
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Collision avoiding model for autonomous driving

Peter Kosorín

Ing. Miroslav Čepek, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

AWS DeepRacer cars are a platform for experimenting with autonomous driving using

machine learning. The aim is to explore machine learning models and techniques for

obstacle avoidance in autonomous driving. The thesis focuses on static obstacles, i.e. the

ones that do not move during the driving epoch. Focus on working with a single track. For

experiments and demonstration, use a simulated environment. As a last step,

demonstrate the transfer of the created model into the physical car and autonomously

driving it on a track.

Steps:

1) Review literature on obstacle avoidance in autonomous driving and appropriate

machine learning model architectures.

2) Review the capabilities with types and placing of obstacles in the simulation

environment and the model learning tools prepared by the "AWS DeepRacer Community"

project.

3) Within the simulation environment, experiment with different machine learning

architectures and scenarios.

4) Demonstrate the trained models in the simulated environment and summarize the

capabilities of each model created.

5) Transfer the created model to a physical vehicle and test it on a test track and different

obstacle layouts.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 28 February 2023 in Prague.

Bachelor’s thesis

COLLISION AVOIDANCE
MODEL FOR
AUTONOMOUS DRIVING

Peter Kosorin

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Miroslav Čepek, Ph.D.
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Peter Kosorin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Kosorin Peter. Collision avoidance model for autonomous driving. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Abbreviations x

Introduction 1

1 Theoretical background 3
1.1 Sensors . 3

1.1.1 Cameras . 3
1.1.2 LiDAR . 4
1.1.3 Radar . 4

1.2 Deep learning . 5
1.2.1 Artificial neurons . 5
1.2.2 Feedforward neural networks . 5
1.2.3 Convolutional neural networks . 6
1.2.4 Recurrent neural networks . 7
1.2.5 Training . 8

1.3 Reinforcement learning . 9
1.3.1 Exploration vs exploitation . 11
1.3.2 Proximal policy optimization . 11
1.3.3 Soft actor critic . 12

2 Autonomous driving overview: Object avoidance 13
2.1 Perception and scene parsing . 14

2.1.1 Object Detectors . 14
2.1.2 Semantic Segmentation . 14

2.2 Path planning . 15
2.2.1 Classical planning . 15
2.2.2 Learning-based planning . 15

2.3 End-to-end architectures . 16
2.3.1 Supervised deep learning models . 16
2.3.2 Deep reinforcement learning models . 16

3 AWS DeepRacer 19
3.1 Service architecture . 19

3.1.1 SageMaker . 20
3.1.2 AWS RoboMaker . 20

3.2 DeepRacer-for-cloud . 21
3.2.1 Race types . 21
3.2.2 Reward function . 21

iii

iv Contents

3.2.3 Supported algorithms . 21
3.2.4 Action space . 21
3.2.5 Supported Models . 22

3.3 Physical car . 23

4 Experiments 25
4.1 Training setup . 25
4.2 Reward function . 26
4.3 Policy network architectures . 27
4.4 Sensor comparison for object avoidance . 28

4.4.1 Evaluation . 29
4.5 Architecture comparison . 30

4.5.1 Evaluation . 31
4.6 Head-to-head racing . 31

4.6.1 Evaluation . 32
4.7 Real environment . 32

5 Conclusion 35

A Training metrics 37

Contents of the attached media 49

List of Figures

1.1 Example of the type and positioning of sensors in an autonomous vehicle. [4] . . 4
1.2 Artificial neuron diagram. 5
1.3 Visual representation of the hierarchy of features in a 3-layer CNN, from simple

features to complex shapes. [17] . 6
1.4 Stages of a convolutional layer. [10] . 7
1.5 Operations carried out by the convolution and pooling stages. [18] 7
1.6 Basic RNN unfolded through time. 8
1.7 Visualization of a typical RL framework structure. Adapted from [30] 10

2.1 Self-driving pipelines. Modular pipeline, comprised of various modules (top), end-
to-end pipeline (bottom). Adapted from [37] . 13

2.2 Bounding box object detection. [51] . 15
2.3 Driving scene semantic segmentation. [52] . 15

3.1 AWS DeepRacer service architecture diagram. [69] 19
3.2 Racetrack with obstacles simulated in AWS RoboMaker. 20
3.3 Physical DeepRacer car equipped with LiDAR and stereo cameras. 20
3.4 Policy network architecture. [69] . 23

4.1 Proposed 3-layer CNN model architecture (left) and 5-layer architecture (right).
If the LiDAR sensor is not present, the section embedding the LiDAR data is
omitted. 27

4.2 Mean iteration reward vs. iteration number for three sensor configurations: single
camera (left), stereo cameras (center), and stereo cameras with LiDAR (right). . 28

4.3 The ”A to Z speedway” track chosen for training. 29
4.4 ”Smile Speedway” track used for model evaluation on an unknown track. 29
4.5 Localization maps of features considered important by the 3-layer CNN model

with a single camera, obtained using the Grad-CAM method. [71] 30
4.6 Mean iteration progress (left) and lap completion rate (right) for the 5-layer CNN

model with stationary obstacles. 30
4.7 Mean iteration progress (left) and lap completion rate (right) for the 3-layer CNN

model in an environment with moving obstacles. 31
4.8 Real world demonstration track. 32

A.1 Training metrics for the 3-layer CNN model with a single camera. 37
A.2 Training metrics for the 3-layer CNN model stereo cameras. 38
A.3 Training metrics for the 3-layer CNN model with a full suite of sensors – stereo

cameras and LiDAR. 39
A.4 Training metrics for 5-layer CNN model with stereo cameras and LiDAR. 40
A.5 Training metrics for the head-to-head racing model – 3-layer CNN with stereo

cameras and LiDAR. 41

v

List of Tables

3.1 Tunable hyperparameters, their description, and valid values. 22
3.2 DeepRacer vehicle hardware specification. [69] 23

4.1 PPO hyperparameters used for training the 3-layer CNN. 28
4.2 Experiment evaluation metrics. DNF notes that the agent did not finish the laps

within the 10 allotted restarts. 32

List of code listings

4.1 Lane keeping reward function. 26

vi

I thank my supervisor, Ing. Miroslav Cepek, Ph.D., for their insight
and guidance throughout this thesis. I am also grateful to my family
for their unwavering support and encouragement.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 11, 2023 .

viii

Abstract

Within this thesis, a comprehensive literature survey of various autonomous driving method-
ologies and machine learning model architectures has been conducted, with a particular focus
on object avoidance. The thesis goes on to explore the capabilities of the AWS DeepRacer au-
tonomous racecar platform. This platform is utilized to investigate the feasibility of training
end-to-end self-driving models focused on object avoidance using reinforcement learning.

Two self-driving architectures were compared, namely a three-layer convolutional neural net-
work and a five-layer convolutional neural network architecture. Furthermore, the impact of
sensor choice on the autonomous object avoidance task was compared. Experiments in the
simulated environment showed, that the three-layer convolutional neural network architecture,
equipped with a stereo camera and LiDAR sensors performed the best. The model was sub-
sequently deployed to the DeepRacer vehicle and demonstrated in the real world. The thesis
successfully demonstrated the feasibility of training end-to-end autonomous models using the
AWS DeepRacer platform and simulated environment.

Keywords autonomous driving, reinforcement learning, deep learning, object avoidance, AWS
DeepRacer

Abstrakt

V rámci této práce byl proveden literárńı pr̊uzkum r̊uzných metodik autonomńıho ř́ızeńı a ar-
chitektur model̊u strojového učeńı se zaměřeńım na vyhýbáńı se objekt̊um. Práce dále zkoumá
možnosti platformy autonomńıho závodńıho vozu AWS DeepRacer. Tato platforma je využita
ke zkoumáńı proveditelnosti trénováńı end-to-end model̊u autonomńıho ř́ızeńı zaměřených na
vyhýbáńı se objekt̊um pomoćı posilovaného učeńı.

Byly porovnávány dvě architektury samoř́ıdićıch model̊u, a to tř́ıvrstvá konvolučńı neuronová
śıt’ a pětivrstvá konvolučńı neuronová śıt. Dále byl porovnáván vliv volby senzor̊u na úlohu au-
tonomńıho vyhýbáńı se objekt̊um. Experimenty v simulovaném prostřed́ı ukázaly, že nejlépe
si vedla architektura tř́ıvrstvé konvolučńı neuronové śıtě, která byla vybavena stereokamerou a
LiDAR senzorem. Model byl následně nasazen do vozidla DeepRacer a demonstrován v reálném
světě. Práce úspěšně prokázala proveditelnost trénováńı end-to-end autonomńıch model̊u s
využit́ım AWS DeepRacer platformy a simulovaného prostřed́ı.

Kĺıčová slova autonomńı ř́ızeńı, posilované učeńı, hluboké učeńı, vyhýbáńı překážkám, AWS
DeepRacer

ix

Abbreviations

ADS Automated Driving System
ANN Artificial Neural Network
AWS Amazon Web Services
CNN Convolutional Neural Network

DL Deep Learning
GPS Global Positioning System

LSTM Long Short-Term Memory
LiDAR Light Detection and Ranging

MLP Multi-layer Perceptron
PPO Proximal Policy Optimization

R-CNN Region-based Convolutional Neural Network
RL Reinforcement Learning

RNN Recurrent Neural Network
ReLU Rectified Linear Unit

SAC Soft Actor Critic
SGD Stochastic Gradient Descent
TOF Time Of Flight

x

Introduction

The topic of self-driving cars has garnered much attention in recent years, with various techno-
logical advancements paving the way for its realization. Despite this progress, however, the road
to achieving fully self-driving vehicles is not without challenges. These challenges include de-
veloping sophisticated object detection and avoidance algorithms and ensuring the security and
reliability of these self-driving systems. Nonetheless, the breakthroughs in artificial intelligence
and related fields have led to remarkable strides in full vehicle autonomy, providing a glimpse
into a future with safer and more efficient transportation.

The end goal of autonomous driving research is to develop an Automated Driving System
(ADS) that can operate without human input, while simultaneously increasing passenger safety
and driver efficiency while decreasing accidents caused by human error. If widespread deployment
can be realized, the annual social benefits of ADSs are projected to reach nearly $800 billion by
2050 in the US alone through congestion mitigation, road casualty reduction, decreased energy
consumption, and increased productivity caused by the reallocation of driving time. [1]

Current automobile manufacturers see self-driving software as a key differentiator in the au-
tomotive industry, further adding legitimacy to the claim that vehicle autonomy is achievable
with current or near-future technologies. While researchers and manufacturers may adopt dif-
ferent methodologies to tackle the self-driving problem, common practices have emerged in the
field. Historically, ADSs have divided the task of autonomous driving into subcategories and
attempted to solve each independently. More recently end-to-end driving emerged as an alterna-
tive to modular approaches where various artificial intelligence models have become a dominant
part of many of the proposed solutions. [2]

The objective of this thesis is to conduct literature research and provide a comprehensive
survey of various autonomous driving methodologies, with a specific emphasis on the domain
of object detection and avoidance. Next, the capabilities of the AWS DeepRacer platform and
simulation environment will be explored. The AWS DeepRacer platform will be utilized to
explore and evaluate different self-driving architectures fit for the object avoidance task, further
comparing their performance in different driving scenarios. Finally, the self-driving model will
be demonstrated on a model vehicle.

1

2 Introduction

Chapter 1

Theoretical background

The detection of objects, their localization, and subsequent avoidance is a crucial subdomain
of the self-driving task. It is a complex problem that requires a deep understanding of the
underlying principles of sensing, perception, and decision-making.

This chapter will provide a theoretical background that covers several key topics related to
self-driving systems, including sensors such as cameras, radar, and LiDAR. Furthermore, deep
learning techniques will be introduced, such as feedforward neural networks, convolutional neural
networks, and recurrent neural networks, as these architectures serve as a foundation for many
approaches discussed further. In addition, optimization algorithms such as gradient descent and
other optimizers that are commonly used to train deep neural networks will be discussed. The
chapter ends with an overview of reinforcement learning, as this framework will be used to train
the object-avoidance model.

