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Abstract

The aim of this thesis is to present the blocked algorithm for finding a Cholesky decomposition
of a symmetric positive definite matrix and to provide an implementation of the algorithm using
the StarPU and OpenMP task-based runtime systems. The implementation is tested using test
routines from the LAPACK library and its performance is compared to several available libraries
for numerical linear algebra on three different compute nodes. On all three of them, the imple-
mentation delivers a competitive performance, especially for larger matrices. In the theoretical
part of the thesis, custom proofs of correctness are formulated for both the blocked and the un-
blocked algorithms for Cholesky decomposition. The rest of the thesis explores matrix storage
schemes, the BLAS interface and basic concepts of task-based programming.

Keywords Cholesky decomposition, runtime systems, task-based programming,
numerical linear algebra, StarPU, OpenMP

Abstrakt

Cílem této práce je představit blokový algoritmus pro nalezení Choleského rozkladu symetrické
pozitivně definitní matice a implementovat tento algoritmus pomocí task-based runtime systémů
StarPU a OpenMP. Tato implementace je otestována za pomoci testovacích rutin z knihovny
LAPACK a její výkon je porovnán s několika volně dostupnými knihovnami pro numerickou
lineární algebru na třech různých výpočetních uzlech. Výkon implementace na všech třech uzlech
vykazuje konkurenceschopnost, především pak u větších matic. V teoretické části práce jsou zfor-
mulovány vlastní důkazy korektnosti jak blokového, tak neblokového algoritmu pro Choleského
rozklad. Ve zbytku práce jsou prezentována schémata pro ukládání matic, rozhraní BLAS a zák-
ladní koncepty task-based programování.

Klíčová slova Choleského rozklad, runtime systémy, task-based programování,
numerická lineární algebra, StarPU, OpenMP
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Introduction

One of the most thoroughly examined problems in mathematics is solving systems of linear
equations. Systems of linear equations often arise as a discretization of systems of differential
equations that describe a certain model in physics, economics, and many more scientific areas.

As the size of the systems of equations describing these models grows steadily, so does the
demand for high-efficiency parallelized algorithms for solving those systems. The subject of
research in this thesis is Cholesky decomposition, which is used to solve linear equation systems
with symmetric positive definite matrices.

When computing the decomposition in parallel on several CPU cores, the matrix is split into
blocks, and elementary matrix operations are performed on those blocks. Some of the operations,
however, require other blocks to be already processed. To simplify the implementation of these
algorithms, the routine is split into several tasks that are performed on the individual blocks,
and the dependencies between these tasks are described to a task-based runtime system, which
then takes care of allocating computing power to the individual tasks and ensuring that no task
is run before all of its dependencies are satisfied.

The main goal of this thesis is to implement a blocked algorithm for the Cholesky decomposi-
tion using the StarPU (and possibly OpenMP) runtime systems, then to measure the performance
of this implementation and compare it to several well-known implementations on different CPU
platforms (with various instruction set architectures, if possible).

As there are many available highly optimized implementations of the blocked algorithm for
Cholesky decomposition (many of them being developed by major hardware vendors), the author
is not expecting to develop the new fastest algorithm implementation that could be used in
production runs. Instead, the main reason for selecting this topic was an interest in seeing
a performance comparison between the available optimized implementations and a relatively
unoptimized custom implementation that uses a modern task-based runtime system with an
optimized scheduler.

The first chapter presents elementary mathematical concepts regarding matrices, vectors,
symmetric matrices, and their definiteness. The second chapter discusses several approaches for
storing matrices in computer memory. In the third chapter, we describe three of the elemen-
tary operations used in the blocked algorithm and the interface standard associated with them
(BLAS). The content of the fourth chapter comprises a description of the Cholesky decomposi-
tion and the blocked and unblocked algorithms used for its computation. In the fifth chapter,
we examine existing implementations of the decomposition in software libraries for numerical
linear algebra. The sixth chapter describes elementary concepts of task-based runtime systems
and presents two widely used examples of such systems, OpenMP and StarPU.

The last two chapters describe the implementation, subsequent testing, and performance
evaluation.

1
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Chapter 1

Properties of symmetric matrices

1.1 Matrices and vectors
Hefferon [1] defines an m × n matrix as a rectangular array of numbers with m rows and n
columns. Matrices are typically named with capital letters.

