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Abstract

Existing Internet of Things (IoT) systems encounter several reliability-related issues,
among which the dynamic behavior of IoT systems under limited and unstable network
connectivity is yet to attract significant research attention. Several ad hoc approaches
can be employed to intuitively test this behavior. However, the effectiveness of ad hoc
methods for defect detection and the overall expenditure for testing limited network con-
nectivity remain unclarified. Therefore, this thesis presents a new specialized path-based
technique to test the processes of an IoT system in scenarios with limited or disrupted
network connectivity affecting these processes.

This technique can be scaled using four levels of test coverage criteria to determine
the strength of the created test scenarios. Additionally, we proposed three algorithms to
generate test cases for implementing the technique: breadth-first search graph traversal-
based test case composition, ant colony optimization-based search, and genetic-algorithm-
based test case composition. Subsequently, the effectiveness of the proposed approach was
compared with that of the two baselines. The first baseline comprised three standard path-
based testing approaches—Edge, Edge-pair, and Test Depth Level (TDL) 3 coverage—
applied to the discussed case. The second baseline was a possible solution utilizing a
standard path-based testing approach based on the test requirements, in which the test
scenarios are computed by a set-covering algorithm.

In the experiments, the proposed algorithms were implemented in an Oxygen platform,
which is an experimental model-based testing environment. To compare the effectiveness
of the algorithms, we defined 310 problem models comprising real-life project models,
artificially created models resembling the topology of real systems, and purely artificially
generated models offering diverse problem instances. Furthermore, we introduced artificial
defects into the models to evaluate the potential effectiveness of the individual algorithms
in detecting limited network connectivity related defects present in the system.

Although the ant colony optimization-based method yielded the best results for most
problem instances, the other two algorithms provided the best results for certain portions
of the problem instances. In certain cases, even the baseline test requirements-based
approach delivered the best results, an effect relatively common in the path-based testing
field in general. Therefore, all the compared algorithms were combined into a portfolio
strategy to ensure the generation of the best test set.

Overall, the proposed technique is applicable to numerous cases in which an IoT system
is operating under limited network connectivity, especially for testing mission-critical IoT
systems. Furthermore, the technique can be generalized to test scenarios in which a
system component undergoes failure, disconnection, or damage.

Keywords: Internet of Things, Reliability, Path-based Testing, Model-based Testing,
Test Automation, Limited Network Connectivity, Test Case Generation.
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Anotace

Současné projekty systémů internetu věcí (IoT) se často potýkají s problémy souvise-
jícími s bezpečností a spolehlivostí, mezi kterými hraje výraznou roli chování systému
při omezeném či nestabilním síťovém připojení. Přes jeho význam tomuto problému do-
posud nebyla v oblasti výzkumu věnována dostatečná pozornost. Pro testování tohoto
chování lze použít různé ad hoc přístupy, avšak je obtížné odhadnout jak jejich účinnost,
tak jejich reálnou nákladnost. Tato práce proto představuje novou techniku založenou na
průchodech procesů systému (path-based testing) přímo zaměřenou na testování scénářů
s omezeným či narušeným síťovým připojením ovlivňujícím tyto procesy.

Tato technika může být škálována pomocí čtyř úrovní kritérií pokrytí testů, které
určují účinnost a cenu vytvořených testovacích scénářů. Dále jsme navrhli tři algoritmy
pro generování testovacích scénářů z modelu testovaného systému: algoritmus založený
na prohledávání grafu do šířky, algoritmus založený na simulovaném chování mravenčí
kolonie a adaptace genetického algoritmu. Následně jsme porovnali účinnost navrženého
přístupu s účinností dvou existujících způsobů generování testovacích scénářů. První způ-
sob zahrnoval tři standardní v průmyslu používaná kritéria pokrytí testů: pokrytí hran,
pokrytí dvojic hran a kritérium Test Depth Level 3. Druhým srovnávaným způsobem
bylo využití předchozího algoritmu založeného na tzv. testovacích požadavcích.

Pro experimentální ověření byly navržené algoritmy implementovány v rámci plat-
formy Oxygen. Abychom porovnali efektivitu algoritmů, vytvořili jsme 310 různých mod-
elů testovaného systému. Část těchto modelů pocházela z reálných projektů vývoje IoT
systémů, část byla vytvořena uměle tak, aby modely svojí topologií připomínaly reálné
systémy a poslední část modelů byla pro větší různorodost vygenerována čistě uměle. Dále
jsme do modelů zavedli umělé defekty způsobené omezeným síťovým připojením, abychom
vyhodnotili potenciální efektivitu jednotlivých algoritmů při detekci těchto defektů.

Pro většinu modelů systému v těchto experimentech přinesla nejlepší výsledky metoda
založená na simulaci chování mravenčích kolonií. Pro určitou menší část modelů však
poskytly nejlepší výsledky i zbylé dva navržené algoritmy. V malém počtu případů
dosáhl nejlepšího výsledku dokonce i existující přístup založený na testovacích poža-
davcích. Výsledek není překvapivý, jedná se o relativně běžnou situaci v oblasti testování
procesů systému. Abychom tedy zajistili generování nejlepší sady testovacích scénářů pro
co nejširší spektrum různých modelů systému, zkombinovali jsme všechny porovnávané
algoritmy do tzv. portfoliové strategie.

Navržená technika je dobře použitelná v mnoha situacích, kdy IoT systém funguje s
omezenou síťovou konektivitou, zejména pro testování kriticky důležitých systémů IoT.
Techniku lze dále zobecnit na testovací scénáře, ve kterých dojde k selhání, odpojení nebo
poškození konkrétní součásti systému.

Klíčová slova: Internet věcí, spolehlivost, testování na základě cest, testování na základě
modelu, automatizace testování, omezené síťové připojení, generování testovacích případů.
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Chapter 1

Introduction

In the past decade, IoT systems have significantly advanced from an initial hype to a
daily-life technological reality that impacts individuals’ work processes and lifestyle [1]–
[4]. This growth has created several challenges in terms of quality, usability, security,
and reliability of these systems, especially for those with a mission-critical nature [5]–[8].
Among these issues, the reliable functionality of a dynamic IoT system becomes critical
if the system components or its processes are operating with limited or unstable network
connectivity [5], [6]. In this thesis, limited connectivity may refer to a complete network
connectivity outage, intermittent connectivity, significantly low bandwidth, high network
error rate, or any state that might negatively influence the reliability and functionality of
an IoT system.

Why are the IoT systems specific at this point? In case of the commonly used web-
based client-server architecture of software information systems, the server side (back-end)
is generally static in the spatial sense and connected to a stable network. In contrast,
the client side may physically shift and be subject to limited network connectivity or
even temporary network outages. This situation is typical in rural or sea areas with
weak or no wireless network coverage or in tunnels in urban areas. In such scenarios,
users are prepared to tolerate network connectivity issues and interact with the system
accordingly. However, in case of dynamic IoT systems, connected devices such as sensors,
actuators, and even the back-end infrastructure can be spatially displaced, and they are
more sensitive to limited or disrupted network connectivity. Examples of dynamic sensor
networks in which the geographical location of devices varies during system operation
include systems in smart farming, smart cars, intelligent transportation, and defense and
logistics systems [9], [10].

As such, the reliability of the service provided by the system to its users must be main-
tained and the system behavior should remain deterministic even if the IoT system or its
components experience limited or disrupted network connectivity. Although users may
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accept the restricted system functionality in such scenarios, they must be timely notified
and the system cannot interrupt actual transactions, lose data, enter an unexpected state,
crash, or become unresponsive. In dynamic IoT systems subjected to network connectiv-
ity limitations, their functionality must be tested under these conditions. Accordingly,
optimal testing must be performed to ensure effective detection of relevant defects and
reduce the costs associated with such testing. This economic aspect is one of the primary
motivations of the following proposal. In addition, the desired reliability and safety of
mission-critical IoT systems under limited network connectivity may be achievable only
with a proper test automation method.

This thesis proposes the Limited Network Connectivity Test (LNCT)—a novel and
specialized technique that generates test scenarios to test the functionality of an IoT
system under limited network connectivity. In principle, the LNCT is based on the estab-
lished path-based testing discipline [11], [12] and defines a specialized system under test
(SUT) model for implementing the technique. Based on this model, we proposed three
novel algorithms for automated test-case generation and four baselines to compare the
performance of the proposed algorithms.

The baselines included an Edge, Edge-pair, and Test Depth Level (TDL) 3 established
test coverage criteria, and a solution using a standard path-based testing approach, based
on the established test requirements concept and test paths computed by a set-covering
algorithm proposed by Li et al. [13].

The effectiveness of all three proposed algorithms was evaluated based on the proper-
ties of the generated test cases with several criteria considering the number of test cases,
their length, ratio of unique test steps, and others (detailed in Section 4.3). Moreover, we
evaluated the defect detection potential of the generated test cases and compared their
efficiencies with the baselines.

The contributions of this dissertation are summarized as follows:

1. Formulation of a problem model and four novel test coverage criteria addressing the
testing problems for IoT systems operating with limited network connectivity.

2. Proposal of three algorithms to generate test scenarios for this testing problem.

3. Formulation of four baselines and a comparative analysis of their performance with
that of the proposed algorithms.

4. Conducting an evaluation study with 310 experimental SUT models, wherein the
properties of the generated test scenarios were compared in terms of the testing
expenditure, based on the number of test steps and the potential of test cases for
detecting the defects in a SUT.



CHAPTER 1. INTRODUCTION 3

5. Introduction of a portfolio strategy that combines all proposed algorithms to yield
the best result for various possible SUT models that might occur in industrial prac-
tice.

The remainder of this thesis is organized as follows: the related literature is analyzed
in Section 2, and the motivation of this research is summarized in Section 2.6. Based on
this motivation, the thesis statement and research questions are elaborated in Section 3.
Thereafter, the principles of the proposed technique are described in Section 4. In addi-
tion, the SUT model, test coverage criteria, and test set evaluation criteria are introduced
in Sections 4.1, 4.2, and 4.3, respectively. Thereafter, the three novel algorithms proposed
for generating test sets from the SUT model are discussed in Section 4.4, and the base-
line algorithms used in the present experiments are described in Section 5. Subsequently,
in Section 6, the three proposed algorithms were combined with one of the baselines to
formulate a portfolio strategy for obtaining the best test set for a given SUT model.

Furthermore, the experimental design, including the implementation of the proposed
algorithms, sources and properties of experimental SUT models, and the simulation of
limited network connectivity-related defects of SUT instances are presented in Section 7.
Thereafter, the experimental results are detailed in Section 8. In particular, the results of
the individual algorithms were analyzed, followed by the analysis of the portfolio strategy
and algorithm runtimes. In Section 9, we discussed the results, analyzed the vital findings,
and inferred conclusions from the data. Moreover, the practical applicability of the LNCT
is highlighted in Section 10, wherein the proposed LNCT was extended to a broader range
of testing tasks. The threats against validity and taken steps of minimizing their possible
impact are analyzed in Section 11. Finally, the major findings of this thesis and the new
research stream opened by this Ph.D. project are summarized in Section 12.

Several parts of this thesis were published in our previous papers, namely an initial
study describing the concept of LNCT [14], and a study comparing two of the presented
algorithms with a baseline [15]. One of our real IoT projects used as the source of system
models in the experiments was also described in a dedicated article [16].

Another study, comparing a genetic-algorithm-based solution with baselines, titled
Genetic Algorithm for Path-based Testing of Component Outage Situations in IoT System
Processes, is now under review in IEEE Internet of Things journal.

The concept of LNCT and an initial algorithm computing the test cases were registered
as United States patent 1,194,700 B2 and is also registered as United Kingdom patent
GB2594346.

Some parts of the text in this thesis are based on the descriptions in these publications
or documents and may partially overlap.





Chapter 2

Related Work

Relevant to the current research topic and proposal, eight directions of related literature
must be analyzed: (1) general Model-based Testing (MBT) context, (2) path-based test-
ing preliminaries and related techniques and algorithms, and (3) existing data-flow testing
techniques, as they partly overlap with path-based testing techniques. In addition, exist-
ing algorithms resolving problems similar to the current research question, in particular
(4) search-based software engineering methods providing specific solutions to path-based
testing problems, (5) ant-colony optimization techniques in MBT, (6) previous employ-
ment of genetic algorithms in MBT, (7) other nature-inspired algorithms employed in
similar cases, and (8) alternative approaches to reliability testing of IoT systems under
conditions of weak network coverage.

These eight directions of relevant research literature are discussed in the following
subsections.

2.1 Model-based Testing and Used Models

MBT is based on the definition of the SUT model and the subsequent generation of test
cases from this model [11], [12]. These test cases must satisfy a specified test coverage
criterion, which is a set of rules determining the properties of the test cases. A model
is created for a selected part or aspect of the SUT. As MBT can significantly improve
the effectiveness of the entire system development process [17], it has been extensively
researched in recent decades [18], [19] and is widely used in industry [20]. Moreover, its
application scenarios are extremely diverse, for instance, automobiles, cell phones, and
web-app development [21]–[23]. Furthermore, MBT can be applied across various types
and levels of testing, such as unit testing [24], system testing [25], integration testing [26],
and regression testing [27].

The selection of a specific MBT technique depends on the test strategy and character-
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istics of the SUT, which correspond to a specific modeling notation [18]. As the method
proposed in this thesis is based on the SUT process model, which is an extension of a
directed graph, path-based testing techniques [11], [12] and data-flow techniques [28] are
natural candidates for a detailed investigation of related research.

2.2 Preliminaries and the Path-based Testing

Starting with the state-of-the-art path-based testing, an established model of the problem
is available, and several test-case-generating algorithms have been proposed for various
test coverage criteria [13], [29]–[33]. In principle, the general concept of the path-based
testing problem model is based on a directed graph G = (N,E, ns, Ne), where N denotes
a nonempty finite set of nodes, E ⊆ N ×N is a finite set of edges, ns denotes a start node
of G with no incoming edges, and Ne denotes a set of end nodes of G with no outgoing
edges [11], [12], [31]. For modeling an SUT, the literature offers two options based on the
representation of the process actions and decision points:

– A function, activity, an action, or a decision point in a process is captured by n ∈ N
and the transition between two functions, activities, actions, or decision points by
e ∈ E [12].

– Only the decision points in a process are captured by the nodes N . Individual func-
tions, activities, or actions between the decision points, including the sequences of
the functions, activities, or actions uninterrupted by any decision point, are modeled
by edges E [34].

A test case is typically defined as a path from ns to any node ne ∈ Ne. A set of test
cases must satisfy a defined test coverage criterion. From the most common criteria, the
Edge, Edge-pair, and Prime path coverage can be mentioned [12], [31]. To satisfy the
Edge coverage, each edge of G must be present at least once in at least one test case t
in a set of test cases T [12]. To satisfy Edge-pair coverage, each possible combination of
the two adjacent edges in G must be present at least once in at least one t ∈ T [12]. To
satisfy Prime path coverage, each prime path in G must be a subpath of a test case t ∈ T .
A path between two nodes of G is considered a prime path, if is a simple path (no inner
node appears more than once in the path) and it does not appear as a proper subpath of
any other simple path [12].

In general, individual algorithms support both modeling alternatives [13], [30]–[33].
As individual algorithms differ in their ability to provide the best solution for satisfying
the given test coverage criteria, combining them to a portfolio strategy is a practical
alternative for the testing practitioner [31].
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Considering the principle and objective of the proposed technique explained in Section
4, the current concepts that facilitate the touring of defined sequences of two non-adjacent
edges (or nodes) in a path must be analyzed. The fundamental concept involves the set

of test requirements, which are paths in G that must all be present as subpaths in the
test cases [12], [29].

Regarding the complexity of a general path-based testing problem, it depends on the
selected test coverage criterion and the type of cost for which the set of test cases is
minimized. Various options exist for defining the cost of the test cases. We can (1)
minimize the size of the set of test cases (in terms of the number of test cases) that
leads to a polynomial (P) time complexity - this problem is in a P class of computation
problems. Nonetheless, the other common options are significantly more complex, result-
ing in nondeterministic polynomial-time complete (NP-complete) complexity, such as (2)
minimizing the total number of nodes in the test set, (3) maximizing the ratio of the
number of test requirements in the test paths, and (4) bounding the ratio of the number
of test requirements in the test paths [35]. Therefore, proposing novel algorithms to solve
these problems and comparing their effectiveness with those of existing algorithms is an
important research direction.

As for the existing algorithms that create test cases, if not explicitly designed to satisfy
a particular test coverage criterion, they typically accept test requirements as one of their
inputs [13]. These test requirements are a concept that can be partially but not completely
applied to solve the current research problem that is the subject of this thesis.

To model the current problem via test requirements assuming that the network con-
nection is interrupted and restored in only one part in the tested process, we can define
a set of test requirements R = {rinterrupted, rrestored}, both of which is one edge long.
In particular, rinterrupted models an SUT function in which the network connectivity is
interrupted, and rrestored models an SUT function in which the network connectivity is
restored. In this example, rinterrupted must be followed by rrestored in the test case, ensuring
that the path from ns to any node of Ne is minimal.

Although certain algorithms accept R as an input work to optimize the final test
set, there is no assurance that rinterrupted will be followed by rrestored. To the best of our
knowledge, no published algorithm accepted additional constraints that define the order of
the input test requirements. This is because there is no motivation for such functionality
in standard path-based testing, and the algorithm generating the test set would become
unnecessarily complex.

However, such a functionality is essential for the problem described in Section 4.
Partially, the concept of the test requirements can be applied if, in the discussed

example, R = {a path from rinterrupted to rrestored }. The algorithms that accept R can be



employed [13] and must be accompanied by an additional algorithm to prepare such a set of
test requirements, which we applied in this study to develop the Test Requirements-based
algorithm, one of the baselines for the comparative analysis of the proposed algorithms
(detailed in Section 5.2).

Considering that more "rinterrupted and rrestored" pairs can be present in the model, it
is practically undecidable if such an approach yields the best solution. This uncertainty
motivates the exploration of new alternative algorithms that provide the best solution to
a defined problem, as we do in this thesis.

2.3 Data-flow Testing

Data-flow Testing (DFT) is another field that provides relevant information. This field
overlaps with the general path-based testing, as discussed in Section 2.2. Generally, data
flow testing is not classified as a subset of path-based testing, because the DFT problem
can be solved by alternative means, for instance, employing a Create, Read, Update,
Delete (CRUD) matrix as an SUT model [34], [36]. Nonetheless, these two fields include
a certain degree of overlap.

As the DFT principle has features similar to the problem solved in this thesis, this
field is a natural candidate for detailed analysis. In this analysis, we focus on a relevant
subpart of DFT based on directed-graph-based SUT models.

The DFT concept was introduced by Herman [37] in 1976 and has been thoroughly
studied in recent decades. Recently, Su et al. [28] summarized the advantages and limi-
tations of DFT and analyzed three types of data flow tests. The first type is called static
and is based on static analysis and its search for patterns of data anomalies; the second
type is dynamic, which locates invalid data usage during program execution [38]; the third
option, hybrid, combines the previous two principles [28]. Notably, dynamic DFT is rele-
vant to our thesis and its main principle is to verify the variables of the SUT by inspecting
their definition and use, which is accomplished by extracting the def-use pairs from the
code. Each pair is tested according to the selected test coverage criterion [28]. Although
numerous test coverage criteria can be screened for selection [39], prior research suggests
that the most effective criterion is the all-uses criterion that covers every definition and
use associations in the program at least once [40]. The dynamic DFT process involves the
(1) construction of the program’s control flow graph (CFG), (2) identification of relevant
paths in the CFG that satisfy the given coverage criterion, and (3) test data generation
to execute the set of paths [41].

A CFG is a directed graph constructed from the source code of an SUT containing
nodes and edges. The nodes in the CFG represent a block (linear sequence) of program
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instructions with a single entry point (the first instruction executed) and an exit point
(the last instruction executed). The edges connecting the nodes in the CFG represent the
transitions between the control blocks in the control flow of a program during execution
[42].

Although the CFG is used as the underlying model of the problem in DFT, which
differs from the problem model specified in Section 4.1, the principle of finding paths with
specific pairs of nodes in the CFG to ensure their presence in test cases is similar to that
of sequencing rinterrupted and rrestored in the SUT model. However, for the coverage criteria
specified in Section 4.2, the path between rinterrupted and rrestored must be directed to lead
inside the SUT model part affected by limited network connectivity, i.e., not leaving it
by any node other than that present in rrestored. This contributes to the novelty of the
proposal presented in this thesis and its difference from previous techniques in the DFT
field.

2.4 Analysis of Existing Algorithms and Strategies

We deliberately analyzed the existing algorithms and strategies in a separate section
because, in certain cases, the contexts of path-based testing and DFT inevitably overlap.

In contrast to previous sections that provide the overall context and explain the prob-
lem models including their possible limitations, here we focus on the principle of the
strategies and algorithms in more detail.

In relation to the principles of these algorithms, search-based and nature-inspired algo-
rithms are two of the relevant streams analyzed in this thesis, as these are the traditional
sources for pertinent studies in path-based testing. Generally, search-based and nature-
inspired algorithms have to be understood as conceptually different categories [43], [44].
However, an algorithm or strategy can be search-based and also belong to nature-inspired
algorithms.

2.4.1 Search-based Software Engineering Strategies

Several approaches exist for locating test paths in models, and Su classifies them into five
main groups [28]. We further inspect the most researched one, the search-based approach
that involves the use of a metaheuristic. Some other categories from the Su classification
are, for example, a collateral coverage principle, which optimizes test set generation when
covering multiple test objectives by the individual test cases, and a random testing-based
approach that locates the test cases in the input set at random [28].

Generally, metaheuristic search-based optimization techniques used to solve general
combinatorial problems in software engineering are referred to as a Search-based Software



Engineering (SBSE) [43], [45]. In the testing domain, the field is called Search-based
Software Testing (SBST), and its techniques are employed for combinatorial and path-
based testing [46]. The SBSE and SBST methods look for solutions in an extremely
large search space with numerous constraints and competing and conflicting objectives.
Therefore, an appropriate fitness function is often used to guide the search for the best
solution [47]. Several SBST techniques are relevant to our research. These techniques
generate paths in the graphs, modeling the SUT processes [29], [48].

Harman describes the concrete methods to perform the test paths selection [49]. He
divides the techniques into two categories: classic techniques, such as linear programming
and the branch and bound method; and a metaheuristic search, which consists, for exam-
ple, of hill climbing, simulated annealing, and genetic algorithms methods. Another class
of algorithms (that find solutions in vast search spaces) is a nature-inspired algorithms
class, simulating, for example, the behavior of ants [50], bees [51], fireflies [52], particle
swarms [53], and even microorganisms [30]. Recently, Dey et al. described this class of
algorithms in great detail [54].

The concrete implementation of the individual SBSE and SBST methods has been
thoroughly studied in recent decades. Due to its straightforwardness and high effectivity,
the most researched method in SBSE is probably the genetic algorithm [55]–[59].

SBST provides several approaches that could be used to solve the problem presented
in this thesis. Hence, we have selected two SBST methods, utilizing ant colony optimiza-
tion and genetic algorithm, and combined them with two other algorithms using different
principles (employing the breadth-first search-based graph traversal principle and exten-
sion of an existing set-covering algorithm) to create a well-balanced portfolio that would
yield the best results for any given problem instance.

2.4.2 The Ant Colony Optimization Approach

Marco Dorigo introduced the ant colony optimization (ACO) algorithm [60], [61] in his
Ph.D. thesis in the early 90s. Inspired by the behavior of ants while they are searching
for the shortest path to their food source, it became an effective instrument in solving
many graph traversal-related nondeterministic polynomial (NP) problems. In the ACO
implementation, ants are individual agents that traverse a search space between specific
start and target points. The traversal is guided by the combination of pheromone disposal
and desirability, information connected to the edges of a graph being traversed. Each
ant leaves a pheromone trace on every edge it visits, which evaporates after some time.
Therefore, the shorter the path between the source and target points, the stronger the
intensity of the pheromone trace. The desirability value determines the quality of a given
edge, and therefore, its formulation depends on the problem definition. It can represent,
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for example, a distance (number of edges) between the points for the shortest-path-related
problems or a heuristic value for the traveling salesman problem [62].

The use of the ACO approach for test case generation was proposed recently in several
studies. An example of this is one that was carried out by Srivastava et al., modeling
an SUT by a CFG [63]. In this proposal, the ants traverse the SUT model from a start
node to one of the end nodes, led by a combination of pheromone disposal (the quantity
of pheromones left on the edges) and a heuristic value on the edges, prioritizing those not
visited yet. Their method satisfies all-path coverage in the generated set of paths [63].

To generate test sequences effectively, taking into account the importance of covering
the most critical states, Srivastava et al. use Markov chain-based statistical MBT as
well as the ACO algorithm [50]. In this method, the SUT model contains probabilities of
transitions between individual application states, from which test engineers can effectively
generate test cases that match their testing priorities. Altogether, this proposed method
gives good coverage of critical nodes with a small number of test sequences [50]. A similar
technique is also proposed by Sayyari and Emadi [64].

Furthermore, Ghiduk proposes using the ACO algorithm for the DFT. He uses ACO
not only to search a CFG for paths that satisfy all-path coverage but also to generate a
suite of test data that activate those paths in the CFG [65].

To summarize the related work in this field, we describe our findings using our SUT
model elements, as explained in Section 4.1. Although the analyzed techniques offer the
possibility of defining the critical states that must be present in T , which could potentially
be used in our defined model to cover the Limited Connectivity Zone (LCZ) border nodes,
these techniques do not ensure the sequence of nodes in the test cases, as our concept
requires. By using analyzed previous techniques, it is not certain that an LCZ IN node
nin ∈ in(G, threshold) precedes an LCZ OUT node nout ∈ out(G, threshold) in zone
L ∈ L(G, threshold). Therefore, we would not be able to guarantee satisfying the selected
test coverage criterion (see Section 4.2) by previous techniques. Our proposed approach
satisfies these test coverage criteria, making it a novel contribution among established
path-based testing techniques, including those that employ the ACO approach.