1.1 Sensors
If self-driving cars are to be widely adopted, they need to be equipped with an advanced percep-
tion of their surroundings to effectively navigate high-pressure situations and make appropriate
decisions that prioritize safety at all times. [3] These vehicles are often equipped with a vari-
ety of sensors with the aim of building a realistic internal representation of their environment
in all conditions. This section aims to establish how self-driving systems interface with their
environment, and in what form raw data gets fed in for further processing.

Sensors are devices that map events or changes in the surroundings to a quantitative mea-
surement for further processing. In general, sensors are classified into two classes based on their
operational principle: proprioceptive and exteroceptive. Proprioceptive sensors, or internal
state sensors, capture the internal of a system, e.g. force, angular rate, wheel load, battery
voltage, etc. Whereas exteroceptive sensors, meaning external state sensors, detect information
from outside of the system, such as distance to objects or light intensity. [4] This section will
focus on exteroceptive sensors, as they are critical for object detection, localization, and path
planning.

1.1.1 Cameras
Optical cameras are one of the more obvious sensor choices for autonomous driving, as they
mimic the human optic system around which the road system has been designed and built.
Camera systems detect visible light emitted and reflected from their surroundings, capturing
it on a photosensitive sensor, after passing it through a lens. They are relatively inexpensive

3

4 Theoretical background

and provide high-resolution videos and images, including color and texture information of the
perceived surroundings.

Autonomous vehicle systems can employ monocular cameras, binocular cameras, or a com-
bination of both. Monocular camera systems utilize a single camera, whereas binocular camera
systems use two cameras placed side by side. The disparity between the two images enables
inherent depth perception. As the performance of a purely optical system is highly dependent
on the environmental condition and illumination, image data is often complemented with other
sensor data, to generate reliable environment representation. [5], [6]

1.1.2 LiDAR
Light detection and ranging, or LiDAR, first came into prominence in the 1960s, with areal
terrain mapping being its primary application. [7] LiDAR is a remote sensing technology, used
to measure distances. It works on the principle of time of flight (TOF); a pulse of laser light is
sent out from the sensor and the time it takes for the reflected pulse to come back is measured.
This creates a 3D representation of the environment surrounding the sensor in the form of a
point cloud. [5]

The relatively high cost of LiDAR systems is offset by their performance - they offer high
precision even at range and a variety of environmental conditions. This robustness along with
accuracy offers great benefits, especially to autonomous vehicles. [8]

1.1.3 Radar
The origins of Radar (Radio Detection and Ranging) can be traced back to the period prior to the
Second World War. The technology works by transmitting electromagnetic (EM) waves within a
particular area of interest and then receiving the waves that have been scattered or reflected by
objects within that area. The reflected waves are then processed to establish information about
the range of the objects. Doppler shift, which is the variation in wave frequency that results
from relative motion between a wave source and its targets, is also used by Radar to determine
the relative speed and position of objects. [5], [9]

To summarize, radar sensors are one of the most utilized technologies in autonomous systems,
and provide a reliable perception of obstacles regardless of illumination and weather conditions.

Figure 1.1 Example of the type and positioning of sensors in an autonomous vehicle. [4]

Deep learning 5

1.2 Deep learning
Broadly speaking, deep learning (DL) is a subfield of machine learning that involves building and
training artificial neural networks (ANNs) with multiple layers. These models, which are
made up of mathematical representations of interconnected processing units known as artificial
neurons, are inspired by the organic brain’s structure. Each connection between neurons produces
signals that can be strengthened or weakened by a weight that is continuously changed throughout
the learning process, similar to synapses in the brain. The key feature of DL is its inherent ability
to automatically learn representations of data from raw inputs, without the need for manual
feature engineering. [10], [11], [12]

1.2.1 Artificial neurons
The basic building block of all ANNs is the so-called artificial neuron, which mimics the
function of an organic neuron. The output of this computational unit is calculated by applying
an activation function to the inner potential ξ:

ξ = w0 +
n∑

i=1
wixi = wT x + w0 (1.1)

where x = (x1, . . . , xn)T is a vector of the neuron inputs, w = (w1, . . . , wn)T is a vector of
weights and w0 is the bias. Finally, the activation function is applied to this sum. A model that
consists of only a single neuron is also called a single-layer perceptron. Single-layer perceptrons
are not particularly interesting, as they are only able to represent linear functions. [13], [14]

x1

x2

xn

.

.

.

w1

w2

wn

f

Inputs Weights

w0

x0 = 1

Bias

Activation function

Output

.

.

.

Figure 1.2 Artificial neuron diagram.

1.2.2 Feedforward neural networks
Feedforward neural networks, often also referred to as multi-layer perceptrons (MLPs) are the
most prototypical deep learning models. In contrast to single-layer perceptrons, these models
can approximate virtually any function. The networks are called ”feedforward” since they lack
feedback loops in their architecture, as opposed to networks later introduced in Subsection 1.2.4.
They are composed of multiple layers of artificial neurons, where an output of a single layer
serves as an input to the next layer. [10], [11]

6 Theoretical background

1.2.3 Convolutional neural networks
Convolutional Neural Networks (CNNs) are analogous to traditional ANNs in that they are
comprised of neurons that self-optimize through learning. They are specialized for processing
data that has a grid-like structure, for example image data, which can be thought of as a 2D
grid of pixels. [10], [15]

CNNs learn hierarchies of features in the data, from simple patterns in the beginning layers
to continuously more complex features. An example could be detecting the edges of a shape and
combining them to detect a traffic sign. One major feature that emerges from the architecture
of a CNN is translation invariance – a feature can be detected regardless of where it is placed in
the input image. Another benefit of CNNs over traditional fully connected ANNs is efficiency.
In a traditional neural network, the output of a single neuron interacts with every other neuron
in the next layer. Convolutional networks, however, typically have sparse interactions. In other
words, neurons in the next layer only get inputs from the corresponding local part of the previous
layer. This drastically reduces the number of connections, which in turn decreases computational
complexity. [10], [16], [17]

Figure 1.3 Visual representation of the hierarchy of features in a 3-layer CNN, from simple features
to complex shapes. [17]

Typically, a single layer of a CNN consists of three stages (see Figure 1.4). The first stage
performs convolutions in order to produce a set of linear activation outputs. In the second
stage, sometimes referred to as the detector stage, outputs of the convolution are run through
a nonlinear activation function, for example a rectified linear activation function. In the final
stage, a pooling function is used to adjust the output further. [10], [16]

1.2.3.1 Convolution
As the name suggests, the convolution operation is the core building block in the network struc-
ture. During the forward pass, a set of learnable kernels ”slides” across the width and height of
the input image and computes dot products between the entries of the kernel and the input at
any given position. Kernels can be further specified with the stride parameter, which dictates
how big the steps are when scanning across the input layer. As the kernel slides over the width
and height of the input, the operation produces a two-dimensional activation map sometimes
referred to as feature map. During the training process, the network will learn kernels that are
active when a certain pattern is encountered, such as an edge or a color. [10], [19]

In a machine-learning context, convolution (often denoted with an asterisk) can be defined
as follows:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m, n)K(i−m, j − n) (1.2)

where I is the input image and K is the kernel. [10]

Deep learning 7

Layer Input

Next layer

Convolution

Detector stage:
Nonlinearity

e.g. rectified linear

Pooling

Convolutional
layer

Figure 1.4 Stages of a con-
volutional layer. [10]

Convolution Max Pooling

Figure 1.5 Operations carried out by the convolution and
pooling stages. [18]

1.2.3.2 Nonlinearity
An element-wise, nonlinear activation function is included after the convolutional layer to cut off
the output. The main idea behind introducing nonlinearity into the system is to enable the model
to detect nonlinear features. Tanh and sigmoid activation functions were most common for a long
time, however recently the Rectified Linear Unit (ReLU) has come into prominence because of its
simple definition (ReLU(x) = max(0, x)), computational efficiency and its properties regarding
the vanishing gradient problem. [20], [16]

1.2.3.3 Pooling
The main advantage of including the pooling operation is down-sampling. This achieves a reduc-
tion of input complexity for the following layers. For example Max Pooling takes a rectangular
region and outputs only the maximum value in the region. An alternative to Max Pooling could
be Average Pooling, where an average of a region is calculated. [16]

1.2.4 Recurrent neural networks
Whereas CNNs are designed to process data with a grid-like structure, recurrent neural networks
(RRNs) are built to learn sequential data or data varying in time. A major limitation of tradi-
tional neural networks is their interface, they take a fixed-size vector as an input and output a
fixed-size vector. RNNs operate with sequences as their input, output, or in the most general
case both. RNNs have many applications in dynamic, time-dependent systems, from forecasting
electric load to financial market prediction. [21], [22], [10],

Recurrent neural networks are fit for these tasks because they contain an internal state that
can represent context information. This can be abstracted as including cycles in the graph of
the network. These internal states allow the model to keep information about past inputs for a

8 Theoretical background

certain amount of time that is dependent on the weights of the model and on the input data.
[23], [10]

Ht

Yt

Xt

H0 H1 ... Hp

X1 ... Xp

Y1 ... Yp

Input Layer Hidden Layer Output Layer

Figure 1.6 Basic RNN unfolded through time.

1.2.4.1 LSTM
LSTM (Long Short-Term Memory) networks are a type of recurrent neural network that is
designed to deal with the problem of vanishing gradients in traditional RNNs. LSTM networks
use a specialized memory cell, which can maintain information over a long period of time, and
a set of gates to control the flow of information into and out of the cell. The key advantage
of LSTM networks is their ability to handle long-term dependencies in sequential data. The
memory cell allows the network to selectively store and retrieve information, while the gates
control the flow of information based on the current input and the previous state of the network.
[24], [25]

1.2.5 Training
Training deep learning models shares many similarities with training classical machine learning
models. Typically, the average value of a loss function, which measures the prediction error given
a training dataset, is minimized. The loss function L measures how much the prediction made
by the model deviates from the real value. Let (Y1, x1), . . . , (YN , xN) be the training data. We
minimize:

J(w) = 1
N

N∑
i=1

L(Yi, g(xi; w)) (1.3)

with respect to parameters w of a l-layer network, and g : Rn0 → Rnl is a function which
represents a forward pass of the network. Compared to many classical ML models, where a
solution can oftentimes be found explicitly, nonlinearity introduced by neural network models
causes the loss function to be non-convex. This necessitates the use of iterative optimizing
algorithms based on gradient descent, discussed further. [10], [26]

1.2.5.1 Gradient descent
The algorithm for gradient descent can be summarized as follows:

Let there be a neural network with parameters w = (w1, . . . , wm)T and α is the learning rate.

Initialize the weights to small random values.

Until the termination condition is met, do:

Reinforcement learning 9

Calculate the average prediction error for a given dataset using 1.3
Calculate the gradient

∇wJ = (∂J

∂w1
, . . . ,

∂J

∂wm
) (1.4)

Update the weights
w← w− α∇wJ (1.5)

The learning rate hyperparameter controls the step size at which the algorithm moves toward
the minimum. When a subset of the training data is used in each training episode, the algorithm
is referred to as Stochastic Gradient Descent (SGD). SGD is also often extended with a
momentum term, which smooths out the updates and helps the algorithm avoid local minima.

1.2.5.2 AdaGrad
Adagrad (for adaptive gradient algorithm) adapts the learning rate for each parameter
individually based on the history of the gradients. It assigns a larger learning rate to parameters
with smaller gradients and a smaller learning rate to parameters with larger gradients. This can
be especially useful for sparse data, however, it can also cause the learning rate to become too
small and slow down the training. [26], [27]

1.2.5.3 RMSProp
RMSProp (for Root Mean Square Propagation) is similar to Adagrad in that it also
adapts the learning rate individually, with the difference that it employs a moving average of the
squared gradient instead of the sum of the squared gradient. This variation helps to circumvent
the problem of the learning rate becoming overly small, which can occur with Adagrad and can
lead to quicker convergence. [26]

1.2.5.4 Adam
Adam (Adaptive Moment Estimation) combines the best features of SGD with momentum
and RMSProp. It adapts the learning rate for each parameter based on a running average of
the gradient and the squared gradient and includes a bias correction term to account for the
initialization of the running averages. Adam is a popular optimization algorithm due to its
efficiency and effectiveness in many deep-learning applications. [26], [28]

1.3 Reinforcement learning
As with many modern artificial intelligence paradigms, reinforcement learning (RL) is a frame-
work that is also inspired by nature. RL problems include an agent, sometimes also referred to
as the learner, that explores a certain environment by trial and error, to achieve a given goal
and maximize a reward signal in the process.