Each number in a matrix is called an entry. The entry in the ith row and the jth column of
a matrix A is denoted Aij .

The set of all m× n matrices whose entries are real numbers is labeled Rm,n.
The transpose of a matrix A is a matrix obtained by interchanging the corresponding rows

and columns of A [1]:

▶ Definition 1.1. A transpose of a matrix A ∈ Rm,n is a matrix AT ∈ Rn,m such that Aij = AT
ji

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

A sum of two matrices of the same size and the scalar multiple of a matrix are both defined
element-wise [1]:

▶ Definition 1.2. A sum of two m× n matrices A and B is a matrix A+B ∈ Rm,n such that

(A+B)ij = Aij +Bij

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

▶ Definition 1.3. Let α ∈ R. A scalar multiple of an m×n matrix A is a matrix αA ∈ Rm,n

such that
(αA)ij = αAij

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

A matrix product is defined as follows:

▶ Definition 1.4 ([1], Definition 2.3). Let A be an m × r matrix and B an r × n matrix.
A product of A and B is a matrix AB ∈ Rm,n such that

(AB)ij =

r∑
k=1

AikBkj

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

The product of matrices A and B can also be denoted by A ·B.

3



4 Chapter 1. Properties of symmetric matrices

▶ Theorem 1.5. Let A ∈ Rm,n, B,D ∈ Rn,o, C ∈ Ro,p and α ∈ R. Then:

1. (AB)C = A(BC)

2. A(αB) = (αA)B = α(AB)

3. A(B +D) = AB +AD

4. (B +D)C = BC +DC

5. ATBT = (BA)T

Proof.

1.
(
(AB)C

)
ij
=

o∑
l=1

(AB)ilClj =
o∑

l=1

n∑
k=1

(AikBkl)Clj =
n∑

k=1

o∑
l=1

Aik(BklClj) =

=
n∑

k=1

Aik(BC)kj =
(
A(BC)

)
ij

2.
(
A(αB)

)
ij
=

n∑
k=1

Aik(αB)kj =
n∑

k=1

αAikBkj =
n∑

k=1

(αA)ikBkj =
(
(αA)B

)
ij
=

= α
n∑

k=1

AikBkj =
(
α(AB)

)
ij

3.
(
A(B+D)

)
ij
=

n∑
k=1

Aik(B+D)kj =
n∑

k=1

Aik(Bkj+Dkj) =
n∑

k=1

AikBkj+AikDkj = (AB+AD)ij

4.
(
(B+D)C

)
ij
=

n∑
k=1

(B+D)ikCkj =
n∑

k=1

(Bik+Dik)Ckj =
n∑

k=1

BikCkj+DikCkj = (BC+DC)ij

5. (ATBT )ij =
n∑

k=1

(AT )ik(B
T )kj =

n∑
k=1

AkiBjk =
n∑

k=1

BjkAki = (BA)ji =
(
(BA)T

)
ij

◀

1.1.1 Square matrices
An n× n matrix is called a square matrix of size n.

A diagonal matrix is a square matrix whose non-diagonal entries are zero [2], or more precisely:

▶ Definition 1.6. A square matrix A ∈ Rn,n is called diagonal if Aij = 0 for all
i, j ∈ {1, . . . , n}, i ̸= j.

By relaxing the restriction so that only the entries above or below the main diagonal need to
be zero, we obtain a triangular matrix:

▶ Definition 1.7. A square matrix A ∈ Rn,n is:

lower triangular, if Aij = 0 for all i, j ∈ {1, . . . , n}, i < j

upper triangular, if Aij = 0 for all i, j ∈ {1, . . . , n}, i > j

A special case of a diagonal matrix is an identity matrix:

▶ Definition 1.8 ([2]). An identity matrix of size n is a square matrix I ∈ Rn,n, where

∀i, j ∈ {1, . . . , n} : Iij =

{
1, if i = j,

0, if i ̸= j.



1.1. Matrices and vectors 5

For the rest of this thesis, the identity matrix will always be labeled I. The identity matrix
acts as the identity element with respect to matrix multiplication [1]:

▶ Theorem 1.9. Let A ∈ Rm,n, B ∈ Rn,m and let I be the n× n identity matrix. Then:

AI = A and IB = B.