2.4.3 The Genetic Algorithm Approach

John Holland settled the basic principles of the genetic algorithm (GA) in 1975 [66],
and they were further analyzed and described in many studies that followed [67]–[69].
The GA is a heuristic learning model based on natural evolution and selective breeding
principles. This model consists of a population of structures, called chromosomes, which
represent candidate solutions to a given problem; the selection mechanism, which chooses
the best members of the population for reproduction, primarily by evaluating the fitness



function of each chromosome; and some genetic operators, which slightly alter the genes
in chromosomes in order to create new chromosomes [68].

For the purpose of software testing or system testing in general, there are two main
application areas of the GA principle: (1) test data generation, and, (2) test paths gen-
eration.

Several studies describe the use of the GA to generate test data [70]–[73]. In this
approach, each chromosome represents a selection of values of all input parameters of the
SUT. The GA then generates a population of chromosomes that satisfies the selected test
coverage criterion [55].

The employment of the GA for test path creation is the most relevant variant to our
research. The individual papers differ in the use of different underlying models of the SUT
(for the white-box testing of the source code, they use the CFG [74], [75], and for the
black-box testing of the SUT processes, they use the Unified Modeling Language (UML)
diagrams [76]). Additionally, they differ in the test coverage criteria that the generated
test paths satisfy.

In path-based testing, Ghiduk uses GA to automatically generate basis test paths
from a graph-based SUT control-flow model [74]. Girgis and Ghiduk make a similar
proposal in this area [75]. How the GA can be implemented to generate paths in a test
program is explained in other studies [77]–[79]. At higher levels of testing, GA has been
employed by Sharma et al. to generate test paths in UML activity diagrams modeling
SUT processes and workflows. This proposal allows for utilizing activity diagrams with
parallelism constructs (fork and join) [80].

In their overview study, Hermandi et al. discuss the possible limitations of path-based
testing and challenges of using GA in this field from a more high-level point of view [56].

To effectively achieve Prime-path coverage of a sequence diagram modelling a SUT,
GA is used by Hoseini and Jalili [76]. The principle of the proposed algorithm works as
follows: firstly, a sequence diagram of an SUT is transformed into a control-flow graph
(which is a structure that is, in this study, different to established CFG in DFT); secondly,
prime paths are found in the control-flow graph; lastly, the GA is used to generate an
optimal set of test paths from these prime paths [76]. Even though the results of this
work are promising, generated test paths fulfill the prime path test coverage criterion,
which is unnecessarily strong criterion to solve the problem addressed by our thesis.

Another use of the GA is for basis path testing, a powerful structural testing approach
that employs a vector space and its basis to construct test paths [74]. Ghiduk introduces
a technique that uses a GA to generate a set of test paths for basis path testing [74].
The proposed GA begins with only entry and exit edges in an initial population. The
technique evaluates each chromosome by a fitness function value and selects parents of
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the next generation by a roulette wheel method. The crossover operator and mutation are
applied afterward to the individuals chosen for reproduction. A breeding phase follows,
in which an adjacent edge extends each chromosome to represent a complete path in
the future. The last proposed genetic operator is an elitist operator that enhances the
offspring of the current generation by its best member. The algorithm terminates when
a produced set of individuals (paths through a CFG) represents a basis set of paths. The
basis set of paths must consists of independent paths (those paths that never appear as
sub-paths of any other path in the CFG), the set of paths must contain all edges in the
CFG, and every path not contained in the basis set of paths must be constructible by a
linear combination of the paths in this set [74].

Girgis et al. propose their version of the GA that produces test sets that satisfy the
all-uses criterion [75] for DFT. The selection method uses the roulette wheel method, and
when the SUT code contains loops, the proposed algorithm searches for paths using the
ZOT-subset criterion: "Each loop in a program is iterated zero, one, and two times in
execution" [81].

To summarize, in the area of the GA applied in path-based and data-flow testing,
we have not identified a proposal that would address the limited network connectivity
problem, as is the subject of this thesis, for the same reason that we explained in the last
paragraph of Section 2.4.3.

2.4.4 Other Nature-inspired Approaches

A variety of additional algorithms for solving combinatorial and path-based testing prob-
lems also find inspiration from nature. Apart from the ACO and GA discussed in the
sections above, another example from a general class of swarm intelligence algorithms, is
the particle swarm optimization (PSO) algorithm. Generally, in the PSO principle, the
search space exploration imitates the behavior of swarms, such as schools of fish or flocks
of birds. Windisch et al. propose how to perform structural testing using the PSO and
state that this technique is much simpler, easier to implement, and has fewer parameters
that the user has to adjust than with the GA [53].

Another nature-inspired algorithm adapted for the automated generation of test paths
is the Artificial Bee Colony (ABC) search algorithm. It consists of three types of bees,
the scout bees, which search randomly for new food sources; the onlooker bees, which
decide which food source to process based on information from the last category of bees;
the employed bees, which fly to the food sources and determine nectar amounts in these
sources [82]. Lam et al. use the independent and parallel behavior of all types of bees
mentioned earlier to satisfy all independent test path coverage criteria [51]. Compared to
other nature-inspired algorithms, they state that the ABC-inspired algorithm finds the



solution more quickly.
Even fireflies, light-emitting flying bugs, inspired researchers to simulate their behavior

to solve optimization problems. Yang proposed a firefly algorithm (FA) based on the
following: all fireflies are attracted to each other, their attractiveness is proportional to
the brightness of the light they emit (those with a duller light will move toward those with
a brighter light, and those with an equal level of brightness will move randomly), and the
brightness of a firefly is determined by the objective function [83]. Therefore, during each
round of the algorithm, all fireflies move from their initial location through the search
space toward the brighter ones, storing the best solution (the location of the brightest
firefly) in each round. Srivatsava et al. use the FA approach to guide the graph traversal to
create paths that represent test cases in CFGs or state-based models of an SUT [84]. The
authors extend the original approach, defined by Yang [83], with the assumption that the
fireflies lose their intensity of brightness as they move through the graph (instead of using
space absorption coefficient that was employed in the previous versions of the algorithm)
and that the distance between fireflies is computed as the sum of edges between nodes,
instead of the original Cartesian distance in the space. The test path generation starts
by calculating the input model’s objective function, which is followed by the generation
of fireflies in each of the model’s nodes. The fireflies then traverse the graph led by the
guidance factor (calculated using cyclomatic complexity and the graph adjacency matrix),
looking for the best path. The fireflies can then further prioritize the order of the paths
in the test set by calculating the mean of the brightness of each path.

Internal mechanisms of the slime mold Physarum Polycephalum, a large single-celled
amoeboid organism, is used by Arora et al. [30] as inspiration to generate test scenarios
for the concurrent sections in the UML activity diagram. Using statistical analysis, the
authors demonstrate that the proposed Amoeboid Organism Algorithm (AOA) approach
is better than the existing ACO and GA approaches. This choice is made because of the
redundancies in those algorithms when traversing the search space, leading to savings in
the time needed to generate the set of test cases. On the other hand, there aren’t any
findings on the quality of the generated paths through the models in the paper. Also, it
is unclear what leads the agent through the traversal of the search space. Hence, it is
difficult to evaluate how this method can be used in relation to the subject of this thesis.

While analyzing all the path-based testing algorithms mentioned in this section, we
were not able to identify any that directly addressed the problem we introduce in Section
4 and define formally in Section 4.1.

Algorithms that can be utilized to solve our problem are those that accept the SUT
model G we define in this thesis (see Section 4.1), or its variant, based on a directed
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graph and a set of test requirements. Some proposals are given by Li et al. [13], namely
Brute force, Prefix-graph-based, or Set Covering algorithms. In this thesis, we utilize
the Set Covering algorithm and accompany it with a particular procedure to prepare test
requirements, as we present in Section 5.2.

2.5 Alternative Techniques for Testing IoT System Func-

tionality with a Limited Network Connectivity

The research community approaches the testing of IoT systems from several perspectives.
From the test organization perspective, Tan and Cheng propose a division according to
test levels: unit tests, integration tests, system tests, and acceptance tests [85]. Another
perspective present Murad et al., who divide it into usability tests, reliability and scala-
bility tests, compatibility tests, security tests, data integrity tests, and performance tests
[86]. Because these test levels are inspired by the widely researched area of software
testing, they often lack IoT specificity [85], [86].

However, there are some exceptions in the literature. As well as an overview of existing
tools for testing the IoT systems, Dias et al. introduce the IoT-specific division of testing
activities into the edge testing, fog testing, and cloud testing categories. From their
perspective, edge testing covers testing the low-level parts of the IoT system. At the
same time, fog testing spans the middle layer of the IoT system, network connection, and
security. Lastly, cloud testing addresses the cloud perspective of the IoT system, meaning
the scalability and dynamic configuration [87].

Focusing on network connectivity testing specifically, Muthiah and Venkatasubrama-
nian introduce the term “connectivity testing” for this purpose [88]. The need to perform
these connectivity tests is mentioned, for example, by Murad et al. in their example from
the healthcare industry [86]. The same term is used by Sirshar et al. in their preprint
about software quality assurance testing methodologies in IoT [89]. Additionally, Es-
quiagola et al. perform connectivity tests on their IoT platform [90].

Although insufficient attention has been paid to limited network connectivity testing
focusing on processes in IoT systems, some alternatives exist. The alternatives mainly
focus on lower levels of an SUT, typically on a network level [91]–[93]. The most frequently
explored topic in existing studies is Quality of Service (QoS) testing [5], [92], [94], [95].

In 2017, White et al. analyzed 162 research articles to carry out a systematic mapping
study on state-of-the-art QoS approaches in IoT [92]. The study found that the most
researched layers of the IoT infrastructure were the Open Systems Interconnection (OSI)
model’s physical, link, and network layers up to that year. On the other hand, the
deployment, middleware, and cloud layers lacked further research. However, this research



concentrated on individual layers of the IoT system infrastructure and didn’t consider the
high-level process viewpoint of the system.

Another study in this direction was done by Rudeš et al. to present a concrete example
of QoS assurance for IoT systems [91]. The study involved the testing of a small sensor
network prototype that shares its data, over the internet, with a server located in a labo-
ratory. However, the tests were aimed only at the network communication quality and not
the influence on the overall process. Matz et al. provide an analysis of quality assurance
for network communication between IoT systems on the physical and application layers
[94]. The authors measured the quality of a Narrowband-IoT technology that provides
energy-efficient and long-range network access to IoT devices using the cellular network,
e.g., Long-Term Evolution (LTE) or 5G in the future. Kim et al. propose a service-based
automated IoT testing framework to resolve constraints regarding coordination, costs,
and scalability issues of traditional software testing [96]. This framework also performs
remote distributed interoperability testing, scalable and automated conformance testing,
and semantic testing. However, the set of test cases that run on the SUT is predefined,
making the exhaustive process of testing under a limited network connectivity impossible
[96].

Analyzed studies in this area typically assess network reliability and related topics.
Higher levels of SUT functionality (functional correctness from the system user’s viewpoint
or flawless integration) are not tested. Hence, the techniques for testing IoT functionality
are underexplored from the perspective of system behavior. No specific path-based, data-
flow, or SBST technique directly addressed the given goals of this thesis.

A systematic mapping study on the aspects of quality assurance in IoT systems that
our lab recently conducted also confirms this conclusion [5]. The study found that one of
the areas not sufficiently covered in the literature and, therefore, worth exploring is the
development of specific test design techniques to test IoT systems with a limited network
connection, which is the issue addressed by this thesis.

2.6 Summary of Related Work and Motivation

Although there is no unified definition of which types of systems the IoT family includes,
all these systems employ the Internet (or a closed data network) as the connecting element
essential for the functionality of the individual components of a given system. Upon
examining the use cases of various IoT systems, wireless networks were primarily applied
to connect these components. Owing to its nature, a wireless network can experience
connection outages. This occurs if a mobile device is used in a location with problematic
network coverage (e.g., uninhabited areas, tunnels, subways), or in case of an energy
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shortage in the infrastructure, or defects or damage in the hardware components.
In all such systems and primarily those applied in the critical infrastructure, manufac-

turers should ensure the appropriate functioning of the system, even in case of a network
outage and restoration. As analyzed and explained in this section, this research area
requires further attention.

There are several reasons to approach the limited network connectivity tests from a
process perspective, as we do in this thesis. Firstly, owing to the potential model sizes and
versions of the individual components of the IoT system that can be combined, the number
of test cases can be enormous [97]. Second, the testers of smart devices should test these
devices in the real world outside the lab, where Internet connectivity may be intermittent
[98]. Any test performed in this manner requires considerable time and resources, which
favors the MBT approach because it can automatically generate a precisely optimized set
of test cases containing only the most significant test cases. Third, the testing process of
IoT systems should be automated to reduce testing costs and enable faster execution of
these tests [99], [100]. Thus, the process perspective provides a highly insightful basis for
this approach.

To model the processes of an IoT system, the initial models (e.g., UML activity di-
agrams) can be transformed into directed-graph-based models with specific properties.
A test case is a path through this graph-based model, and as discussed in Section 2.2,
path-based testing techniques are generally employed to generate these types of test cases.

However, the existing path-based testing methods do not address the specificity of the
testing problem described in Section 4.1. This problem model contains several limited
connectivity zones (LCZs), each of which represents a subsystem undergoing network
disruption. This LCZ is connected to the stable components of the IoT system through
the LCZ IN and LCZ OUT nodes (defined in Section 4.1), whose pairs must be present in
the test cases. More precisely, to visit the LCZ IN and OUT node pair on the borders of
LCZ z using a test case t, the LCZ IN node must be placed before the LCZ OUT node in
t. Furthermore, the path between the LCZ IN and LCZ OUT nodes in t must not exit z.
This rule is further described in Section 4.2, where we formalize the test coverage criteria.

This specific condition was not observed in the studied path-based testing techniques.
The only exception in the field that can be utilized is the test requirement concept,
which was employed in this project. As explained further in Section 5.2, we transformed
EachBorderOnce and AllBorderCombinations coverage criteria (defined in Section 4.2) to
test these requirements and used the algorithm proposed by Li et al. [13] to generate a
set of test cases satisfying these test requirements.

However, this is only one possible approach. In this thesis, we explored more alterna-
tives that can outperform an approach based on the test requirement concept.



In addition to the analysis of the existing literature, we should consider an indus-
trial perspective for motivation. Accordingly, we received positive feedback from several
companies with which our lab has been cooperating during the last four years, namely,
Skoda Auto, Rockwell, Siemens, and Electrolux. After explaining the principle of the
technique, all testing specialists from these companies confirmed that the proposed ap-
proach is reasonable from an industrial tester’s viewpoint and encouraged us to pursue
the development and implementation of this technique.



Chapter 3

Thesis Statement and Research

Questions

The research statement for this PhD project is as follows:
For a specific problem of testing the functionality of an IoT system under limited

network connectivity, the current established path-based testing techniques do not suffice,
and thus, a specialized technique has to be developed. Such a technique will produce a set
of test cases effective in terms of the testing effort required to identify relevant defects in
the system under test.

The research questions for the PhD project are inquired as follows:

• RQ 1: How to model the problem of testing the functionality of an IoT system under
limited network connectivity such that a path-based testing approach is utilized?

• RQ 2: Which existing approaches and algorithms can be utilized or partially utilized
to solve the defined problem?

• RQ 3: Which new algorithms developed specially for the discussed problem can
generate a set of test cases that is effective in the sense of the testing effort required
to find relevant defects in a system under test?

• RQ 4: Considering the nature of the path-based testing discipline, is it possible to
formulate the singularly best-performing algorithm, or would a strategy based on a
combination of several algorithms deliver the best solution?

In this thesis, RQ 1 is addressed in Sections 4.1 and 4.2. The proposed model is
further verified through a set of experiments, as described in Section 8. RQ 2 is answered
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by analyzing the existing algorithms reviewed in Section 2 and summarized in Section 2.6.
The development and proposal of an algorithm based on the established test requirements
concept is elaborated in Section 5.2. Notably, this algorithm serves as a baseline for
comparison with the proposed algorithms to obtain the first answer of RQ 3. Thereafter,
three additional algorithms are proposed in Sections 4.4.1, 4.4.2, and 4.4.3, which were
combined in the portfolio strategy presented in Section 6. The algorithms were executed
on the set of SUT models described in Section 7 and evaluated using criteria introduced
in Sections 4.3, 5.1, and 7.3. The experimental results are discussed in Section 8 and
further discussed in Section 9. Finally, based on the experimental results, an answer to
RQ 4 is provided in Section 9.



Chapter 4

Proposed LNCT Technique

To verify the functionality of an IoT system affected by limited network connectivity or
connectivity outages, test designers must construct a set of test scenarios addressing this
problem. In this thesis, the test design is primarily focused on testing the following two
principal situations:

1) In a particular part of a process handled by the SUT, the network connectivity is
interrupted (or limited to an extent that affects the functionality of the SUT). In such a
case, functional testing should be conducted on the SUT for the following scenarios1:

1. When a subsystem of the SUT is isolated from network connectivity for a certain
period as it collects data, are these data transmitted and correctly stored offline until
the network connectivity is restored, or do the collected data become irretrievable?

2. A SUT subsystem accepts signals, e.g., commands or application programming in-
terface (API) calls, from other devices or subsystems, and this receiving subsystem
is temporarily disconnected from the network. Are the other signal-transmitting
devices notified regarding the missing (offline) subsystem failing to respond to these
signals?

3. Is a SUT user notified regarding the limited functionality caused by network con-
nectivity outage?

2) The network connectivity is restored after an outage. At the instant the network
connectivity is recovered, the following typical situations require testing:

1. If the SUT data must be processed transactionally, is this transactionality main-
tained even in a network connectivity outage? Specifically, will the affected transac-
tions be discarded in a deterministic manner or completed via the available caches

1The given situations are only examples, and the list is not exhaustive but may include certain test
situations that are not relevant to all types of IoT systems
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upon recovering the connection? Are the cached transactions finished correctly,
including the logical order of their steps?

2. When SUT devices, modules, or subsystems cache the data during the connectivity
outage, are these cached data accurately transmitted to the receiving SUT modules
after the network connectivity is restored? Although this transmission might affect
the responsiveness or performance of the SUT, is such a temporary fallout acceptable
for the users and system safety?

3. Are the data stored and processed by the SUT consistent (their internal structure
and content not malformed) after network restoration and transmission of the locally
stored data or closure of the transactions?

4. Is a user of the SUT notified intently that the erstwhile disabled functionality is
available again?

In this thesis, we approached this problem from the perspective of process (or path-
based) testing. We aimed to execute a process flow in an SUT to learn the behavior
of the process as it is affected by a network connectivity outage or limitation. To test
the outlined situations, we must construct path-based test cases in which we follow the
events when the network connectivity is interrupted (or goes to be limited) by the events
in which the connectivity is restored. An exemplary case is illustrated in Figure 4.1.

A sample fictional IoT system composed of three subsystems (devices and backend sys-
tems) is presented in Figure 4.1, wherein Subsystems A and C are IoT devices: Subsystem
A is connected to a stable network, whereas Subsystem C is a mobile device operating in
an area under limited network connectivity (e.g., rural, maritime, or subterranean areas).
Subsystem B is the backend connected to a stable network.

In the test, we assumed that Subsystem C operates even without network connectivity.
We used various process flow variants to learn the system behavior under such restrictions.
In the current example, Functions 4, 6, and 7, and Decision 2 are affected by network
connectivity outages and depicted with the red border. To test the outlined situation, we
exercised a transition from Function 3 to Decision 2, Decision 2 to Function 2, Function
5 to Function 6, and Function 7 to Function 10 (these transitions are depicted in red in
Figure 4.1). In the test scenario presented in Figure 4.1 (bold arrows) as an example, the
event is sequenced till the network connectivity is interrupted (or limited, transitioning
from Function 3 to Decision 2) along with the record of the event in which connectivity
is restored (transitioning from Function 7 to Function 10).

Using an SUT model, various test paths sequencing the events of network connectivity
outage with the events of connectivity restoration can be identified. However, a significant
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Figure 4.1: Initial example of an SUT affected by a network connectivity outage in its
submodule and a path-based test case enabling the test of the SUT behavior in such
situations.

number of test cases would not be optimal from the perspective of the overall testing
expenditure. Thus, our goal is to generate cost-effective test sequences to address the
limited network connectivity problem.

4.1 Model of the Problem

The SUT process, which can be affected impacted by a possible network connection
outage (CO), for which we create the test cases, is abstracted as a directed graph G =

(N,E, ns, Ne), where N ̸= ∅ represents a finite set of nodes, and E denotes a nonempty
set of directed edges, E = {(n,m) | (n,m) ∈ N × N is an ordered pair of nodes }. The
node ns ∈ N is the initial/start node of the graph G (with no incoming edges), and Ne

defines a nonempty set of end nodes of graph G, Ne = {ne | ne ∈ N has no outgoing
edge}. In particular, the nodes serve as abstractions of the SUT actions, functions, or
decision points, and the edges represent the transitions between them in the process flow.
In the proposed method, G does not permit parallel edges.

Test case t is a sequence of nodes n1, n2, ..., nn, with a sequence of edges e1, e2, ..., en−1,
where ei = (ni, ni+1), ei ∈ E. Test case t starts with start node ns (n1 = ns) and ends



with end node (nn ∈ Ne). Test set T is a set of test cases. Alternatively, we used the
term test path for the test case in the text.

Edge connection outage probability (COP) denoted by cop(e) is defined for e ∈ E
and indicates a percentage representing the abstracted probability of a connection outage
in this edge. If particular value of cop(e) is defined, then e is a transition affected by the
possible limited network connectivity in the IoT system.

Threshold COP denoted by threshold represents the threshold connection outage
probability, for which the test set T is created. By setting threshold to n, we assume
that all edges with a COP greater than or equal to n will be affected by a hypothetical
network connectivity outage.

Furthermore, we introduce the concept of limited connectivity zone (LCZ). LCZ edge

is an edge e ∈ E for which cop(e) ≥ threshold and Non-LCZ edge denotes an edge e ∈ E
with cop(e) < threshold. LCZ L represents a coherent subgraph of G containing only
the LCZ edges. For a given threshold, G can contain more than one LCZ. LCZs of G are
denoted by L(G, threshold).

IN node of LCZ L denotes a node n satisfying one of the following conditions:

1. n = ns and n has an outgoing edge that is an LCZ edge of L.

2. n has an outgoing edge that is an edge of L, and n has an incoming edge that is not
an LCZ edge of L.

in(L) ⊂ N denotes all IN nodes of L and in(G, threshold) ⊂ N denotes all IN nodes of
all LCZs L(G, threshold).

OUT node of LCZ L is a node n that satisfies one of the following conditions:

1. n ∈ Ne and n has an incoming edge that is an edge of L.

2. n has an incoming edge that is an LCZ edge of L, and n has an outgoing edge that
is not an LCZ edge of L.

out(L) ⊂ N denotes all OUT nodes of L and out(G, threshold) ⊂ N denotes all OUT
nodes of all LCZs L(G, threshold).

Border node of LCZ is either the IN or OUT node of LCZ
Using the fictional IoT system outlined in Figure 4.1 as an example, these concepts

are illustrated in Figure 4.2. In the example, Ne = {n11, n16}, L contains n5, n6, n7,
and n8, in(L) = {n5, n7} and out(L) = {n5, n8}. The sample test case can be t =

ns, n1, n2, n3, n4, n5, n7, n8, n15, n16.
The test case generation problem is stated as follows: Given the SUT model G,

threshold, and test coverage criterion C, determine a test set T satisfying C. The test
coverage criteria are described in Section 4.2.
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Figure 4.2: Illustration of defined model elements in exemplary IoT system.

4.2 Test Coverage Criteria

For the limited connectivity problem discussed in this thesis, several test coverage crite-
ria C can be defined, and here, we defined four test coverage criteria: EachBorderOnce,
AllBorderCombinations, ComprehensiveEachBorderOnce, and ComprehensiveAllBorder-
Combinations. These test coverage criteria differ according to the number of test case
steps and the method of test case construction.

To satisfy the EachBorderOnce criterion, the test set T must contain each node
of in(G, threshold) and out(G, threshold). Furthermore, for all L ∈ L(G, threshold), if
t ∈ T contains a node nin ∈ in(L), then this node must be followed by a node nout ∈ out(L)
later in the test path t but not necessarily immediately. The proposed technique allows
nin to be equal to nout, because in certain situations, the LCZ may be entered and exited
through the same node. Practically, this test coverage criterion requires that the test
cases visit all the LCZ border nodes at least once, regardless of the path for entering the
IN and exiting the OUT nodes.

To satisfy the AllBorderCombinations criterion, for each L ∈ L(G, threshold),
the test set T must contain each combination of a node nin ∈ in(L) and a node from
nout ∈ out(L), for which a path exists from nin to nout inside the L. Furthermore, for all
L ∈ L(G, threshold), if t ∈ T contains a node nin ∈ in(L), then this node must be followed
by node nout ∈ out(L) later in the test path t, but not necessarily immediately, to satisfy



this coverage criterion. Note that nin can be equal to nout. Informally, this test coverage
criterion requires that the test cases must traverse through all possible combinations of
the IN and OUT nodes of the LCZ borders for which there exists a path inside the LCZ
from the IN node to an OUT node, regardless of the edges followed to enter the IN and
exit the OUT nodes in the test case.

To visit the nodes susceptible to network outage using more possible combinations of
paths beyond the LCZs, we define two additional test coverage criteria suitable for testing
the more critical components of the SUT processes.

To satisfy ComprehensiveEachBorderOnce, T must satisfy EachBorderOnce, and
the following conditions must be satisfied: each nin ∈ in(G, threshold) must be entered
by a Non-LCZ edge in a t ∈ T and each nout ∈ out(G, threshold) must be exited by a
Non-LCZ edge in a t ∈ T .

To satisfy the ComprehensiveAllBorderCombinations, for each L ∈ L(G, threshold),
the test set T must contain all combinations of a node nin ∈ in(L) and a node from
nout ∈ out(L) for which a path exists from nin to nout within L. Furthermore, nin must
be entered by a Non-LCZ edge in a t ∈ T and nout must be exited by a Non-LCZ edge in
this t. Furthermore, for all L ∈ L(G, threshold), if t ∈ T contains node nin ∈ in(L), then
this node must be (later in the test path t but not necessarily immediately) followed by
node nout ∈ out(L) to satisfy this coverage criterion. Note that nin can be equal to nout.

