17 "NEARCFD1": {
18 "detectorid": "ArchiveDownload",
19 "severity": 5,
20 "keyvaluestuples": {
21 "URLS_AND_FILENAMES": [
22 {
23 "key": "http://download.com/file.gz",
24 "val": "file.gz"
25 },
26 /.../
27 ]
28 }
29 },
30 "NEAVGAS2": {
31 "detectorid": "DetectionPersistentAutonomousSystem",
32 "severity": 6,
33 "keyvaluestuples": {
34 "AUTONOMOUS_SYSTEMS_AND_SERVER_IP_ADDRESSES": [
35 {
36 "key": "AS24319 Akamai Technologies Tokyo ASN",
37 "val": "XXX.XXX.XXX.XXX"
38 },
39 /.../
40 ]
41 }
42 },
43 "NEAVGAC1": {
44 "detectorid": "DetectionCountry",
45 "severity": 5,
46 "keyvaluestuples": {
47 "COUNTRIES_AND_SERVER_IP_ADDRESSES": [
48 {
49 "key": "cc",
50 "val": "XXX.XXX.XXX.XXX"
51 },
52 /.../
53 ]
54 }
55 },
56 /... possibly other detected network events on a particular user /
57 }
58 }

Figure 6.4: Example of network events detected on a user by Cisco Global Threat Alerts.

100 trees. Instance selectors of ISRT are optimized for 10 epochs. The architecture of MIL-NN is
as follows: an input layer of size 119, the first hidden layer of size 200 followed by the mean-max
aggregation, the second hidden layer of size 100, and two output neurons. The activation func-
tion is of type Rectified linear units (ReLU), and the weights are optimized using the AdaBelief
optimizer for 10,000 training steps with randomly sampled class-balanced mini-batches of size
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eight. Next, we convert the JSONs into hierarchical MIL bags using JsonGrinder [122] and train
HMIL-NN [80] as a reflection of the JSON structure with the size of the inner dense layers set
to 10, the aggregation function set to mean-max, and the activation function set to ReLU. Simi-
larly, the network weights are optimized using the AdaBelief optimizer for 10,000 training steps
with randomly sampled class-balanced mini-batches of size eight. Finally, we train two context-
independent baseline models: Random Forest and Logistic Regression; by one-hot encoding the
observed events, which are included in JSONs, into single feature vectors of size 36. Logistic
Regression is trained with L2 regularization set to 10−4 and Random Forest with 100 trees.

Figure 6.5 summarizes results from the evaluation in terms of ROC curves for each of the
six models. The horizontal x-axis has a logarithmic scale to emphasize the region of low False
Positive Rate [10−4, 10−2] that is relevant from the application point of view. Since 87% of users
are in both the training and testing set, we not only do the standard time-based split evaluation
(left subplot), but we also repeat it five times with various disjoint train/test user subsets (right
subplot) to see if the models generalize (over users) and do not overfit by learning user-specific
rather than malware-related characteristics. Ribbons around the ROC curves then show the
standard deviations computed from these five rounds.
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Figure 6.5: ROC curves of six models evaluated on the problem of detecting infected users in
computer networks based on network events generated by Cisco Global Threat Alerts IDS. In-
dividual network events describe various suspicious user activities, such as large data transfers,
executable file downloads, unusual communication with servers, etc. A model’s objective is to
combine a multitude of these weak signals into a single, strong decision of whether a user is
infected or not. While the baseline models (i.e. Logistic Regression and Random Forest) only
work with the information about the types of events that have been detected on a particular
user, the JSON-based models also take into account the contextual information attached to the
events like filenames, domain names, URLs, transferred bytes, etc. Originally, this extra informa-
tion was supplied only to human analysts (to facilitate incident investigation), as it was unclear
how to encode it with a fixed number of features due to its variability in size, data type (num-
bers/strings), and structure. Since the events are already JSON-formatted, the ability to learn on
JSONs overcomes this issue immediately without any need to develop a task-specific feature ex-
traction component that would have to be updated as new types of events are added. To validate
that the models do not overfit by learning user-specific rather than malware-related character-
istics (as 87% of users are in both train/test sets), we not only do the standard time-based split
evaluation (on the left), but we also repeat it five times with a different disjoint train/test user
subsets (on the right).
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In summary, Figure 6.5 indicates that by taking advantage of the contextual infor-
mation, detection performance can be significantly improved. For instance, in the right
subplot, at FPR = 10−3, the best-performing context-independent (baseline) model, Random
Forest, has only TPR = 14.6%, while even the worst-performing context-aware (JSON-based)
model, BLRT, achievesTPR = 48.1%, and the best one, ISRT, thenTPR = 74.6%. Surprisingly,
the ROC curve of the second-best model, HMIL-NN, is very similar to that of the ISRT model,
especially on the FPR interval between 10−4 and 10−3. As FPR approaches to 10−4, HMIL-NN
even marginally beats ISRT. When comparing the left and right subplots, it can be seen that
the models tend to overfit the training users and perform slightly worse on new, unseen testing
users. In particular, at FPR = 10−3, the detection rate (TPR) of ISRT drops by 12.5% point
(from 87.1%) and of HMIL-NN by 10.1% point (from 83.1%). Nonetheless, the overfitting is
not severe, and the ISRT and HMIL-NN models demonstrate that they can learn mostly relevant
(non-user-specific) patterns from the JSON-formatted events and achieve detection rates up to
60% point higher than the baseline models.