Proof.

(AI)ij =
n∑

k=1

AikIkj =
∑

k∈{1,...,n}
k ̸=j

AikIkj +AijIjj =
∑

k∈{1,...,n}
k ̸=j

Aik · 0 +Aij · 1 = Aij

(IB)ij =
n∑

k=1

IikBkj =
∑

k∈{1,...,n}
k ̸=i

IikBkj + IiiBij =
∑

k∈{1,...,n}
k ̸=i

0 ·Bkj + 1 ·Bij = Bij

◀

An important property of square matrices that has many different (but equivalent) definitions
across different linear algebra texts or textbooks, is nonsingularity:

▶ Definition 1.10 ([2]). A square matrix A ∈ Rn,n is called nonsingular (or invertible)
if there exists a matrix C ∈ Rn,n such that

AC = I and CA = I.

C is then called an inverse of A. A matrix that is not invertible is called singular.

▶ Theorem 1.11. The inverse of a nonsingular matrix A ∈ Rn,n is determined uniquely, that
is, if there are two n× n matrices B and C such that AB = BA = AC = CA = I, then B = C.

Proof. Consider B,C ∈ Rn,n such that AB = BA = AC = CA = I. Then:

AB = AC

B(AB) = B(AC)

(BA)B = (BA)C

IB = IC

B = C

◀

The (unique) inverse of a matrix A is denoted by A−1 [2].

▶ Theorem 1.12. A ∈ Rn,n is a nonsingular matrix if and only if AT is nonsingular. Moreover,
if A is nonsingular, then (AT )−1 = (A−1)T .

Proof. If A is nonsingular, we can show that (A−1)T is the inverse of AT using Theorem 1.5:

AT (A−1)T = (A−1A)T = IT = I

(A−1)TAT = (AA−1)T = IT = I

Furthermore, if AT is nonsingular, then A−1 =
(
(AT )−1

)T since A = (AT )T . ◀

▶ Theorem 1.13. Let A,B ∈ Rn,n be two nonsingular matrices. Then AB is nonsingular with
the inverse (AB)−1 = B−1A−1.
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Proof.

(B−1A−1)AB = B−1(A−1A)B = B−1B = I

AB(B−1A−1) = A(BB−1)A−1 = AA−1 = I

◀

A determinant of a square matrix A (labeled detA) is a number that fully determines
the singularity of A – more precisely, detA ̸= 0 if and only if A is nonsingular. There are
multiple equivalent definitions of the determinant [1, 2], but for the purposes of this thesis, we
will present a determinant formula for lower triangular matrices only:

▶ Theorem 1.14 ([2], Theorem 3.1.2). Let A ∈ Rn,n be a lower triangular matrix. Then
the determinant of A is equal to

detA =

n∏
i=1

Aii.

▶ Theorem 1.15 ([2], Theorem 3.2.4). A lower triangular matrix A ∈ Rn,n is invertible if and
only if detA ̸= 0.

1.1.2 Vectors
Starting from this subsection, we will consider a real number x and a 1 × 1 matrix whose only
entry is x to be equal, or, in other words, x =

(
x
)

for all x ∈ R. Note that this convention does
not cause any conflict with basic matrix operations as defined above, since

(
x
)
+
(
y
)
=
(
x+ y

)
and

(
x
)
·
(
y
)
= x ·

(
y
)
=
(
x · y

)
for all x, y ∈ R.

▶ Definition 1.16 ([1], Definition I.2.8). An n×1 matrix (that is, a matrix with a single column)
is called a vector.

The entries x11, x21, . . . , xn1 of a vector x can be also represented by x1, x2, . . . , xn.

▶ Definition 1.17 ([1], Definition I.2.8). A zero vector is a vector whose entries are all equal
to zero.

Zero vectors will be further labeled θ.

▶ Definition 1.18 ([1], Definition II.2.1). The length (or more formally, the Euclidean norm)
of a vector x ∈ Rn,1 is defined as

∥x∥ =

√√√√ n∑
i=1

x2
i .

It is important to note (and easy to see) that a length of every vector is non-negative and
that a vector has a length of zero if and only if it is a zero vector.

▶ Lemma 1.19. Let x ∈ Rn,1 be a vector. Then

∥x∥2 = xTx.