The main features that distinguish RL from other forms of learning are that RL systems are
close-loop, meaning that the actions taken by the agent directly influence its later inputs, not
having explicit instructions on which actions to take, and that the consequence of actions is
not immediate, they can play out over an extended time period. [29], [30]

Most RL models consist of four key aspects [29], [31], [32]:

1. A Reward is a scalar value that represents the feedback from the environment to an agent’s
action. The reward is used to reinforce or discourage specific actions taken by the agent,
therefore guiding the agent to a specific goal. The goal of the agent is to maximize the total
reward it receives over a sequence of actions, often referred to as a single episode.

10 Theoretical background

2. Policy is a function that maps states to actions taken by the agent. It is often denoted as π:

π(At = a|St = s) (1.6)

where St is the state of the environment at timestep t and At is an action to be taken at
timestep t. The policy function can be deterministic or stochastic. The main aim is to learn
an optimal policy that maximizes the cumulative reward over time.

3. A Value function indicates which actions are preferable, taking into account further action
context. It serves as an indicator to the agent how much reward it can expect to receive in the
future, given its current state or the state-action pair it is in, and the policy it is following.
In other words, even if a state provides a low immediate reward, it can still be preferable if
followed by high-reward states. It calculates the expected cumulative rewards when starting
from state s:

vπ(s) = E{Rt+1 + γRt+2 + γ2Rt+3 . . . |St = s} (1.7)

where E represents the expected value, and γ is a discount factor, γ ∈ [0, 1]. If γ = 0, the
agent is greedy, only taking into consideration the immediate reward, and if γ = 1 the same
importance is placed on all of the future rewards.

4. The Environment model, although omitted in some RL frameworks, serves to predict the
environment rewards and states. It is primarily used for future planning. Frameworks that
utilize an environment model are often referred to as model-based, and ones that do not
are labeled model-free.

The overarching idea of RL is that iterative updates are made to the policy, increasing the
given value function. Deep reinforcement learning is obtained when deep neural networks
are used to approximate the value function, policy, or environment model.

Actor
Implements the policy

Critic
Evaluates the
current policy

Dynamic
System

Agent

Reward

System outputControl action

Policy update
"Value function"

"Policy"

Figure 1.7 Visualization of a typical RL framework structure. Adapted from [30]

RL algorithms can be broadly divided into four classes [30], [32], [29]:

1. Value-based methods aim to estimate the value function directly and choose an action
based on this estimate. Examples include Q-learning, Deep-Q-Networks, or SARSA.

2. Policy-based methods directly optimize the policy by adjusting its parameters using gra-
dient descent or other optimization methods. Unlike value-based methods, which estimate
the value function and then derive the policy from it, policy-based methods learn the policy
directly. Notable examples are Proximal Policy Optimization (PPO), REINFORCE, or Trust
Region Policy Optimization (TRPO)

Reinforcement learning 11

3. Actor-critic methods combine value-based and policy-based methods, using a critic to
estimate the value function and an actor to select actions based on the estimated values, such
as Advantage Actor-Critic (A2C), Asynchronous Actor-Critic (A3C), and Soft Actor-Critic
(SAC).

4. Model-Based methods involve building a model of the environment, which captures the
dynamics of the system. This model is then used to plan and optimize the agent’s behavior.
Model-based methods can be used to learn optimal policies with fewer interactions with
the environment than model-free methods. However, building an accurate model can be
challenging, and the model itself can introduce bias and error into the learning process.
Examples include Monte Carlo Tree Search or Dynamic Programming

This chapter will provide a more in-depth overview of SAC and PPO, as they are supported
by the AWS DeepRacer platform later used to train the self-driving model.

1.3.1 Exploration vs exploitation
One of the biggest challenges in RL is the exploration-exploitation trade-off. Exploration refers
to the agent’s attempts to seek new actions to acquire a better understanding of the environment,
in turn finding potentially more optimal actions. On the other hand, exploitation refers to
choosing actions that are expected to yield the highest reward, using the current policy. Choosing
to explore too much may lead to poor immediate rewards, while choosing to exploit excessively
may lead to missing potentially better options in the future. The approach to this dilemma is
one of the fundamental contrasts between RL algorithms and the choice of exploration strategy
depends heavily on the environment and the specific problem domain. [29], [33]

1.3.2 Proximal policy optimization
Proximal Policy Optimization is a class of model-free, policy gradient, deep RL algorithms
proposed by OpenAI in 2017. PPO aims to retain the data efficiency and reliability of TRPO-
based algorithms while being simpler to implement and more fit for general use. PPO implements
a novel objective with clipped probability ratios [34]:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(1.8)

where:

θ denotes the policy parameters

Êt is expectation over timesteps t

rt is the ratio of probability between the new and old policies πθ(at|st)
πθold

(at|st)

Ât is the estimated advantage at timestep t (a measure of how much is a certain action a
good or bad decision given a certain state)

ϵ is a hyperparameter, most often 0,1 or 0,2

the clip() function clips values from outside the interval to the interval edges

12 Theoretical background

1.3.3 Soft actor critic
Algorithms such as PPO, TRPO, and other policy-based frameworks suffer from sample ineffi-
ciency – a completely new set of samples is needed after each policy update. Other off-policy
methods solve this by introducing an experience replay buffer, aiming to learn from experiences
acquired by older policies. However, these techniques often suffer from convergence brittleness –
they are very sensitive to hyperparameters.

Soft actor critic is an actor-critic deep RL framework, which aims to solve convergence
brittleness of other off-policy methods by introducing entropy. It uses a modified objective
function which not only maximizes the reward received but also maximizes the entropy of the
policy. This means that the actor is incentivized to succeed at the task while acting as randomly
as possible. [35]

Chapter 2

Autonomous driving overview:
Object avoidance

At their core, self-driving vehicles can be thought of as autonomous, decision-making agents,
which use streams of observations from various onboard sensors to inform the decision-making
process.

Upon reviewing the literature, two primary approaches for making the driving decisions have
emerged: a modular perception-planning-action pipeline, which can involve the combina-
tion of artificial intelligence and deep learning techniques or classical non-learning methods, and
the end-to-end learning strategy, where sensor data is directly mapped to control outputs.
The modular pipeline is capable of supporting permutations of learning-based and non-learning-
based components, such as using a deep learning-based object detector to provide input for a
classical A-star path planning algorithm. [36], [37]

Deep Learning
(or Classical)

Perception and
Localization

Deep Learning
(or Classical)

Scene parsing

AI Based
(or Classical)

Path Planning

Leraning Based
(or Classical)

Motion Control

Modular Pipeline

Vehicle ControlSensory Input

End-to-End Learning

Deep Learning
Model

(Neural Network)

Vehicle ControlSensory Input

Figure 2.1 Self-driving pipelines. Modular pipeline, comprised of various modules (top), end-to-end
pipeline (bottom). Adapted from [37]

While classical perception, path planning, and motion control techniques can solve most driv-
ing scenarios, there are certain corner cases that cannot be addressed with traditional methods.
These unsolved scenarios represent the limitations of classical approaches. This has prompted
the use of deep learning models, which have proved to be able to solve not encountered edge
cases. [36]

This chapter will provide an overview of deep learning techniques and their application in
each of the subdomains of the perception-planning-action pipeline outlined in Figure 2.1. The

13

14 Autonomous driving overview: Object avoidance

chapter goes on to present state-of-the-art architectures fit for end-to-end driving.

2.1 Perception and scene parsing
The effective and secure operation of autonomous vehicle systems, especially in urban settings,
necessitates the ability to detect a broad spectrum of objects, understand occlusions, as well as
the presence of other traffic participants and drivable areas. To meet these demands, the field
has increasingly turned to deep learning-based techniques, with convolutional neural networks
emerging as the de facto standard for object detection and recognition. [38], [36]

2.1.1 Object Detectors
Two-dimensional object detectors can be broadly divided into single-stage and double-stage
detectors.

Two-stage architectures divide the process into the region proposal stage and the classi-
fication stage. Firstly, several object candidates, also referred to as regions of interest (ROI) are
proposed. Subsequently, the proposals are classified.

In contrast, one-stage architectures use a single feed-forward convolutional network that
handles both the bounding boxes localization and object classification. [39], [40]

2.1.1.1 Two-stage Detectors
Region-based Convolutional Neural Networks (R-CNNs) [41] are at the core of most two-
stage object detectors. The original R-CNN architecture proposed in 2014 uses selective search
to extract regions of interest from the image, subsequently feeding each ROI through a neural
network to extract features. Finally, support vector machine (SVM) based classifiers are used to
classify the object. In 2015, Fast R-CNN [42] was proposed, improving the speed and accuracy
of R-CNN by using the entire image as input to the CNN and sharing the convolutional features
across the region proposals. Another performance boost was introduced later in 2015 with
Faster R-CNN [43], which introduced integrated the ROI proposal into the CNN itself. Many
later architectures were inspired by Faster R-CNN, for instance, Feature Pyramid Networks
(FPN). [39]

2.1.1.2 Single-stage Detectors
One of the first detectors to implement a single-stage architecture were the The Single Shot
MultiBox Detector (SSD) [44] and YOLO (You Only Look Once) [45]. However, these
early architectures suffered from relatively low accuracy, due to foreground-background imbalance
(objects of interest are typically much smaller than the overall image, leading to bias towards
the background, causing false positives). The RetinaNet [46] architecture tried to solve this
problem by introducing a modified loss function used in SSD. Over the years, several incremental
improvements were made to the YOLO family of architectures (YOLOv2 trough YOLOv5) [39]
making it one of the most popular and widely used object detection algorithms in the field of
computer vision.

2.1.2 Semantic Segmentation
Another approach to driving scene understanding is using semantic segmentation. In contrast
to bounding-box-like object detection, semantic segmentation assigns a categorical label to every
single pixel of the scene, forming a pixel-level segmentation map of continuous areas as can be

Path planning 15

Figure 2.2 Bounding box object detection.
[51]

Figure 2.3 Driving scene semantic segmentation.
[52]

seen in Figure 2.3. In a self-driving setting, these labels can include driveable areas, pedestrians,
other cars, traffic cones, etc.

Many deep learning architectures such as SegNet [47], ENet [48], ICNet [49] or Mask
RCNN [50], are based on the encoder-decoder model, with an added pixel-wise classification
layer.

2.2 Path planning
The goal of path planning is to generate a feasible and collision-free trajectory between two points,
taking into account all the present obstacles and the vehicle’s physical constraints. Autonomous
driving in a real-world setting can be seen as a multiagent problem, where the host vehicle must
possess advanced negotiation abilities to ensure safe traffic flow. [53], [54]

2.2.1 Classical planning
Early self-driving vehicles demonstrated the feasibility of urban path planning in the 2007
DARPA Urban Challenge. All of the top three competitors used a three-level hierarchical plan-
ning framework composed of the mission planner, behavioral planner, and motion planner.

The mission planner looks at the strategic goal as a whole, making high-level decisions
such as road selection. This is often achieved by classical graph search, utilizing algorithms such
as A* or Djikstra’s.

The main purpose of the behavioral planner is making real-time decisions to complete local
objectives, such as lane changes or overtakes. Classical implementations often utilize finite-state
machines or simple logic rules.

Finally, the motion planner outputs optimal paths and actions to fulfill local objectives,
typically to avoid obstacles.

Variations of this hierarchical structure remain relevant in modern systems, utilizing classical
path-finding algorithms and logic. However, a review of the literature reveals the recent increased
interest in using deep learning in the path planning domain. [53], [54]

2.2.2 Learning-based planning
Two of the most prominent paradigms that have emerged in the learning-based local path plan-
ning domain are Imitation Learning (IL) and Deep Reinforcement Learning (DRL)
based path local planners. These frameworks are also used in end-to-end driving systems further
discussed in Section 2.3, however, the main difference between learning-based local planners and
end-to-end driving is the output: end-to-end models map sensor input directly to vehicle control,

16 Autonomous driving overview: Object avoidance

whereas learning-based path planners output future trajectories, allowing them to be integrated
into the modular self-driving pipeline presented in Figure 2.1 [55], [54], [36].