6.3 Malicious Domain Discovery

Discovering new (previously unknown) malicious domains is essential for cyber defense, as only
an up-to-date threat database can be successfully used for active threat blocking and/or model
(re)training. Because of the high prevalence of legitimate domains, proposing randomly selected
domains as candidates for discovering newmalicious domains is highly inefficient. Instead, tech-
niques leveraging existing knowledge about malicious domains are employed. An orthogonal
approach to the already covered behavior-based modeling of network entities (e.g. users; Sec-
tions 6.1 and 6.2) is relation-based modeling. The idea is to build a graph of relations among
network entities (e.g. users, domains, IP addresses, etc.) from the network data and make infer-
ences about unknown properties (e.g. a probability of being malicious) of selected entities based
on known properties of related entities. Such predictions are expected to be complementary to
those based on the behavior modeling, as the respective feature spaces are independent of each
other.

malware.com
WWW

unknown.uk
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unknown.fr
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unknown.de
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malware.net
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unknown.es
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Figure 6.6: Heterogeneous graph representing interactions among four types of network enti-
ties: domains, users, files, and IPs; using three types of interactions: a user visited a domain, a
domain was resolved to an IP address, and a binary file initiated communication with a domain.
The graph is pruned to contain only known malicious domains (seeds) and unknown candidate
domains that are related to at least one seed via a user/file/IP. The goal is to determine whether
or not an unknown domain is high-risk malicious based on the local sub-graph formed by the
node and its close (up to two edges away from the node) neighbors. A sub-graph induced by
unknown.uk is highlighted with bold edges. Each entity may be described by its attributes.
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The recent work [39] builds a heterogeneous graph (Figure 6.6) with four types of nodes (do-
main, IP address, user, and binary file) and three types of edges, each connecting a domain to
one of the other (non-domain) entities. Specifically, a domain is connected to an IP/user/file if
there is a record in the network data that the domain was resolved to the IP address, that the user
visited the domain, or that the binary file initiated communication with the domain. Knownma-
licious domains (seeds) are labeled in the graph using the current threat database, and the goal is
to retrieve other (yet unknown) malicious domains. Furthermore, the task is refined by consid-
ering only domains two edges away from the seeds and eliminating domains that are most likely
legitimate according to a proprietary (high-recall) algorithm. An output score of the algorithm
(i.e. a probability of being malicious) is also used as one of the domain attributes. Additionally,
the graph reduction step allows each remaining candidate domain to be further enriched with a
list of VirusTotal’s engines https://virustotal.com hitting on that domain. Such informative7 but
expensive enrichment would not be possible on the entire input data. The known malicious do-
mains (seeds) are described by malware-related attributes such as the associated malware family
and its risk rating. The problem is formulated as a classification of unknown domains as
high-risk malicious (or not) based on their sub-graphs extracted from the main graph
as local neighborhoods surrounding the domains with a maximum path length of two.
Authors of the work [39] collected a dataset of 548 human-expert annotated domains (out of
which 154 are the high-risk domains) between March 2021 and December 2021, and evaluated
several variants of Graph Neural Networks (GNNs) [101] on the induced sub-graphs. Inciden-
tally, the sub-graphs are stored as JSON objects (Figure 6.7), enabling us to approach the problem
as a classification of JSONs.

To do this, we convert the JSONs into MIL bags using JSON2bag (Chapter 5) and train the
ISRT model (Chapter 4) with 100 trees and ten epochs for the instance selector optimization.
Next, we employ the BLRT model (Chapter 3) with default parameter values and 100 trees. Fi-
nally, we also apply the MIL-NN model [91] with the first hidden layer of size 200 followed by
the mean-max aggregation, another hidden layer of size 100, and the two output neurons. The
network uses rectified linear units (ReLU) as the activation function and its weights are opti-
mized using the AdaBelief optimizer for 200 epochs with randomly sampled mini-batches of
size ten. The hierarchical MIL approach represented by the tandem of JsonGrinder [122] and
HMIL-NN [80] is not applied here because of schema incompatibilities among the JSON docu-
ments. Even after a moderate effort to resolve the schema incompatibilities, we could not make
the method work. The best prior-art models trained by the authors of the dataset are Graph
Neural Networks (GNNs) of type Residual Gated Graph Convolutional Neural Networks [20].
Evaluations are conducted using the graph as well as the node classification strategy. For more
details about networks’ architecture, hyper-parameters, and optimization, we refer the reader to
the paper [39]. As baseline models, the authors of the paper use Random Forest and Logistic Re-
gression to quantify the advantage of the graph-based models over the structure-agnostic ones.
To form a single feature vector for each sub-graph representing a candidate domain, VirusTo-
tal’s engines are one-hot encoded and feature-based representations of nodes are summed over
the node types and concatenated.