Proof.

∥x∥2 =
(√√√√ n∑

i=1

x2
i

)2
=

n∑
i=1

x2
i =

n∑
i=1

(xT )1ixi1 = xTx

◀
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The following theorem is provided without a proof, as the proof usually consists of proving
a larger chain of implications.

▶ Theorem 1.20 ([2], Theorem 2.8). Consider a square matrix A ∈ Rn,n. Then

A is nonsingular ⇔ ∀x ∈ Rn,1, x ̸= θ : ∥Ax∥ > 0.

1.2 Symmetric matrices
A symmetric matrix is defined by Trefethen and Bau [3] as a square matrix that is equal to its
transpose. An equivalent definition without using matrix transposition can be formed:

▶ Definition 1.21 ([3]). A square matrix A ∈ Rn,n is symmetric if and only if Aij = Aji

for all i, j ∈ {1, . . . , n}.

▶ Lemma 1.22. Symmetric matrices have the following properties:

1. For a general matrix X ∈ Rm,n, XTX and XXT are symmetric

2. A sum of two symmetric matrices is symmetric

3. A scalar multiple of a symmetric matrix is symmetric

4. Every diagonal matrix is symmetric

Proof. For a general matrix X ∈ Rm,n, symmetric matrices A,B ∈ Rn,n and a diagonal matrix
D ∈ Rn,n:

1. (XTX)ij =
m∑

k=1

(XT )ik ·Xkj =
m∑

k=1

Xki · (XT )jk =
m∑

k=1

(XT )jk ·Xki = (XTX)ji

(XXT )ij =
m∑

k=1

Xik · (XT )kj =
m∑

k=1

(XT )ki ·Xjk =
m∑

k=1

Xjk · (XT )ki = (XXT )ji

2. (A+B)ij = Aij +Bij = Aji +Bji = (A+B)ji

3. (kA)ij = k ·Aij = k ·Aji = (kA)ji

4. By definition, Dij = Dji = 0 for all i ̸= j

◀

1.3 Matrix definiteness
▶ Definition 1.23 ([3]). A symmetric matrix A is said to be positive definite if, for every
non-zero vector x ∈ Rn,1, it holds that

xTAx > 0.

The term xTAx for a square matrix A ∈n,n is called a quadratic form determined by matrix
A [2].

▶ Lemma 1.24. Let A ∈ Rn,n be a nonsingular matrix. Then ATA and AAT are symmetric
positive definite matrices.
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Proof. We already know that ATA and AAT are symmetric from Lemma 1.22.
Following Theorems 1.12 and 1.20, we obtain for all non-zero vectors x ∈ Rn,1:

xT (ATA)x = (xTAT )(Ax) = (Ax)TAx = ∥Ax∥2 > 0

xT (AAT )x = (xTA)(ATx) = (ATx)TAx = ∥ATx∥2 > 0

◀

A fundamental property of symmetric positive definite matrices that we will use later is
the positive definiteness of their principal submatrices [3]. First, we will define what a principal
submatrix is.

▶ Definition 1.25. Let A ∈ Rn,n and S ⊊ {1, . . . , n}. A submatrix of A obtained by removing
rows with indices S and columns with indices S from A is called a principal submatrix of A.
Furthermore, if S = {i, i + 1, . . . , n} for some i ∈ {1, . . . , n}, we call the submatrix a leading
principal submatrix.

▶ Theorem 1.26. Let A ∈ Rn,n be a symmetric positive definite matrix. Then its principal
submatrix A′ obtained by removing the rows and columns with indices S ⊊ {1, . . . , n} is also
symmetric positive definite.

Proof. Symmetry of A′ is trivial. Let Rk = {1, . . . , n}\S and let Rk be the kth smallest element
from R. For every x′ ∈ R|R|,1, x′ ̸= θ, we can define x ∈ Rn,1 entry-wise:

xi =

{
0, if i ∈ S

x′
k, if i = Rk for some k ∈ {1, . . . , |R|}

Then:

(x′)TA′x′ =

|R|∑
k=1

x′
kA

′
kkx

′
k =

∑
k∈S

0 ·Aii · 0 +
∑
k∈R

xkAkkxk =

n∑
k=1

xkAkkxk = xTAx > 0

The last inequality follows from the positive definiteness of A. ◀

1.3.1 Generating symmetric positive definite matrices
We can obtain a symmetric positive definite matrix A from a given nonsingular matrix R using
the following formula (see Lemma 1.24):

A = RTR (1.1)

However, a randomly generated square matrix is not guaranteed to be invertible. Further-
more, even in the case of R being nonsingular, problems with numerical stability can arise for
matrices R that are “nearly singular” (i. e., they have a very large condition number).