IL aims to learn optimal path planning from observed human behavior during driving. The
main advantage of IL is that it can be used on real-world data, leading to organic and human-like
driving trajectories. One of the disadvantages, however, is the lack of corner-cased in the training
data, as human drivers rarely experience collisions or traffic rule violations. [56], [57]

DRL applied in the path planning domain pertains to finding optimal driving trajectories in
a simulated environment, which is modeled after the real environment. In contrast to IL, DRL
can explore various corner cases in the simulation. However, the transfer from the simulation to
the real world can pose a challenge. [36]

2.3 End-to-end architectures

Modular self-driving systems, however, possess a number of disadvantages. The modular nature
of the pipeline leads to information loss for subsequent components, for instance, the object
detector compresses the driving scene into bounding boxes. As a result, information lost in this
compression is not available for the ensuing modules. [58], [54]

In the autonomous driving context, End-to-end architectures abstract the entire pipeline
to a single model, directly transforming the high dimensional sensor input (such as images or
LiDAR point clouds) to driving commands. The predicted actions can either be the continuous
operation of the steering and acceleration or chosen from a predefined set of discrete actions,
for example slowing down and turning right. While the simplicity of End-to-end architectures
can be conceptually appealing, the black-box nature of these models leads to problems with
interpretability in case of unwanted driving decisions. [58], [54], [36]

Analogously to learning-based local planners discussed in subsection 2.2.2, two main ap-
proaches have emerged. The driving model is either trained using an RL framework or by
supervised learning to mimic human behavior (via imitation learning).

2.3.1 Supervised deep learning models
The paradigm of training end-to-end driving models on human driver data was first introduced
by the groundbreaking ALVINN [59] model proposed in 1989. This model predicted the steering
wheel angle from a camera and a laser range finder using a 3-layer fully connected neural network.
The next major breakthrough came in 2006, when the Darpa Autonomous Vehicle (DAVE)
[60], utilizing a six-layer CNN and stereo cameras, demonstrated the ability to navigate through
an obstacle course, after training on human-generated driving data.

However, the ever-increasing affordability of GPUs in recent years allowed for larger and
more complex models to be trained. The PilotNet [61] architecture proposed by NVIDIA
implemented a nine-layer CNN, which mapped the feed from a single front-facing camera directly
to the steering control. The network trained on annotated data from a wide range of weather
and lighting conditions, demonstrating the ability to follow lane markings.

Architectures taking into account the temporal context of self-driving were also studied. An
FCN-LSTM model was proposed in [62], utilizing a fully convolutional encoder in conjunction
with an LSTM network. Similarly, a novel C-LSTM (Convolutional Long Short-Term Memory)
architecture was introduced in [63].

2.3.2 Deep reinforcement learning models
Training end-to-end models on annotated human driver data often suffer from an insufficient
amount of corner cases in the training dataset. Using RL to train these models attempts to solve

End-to-end architectures 17

this by letting the agent freely explore its environment during the training phase, encountering
varied edge case situations.

RL approaches are also known to have disadvantages. Compared to traditional learning
methods, RL frameworks are known to be data inefficient, taking a relatively long time to
converge. Another notable disadvantage is the so-called sim2real gap, describing the performance
decrease when transferring the model from the simulated environment to the real world. [58],
[36]

Various RL frameworks have been applied to train models. Namely, Deep Q-Learning, Prox-
imal Policy Optimization, and asynchronous advantage ActorCritic have all been successfully
used to train in simulation. [64], [65], [66] Training directly in the real world has also been ex-
plored in [67], [68]. These approaches used an independent steering controller or a safety driver,
in case the RL policy deviated excessively, to prevent damage to the vehicle and surrounding
property.

18 Autonomous driving overview: Object avoidance

Chapter 3

AWS DeepRacer

The AWS DeepRacer is a platform designed by Amazon Web Services for developers to exper-
iment with and evaluate end-to-end self-driving models. The service provides a virtual environ-
ment where a deep learning-based model can be trained on a simulated racetrack using different
reinforcement learning algorithms, along with a 1:18 scale model autonomous car equipped with
cameras and LiDAR, to which the trained model can be uploaded and demonstrated in the
physical world.

However, mainly due to the monetary cost associated with training and evaluating models
using the AWS DeepRacer service, an open-source solution for training the models on a local
machine has emerged in the form of DeepRacer-for-cloud1.

This chapter aims to provide an overview of the inner workings of DeepRacer, introduce the
DeepRacer-for-cloud training environment, and summarize its capabilities and features, as it will
be used to train and evaluate different object avoidance architectures.

Amazon SageMaker

Model Training

RL Coach

MXNet | Tensorflow

AWS RoboMaker

Agent

Environment

S3 Bucket: Share Network
Parameters

Redis: Experience Replay
Buffer

Figure 3.1 AWS DeepRacer service architecture diagram. [69]

3.1 Service architecture
The AWS DeepRacer platform is built upon various components provided by AWS, the main
being Amazon SageMaker and AWS RoboMaker. SageMaker is a cloud-based machine

1https://aws-deepracer-community.github.io/deepracer-for-cloud/

19

20 AWS DeepRacer

Figure 3.2 Racetrack with obstacles simulated
in AWS RoboMaker.

Figure 3.3 Physical DeepRacer car equipped
with LiDAR and stereo cameras.

learning service, which provides an environment for building, training, and deploying machine
learning models. AWS RoboMaker is a cloud service to develop and test robot agents in a
virtual and interactive simulated environment. Other AWS cloud services, such as Amazon S3
object storage are utilized to support the DeepRacer workflow. The purpose of each of these
services is further discussed in this section.

3.1.1 SageMaker
In the context of AWS DeepRacer architecture, SageMaker is used to train the policy neural
network model according to which the RL agent executes driving decisions. The model is
initialized with random weights, which are updated according to simulation data provided by
the RoboMaker environment.

SageMaker supports established deep learning frameworks such as MXNet or TensorFlow,
to enable the implementation and training of deep learning models. To enable reinforcement
learning, SageMaker also supports the Intel RL Coach python framework, developed by Intel AI
Lab, which contains the implementation of many state-of-the-art RL algorithms

3.1.2 AWS RoboMaker
Inside the DeepRacer architecture, RoboMaker is used to create a simulated environment for
the agent to explore. The agent, which corresponds to the physical car, drives along a specified
track, utilizing the policy network which has been trained in SageMaker up to a certain amount
of time. Each simulation run in RoboMaker, known as an episode, ends with the agent in a
terminal state, meaning either off the track, or crashed. Each episode is divided into time steps,
where for each time step an experience, represented as a tuple of (state, action, reward, new
state) is cached using the Redis in-memory database. This experience replay buffer is then
randomly sampled by SageMaker, to update the parameters of the policy neural network. The
retrained model is then stored in Amazon S3, for RoboMaker to produce more experiences. This
cycle continues until a condition is met, either a set number of episodes has been run, or the
average reward received reaches a certain threshold.

DeepRacer-for-cloud 21

3.2 DeepRacer-for-cloud

DeepRacer-for-cloud (DRfC) is an open-source DeepRacer training environment, developed
independently of AWS, which can be deployed using a cloud service (such as Amazon AWS or
Microsoft Azure), or in the case of this thesis, on a local machine. DRfC has been developed
by a community of enthusiasts that has emerged around the DeepRacer, which sought better af-
fordability of training, along with easier customization and fine-tuning of the training algorithms
and simulations. The DRfC service architecture is analogous to the original AWS DeepRacer
architecture outlined in Section 3.1, however, the individual services have been replaced by dock-
erized versions maintained by the community. The dependence on the Amazon S3 bucket has
been replaced by introducing MinIO – open-source object storage that can be run locally.

The following subsection aims to review the capabilities and features of DRfC, which will be
utilized to train and compare object avoidance models.

3.2.1 Race types
The environment supports various racing tracks and three main race types: Time trial, Object
Avoidance, and Head-to-bot racing.

Time trial mode is the simplest of the available training modes, the agent races on an
unobstructed track, aiming to complete laps in the shortest amount of time.

The object avoidance mode adds static obstacles to the track in the form of boxes or other
DeepRacer cars. Obstacles can either be static, meaning not changing positions for the duration
of the training, or randomly placed during each training episode. The number of obstacles and
the minimal distance of their spacing can also be specified.

Head-to-bot racing introduces one or more bot vehicles, which move along the track at
a predefined constant speed. The bot vehicles can be enabled to change lanes at random time
intervals or stay in a single lane.

3.2.2 Reward function
The reward function is a critical part of any RL-based framework – it is used to reinforce or
discourage specific actions, in turn guiding the agent to a specific goal.

The DeepRacer environment implements the reward function in the form of a modifiable
Python script, which is evaluated at each time step of the simulation, returning a floating point
value. It takes a dictionary object params as an input, containing the current state of the
simulation. For further specification of the params dictionary, see [69].

3.2.3 Supported algorithms
The training algorithms supported in Deepracer-for-cloud are identical to the original AWS Deep-
Racer service – Proximal Policy Optimization and Soft Actor Critic. The environment
allows the specification and fine-tuning of relevant hyperparameters, presented in Table 3.1.

3.2.4 Action space
The action space defines the set of all valid actions the agent can take at any given time. In
the case of the DeepRacer, the actions consist of speed and steering angle pairs The training
environment allows the choice between discrete and continuous action spaces.

Discrete action space represents all of the possible actions explicitly as a finite set. The
choice is limited to a set number of speed and steering action pairs, for example, speed of 0,8ms

22 AWS DeepRacer

Hyperparameter Description

Gradient descent batch size

The number of samples taken from the experience buffer, used
for updating the policy. Larger batch sizes support smoother
updates and preserve underlying dependencies.
Values: (32, 64, 128, 256, 512)

Number of epochs
The number of passes sampling the training data during
gradient descent.
Values: [3-10]

Learning rate Controls the step size during gradient descent.
Values: [10−8 - 10−3]

Entropy
Determines how much randomness is added to the policy
decision. Larger entropy encourages more exploration.
Values: [0-1]

Discount factor
Specifies how much the future rewards contribute to the
expected reward.
Values: [0-1]

Loss type
Specifies the loss function used when updating the network
weights.
Values: Huber loss|Mean square error

Number of episodes
between policy update

Specifies how many episodes to run between policy network
updates.
Values: [5 - 100]

Table 3.1 Tunable hyperparameters, their description, and valid values.

and steering angle of 30°. Training models with discrete action spaces oftentimes means quicker
convergence time, as the model has fewer degrees of freedom.

Continuous action space allows the agent to choose actions from a predefined range –
the entire action space is defined by the maximum and minimum steering angle and speed the
agent can choose. This enables smooth changes between different speeds and steering values and
generally leads to better real-world performance. Continuous actions however introduce much
more choice, leading to longer model convergence time.

3.2.5 Supported Models
The DeepRacer agent is controlled by a neural network model, which selects a speed and direction
based on the input from cameras or LiDAR sensors. This network also called a policy network,
consists of three parts: the input embedder, fully connected middleware, and action
output. The architecture is designed in a modular fashion and allows the user the modify each
of the parts separately.

3.2.5.1 CNN input embedder

As outlined in Section 1.2.3, CNNs serve as feature extractors from 2D data, in this case, image
input. This stage of the network is designed to convert the image input into a feature vector
representation. Conceptually, this part of the model is what ”identifies” the track features, such
as the lane markings or obstacles. The concrete shape of the input embedder depends on the
input size, therefore on the choice of sensors.

Physical car 23

Figure 3.4 Policy network architecture. [69]

3.2.5.2 FC Middleware
The fully connected middleware layer, found after the embedder, helps to further optimize driv-
ing decisions. The training environment allows the number of layers and nodes to be specified,
however, the depth of the model affects the amount of computation exponentially, in turn length-
ening the training time. More depth can potentially also lead to overfitting. This part of the
network is where LiDAR data comes into play, the sensor data is fed into the fully connected
layers.

3.2.5.3 Action Output
The action output layer depends entirely on the action space chosen. In the case of discrete
action spaces, the nodes in the output layer correspond to each available action. However, in
continuous action spaces, the output layer consists of only two nodes, each corresponding to
steering angle and speed.