The prior-art models are evaluated in [39] using a five-times repeated random train/test split
strategy, with 66% of the samples used for training and 34% for testing. To facilitate compara-
bility, we follow the exact same evaluation protocol for ISRT, BLRT, and MIL-NN, including the
identical list of domains used in each train/test split. The evaluation outcomes are presented
in Table 6.2 using AUC, Accuracy, and Precision@20 metrics, and in Figure 6.8 as ROC curves.
The displayed values correspond to the mean ± one standard deviation computed over the five

7Hitting VirusTotal’s engines and the pre-processing algorithm score are weak indicators (not labels) in this task,
because the goal is to recognize high-riskmalware among amix of lower-risk and legitimate domains. The presence of
these indicators does not automatically imply a high threat severity. Investigation of high-risk domains is prioritized
(over lower-risk ones) as not all suspicious domains can be manually analyzed due to the limited analyst resources.
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1 {
2 "domain": "unknown.com",
3 "pos_probability": 0.7329,
4 "vt_data": {
5 "vt_labels": 1,
6 "vt_hits": [
7 "BitDefender:malware site",
8 "Kaspersky:malware site",
9 /... possibly other hitting VirusTotal's engines /
10 ]
11 },
12 "context_data": {
13 "ip": [
14 {
15 "name": "<ANONYMIZED_IP_ADDRESS>",
16 "seeds": [
17 {
18 "domain": "sality-malware.com",
19 "clusterLabel": "sality malware",
20 "risk": 20,
21 },
22 /... possibly other known malicious domains (seeds) /
23 ]
24 },
25 /... possibly other IP addresses to which unknown.com and at least one

malicious domain resolve /↪→
26 ],
27 "user": [
28 {
29 "name": "<ANONYMIZED_UNIQUE_USER_IDENTIFIER>",
30 "seeds": [
31 {
32 "domain": "icedid-malware.com",
33 "clusterLabel": "icedid malware",
34 "risk": 15,
35 },
36 /... possibly other known malicious domains (seeds) /
37 ]
38 },
39 /... possibly other users that visited unknown.com and at least one malicious

domain /↪→
40 ],
41 "file": [
42 {
43 "name": "<ANONYMIZED_FILE_SHA256_HASH>",
44 "seeds": [
45 {
46 "domain": "lemonduck-malware.com",
47 "clusterLabel": "lemonduck malware",
48 "risk": 10,
49 },
50 /... possibly other known malicious domains (seeds) /
51 ]
52 },
53 /... possibly other files associated with unknown.com and at least one

malicious domain /↪→
54 ]
55 }
56 }

Figure 6.7: Example of a sub-graph (unknown.com) stored in JSON format and containing re-
lations to IPs, users, and files; and their relations to known malicious domains (seeds).

evaluation rounds. As can be seen from Figure 6.8, while the best-performing prior-art GNN
model just marginally outperforms the reference (baseline) models, the JSON2bag + ISRT ap-
proach wins by a considerably larger margin. Not only does the JSON2bag + ISRT approach
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Figure 6.8: ROC curves of seven models classifying domains based on their sub-graphs of rela-
tions with network entities that are associated with known malicious activities. For the sake
of clarity, a ribbon indicating the standard deviation around the mean value is shown only
for our JSON2bag + ISRT technique and the best-performing prior-art method [39] denoted as
GNN Graph Classification. The JSON2bag + ISRT technique outperforms the baseline structure-
agnostic models (Random Forest and Logistic Regression) by a wider margin than the prior-art
GNN Graph Classification method.

AUC Accuracy Precision@20

JSON2bag ours + ISRT ours 95.40 (1.92) 91.49 (2.49) 100.0 (0.00)
JSON2bag ours + BLRT ours 92.61 (1.90) 87.73 (2.29) 97.00 (2.74)
JSON2bag ours + MIL-NN 91.59 (1.72) 87.18 (1.93) 82.00 (13.04)
GNN Graph Classification 93.85 (2.22) 89.28 (1.59) 93.00 (6.71)
GNN Node Classification 90.82 (2.55) 87.51 (1.73) 92.00 (4.47)
Random Forest 91.84 (2.39) 87.07 (1.94) 95.00 (8.66)
Logistic Regression 91.72 (2.31) 86.30 (1.63) 94.00 (6.52)

Table 6.2: Numerical results of seven models evaluated on the problem of high-risk domain
identification. From the application perspective, Precision@20 is the most relevant metric since
it reflects analysts’ daily/weekly sample validation limit. Apparently, the JSON2bag + ISRT
method has the greatest potential for exploiting the network traffic graph structure.