To prevent R from being singular or nearly singular, we can add a positive scalar multiple of
an identity matrix to the right-hand side of eq. (1.1):

A = RTR+ λI (1.2)

where I is an identity matrix of size n and λ > 0. Lemma 1.22 can be used to show that
the matrix A obtained from eq. (1.2) is symmetric. The quadratic form determined by matrix
A is equal to:

xTAx = xT (RTR+ λI)x = xTRTRx+ xTλIx = (Rx)TRx+ λxTx = ∥Rx∥2 + λ∥x∥2 (1.3)
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which is positive for every non-zero vector x ∈ Rn due to both λ and ∥x∥ being positive.
Thus, every square matrix A generated using eq. (1.2) is symmetric positive definite.
In summary, we have obtained the following algorithm for generating symmetric positive

definite matrices:

Data: λ > 0
Result: a symmetric positive definite matrix A

1 Generate a random matrix R ∈ Rn,n

2 A← RTR
// this can be done using the GEMM procedure described in Section 3.2

3 for i← 1; i ≤ n; i← i+ 1 do
4 Aii ← Aii + λ
5 end
6 return A

Algorithm 1: Generation of symmetric positive definite matrices

1.4 Block matrices
In this thesis, we will often work with block matrices (or partitioned matrices), that is,
matrices obtained by joining smaller matrices (called blocks) in a particular way.

▶ Definition 1.27 (reformulation of Definition 2.10 in [4]).
Let A11, . . . , A1n, A21, . . . , A2n, . . . , Am1, . . . , Amn be matrices where:

for all i ∈ {1, . . . ,m}, matrices Ai1 to Ain have mi rows

for all j ∈ {1, . . . , n}, matrices A1j to Amj have nj columns

We define the block matrix A =

A11 . . . A1n

... . . . ...
Amn . . . Amn

 such that its x, yth entry is equal to the u, vth

entry of Aij, where x = u+
i−1∑
k=1

mk and y = v +
j−1∑
k=1

nk.

The matrices A11 to Amn are called the blocks of A.

In other words, we obtain the matrix A by “joining” the entries of the blocks where:

The entries of Aij are directly above the entries of A(i+1)j for all i ∈ {1, . . . ,m − 1} and
j ∈ {1, . . . , n}

The entries of Aij are directly to the left of the entries of Ai(j+1) for all i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n− 1}

We consider a block matrix comprised of a single block to be equivalent to that block, i.e.,(
B
)
= B for all matrices B ∈ Rm,n.

Multiplication of block matrices works in the same way as standard entry-wise matrix mul-
tiplication if we consider the blocks to be the entries of those matrices and if the pairs of blocks
being multiplied together are compatible for multiplication (that is, every left-hand side block
has the same number of columns as the number of rows of the corresponding right-hand side
block).
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▶ Theorem 1.28 (reformulation of Theorem 2.3.4 in [4]).

Let A =

A11 . . . A1p

... . . . ...
Am1 . . . Amp

 and B =

B11 . . . B1n

... . . . ...
Bp1 . . . Bpn

 be two block matrices for some

m, p, n ∈ N where the number of columns of Aik is equal to the number of rows of Bkj for all
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and k ∈ {1, . . . , p}. Then

AB =


p∑

k=1

A1kBk1 . . .
p∑

k=1

A1kBkn

... . . . ...
p∑

k=1

AmkBk1 . . .
p∑

k=1

AmkBkn

 .

Transposition of blocked matrices is performed by reordering the transposes of the blocks in
the same way as we reorder the entries when transposing matrices entry-wise:

▶ Theorem 1.29. Let A =

A11 . . . A1n

... . . . ...
Am1 . . . Amn

 be a block matrix.

Then AT =

AT
11 . . . AT

m1
... . . . ...

AT
1n . . . AT

mn

.