These novel test coverage criteria are applicable in various situations based on the crit-
icality of the SUT and the available testing resources. Informally, the EachBorderOnce
criterion is the weakest and results in the lowest number of test steps in T . The All-
BorderCombinations coverage criterion cover all possible combinations of the LCZ border
nodes. Therefore, it induces more rigorous testing and a greater number of test steps in
T . The "Comprehensive" variant of both criteria, ComprehensiveEachBorderOnce and
ComprehensiveAllBorderCombinations, further increase the potential number of test steps
in T , as they require exiting an LCZ before visiting another LCZ IN node in a test case.

4.3 Test Set Evaluation Criteria

To evaluate the test set cost or quality, several test-set evaluation criteria have been
discussed in the literature for path-based testing [13], [101], [102]. For the current research
problem discussed in this thesis, the options defined in Table 4.1 were employed as test
set evaluation criteria E .

From these criteria, the total length of the test set T , l(T ) served as a proxy for the
effort required to conduct the tests. The count of test cases in a test set T , |T |, is an
auxiliary indicator for evaluating the results of the individual algorithms. A lower value
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Evaluation criterion Description

|T | Number of test cases in test set T .

l(T ) =

|T |∑
i=1

|ti|, ti ∈ T
Total length of test set T measured in
number of edges.

s(T ) =

√√√√√√
|T |∑
i=1

(|ti| − |t|)2

|T | − 1
, |T | > 1

Length dispersion of the test cases in
the test set T , expressed by a standard
deviation of test case lengths; the test
case length is measured in the number
of edges.

U(T ) =
u_edges(T )

l(T )
· 100%

Ratio of unique edges in test set T to
the total number of edges in test set T ,
where u_edges(T) denotes the number
of unique edges in test set T .

B(T ) =
b_nodes(T )
l(T ) + |T |

· 100%

Ratio of the number of border nodes in
test set T to the total number of nodes
in test set T (which is l(T )+|T |), where
b_nodes(T) denotes the number of bor-
der nodes in test set T for all LCZs of
G.

Table 4.1: Test case evaluation criteria E .

of l(T ) (for T satisfying the given test coverage criterion) indicated more effective test
cases from the standpoint of testing effort. Although |T | can be interpreted in the same
manner, |T | must be considered in the context of l(T ) and an isolated value of |T | does
not directly express the effort required to execute the tests.

The length dispersion of a test set T (s(T )) is vital for preventing excessively long and
short test cases. Generally, test analysts consider lengthy test cases impractical because
the probability that the test case is interrupted by a defect and the remainder of the
test cases cannot be completed increases with its length. Consequently, as a higher s(T )
implies higher variability in the length of the test case, a lower value of s(T ) implies a
more suitable test set.

Criterion U(T ) provides additional information on the effectiveness of the test cases,
and its goal is to express a (potentially ineffective) repetition of G edges in the test cases.
A higher U(T ) value indicates better T .

Similarly, B(T ) expresses the effectiveness of the test set for visiting the LCZ border
nodes in relation to the total number of G nodes visited during the tests, i.e., a higher
value of B(T ) indicates better T .

In the present experiments, we applied the defined E to evaluate the properties of T



generated by the algorithms for various SUT models.

4.4 Proposed Algorithms

In this thesis, we present three algorithms that generate T fromG for the LNCT technique:

1. Shortest paths composition (SPC) is based on the principle of determining the
shortest path between the nodes identified in G and connecting them in the test
cases (described in Section 4.4.1);

2. Ant colony optimization-based algorithm (ANT) employs the ant-colony op-
timization principle to find the test cases (described in Section 4.4.2);

3. Adapted genetic algorithm-based paths generation (AGA) employs the
principle of genetic algorithm to derive the test cases (described in Section 4.4.3).

4.4.1 Shortest Paths Composition Algorithm

The main routine of the SPC is described in Algorithm 1, which accepts G, threshold,
and C as inputs and produces T as its output, while maintaining a set of unused LCZ IN
nodes Uin and a set of unused LCZ OUT nodes Uout. The Algorithm 1 starts by finding
all shortest paths between in(L) and out(L) inside all LCZ L ∈ L(G, threshold) of given
G. They are generated by a subroutine FindPathsInLCZs and stored to P .

The subroutine FindPathsInLCZs, described in Algorithm 2, works on the breadth-
first search principle starting in out(L) nodes of each LCZ L ∈ L(G, threshold). Nodes to
traverse are stored in queue Q. For all explored nodes, the distance from a particular node
nout ∈ out(L) is stored. In the algorithm, this distance is denoted as distance(n1, n2).
Then, for each L, paths from each in(L) with the shortest distance to out(L) are selected
as an output, denoted as P . In Algorithm 2, parents(n) denotes the set of parents of
node n.

The main routine of Algorithm 1 continues by exploring G using the breadth-first
search principle. When this search reaches a start node of any path p ∈ P , the exploration
history stored in potential_previous_TC_step is expanded by nodes in p, and the end
node of p is added to the queue Q that contain nodes, from which further exploration of
the graph is conducted.

The selection of path p ∈ P , which is going to be used in the currently constructed
test case, is specified in procedure GetNextShortestPathInLCZ (Algorithm 3). This
procedure also manages the removal of p from P according to the selected coverage crite-
rion C. For ComprehensiveAllBorderCombinations this procedure just removes p from P .
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For AllBorderCombinations or EachBorderOnce, this procedure removes all paths p′ ∈ P
that are sub-paths of p. For the EachBorderOnce and ComprehensiveEachBorderOnce
test coverage criteria, all paths p′, ending with already-used LCZ OUT nodes (nodes that
are not in Uout), are removed from P .

Then, the exploration of G continues searching for another start node of different path
q ∈ P . When an end node of G is reached during the exploration, a test case is composed
based on the exploration history and added to a set of test cases T that the SPC routine
returns as its result.



Algorithm 1: SPC(G, threshold, C): Combine shortest paths between the start
node and some of the end nodes through the the LCZs in the test cases.
Input : SUT model G, threshold, and coverage criteria C
Output: set of test cases T

1 T ← ∅; Uin ← in(G, threshold); Uout ← out(G, threshold)

2 P ← FindPathsInLCZs(G, threshold) ; ▷ ∀p ∈ P must be contained in T

3 while P ̸= ∅ do

4 PUT ns ∈ G to Q ; ▷ Q is a queue of nodes to traverse

5 set path as empty ; ▷ path is a sequence of consecutive nodes

6 while Q is not empty do

7 n← POP from Q ; ▷ n is a currently traversed node

8 if n ∈ in(G) and P contains a path that starts in n then

9 p← GetNextShortestPathInLCZ(C, P, n, Uin, Uout)

10 P ← P \ {p}
11 o← the last node of p ; ▷ o ∈ out(G, threshold)
12 for each np ∈ p do

13 potential_previous_TC_step(np)← parent(np) ; ▷ Save parent

- child connection

14 end

15 SET Q as empty ; ▷ Delete all elements in Q

16 PUT o to Q

17 end

18 else if n ∈ Ne then

19 t is a new path of nodes; Add n to t
20 temp← n

21 while potential_previous_TC_step(temp) has been set do

22 add potential_previous_TC_step(temp) at the beginning of t
23 temp← potential_previous_TC_step(temp)

24 end

25 T ← T ∪ t
26 end

27 else

28 for each d ∈ descendants(n) do

29 potential_previous_TC_step(d)← n

30 end

31 end

32 end

33 end

34 return T
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Algorithm 2: FindPathsInLCZs(G, threshold): Find all relevant shortest
paths inside LCZs present in the SUT model G.
Input : SUT model G, threshold
Output: set of shortest paths between in(L) and out(L) inside the LCZ L for all

L ∈ L(G, threshold), denoted as P
1 P ← ∅
2 for each LCZ L ∈ L(G, threshold) do

3 for each nout ∈ out(L) do

4 SET Q as empty ; ▷ Q is a queue of nodes to traverse

5 PUT nout to Q
6 for each x in L except nout do

7 distance(nout, x)←∞ ; ▷ distance equals to number of nodes

of a path from nout to x

8 end

9 while Q is not empty do

10 n← POP from Q

11 for each p ∈ parents(n) do

12 if distance(nout, p) > distance(nout, n) then

13 distance(nout, p)← distance(nout, n) + 1

14 PUT p to Q

15 end

16 end

17 end

18 for each nin ∈ in(L) do

19 SET path as empty ; ▷ path is a sequence of consecutive nodes

20 n← nin ; ▷ n is a currently traversed node

21 while n ̸= nout do

22 n← x ∈ L such that distance(n, x) is minimal
23 ADD n at the end of path

24 end

25 ADD n at the end of path
26 if |path| > 1 then

27 P ← P ∪ path
28 end

29 end

30 end

31 end

32 return P



Algorithm 3: GetNextShortestPathInLCZ(C, P, nin, Uin, Uout): Return the
shortest path inside LCZ from nin with respect to given coverage criterion C.
Input : a coverage criteria C, set of shortest paths P , an LCZ IN node nin, set

of unused LCZ IN nodes Uin, and set of unused LCZ OUT nodes Uout

Output: next shortest path p
1 nout ← a node to which exists a path from nin present in P
2 if C = EachBorderOnce or C = ComprehensiveEachBorderOnce then

3 if nout /∈ Uout and P contains a path that ends in an n′
out ∈ Uout then

4 nout ← n′
out

5 end

6 end

7 p← a path from nin to nout that is present in P
8 P ← P \ {p}
9 if C = AllBorderCombinations or C = EachBorderOnce then

10 for each n ∈ p do

11 for each path p′ from n that is present in P do

12 n′
out ← the end node of path p′

13 if n′
out follows n in path p then

14 P ← P \ {p′}
15 end

16 end

17 end

18 end

19 if C = EachBorderOnce or C = ComprehensiveEachBorderOnce then

20 P ← P \ { p | p ∈ P and p starts in nin and leads to an nx /∈ Uout }
21 end

22 return p

4.4.2 Ant Colony Optimization-based Algorithm

The ANT algorithm is inspired by the Ant Colony Optimization (ACO) algorithm that we
already introduced in Section 2.4.2. The main routine of ANT is described in Algorithm
4, which accepts G, threshold, and C as inputs and produces T as its output. The
following section presents the algorithm variables, their initiation, the algorithm steps,
and procedures, e.g., how to obtain the desirability and pheromone levels to guide the
traversal of G and how to choose the ant that found the best path.
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Constant Value
α 1
β 3
NC 15
ρ 0.5
m 30
c 1.0

Table 4.2: The values of the constants for the ANT algorithm.

Algorithm Variables and Constants

There are two important variables that influence the ant’s traversal of G. Namely, τij
represents the pheromone intensity of edge (i, j) ∈ E, and H[(i, j)] stores the desirability
of edge (i, j) ∈ E.

The following variables and constants are employed in the ANT algorithm:

• α: A constant representing the weight of the pheromone level in the calculation.

• β: A constant representing the weight of the desirability level in the calculation.

• NC: A constant representing the number of repetitions of an ant’s search for a path.

• ρ: A coefficient representing the level of pheromone evaporation after each iteration
of the ant’s search for a path.

• m: A constant representing the number of ants used for the graph exploration.

• τij: The pheromone intensity of edge (i, j) ∈ E.

• H[(i, j)]: The desirability of edge (i, j) ∈ E.

• c: The initial level of the τij variable.

The values of the constants specified in Table 4.2 were found after extensive fine-tuning
during the experiments, which yielded the best results for the ANT algorithm.

Algorithm Initiation

The ANT’s main routine is specified in Algorithm 4. It accepts G, threshold, and C as
inputs and produces T as its output. In the initial step, the algorithm creates a mapping
U that contains a set of reachable LCZ OUT nodes U ⊂ out(L) for every node n ⊂ in(L).
This mapping is constructed for all LCZs L. In the Algorithm 4, LCZ OUT node r ⊂ U

reachable from node n means that a path from n to r exists. The method for generating U



traverses all L ∈ L(G, threshold) that begin in nin ∈ in(L) nodes and end in nout ∈ out(L)
nodes, using the breadth-first search (BFS) algorithm.

The ANT routine continues by calling the ANTCore procedure (see Algorithm 5)
repeatedly. Among its outputs, it produces a path P that is stored into a set of test cases
T , and LCZ border node pairs stored in Bin and Bout that are then removed from the
mapping U . Algorithm 4 continues until the mapping U is not empty.

In the ANT algorithm, the term nodes covered by ants means that a particular ant
traversed a pair of LCZ IN and LCZ OUT nodes in a sequence corresponding to selected
test coverage criterion C (see Section 4.2).

Algorithm 4: ANT (G, threshold, C): The main routine of the ANT Algorithm
that explores G and maintains a mapping of covered LCZ border nodes U .
Input : SUT model G, threshold, coverage criterion C,
Output: Set of test cases T

1 U is a mapping where a key is an LCZ IN node k ∈ in(G, threshold) and a value
is a set of LCZ OUT nodes from out(G, threshold) that are reachable from k in
G. In U , an empty set can be stored for a particular key.

2 Initiate U for G and threshold.
3 T ← ∅
4 while U is not empty do

5 (P,Bin,Bout)← ANTCore(G, threshold, C,U) ; ▷ Find the best path P

and covered LCZ border nodes Bin and Bout
6 T ← T ∪ {P} ; ▷ Add path P to the set of test cases

7 for each nin ∈ Bin do

8 for nout ∈ Bout do

9 REMOVE nout from U [nin] ; ▷ Covered LCZ OUT node nout

10 end

11 end

12 for each nin ∈ Bin do

13 if U [nin] = ∅ then

14 REMOVE key nin from U ; ▷ Covered LCZ IN node nin

15 end

16 end

17 end

18 return T
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The ANTCore Algorithm

The ANTCore procedure, described in Algorithm 5, manages the traversal of the ants
through G. The ants are led by a combination of desirabilities and pheromone disposal
on the edges of G.

First, the algorithm creates the list of ants; this list has lengthm. Second, the mapping
of desirabilities D is initialized. For each node x ∈ N , this mapping D returns which
LCZ border nodes are reachable from x (the mapping D returns a set (Rin, Rout), where
reachable LCZ IN nodes are stored in set Rin and reachable LCZ OUT nodes are stored
in set Rout).

The next step is obtaining the desirability levels, specified in the FindReachableBNs
procedure (Algorithm 6). This procedure traverses G from each end node ne ∈ Ne to the
start node ns, following the edges in the reverse direction.

The ANTCore algorithm continues by traversing G using the ANTTraversal pro-
cedure (Algorithm 7) and then selecting the best ant (champion) a ∈ A using the
FindChampion procedure (Algorithm 10). ANTTraversal and FindChampion pro-
cedures, both described in a greater detail below, are repeated NC number of times so
that the pheromone levels have a more significant impact.

The output of the ANTCore procedure is ant a’s path P and the LCZ border nodes
it covers, stored in variables Bin for LCZ IN nodes and Bout for LCZ OUT nodes. We
define Bin and Bout in Section Ant Traversal.

Finding Reachable LCZ Border Nodes

Procedure FindReachableBNs specified in Algorithm 6 traverses G from its end nodes
to the start node by the depth-first search (DFS) algorithm. The algorithm is storing the
LCZ IN and LCZ OUT nodes that are reachable from all x ∈ N into D.

Ant Traversal

Algorithm 7 defines the process of traversing the SUT model G by a selected ant. For
each ant ξ ∈ A, the algorithm starts to traverse G from the node ns. During the traversal,
it stores the nodes that ant ξ visited in variable P . The LCZ border nodes that ant ξ
covered according to the selected test coverage criteria C are stored in a set Bin and a
mapping Bout. The set Bin contains LCZ IN nodes. Storage of the LCZ OUT nodes
Bout is implemented as mapping Bout : bin → Bout, where bin ∈ in(G, threshold) and
Bout ⊂ out(G, threshold).

As introduced earlier, the traversal of G by ant ξ is guided by a combination of
pheromone disposal and desirability levels on the edges. The desirability level of each



Algorithm 5: ANTCore(G, threshold, C,U): Traverse the SUT model by ants,
who are trying to visit as much LCZ border nodes as possible; return the cham-
pion when finished.
Input : SUT model G, threshold, coverage criterion C, a mapping of yet

uncovered nodes U
Output: The best path P found, a set of LCZ IN nodes Bin covered in P , and a

mapping of LCZ OUT nodes Bout.
1 Set all constants for the ANT algorithm described in 4.4.2 to the values specified

in Table 4.2.
2 A is a set of m ants
3 P is a mapping of ant paths, where particular ant ξ is the key and its path is the

value P [ξ]
4 D ← ∅ ; D is a mapping of a node n ∈ G to a set (Rin, Rout), Rin ⊂ N ∈ G,

Rout ⊂ N ∈ G, where nodes from Rin are reachable from n and nodes from Rout

are reachable from n. This mapping is created for all N ∈ G and D[x] denotes
particular (Rx

in, R
x
out) for a node x.

5 for each ne ∈ Ne do
6 V ← ∅ ; ▷ A set to store visited nodes
7 D′ ← FindReachableBNs(G, threshold, U , D, V , ne)
8 D ← D′

9 end
10 count← 0
11 while count ≤ NC do
12 count← count+ 1
13 for each ξ ∈ A do
14 Place ant ξ to the position of node ns

15 (P ′, B′
in,B′

out)← ANTTraversal(G, threshold, C,U , ξ)
16 P [ξ]← P ′, Nin[ξ]← B′

in, Nout[ξ]← B′
out

17 end
18 a← FindChampion(A,Nin,Nout,P) ; ▷ Select the best ant a ∈ A
19 for each edge (i, j) in P [a] do

20 τij ← τij +
1

|P [a]|
; ▷ Deposit pheromone on edges in P [a], for τij

see Section 4.4.2, |P [a]| denotes the number of nodes in P [a]
21 end
22 for each edge (i, j) ∈ E ∈ G do
23 τij ← (1− ρ) ∗ τij ; ▷ Pheromone decay of all edges, for ρ see

Section 4.4.2
24 end
25 end
26 a← FindChampion(A,Nin,Nout,P) ; ▷ Find the ant with the best path

upon all iterations
27 P ← P [a];Bin ← Nin[a];Bout ← Nout[a]
28 return (P,Bin,Bout)
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Algorithm 6: FindReachableBNs(G, threshold, U , D, V , n): Traverse the
SUT model G to find from which nodes we can reach which LCZ border nodes.
Input : SUT model G, threshold, a mapping of uncovered LCZ border nodes

U , a set of already visited nodes V , mapping D that for each node
x ∈ N ∈ G returns which LCZ border nodes can be reached from x,
traversed node n

Output: Updated D after all recursive iterations of this subroutine
1 for each p ∈ parents(n) do
2 if p ̸∈ V then
3 V ← V ∪ p
4 (Rp

in, R
p
out)← D[p]

5 if n ∈ in(G, threshold) and n is a key in U then
6 Rp

in ← Rp
in ∪ n

7 end
8 if n ∈ out(G, threshold) and U contains a value n for any key then
9 e is an edge from p to n

10 if cop(e) ≥ threshold then
11 Rp

out ← Rp
out ∪ n

12 end
13 end
14 D[p]← (Rp

in, R
p
out)

15 D′ ← FindReachableBNs(G, threshold, U , D, V , p) ; ▷ Recursive call
16 D ← D′

17 end
18 end
19 return D

edge is calculated by the CalculateDesirabilities procedure (Algorithm 8, described in
the following paragraph) and stored in mapping H, which maps each edge (i, j) ∈ E to
a desirability level. The desirability levels of the edges are updated after each move the
ant makes because they are dependent on the Bin and Bout variables, which are changed
during the execution of the ANTTraversal procedure.

When the desirability is computed, the ant moves to a randomly selected edge of G
using a probability stored in a mapping ENi

. This is calculated using the equation on
line 10 of Algorithm 7, which is inspired by Dorigo’s formula (1) in the study Ant colony
optimization: A new meta-heuristic [103].

Furthermore, according to the selected test coverage C, Algorithm 7 calls the Man-
ageBorderNodes procedure, specified in Algorithm 9. This procedure returns an updated
set Bin and a mapping Bout of covered LCZ IN and LCZ OUT nodes respectively, based
on the ant’s current path and the node’s j nature (for instance, LCZ IN node, uncovered
LCZ OUT node, or other types). We introduce this algorithm details later in this section.
The procedure ManageBorderNodes ends when the ant moves to an end node ne ∈ Ne.



Algorithm 7: ANTTraversal(G, threshold, C,U , ξ): The inner procedure of the
ANTCore algorithm, which performs the SUT model traversal by ant ξ.
Input : SUT model G, threshold, coverage criterion C, a mapping of uncovered

nodes U , ant ξ
Output: path P of ant ξ, a set Bin of LCZ IN nodes covered by ξ, a mapping

Bout of LCZ OUT nodes covered by ξ
1 P ← empty path ; ▷ P is a path of ant ξ
2 PL ← empty path ; ▷ A path of ξ inside LCZ L ∈ L(G, threshold)
3 Bin ← ∅ ; ▷ LCZ IN nodes set covered by ant ξ
4 Bout ← Create an empty mapping bin → Bout;

bin ∈ in(G, threshold), Bout ⊂ out(G, threshold)
5 nin ← nil ; ▷ The last LCZ IN node reached by ant ξ during its path
6 while ξ has not reached ne do
7 i← current position of ξ, Ni ← set of i descendants

H ← CalculateDesirabilities(G, U , C, i, nin, P , D, Bin, Bout)
8 ENi

is a mapping where a value is a number < 0, 1 > of probability of ant ξ
moving to j ∈ Ni via edge x incoming to j and key is x

9 for all nodes j ∈ Ni do

10 ENi
[(i, j)]← (τij)

α · (H[(i, j)])β∑
l∈Ni

τil · H[(i, l)]
; ▷ Store the probability of ant ξ

moving to node j by edge (i, j)

11 end
12 Randomly select next node j ∈ Ni to move ant ξ to, using edge (i, j). In this

selection, probability ENi
[(i, j)] is used.

13 if cop((i, j)) ≥ threshold then Add (i, j) at the end of PL ;
14 Add (i, j) at the end of P ; Move ξ from i to j using (i, j)
15 if j is a key in U then
16 nin ← j ; ▷ node j is uncovered LCZ IN node
17 end
18 else if j is anywhere in values of U then
19 Bin ← Bin ∪ {nin}, Bout[nin]← Bout[nin] ∪ {j}
20 if C = ComprehensiveAllBorderCombinations or

C = ComprehensiveEachBorderOnce then
21 (B′

in,B′
out)←ManageBorderNodes(nin, j, Bin, Bout, U , C, PL)

22 end
23 else
24 for each node x in PL from the beginning of PL do
25 P ′

L ← part of PL starting with x
26 for each node p′ in P ′

L from the beginning of P ′
L do

27 (B′
in,B′

out)←ManageBorderNodes(x, p′, Bin, Bout, U , C, PL)
28 end
29 end
30 end
31 end
32 (Bin,Bout)← (B′

in,B′
out)

33 end
34 return (P,Bin,Bout)
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The Calculation of Edge Desirability

Edge desirabilities are computed by the CalculateDesirabilities procedure specified in
Algorithm 8. This procedure produces a mapping H that for each edge (i, j) ∈ E returns
its desirability h ∈< 0, 1 >, which corresponds to the number of uncovered LCZ border
nodes reachable when using edge e. The procedure works as follows. First, the algorithm
initializes the mapping H. Then, it iterates each edge (i, j) and stores the number of
reachable uncovered LCZ border nodes in variable h. The algorithm gets the set of
uncovered LCZ IN nodes in Rj

in and the set of uncovered LCZ OUT nodes from Rj
out,

which it gets as a tuple (Rj
in, R

j
out) from the mapping D. These sets need to be updated

based on the path the ant traversed; therefore, the algorithm creates another sets Rj
in

′ and
Rj

out
′, empty initially. Firstly, the algorithm updates Rj

in
′ when node j is an uncovered

LCZ IN node. Secondly, it updates Rj
out

′ when node j is an uncovered LCZ OUT node.
The rest of the algorithm updates Rj

in
′, Rj

out
′, and h according to the current position of

the ant; whether it is inside, on the border, or outside any LCZ, and according to the
chosen test coverage criterion C. Specifically, h is equal to the number of nodes in sets Rj

in
′

and Rj
out

′. If there is at least one such uncovered node (h > 0), we project h into h′ ∈ (0, 1)

using a function h′ = − 1

2h
+ 1 and store it with key (i, j) into H, which is returned by

the CalculateDesirabilities procedure when the iteration of edges is complete.

Traversing G and Covering LCZ Border Nodes

When the ant is traversing G, the algorithm keeps sets of covered border nodes Bin

and Bout dynamically updated. This is done by using the ManageBorderNodes procedure,
described in Algorithm 9. This procedure returns the updated set of LCZ IN nodesBin and
LCZ OUT nodes Bout that the ant covered, according to the selected test coverage criterion
C. First, the ManageBorderNodes procedure tests whether nin and nout aren’t covered yet
by checking their presence in U , and if not, it updates Bin and Bout accordingly. Then, if C
is equal to EachBorderOnce or ComprehensiveEachBorderOnce, the algorithm iterates
each uncovered LCZ IN node uin ∈ U that has the LCZ OUT node nout in the set U [uin]
and then updates Bout[uin], where the information if the LCZ OUT nout is covered by this
ant is stored. LCZ IN node nin is covered by ant (added to Bin) for EachBorderOnce
or ComprehensiveEachBorderOnce test coverage criteria in all cases. For the other test
coverage criteria, nin is added to Bin only when the mapping Bout of LCZ OUT nodes
(covered by the current ant in use) contains all yet uncovered LCZ OUT nodes U [uin].



Algorithm 8: CalculateDesirabilities(G, U , C, i, nin, P , D, Bin, Bout): Calcu-
lates desirabilities of the edges according to the number of border nodes reachable
from surrounding nodes and not covered yet.
Input : SUT model G, mapping of uncovered LCZ border nodes U , coverage

criterion C, node i, uncovered LCZ IN node ni, path P of ant, mapping
D that for each node n ∈ N ∈ G returns which LCZ border nodes it
reaches, set of covered LCZ IN nodes Bin, set of covered LCZ OUT
nodes Bout,

Output: Mapping H for ant-routing to neighbors of i, where a key is some edge,
and a value is its desirability.