have the dominant ROC curve, but also the highest mean values for all three metrics (Table 6.2).
In particular, it is the only method that achieves the highest possible score of 100% in the Pre-
cision@20 metric. This metric, measuring the percentage of relevant samples among the top k
(e.g. 20) proposed, is important from the application perspective since it reflects a daily/weekly
limit on the number of samples that analysts can validate. Recall that threat analysis is a costly
and time-consuming process, so only a tiny fraction of all unknown domains seen in the network
data every day/week can be investigated. To maximize resource utilization, only relevant high-
risk domains should be among the top k proposed ones. Interestingly, the next two models with
the highest Precision@20 metric are tree-based as well: JSON2bag + BLRT (97%± 2.74%) and
Random Forest (95%± 8.66%). This demonstrates that the herein proposed BLRT (Chapter 3),
ISRT (Chapter 4), and JSON2bag (Chapter 5) tools can also be successfully used for modeling
network graph structures.
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6.4 Malicious Email Detection

Malicious emails are currently the major security threat to individuals and organizations [41].
This is mainly due to the ease with which they can be distributed, even by inexperienced cyber-
criminals, compared to remote attacks. Threat actors typically craft emails using social engineer-
ing tactics to convince a victim to visit a malicious URL, pay a false invoice, reveal credentials
or other sensitive information, infect its device, or spread malware executable. One of the email
threat defense systems utilized by Cisco in their email security solution http://cisco.com/go/
emailsecurity is Cognitive Anti-Phishing Engine [106]. It is an ensemble of 30+ heterogeneous
detectors that examine the header, content, attachments, sender reputation, and sender-recipient
relationship of a given email to determine whether the email should be classified as phishing.
The ensemble contains both types of detectors, the rule-based detectors like the link masquerade
detector recognizing links such as <a href="good.com">evil.com</a> where the displayed
domain differs from the actual one or the cryptocurrency address detector, and the data-driven
detectors, which use, for instance, language models [34] to recognize the urgency and call-to-
action in sentences8. For a given input email, the anti-phishing engine outputs a JSON object
containing an array of triggered detections on that email, as shown in Figure 6.9. Apart from
the score and the detector code name, each detection contains metadata with additional infor-
mation related to the detection such as the particular sentence with the urgency, the detected
cryptocurrency address, including the coin type (e.g. Bitcoin), or the displayed and the actual
domain in the case of the link masquerade detector. Analysts subsequently use this metadata as
evidence when they are justifying engine verdicts.

In the current implementation, the binary verdicts are made by combining detection scores
linearly and comparing the results to a threshold value. We aim to challenge this by training
a model that operates on the entire JSON outputs, considering not only the detection
scores but also the supporting metadata. To this end, we use two proprietary datasets of
emails collected during March and April 2022, respectively. Each dataset contains 50,000 pos-
itive and 50,000 negative emails. Positive emails represent a mixture of spam, phishing, and
malware messages. Negative emails, on the other hand, are proven to be harmless messages (i.e.
conversations, notifications, marketing) based on a manual analysis or prior knowledge. More
specifically, the negative emails represent hard examples from the classification perspective as
they were initially misclassified as positives by an alternative email security engine and later
resolved as false positives by an analyst or a maintained set of rules. Because of this, evaluation
results may be more pessimistic than they would be if the negative emails followed their natural
distribution.

After processing both email datasets (March and April) by the Cognitive Anti-Phishing En-
gine, the following six models are evaluated upon the output JSONs. First, we transform the
JSONs into MIL bags using JSON2bag (Chapter 5) and train the ISRT model (Chapter 4) with
100 trees and ten epochs for optimizing instance selectors, the BLRT model (Chapter 3) with
100 trees, and the MIL-NN model [91] with the first hidden layer of size 200 followed by the
mean-max aggregation, two hidden layers of size 200 and 100, and the two output neurons.
Then, we also transform the JSONs into hierarchical MIL bags using JsonGrinder [122] and train
the HMIL-NN model [80] with the size of the inner dense layers set to ten and the aggregation
function set to mean-max. Both neural network-based models use rectified linear units (ReLU)
as the activation function and are optimized using AdaBelief optimizer for 1,000 training steps
with randomly sampled mini-batches of size ten. Ultimately, we transform the JSONs into sin-
gle feature vectors where features correspond to individual detector scores and train Random
Forest with 100 trees and Logistic Regression with L2 regularization set to 10−4. The Logistic
Regression model simulates the currently used linear combiner in the engine.