Proof. By Definitions 1.1 and 1.27, the following entries are equal:

The y, xth entry of AT

The x, yth entry of A

The u, vth entry of Aij , where x = u+
i−1∑
k=1

mk and y = v +
j−1∑
k=1

nk

The v, uth entry of AT
ij , where x = u+

i−1∑
k=1

mk and y = v +
j−1∑
k=1

nk

Considering that all of the matrices AT
i1 to AT

in have ni columns and the matrices AT
1j

to AT
mj have mj rows, all of the entries stated above are also equal to the y, xth entry ofAT

11 . . . AT
m1

... . . . ...
AT

1n . . . AT
mn

 and we thus have AT =

AT
11 . . . AT

m1
... . . . ...

AT
1n . . . AT

mn

. ◀



Chapter 2

Matrix representation in
computer memory

There are many ways in which programs can represent a matrix in memory. Arguably the most
natural way to store matrices is the row major full storage layout [5], where all entries are
stored as a one-dimensional array of numbers in a contiguous area in memory, ordered primarily
by their row index and secondarily by their column index. As this storage scheme can be used
for all matrices, the reader may ask themselves why other storage schemes are needed. The main
reason is that some matrices are known to have special properties which can be taken advantage of
in order to:

Use less memory space (for example, the packed storage scheme for upper triangular matrices
only stores entries on/above the main diagonal [6])

Improve the efficiency of matrix algorithms (for example, the compressed diagonal storage
makes matrix-vector products more efficient for some matrices [7])

Unless specified otherwise, row and column entries will be addressed starting from 1 for
the rest of this chapter. Also, storage schemes will be sometimes referred to as storage formats.

2.1 Sparse matrix representation
The content of this section follows the structure of [7].

Sparse matrices are matrices with a sufficiently large amount of zero entries, for which storing
all entries proves inefficient. Many matrices that arise as approximations of systems of differential
equations are sparse, and sparse matrices can be found in various other areas of mathematics
or other scientific disciplines. Some sparse storage schemes (e.g., the compressed row/column
storage scheme) are designed to be used for any sparse matrices without particular assumptions
about the properties of those matrices, while others (for example the block compressed storage
scheme) are designed for specific matrix subclasses with certain properties.

The compressed row storage (CRS) scheme stores the value and the column index of
every non-zero entry. There is an array named values storing the values and a separate array
for the column indices named column_indices, both ordered first by the row indices and then
by the column indices of the saved entries. A pair of values on the same position in both of
those arrays always corresponds to the same matrix entry (that is, if values(k) = aij , then
column_indices(k) = j). However, using only those two arrays would make the stored matrices

11
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ambiguous. For instance, see Figure 2.1, where both of the 2×2 matrices would have an identical
representation.

Figure 2.1 Ambiguity of representation using only the values and column_indices arrays.

(
0 1
0 0

)
(
0 0
0 1

)
values 1

column_indices 2

values 1
column_indices 2

Due to this ambiguity, we introduce a third array that stores the index in the values and
column_indices arrays of the first non-zero entry in every row. We name it row_ptrs. If there
are no non-zero entries in the ith row, the row_ptrs(i) value is determined as follows:

If i = 1, then row_ptrs(i) = 0

If i > 1, then row_ptrs(i) = row_ptrs(i− 1)

We denote the number of non-zero entries in the matrix by nnz. Sometimes, (nnz + 1) is
appended to the end of row_ptrs to make matrix traversal easier to implement. In total, using
the CRS scheme reduces the amount of stored numbers from n2 to 2nnz + n+ 1 [7].

▶ Example 2.1. Compressed row storage example.
0 0 0 0 0
0 5 0 −2 0
3 0 0 1 6
0 0 0 0 0
0 −4 0 0 7


values 5 -2 3 1 6 -4 7

column_indices 2 4 1 4 5 2 5

row_ptrs 0 1 3 3 6 8

The compressed column storage (CCS) scheme operates in a similar way as the com-
pressed row storage scheme, but the matrix is transposed before saving, and the arrays are
renamed to row_indices and column_ptrs. Effectively, the original matrix is traversed by
columns, unlike in CRS, where it is traversed by rows.