3.3 Physical car
Once the model is trained, it can be deployed to a physical DeepRacer vehicle. The DeepRacer
vehicle is a battery-powered 1:18 scale, four-wheel drive model car. It can drive autonomously by
running inference based on the trained model, using the onboard compute module. For detailed
hardware specifications refer to Table 3.2.

CPU Intel Atom™ Processor
MEMORY 4GB RAM
STORAGE 32GB (expandable)
WI-FI 802.11ac
CAMERA Stereo 4 MP cameras with MJPEG
LIDAR 360 Degree 12 Meters Scanning Radius LIDAR Sensor
SOFTWARE Ubuntu OS 16.04.3 LTS, Intel® OpenVINO™ toolkit, ROS Kinetic
DRIVE BATTERY 7.4V/1100mAh lithium polymer
COMPUTE BATERRY 13600mAh USB-C PD
PORTS 4x USB-A, 1x USB-C, 1x Micro-USB, 1x HDMI

Table 3.2 DeepRacer vehicle hardware specification. [69]

24 AWS DeepRacer

Chapter 4

Experiments

The primary goal of this chapter is to present the experiments carried out in the development
and evaluation of end-to-end self-driving models using the AWS Deepracer platform. The chap-
ter explores two architectures, namely a 3-layer CNN and a 5-layer CNN, and investigates their
performance in various scenarios, including object avoidance and head-to-head racing on a simu-
lated racetrack. Additionally, this chapter examines the impact of different sensor combinations,
including single camera, stereo cameras, and stereo cameras with LiDAR, on the training process
and the driving performance of individual models.

4.1 Training setup

This section aims to outline the training conditions that were consistent across the proposed mod-
els. The training was executed using the open-source Deepracer-for-cloud environment described
in Section 3.2, as it provides for more granular training customization compared to the original
AWS DeepRacer service, which also carries a substantial cost burden.1 The Deepracer-for-cloud
environment was installed according to the instructions described in [70].

The Deepracer-for-cloud environment supports both Proximal policy optimization and Soft
actor critic algorithms, however seeing as only PPO supports the chosen discrete action space
outlined further, PPO was chosen for all the experiments conducted. Overall, most of the
training runs took well over 48 hours, even with the training running on a dedicated GPU. Next,
an optimal number of training iterations needed to be established for each experiment. Given the
constraints of limited resources, a balance needed to be struck between allowing sufficient training
time for different architectures and sensor choices to take effect, and reasonable computation
times. A single training iteration is made up of many training episodes, where an episode
describes a single complete driving run, where the agent starts at the simulated race track’s
starting line and ends with either a collision or an ”off-track” event. After each iteration, the
policy network was updated according to the collected experiences across the training episodes.
The specific PPO hyperparameters chosen for each model are outlined in their respective sections
along with the number of training iterations.

Next, the simulated environment had to be chosen. The Deepracer-for-cloud training envi-
ronment allows for a wide variety of tracks to be chosen, however, the track used for training
was the ”A to Z speedway” shown in Figure 4.3, chosen for its relative simplicity and wide lanes,
which facilitates more straightforward object avoidance. To gauge the performance of the trained
models the ”Smile speedway” track was chosen which can be seen in Figure 4.4.

1Training the models described in this thesis would cost in excess of 300 USD.

25

26 Experiments

Finally, to reduce the degrees of freedom and in turn speed up convergence, a simple discrete
action space was chosen. The action space consist of two speed levels: 0.3 m/s and 0.7 m/s
and five steering angles: -30°, -15°, 0°, 15°, 30°, resulting in ten total available actions. This
action space remained consistent across all models.

4.2 Reward function

In any RL-based framework, the reward function serves as the main incentive to guide agent
behavior, as the agent aims to maximize the cumulative reward signal. The concrete reward
function used to train all of the presented models, shown in Code listing 4.1, incentivizes the
vehicle to stay in one of the two lanes of the road. When an obstacle is encountered in the
same lane as the vehicle, the reward is continuously decreased depending on the distance of the
obstacle in front of the vehicle. If the agent changes lanes, in turn avoiding the obstacle, it is
rewarded. Finally, the reward for avoiding and lane keeping are added.

Code listing 4.1 Lane keeping reward function.

import math
def reward function(params):

all wheels on track = params['all wheels on track']
distance from center = params['distance from center']
track width = params['track width']
objects location = params['objects location']
agent x = params['x']
agent y = params['y']
, next object index = params['closest objects ']
objects left of center = params[' objects left of center ']
is left of center = params[' is left of center ']

Initialize reward with a small number but not zero
reward = 1e−3
Reward if the agent stays inside one of the lanes
if all wheels on track and (0.5 ∗ track width − distance from center) >= 0.05:

reward lane = 1.0
else:

reward lane = 1e−3
Penalize if the agent is too close to the next object
reward avoid = 1.0
Distance to the next object
next object loc = objects location [next object index]
distance closest object = math.sqrt((agent x − next object loc[0])∗∗2 + (agent y −

next object loc[1])∗∗2)
Decide if the agent and the next object is on the same lane
is same lane = objects left of center [next object index] == is left of center
if is same lane :

if 0.5 <= distance closest object < 0.8:
reward avoid ∗= 0.5

elif 0.3 <= distance closest object < 0.5:
reward avoid ∗= 0.2

elif distance closest object < 0.3:
reward avoid = 1e−3 # Likely crashed

Calculate the reward by putting different weights on the two aspects above
reward += reward lane + 3.0 ∗ reward avoid
return reward

Policy network architectures 27

4.3 Policy network architectures
Two policy neural network architectures were evaluated, including a 3-layer convolutional network
and a more complex 5-layer convolutional neural network. Both architectures use convolutional
layers as image feature extractors, followed by two fully connected layers of 512 nodes respectively,
as shown in Figure 4.1.

Conv2D

32 filters, 8*8, stride 4

ReLU

Conv2D

64 filters, 4*4, stride 2

ReLU

Conv2D

64 filters, 3*3, stride 1

ReLU

Flatten

Fully Connected

11264x512
(11520x512 with LiDAR)

ReLU

Fully Connected

512x10

Softmax

SINGLE CAMERA | STEREO CAMERAS

120x160 | 120x160x2

LiDAR

Fully Connected

64x256

ReLU

Fully Connected

256x256

ReLU

64

LiDAR

Fully Connected

64x256

ReLU

Fully Connected

256x256

ReLU

64

SINGLE CAMERA | STEREO CAMERAS

120x160 | 120x160x2

Conv2D

32 filters, 3*3, stride 1

Conv2D

64 filters, 3*3, stride 2

Conv2D

64 filters, 3*3, stride 1

Conv2D

128 filters, 3*3, stride 2

Conv2D

128 filters, 3*3, stride 1

ReLU

ReLU

ReLU

ReLU

ReLU

Flatten

Fully Connected

56000x512
(56256x512 with LiDAR)

ReLU

Fully Connected

512x10

Softmax

Figure 4.1 Proposed 3-layer CNN model architecture (left) and 5-layer architecture (right). If the
LiDAR sensor is not present, the section embedding the LiDAR data is omitted.

The input image data is preprocessed by resizing it to 160 x 120 pixels and converting it to
grayscale, before being fed into the convolutional layers. In the case of stereo cameras, the image
feed is stacked into a 160 x 120 x 2 tensor to capture depth information.

If the LiDAR sensor is present, the network becomes multimodal, combining both image data
with LiDAR distance measurements. LiDAR data is presented to the network in the form of a

28 Experiments

vector – the sensor partitions the space surrounding the vehicle into 8 sectors where each sector
provides 8 distance measurements, resulting in a total of 64 values. This vector is then embedded
using two fully connected layers before being concatenated with the flattened image data. All
layers, including the dense layers, use the ReLU activation function, which helps to introduce
non-linearity into the model and improve its ability to learn complex patterns in the data. The
final layer uses a softmax activation function, which normalizes the output of the network to
represent the distribution over the 10 possible actions the agent can take.

4.4 Sensor comparison for object avoidance
To compare the impact of sensor choice on model training and subsequently on the task of object
avoidance, three training experiments were conducted using the 3-layer CNN model.

Three sensor combinations were explored: a single front-facing camera, stereo front-facing
cameras, and stereo cameras with LiDAR. In each training episode, five randomly placed sta-
tionary box obstacles 2 were redistributed along the two lanes of the simulated track. Each
sensor combination was trained for 100 iterations consisting of 25 episodes each, resulting in a
total of 2500 episodes.

Hyperparameter Value
Batch size 256
Number of epochs 10
Learning rate 0.00025
Loss type Huber loss
Entropy 0.01
Discount factor 0.995
Episodes between policy update 25

Table 4.1 PPO hyperparameters used for training the 3-layer CNN.

The hyperparameter choice was mainly influenced by previous experiments, combined with
experimental results provided by the AWS DeepRacer community.

0 20 40 60 80 100
Iteration

0

20

40

60

80

100

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 20 40 60 80 100
Iteration

0

20

40

60

80

100

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 20 40 60 80 100
Iteration

0

20

40

60

80

100

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

Figure 4.2 Mean iteration reward vs. iteration number for three sensor configurations: single camera
(left), stereo cameras (center), and stereo cameras with LiDAR (right).

Figure 4.2 shows the mean percentage of track completion per iteration during the training
progress for each sensor configuration. As training progresses, the mean reward increases for

2The obstacles are DeepRacer physical vehicle packaging boxes.

Sensor comparison for object avoidance 29

all sensor configurations, with the full suite of sensors showing improved performance over the
single-camera and stereo-camera configurations. The stereo and single-camera setups show very
similar performance. However, the rewards for the LiDAR configuration are more scattered,
which could be explained by the increased model complexity when LiDAR is present.

This metric is a telling indicator of the model quality, as values near 100 indicate that almost
every driving run in the iteration crossed the finish line. Stereo cameras with LiDAR also show
improvement in other training metrics such as mean reward per iteration, shown in Figure A.3.

Figure 4.3 The ”A to Z speedway” track chosen
for training.

Figure 4.4 ”Smile Speedway” track used for
model evaluation on an unknown track.

4.4.1 Evaluation
Following the training phase, each sensor combination was evaluated in simulation on the training
track, along with a never before seen track. The evaluation consisted of three laps on both tracks,
with consistent obstacle placement across all of the evaluation runs. In the event of a collision,
or in case the agent left the track, the vehicle was reset to the position where the collision or an
off-track event occurred. The maximum number of resets was set to ten, after which the agent
was deemed unable to finish the track. The evaluation run was completed once three full laps
were finished.

As is evident from the evaluation results in Table 4.2, only the configuration equipped with a
LiDAR sensor completed three laps on the training track without crashing, with the single camera
and stereo camera setups being reset once and twice respectively. On the evaluation track, the
LiDAR-equipped model performed the best again, with the stereo camera configuration being a
close second. However, the single-camera model was unable to finish the evaluation run, as the
agent surpassed 10 resets.

A more comprehensive understanding of how the models make driving decisions and why the
single camera model was unable to finish the evaluation can be obtained by applying the Grad-
CAM technique, as proposed in [71] to analyze the image data. This method uses the gradients
of the network to generate a localization map, which identifies the key regions responsible for
driving decisions in the image, thereby practically producing a visualization of what the model
”looks at” at any given time.

As can be seen in 4.5, the model mainly focuses on the lane borders, as well as the dashed
lane-dividing line and regions around the obstacles. However, background regions around the
walls of the simulated environment are also highlighted, suggesting that the worse performance
on the unknown evaluation track might be caused by the different backgrounds.

30 Experiments

Figure 4.5 Localization maps of features considered important by the 3-layer CNN model with a
single camera, obtained using the Grad-CAM method. [71]

4.5 Architecture comparison

After obtaining positive results with a 3-layer CNN architecture equipped with the full sensor
suite, an experiment was conducted by training a 5-layer CNN with the same sensor combination.
To make the training runs comparable, the hyperparameters were set up identically as with the
3-layer CNN, referenced in Table 4.1.

0 10 20 30 40 50 60 70
Iteration

15

20

25

30

35

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 10 20 30 40 50 60 70
Iteration

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Co
m

pl
et

io
n

ra
te

Lap completion rate per iteration

Figure 4.6 Mean iteration progress (left) and lap completion rate (right) for the 5-layer CNN model
with stationary obstacles.