8These are a few examples of urgent and call to action sentences: “Final warning about your unsuccessful tax
payment.”, “Click here immediately to reset your password.” or “Download and save a copy of your payment.”.
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1 {
2 "detections": [
3 {
4 / Link Masquerade Detector /
5 "code": "DLINKMASQ",
6 "score": 1.0,
7 "meta": [
8 {
9 "id": "displayed",
10 "val": "good.com"
11 },
12 {
13 "id": "real",
14 "val": "evil.com"
15 }
16 ]
17 },
18 {
19 / Cryptocurrency Address Detector /
20 "code": "DCRYPTOCCY",
21 "score": 1.0,
22 "meta": [
23 {
24 "id": "address",
25 "val": "13AD9cJjGm1UaNRfLFsw66V4J5RC7fYQx5"
26 },
27 {
28 "id": "cointype",
29 "val": "bitcoin"
30 }
31 ]
32 },
33 {
34 / Call-To-Action Detector /
35 "code": "DCTA_OTH",
36 "score": 1.0,
37 "meta": [
38 {
39 "id": "segment",
40 "val": "Send 1 BTC to this address:

13AD9cJjGm1UaNRfLFsw66V4J5RC7fYQx5."↪→
41 }
42 ]
43 }
44 ]
45 }

Figure 6.9: Example of Cognitive Anti-Phishing Engine’s output for a malicious email.

All sixmodels are evaluated two times, first by using the 5-times repeated 3-fold cross-validation
strategy on the March dataset and then using the time-based split, where the older data from
March is used for training and the more recent data from April is used for testing. Figure 6.10
shows the ROC curves of each model for both evaluation strategies separately. In the case of the
cross-validation strategy, the curves correspond to the mean value, and the ribbon around the
curves to one standard deviation computed over the folds. As seen from the figure, the effi-
cacy results can be considerably improved by using the metadata along with the detec-
tion scores. In both evaluations, the dominant ROC curve belongs to the JSON2bag + ISRT tech-
nique, particularly in the application-relevant interval of low FPR [10−4, 10−3]. For instance,
on the time-based split evaluation at FPR = 10−3, the ISRT model correctly detects 42.5% of all
positive emails (TPR = 0.425) while the Logistic Regression model only 9.7% (TPR = 0.097).
When comparing the results from the cross-validation and the time-based split evaluation, it
can be seen that the results from the cross-validation are more optimistic (i.e. higher values of
TPR for the same FPR). This is because, in cross-validation, future samples are accessible in the
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Figure 6.10: ROC curves for six models predicting whether an email is malicious or not based
on a list of detections provided by Cognitive Anti-Phishing Engine. Unlike the linear (Logis-
tic Regression) and the non-linear (Random Forest) detection score combiner, the JSON-based
models also consider the contextual information surrounding the detections that was originally
intended only for human analysts justifying the final verdicts. The ISRT model appears to ben-
efit most from this extra information, especially in the range of low FPR [10−4, 10−3] where it
outperforms all other methods in the percentage of correctly detected malicious emails (TPR).
The difference between the cross-validation (on the left) and the time-based split (on the right)
demonstrates the necessity to respect the arrival time of email data samples during evaluation,
as not doing so (cross-validation) may lead to overly optimistic results that might not be deliv-
ered once a model is deployed in production.

training set due to random shuffling during fold formation, which is problematic for data that
evolves over time (i.e. concept-drift [57] is present in the data), such as the email data. Therefore,
cross-validation values of FPR and TPR cannot be expected to be matched in production since
a model cannot peek forward in time on a real-time stream of email data. Moreover, the cross-
validation results also falsely indicate that the non-linear Random Forest model is a better score
combiner than the currently employed linear model. And that the interpretability of the linear
model may be exchanged for the improved detectability of the nonlinear model, which would be
a poor trade-off, as the time-based evaluation demonstrates. This illustrates the importance of
the time-based split evaluation on data with concept-drift as the cross-validation strategy does
not reveal whether a classifier learns patterns that do not generalize over time. This is espe-
cially true for complex learners, such as the JSON-based models, which have a greater chance
of learning patterns that do not apply in new situations due to the richer data available to them.

6.5 Malicious Executables Classification

Classifying files that are executable on end-user devices is at the core of anti-malware protection.
This task is represented by a publicly available Avast-CTU CAPE Dataset [16]. The dataset com-
prises 48,976 malicious samples collected between the years 2017 and 2019, categorized into ten
malware families. Each sample is defined as a JSON report produced by CAPEv2 analyzer [84]
monitoring the sample’s execution in a sandbox environment. The JSON report, therefore, con-
tains not only the commonly used static properties that can be extracted without running the file,
such as the metadata from PE headers [6, 52, 97], a list of imported libraries, sections, etc., but
also the results from the behavioral analysis regarding accessed files, registry keys, mutexes, API
calls, etc., collected during the file execution. Such behavior data is more expensive to obtain,
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Malware classification based on CAPEv2 sandbox JSON reports
Behaviour & Static features Static features only