1 Set H as empty
2 for each edge (i, j) outgoing node i
3 h = 0 ; ▷ Number of reachable uncovered LCZ border nodes when

using edge (i, j)

4 (Rj
in, R

j
out)← D[j] ; ▷ Symbols defined in Algorithm 5

5 Rj
in

′ ← ∅ ; ▷ Uncovered LCZ IN nodes reachable from node j

6 Rj
out

′ ← ∅ ; ▷ Uncovered LCZ OUT nodes reachable from node j

7 if j ∈ Rj
in then

8 Rj
in

′ ← Rj
in \Bin

9 end
10 if j ∈ Rj

out then
11 for each LCZ OUT node r ∈ Rj

out do
12 if r is not in values in mapping Bout then
13 Rj

out
′ ← Rj

out
′ ∪ {r}

14 end
15 end
16 end
17 if (i, j) is an LCZ edge then
18 L is an LCZ that contains (i, j)
19 if nin is not nil then
20 Rj

out
′ ← Rj

out
′ \ {i} ; ▷ Because i is uncovered LCZ OUT node

21 Rj
in

′ ← Rj
in

′ \ in(L)
22 h = 1 + |Rj

in
′|+ |Rj

out
′|

23 end
24 else if last edge of path P is not a LCZ edge and i ∈ U and i /∈ Bin then
25 Rj

in
′ ← Rj

in
′ \ {j} ; ▷ Because j is uncovered LCZ IN node

26 h = 1 + |Rj
in

′|+ |Rj
out

′|
27 end
28 else
29 Rj

in
′ ← Rj

in
′ \ out(L)

30 end
31 end
32 ... continues on the following page
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33

34 ... continuation of Algorithm 8
35 else if nin is not nil and (i ∈ U or C = ComprehensiveEachBorderOnce or

C = EachBorderOnce) then
36 h = 1 + |Rj

in
′|+ |Rj

out
′|

37 end
38 else if nin is nil and i ∈ U and i /∈ Bin then
39 h = 0 ; ▷ To avoid reaching border of LCZ zone
40 end
41 else
42 h = |Rj

in
′| ; ▷ (i, j) is leading to a LCZ OUT node

43 end
44 if h > 0 then

45 h′ = − 1

2h
+ 1

46 end
47 else
48 h′ = 0
49 end
50 H[(i, j)]← h′ ; ▷ PUT h to H with key (i, j)

51 end
52 return H

Choosing the Best Ant

When all ants find an end node n ∈ Ne and finish their paths, the algorithm selects the
best ant a ∈ A, which we call a champion. The process of finding the champion is specified
in Algorithm 10. It iterates A and selects the best ant a based on its path P [a]. The best
path contains the highest number of yet uncovered LCZ border nodes that are stored in
Nin and Nout and has the shortest length–equal to |P [a]|.

The path P of the best ant, together with the LCZ IN nodes it covers in set Bin, and
LCZ OUT nodes in the mapping Bout is propagated to the main ANT procedure that
adds P to the set of test cases T and according to Bin and Bout updates the content of
mapping U with yet uncovered LCZ border nodes. When U is empty, ANT returns the
final set of test cases T .

4.4.3 Adapted Genetic Algorithm

Another alternative, based on a different principle, we propose to generate T from G is
the Adapted Genetic Algorithm (AGA). It generates T from G, a specified threshold and
the test coverage criterion C. The implementation of the AGA consists of the elements
and actions detailed in the below paragraph.



Algorithm 9: ManageBorderNodes(nin, nout, Bin, Bout, U , C, PL): Cover the
LCZ IN and OUT nodes in the parameters by adding them to Bin and Bout.
Input : LCZ IN node nin to be covered, LCZ OUT node nout to be covered, a

set of covered LCZ IN nodes Bin, a mapping of covered LCZ OUT
nodes Bout, a mapping U of uncovered LCZ border nodes, coverage
criterion C, a set PL where a path through LCZ L is stored

Output: Updated sets Bin and Bout
1 if nin ∈ U then
2 if nout ∈ U [nin] then
3 Bout[nin]← Bout[nin] ∪ {nout}
4 if nin = nout and nin ∈ U [nin] and |PL| > 0 then
5 Bout[nin]← Bout[nin] ∪ {nin} ; ▷ nin pointing to itself in U [nin]
6 end
7 end
8 end
9 if C = EachBorderOnce or C = ComprehensiveEachBorderOnce then

10 for each uin ∈ U do
11 if nout ∈ U [uin] then
12 Bout[uin]← Bout[uin] ∪ {nout}
13 end
14 end
15 Bin ← Bin ∪ {nin}
16 end
17 else
18 if nin ∈ Bout then
19 if U [nin] ⊂ Bout[nin] ; ▷ All LCZ OUT nodes in U [nin] were covered
20 then
21 Bin ← Bin ∪ {nin}
22 end
23 end
24 end
25 return (Bin,Bout)

Initially, the algorithm generates a population of structures called chromosomes. A
chromosome represents a candidate solution to a given problem, the quality of which can
be assessed by a specific fitness function. During the execution of the AGA, a specific
selection mechanism is implemented for reproduction of the members of the population
that have the highest value of the fitness function. Afterward, some genetic operators
that alter the internal parts of the chromosomes, called genes, are applied to create better
successors of the current population [68]. The selection, reproduction, and genetic opera-
tors’ application are repeated a specific number of times, which represents the evolution of
chromosomes. When the best chromosome in the resultant population (explained further)
represents a valid test case, it is added to T . After a number of repetitions, T contains
test cases that satisfy the selected test coverage criterion C. The following sections specify
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Algorithm 10: FindChampion(A,Nin,Nout,P): Iterate a set of ants A and find
the one that visits the biggest number of uncovered yet LCZ border nodes using
the smallest number of steps.
Input : Set of ants A, mapping of LCZ IN nodes Nin visited by each ant,

mapping of LCZ OUT nodes Nout visited by each ant, mapping of each
ant paths P

Output: Ant a that found the most efficient path
1 a← any ant from A
2 for each t ∈ A do
3 if (Nin[t] +Nout[t]) > (Nin[a] +Nout[a]) then
4 a← t
5 end
6 else if (Nin[t] +Nout[t]) = (Nin[a] +Nout[a]) then
7 if |P [t]| < |P [a]| then
8 a← t
9 end

10 end
11 end
12 return a

the algorithm details.

The AGA Elements

Chromosome representation. The AGA is designed to find the set of test paths in an
SUT model G that satisfies the selected test coverage criterion C. Since the SUT model
is a directed graph and the test paths are paths from ns to ne ∈ Ne, we decided to model
the individual G edges as genes and the chromosomes as sequences of these edges.

The initial population. The initial population can be created in a number of ways:

1. Create the candidate solutions manually [73].

2. Generate the candidate solutions randomly [75].

3. Generate the initial population using a specific heuristic, for example, using chaotic
maps or the Min-Min heuristic [104].

4. Generate only a sub-solution and, through a specific operator, improve the popula-
tion to become a valid solution to the problem [74].

We generate the initial population using the fourth option from the list and more
details we present in Section The Initial Chromosome Population.

Fitness function. A fitness function of the GA represents an evaluation mechanism
that measures chromosome quality. Therefore, it guides the evolution of the chromosomes,



nourishes chromosomes with better fitness, and ignores those with worse fitness. Selecting
the right fitness function is crucial to the quality of the solution and the execution runtime
[105].

To generate chromosomes, which are adjacent sequence of edges in G that satisfy the
selected test coverage criterion, several fitness function calculations can be used. Hoseini
and Jalili suggest counting the number of prime paths contained in the chromosome
combined with its length to cover the prime path coverage [76]. Girgis defines a calculation
of the fitness function for solving the DFT problem as a fraction of the number of def-use
paths covered by an evaluated chromosome to the total number of def-use paths in G

[106]. To satisfy the coverage of the basis path, Ghiduk defines the fitness value for each
chromosome as the sum of adjacent edges of the chromosome divided by the total number
of edges on the same chromosome [74].

To make the test set T generated by the AGA satisfying the selected test coverage

criterion C, we define the fitness value as f(c) =
fa(c) + fq(c)

2
, where fa is an adjacent

fitness and fq is a quality fitness. The adjacent fitness fa(c) of chromosome c is calculated
as a fraction of the longest adjacent sequence of edges in c to the total number of edges in
c. The quality fitness fq(c) of chromosome c is calculated as a fraction of the number of
LCZ border nodes contained in c that satisfy the selected test coverage criterion C to the
total number of remaining LCZ border nodes not yet contained in the set of chromosomes
generated in previous repetitions of the AGA.

Selection step. The AGA selection step is responsible for selecting which individual
chromosomes are suitable for reproduction and for the creation of new chromosomes that
are passed on to the next generation.

We chose to use roulette wheel selection, which selects a chromosome, from each
generation, with a probability p(i) proportional to the fitness of the individual divided by
the sum of the fitness of the entire population [107].

Reproduction (crossover). Generally, the reproduction (or crossover) process de-
scribes the creation of new chromosomes, called offspring, from the selected pair of parents
and is performed for each chromosome in the generation with probability Pc.

There are several methods to perform reproduction, and the differences lie in which of
the parents’ genes are passed to the offspring [104]. With AGA, we use the one-point (or
single) crossover, where a selected pair of parents exchange information around a random
position and thus create two new chromosomes.

Another GA operators. In the literature, another GA operators, such as Mutation,
Breeding, or Elitist are defined to alter chromosomes and, therefore, facilitate the creation
of better candidate solutions to the given problem [74], [104]. The Mutation operator
iterates genes on the chromosome and, with a specified probability, alters each gene to
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a different value. If the offspring contains any chromosomes with lower fitness than the
chromosomes with the highest fitness in the current generation, the Elitist operator swaps
those chromosomes and propagates the individual with the highest fitness in a generation
to the next generation.

During the evolution, among other requirements, we need to find a solution that
represents a valid test path. However, in the initial population, the chromosomes consist
of only a few edges that, in most cases, are non-adjacent. To address this issue, we
propose the use of two operators with a certain level of probability to be applied to the
chromosomes. The Breeding operator iterates the sequence of edges in the chromosome,
and when a pair of neighboring edges is non-adjacent, it inserts a random edge between
them, which is adjacent to the first edge in the pair. As we cannot know in advance
the exact length of the chromosome, there needs to be a way to cut the exceeding part
of the chromosome if it gets too large during the evolution. Therefore, we present a
Dissolve operator that removes all genes after the first occurrence of a non-adjacent pair
of neighboring genes in the chromosome.

The stop conditions. The AGA is successfully terminated when the generated T

satisfies the test coverage criterion, or fails when the maximum number of repetitions is
reached. Although variants of GAs generating test sets that satisfy the segment, branch,
and path test coverage criteria [108] already exist, in this thesis we present the novel AGA
to generate T , which satisfies the test coverage criteria defined in Section 4.2.

The AGA Variables

The following constants and variables are used in the AGA:

• REPS: The maximal number of repetitions of the AGA when it does not return
T , which satisfies the selected coverage criterion.

• ITERS: The maximal number of generations reached.

• CMULT : The multiplication constant that affects the number of chromosomes in
a generation.

• CMIN : The minimal number of chromosomes in a generation.

• CMAX: The maximal number of chromosomes in a generation.

• Pb: The probability of breeding a chromosome in a generation.

• Pd: The probability of dissolving a chromosome in a generation.

• Pc: The probability of crossover of chromosome in a generation.



Constants Initial value
REPS 1000
ITERS 500
CMULT 10
CMIN 20
CMAX 100
Pb 0.8
Pd 0.6
Pc 0.6
Pm 0.6
Pg 0.05

Table 4.3: The initial values of the variables and the values of the constants for the AGA
algorithm.

• Pm: The probability of applying the mutation operator to a chromosome.

• Pg: The probability of gene mutation in a chromosome.

• fa: The adjacent fitness value of a chromosome.

• fq: The quality fitness value of a chromosome.

The initial values of particular variables and values of constants used in AGA are
specified in Table 4.3. They are the results of repeating the execution of AGA with the
different values of these variables using 310 SUT models presented in Section 7.2. Before
the start of this tuning, the initial values of discussed variables and constants were inspired
by previous research on GAs [68], [109].

The Main Algorithm

We specify AGAMain, the main routine of the AGA, in Algorithm 11. The algorithm
accepts an SUT model G, selected threshold, the coverage criterion C, and a mapping U
of LCZ border nodes that must be covered. U is a mapping where a key is an LCZ IN
node k ∈ in(G, threshold) and a value is a set of LCZ OUT nodes O ∈ out(G, threshold)
for which a path from k to o ∈ O in G exists.

In the initial phase of the AGAMain, a new generation of a set of chromosomes Γ

is initialized, using the InitNewGeneration procedure (specified in Algorithm 12). The
evolution of chromosomes is performed through the GenerateNextGeneration procedure
(specified in Algorithm 13) that repeatedly generates the next generation of chromosomes
until the count of these repetitions reaches the value of the ITERS constant. When this
happens, the EvalGeneration procedure is called to find a new test path that covers
some of uncovered LCZ border nodes from the last generation. An LCZ border node
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is uncovered, when it is present in the mapping U . If the last generation contains a
chromosome that satisfies this condition, the set of test paths T and the mapping of
uncovered LCZ border nodes U are updated, the chromosome generation Γ is reverted
to its initial state, and the outer loop repeats. If the last generation does not contain a
chromosome that covers any of LCZ border nodes, the algorithm continues the evolution
another ITERS times. If this does not result in a solution after REPS repetitions, the
AGAMain ends with a failure.

The Algorithm 11 successfully terminates and returns the set of test paths T that
satisfies C, when the mapping U is empty.

Algorithm 11: AGAMain(G, threshold, C,U): The main AGA algorithm rou-
tine.
Input : SUT model G, threshold, coverage criterion C, and mapping of

uncovered LCZ border nodes U
Output: set of test paths T

1 reps = 0 ; ▷ Counter of the algorithm repetitions
2 Γ← InitNewGeneration(G) ; ▷ An initial chromosomes generation Γ
3 T ← an empty set of test paths
4 while reps < REPS ∪ U ̸= ∅ do
5 genNo = 0
6 while genNo < ITERS ∪ U ̸= ∅ do
7 genNo = genNo+ 1
8 if genNo = ITERS then
9 (T ′,U ′)← EvalGeneration(G, threshold, C,Γ,U , T )

10 if |T ′| > |T | then
11 T ← T ′ ; U ← U ′

12 if U ̸= ∅ then
13 genNo = 0
14 Γ← InitNewGeneration(G)

15 end
16 end
17 end
18 else
19 if |Γ| ≠ Original size of Γ then
20 Γ← Γ appended with chromosomes that were added to the initial

generation to reach original size of Γ
21 end
22 Γ← GenerateNextGeneration(G, threshold, C,U ,Γ)
23 end
24 end
25 end
26 return T



The Initial Chromosome Population

We describe the InitNewGeneration procedure that creates an initial generation of chro-
mosome population Γ in Algorithm 12. Initially, it calculates the value of variable count
that will represent the number of chromosomes in Γ. The value of count variable is set
according to the number of edges outgoing ns stored in Es, the number of all edges in-
coming to all ne ∈ Ne stored in Ee, and the CMULT constant. However, the values of
count are bound to the < CMIN,CMAX > interval, therefore, if the result is lower,
count is set to CMIN and if the result is greater, count is set to CMAX.

Then, the InitNewGeneration procedure performs a chromosome creation count num-
ber of times. During this phase, firstly, the algorithm creates a sequence of edges P that
consists of one of the edges outgoing from ns and one of the edges incoming to one of
the ne ∈ Ne and this set of edges is set as the initial chromosome c. Secondly, using the
Breeding procedure specified in Algorithm 15, we apply the Breeding operator and create
chromosome c′. Lastly, c′ is added to Γ.

Chromosome Evolution

The chromosomes evolve by repetitively creating an offspring generation out of the current
one, which is performed in the GenerateNextGeneration procedure, described in Algo-
rithm 13. At first, it calls the Select&Reproduce procedure (see Algorithm 14) that selects
the best chromosomes in Γ and reproduces them to the newly created offspring generation
∆. Then, it calls the Elitist function (not detailed by a pseudocode in this thesis), which
replaces the worst chromosome in the offspring generation with the best chromosome in
the current generation, if it has a lower fitness value. The resulting offspring generation
is stored in the new variable ∆′.

Then, the GenerateNextGeneration procedure calculates a tuple of fitness values
(fa, fq) for every chromosome c in ∆′. If c is a test path, but does not cover any uncov-
ered LCZ border nodes stored in the mapping U , c is removed from ∆′. Otherwise, a
pseudo-random number rb ∈

〈
0; 1

)
is generated, and, if smaller than Pb, the Breeding

operator is applied. The same process follows for the Dissolve operator. Lastly, the
FillInGeneration procedure is called, which appends new chromosomes to ∆′ so that
the number of chromosomes in a generation remains the same throughout the AGA’s
execution.

The FillInGeneration procedure (not detailed by a pseudocode in this thesis) creates
new chromosomes in a way that they are made of one of the edges outgoing ns, and the
Breeding operator is applied to them once.
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Algorithm 12: InitNewGeneration(G): Creates the initial generation of chro-
mosomes.
Input : SUT model G
Output: The initial generation of chromosomes Γ

1 Γ← ∅ ; ▷ Initialize an empty generation of chromosomes
2 Es ← Get edges outgoing from node ns

3 Ee ← ∅ ; ▷ Initialize an empty set of edges
4 for j ∈ Ne do
5 Ee ← Ee ∪ All edges incoming to the end node j
6 end
7 count = |Es| · |Ee| · CMULT
8 if count < CMIN then
9 count = CMIN

10 end
11 else if count > CMAX then
12 count = CMAX
13 end
14 else if count mod 2 ̸= 0 ; ▷ Make count even, if it is odd
15 then
16 count = count+ 1
17 end
18 while i < count do
19 for (i, j) ∈ Es do
20 for (k, l) ∈ Ee do
21 P ← ∅ ; ▷ An empty sequence that will contain edges
22 Add (i, j) to P ; Add (k, l) to P
23 c← Create chromosome with initial sequence of edges P
24 c′ ← Breeding(c)
25 Put c′ to Γ
26 i = i+ 1
27 if i = count then
28 return Γ
29 end
30 end
31 end
32 end
33 return Γ



Algorithm 13: GenerateNextGeneration(G, threshold, C,U ,Γ): Generate the
next generation of chromosomes.
Input : SUT model G, threshold, coverage criterion C, a mapping of uncovered

LCZ border nodes U , and chromosomes in generation Γ
Output: Next generation of chromosomes ∆

1 ∆← Select&Reproduce(G, threshold,Γ, C,U)
2 ∆′ ← Elitist(∆)
3 for c ∈ ∆′ do
4 (fa, fq)← CalculateF itness(G, threshold, c, C,U)
5 if fa = 1 ∧ fq = 0 ; ▷ Sequence of edges of c is adjacent, but

doesn’t cover any LCZ border nodes
6 then
7 Remove c from ∆′

8 end
9 else

10 rb = A random number from
〈
0;1

)
11 if rb < Pb then
12 c′ ← Breeding(c)
13 Replace chromosome c by c′ in generation Γ

14 end
15 rd = A random number from

〈
0;1

)
16 if rd < Pd then
17 c′ ← Dissolve(c)
18 Replace chromosome c by c′ in generation Γ

19 end
20 end
21 end
22 ∆← FillInGeneration(∆′)
23 return ∆
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Reproduction of the Chromosomes

The Select&Reproduce procedure, described in Algorithm 14, starts with the Selection
and Crossover operators implemented in the Selection and Crossover procedures.

The Selection procedure only sorts chromosomes in Γ according to their fitness, and
then returns them as a new generation F .

The Crossover procedure creates an offspring generation ∆. It creates a new chro-
mosome cd for each chromosome c ∈ F with a probability Pc that is made by a one-point
crossover of chromosomes c and d; d follows c in F . Otherwise, cd is equal to c. Chromo-
some cd is then inserted into ∆. Selection and Crossover procedures are not detailed by
a pseudocode in this thesis.

The Select&Reproduce procedure continues by calculating the fitness of chromosomes
in ∆ and storing it into a mapping F ,F : c → x; c ∈ Γ, x ∈ (0, 1). Then, ∆ is sorted in
descending order (according to the fitness of its chromosomes) and stored into ∆′.

Lastly, with a probability Pm, the Mutation operator, defined in the Mutation proce-
dure, is applied to each chromosome c ∈ ∆′ and the result is put into a new generation
∆′′. The Mutation procedure (not detailed by a pseudocode in this thesis) iterates each
gene g of chromosome c and with a probability Pg swaps g with a different random gene
h. In our algorithm, h corresponds to a random edge following gene g’s predecessor in
the sequence of edges corresponding to c.

We do not further describe the concrete details of Selection, Crossover, andMutation

procedures, as they generally correspond to those already published, for example, by
Ghiduk [74].

Extension and Dissolving of the Chromosomes

Due to the nature of the problem, it is impossible to predict the exact length of the
chromosome during an iteration. Therefore, it is necessary to have the option to extend
or shrink it. The Breeding operator and the Dissolve operator, respectively, represent the
solution to this need.

We present the details of the Breeding operator in the Breeding procedure, specified
in Algorithm 15. It breeds the chromosome c as follows: at first, it iterates the edges in P ,
which contains the current sequence of edges corresponding to c and increases a counter
i. When it reaches the first edge that is non-adjacent with a previous sequence of edges
in P , or the end of P , the loop ends. Then, if the index i is smaller than the length of P
and if P does not end in node n ∈ Ne, it selects a random edge outgoing of the node with
index i in P and places it in P at position i+1. This creates an updated chromosome c′,
which is then returned.



Algorithm 14: Select&Reproduce(G, threshold,Γ, C,U): Selection and repro-
duction of the chromosomes in the current generation.
Input : SUT model G, threshold, chromosomes in a generation Γ, the selected

coverage C, and the mapping of uncovered LCZ border nodes U
Output: New generation of chromosomes ∆

1 F ← Selection(G, threshold,Γ, C) ; ▷ Perform the selection of parents
2 ∆← Crossover(F ) ; ▷ A new generation of offspring of F
3 F ← A mapping F : c→ x; c ∈ Γ, x ∈ (0, 1) of fitness of chromosomes
4 for c ∈ ∆ do
5 (fa, fq)← CalculateF itness(G, threshold, c, C,U)

6 f =
fa + fq

2
; F [c] = f

7 end
8 ∆′ ← Sort ∆ according to F in the descending order
9 ∆′′ ← ∅

10 for c ∈ ∆′ do
11 rm = A random number from

〈
0;1

)
12 if rm < Pm then
13 c′ ←Mutation(c)
14 Put c′ to ∆′′

15 end
16 end
17 ∆← ∆′′ ; return ∆

The Dissolve procedure (Algorithm 16) keeps the sequence of adjacent edges in c and
removes the edges that are not adjacent with this sequence. The procedure is analogous to
that of the Breeding operator with one difference: instead of extending the chromosome,
it removes all edges after the i-th node in P .

The Fitness Calculation

To evaluate the chromosomes and guide the evolution the right way, the CalculateF itness
procedure (Algorithm 17) that performs the fitness calculation is defined. It returns a
tuple (fa, fq), where fa represents an adjacent fitness, and fq represents a quality fitness
that both contribute by one-half to the total fitness f . The adjacent fitness is calculated
as the number of the longest sequence of adjacent edges in P , divided by the total length
of P . To calculate the quality fitness, the BorderNodesCover procedure (Algorithm 19)
that returns a tuple (q,U ′) is called. In this tuple, variable q represents a number of
LCZ border nodes that the current chromosome contains in its P , and U ′ is a mapping of
uncovered LCZ border nodes if P is used as a test path.
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Algorithm 15: Breeding(c): Extend the chromosome by one adjacent edge in
its first non-adjacent part.
Input : A chromosome c
Output: Extended chromosome c′

1 P ← A current sequence of edges in c
2 (k, l)← The first edge in P
3 i = 0
4 for each (m,n) ∈ P \ {(k, l)} do
5 if l = m ; ▷ The edges are adjacent
6 then i = i+ 1 ;
7 else if n ∈ Ne ; ▷ Some end node inside P
8 then i = i+ 1 ;
9 else break ;

10 end
11 if i < |P | then
12 (m,n)← Pi ; ▷ Edge at i-th position of P
13 if n /∈ Ne then
14 (n, o)← Pick a random edge starting in n
15 Pi+1 = (n, o) ; ▷ Place (n, o) at i+ 1 position in P

16 end
17 end
18 c′ ← A copy of chromosome c
19 Assign P to chromosome c′
20 return c′

Processing the Last Generation to Find Test Paths

When the chromosomes evolve enough, it is necessary to find the best chromosome that
represents a valid test path and that contains some of the uncovered combinations of
LCZ border nodes. We specify this functionality in the EvalGeneration (Algorithm 18).
At first, it sorts the chromosomes in Γ in descending order according to their fitness.
Then, the EvalGeneration iterates over them, searching for the best chromosome cb

that has a quality fitness greater than 0 and contains a sequence of adjacent edges that
starts at a start node ns and ends at one of the n ∈ Ne (adjacent fitness is equal to 1).
Subsequently, the EvalGeneration invokes the BorderNodesCover procedure (Algorithm
19) on chromosome cb. The BorderNodesCover procedure calculates the number of LCZ
border nodes that c covers. Then, the set of test paths T is extended by cb.

Lastly, the EvalGeneration procedure returns a tuple (T ′,U ′), where T ′ represents
an updated set of test paths, and U ′ represents an updated mapping of uncovered LCZ
border nodes.



Algorithm 16: Dissolve(c): Remove all edges that are after the adjacent se-
quence of edges from the chromosome.
Input : A chromosome c
Output: Chromosome c′ with edges that are only adjacent

1 P ← A current sequence of edges in c
2 (k, l)← The first edge in P , outgoing from k and incoming to l, {k, l} ∈ N
3 i = 0
4 for (m,n) ∈ P \ {(k, l)} do
5 if l = m ; ▷ The edges are adjacent
6 then i = i+ 1 ;
7 else break ;
8 end
9 P ′ ← A copy of P

10 for (m,n) ∈ (Pi+1, Pi+2, ..., P|P |) do
11 P ′ ← P ′ \ (m,n) ; ▷ Remove (m,n) from P ′

12 end
13 c′ ← A copy of chromosome c
14 Assign P ′ to chromosome c′
15 return c′

Covering the LCZ Border Nodes

The BorderNodesCover procedure, described in Algorithm 19 performs the evaluation
of the quality of the chromosome according to the selected test coverage criterion C, and
possible removal of the LCZ border nodes being covered according to the mapping of
uncovered LCZ border nodes U .