The block compressed row storage scheme is used to store matrices where non-zero
entries arise only in square submatrices (blocks) with a regular pattern. Those matrices are
usually a result of discretization of a system of partial differential equations. In the block
compressed row storage scheme, the blocks are handled as dense matrices. This approach leads
to nnzb×nb numbers being stored, where nnzb is the number of blocks and nb is the size of each
block [7].

2.2 Dense matrix representation
In this section, we will present matrix storage schemes which are used in dense numerical linear
algebra libraries, mainly BLAS libraries (see Chapter 3) and LAPACK (see Section 5.1). Some
of the matrix classes that these storage schemes are designed for may be considered sparse, since
not all of the entries of those matrices are stored. However, in this text, they will be labeled as
dense.

This section mainly follows the structure of [5] and [6].
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2.2.1 Full storage scheme
The full storage scheme (or conventional storage) is ideal for storing matrices that we have
no initial assumptions about. In this storage format, every matrix entry is stored, including
the zero ones. There are several methods to map the entries from the two-dimensional matrix
into the one-dimensional computer memory, which will be described in the following subsections.

2.2.1.1 Row major storage
The row major full storage scheme stores every matrix row in a contiguous memory area, but
these areas may not have consecutive addresses. In those areas, the order of the matrix entries
is determined by their column index in the original matrix. The spacing between the first bytes
of those areas is defined by a parameter called the leading dimension of the matrix, which we
will label LDA in this section. Naturally, LDA may not be smaller than the number of columns, as
that would make those memory areas overlap, meaning that the computer would have to store
more than 1 byte at a single memory address.

The element Aij of a matrix A is thus stored at address

A+
(
(i− 1) · LDA+ (j − 1)

)
· size (2.1)

where A is the address of the first byte available for storing A and size is the number of bytes
that a single entry of A occupies.

▶ Example 2.2. Example of row major full storage of a 5× 5 matrix with LDA = 6.

A =


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A A+ 6 A+ 12 A+ 18 A+ 24

LDA
… …

2.2.1.2 Column major storage
The matrix A is stored using the column major full storage scheme in the same way as AT

is stored using the row major full storage scheme. That is, the element Aij is stored at address

A+
(
(j − 1) · LDA+ (i− 1)

)
· size (2.2)

Unlike in row major storage, LDA may be lesser than the number of columns, but it has to be
greater than or equal to the number of rows.

▶ Example 2.3. Example of column major full storage of a 5× 5 matrix with LDA = 6.

A =


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25


1 6 11 16 21 2 7 12 17 22 3 8 13 18 23 4 9 14 19 24 5 10 15 20 25
A A+ 6 A+ 12 A+ 18 A+ 24

LDA
… …
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2.2.1.3 Block storage
When running blocked algorithms on matrices, it can be beneficial to store the entries of a single
block in a compact way. If all blocks not containing entries from the last row or the last column
of the matrix (we call those the main blocks) have the same size, and the other blocks do not
have a larger width or height than the main blocks, we can utilize the block storage scheme.
It works by storing the individual blocks as matrices using the row major or column major full
storage scheme in contiguous memory areas (that is, LDA = n or LDA = m, respectively).
The blocks are stored consecutively, and their order is determined by the same column major
or row major full storage scheme. It is also possible to use row major storage for the individual
blocks and the column major scheme for the block order, or vice versa.

The indices of the block that a particular entry belongs to can be determined as floor values
of the entry indices divided by the main block width or height (both the block and the entry
indices are assumed to start from 0 in this case).

▶ Example 2.4. Example of column major block storage of a 5 × 5 matrix with 2 × 2 main
blocks.

A =


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25


1 6 2 7 11 16 12 17 21 22 3 8 4 9 13 18 14 19 23 24 5 10 15 20 25
A

… …

2.2.2 Triangular and symmetric matrix representation
There are two main options for storing a triangular matrix.

Firstly, we can modify the full storage scheme to only store and access the elements above
and on the main diagonal (for upper triangular matrices) or below and on the main diagonal
(for lower triangular matrices). That leads to less space being used compared to full storage,
although the extra free space is created in non-contiguous chunks of bytes. It usually improves
the performance of matrix operations due to fewer cache misses. The formula used to determine
the address of the i,jth element of matrix A is identical to (2.1) or (2.2), depending on whether
the row major or the column major modified full storage scheme is used.