JsonGrinder JSON2bag ours JsonGrinder JSON2bag ours

HMIL-NN MIL-NN BLRT ours ISRT ours HMIL-NN MIL-NN BLRT ours ISRT ours

Adload 100.00 100.00 100.00 100.00 60.00 80.00 100.00 100.00
Emotet 86.54 88.30 86.91 92.07 2.35 2.16 13.39 25.44
HarHar 98.55 98.55 98.55 98.55 98.55 98.55 95.65 98.55
Lokibot 95.33 96.20 87.74 95.91 90.07 79.85 76.50 80.15
Qakbot 99.24 99.24 93.64 99.49 35.62 50.78 28.21 29.78
Swisyn 99.88 99.62 99.39 99.95 99.72 99.39 99.91 99.95
Trickbot 98.58 96.18 89.37 97.75 68.49 87.80 85.25 85.25
Ursnif 94.02 94.02 53.39 98.61 70.32 85.66 29.88 47.61
Zeus 95.83 93.75 81.94 94.44 82.64 70.92 74.47 81.56
njRAT 99.26 92.27 87.66 98.53 75.51 74.49 85.21 86.32

Overall 94.5 94.84 90.69 96.81 63.0 63.21 63.84 68.79

Table 6.3: Per-class and overall accuracy of four methods classifying malware samples into
ten families based on CAPEv2 sandbox JSON reports. The methods are evaluated using either
behavior and static analysis data or solely data from the less expensive static analysis. In both
cases, JSON2bag combined with the ISRT model yields the best overall results. Results for the
pair JsonGrinder and HMIL-NN are taken from the prior-art work [16]. A dummymodel always
predicting the dominant class (Emotet) would have 30.78% accuracy.

but it’s also more complicated for attackers to manipulate in order to evade detection, unlike
static data, which can be disordered using the techniques of obfuscation9 and/or encryption10.
An example of a CAPE’s JSON report, including both the static and the behavior features,
can be seen in Figure 6.11. Authors of the dataset advise to make the train-test split based on
a certain date to account for the concept drift present in the malware data. To train a model
(JsonGrinder + HMIL-NN), they consider (and we follow it) all samples up to 2019/08/01 to be a
part of the training set (37,512 samples) and all samples after that to be a part of the testing set
(11,464 samples).

The prior-art model [84], JsonGrinder [122] + HMIL-NN [80], is constructed with the size
of the inner dense layers set to 32, the aggregation function set to mean-max, and the activa-
tion function set to ReLU. The network weights are optimized using ADAM optimizer with
randomly sampled mini-batches of size 500 for 200 training steps. In addition to the prior-art
model, we convert the JSON reports to MIL bags using the JSON2bag tool (Chapter 5) and train
three additional MIL models upon the converted JSONs: MIL-NN [91], BLRT (Chapter 3) and
ISRT (Chapter 4). The MIL-NN architecture starts with the input layer of size 119 that is fully
connected to the first hidden layer of size 300 followed by mean-max aggregation. It continues
with another two dense layers of size 300 and 200 and ends with the output (class) layer of size
10. All activation functions are of type rectified linear unit (ReLU). The network weights are op-
timized via AdaBelief for 200 learning steps with randomly sampled class-balanced mini-batches
of size 200 (i.e. 20 samples per class). BLRT and ISRT models are trained with default parameter
settings and one-vs-rest multi-class strategy, where an ensemble of 32 trees per class is trained.

Table 6.3 summarizes results from the evaluation of all four models on the testing set in terms
of per-class and overall accuracy. The evaluation is made separately for the combination of

9Obfuscation renders the code more difficult to read and understand without altering the essence of the code.
Typically, it replaces code segments with randomized variants that have the same effect, modifies all the names,
reorders independent parallel computations, inserts extra code not affecting the payload, etc.

10An encrypted executable contains a simple bootstrap code that decodes the rest of the program and executes
it. Since the techniques of the code encryption and obfuscation are also sometimes used to conceal proprietary
algorithms, their presence alone does not automatically imply malicious intent.
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the behavior and static features and solely for the static features, which are less expensive as
they can be extracted without running the file. In both scenarios, JSON2bag in tandem with
the ISRT model achieves the best overall accuracy. Specifically, the level of accuracy is 96.81%
on the full JSON reports and 68.79% on the reduced reports containing only the static data.
Interestingly, the overall accuracies provided by the two neural network-based models are quite
close to one another, about 94.5% and 63% on the full and the reduced JSON reports, respectively.
This raises the question of whether it is necessary to model the problem using the more complex
hierarchical MIL approach when the non-hierarchical one offers similar performance. The BLRT
model achieves the overall accuracy of 90.69% on the full reports and 63.84% on the reduced ones,
and as the only model, it is not superior in any class. A dummy model constantly predicting the
most frequent class (Emotet) has 30.78% accuracy in both scenarios. To sum up, the behavior data
significantly improves models’ classification performance (using the static data solely, only three
malware families, Adload, HarHar, and Swisyn, are detected with the same level of accuracy as
when the static and behavior data are combined), and the best technique for this problem proved
to be JSON2bag paired with ISRT.