In its first part, it initializes temporary variables P,Bin,Bout and U ′, where P is a
sequence of edges in c, Bin is a set of LCZ IN nodes that P covers, Bout is a mapping of
LCZ OUT nodes that P covers, and U ′ is a copy of the mapping of uncovered LCZ border
nodes U .

Then, the BorderNodesCover procedure iterates over the edges in the sequence P
corresponding to the input chromosome c. When the traversed edge (k, l) ∈ P is a LCZ
edge and begins in an uncovered LCZ IN node k ∈ U ′, the BorderNodesCover iterates
the subsequence P ′ ⊂ P in which the first edge is outgoing from node k.

Until the edges in the subsequence P ′ are adjacent, the iteration continues by searching
for an uncovered LCZ OUT node n ∈ U ′[k] of an edge (m,n) ∈ P ′. Together with an LCZ
IN node k, an LCZ OUT node n composes an uncovered LCZ border node combination,
which is stored in a mapping Bout. Then, if the input flag r is set, the BorderNodesCover
procedure removes n from U ′[k].

Next, for EachBorderOnce or ComprehensiveEachBorderOnce test coverage criteria,
the procedure also inserts the LCZ OUT node n into the set Bout[uin] for all LCZ IN
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Algorithm 17: CalculateF itness(G, threshold, c, C,U): Calculate fitness values
of the chromosome.
Input : SUT model G, threshold, chromosome c, the selected coverage C, and

mapping of uncovered LCZ border nodes U .
Output: A tuple of values (fa, fq), where fa represents the adjacency fitness and

fq represents the quality fitness.
1 P ← a sequence of edges in c
2 a = the number of adjacent edges in the longest adjacent sequence of edges in P
3 fa =

a

|P |
4 if |U| > 0 then
5 (q,U ′)← BorderNodesCover(G, threshold, c, C,U , false)
6 fq =

q

|U| · |P |
7 end
8 else fq = 1 ;
9 return (fa, fq)

Algorithm 18: EvalGeneration(G, threshold, C,Γ,U , T ): Iterate over the chro-
mosomes and find the best that represents a valid test path and then cover the
border nodes.
Input : SUT model G, threshold, coverage criterion C, generation of

chromosomes Γ, mapping of uncovered LCZ border nodes U and a
current set of test paths T .

Output: A tuple (T ′,U ′) comprised from an extended set of test paths T ′ and
edited mapping of uncovered LCZ border nodes U ′

1 C ′ ← Sorted chromosomes from Γ according to the fitness in descending order
2 cb ← Init an empty chromosome
3 for each c ∈ C ′ do
4 (fa, fq)← CalculateF itness(G, threshold, c, C,U)
5 P ← A current sequence of edges in c
6 p← the last node in P
7 if fa = 1 ∧ fq > 0 ∧ p ∈ Ne then
8 cb ← c
9 break

10 end
11 end
12 (q,U ′)← BorderNodesCover(G, threshold, cb, C,U , true)
13 Pb ← A sequence of edges in cb
14 T ′ ← T ; Put Pb to T ′

15 return (T ′,U ′)



nodes uin ∈ U ′, for which holds that n ∈ U ′[uin]. Moreover, if the flag r is set, the
BorderNodesCover procedure also removes n for all uin from U ′[uin].

Then, the algorithm verifies if P reaches one of ne ∈ Ne (which can be an LCZ OUT
node). If P reaches such a node, the LCZ border nodes covered by P are stored in Bin and
Bout and if the flag r is set, the LCZ border node combinations present in P are removed
from U ′, according to the selected test coverage criterion the same way as described above.

When the chromosome iteration is over, the algorithm counts the uncovered LCZ IN
nodes stored in Bin and saves this value in the variable qin. And if the flag r is set, it
removes them from U ′. Then, the uncovered LCZ OUT nodes stored in Bout are counted
and their number is saved to qout. Lastly, the variable q contains the sum of qin and qout,
and is returned together with the updated mapping of the uncovered LCZ border nodes
U ′.

The repeated chromosome evolution is finished when the generated set of test paths T
satisfies the test coverage criterion C (ensured by the condition that the set of uncovered
LCZ border nodes U is empty). When this condition is satisfied, the main routine of AGA
(Algorithm 11) successfully terminates and returns T .
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Algorithm 19: BorderNodesCover(G, threshold, c, C,U , r): Identifies the LCZ
border nodes present in c according to the test coverage criterion C, calculates
their number, and if r is set, removes them from U .
Input : SUT model G, threshold, chromosome c, the selected coverage C,

mapping of uncovered LCZ border nodes U , and flag r whether to
remove nodes from U .

Output: The tuple (q,U ′), where q is the number of LCZ border nodes according
to the current coverage that chromosome c contains and U ′ is the
possible edited mapping of uncovered LCZ border nodes.

1 P ← A sequence of edges of c
2 Bin ← Initialize an empty set of LCZ IN nodes n ∈ in(G, threshold) ∈ G that are

covered in P according to a selected C
3 Bout ← Initialize an empty mapping that for LCZ IN node

n ∈ in(G, threshold) ∈ G returns a set of LCZ OUT nodes
O ∈ out(G, threshold) ∈ G that are covered in P according to a selected C

4 U ′ ← A copy of U
5 for (k, l) ∈ P
6 if C = ComprehensiveAllBorderCombinations ∨ C =

ComprehensiveEachOnce then
7 (i, j)← preceding_edge_in_P ((k, l))
8 if cop((i, j)) >= threshold then continue ;
9 end

10 if cop((k, l)) >= threshold ∧ k ∈ U ′

11 P ′ ← Pk, ..., P|P | ; ▷ A sub-sequence of P in which the first edge
is is outgoing from node k

12 for (m,n) ∈ P ′

13 (o, p)← next_edge_in(P ′)
14 if n ̸= o ; ▷ The next edge in P ′ is non-adjacent to the

previous one
15 then break ;
16 ... continues on the following page



13

14

15

16 ... continuation of Algorithm 19
17 if C = AllBorderCombinations ∨ C =

EachBorderOnce ∨ cop((m,n)) < threshold then
18 Put k to Bin

19 if U ′[k] contains n then
20 Put n to Bout[k]
21 if r = true then
22 Remove n from U ′[k]
23 if U ′[k] = ∅ then Remove k from U ′ ;
24 end
25 if

C = EachBorderOnce∨C = ComprehensiveEachBorderOnce
then

26 for each uin ∈ U ′ do
27 if U ′[uin] contains n ∨ uin = n then
28 Put n to Bout[uin]
29 if r = true then
30 Remove n from U ′[uin]
31 if U ′[uin] = ∅ ∧Bin contains uin then
32 Remove uin from U ′

33 end
34 end
35 end
36 end
37 end
38 end
39 if cop((m,n)) < threshold then break ;
40 end
41 end
42 ... continues on the following page
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40

41

42 ... continuation of Algorithm 19
43 if j = m ∧ cop((m,n)) >= threshold then
44 if U ′ contains k then
45 Put k to Bin

46 if U ′[k] contains n then
47 Put n to Bout[k]
48 if r = true then
49 Remove n from U ′[k]
50 if U ′[k] = ∅ then Remove k from U ′ ;
51 end
52 if

C = EachBorderOnce∨C = ComprehensiveEachBorderOnce
then

53 for each nin ∈ U ′ do
54 if U ′[nin] contains n then
55 Put n to Bout[nin]
56 if r = true then
57 Remove n from U ′[nin]
58 if U ′[nin] = ∅ ∧Bin contains nin then
59 Remove nin from U ′

60 end
61 end
62 end
63 end
64 end
65 end
66 end
67 end
68 end
69 end
70 qin = 0
71 for each b ∈ Bin do
72 if U ′ contains b then
73 if U ′[b] = ∅ then
74 qin = qin + 1
75 if r = true then Remove b from U ′ ;
76 end
77 end
78 end
79 qout = 0
80 for each k ∈ Bout do qout = qout + Bout[k] ;
81 q = qin + qout
82 return (q,U ′)





Chapter 5

Baseline Algorithms

In the present experiments, we used two types of baselines to compare the SPC, ANT,
and AGA algorithms with. The initial baseline in Section 5.1 gives an account of how
effective it might be to test the problem presented in this thesis by test paths satisfying
the established test coverage criteria, namely, Edge, Edge-pair, and TDL 3.

The second baseline, the Test Requirements-based (TR) algorithm, utilized an existing
algorithm generating test paths for an input set of test requirements. This baseline served
as a comparison of the proposed SPC, ANT, and AGA algorithms with an alternative
based on the established test requirements approach. This approach is detailed in Section
5.2.

5.1 Initial Baseline

In the initial baseline, we used T satisfying Edge, Edge-pair, and TDL 3 coverage criteria,
which were selected based on their wide application in system testing projects [12], [31],
[34].

To satisfy the Edge coverage, each edge of G must be present at least once in at
least one t ∈ T [12]. To satisfy Edge-pair coverage, each possible combination of the two
adjacent edges in G must be present at least once in at least one t ∈ T [12].

To satisfy the TDL 3 coverage, each possible sequence of the three adjacent edges in
G must be present at least once in at least one t ∈ T [34]. Edge coverage is equivalent to
TDL 1 and the Edge-pair coverage is equivalent to TDL 2.

To generate T that satisfies the Edge, Edge-pair, and TDL 3 coverage, we used the
Process Cycle Test (PCT) algorithm in the Oxygen platform [110].

To evaluate the experiments, we used the test case evaluation criteria E defined in
Table 4.1. Furthermore, a vital indicator in this evaluation is E(T ) for evaluating the
EachBorderOnce criterion and A(T ) for evaluating AllBorderCombinations, defined as
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follows:
E(T ) =

b_nodes(T )
|in(G, threshold)|+ |out(G, threshold)|

· 100% for given threshold.

A(T ) =
b_node_pairs(T )

b_node_pairs(G, threshold)
· 100%, where b_node_pairs(T ) denotes the

number of pair combinations of a LCZ IN node with a LCZ OUT node that are present in
t ∈ T , and b_node_pairs(G, threshold) denotes the number of all possible LCZ IN and
LCZ OUT node combinations required to be present in the test paths of T according to
the AllBorderCombinations criterion for a given threshold.

Herein, we considered the E(T ) and A(T ) to measure the extent to which T satisfying
the Edge, Edge-pair, or TDL 3 criteria also satisfies the EachBorderOnce, AllBorderCom-
binations, ComprehensiveEachBorderOnce, and ComprehensiveAllBorderCombinations
criteria.

Based on the definitions of the EachBorderOnce and AllBorderCombinations criteria,
if T satisfies EachBorderOnce, E(T ) = 100%. If T satisfies AllBorderCombinations, then
E(T ) = 100% and A(T ) = 100%. Furthermore, if T satisfies Edge , Edge-pair and TDL
3, E(T ) = 100%.

The rules applicable on E(T ) and A(T ) for ComprehensiveEachBorderOnce are iden-
tical to those for EachBorderOnce, and similarly, the rules for ComprehensiveAllBorder-
Combinations are identical to those for the AllBorderCombinations criterion.

5.2 Test Requirements-based Algorithm

The TR employs the test requirements concept for T generation. As introduced in Section
2.2, each test requirement r ∈ R contains a path p that must be present in the final set
of the test cases T . In this case, p represents the path from an LCZ IN to an OUT node.
First, the TR algorithm creates a set of test requirements R that ensures T satisfies the
given test coverage criterion C.

Second, TR uses an existing greedy set-covering algorithm, published by Nan Li et al.
[13] to solve the minimum cost test paths problem. The core set-covering sub-problem in
their algorithm is solved by adapting an approximation algorithm for the shortest super-
string problem.The input to the greedy set-covering algorithm is a set of test requirements
R and a small set of test paths TP . The test path here is a path in G.

5.2.1 The Main Algorithm

The main routine of TR is described in Algorithm 20. It starts with our GetTestRequire-
ments procedure to construct a set of test requirements R. Along with an SUT model
G, R composes the inputs to Li’s SetCoveringAlgorithm procedure [13], which combines
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each path in R into a single long path called the super-test requirement
∏

. Subsequently,
the GetSmallSetOfTestPaths procedure traverses G and generates a set of all possible
test paths TP . Ultimately, TP ,

∏
, and G are inputs to Li’s SplitSuperTestRequirement

procedure [13] that, based on TP , splits the super-test requirement
∏

into the final set
of the test paths T , each of which is adjacent, starts in ns, and ends in one of ne ∈ Ne.
As the selected test coverage criterion C is reflected in the set of test requirements R, it
is also satisfied by T .

Algorithm 20: TR(G, C, threshold): The main routine of the TR algorithm
which creates a set of test requirements R to tour through LCZs and using this
set, it constructs T as a set of test paths containing these test requirements.
Input : SUT model G, coverage criterion C, threshold
Output: set of test cases T

1 R← GetTestRequirements(G, C, threshold)
2
∏
← SetCoveringAlgorithm(G, R) ▷ Defined in [13]

3 TP ← GetSmallSetOfTestPaths(G) ▷ Defined in [13]
4 T ← SplitSuperTestRequirement(G,

∏
, TP ) ▷ Defined in [13]

5 return T

5.2.2 Extraction of Test Requirements

Our procedure GetTestRequirements, defined in Algorithm 21, iterates L and determines
all the shortest paths from each x ∈ in(L) to all y ∈ out(L) for each L ∈ L.

After selecting the AllBorderCombinations coverage criterion, this is the only necessary
step. Accordingly, the algorithm adds all the found shortest paths to R; otherwise, if
EachBorderOnce coverage is selected, the algorithm reduces the set of found paths. First,
the algorithm sorts the paths based on their lengths and stores them in a new list X .
Second, the algorithm traverses X and adds to R only those paths that contain only LCZ
IN or LCZ OUT nodes and were not added to R yet.

Note that TR can be used as an objective baseline only for the EachBorderOnce
and AllBorderCombinations test coverage criteria. For ComprehensiveEachBorderOnce
and ComprehensiveAllBorderCombinations, this baseline is not applicable for comparison
because these two test coverage criteria cannot be satisfied using the test requirements
approach employed in TR (refer to Section 4.2). In principle, we cannot instruct the TR
algorithm by which edge the test path shall enter and leave particular LCZ border nodes
(which is a part of the definition of the ComprehensiveEachBorderOnce and Comprehen-
siveAllBorderCombinations criteria).



Algorithm 21: GetTestRequirements(G, C, threshold): Construct a set of
test requirements R that would used further in T generation to tour all L ∈
L(G, threshold) in the manner that C would be satisfied.
Input : SUT model G, coverage criterion C, threshold
Output: set of test requirements R

1 R← ∅
2 if C = AllBorderCombinations then
3 for each L ∈ L(G, threshold) do
4 for each x ∈ in(L) do
5 for each y ∈ out(L) do
6 R← R ∪ { the shortest path from x to y leading through nodes

inside L }
7 end
8 end
9 end

10 return R
11 end
12 if C = EachBorderOnce then
13 for each L ∈ L(G, threshold) do
14 for each x ∈ in(L) do
15 for each y ∈ out(L) do
16 Rl ← Rl ∪ { the shortest path from x to y leading through nodes

inside L }
17 end
18 end
19 X ← list of paths from Rl sorted by their length in ascending order
20 Lin ← in(L), Lout ← out(L)
21 for each p ∈ X starting with the shortest path do
22 pin ← the first node in p
23 pout ← the last node in p
24 if pin ∈ Lin then
25 Lin ← Lin\{pin}, Lout ← Lout\{pout}
26 R← R ∪ {p}
27 end
28 else if pout ∈ Lout then
29 Lout ← Lout\{pout}
30 R← R ∪ {p}
31 end
32 end
33 end
34 return R

35 end



Chapter 6

Portfolio Strategy

The LNCT considers four distinct test coverage criteria, C. Owing to the problem com-
plexity, variability in the G topology, and the diverse nature of the test set evaluation
criteria E , the development of a universal algorithm to compute the best T with the given
inputs is difficult for all possible SUT models. Therefore, we propose a portfolio strategy
for generating the best T for a general G.

The portfolio strategy is defined in Algorithm 22. As inputs, it acceptsG, threshold, C,
and E and outputs T . In the first segment of its execution, it computes the individual test
sets T satisfying the selected coverage criterion C for the SUT instance G and threshold
by all the proposed algorithms: SPC, ANT, AGA, and TR (the last algorithm is executed
only if C is AllBorderCombinations or EachBorderOnce). Subsequently, it determines the
best T considering the test set optimality criterion E .

In this thesis, the runtime of the portfolio strategy was calculated as the sum of
the runtimes of all the proposed algorithms, neglecting the additional time required for
selecting the best T using E . To optimize the computation runtime, the SPC, ANT, AGA,
and TR baseline algorithms can be concurrently executed to obtain a portfolio strategy
runtime that is equal to the sum of duration of the longest-running algorithm for the
computed problem and the time required for selecting the best T .

Another possibility for reducing the runtime of the portfolio strategy is to selectively
execute the algorithms that are most likely to return the best results for the given com-
bination of the selected G properties (|N |, |E|, deg(n), |Ne|, cycles, |L|, |in(G)|, and
|out(G)|), C, and E . To perform such a selection, we would need to analyze the possi-
ble correlation of the properties of T generated by the proposed algorithms for various
combinations of input values with the properties of G.

However, compared with the portfolio strategy version presented in Algorithm 22, such
a solution would not assure the selection of the best test set T for a general G, and thus,
we do not present such an adjustment in this thesis.
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Algorithm 22: Portfolio(G, threshold, C, E): Compute T for G and threshold
by SPC, ANT, AGA, and TR algorithms and determine the best T by E .
Input : SUT model G, threshold, coverage criterion C, and test set optimality

criterion E
Output: set of test cases T

1 TSPC ← ∅, TANT ← ∅, TAGA ← ∅, TTR ← ∅
2 TSPC ← SPC(G, threshold, C)
3 TANT ← ANT (G, threshold, C)
4 TAGA ← AGA(G, threshold, C)
5 if C = AllBorderCombinations ∨ C = EachBorderOnce then
6 TTR ← TR(G, threshold, C)
7 T ← a test set from {TSPC , TANT , TAGA, TTR} having the best value of given E
8 end
9 else

10 T ← a test set from {TSPC , TANT , TAGA} having the best value of given E
11 end
12 return T



Chapter 7

Experiments Method

In the experiments, we compared the test cases created by the proposed SPC, ANT, and
AGA algorithms with all baselines for a set of 310 SUT models and all test coverage criteria
introduced in Section 4.2. To compare the test cases, we used the evaluation criteria
defined in Section 4.3, criteria defined in Section 5.1, the run times of the algorithms, and
the potential of the test cases to detect artificial defects, further defined in Section 7.3.
In this section, we present the experimental method and setup.

7.1 Implementation of Algorithms

The SPC, ANT, AGA, and TR algorithms as well as the portfolio strategy were imple-
mented in the Oxygen1 system. Oxygen is an open-freeware MBT platform developed by
our research group, which allows the modeling of an SUT and the generation of test cases
using various implemented algorithms [110]. To allow for the creation of a SUT model G,
we extended the graphical editor of the application.

An exemplary SUT model constructed using Oxygen is illustrated in Figure 7.1, which
depicts the UML Activity Diagram of a Smart Home inspired by the system proposed
by Aravindan et al. [111]. The central server of a Smart Home communicates over a
network comprising three subsystems: first, a database server in which the nodes B–C–
D–E–F–Q represent a subprocess handled by this subsystem; second, a central IoT server
(the subprocess handled by this subsystem is modeled by nodes H–I–J–K ); and lastly,
a Raspberry Pi connected with sensors and actuators (the subprocess provided by this
subsystem is modeled by nodes N–O–P–END T ). In this example, the nodes and edges
were designated with letters and numbers for simplicity; however, for industrial use, the
names can be set to any string.

1Java 1.8 executable JAR file packed into a ZIP archive available at http://still.felk.cvut.cz/
download/oxygen_lnct.zip
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When the central server communicates with the external subsystems, the probability
of a network outage is higher than the threshold level. Therefore, LCZ zones are formed
and visually separated from the remaining part of the graph using light-brown arrows
and borders; moreover, the symbols of the LCZ IN and LCZ OUT nodes are filled with
a light-brown background. In the left application panel, the T generated by the SPC
algorithm was visible and denoted as the Test situations.

Figure 7.1: Sample SUT model with highlighted LCZs in the Oxygen application.

When the user clicks on the "Test situations" in the left project tree, a pop-up window
opens with the individual test cases. If the user selects a set of test cases from the list, the
test cases are visually highlighted in the model with bold arrows. In the sample depicted
in Figure 7.2, we observe the highlighted test case (composed of nodes START–A–B–F–
C–G–H–J–R–P–O–END T ).

A part of the Oxygen platform development version is a module that compares the
algorithms, and we configured this module for LNCT. The comparison module facilitates
the execution of multiple algorithms on a given set of SUT models (saved in Oxygen
format). After generating the test cases for an SUT model, the module computes the
defined properties (here, a set of evaluation criteria; refer to Sections 4.3 and 5.1) and
exports the results as a consolidated summary report in a CSV file, which enables further
data processing and analysis.
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Figure 7.2: Highlighting selected test cases in a SUT model in the Oxygen application.

7.2 Sources of SUT Models used in Experiments

To compare the performance of the algorithms SPC, ANT, and AGA with the baselines,
we prepared 310 different SUT models, varying in terms of |N |, |E|, number of LCZs
(denoted as |L|), number of potential LCZ IN and LCZ OUT nodes (denoted as |in(G)|
and |out(G)|,), number of cycles (cycles), average node degree (deg(n)), and |Ne|.

We created 163 models from real IoT projects and added another 147 artificially
created or generated models.

Accordingly, the distribution of the nature of sources of the SUT models is visualized
in Figure 7.3. The set of SUT models consists of:

1. Three process models and 24 of their modifications from the experimental IoT-based
rescue-mission planning and management system for the Czech Police2 and Moun-
tain Rescue Service, for which our lab created a test strategy and test automation
suite;

2. Five process models and 39 of their modifications from our Digital Triage Assistant
(DTA)3 project to implement a sensor network aimed to reduce fatal casualties

2https://www.policie.cz/clanek/projekt-patrac.aspx (in Czech)
3https://edition.cnn.com/videos/tech/2023/02/20/digital-triage-assistant-soldiers-nato-sensors-orig-

contd-zt.cnn



No Model ID IoT System Domain Reference
1 148 Smart Farming [112]
2 149 Monitoring and Controlling of Sub-station Equipment5 [113]
3 153 Electrical Device Surveillance [114]
4 150 Personal Health Monitoring [115]
5 151 Smart Parking Reservation System [116]
6 155 Smart Parking System [117]
7 154 Patient Health Monitoring System [118]
8 156 Smart Homes [111]
9 152 Smart Water Consumption Measurement [119]
10 157 Smart Washing System of Street Lighting [120]
11 158 Smart Press Shop Assembly Monitoring [121]

Table 7.1: Existing third-party IoT systems, whose models were used in experiments.

in defense operations or critical situations in which the army supports the first
responders;

3. Three process models and 23 of their modifications from our Teresa4 project to
create a sensor network for the telerehabilitation of post-acute phase COVID-19
patients [16],

4. Eleven models and 55 of their modifications of other real third-party IoT systems de-
scribed in recently published studies, where a relevant process model was presented
(listed in Table 7.1; Model ID refers to Tables 7.3 and 7.4);

5. Artificially created 119 models with a topology resembling those models from pre-
vious categories 1.-4., and,

6. Artificially created 28 models by a specialized model generator to achieve variety in
the topology of the models used in the experiments.

The model modifications used in set parts 1.-4. were created via modification of the
G topology by adding and removing nodes and edges, COP, and relocating the LCZs.
As such, the goal was to create a wide variety of problem instances while maintaining a
model topology that resembles a real system. In part 4., the LCZs were estimated by
analyzing the IoT systems described in studies listed in Table 7.1.

The inputs to the model generator presented in part 6. include |N |, |E|, |Ne|, cycles,
number of LCZs |L| and for each LCZ L, the numbers of nodes, edges, cycles, in(L) and
out(L). As an output, G is generated.

4https://aktualne.cvut.cz/en/reports/20210721-teresa-project-enables-rehabilitation-of-covid-19-
patients-in-the-home-environment

5power grid elements as transformers, circuit breakers, or relays
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Nature of projects 1.-3. render them ideal candidates for LNCT verification. In
addition to potentially frequent connectivity outages, Systems 1. and 2. are highly
dynamic and have a mission-critical character.

The rescue mission management system supports missions that are generally operated
in areas weakly covered by GSM signal, such as forests, mountains, or rural areas. Rescue
missions are orchestrated for lost persons who are at risk by staying longer without contact
in an uninhabited area (e.g., children, elderly people, or people with a specific medical
condition) in situations with no mobile phone to contact them. The system employs GPS
trackers for mission participants (humans and search dogs separately) with a dynamic
back-end (located in a police or mountain rescue service vehicle). Instead of a GSM
network, a mesh network can be used to increase network reliability for communication.

The Digital Triage Assistant represent an even more extreme case in terms of potential
network connection unreliability. The current version of the system does not use a GSM
network and transmits the data via a proprietary radio channel. The GSM network is
allowed only in use cases for an integrated rescue system, where the GSM network is not
shut down for security reasons. In addition to network unreliability, a weaker signal can
be caused by difficult terrain, military vehicle armoring, or distance (e.g., back-end part
of the system mounted in a MEDEVAC helicopter). Moreover, the system components
can be damaged or destroyed during a mission or the radio signal can be jammed.

The Teresa project uses a GSM network and a spatially stable back-end. However,
various types of outages can hinder the data transmission from patients. For instance,
the first controlled study with the patients uncovered certain even comical cases of con-
nectivity outages [16], e.g., a patient lost a smart bracelet while gardening, the wireless
connectivity was being disrupted by too many transmitting devices in a makeshift smart
home, or several patients were "playing" with the bracelets and mobile phones, which dis-
rupted the configuration of their connectivity to the system. All these situations created
great application cases for the LNCT when testing these systems.