As evident from Figure 4.6, the training was stopped at around iteration 70, as the model
showed little signs of improving since iteration 40. The mean progress at iteration 70 was only
around 30%, whereas the 3-layer architecture displayed almost double the completion rate at
the same iteration number. The lap completion rate for the 5-layer CNN, also shown in Figure
4.6, is almost zero throughout the training, suggesting that only a handful of episodes from 1800

Head-to-head racing 31

conducted reached the finish line. To reach iteration 70, the model was trained on a dedicated
GPU for over 50 hours.

In summary, it appears that the increased complexity of the model led to a significant de-
crease in performance and almost a doubling of training time compared to the simpler 3-layer
architecture.

4.5.1 Evaluation
The trained 5-layer CNN model was again evaluated for three laps on the training track and a
not seen before evaluation track. Unsurprisingly, the model completed the training track with
8 resets and failed to complete the evaluation track within the allotted 10 resets, indicating its
incapacity to finish the track as outlined in Table 4.2.

4.6 Head-to-head racing

In head-to-head racing, the agent drives on the racetrack with a predefined number of other car
agents, which drive along the track at a constant speed.

The goal of this experiment was to determine how well the proposed reward function and
model translate to a more dynamic environment with moving obstacles such as moving cars.

The training environment was set up similarly to Section 4.1, however instead of randomly
placed stationary obstacles, the simulation included four randomly distributed agents moving at
a constant 0.3 meters per second. The model chosen for this experiment was the 3-layer CNN
model with a full sensor suite, hoping that the additional LiDAR input aids the performance
while overtaking other moving vehicles. The reward function and PPO hyperparameters used
were identical to the previous experiments, however, the batch_size hyperparameter was halved
to 128 with the aim of reducing computation time.

0 10 20 30 40 50 60
Iteration

20

30

40

50

60

70

80

90

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 10 20 30 40 50 60
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
m

pl
et

io
n

ra
te

Lap completion rate per iteration

Figure 4.7 Mean iteration progress (left) and lap completion rate (right) for the 3-layer CNN model
in an environment with moving obstacles.

The training was concluded at around iteration 80, as the mean reward and lap completion
rate started to decrease, as is visible in Figure 4.7. This may be caused by the decreased batch
size, causing the model to oscillate around a local minimum.

32 Experiments

4.6.1 Evaluation
The evaluation was conducted in the same manner as in previous experiments – three laps were
evaluated on both the training track (with four other vehicles) and a newer seen evaluation track
(with seven other vehicles). As shown in Table 4.2 the model was able to successfully complete
three evaluation laps on the training track without restarts, as well as the unseen track with
just two. The main performance bottleneck of this model in head-to-head racing was its limited
action space – the model would benefit from more action granularity and higher speed levels to
better deal with the dynamic environment and execute overtaking maneuvers.

Training track Unknown track
Model Sensor choice Race Type Time - 3 Laps

[mm:ss.s] Resets Time - 3 Laps
[mm.ss.s] Resets

3-Layer CNN Single camera Object avoidance 02:02.4 1 DNF 10
3-Layer CNN Stereo cameras Object avoidance 02:08.2 2 03:08.2 3
3-Layer CNN Stereo cameras + LiDAR Object avoidance 01:54.1 0 02:46.4 2
3-Layer CNN Stereo cameras + LiDAR Head-to-head 01:54.4 0 2:37.8 2
5-Layer CNN Stereo cameras + LiDAR Object avoidance 02:23.6 6 DNF 10

Table 4.2 Experiment evaluation metrics. DNF notes that the agent did not finish the laps within
the 10 allotted restarts.

4.7 Real environment
To study the simulation-to-real gap, the trained 3-layer CNN model with a single front-facing
camera was deployed to a physical DeepRacer vehicle. The real-world track was constructed
out of masking tape, and foil barriers were placed around the track, in an effort to resemble the
simulation as closely as possible and reduce background noise for the camera.

Figure 4.8 Real world demonstration track.

The model successfully navigated the track when the track was empty. However, when
obstacles were introduced, the model’s performance became heavily dependent on their specific
placement. When obstacles were positioned along the straight sections of the track, the vehicle

Real environment 33

demonstrated the obstacle avoidance behavior learned during the simulation. When placed along
the curves the vehicle struggled to avoid them in time. This may have been caused by a number
of factors including the sharp turns of the track, the narrower lane width of only 60 centimeters
instead of the meter in the simulation, and the relatively low contrast between the obstacles and
the background barrier.

Additionally, it was observed that the model was highly sensitive to changes in the light-
ing conditions, and reflections from the foil barriers interfered with the driving inference. In
hindsight, using non-reflective barrier material would be preferable.

34 Experiments

Chapter 5

Conclusion

In conclusion, this thesis has achieved the set goals of conducting a comprehensive literature
survey of various autonomous driving methodologies and model architectures, highlighting their
limitations and use cases. Next, capabilities of the AWS DeepRacer platform and the open-source
Deepracer-for-cloud training environment were explored, further utilizing these to compare and
analyze different self-driving architectures for object detection and avoidance.

Through experimentation, it was discovered that a 3-layer convolutional neural network ar-
chitecture combined with a full sensor suite supported by the DeepRacer vehicle performs best
in a simulated object avoidance task, compared to other sensor combinations. The model was
further successfully demonstrated in both static obstacle avoidance tasks and a dynamic environ-
ment with other moving vehicle agents. Training experiments were also conducted using a 5-layer
convolutional network architecture, which was however found to be difficult to train due to the
increased complexity. This leaves room for further experimentation with the 5-layer convolution
neural network, such as systematic hyperparameter tuning and more training time. Finally,
the trained model was deployed to the DeepRacer vehicle and demonstrated on a real-world
racetrack, where the model displayed the capability for avoiding stationary obstacles. It was
also found that the deployed model is sensitive to environmental conditions, such as background
noise and light reflections. This observation highlights the need for future research to consider
the transfer to the real world in the model training process and simulation design.

There are several avenues for further research and experimentation beyond the scope of this
thesis. One such avenue is customizing the DeepRacer simulated environment to reproduce more
complex driving tasks that were not explored in this work. Additionally, it would be beneficial
to explore the impact of different reward functions on agent behavior, as this thesis relied on
a single reward function for all proposed experiments. By varying the reward function, more
insight could be gained into how the agent responds to different reward signals.

35

36 Conclusion

Appendix A

Training metrics

0 20 40 60 80 100
Iteration

0

1000

2000

3000

4000

5000

M
ea

n
Re

wa
rd

Rewards per interation

0 20 40 60 80 100
Iteration

10

20

30

40

50

60

70

80

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
m

pl
et

io
n

ra
te

Lap completion rate per iteration

0 500 1000 1500 2000 2500
Episode

0

10000

20000

30000

40000

50000

60000

To
ta

l r
ew

ar
d

Total reward per single episode

Figure A.1 Training metrics for the 3-layer CNN model with a single camera.

37

38 Training metrics

0 20 40 60 80 100
Iteration

0

1000

2000

3000

4000

5000

M
ea

n
Re

wa
rd

Rewards per interation

0 20 40 60 80 100
Iteration

20

30

40

50

60

70

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
m

pl
et

io
n

ra
te

Lap completion rate per iteration

0 500 1000 1500 2000 2500
Episode

0

5000

10000

15000

20000

25000

30000

35000

40000
To

ta
l r

ew
ar

d

Total reward per single episode

Figure A.2 Training metrics for the 3-layer CNN model stereo cameras.

39

0 20 40 60 80 100
Iteration

0

2000

4000

6000

8000

M
ea

n
Re

wa
rd

Rewards per interation

0 20 40 60 80 100
Iteration

10

20

30

40

50

60

70

80

90

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
m

pl
et

io
n

ra
te

Lap completion rate per iteration

0 500 1000 1500 2000 2500
Episode

0

20000

40000

60000

80000

100000

To
ta

l r
ew

ar
d

Total reward per single episode

Figure A.3 Training metrics for the 3-layer CNN model with a full suite of sensors – stereo cameras
and LiDAR.

40 Training metrics

0 10 20 30 40 50 60 70
Iteration

300

400

500

600

700

M
ea

n
Re

wa
rd

Rewards per interation

0 10 20 30 40 50 60 70
Iteration

15

20

25

30

35

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 10 20 30 40 50 60 70
Iteration

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Co
m

pl
et

io
n

ra
te

Lap completion rate per iteration

0 250 500 750 1000 1250 1500 1750
Episode

0

500

1000

1500

2000

2500

To
ta

l r
ew

ar
d

Total reward per single episode

Figure A.4 Training metrics for 5-layer CNN model with stereo cameras and LiDAR.

41

0 10 20 30 40 50 60
Iteration

400

600

800

1000

1200

1400

1600

1800

M
ea

n
Re

wa
rd

Rewards per interation

0 10 20 30 40 50 60
Iteration

20

30

40

50

60

70

80

90

M
ea

n
Pr

og
re

ss
 [%

]

Progress per iteration

0 10 20 30 40 50 60
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
m

pl
et

io
n

ra
te

Lap completion rate per iteration

0 200 400 600 800 1000 1200 1400
Episode

500

1000

1500

2000

2500

To
ta

l r
ew

ar
d

Total reward per single episode

Figure A.5 Training metrics for the head-to-head racing model – 3-layer CNN with stereo cameras
and LiDAR.

42 Training metrics

Bibliography

1. MONTGOMERY, W David; MUDGE, Richard; GROSHEN, Erica L; HELPER, Susan;
MACDUFFIE, John Paul; CARSON, Charles. America’s workforce and the self-driving
future: Realizing productivity gains and spurring economic growth. 2018. Available also
from: https://trid.trb.org/view/1516782.

2. YURTSEVER, Ekim; LAMBERT, Jacob; CARBALLO, Alexander; TAKEDA, Kazuya.
A Survey of Autonomous Driving: Common Practices and Emerging Technologies. IEEE
Access. 2020, vol. 8, pp. 58443–58469. Available from doi: 10.1109/ACCESS.2020.2983149.

3. CALVERT, S. C.; SCHAKEL, W. J.; LINT, J. W. C. van. Will Automated Vehicles Neg-
atively Impact Traffic Flow? Journal of Advanced Transportation. 2017, vol. 2017. issn
0197-6729. Available from doi: 10.1155/2017/3082781.

4. YEONG, De Jong; VELASCO-HERNANDEZ, Gustavo; BARRY, John; WALSH, Joseph.
Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors. 2021,
vol. 21, no. 6. issn 1424-8220. Available from doi: 10.3390/s21062140.

5. CAMPBELL, Sean; O’MAHONY, Niall; KRPALCOVA, Lenka; RIORDAN, Daniel; WALSH,
Joseph; MURPHY, Aidan; RYAN, Conor. Sensor Technology in Autonomous Vehicles : A
review. In: 2018 29th Irish Signals and Systems Conference (ISSC). 2018, pp. 1–4. Available
from doi: 10.1109/ISSC.2018.8585340.

6. SHAHIAN JAHROMI, Babak; TULABANDHULA, Theja; CETIN, Sabri. Real-Time Hy-
brid Multi-Sensor Fusion Framework for Perception in Autonomous Vehicles. Sensors. 2019,
vol. 19, no. 20. issn 1424-8220. Available from doi: 10.3390/s19204357.

7. PETIT, F. The Beginnings of LiDAR—A Time Travel Back in History. 2020. Available
also from: https://www.blickfeld.com/blog/the-beginnings-of-lidar/.

8. HECHT, Jeff. Lidar for self-driving cars. Optics and Photonics News. 2018, vol. 29, no. 1,
pp. 26–33.

9. GAZIS, Alexandros; IOANNOU, Evangelos; KATSIRI, Elefteria. Examining the Sensors
That Enable Self-Driving Vehicles. IEEE Potentials. 2020, vol. 39, no. 1, pp. 46–51. Available
from doi: 10.1109/MPOT.2019.2941243.

10. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep learning. MIT press,
2016. isbn 9780262035613.

11. LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning. Nature. 2015, vol. 521,
no. 7553, pp. 436–444. Available from doi: 10.1038/nature14539.

12. SCHMIDHUBER, Jürgen. Deep learning in neural networks: An overview. Neural Networks.
2015, vol. 61, pp. 85–117. issn 0893-6080. Available from doi: https://doi.org/10.1016/
j.neunet.2014.09.003.