68



CHAPTER 6. APPLICATIONS TO CYBERSECURITY

1 {
2 "behavior": {
3 "summary": {
4 "keys": [
5 "DisableUserModeCallbackFilter",
6 "HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Windows NT\\CurrentVersion\\GRE_Initialize",
7 "HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\GRE_Initialize\\DisableMetaFiles"
8 ],
9 "resolved_apis": [
10 "kernel32.dll.SetEndOfFile",
11 "kernel32.dll.GetProcessHeap",
12 /.../
13 ],
14 "executed_commands": [],
15 "write_keys": [],
16 "files": [
17 "C:\\Windows\\System32\\api-ms-win-core-fibers-l1-1-1.DLL",
18 "C:\\Windows\\System32\\api-ms-win-core-localization-l1-2-1.DLL",
19 /.../
20 ],
21 "read_files": [
22 "C:\\Users\\comp\\AppData\\Local\\Temp\\config-nkxmr.json"
23 ],
24 "started_services": [],
25 "created_services": [],
26 "write_files": [],
27 "delete_keys": [],
28 "read_keys": [
29 "DisableUserModeCallbackFilter",
30 "HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\GRE_Initialize\\DisableMetaFiles"
31 ],
32 "delete_files": [],
33 "mutexes": []
34 }
35 },
36 "static": {
37 "pe": {
38 "icon_hash": "0304a765b7d1981a90d07ce1b4f8148c",
39 "sections": [
40 {
41 "raw_address": "0x00000400",
42 "name": "UPX0",
43 "characteristics": "IMAGE_SCN_CNT_UNINITIALIZED_DATA|IMAGE_SCN_MEM_EXECUTE|IMAGE_SCN_MEM_READ|IMAGE_SCN_MEM_WRITE",
44 "virtual_size": "0x000e8000",
45 "virtual_address": "0x00001000",
46 "size_of_data": "0x00000000",
47 "entropy": "0.00",
48 "characteristics_raw": "0xe0000080"
49 },
50 /.../
51 ],
52 /.../
53 "guest_signers": {
54 "aux_error": true,
55 "aux_valid": false,
56 /.../
57 "aux_error_desc": "No signature found. SignTool Error File not valid

C\\Users\\comp\\AppData\\Local\\Temp\\00282BE7FA944B73A114.exe"↪→
58 },
59 "actual_checksum": "0x0005ce31",
60 "imports": [
61 {
62 "dll": "ADVAPI32.dll",
63 "imports": [
64 {
65 "name": "LsaClose",
66 "address": "0x541fb8"
67 }
68 ]
69 },
70 /.../
71 ],
72 "exported_dll_name": null,
73 "dirents": [
74 {
75 "name": "IMAGE_DIRECTORY_ENTRY_EXPORT",
76 "virtual_address": "0x00000000",
77 "size": "0x00000000"
78 },
79 /.../
80 ],
81 "versioninfo": [],
82 "resources": [
83 {
84 "name": "RT_BITMAP",
85 "filetype": null,
86 "offset": "0x0012b860",
87 "language": "LANG_CHINESE",
88 "sublanguage": "SUBLANG_CHINESE_SIMPLIFIED",
89 "size": "0x00000c68",
90 "entropy": "7.74"
91 }
92 /.../
93 ],
94 "pdbpath": null,
95 "osversion": "5.1",
96 "icon_fuzzy": "00f093ca5233c12c497c0f3fc1557273",
97 "imagebase": "0x00400000",
98 "imported_dll_count": 4,
99 "timestamp": "2019-03-26 02:18:56"
100 }
101 }
102 }

Figure 6.11: Example of the CAPE sandbox analysis output for a malicious executable.
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Conclusion

This thesis deals with end-to-end model learning from JSON-formatted tree-structured data.
Since JSONs can capture information of variable size, structure, and data type, they offer far
more flexibility for describing objects of interest than traditional fixed-size vectors of numbers.
However, their non-vectorial nature complicates the subsequent use of ML methods. To avoid
tedious (and possibly lossy) feature engineering, we propose a JSON2bag tool converting arbi-
trary JSON samples into MIL bags (i.e. sets of feature vectors) and two general MIL classifiers,
BLRT and ISRT, capable of learning from any datasets of labeled bags.

JSON2bag (Chapter 5) is a feature extraction algorithm aiming to numerically represent all
the information contained in JSON values (strings, numbers, booleans, and nulls) and the JSON
tree topology (nested composition of objects and arrays). It flattens an input JSON sample into a
one-level set of path-value pairs and extracts a pre-defined set of features from each such pair to
create a set of feature vectors representing that sample. This multi-feature vector representation
is compatible with MIL algorithms and can be created with a minimum (to none) information
loss, in contrast to attempts to fit every JSON sample into a single fixed-length feature vector.
Moreover, we demonstrate (Section 5.2) that, unlike prior-art techniques, JSON2bag can handle
signal displacements and be applied even to schema-less problems (e.g. classification of HTML
source codes). We also show (Table 5.5) that ISRT combinedwith JSON2bag can explain decisions
by means of the top most important path-value pairs, which may facilitate the validation of
predictions and provide insights into complex JSON data structures.