7.3 Simulation of System Defects

To evaluate the effectiveness of the generated T for detecting defects caused by limited
network connectivity, we extended the SUT model by simulating these defects. Based
on the problem described in Section 4, two major situations can occur. First, a defect is
present at the border node of the LCZ. This defect is activated when this border node
is visited during a process flow in the SUT. Given the test coverage criteria defined in
Section 4.2, all these defects will be detected by the LNCT through T satisfying any of
the test coverage criteria defined in Section 4.2. Therefore, it is not necessary to include



Figure 7.3: Distribution of sources of SUT models used in experiments.

such defects in the evaluation.
Second, a defect can be more complex. For particular threshold, it can be simulated

as a pair (nout, nback), where nout ∈ in(G, threshold) represents a node of an SUT process
model G in which the network connectivity is disrupted. This impacts the SUT such
that when the process flow proceeds to a node nback ∈ out(G, threshold), the defect is
activated and demonstrates itself. We added a set of such simulated defects (nout, nback)

to the created SUT models. We denote the set of these defects in an SUT model G as
χ(G).

The number of (nout, nback) defect node pairs in each G was set based on a random
number in the interval from 1

3
|L| to 2

3
|L|, and both the interval boundaries were approxi-

mated to the nearest integer. In every LCZ with generated defect node pairs, their exact
number was equal to a random number in the interval from 1

3
to 2

3
of the total number of

combinations of LCZ IN and LCZ OUT nodes between whose exists a path. Both interval
boundaries were rounded up to the nearest integer.

We inserted artificial defects into SUT models by automated routine modifying the
Oxygen project file (based on the XML format) containing the model definitions. A user
can review the inserted defects for a particular SUT model in Oxygen application, where
these defects can also be defined manually. In the example presented in Figure 7.4, the
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green rectangle encompasses an overview of the defect node pairs defined in the SUT
model.

Figure 7.4: Visualization and manual definition of artificial defects in Oxygen application.

To measure the effectiveness of T in detecting these artificial defect node pairs in G,
we use ψ =

activatedT
|χ(G)|

· 100%, where activatedT denotes the number of artificial defect

node pairs activated (visited) by test case t ∈ T . These results must be considered in the

context of the size of T , namely, l(T ). Here, we considered Ψ =
ψ

l(T )
as an indicator of

the effectiveness of T for activating defect node pairs inserted in G. As such, a higher Ψ

indicates better potential for defect detection.

7.4 Detailed SUT Models Properties

The overall properties of the SUT models used in the experiments are summarized in
Table 7.2, including the minimal (MIN), maximal (MAX), average (x), and median (x̃)
values of the individual model properties discussed earlier.

In the experiments, the cop(e) for all LCZ edges was set to 50%, and the threshold
was set to 50%.

Complete overviews of the SUT models used in the experiments are listed in Tables
7.3 and 7.4.



|N | |E| deg(n) |Ne| cycles |L| |in(G)| |out(G)| |χ(G)|
MIN 11 13 2.11 1 0 1 1 1 1
MAX 325 488 4.26 21 35 6 14 17 23

x 48.76 73.11 3.00 4.09 5.73 2.37 4.64 6.12 5.85
x̃ 40 61 2.97 4 4 2 4 6 5

Table 7.2: Overall properties of SUT models used in experiments.

7.5 Computation of Test Cases

The computation of T performed on a machine with OS Windows 11, Java version 19.0.1,
and the following hardware configuration: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz
2.11 GHz, 16 GB RAM with an SSD disk. We computed T for all the 310 SUT models
introduced in Sections 7.2 and 7.4.

As the SPC, ANT, AGA, and TR algorithms have a nondeterministic nature, the T
for these algorithms was computed ten times and the results were averaged.
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ID |N | |E| deg(n) |Ne| cycles |L| |in(G)| |out(G)| |χ(G)| ID |N | |E| deg(n) |Ne| cycles |L| |in(G)| |out(G)| |χ(G)|
1 19 30 3.16 1 5 1 2 1 1 78 25 43 3.44 4 1 2 4 6 7
2 24 38 3.17 2 7 1 2 1 2 79 29 48 3.31 5 0 3 5 8 6
3 24 38 3.17 2 7 1 3 1 2 80 20 40 4 1 10 2 4 2 3
4 30 49 3.27 1 7 2 4 3 3 81 20 40 4 1 12 3 5 4 4
5 30 49 3.27 1 7 1 2 2 1 82 22 37 3.36 3 9 3 7 5 4
6 25 40 3.2 1 7 1 1 3 1 83 30 49 3.27 1 8 3 4 3 4
7 25 40 3.2 1 7 1 4 1 2 84 40 70 3.5 1 15 2 3 2 3
8 33 52 3.15 1 7 2 2 4 3 85 40 81 4.05 2 14 2 4 7 6
9 33 52 3.15 1 7 1 2 1 1 86 24 45 3.75 5 10 2 5 7 8
10 28 46 3.29 4 6 3 5 9 9 87 50 100 4 2 26 3 6 5 2
11 28 48 3.43 4 5 1 1 2 2 88 54 103 3.81 3 21 3 5 6 5
12 25 38 3.04 1 4 1 1 2 1 89 60 104 3.47 1 15 3 5 7 5
13 25 38 3.04 1 4 2 4 2 2 90 33 59 3.58 1 11 1 3 5 8
14 26 41 3.15 1 2 2 4 5 5 91 79 140 3.54 1 25 3 4 3 3
15 25 39 3.12 1 2 2 3 5 5 92 61 105 3.44 1 16 3 6 6 4
16 40 57 2.85 3 3 3 4 7 6 93 42 78 3.71 2 16 1 3 6 7
17 40 57 2.85 3 3 2 6 6 9 94 36 69 3.83 2 18 2 5 6 6
18 40 57 2.85 3 3 2 6 5 9 95 40 69 3.45 1 22 1 1 1 1
19 19 26 2.74 1 0 1 2 1 1 96 50 99 3.96 2 22 3 8 8 7
20 19 26 2.74 1 0 2 2 3 3 97 54 115 4.26 4 22 2 6 14 22
21 30 38 2.53 6 1 1 2 3 2 98 93 170 3.66 2 29 3 8 11 19
22 30 49 3.27 6 4 2 5 7 8 99 30 45 3 2 3 2 4 4 4
23 31 42 2.71 3 1 2 4 2 3 100 24 45 3.75 4 6 2 2 6 5
24 30 47 3.13 7 0 1 1 2 1 101 20 32 3.2 4 6 1 1 2 2
25 30 50 3.33 6 1 1 3 4 5 102 25 46 3.68 3 4 1 3 2 4
26 35 58 3.31 4 3 1 2 2 3 103 25 45 3.6 4 2 2 4 6 8
27 30 48 3.2 3 1 1 4 4 6 104 30 49 3.27 1 0 3 6 6 4
28 30 45 3 1 1 1 2 3 3 105 30 54 3.6 1 4 3 4 3 2
29 30 44 2.93 3 0 1 3 3 5 106 35 51 2.91 4 5 2 3 6 4
30 32 51 3.19 2 2 2 5 5 5 107 35 47 2.69 7 3 1 3 2 2
31 30 43 2.87 2 0 1 2 2 2 108 40 64 3.2 3 0 3 3 9 7
32 30 46 3.07 2 1 2 3 5 3 109 40 60 3 5 3 2 5 2 4
33 34 47 2.76 1 2 1 3 2 3 110 45 72 3.2 4 1 3 3 4 4
34 33 50 3.03 4 2 2 5 3 3 111 45 58 2.58 2 0 1 2 1 2
35 35 58 3.31 1 3 3 6 5 6 112 50 77 3.08 4 4 2 5 5 4
36 31 38 2.45 2 0 1 1 1 1 113 50 90 3.6 4 1 3 6 7 7
37 30 42 2.8 3 1 1 2 2 2 114 45 77 3.42 2 0 3 6 3 4
38 34 55 3.24 4 1 2 6 5 9 115 60 72 2.4 15 2 1 1 3 1
39 31 40 2.58 3 1 1 2 2 1 116 65 117 3.6 3 2 2 3 6 6
40 31 47 3.03 2 0 2 5 6 7 117 70 100 2.86 8 2 2 3 6 5
41 30 46 3.07 3 2 2 3 4 2 118 75 90 2.4 21 3 1 1 1 1
42 35 57 3.26 3 1 2 4 4 4 119 80 97 2.43 15 3 2 2 3 3
43 31 43 2.77 2 1 3 6 5 4 120 47 67 2.85 4 6 3 7 6 10
44 40 54 2.7 3 1 2 5 2 3 121 52 86 3.31 5 11 3 10 11 12
45 40 59 2.95 4 1 1 3 6 6 122 44 63 2.86 4 6 3 10 7 12
46 44 55 2.5 8 1 3 4 4 3 123 37 56 3.03 2 5 2 7 3 4
47 42 56 2.67 4 1 2 5 3 4 124 63 103 3.27 1 5 3 7 8 8
48 40 60 3 1 1 2 2 5 2 125 53 91 3.43 3 2 2 4 4 4
49 44 59 2.68 4 1 3 8 6 6 126 40 62 3.1 3 7 2 5 5 5
50 48 66 2.75 5 2 3 10 5 9 127 93 149 3.2 1 21 3 4 5 3
51 42 59 2.81 4 1 3 6 5 5 128 85 152 3.58 2 21 3 4 5 4
52 40 61 3.05 6 2 3 3 8 4 129 138 234 3.39 2 34 4 7 6 4
53 44 64 2.91 4 2 2 7 7 8 130 50 79 3.16 1 2 3 6 5 5
54 48 81 3.38 4 6 1 6 4 9 131 82 145 3.54 2 6 3 4 7 6
55 40 66 3.3 2 3 2 7 6 8 132 70 93 2.66 3 5 3 4 7 4
56 42 73 3.48 1 3 3 9 9 10 133 75 97 2.59 8 2 3 4 4 4
57 41 64 3.12 1 4 1 4 4 6 134 88 126 2.86 5 4 3 10 6 5
58 45 71 3.16 1 5 2 6 7 9 135 80 122 3.05 6 4 3 3 8 6
59 40 66 3.3 2 1 2 7 5 4 136 85 126 2.96 1 2 2 6 6 9
60 42 64 3.05 2 0 3 5 6 4 137 80 108 2.7 8 4 3 4 5 2
61 41 59 2.88 6 1 3 3 5 4 138 97 144 2.97 3 6 3 6 7 4
62 45 66 2.93 1 1 3 6 6 8 139 92 146 3.17 4 4 4 6 7 5
63 53 75 2.83 3 1 3 8 7 7 140 211 357 3.38 4 25 4 9 7 8
64 52 66 2.54 8 2 3 4 5 3 141 156 242 3.1 1 0 2 6 4 8
65 51 106 4.16 2 1 3 8 13 10 142 271 351 2.59 5 35 4 10 10 12
66 56 91 3.25 3 1 2 6 8 7 143 259 352 2.72 3 16 3 13 13 17
67 54 89 3.3 4 1 3 8 8 8 144 260 320 2.46 1 0 2 4 2 3
68 52 77 2.96 3 1 3 6 7 2 145 325 388 2.39 1 0 2 2 4 3
69 58 92 3.17 2 0 3 4 6 6 146 260 420 3.23 1 0 2 2 4 2
70 50 78 3.12 4 2 3 3 5 4 147 325 488 3 1 0 2 2 2 2
71 35 65 3.71 3 6 2 8 8 14 148 24 28 2.33 3 1 2 3 3 2
72 32 58 3.63 2 5 2 5 3 4 149 20 25 2.5 2 1 2 2 2 2
73 30 58 3.87 2 2 3 7 7 10 150 29 37 2.55 2 0 4 4 4 3
74 33 57 3.45 2 0 3 6 5 4 151 25 28 2.24 2 1 3 3 3 2
75 20 35 3.5 6 5 2 2 4 3 152 26 30 2.31 3 0 5 6 5 4
76 20 32 3.2 5 6 1 1 2 2 153 18 20 2.22 2 0 3 3 3 2
77 25 45 3.6 6 6 1 3 1 2 154 21 24 2.29 4 3 2 2 2 2

Table 7.3: Complete overview of SUT models used in experiments (Part 1).



ID |N | |E| deg(n) |Ne| cycles |L| |in(G)| |out(G)| |χ(G)| ID |N | |E| deg(n) |Ne| cycles |L| |in(G)| |out(G)| |χ(G)|
155 15 17 2.27 2 0 1 3 3 3 233 57 75 2.63 1 6 3 3 4 3
156 19 21 2.21 2 0 3 3 3 2 234 30 39 2.6 4 5 3 5 7 9
157 18 19 2.11 4 0 1 3 3 2 235 42 54 2.57 6 5 3 5 11 4
158 15 16 2.13 1 0 1 3 2 3 236 49 68 2.78 6 8 3 6 9 2
159 19 24 2.53 4 5 2 2 2 2 237 61 82 2.69 5 7 3 6 7 3
160 24 35 2.92 4 7 3 4 3 2 238 64 104 3.25 8 13 3 8 12 14
161 22 31 2.82 4 6 2 2 2 2 239 12 13 2.17 1 1 1 1 2 1
162 25 46 3.68 3 9 2 3 2 2 240 24 29 2.42 1 2 1 1 2 2
163 19 29 3.05 4 7 1 3 1 2 241 31 37 2.39 1 4 1 1 4 2
164 30 49 3.27 5 10 3 4 7 2 242 72 95 2.64 8 6 3 4 10 4
165 38 61 3.21 6 11 3 4 8 8 243 19 25 2.63 1 3 1 1 2 1
166 42 66 3.14 8 11 2 4 11 8 244 29 41 2.83 2 7 1 1 3 2
167 51 84 3.29 4 12 5 9 13 13 245 38 50 2.63 1 6 1 1 4 2
168 26 37 2.85 4 8 3 4 4 4 246 67 95 2.84 7 7 2 4 9 7
169 34 58 3.41 4 8 3 5 4 3 247 72 92 2.56 12 5 3 4 14 12
170 39 71 3.64 4 11 2 5 4 8 248 16 18 2.25 1 2 2 3 3 2
171 37 63 3.41 3 8 3 5 4 4 249 27 32 2.37 1 2 2 4 3 3
172 42 69 3.29 4 14 3 7 6 10 250 40 52 2.6 3 4 3 5 6 6
173 38 66 3.47 4 10 3 5 7 6 251 61 102 3.34 4 9 3 6 8 11
174 43 75 3.49 4 10 3 7 8 3 252 26 31 2.38 2 3 2 3 4 3
175 46 94 4.09 3 13 3 11 10 12 253 31 41 2.65 2 3 2 4 4 4
176 56 97 3.46 6 11 3 10 14 23 254 45 63 2.8 6 9 3 4 9 7
177 28 37 2.64 5 9 2 4 4 4 255 63 90 2.86 7 8 3 5 11 12
178 35 54 3.09 4 12 1 2 1 1 256 31 38 2.45 5 2 2 3 5 3
179 39 56 2.87 5 10 2 5 5 5 257 40 50 2.5 6 1 2 2 5 4
180 38 58 3.05 4 11 3 5 5 4 258 44 68 3.09 6 3 2 3 7 5
181 50 82 3.28 4 12 2 5 5 6 259 63 82 2.6 8 6 3 4 8 3
182 40 69 3.45 4 11 2 5 8 8 260 71 98 2.76 10 6 4 7 12 11
183 48 80 3.33 8 11 2 5 12 11 261 35 50 2.86 4 2 2 3 4 4
184 53 87 3.28 5 12 2 5 9 9 262 46 67 2.91 5 3 3 6 8 7
185 63 104 3.3 6 13 3 7 12 10 263 53 83 3.13 6 4 3 7 8 3
186 12 14 2.33 1 3 1 1 2 1 264 57 93 3.26 6 11 3 7 6 5
187 21 29 2.76 3 3 1 1 5 2 265 75 114 3.04 7 4 6 13 13 16
188 28 39 2.79 2 6 2 4 4 6 266 41 60 2.93 2 2 5 5 6 6
189 40 62 3.1 8 10 2 2 10 7 267 49 71 2.9 7 1 5 6 9 11
190 51 77 3.02 12 11 3 3 15 6 268 62 104 3.35 6 4 3 14 11 16
191 54 84 3.11 7 10 2 4 10 7 269 69 114 3.3 7 5 3 11 12 9
192 59 87 2.95 9 11 2 3 11 6 270 79 122 3.09 12 4 2 7 12 18
193 81 125 3.09 10 13 4 9 16 9 271 38 49 2.58 2 3 3 6 5 5
194 16 21 2.63 1 4 2 2 4 2 272 51 71 2.78 4 3 2 5 8 13
195 26 41 3.15 3 7 2 2 6 5 273 61 92 3.02 7 6 3 7 12 15
196 39 72 3.69 2 15 3 4 7 6 274 71 102 2.87 10 5 3 8 15 4
197 53 83 3.13 3 7 1 2 6 5 275 83 121 2.92 9 7 3 6 9 12
198 58 94 3.24 6 5 1 4 10 16 276 33 39 2.36 5 0 6 8 7 8
199 65 91 2.8 3 8 4 5 9 7 277 41 56 2.73 4 1 5 7 6 6
200 49 77 3.14 4 12 3 4 8 5 278 50 67 2.68 6 2 4 7 7 6
201 59 108 3.66 4 16 4 9 13 12 279 58 77 2.66 9 3 2 8 14 20
202 61 102 3.34 4 18 4 5 10 7 280 71 98 2.76 9 6 5 8 12 7
203 11 13 2.36 1 2 1 1 1 1 281 31 39 2.52 5 2 3 4 6 5
204 20 27 2.7 1 4 1 1 1 1 282 39 53 2.72 3 1 3 4 7 5
205 31 41 2.65 3 3 2 2 4 3 283 51 69 2.71 6 3 2 5 10 7
206 49 70 2.86 7 8 3 3 8 5 284 62 77 2.48 13 1 3 4 17 7
207 36 48 2.67 5 5 3 5 6 3 285 74 97 2.62 13 4 3 6 15 12
208 47 72 3.06 4 10 2 5 6 6 286 31 47 3.03 5 6 2 4 5 5
209 52 79 3.04 6 5 3 9 10 14 287 39 56 2.87 8 6 2 2 6 2
210 62 99 3.19 3 10 3 9 7 10 288 47 73 3.11 7 10 2 5 9 11
211 71 124 3.49 4 22 3 8 16 20 289 61 87 2.85 10 6 2 5 13 13
212 14 17 2.43 1 3 1 1 1 1 290 81 113 2.79 14 9 3 6 15 9
213 30 41 2.73 3 3 2 3 3 2 291 23 29 2.52 3 1 1 3 6 4
214 44 59 2.68 8 6 2 4 9 11 292 33 46 2.79 5 5 1 5 7 16
215 51 71 2.78 7 8 3 3 8 6 293 42 63 3 5 7 1 7 10 17
216 27 39 2.89 3 6 1 2 4 3 294 51 72 2.82 5 9 2 4 7 7
217 47 66 2.81 4 5 3 5 7 5 295 62 93 3 7 2 2 6 9 11
218 54 80 2.96 8 8 3 7 10 11 296 32 42 2.63 3 2 3 3 5 4
219 59 81 2.75 8 6 4 7 10 10 297 40 56 2.8 4 6 3 5 7 7
220 66 95 2.88 7 12 3 6 12 6 298 45 69 3.07 5 5 3 8 9 10
221 19 25 2.63 1 4 2 2 3 3 299 55 76 2.76 5 3 3 6 10 11
222 29 40 2.76 2 5 3 3 4 3 300 62 85 2.74 7 4 3 7 12 9
223 50 71 2.84 6 8 2 4 7 4 301 26 33 2.54 4 2 1 3 5 3
224 63 92 2.92 5 6 4 4 10 7 302 33 40 2.42 5 2 1 4 5 7
225 34 45 2.65 4 6 2 2 6 4 303 43 57 2.65 10 0 2 5 7 6
226 38 55 2.89 3 8 3 3 5 5 304 50 68 2.72 8 2 2 4 8 6
227 56 77 2.75 5 8 3 7 7 6 305 64 93 2.91 7 3 3 10 7 10
228 71 104 2.93 7 5 4 8 16 18 306 26 32 2.46 2 0 1 3 3 3
229 76 116 3.05 6 13 2 2 8 5 307 32 43 2.69 3 0 2 7 6 10
230 18 22 2.44 1 4 3 3 4 4 308 41 59 2.88 3 2 2 9 8 11
231 34 42 2.47 2 4 3 3 5 3 309 55 71 2.58 5 2 2 8 10 9
232 40 53 2.65 3 4 3 3 6 4 310 62 103 3.32 4 8 3 11 15 8

Table 7.4: Complete overview of SUT models used in experiments (Part 2).



Chapter 8

Experiment Results

In this chapter, we describe the results of the SPC, ANT, AGA, and TR algorithms and
the results of the initial baseline for the test coverage criteria specified in Section 4.2, and
we also present the results of the portfolio strategy.

First, we present the overall results of the algorithms in Section 8.1. Then, Section 8.2
analyzes which algorithms provided the best results for individual SUT models, followed
by Section 8.3, which describes effectiveness of detection of simulated limited network
connectivity defects in a SUT. In Section 8.4, we present the results of the portfolio
strategy. Lastly, Section 8.5 presents the measured data on the time effectiveness of
individual algorithms and the portfolio strategy.

8.1 Properties of Test Sets Produced by Compared Al-

gorithms

First, we compare the properties of the individual test sets T generated by the algorithms
and baselines using the evaluation criteria E introduced in Table 4.1. For the EachBor-
derOnce and AllBorderCombinations criteria, the results are presented in Table 8.1. For
the ComprehensiveEachBorderOnce and ComprehensiveAllBorderCombinations criteria,
the results are shown in Table 8.2. In Tables 8.1 and 8.2, for each algorithm, the min,
avg, and max values of the evaluation criterion E refer to minimum/average/maximum
values of all averaged results of ten repeated executions for all 310 SUT models. Note
that values of Ψ presented in Tables 8.1 and 8.2 are not equal to the division of the values
of average ψ over average l(T ) as presented in these tables, but they are an average of
ψ

l(T )
for each of the SUT models.

For better visualization of the results, we present them in graphs as well. In Figure 8.1
for AllBorderCombinations, in Figure 8.2 for EachBorderOnce, in Figure 8.3 for Compre-
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hensiveAllBorderCombinations, and in Figure 8.4 for the ComprehensiveEachBorderOnce
criterion. To shorten the captions, in Figures 8.1, 8.2, 8.3, and 8.4,TDL 1 matches the
Edge coverage, TDL 2 matches the Edge-pair coverage, and PS denotes the portfolio
strategy.

For the AllBorderCombinations test coverage criterion, the ANT algorithm pro-
duced T with a visibly lower average |T | than the TR and SPC algorithms; the AGA
yielded similar results for this criterion. The ANT algorithm’s average |T | was 50% lower
than the average |T | of the TR algorithm and 46% lower compared to the SPC algorithm’s
average, whereas it was only 16% lower than the average |T | of the AGA (see Table 8.1
and Figure 8.1).

The ANT algorithm also outperformed the other algorithms in the average total length
of test cases l(T ). The ANT algorithm’s average l(T ) was 31% smaller than the value for
the TR algorithm, 30% smaller than for the SPC algorithm, and 10% smaller than for
the AGA.

For the U(T ) criterion, which represents the ratio of unique edges to the total number
of edges in test set T , the ANT algorithm returned the best results. It had the value of
average U(T ) 6% higher than for the AGA, 29% higher than for the SPC algorithm, and
33% higher than for the TR algorithm.

When looking at the B(T ) criterion, which represents an average number of border
nodes in T , the ANT algorithm yielded the best result: 9.5% higher than for the AGA,
44% higher than for the SPC algorithm, and 53% higher than for the TR algorithm.

The best results of the evaluation criteria |T |, l(T ), U(T ), and B(T ) of T produced by
the ANT algorithm were contrasting with the dispersive length of test cases in T produced
by this algorithm. When we look at the individual results of the test set length dispersion
s(T ), where the smallest value means the best result, the average value of results produced
by the ANT algorithm was 3.3 times larger than the results by the TR algorithm, which
were the best in this category. The AGA produced results with s(T ) 69% larger than the
results of the TR algorithm, and the SPC algorithm produced results 21% larger than the
results of the TR algorithm.

For the EachBorderOnce test coverage criterion, the results for |T | were similar to
those for the AllBorderCombinations. The ANT algorithm produced test sets that had
the smallest average size: 21% smaller than the average |T | for test sets produced by
the AGA, 39% smaller than the average |T | for the SPC algorithm, and more than 47%
smaller than the average |T | for the TR algorithm, which, on average, produced test sets
with the largest size (see Table 8.1 and Figure 8.2).

When looking at the average l(T ), the outcome for the EachBorderOnce coverage
was similar to the outcome for the AllBorderCombinations coverage. For the AGA, the
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Table 8.1: Average values of test set evaluation criteria over all G for the AllBorderCom-
binations and EachBorderOnce test coverage criteria.