43

https://trid.trb.org/view/1516782
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1155/2017/3082781
https://doi.org/10.3390/s21062140
https://doi.org/10.1109/ISSC.2018.8585340
https://doi.org/10.3390/s19204357
https://www.blickfeld.com/blog/the-beginnings-of-lidar/
https://doi.org/10.1109/MPOT.2019.2941243
https://doi.org/10.1038/nature14539
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003

44 Bibliography

13. KRENKER, Andrej; BEŠTER, Janez; KOS, Andrej. Introduction to the artificial neural
networks. Artificial Neural Networks: Methodological Advances and Biomedical Applications.
InTech. 2011, pp. 1–18.

14. JAIN, A.K.; MAO, Jianchang; MOHIUDDIN, K.M. Artificial neural networks: a tutorial.
Computer. 1996, vol. 29, no. 3, pp. 31–44. Available from doi: 10.1109/2.485891.

15. O’SHEA, Keiron; NASH, Ryan. An Introduction to Convolutional Neural Networks. 2015.
Available from arXiv: 1511.08458 [cs.NE].

16. ALBAWI, Saad; MOHAMMED, Tareq Abed; AL-ZAWI, Saad. Understanding of a convo-
lutional neural network. In: 2017 International Conference on Engineering and Technology
(ICET). 2017, pp. 1–6. Available from doi: 10.1109/ICEngTechnol.2017.8308186.

17. LEE, Honglak; GROSSE, Roger; RANGANATH, Rajesh; NG, Andrew Y. Convolutional
Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations.
In: Montreal, Quebec, Canada: Association for Computing Machinery, 2009, pp. 609–616.
isbn 9781605585161. Available from doi: 10.1145/1553374.1553453.

18. TEO, Yong Siah; SHIN, Seongwook; JEONG, Hyunseok; KIM, Yosep; KIM, Yoon-Ho;
STRUCHALIN, Gleb I; KOVLAKOV, Egor V; STRAUPE, Stanislav S; KULIK, Sergei P;
LEUCHS, Gerd, et al. Benchmarking quantum tomography completeness and fidelity with
machine learning. New Journal of Physics. 2021, vol. 23, no. 10, p. 103021.

19. KARPATHY, Andrej et al. Convolutional neural networks for visual recognition. Notes
accompany the Stanford CS class CS231. 2017. Available also from: https://cs231n.
github.io/. Accessed on April 23, 2023.

20. BHATT, Dulari; PATEL, Chirag; TALSANIA, Hardik; PATEL, Jigar; VAGHELA, Ras-
mika; PANDYA, Sharnil; MODI, Kirit; GHAYVAT, Hemant. CNN Variants for Computer
Vision: History, Architecture, Application, Challenges and Future Scope. Electronics. 2021,
vol. 10, no. 20. issn 2079-9292. Available from doi: 10.3390/electronics10202470.

21. MEDSKER, L.; JAIN, L.C. Recurrent Neural Networks: Design and Applications. CRC
Press, 1999. International Series on Computational Intelligence. isbn 9781420049176. Avail-
able also from: https://books.google.cz/books?id=ME1SAkN0PyMC.

22. KARPATHY, Andrej. The Unreasonable Effectiveness of Recurrent Neural Networks. 2015.
Available also from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
dated%20May. Accessed on April 23, 2023.

23. BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks. 1994, vol. 5, no. 2, pp. 157–166.
Available from doi: 10.1109/72.279181.

24. YU, Yong; SI, Xiaosheng; HU, Changhua; ZHANG, Jianxun. A Review of Recurrent Neural
Networks: LSTM Cells and Network Architectures. Neural Computation. 2019, vol. 31, no.
7, pp. 1235–1270. issn 0899-7667. Available from doi: 10.1162/neco_a_01199.

25. STAUDEMEYER, Ralf C.; MORRIS, Eric Rothstein. Understanding LSTM – a tutorial
into Long Short-Term Memory Recurrent Neural Networks. 2019. Available from arXiv:
1909.09586 [cs.NE].

26. SUN, Ruo-Yu. Optimization for deep learning: An overview. Journal of the Operations
Research Society of China. 2020, vol. 8, no. 2, pp. 249–294. Available from doi: https:
//doi.org/10.1007/s40305-020-00309-6.

27. DUCHI, John; HAZAN, Elad; SINGER, Yoram. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research. 2011, vol. 12, no.
7. Available also from: https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.
pdf.

https://doi.org/10.1109/2.485891
https://arxiv.org/abs/1511.08458
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1145/1553374.1553453
https://cs231n.github.io/
https://cs231n.github.io/
https://doi.org/10.3390/electronics10202470
https://books.google.cz/books?id=ME1SAkN0PyMC
http://karpathy.github.io/2015/05/21/rnn-effectiveness/dated%20May
http://karpathy.github.io/2015/05/21/rnn-effectiveness/dated%20May
https://doi.org/10.1109/72.279181
https://doi.org/10.1162/neco_a_01199
https://arxiv.org/abs/1909.09586
https://doi.org/https://doi.org/10.1007/s40305-020-00309-6
https://doi.org/https://doi.org/10.1007/s40305-020-00309-6
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Bibliography 45

28. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic Optimization. 2017.
Available from arXiv: 1412.6980 [cs.LG].

29. SUTTON, Richard S; BARTO, Andrew G. Reinforcement learning: An introduction. MIT
press, 2018. Available also from: https://web.stanford.edu/class/psych209/Readings/
SuttonBartoIPRLBook2ndEd.pdf.

30. SHIN, Joohyun; BADGWELL, Thomas A.; LIU, Kuang-Hung; LEE, Jay H. Reinforcement
Learning – Overview of recent progress and implications for process control. Computers
& Chemical Engineering. 2019, vol. 127, pp. 282–294. issn 0098-1354. Available from doi:
https://doi.org/10.1016/j.compchemeng.2019.05.029.

31. KAELBLING, Leslie Pack; LITTMAN, Michael L; MOORE, Andrew W. Reinforcement
learning: A survey. Journal of artificial intelligence research. 1996, vol. 4, pp. 237–285.
Available from doi: https://doi.org/10.1613/jair.301.

32. LI, Yuxi. Deep Reinforcement Learning: An Overview. 2018. Available from arXiv: 1701.
07274 [cs.LG].

33. AUDIBERT, Jean-Yves; MUNOS, Rémi; SZEPESVÁRI, Csaba. Exploration–exploitation
tradeoff using variance estimates in multi-armed bandits. Theoretical Computer Science.
2009, vol. 410, no. 19, pp. 1876–1902. issn 0304-3975. Available from doi: https://doi.
org/10.1016/j.tcs.2009.01.016. Algorithmic Learning Theory.

34. SCHULMAN, John; WOLSKI, Filip; DHARIWAL, Prafulla; RADFORD, Alec; KLIMOV,
Oleg. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347. 2017.
Available from doi: https://doi.org/10.48550/arXiv.1707.06347.

35. HAARNOJA, Tuomas; ZHOU, Aurick; HARTIKAINEN, Kristian; TUCKER, George; HA,
Sehoon; TAN, Jie; KUMAR, Vikash; ZHU, Henry; GUPTA, Abhishek; ABBEEL, Pieter,
et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905. 2018.
Available from doi: https://doi.org/10.48550/arXiv.1812.05905.

36. GRIGORESCU, Sorin; TRASNEA, Bogdan; COCIAS, Tiberiu; MACESANU, Gigel. A
survey of deep learning techniques for autonomous driving. Journal of Field Robotics. 2020,
vol. 37, no. 3, pp. 362–386. Available from doi: https://doi.org/10.1002/rob.21918.

37. JANAI, Joel; GÜNEY, Fatma; BEHL, Aseem; GEIGER, Andreas. Computer Vision for
Autonomous Vehicles: Problems, Datasets and State of the Art. Foundations and Trends® in
Computer Graphics and Vision. 2020, vol. 12, no. 1–3, pp. 1–308. issn 1572-2740. Available
from doi: 10.1561/0600000079.

38. ZHU, Hao; YUEN, Ka-Veng; MIHAYLOVA, Lyudmila; LEUNG, Henry. Overview of Envi-
ronment Perception for Intelligent Vehicles. IEEE Transactions on Intelligent Transporta-
tion Systems. 2017, vol. 18, no. 10, pp. 2584–2601. Available from doi: 10.1109/TITS.
2017.2658662.

39. CARRANZA-GARCIA, Manuel; TORRES-MATEO, Jesús; LARA-BENITEZ, Pedro; GARCIA-
GUTIÉRREZ, Jorge. On the performance of one-stage and two-stage object detectors in
autonomous vehicles using camera data. Remote Sensing. 2020, vol. 13, no. 1, p. 89. Avail-
able from doi: https://doi.org/10.3390/rs13010089.

40. ZOU, Zhengxia; CHEN, Keyan; SHI, Zhenwei; GUO, Yuhong; YE, Jieping. Object Detec-
tion in 20 Years: A Survey. Proceedings of the IEEE. 2023, vol. 111, no. 3, pp. 257–276.
Available from doi: 10.1109/JPROC.2023.3238524.

41. GIRSHICK, Ross; DONAHUE, Jeff; DARRELL, Trevor; MALIK, Jitendra. Rich feature
hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2014, pp. 580–587. Available
also from: https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_
Rich_Feature_Hierarchies_2014_CVPR_paper.pdf.

https://arxiv.org/abs/1412.6980
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.05.029
https://doi.org/https://doi.org/10.1613/jair.301
https://arxiv.org/abs/1701.07274
https://arxiv.org/abs/1701.07274
https://doi.org/https://doi.org/10.1016/j.tcs.2009.01.016
https://doi.org/https://doi.org/10.1016/j.tcs.2009.01.016
https://doi.org/https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/https://doi.org/10.1002/rob.21918
https://doi.org/10.1561/0600000079
https://doi.org/10.1109/TITS.2017.2658662
https://doi.org/10.1109/TITS.2017.2658662
https://doi.org/https://doi.org/10.3390/rs13010089
https://doi.org/10.1109/JPROC.2023.3238524
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

46 Bibliography

42. GIRSHICK, Ross. Fast r-cnn. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1440–1448. Available also from: https://openaccess.thecvf.
com/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf.

43. REN, Shaoqing; HE, Kaiming; GIRSHICK, Ross; SUN, Jian. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. In: CORTES, C.; LAWRENCE,
N.; LEE, D.; SUGIYAMA, M.; GARNETT, R. (eds.). Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2015, vol. 28. Available also from: https:
//proceedings.neurips.cc/paper_files/paper/2015/file/%5C%5C14bfa6bb14875e
45bba028a21ed38046-Paper.pdf.

44. LIU, Wei; ANGUELOV, Dragomir; ERHAN, Dumitru; SZEGEDY, Christian; REED, Scott;
FU, Cheng-Yang; BERG, Alexander C. Ssd: Single shot multibox detector. In: Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–
14, 2016, Proceedings, Part I 14. Springer, 2016, pp. 21–37. Available from doi: https:
//doi.org/10.1007/978-3-319-46448-0_2.

45. REDMON, Joseph; DIVVALA, Santosh; GIRSHICK, Ross; FARHADI, Ali. You only look
once: Unified, real-time object detection. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2016, pp. 779–788. Available also from: https://www.
cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_
CVPR_2016_paper.pdf.

46. LIN, Tsung-Yi; GOYAL, Priya; GIRSHICK, Ross; HE, Kaiming; DOLLÁR, Piotr. Focal
Loss for Dense Object Detection. 2018. Available from arXiv: 1708.02002 [cs.CV].

47. BADRINARAYANAN, Vijay; KENDALL, Alex; CIPOLLA, Roberto. SegNet: A Deep Con-
volutional Encoder-Decoder Architecture for Image Segmentation. 2016. Available from arXiv:
1511.00561 [cs.CV].

48. PASZKE, Adam; CHAURASIA, Abhishek; KIM, Sangpil; CULURCIELLO, Eugenio. ENet:
A Deep Neural Network Architecture for Real-Time Semantic Segmentation. 2016. Available
from arXiv: 1606.02147 [cs.CV].