BLRT (Chapter 3) extends traditional ensembles of decision trees to the MIL setting. To ac-
count for the fact that bags may contain multiple feature vectors (i.e. instances), we adjust the
standard node-splitting condition — testing whether a feature value is greater than a certain
threshold — by an additional parameter judging the percent of instances that accomplish that
condition. This can be interpreted as a quantile-based bag embedding, in which the embed-
ding and node-splitting parameters are optimized jointly during the tree construction process.
Since BLRT decides based on the global bag-level statistics, unlike most prior-art tree-based MIL
methods, it can handle problems where the discriminative information is distributed over more
than one instance. On 29 benchmark MIL datasets, we demonstrate (Section 3.2) that, despite its
conceptual simplicity, BLRT significantly outperforms any of the prior 28 MIL classifiers, even
without hyper-parameter tuning.

ISRT (Chapter 4) is another tree-based algorithm proposed in this thesis for solving MIL
classification problems. Unlike BLRT, considering all bag instances in every tree node, ISRT
selects a single instance at each step and makes the standard feature threshold decision upon
it. The selection mechanism is implemented via an additional vector of parameters optimized
in each tree node individually. ISRT is therefore able to extract patterns from both ends of the
spectrum, the local instance-level (by selecting the same instance multiple times) and the global
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bag-level (by selecting different instances). Learning to select only one (relevant) instance at each
step also has a regularization effect and prevents noisy instances from affecting the decision-
making process. Moreover, we observe (Table 4.2) that only a small fraction of bag instances is
usually selected, and the rest is untouched. This makes it easier for analysts to find evidence for
positive bag predictions on the level of instances, as they can skip over the untouched instances
and focus on the selected ones only. Finally, we qualitatively (Table 5.5) and quantitatively
(Figure 6.3) validate that ranking instances according to the number of times they are selected
during the prediction reflects their importance.

Applications (Chapter 6) The above-presented tools provide a fully automated approach for
deriving classification models from labeled JSON data samples. Since there is no need for task-
specific feature extraction, the approach is universally and immediately applicable to a wide
variety of problems, especially when the data are already in the JSON format or can be easily
converted to it. In Chapter 6, we demonstrate this on five real-world cybersecurity problems,
where the JSON representations of modeled objects, such as network users, domains, emails,
and executable files, are already existing in the studied security systems (the JSON format is
typically used for its machine and human readability, data type variability, structure mutability,
and size flexibility), yet much of the information contained inside these JSONs is ignored by the
deployed ML models. We show that our JSON2bag with BLRT/ISRT models can significantly
improve the detection accuracy of studied systems by learning from all the information available
in the JSON representations instead of just a few manually extracted values. To make sure that
the observed improvements are not merely the products of overfitting, which could be a natural
consequence of expanding the feature space, we apply strict evaluation protocols that include
utilizing appropriate metrics, respecting the time-dependence in train/test dataset splits, and
ensuring that the train/test parts contain distinct entities. Interestingly, when comparing BLRT
vs. ISRT on these five real-world cybersecurity datasets, ISRT turns out to be superior, although,
on several public MIL datasets (Table 4.1), the opposite was true. This can be explained by the
difficulty of cybersecurity datasets, which are plagued by concept drift and various forms of
noise, leading to a higher risk of overfitting with the BLRT model taking into account every
instance in each decision node. ISRT’s ability to resist overfitting (even in small data regimes)
is due to its instance selection mechanism, which can be viewed as an extension of the feature
selection mechanism used in the traditional decision trees to the dimension of instances.

To conclude, we firmly believe that the proposed techniques can unlock value in many other
JSON/MIL datasets (even outside the cybersecurity domain) that conventional ML models have
not effectively utilized yet. We also hope that the flexibility of JSON-based representations, cou-
pled with the straightforward application of the proposed tools, has the potential to change the
way how someML problems are approached. Instead of spending time building andmaintaining
feature extraction pipelines, the focus could be put on creating richer JSON representations (per-
haps with more bits of important information) from which models can be automatically derived
with the proposed tools, resulting in more accurate and effective outcomes.

In future work, we would like to introduce a gradient-boosted version of ISRT. Ideally, this
should produce even better-performing models as the optimization of the feature threshold and
instance selector parameters would be governed in the whole ensemble by a single global loss
function via residual values, similarly as did in popular XGBoost [25] or LightGBM [58] algo-
rithms. Another interesting direction of research would be an attempt to interpolate between
BLRT and ISRT by making the split node decision upon an aggregate value (e.g. mean) com-
puted from a subset of selected bag instances. The subset size could vary among nodes, from
one instance (ISRT) to all instances (BLRT), and correspond e.g. to JSON values of one specific
JSON array/object. Finally, and perhaps most importantly, we plan to increase the visibility of
the developed tools among researchers and ML practitioners by promoting the idea of learning
on JSONs and creating easy-to-use libraries with clear documentation and examples.
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