Criterion / alg |T | l(T ) s(T ) U(T ) B(T ) A(T ) E(T ) ψ(T ) Ψ t[s]

both AllBorderCombinations and EachBorderOnce

Edge 17.25 328.62 8.59 33% 5% 92.3% 100% 95.4% 0.68% 0.016

Edge-pair 27.19 539.27 10.33 20% 3% 96.3% 100% 97.6% 0.43% 0.041

TDL 3 42.44 948.07 11.3 14% 2% 97.9% 100% 98.7% 0.31% 0.11

AllBorderCombinations

Portfolio

min 3.63 50.9 2.22 73% 23% 100% 100% 100% 3.74% 4.826

avg 3.64 51.33 2.25 73% 24% 100% 100% 100% 3.76% 10.908

max 3.65 51.68 2.28 74% 24% 100% 100% 100% 3.77% 18.692

SPC

min 6.75 80.09 3.07 56% 15% 100% 100% 100% 2.64% 0.001

avg 6.81 81.1 3.18 56% 16% 100% 100% 100% 2.69% 0.002

max 6.85 82.18 3.24 57% 16% 100% 100% 100% 2.72% 0.002

ANT

min 3.64 54.8 7.31 71% 23% 100% 100% 100% 3.66% 1.625

avg 3.65 56.93 8.7 72% 23% 100% 100% 100% 3.69% 7.674

max 3.67 58.98 10.31 72% 23% 100% 100% 100% 3.7% 14.8

AGA

min 4.3 61.87 4.16 68% 21% 100% 100% 100% 3.47% 2.466

avg 4.33 63.07 4.45 68% 21% 100% 100% 100% 3.49% 3.23

max 4.36 64.86 4.64 69% 22% 100% 100% 100% 3.52% 4.192

TR

min 7.24 82.02 2.62 54% 15% 100% 100% 100% 2.68% 0.002

avg 7.26 82.25 2.63 54% 15% 100% 100% 100% 2.69% 0.002

max 7.29 82.61 2.65 54% 15% 100% 100% 100% 2.7% 0.003

EachBorderOnce

Portfolio

min 3.18 42.92 2.08 79% 26% 93.5% 100% 97.1% 3.82% 4.137

avg 3.19 43.18 2.12 79% 26% 93.9% 100% 97.4% 3.83% 9.259

max 3.21 43.52 2.15 79% 26% 94.2% 100% 97.8% 3.84% 15.472

SPC

min 5.19 59.18 3.08 64% 18% 85.9% 100% 89.9% 2.79% 0.001

avg 5.25 60.09 3.19 64% 19% 86.5% 100% 90.4% 2.83% 0.001

max 5.27 60.67 3.24 65% 19% 87% 100% 91% 2.86% 0.001

ANT

min 3.19 47.06 6.13 75% 25% 90.7% 100% 95% 3.72% 1.392

avg 3.21 47.78 6.55 76% 25% 91.1% 100% 95.2% 3.74% 6.697

max 3.23 49.45 7.28 76% 25% 91.5% 100% 95.7% 3.77% 13.091

AGA

min 4.02 52.0 3.87 71% 22% 86% 100% 89% 3.22% 1.935

avg 4.05 52.89 4.1 71% 22% 86.6% 100% 89.7% 3.25% 2.558

max 4.09 53.87 4.22 72% 22% 87.2% 100% 90.3% 3.29% 3.365

TR

min 6.03 64.95 2.49 59% 17% 84.9% 100% 88.6% 2.69% 0.002

avg 6.08 65.42 2.5 59% 17% 85.2% 100% 88.9% 2.7% 0.002

max 6.1 65.79 2.52 59% 18% 85.4% 100% 89% 2.71% 0.003



Figure 8.1: Algorithm comparison for AllBorderCombinations test coverage criterion
through the test set evaluation criteria.
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Figure 8.2: Algorithm comparison for EachBorderOnce test coverage criterion through
the test set evaluation criteria.



average l(T ) was 9.7% higher than for the ANT algorithm. For the SPC algorithm, the
average l(T ) was 20.5% higher than for the ANT algorithm, and for the TR algorithm,
the average l(T ) was 27% higher than for the ANT algorithm.

For the average ratio of unique edges U(T ) contained in T , the situation for the Each-
BorderOnce coverage criterion was, again, similar to those for the AllBorderCombinations
coverage, with the ANT algorithm visiting the highest number of unique edges, on aver-
age, and the TR algorithm the lowest. On average, T produced by the ANT algorithm
had 7% higher U(T ) than this criterion for test sets produced by the AGA, 19% higher
U(T ) than for the SPC algorithm, and 29% higher U(T ) than the results produced by
the TR algorithm.

The ANT algorithm computed T with the highest average B(T ) as well: 14% higher
than the same criterion for test sets produced by the AGA, 32% higher than B(T ) for the
SPC algorithm, and 47% higher than for the TR algorithm.

For the length dispersion s(T ), the test sets produced by the ANT algorithm to satisfy
the EachBorderOnce coverage criteria also had, on average, the highest value: 2.6 times
higher than the average s(T ) of test sets produced by the TR algorithm, which had
the best value for this criterion. The test sets produced by the SPC algorithm had an
average s(T ) almost 28% higher than results produced by the TR algorithm, and the AGA
produced test sets with an average s(T ) almost 64% higher than s(T ) of T produced by
the TR algorithm.
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Table 8.2: Average values of test set evaluation criteria over all G for the Comprehen-
siveAllBorderCombinations and ComprehensiveEachBorderOnce test coverage criteria.

Criterion / alg |T | l(T ) s(T ) U(T ) B(T ) A(T ) E(T ) ψ(T ) Ψ t[s]

both ComprehensiveAllBorderCombinations and ComprehensiveEachBorderOnce

Edge 17.25 328.62 8.59 33% 5% 92.3% 100% 95.4% 0.68% 0.016

Edge-pair 27.19 539.27 10.33 20% 3% 96.3% 100% 97.6% 0.43% 0.041

TDL 3 42.44 948.07 11.3 14% 2% 97.9% 100% 98.7% 0.31% 0.11

ComprehensiveAllBorderCombinations

Portfolio

min 7.22 97.07 2.99 54% 14% 100% 100% 100% 2.4% 11.421

avg 7.22 97.37 3.04 54% 14% 100% 100% 100% 2.41% 26.593

max 7.23 97.72 3.11 54% 14% 100% 100% 100% 2.41% 60.81

SPC

min 8.48 102.26 3.18 49% 13% 100% 100% 100% 2.24% 0.001

avg 8.52 102.53 3.25 49% 13% 100% 100% 100% 2.26% 0.002

max 8.56 102.85 3.32 49% 13% 100% 100% 100% 2.28% 0.007

ANT

min 7.23 109.52 9.87 52% 13% 100% 100% 100% 2.36% 3.101

avg 7.24 112.62 11.19 52% 13% 100% 100% 100% 2.37% 19.554

max 7.25 118.29 13.74 52% 13% 100% 100% 100% 2.38% 54.558

AGA

min 7.98 115.2 4.61 51% 13% 100% 100% 100% 2.25% 5.234

avg 8.02 116.46 4.73 51% 13% 100% 100% 100% 2.26% 7.037

max 8.08 117.81 4.86 51% 13% 100% 100% 100% 2.28% 8.51

ComprehensiveEachBorderOnce

Portfolio

min 4.47 59.41 2.77 67% 18% 88.7% 100% 95.2% 2.74% 5.681

avg 4.5 59.72 2.84 67% 18% 88.9% 100% 95.4% 2.76% 17.456

max 4.52 60.09 2.94 68% 18% 89.5% 100% 95.7% 2.77% 41.986

SPC

min 6.01 69.34 3.15 58% 16% 87.1% 100% 90.6% 2.43% 0.001

avg 6.04 69.76 3.27 59% 16% 87.5% 100% 91.3% 2.46% 0.001

max 6.09 70.16 3.4 59% 16% 88.1% 100% 92.1% 2.49% 0.004

ANT

min 4.51 66.64 6.69 64% 17% 80.9% 100% 91.1% 2.66% 1.829

avg 4.52 67.41 7.16 64% 17% 81% 100% 91.3% 2.67% 13.442

max 4.54 68.14 7.64 65% 18% 81.2% 100% 91.6% 2.68% 35.129

AGA

min 5.26 69.19 4.11 63% 16% 81.1% 100% 87.9% 2.44% 2.75

avg 5.3 70.47 4.3 63% 17% 81.4% 100% 88.4% 2.47% 4.013

max 5.33 71.15 4.53 63% 17% 81.8% 100% 89.2% 2.5% 6.854



Figure 8.3: Algorithm comparison for ComprehensiveAllBorderCombinations test cov-
erage criterion through the test set evaluation criteria.
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Figure 8.4: Algorithm comparison for ComprehensiveEachBorderOnce test coverage
criterion through the test set evaluation criteria.



For the ComprehensiveAllBorderCombinations test coverage criterion, all rele-
vant algorithms (SPC, ANT, and AGA) yielded similar results in the average |T | criterion.
The ANT algorithm’s value of average |T | was 15% lower than the result of the same cri-
terion for the SPC algorithm and 10% lower than the result for the AGA (see Table 8.2
and Figure 8.3).

There was a different outcome for the l(T ) criterion, for which, on average, the SPC
algorithm produced T with the best result. Then, the ANT algorithm generated test sets
with a 9% higher value of l(T ) than the SPC algorithm, and the AGA generated test sets
with l(T ) 12% higher than the SPC algorithm.

For the U(T ) criterion, all the algorithms achieved similar results, with the ANT
algorithm computing T having the highest value of this criterion, which was only 2%
lower than the value of U(T ) for the AGA, and 6% lower than the SPC algorithm.

For the B(T ) criterion, the difference between test sets produced by the individual
algorithms was negligible.

On the other hand, for the s(T ) criterion, the SPC algorithm returned test sets with
the best average value. The AGA computed T with an average s(T ) 46% higher than the
SPC algorithm, and the ANT algorithm with a 3.5 times greater average value of s(T )
than the SPC algorithm.

For the ComprehensiveEachBorderOnce test coverage criterion, the average size
of |T | computed by the ANT algorithm was 15% lower than for the AGA and 25% lower
than for the SPC algorithm. The results are presented in Table 8.2 and visualized in
Figure 8.4.

Regarding the average total length of the test set l(T ), all the algorithms produced
test sets with similar average values of this criterion. The SPC algorithm computed test
sets with an average value of l(T ) 3.5% bigger than the test sets computed by the ANT
algorithm, and the test sets computed by the AGA algorithm had an average l(T ) 4.5%
bigger than those computed by the ANT algorithm.

For the U(T ) criterion and ComprehensiveEachBorderOnce, the results were very sim-
ilar to the ComprehensiveAllBorderCombinations results. The AGA computed test sets
that had an average value of this criterion 2% higher than those computed by the ANT
algorithm, and the SPC algorithm computed test sets that had a value 8% higher than
those computed by the ANT algorithm.

The average number of border nodes in the test set B(T ) was the same for the test
sets computed by the ANT algorithm and the AGA, and 6% higher than for the SPC
algorithm.

Considering the average length dispersion s(T ), test sets computed by the AGA had
a value of this criterion that was 31% higher than those by the SPC algorithm. For the
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ANT algorithm, the value was 2.19 times higher than for the SPC algorithm.
The SPC, ANT, AGA, and TR algorithms outperformed all test coverage criteria in

the initial baseline in the number of test steps l(T ), the differences being approximately
threefold for Edge coverage and AGA for ComprehensiveAllBorderCombinations up to
the values differing approximately 20 times for TDL 3 and ANT for EachBorderOnce.
Regarding other E , the differences were similarly significant (details can be found in Tables
8.1 and 8.2). Hence, the results of the initial baseline confirm that a standard path-based
testing approach using Edge, Edge-pair or TDL 3 criteria is not suitable for generating
T for the limited network connectivity testing problem as discussed in this thesis.

8.2 Algorithms that Produced the Best Test Sets for

Particular SUT Models

The averaged properties of T produced by individual algorithms, as discussed in Section
8.1, give helpful insight into the algorithms’ performances. Still, it is only one of the
possible viewpoints on the results. Another question is, which algorithm computed T

with the best result (for particular E) for the majority of the SUT models?
First, the results for the EachBorderOnce and AllBorderCombinations criteria are

presented in Figure 8.5, followed by the results for the ComprehensiveEachBorderOnce
and ComprehensiveAllBorderCombinations presented in Figure 8.6.

The charts in Figures 8.5 and 8.6 use the y-axis to present the individual test set
evaluation criteria introduced in Sections 4.3, 5.1, and 7.3. The x-axis presents the in-
dividual algorithms. Each number in the intersection of the axes represents the number
of cases in which a particular algorithm returned the best T for a particular evaluation
criterion. The size of the bubble around a number visually emphasizes that number. For
the comparisons of the evaluation criteria results, either a comparator < or > was used,
based on the meaning of particular E (see Sections 4.3, 5.1, and 7.3). In these compar-
isons, only the situations when particular algorithm clearly outperformed the others were
considered; if the best result of an evaluation criterion for a SUT model G corresponded
to T computed by more than one algorithm, then no algorithm was considered as the best
for the particular model.

As the SPC, ANT, AGA, and TR algorithms are non-deterministic and the compu-
tations have been run ten times, Figures 8.5 and 8.6 present the average results. On the
right side of the bubbles, the numbers in brackets represent the worst cases and the best
cases of all these ten runs.

As the TR algorithm is not applicable as a baseline for the ComprehensiveEachBor-
derOnce and ComprehensiveAllBorderCombinations criteria (the reason was explained in



Section 5.2), it is not present in Figure 8.6.
Figure 8.5a shows that the ANT algorithm outperformed the others for the AllBor-

derCombinations coverage in many criteria. Specifically, it gave the best result for 116
SUT models for |T |, for 140 models for l(T ), for 128 models for U(T ), and for 145 models
for B(T ).

The ANT algorithm is followed by the second-best performer, the AGA, which pro-
vided the best result for 45 SUT models for l(T ), 82 models for U(T ), and 44 models for
B(T ).

Moreover, for a small number of SUT models, it was the SPC algorithm that provided
the best solution (six models for l(T ), U(T ), and B(T )). The TR baseline produced the
best solution for a very low number of models (two models for l(T ), and one model for
B(T )).

For s(T ), the best results were provided by the TR baseline (114 SUT models), followed
by the SPC algorithm (36 models).

For the EachBorderOnce coverage (see Figure 8.5b), the outcome was similar to
the previous test coverage criterion. The ANT algorithm outperformed the others for 154
models for the |T |, 138 models for l(T ), 130 models for U(T ), and 145 models for B(T ).
On the other hand, the ANT results were not as good for the s(T ) criterion, for which
this algorithm provided the best result for 22 of the models only.

The AGA was the second-best performer, yielding the best results for 57 models for
l(T ), 81 models for U(T ), and 56 models for B(T ). For the EachBorderOnce, the number
of SUT models, for which the SPC provided the best result, was generally higher compared
to AllBorderCombinations. The SPC algorithm gave the best result for 17 SUT models
for l(T ), 18 models for U(T ), and 15 models for B(T ).

The TR baseline was the best performer for s(T ). It provided the best result for
107 SUT models, followed by the SPC algorithm, which provided the best result for 33
models.

For ComprehensiveAllBorderCombinations and ComprehensiveEachBorderOnce (see
Figure 8.6), the results were more diverse. For both criteria, the ANT algorithm was
still the best performer. Nevertheless, the difference between its performance and the
performances of the AGA and the SPC algorithm was not as large as it was for the
previous AllBorderCombinations and EachBorderOnce criteria.

For the ComprehensiveAllBorderCombinations criterion, results depicted in Fig-
ure 8.6a, the ANT algorithm computed the best solution for 96 SUT models for |T |, for
86 models for l(T ), for 113 models for U(T ), and 93 for B(T ).

The AGA was the second-best performer for U(T ) (84 SUT models). For the rest of
the test set evaluation criteria, the second place was secured by the SPC algorithm (58
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(a) Comparison for the AllBorderCombinations coverage criterion.

(b) Comparison for the EachBorderOnce coverage criterion.

Figure 8.5: The visualization of the number of SUT models for which the individual
algorithms produced the best T (part 1).



(a) Comparison for the ComprehensiveAllBorderCombinations coverage criterion.

(b) Comparison for the ComprehensiveEachBorderOnce coverage criterion.

Figure 8.6: The visualization of the number of SUT models for which the individual
algorithms produced the best T (part 2).
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models for l(T ), 127 models for s(T ), and 53 models for B(T )). However, in third place
for performance was the remaining algorithm with a relatively significant number of SUT
models for each of the test set evaluation criteria.

For the ComprehensiveEachBorderOnce, the ANT algorithm outperformed its
competitors in l(T ) more clearly in comparison to ComprehensiveAllBorderCombinations ;
it provided the best result for 133 models for |T |, for 109 models for l(T ), for 118 models
for U(T ) and 115 models for B(T ). The second-best performer for this criterion was
the AGA, yielding the best result for 56 models for l(T ), 90 models for U(T ), and 56
models for B(T ). The SPC algorithm performed best for 130 models for s(T ), while still
maintaining a considerably high number of SUT models–in which it provided the best
results. However, in overall comparison, SPC was the worst performer for the Compre-
hensiveEachBorderOnce criterion.

As a preliminary summary, the ANT algorithm was the best performer in the con-
ducted experiments, followed by the AGA and the SPC algorithm. However, there was
no "superior algorithm" that provided the best solution for all SUT models universally.
We are going to draw further conclusions from these findings later in Section 9.

8.3 Effectiveness of Limited Network Connectivity De-

fects Detection in the SUT

A simple type of limited network connectivity-related defects that can be activated by
visiting a single LCZ IN or LCZ OUT node will be all activated by T , satisfying any
of AllBorderCombinations, EachBorderOnce, ComprehesiveAllBorderCombinations , or
ComprehensiveEachBorderOnce criteria.

Hence, in this section, we analyze the potential of T in detecting the second, more
complex variant of the limited network connectivity-related defects in the SUT, χ(G).

A test set T satisfying the AllBorderCombinations coverage criterion activates 100% of
the defined defect node pairs χ(G), which is a consequence of the AllBorderCombinations
definition. In the same way, T satisfying ComprehensiveAllBorderCombinations activates
100% of the defect node pairs defined in G.

The results for EachBorderOnce and ComprehensiveEachBorderOnce are worth a
more detailed analysis (values of ψ(T ) in Tables 8.1 and 8.2).

In the experiments, T generated by the TR baseline, satisfying EachBorderOnce, de-
tected 88.9% of the defect node pairs on average for all SUT models and computation runs.
T generated by the AGA detected 89.7%, T generated by the SPC algorithm detected
90.4%, and T generated by the ANT algorithm detected 95.2% of these defects.

For ComprehesiveEachBorderOnce, T generated by the AGA detected 88.4% of the



defect node pairs, on average, and T generated by the ANT and SPC algorithms detected
91.3% of these defects.

However, these results have to be put in the context of T size, l(T ). Hence, Ψ is the
most relevant indicator to evaluate and should be analyzed for all test coverage criteria.

As explained before, note that values of Ψ presented in Tables 8.1 and 8.2 are not
equal to the division of the values of average ψ over average l(T ) as presented in these

tables, but they are an average of
ψ

l(T )
for each of the SUT models.

For AllBorderCombinations, the best value of Ψ was achieved by the ANT algorithm
(3.69%), followed by the AGA (3.49%), and then the SPC and TR baseline algorithms
(both with 2.69%).

For EachBordeOnce, the ANT algorithm yielded the test sets with Ψ being 3.74%,
followed by the AGA with 3.25%, the SPC algorithm with 2.83%, and the TR baseline
algorithm with 2.7%.

In the case of ComprehesiveAllBorderCombinations and ComprehesiveEachBorderOnce,
the differences between Ψ for the individual algorithms were much smaller (due to ψ(T )
being 100% for these two test coverage criteria). For ComprehesiveAllBorderCombina-
tions, the best value was provided by the ANT algorithm (2.37%), followed by 2.26% in
the case of the SPC algorithm and the AGA. For ComprehesiveEachBorderOnce, the best
value (2.67%) was provided by the ANT algorithm again, followed by the SPC algorithm
(2.46%), and the AGA (2.47%).

For the initial baselines, values of Ψ were much lower, 0.68% for Edge, 0.43% for
Edge-pair, and 0.31% for TDL 3 coverage criteria, which rendered the approach that was
suggested by the initial baseline significantly ineffective.

8.4 Results of the Portfolio Strategy

The results of the portfolio strategy are presented in Table 8.1 for the EachBorderOnce and
AllBorderCombinations criteria, and then in Table 8.2 for ComprehensiveEachBorderOnce
and ComprehensiveAllBorderCombinations criteria.

Also, the data are presented in Figure 8.1 for AllBorderCombinations, in Figure 8.2 for
EachBorderOnce, in Figure 8.3 for ComprehensiveAllBorderCombinations, and in Figure
8.4 for the ComprehensiveEachBorderOnce criterion, where the results for the portfolio
strategy are denoted as PS (the first yellow column in the graphs).

As the portfolio strategy selects the best T from the individual results provided by the
SPC, ANT, AGA, and TR algorithms, it is not included in the overall statistics presented
in Figures 8.5 and 8.6.

In this section, we analyze the differences between the results of the portfolio strat-
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egy and the best-performing algorithm, both running separately for the set of 310 SUT
problem models.

Starting with |T |, the portfolio strategy gave practically the same result as the ANT
algorithm, the best performer for this test set comparison criterion for all test coverage
criteria, the differences being under 0.6% in favor of the portfolio strategy for all test
coverage criteria.

The more important indicator is l(T ), being a proxy of testing costs. The portfolio
strategy selected T with a number of steps (l(T )) lower by 9.8% than the ANT, the best
performer for the AllBorderCombinations criterion, very similarly, lower than 9.6% than
the ANT algorithm for the EachBorderOnce criterion, lower by 5.0% than SPC algorithm,
the best performer for the ComprehensiveAllBorderCombinations criterion, and lower by
11.4% than the ANT, the best performer for the ComprehensiveEachBorderOnce criterion.

Regarding the test cases length dispersion s(T ), the result of the portfolio strategy
was lower by 14.4% than the result for the best performing TR baseline for the AllBorder-
Combinations criterion, and by 15.2% for the EachBorderOnce criterion. For Comprehen-
siveAllBorderCombinations, the result of the portfolio strategy was 6.5% lower than the
SPC algorithm, the best performer for this criterion. For ComprehensiveEachBorderOnce,
the portfolio strategy selected T with s(T ) lower by 13.1% than the SPC algorithm.

In the case of potential edge redundancy U(T ), the ANT algorithm computed T with
the best values of U(T ) for all test coverage criteria. In comparison to the ANT algorithm,
the portfolio strategy selected T with U(T ) better by 1.4% for AllBorderCombinations,
better by 3.9% for EachBorderOnce, better by 3.8% for ComprehensiveAllBorderCom-
binations and better by 4.7% for the ComprehensiveEachBorderOnce criterion. These
results are not as significant as those in the cases of l(T ) and s(T ).

The next indicator is the effectiveness of visiting LCZ border nodes B(T ). Compared
to the ANT algorithm, the portfolio strategy selected T with B(T ) better by 4.3% for
AllBorderCombinations, and by 4.0% for EachBorderOnce. For B(T ) and Comprehen-
siveAllBorderCombinations, all three AGA, SPC, and ANT algorithms performed well,
having the value of B(T ) as approximately 13%; however, the portfolio strategy achieved
a value higher by 7.7%. For B(T ) and ComprehensiveEachBorderOnce, both the ANT
algorithm and the AGA yielded the best results, 17%, but the portfolio strategy achieved
a value of B(T ) higher by 5.9%.

For A(T ), only the EachBorderOnce and ComprehensiveEachBorderOnce criteria are
relevant to evaluate, and the differences between the results of the portfolio strategy
and the best-performing algorithm are not that significant. For EachBorderOnce, the
portfolio strategy produced T with A(T ) higher by 3.1% than T produced by ANT, the
best performer for this criterion. For ComprehensiveEachBorderOnce, the A(T ) of the



test set selected by the portfolio was higher by 1.6% than of the test set computed by
SCP algorithm, the best SPC for this test coverage criterion.

The last important aspect to analyze is the probability of T to detect artificial defects
in the SUT. Here, for AllBorderCombinations and ComprehensiveAllBorderCombinations,
the portfolio strategy produced T that detected 100% of defect node pairs χ(G) defined
in G. For EachBorderOnce, on average, the portfolio strategy produced T that activated
97.4% of the defect node pairs defined in individual G in the experiments, the best result
compared to the individual algorithms.

For ComprehensiveEachBorderOnce, the portfolio strategy produced T that, on aver-
age, activated 95.4% of the defect node pairs defined in individual G.

With Ψ as the major indicator of artificial defect detection effectiveness, for AllBor-
derCombinations, the average Ψ for the portfolio strategy was 3.8%. This result was 1.9%
higher than for the ANT algorithm, 7.7% higher than for the AGA, and more than 39.8%
higher than for both the SPC algorithm and the TR baseline, which achieved the same
value of the average Ψ.

For EachBorderOnce, the average Ψ for the portfolio strategy was 3.8%, which was
2.4% higher than for the ANT algorithm, 17.8% higher than for the AGA, 35.3% higher
than for the SPC algorithm, and 41.9% higher than for the TR baseline.

For ComprehensiveAllBorderCombinations, the Ψ was 2.4% for the portfolio strategy,
1.7% higher than for the ANT algorithm, and 6.6% higher than the Ψ was for both the
AGA and the SPC algorithm.

Finally, for the ComprehensiveEachBorderOnce, the average Ψ for the portfolio strat-
egy was 2.8%, a value that was 3.4% higher than for the ANT algorithm, 11.7% than for
the AGA, and 12.2% higher than the Ψ was for the SPC algorithm.

Regarding the initial baselines, the differences between the averaged Ψ for the portfolio
strategy and averaged Ψ for Edge, Edge-pair, and TDL 3 were more significant (see Tables
8.1 and 8.2). These results clearly demonstrate that, for the limited network connectivity
testing problem being the subject of this thesis, the proposed approach outperforms the
available path-based testing alternatives examined in the initial baseline.

8.5 Time Effectiveness of the Algorithms

In the t[s] column, Table 8.1 presents average runtimes of compared algorithms in seconds
for the AllBorderCombinations and EachBorderOnce test coverage criteria.

For AllBorderCombinations, both the SPC and TR algorithms returned the results
with the shortest runtime of 0.002 s. The AGA took much longer to compute T , taking
3.3 s on average. The slowest was the ANT algorithm, which, on average, needed 7.7 s.
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The longest runtime measured during the experiments for the AllBorderCombinations
criterion was 204.8 s for the AGA (for SUT model id=98, |N |=93 and |E|=170, see Table
7.3), followed by 57.2 s for the ANT algorithm (SUT model id=290, |N |=81 and |E|=113,
see Table 7.4). For the largest SUT model, in terms of both the number of nodes and edges
out of all instances (|N |=325 and |E|=488, id=147 in Table 7.3), the longest runtimes out
of all ten repetitions were 106.4 s for the AGA, followed by 5.4 s for the ANT algorithm,
0.018 s for the TR algorithm, and 0.002 s for the SPC algorithm.

The trend for the average runtimes of the algorithms was similar for both the Each-
BorderOnce test coverage criterion and AllBorderCombinations. For EachBorderOnce,
the SPC algorithm was the fastest with an average runtime of 0.001 s, followed by the
TR baseline with 0.002 s. The AGA ran on all instances and all ten repetitions for 2.6 s
on average, and the slowest was the ANT algorithm, which ran for 6.7 s on average.