49. ZHAO, Hengshuang; QI, Xiaojuan; SHEN, Xiaoyong; SHI, Jianping; JIA, Jiaya. ICNet for
Real-Time Semantic Segmentation on High-Resolution Images. 2018. Available from arXiv:
1704.08545 [cs.CV].

50. HE, Kaiming; GKIOXARI, Georgia; DOLLÁR, Piotr; GIRSHICK, Ross. Mask R-CNN.
2018. Available from arXiv: 1703.06870 [cs.CV].

51. Deploying A scalable object detection pipeline: The inferencing process, part 2. 2022. Avail-
able also from: https://developer.nvidia.com/blog/deploying-a-scalable-object-
detection- pipeline- the- inferencing- process- part- 2/?fbclid=IwAR2FRM6JBA-
R8DFXdq02reBbWJpbVWg3J3KxFI3hN4DsE_Le9SViUwAR0v4. Accessed on April 23, 2023.

52. ANDY CHEN, Chaitanya Asawa. Going beyond the bounding box with semantic segmen-
tation. The Gradient, 2021. Available also from: https://thegradient.pub/semantic-
segmentation/. Accessed on April 23, 2023.

53. PENDLETON, Scott Drew; ANDERSEN, Hans; DU, Xinxin; SHEN, Xiaotong; MEGH-
JANI, Malika; ENG, You Hong; RUS, Daniela; ANG, Marcelo H. Perception, Planning,
Control, and Coordination for Autonomous Vehicles. Machines. 2017, vol. 5, no. 1. issn
2075-1702. Available from doi: 10.3390/machines5010006.

54. YURTSEVER, Ekim; LAMBERT, Jacob; CARBALLO, Alexander; TAKEDA, Kazuya.
A Survey of Autonomous Driving: Common Practices and Emerging Technologies. IEEE
Access. 2020, vol. 8, pp. 58443–58469. Available from doi: 10.1109/ACCESS.2020.2983149.

https://openaccess.thecvf.com/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/%5C%5C14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/%5C%5C14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/%5C%5C14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/https://doi.org/10.1007/978-3-319-46448-0_2
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1511.00561
https://arxiv.org/abs/1606.02147
https://arxiv.org/abs/1704.08545
https://arxiv.org/abs/1703.06870
https://developer.nvidia.com/blog/deploying-a-scalable-object-detection-pipeline-the-inferencing-process-part-2/?fbclid=IwAR2FRM6JBA-R8DFXdq02reBbWJpbVWg3J3KxFI3hN4DsE_Le9SViUwAR0v4
https://developer.nvidia.com/blog/deploying-a-scalable-object-detection-pipeline-the-inferencing-process-part-2/?fbclid=IwAR2FRM6JBA-R8DFXdq02reBbWJpbVWg3J3KxFI3hN4DsE_Le9SViUwAR0v4
https://developer.nvidia.com/blog/deploying-a-scalable-object-detection-pipeline-the-inferencing-process-part-2/?fbclid=IwAR2FRM6JBA-R8DFXdq02reBbWJpbVWg3J3KxFI3hN4DsE_Le9SViUwAR0v4
https://thegradient.pub/semantic-segmentation/
https://thegradient.pub/semantic-segmentation/
https://doi.org/10.3390/machines5010006
https://doi.org/10.1109/ACCESS.2020.2983149

Bibliography 47

55. CALTAGIRONE, Luca; BELLONE, Mauro; SVENSSON, Lennart; WAHDE, Mattias. LIDAR-
based driving path generation using fully convolutional neural networks. In: 2017 IEEE
20th International Conference on Intelligent Transportation Systems (ITSC). 2017, pp. 1–
6. Available from doi: 10.1109/ITSC.2017.8317618.

56. SUN, Liting; PENG, Cheng; ZHAN, Wei; TOMIZUKA, Masayoshi. A Fast Integrated Plan-
ning and Control Framework for Autonomous Driving via Imitation Learning. 2018. Avail-
able from doi: 10.1115/DSCC2018-9249. V003T37A012.

57. GRIGORESCU, Sorin Mihai; TRASNEA, Bogdan; MARINA, Liviu; VASILCOI, Andrei;
COCIAS, Tiberiu. NeuroTrajectory: A Neuroevolutionary Approach to Local State Tra-
jectory Learning for Autonomous Vehicles. IEEE Robotics and Automation Letters. 2019,
vol. 4, no. 4, pp. 3441–3448. Available from doi: 10.1109/LRA.2019.2926224.

58. TAMPUU, Ardi; MATIISEN, Tambet; SEMIKIN, Maksym; FISHMAN, Dmytro; MUHAM-
MAD, Naveed. A Survey of End-to-End Driving: Architectures and Training Methods. IEEE
Transactions on Neural Networks and Learning Systems. 2022, vol. 33, no. 4, pp. 1364–1384.
Available from doi: 10.1109/TNNLS.2020.3043505.

59. POMERLEAU, Dean A. ALVINN: An Autonomous Land Vehicle in a Neural Network.
In: TOURETZKY, D. (ed.). Advances in Neural Information Processing Systems. Morgan-
Kaufmann, 1988, vol. 1. Available also from: https://proceedings.neurips.cc/paper_
files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf.

60. MULLER, Urs; BEN, Jan; COSATTO, Eric; FLEPP, Beat; CUN, Yann. Off-Road Obsta-
cle Avoidance through End-to-End Learning. In: WEISS, Y.; SCHOLKOPF, B.; PLATT,
J. (eds.). Advances in Neural Information Processing Systems. MIT Press, 2005, vol. 18.
Available also from: https://proceedings.neurips.cc/paper_files/paper/2005/
file/fdf1bc5669e8ff5ba45d02fded729feb-Paper.pdf.

61. BOJARSKI, Mariusz; TESTA, Davide Del; DWORAKOWSKI, Daniel; FIRNER, Bern-
hard; FLEPP, Beat; GOYAL, Prasoon; JACKEL, Lawrence D.; MONFORT, Mathew;
MULLER, Urs; ZHANG, Jiakai; ZHANG, Xin; ZHAO, Jake; ZIEBA, Karol. End to End
Learning for Self-Driving Cars. 2016. Available from arXiv: 1604.07316 [cs.CV].

62. XU, Huazhe; GAO, Yang; YU, Fisher; DARRELL, Trevor. End-To-End Learning of Driv-
ing Models From Large-Scale Video Datasets. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017.

63. ERAQI, Hesham M.; MOUSTAFA, Mohamed N.; HONER, Jens. End-to-End Deep Learn-
ing for Steering Autonomous Vehicles Considering Temporal Dependencies. 2017. Available
from arXiv: 1710.03804 [cs.LG].

64. WOLF, Peter; HUBSCHNEIDER, Christian; WEBER, Michael; BAUER, André; HÄRTL,
Jonathan; DÜRR, Fabian; ZÖLLNER, J. Marius. Learning how to drive in a real world
simulation with deep Q-Networks. In: 2017 IEEE Intelligent Vehicles Symposium (IV).
2017, pp. 244–250. Available from doi: 10.1109/IVS.2017.7995727.

65. OSIŃSKI, B lażej; JAKUBOWSKI, Adam; ZIECINA, Pawe l; MI LOŚ, Piotr; GALIAS, Christo-
pher; HOMOCEANU, Silviu; MICHALEWSKI, Henryk. Simulation-Based Reinforcement
Learning for Real-World Autonomous Driving. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). 2020, pp. 6411–6418. Available from doi: 10.1109/
ICRA40945.2020.9196730.

66. PEROT, Etienne; JARITZ, Maximilian; TOROMANOFF, Marin; DE CHARETTE, Raoul.
End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
2017, pp. 474–475. Available from doi: 10.1109/CVPRW.2017.64.

https://doi.org/10.1109/ITSC.2017.8317618
https://doi.org/10.1115/DSCC2018-9249
https://doi.org/10.1109/LRA.2019.2926224
https://doi.org/10.1109/TNNLS.2020.3043505
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2005/file/fdf1bc5669e8ff5ba45d02fded729feb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2005/file/fdf1bc5669e8ff5ba45d02fded729feb-Paper.pdf
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1710.03804
https://doi.org/10.1109/IVS.2017.7995727
https://doi.org/10.1109/ICRA40945.2020.9196730
https://doi.org/10.1109/ICRA40945.2020.9196730
https://doi.org/10.1109/CVPRW.2017.64

48 Bibliography

67. RIEDMILLER, Martin; MONTEMERLO, Mike; DAHLKAMP, Hendrik. Learning to Drive
a Real Car in 20 Minutes. In: 2007 Frontiers in the Convergence of Bioscience and Infor-
mation Technologies. 2007, pp. 645–650. Available from doi: 10.1109/FBIT.2007.37.

68. KENDALL, Alex; HAWKE, Jeffrey; JANZ, David; MAZUR, Przemyslaw; REDA, Daniele;
ALLEN, John-Mark; LAM, Vinh-Dieu; BEWLEY, Alex; SHAH, Amar. Learning to Drive
in a Day. In: 2019 International Conference on Robotics and Automation (ICRA). 2019,
pp. 8248–8254. Available from doi: 10.1109/ICRA.2019.8793742.

69. AWS DeepRacer Developer Guide. 2023. Available also from: https://docs.aws.amazon.
com/pdfs/deepracer/latest/developerguide/awsracerdg.pdf. Last accessed: 5-2-
2023.

70. JAKL, Vincent; KOSORIN, Peter; PROCHAZKA, Adam. AWS DeepRacer local training
configuration. 2023. Available also from: https://apps.datalab.fit.cvut.cz/static/
deepracer/deepracer_setup_whitepaper.pdf. Last accessed: 5-11-2023.

71. SELVARAJU, Ramprasaath R.; DAS, Abhishek; VEDANTAM, Ramakrishna; COGSWELL,
Michael; PARIKH, Devi; BATRA, Dhruv. Grad-CAM: Why did you say that? Visual Expla-
nations from Deep Networks via Gradient-based Localization. CoRR. 2016, vol. abs/1610.02391.
Available from arXiv: 1610.02391.

https://doi.org/10.1109/FBIT.2007.37
https://doi.org/10.1109/ICRA.2019.8793742
https://docs.aws.amazon.com/pdfs/deepracer/latest/developerguide/awsracerdg.pdf
https://docs.aws.amazon.com/pdfs/deepracer/latest/developerguide/awsracerdg.pdf
https://apps.datalab.fit.cvut.cz/static/deepracer/deepracer_setup_whitepaper.pdf
https://apps.datalab.fit.cvut.cz/static/deepracer/deepracer_setup_whitepaper.pdf
https://arxiv.org/abs/1610.02391

Contents of the attached media

thesis
thesis.pdf..The thesis in a pdf format
pic .. Figures used in the thesis
text

appendix.tex.......................................Training metrics appendix file
bib-database.bib..Bibliography database
text.tex..Thesis text file

assignment-include.pdf...........................Thesis assignment in a pdf format
ctu-thesis.cls..LATEXsupport file
ctu-thesis.cls..Main thesis LATEXfile

models Folder with trained model files and hyperparameters
evaluation. ... Simulation evaluation videos
physical track testing. Videos from experiments on a physical track

49

	Acknowledgments
	Declaration
	Abstract
	Abbreviations
	Introduction
	Theoretical background
	Sensors
	Cameras
	LiDAR
	Radar

	Deep learning
	Artificial neurons
	Feedforward neural networks
	Convolutional neural networks
	Recurrent neural networks
	Training

	Reinforcement learning
	Exploration vs exploitation
	Proximal policy optimization
	Soft actor critic

	Autonomous driving overview: Object avoidance
	Perception and scene parsing
	Object Detectors
	Semantic Segmentation

	Path planning
	Classical planning
	Learning-based planning

	End-to-end architectures
	Supervised deep learning models
	Deep reinforcement learning models

	AWS DeepRacer
	Service architecture
	SageMaker
	AWS RoboMaker

	DeepRacer-for-cloud
	Race types
	Reward function
	Supported algorithms
	Action space
	Supported Models

	Physical car

	Experiments
	Training setup
	Reward function
	Policy network architectures
	Sensor comparison for object avoidance
	Evaluation

	Architecture comparison
	Evaluation

	Head-to-head racing
	Evaluation

	Real environment

	Conclusion
	Training metrics
	Contents of the attached media