For the EachBorderOnce, the longest runtime measured during the experiments was
231.5 s for the AGA (for SUT model id=127, |N |=93 and |E|=149, see Table 7.3), followed
by 57.7 s for the ANT algorithm (SUT model id=284, |N |=62 and |E|=77, see Table 7.4).
For the largest SUT model, in terms of both the number of nodes and edges out of all
instances (|N |=325 and |E|=488, id=147 in Table 7.3), the longest runtimes out of all
repetitions were 22.2 s for the AGA, followed by 5.5 s for the ANT algorithm, 0.021 s for
the TR algorithm, and 0.001 s for the SPC algorithm.

In the case of EachBorderOnce, the runtimes were generally slightly shorter than for
AllBorderCombinations, which is a logical and expected result considering the definitions
of these test coverage criteria.

Table 8.2 presents the average runtimes of the algorithms compared for the Compre-
hensiveAllBorderCombinations and ComprehensiveEachBorderOnce criteria. Generally
speaking, the trends are similar to those observed for AllBorderCombinations and Each-
BorderOnce.

In the case of ComprehensiveAllBorderCombinations criterion, the fastest was
the SPC algorithm, which ran for all SUT models for 0.002 s on average. For the same
task (averaged for all ten repetitions of computation), the AGA needed 7 s, followed by
the ANT algorithm, the slowest, which, on average, needed 19.6 s to compute T .

For ComprehensiveAllBorderCombinations, the longest measured runtime during the
experiments was 289.8 s for the AGA (for SUT model id=142, |N |=271 and |E|=351,
see Table 7.3), followed by 211.4 s for the ANT algorithm (SUT model id=270, |N |=79
and |E|=122, see Table 7.4). For the largest SUT model, in terms of both the number
of nodes and edges out of all instances (|N |=325 and |E|=488, id=147 in Table 7.3), the
longest runtimes out of all repetitions were 287.5 s for the AGA, followed by 9 s for the
ANT algorithm, and 0.011 s for the SPC algorithm.



Finally, for the ComprehensiveEachBorderOnce criterion, the SPC algorithm was
the fastest with an average runtime of 0.001 s. To compute T , the AGA needed 4 s, and
the slowest was the ANT algorithm, which ran for all SUT models and ten computations
for 13.4 s on average.

When analyzing the SUT models with the longest runtimes and the runtimes for the
largest SUT models for the ComprehensiveEachBorderOnce criterion, the longest runtime
measured during the experiments was 283.1 s for the AGA (for SUT model id=135,
|N |=80 and |E|=122, see Table 7.3), followed by 100.1 s for the ANT algorithm (SUT
model id=285, |N |=74 and |E|=97, see Table 7.4). For the largest SUT model, in terms
of both the number of nodes and edges out of all instances (|N |=325 and |E|=488, id=147
in Table 7.3), the longest runtimes out of all repetitions were 30.5 s for the AGA, followed
by 18.6 s for the ANT algorithm, and 0.002 s for the SPC algorithm.

Generally, the runtimes needed by the algorithms to satisfy ComprehensiveAllBor-
derCombinations were longer than those for ComprehensiveEachBorderOnce, which is in
accordance with the principle of these test coverage criteria.

When looking at the initial baselines, no excessive runtimes were identified. The
average runtime for Edge coverage was 0.016 s, for Edge-pair, it was 0.041 s, and for TDL
3, it was 0.11 s.

We interpret and analyze the results later in Section 9. However, at this point, it
is worth noting that even the relatively high average runtimes of the ANT algorithm
(6.7 s up to 19.6 s for the particular test coverage criterion), which might cause user
discomfort when computing the test cases, are partially a result of relatively large SUT
models appearing in the experiments. When compared to the potential effort savings as
a result of applying the proposed technique in an industrial project, for example, some
slight user discomfort when generating the test cases would be considered acceptable.

Regarding the run times of the portfolio strategy, in the case of sequential execution
of the algorithms, it was a sum of run times of all included algorithms. The average
runtimes of the portfolio strategy varied from 9.3 s for the EachBorderOnce test coverage
criterion to 26.6 s for the ComprehensiveAllBorderCombinations test coverage criterion,
excluding the neglectable time to select the best T .

The previous note about the potential testing effort savings (especially for large SUT
process models in complex IoT systems) making up for possible user discomfort when
computing the test cases is also valid in this case. Moreover, the execution time of
the portfolio strategy can be reduced by parallel execution of the individual employed
algorithms.



Chapter 9

Discussion

The experimental results revealed that no algorithm is universally superior for obtaining
the best T across all SUT models for all test set evaluation criteria. However, certain
algorithms performed well in individual situations, as observed from the data.

For the AllBorderCombinations and EachBorderOnce coverage criteria, the ANT al-
gorithm produced T with the best results for the number of test set evaluation criteria
for the majority of SUT models (refer to Figure 8.5). The only exception was the length
dispersion s(T ) in which the TR baseline demonstrated the best results. However, the
AGA ranks the second-best performance and provided the best results in a considerable
number of SUT models (approximately one-fourth to one-third on average, depending on
E).

For ComprehensiveAllBorderCombinations and ComprehensiveEachBorderOnce cov-
erage, the superiority of ANT over SPC and AGA was relatively lower compared to All-
BorderCombinations and EachBorderOnce (Figure 8.6). ANT provided the best result
for the majority of E , except s(T ), and "the second place" varied for each test coverage
criterion and E . The same situation was observed for Ψ.

Therefore, to obtain the best T for a particular G, E , and test coverage criterion, the
SPC, ANT, and AGA algorithms (including the TR baseline for AllBorderCombinations
and EachBorderOnce criteria) must be combined in a portfolio strategy.

The differences between the T generated by the portfolio strategy and the algorithm
that achieved the best result for |T |, U(T ), and B(T ) were almost equal (less than 5%
in most cases). Thus, we can conclude that the best-performing algorithms were well-
designed for these criteria.

In contrast, the differences between the results of the portfolio strategy and the win-
ning algorithms for all four coverage criteria was much more significant for l(T ) at ap-
proximately 10% (except ComprehensiveAllBorderCombinations with a difference of only
5%).
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The difference was even larger for the length dispersion s(T ), which was approximately
15% for the AllBorderCombinations and EachBorderOnce criteria and 13% for the Com-
prehensiveEachBorderOnce criterion. Note that ComprehensiveAllBorderCombinations is
an exception, and the difference in this test coverage criterion was only 6% approximately.

Finally, further improvements in artificial defect detection potential Ψ, up to approxi-
mately 4%, were observed upon comparing the portfolio strategy with the best-performing
algorithm.

In summary, these results document further improvements in the average quality of T
that can be achieved by employing the portfolio strategy.

Upon further analyzing the results of the individual algorithms, the ANT notably pro-
duced a lower number (|T |) of longer test cases with fewer steps in total (l(T )) compared
to the other algorithms. This result corresponds well with the algorithm principle that
ants attempt to visit more LCZs in a single test case. This effect also results in relatively
high s(T ) for T computed using ANT. Notably, the SPC produced shorter test cases,
but possibly with a greater number of total steps, because of the "greedy" nature of this
algorithm for traversing G. In contrast to the ANT, the proximity of the individual LCZs
was not considered in the SPC method.

In terms of runtimes, even the longest runtime of the ANT algorithm in the entire
experiment (289.8 s) can be considered acceptable. This runtime was recorded for the
SUT model with 271 nodes and 351 edges, which is a rare situation in industrial practice.
In general, models with more than 100 nodes are expected to be less common. Moreover,
even if an algorithm ran for minutes which might cause user’s discomfort, we believe that
the potential savings in test effort (which will increase for SUTs with such complexity)
would undoubtedly compensate for such discomfort. The same principle applies to the
runtimes of the portfolio strategy, which—in case of the sequential execution of the in-
cluded algorithms—is a sum of the individual algorithm runtimes plus the time required to
determine the best T by the selected E . However, the execution period can be optimized
by conducting parallel execution of the included algorithms.

Analyzing the longest runtime versus that for the largest SUT model, the G size in
terms of |N | and |E| evidently influenced the computation period; however, the graph
topology combined with the presence of LCZs affects this duration even more. Interest-
ingly, the SUT models corresponding to the longest computation period for T were the
same for all algorithms and all test coverage criteria. Upon analyzing the principle of the
algorithms, topology of SUT models, and experimental data, the number of cycles present
in G significantly influenced the computation period.

In summary, considering the complexity of the problem, various topological "patterns"
in the SUT models (e.g., density of cycles), principle of individual algorithms, and various
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possible criteria E for determining a winner, formulating the best-performing algorithm
that provides the best T is practically impossible for all possible problem instances and
combinations of E and test coverage criteria. However, the current research does not aim
to develop an all-encompassing algorithm. In fact, a reasonable and realistic goal is to
formulate a strategy to employ multiple best-performing algorithms and produce the best
T for the broadest spectrum of G, E , and test coverage criteria. The portfolio strategy
presented in this thesis is ideal for achieving this goal.

Regarding the effectiveness of T for detecting complex limited network connectivity
defects, the simulated defect node pairs χ(G) were defined for each SUT model G. For
AllBorderCombinations, the ANT yielded the best results for the Ψ criterion. The port-
folio strategy further outperformed the ANT by 2.7% in Ψ. Limited network connectivity
defects of a simple type that can be activated by visiting either the LCZ IN or LCZ OUT
node separately would be all activated by the test sets satisfying all test coverage criteria
proposed in this thesis. The same situation, including the value of Ψ, occurred with the
EachBorderOnce test coverage criterion for the defect node pairs.

Considering the ComprehensiveAllBorderCombinations and ComprehensiveEachBor-
derOnce criteria, the individual algorithms did not exhibit significant differences between
values of Ψ, because the l(T ) values of T computed by individual algorithms were rel-
atively similar for ComprehensiveAllBorderCombinations and ComprehensiveEachBor-
derOnce criteria (variance of l(T ) among all 310 SUT models was 77.92 for Comprehen-
siveAllBorderCombinations, 24.48 for ComprehensiveEachBorderOnce, 200.96 for AllBor-
derCombinations, and 80.95 for EachBorderOnce). The relative similarity of l(T ) for
ComprehensiveAllBorderCombinations and ComprehensiveEachBorderOnce results from
the principle of these two test coverage criteria, which demand the edges by which the
test case enters an LCZ IN node and by which it leaves an LCZ OUT node to be the
Non-LCZ edges.

In addition, the analysis revealed the lower Ψ values for the ComprehensiveAllBor-
derCombinations and ComprehensiveEachBorderOnce criteria compared to the AllBor-
derCombinations and EachBorderOnce criteria. Although the artificial defects placed in
the SUT models might indicate that the "Comprehensive" variants of these test cover-
age criteria are not effective in terms of the testing expenditure, the ComprehensiveAll-
BorderCombinations and ComprehensiveEachBorderOnce criteria are designed for more
thorough tests that force test cases to enter and exit the LCZs by Non-LCZ edges, thereby
exercising more potential test situations. According to this design, the "Comprehensive"
variants of the test coverage criteria are suitable for mission-critical components of the
SUT, where relatively higher testing costs are usually acceptable.

For a comparison of T satisfying AllBorderCombinations, EachBorderOnce, Compre-



hensiveAllBorderCombinations, and ComprehensiveEachBorderOnce criteria, there are
more alternative path-based testing approaches that can be used, not only the Edge,
Edge-pair, and TDL 3 coverages. For instance, Prime-path or even TDL 4 coverages can
be compared. However, the experimental data revealed that T satisfying even TDL 3 are
so large, that further probable increase in l(T ) which can be expected for Prime-path or
TDL 4 coverage would render this option suitable only as a theoretical baseline.



Chapter 10

Practical Applicability of LNCT

In this section, we discuss the practical industrial applicability of the proposed LNCT
method, primarily designed for current complex IoT systems. However, owing to its
suitable level of abstraction, it can be readily applied to various types of systems with
electronic and software components connected via a potentially unstable communication
network.

In addition to weak, limited, or intermittent data network coverage, situations in which
the network signal is jammed can be included in the application of the LNCT method.

Moreover, the presented LNCT technique can be generalized from testing of SUT
functionality influenced by limited network connectivity to testing of a system component
outage in general. These situations might include testing of situations when a component
of the SUT is physically damaged, for instance, in industrial applications, rescue mission
management, or defense systems.

Another prospective area involves testing scenarios in which a cyberattack disables
the typically vulnerable components of the system. The LNCT can be combined with the
current cybersecurity testing techniques [122], [123] to increase the potential effectiveness
of these tests.

Other options for LNCT applications include failover testing and testing of disaster-
recovery processes, wherein the SUT component can be disabled by internal software
errors, data overflow, excessively large user traffic, or general process errors. In one of
our papers—Genetic Algorithm for Path-based Testing of Component Outage Situations
in IoT System Processes—currently under review in IEEE Internet of Things journal, we
generalized the problem to test the component under outage.

Generally, the application of the MBT technique implies the necessity of modeling the
SUT (in this case, process models) and the probability of limited network connectivity (or
component outage). This modeling requires an initial investment and successive mainte-
nance efforts to update the SUT model with the actual SUT. Thus, the LNCT technique
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can be advantageous, especially for mission-critical systems in various critical infrastruc-
ture domains. In the critical domains, rigorous tests are required to ensure the safety and
reliability of the systems. As demonstrated by the experiments, limited network connec-
tivity (or component outage) tests for such systems can be achieved with potentially low
effectiveness if only the standard path-based testing methods are employed.

However, LNCT can be applied to non-critical systems as well. The initial investment
to SUT modeling and to maintain the model can be returned by the effort saved by
automating the generation of test cases. In these cases, the test manager creating a test
strategy must assess testing techniques and their costs and benefits. Here, LNCT is a
valid option, especially for larger non-critical systems.



Chapter 11

Threats to Validity

Several concerns can be raised regarding the validity of the performed experiments. First,
the experimental data can be biased because of the small sample size. To mitigate this
potential problem, the proposed algorithms were executed in the experiment on all 310
SUT models, which provided sufficiently diverse situations for the algorithms to accurately
infer the conclusions. The SUT models are described in Sections 7.2 and 7.4.

The second concern pertains to the relevance of the SUT models to real-life cases of
workflows in existing IoT systems. As the analysis of 50 or more distinct real IoT systems
is not feasible because of the confidentiality of the internal structure of typical industrial
IoT systems, a balance must be maintained between the number of SUT models used in
the experiments and their similarities to real-world cases. The process described in Section
7.2 was applied to ensure that the SUT models used in the experiments are representative
to real systems. In the present experiments, we used 163 models created from real IoT
projects. Thereafter, we artificially created 119 models inspired by industrial models to
resemble their topologies. Ultimately, a dedicated tool was used to artificially generate
28 models for ensuring a sufficient variety of topologies.

Third, the experimental data might be biased by the nondeterministic nature of SPC,
ANT, AGA, and core of TR, the employed set cover algorithm. To mitigate this issue,
the computations were executed ten times to obtain the averages of the results along with
the worst and best cases for these ten iterations.

Fourth, a question can be raised regarding the TR algorithm that was used as a
baseline to compare the discussed algorithms. From available algorithms suitable to serve
as the baseline, the proposal by Li et al. [13] was the most recent. In addition, a possible
bias that might be caused by a wrong implementation of the TR core, the set covering
algorithm [13], was prevented by employing the original implementation of the algorithm
by Offutt, Ammann, Li, Xu, and Deng1.

1https://cs.gmu.edu/~offutt/softwaretest/coverage-source/
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Fifth, in path-based testing, the results are strongly influenced by the topology of the
SUT model, and this study is no exception. To ensure the best variety in G topology, we
employed 310 different SUT models (refer to Table 7.2).

Sixth, the algorithms were compared using evaluation criteria based on the properties
of T (refer to Sections 4.3 and 5.1). The defect detection power, indicating the number
of defects in a SUT that would be discovered by a particular T , was analyzed by the sim-
ulation of limited network connectivity related defects in the SUT model. The insights
into this effectiveness are detailed in Section 8.3. However, additional experiments are
required to obtain more accurate data. Typically, to obtain more data, another mutation
testing [124], [125] or defect injection experiments [126] are required. However, in prin-
ciple, limited-network-connectivity defects are difficult to simulate using code mutations
or defect insertions. Therefore, an appropriate experiment must be designed to maintain
optimal objectivity.

Finally, to compare T satisfying the EachBorderOnce, AllBorderCombinations, Com-
prehensiveEachBorderOnce, and ComprehensiveAllBorderCombinations criteria with an
approach that a test engineer would intuitively take to satisfy these given criteria, we used
the Edge, Edge-pair, and TDL 3 coverage criteria. These criteria were selected because
they are the most common and known to the testing community available with and ade-
quate tool support exists for them [12], [34]. Other test coverage criteria such as Prime
path coverage can be selected for comparison. However, based on the experimental results,
the cost of the test cases would be excessively high in such cases. Further experiments
are required to explore these cases.

In summary, we believe that the conducted experiments satisfied the established stan-
dard practice for experimenting in the MBT field. We base this conclusion on analysis of
the common experimental methods reported in relevant MBT publications in field-related
impacted journals recognized by the research community (refer to Section 2).



Chapter 12

Conclusions

This thesis proposed a novel technique for the path-based testing of the functionality of
an IoT system when the functionality of its components is influenced by limited network
connectivity. This technique is based on modeling an SUT process or workflow and
determining the network outage probability in the model. Accordingly, the test cases
represent the flows of SUT functions such that when the network connectivity is disrupted
and restored, and they are sequenced according to a test coverage criterion. In contrast,
the number of test steps in other parts of the SUT model is minimal. Based on this
principle, the testing costs were minimized in comparison with other ad hoc approaches
that can be used to solve the problem. No previous path-based testing algorithms can be
directly utilized to this end, because the direct support required to visit a particular node
(edge) after another node (edge) is visited in the test case is not included within these
algorithms.

The major contributions of this thesis include (1) the formal definition of limited net-
work connectivity testing in an IoT system from the perspective of system functionality,
(2) the proposal of four algorithms, including a new SPC based on the principle of the
shortest path composition, ANT, which is a novel application of the ACO principle to
solve the discussed problem, an AGA algorithm that builds upon the well-known genetic
algorithm, and the TR baseline that employs the previous prime-paths generation algo-
rithm by Li et al. [13], (3) a detailed evaluation using 310 SUT models, most of which were
derived from real-life IoT projects, and (4) the combination of all investigated algorithms
in a portfolio strategy to obtain the best T . Considering the defined evaluation criteria
(refer to Table 4.1 and Sections 5.1 and 7.3), the ANT algorithm yielded the best results
for the majority of the 310 SUT models used in the experiments. However, for certain
SUT models, the SPC, AGA, and TR baseline yielded results better than ANT. This
effect was further stronger for the "Comprehensive" variants of the defined test coverage
criteria (refer to Section 4.2), where only SPC and AGA were comparable alternatives to
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ANT algorithm.
We can consider l(t) as the main criterion that approximates the potential effort

required to execute test cases to highlight the key findings. Here, we considered the
cases in which an algorithm provided clearly better result than the others compared, and
if two or more algorithms provided equivalent result, these cases were not counted in
statistics. For the AllBorderCombinations test coverage criterion, the ANT yielded the
best test set for the 140 SUT models, whereas SPC delivered the best set for 6, AGA
computed the best set for 45, and TR baseline for 2 models. For EachBorderOnce, the
ANT clearly computed the best test set for 138 SUT models, SPC for 17, AGA for 57,
and the TR baseline for 6 out of 310 models. For ComprehensiveAllBorderCombinations,
the ANT, SPC, and AGA computed the best test set for 86, 58, and 19 SUT models,
respectively. For ComprehensiveEachBorderOnce, ANT delivered the best solutions for
109 SUT models, SPC for 33, and AGA for 56.

Overall, two types of limited network-connectivity-related defects were considered in
the experiments. A simple type of defect can be activated by separately visiting the LCZ
IN or LCZ OUT nodes in the SUT model. This type is activated by any T that satisfies any
of the AllBorderCombinations, EachBorderOnce, ComprehensiveAllBorderCombinations,
or ComprehensiveEachBorderOnce criteria.

More complex defects can be activated by visiting a particular sequence of LCZ IN
and LCZ OUT nodes and are simulated by defect node pairs χ(G); the probability of
activating them by T depends on the used algorithm and test coverage criterion.

Here, the potential of the test cases to activate these χ(G) defects (denoted as Ψ)
can be considered the second main criterion regarding the effectiveness of T . For the
AllBorderCombinations test coverage criterion, ANT yielded the best test set for the 140
SUT models, whereas SPC delivered the best set for 6, AGA produced the best set for 45,
and TR baseline for 2 models. For EachBorderOnce, ANT computed the best test set for
156 SUT models, SPC for 18, AGA for 47, and the TR baseline for 6 out of 310 models.
For ComprehensiveAllBorderCombinations, ANT, SPC, and AGA computed the best test
set for 86, 58, and 19 SUT models, respectively. For ComprehensiveEachBorderOnce,
ANT provided the best solution for 110 SUT models, SPC for 57, and AGA for 44. Also,
here, we considered only the cases in which an algorithm provided clearly better result
than the others compared, and if two or more algorithms provided equivalent result, these
situations were not counted in statistics.

Therefore, although ANT renders the best option by the majority of the test set
evaluation criteria, all the proposed algorithms must be combined in a portfolio strategy
to ensure the best T , which is presented in this thesis. This strategy also provided the
best results regarding the potential of the produced test sets to detect simulated limited
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connectivity defects.
In future research, the portfolio strategy could be further improved by including an-

other algorithm to compute T . The core principle of this algorithm shall differ primarily
from the SPC, ANT, AGA, and TR baseline to increase the probability that the added
algorithm will contribute to the computation of a better T for any topology of the SUT
model.

A comparison of the proposed portfolio strategy with the test sets satisfying Edge,
Edge-pair and TDL 3 coverage, selected as the established comparable alternatives,
demonstrated that the current proposal evidently outperformed these traditional ap-
proaches for the specific case of the limited network connectivity testing problem defined
in this thesis.

12.1 Future Directions

We believe that the results of this thesis provide a coherent and effective solution for
testing IoT systems operating under limited network connectivity, and this solution can
be generalized to testing of the impact of component outages in complex software, IoT,
and electronic systems (this capability is further discussed in Section 10).

However, this concept can be further generalized, and during the past two years of
research, we identified a novel, more generalized, prospective research stream in path-
based testing, which will be explored after completing this PhD project. This stream is
introducing a set of defined constraints as an additional input to an algorithm

generating a set of test paths (further T ) from the directed-graph-based SUT

model G, all concepts and symbols here now referring to path-based testing preliminaries
(Section 2.2).

As such, T generated from G by an algorithm must satisfy these constraints.
The constraints can be classified to various types, among which two constraints can

be considered elementary building blocks in this case:

1. A function/action/step nA ∈ N ∈ G must be followed by an action nB ∈ N ∈ G
in a t ∈ T and several test steps might be present between actions nA and nB.
Therefore, the established path-based testing concept of the test requirements (see
Section 2.2) is not directly applicable here. Further denoted as positive constraint.

2. In analogy, a function/action/step nA must not be followed by an action nB in
any of t ∈ T (this negative condition cannot be handled by the test requirements),
denoted as negative constraint further.



In addition to these two elementary constraints, we can define more complex con-
straints.

This thesis practically explores positive constraints. In addition, attempts to reflect
the constraints in test case generation were made in the DFT discipline discussed in
the related work (see Section 2.3). However, the strategies and algorithms in DFT for
generating the test paths are proprietarily designed to test the programs at the source
code level and are difficult to combine with test coverage criteria suitable for general
path-based testing. In any case, previous DFT studies will be further analyzed in more
detail, and suitable parts will be utilized in further research.

However, the presence of negative constraints is significantly under-researched in path-
based testing, similar to the option of constructing a more complex set of constraints.

Regarding the practical applicability of this proposed concept, it will provide path-
based testing with new abilities for testing numerous specialized and more complex sit-
uations. Starting with limited network connectivity testing and component outage or
failover testing, discussed in Section 10, the set of these practical situations can be ex-
tended to handle complex test data objects whose wrong states might disrupt path-based
testing scenarios or to process exclusive or conditional situations in path-based tests.

Inspired by the established taxonomy and history of the Combinatorial Interaction
Testing (CIT) discipline [127], [128], we used the working title constrained path-based

testing for this concept. This working title follows an analogy from CIT, where Myra
Cohen published the first principles of extending the CIT to constrained interaction testing
in her PhD thesis in 2004 [129], [130] and influenced the research community to further
evolve this sub-discipline (actively participating in this evolution [131], [132]). Currently,
constrained interaction testing is a justified, practical, and beneficial substream of CIT,
which is routinely used for testing critical systems.

We consider introducing a similar line in path-based testing as an exciting field worth
exploring from a research viewpoint and bearing significant potential for industrial prac-
tice, and in the upcoming years, we are going to conduct further research in this direction.
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12310, Springer, pp. 93-112, 2020. DOI: 10.1007/978-3-030-58768-0_6

• Miroslav Bures, Bestoun S. Ahmed, Vaclav Rechtberger, Matej Klima, Michal
Trnka, Miroslav Jaros, Xavier Bellekens, Dani Almog and Pavel Herout. PatrIoT:
IoT Automated Interoperability and Integration Testing Framework. In 14th IEEE
Conference on Software Testing, Verification and Validation (ICST), pp. 454-459,
2021. DOI: 10.1109/ICST49551.2021.00059 (Core A)

B.3 Registered Utility Models

• Miroslav Bures, Vaclav Rechtberger and Matej Klima. Systém pro testování zařízení
připojených k internetové síti. Czech Republic Utility Model CZ PUV2019-36985.
Holder: CTU in Prague. Registration date: 28.4.2020.

• Miroslav Bures, Vaclav Rechtberger and Matej Klima. System zum Testen von mit
dem Internet verbundenen Geräten. Federal Republic of Germany Utility Model
DE 20 2020 107 057 U1. Holder: CTU in Prague. Registration date: 10.06.2021.

This utility model is currently being registered also in the Slovak Republic (PP 50077-
2020).

B.4 Patent Applications Under Review

• Miroslav Bures, Vaclav Rechtberger and Matej Klima. Postup testování IoT sys-
témů. Czech patent application, 2019, D19132392, PV 2019-802.
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