▶ Example 2.5. Example of modified column major full storage of a 5 × 5 lower triangular
matrix with LDA = 6.

A =


1 0 0 0 0
6 7 0 0 0
11 12 13 0 0
16 17 18 19 0
21 22 23 24 25


1 6 11 16 21 7 12 17 22 13 18 23 19 24 25
A A+ 6 A+ 12 A+ 18 A+ 24

LDA
… …

The second option is to use the packed storage scheme. In this thesis, only the column
major packed storage scheme will be introduced, although there is a row major variant of
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this storage format. For upper triangular matrices, we store elements above or on the main
diagonal from every column in a contiguous vector ordered by their row index. Those vectors
are then stored consecutively in an ascending order determined by size.

The i, jth element of A, where i ≤ j, is therefore stored on the address

A+
(
(i− 1) +

j · (j − 1)

2

)
· size (2.3)

where A and size have the same meaning as in the previous section.
For lower triangular matrices, we only store the part of each column containing the elements

below or on the main diagonal. Those vectors are then stored consecutively from largest to
smallest. For i ≥ j, we store the entry Aij of a lower triangular matrix A ∈ Rn,n on address

A+
(
(i− 1) +

(j − 1) · (2 · n− j)

2

)
· size (2.4)

▶ Example 2.6. Example of column major packed storage of a 5× 5 lower triangular matrix.

A =


1 0 0 0 0
6 7 0 0 0
11 12 13 0 0
16 17 18 19 0
21 22 23 24 25


1 6 11 16 21 7 12 17 22 13 18 23 19 24 25
A

… …

Symmetric and hermitian matrices can utilize the same storage schemes as triangular ma-
trices, as the entries below the diagonal are fully defined by the corresponding entries above
the diagonal, so only one of these parts of a matrix needs to be stored. However, matrix opera-
tions on symmetric and Hermitian matrices have to be implemented separately from triangular
matrix operations.

2.2.3 Band matrix representation
▶ Definition 2.7. A band matrix with kl subdiagonals and ku superdiagonals is a matrix where
for each i, j ∈ {1, . . . , n}:

j − i > ku⇒ Aij = 0 and i− j > kl⇒ Aij = 0

In the band storage scheme, we store a band matrix A with ku superdiagonals and kl
subdiagonals as a (kl+ ku+1)× n matrix AB using the column major full storage scheme with
LDAB ≥ ku+kl+1, where the entries j−ku to j+kl of the jth column of A are stored as the jth
column of AB (the entries whose indices are out of bounds are left out).

In summary, the elements Aij for j − i ≤ ku and i− j ≤ kl is stored in the address

A+
(
i+ ku− j + (j + 1) · LDAB

)
· size (2.5)
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▶ Example 2.8. Example of band storage of a 5× 5 band triangular matrix with
ku = 2, kl = 1, LDAB = 6.

A =


1 2 0 0 0
6 7 8 9 0
0 12 13 0 15
0 0 18 19 20
0 0 0 0 25


0 9 15 2 8 0 20 1 7 13 19 25 6 12 18 0

A A+ 6 A+ 12 A+ 18

LDA
… …



Chapter 3

Description of used BLAS
routines

BLAS (Basic Linear Algebra Subprograms) is a set of routines that perform basic operations in
linear algebra [8]. A BLAS library is a library providing implementations for all BLAS routines.

A so-called Reference BLAS library is available at [8]. This implementation can be used in
various applications where basic linear algebra operations need to be performed, though it is not
meant to be used for production runs. The main reason is its performance, which is suboptimal
in comparison to highly optimized (usually platform-specific) BLAS libraries.

The more common way to utilize BLAS is to use machine-specific BLAS libraries, usually
provided by the computer vendor (such as Intel OneApi MKL for Intel x86 processors) or inde-
pendent software vendors (such as BLIS for AMD x86 processors).

The Reference BLAS library has, for the most part, two use cases:

A last resort option for users

A working example (and API reference) for testing other BLAS libraries

3.1 BLAS routine subsets
BLAS routines are divided into three categories [8]:

Level 1 BLAS – routines performing scalar-vector or vector-vector operations of complexity
O(n)

Level 2 BLAS – routines performing matrix-vector operations of complexity O(n2)

Level 3 BLAS – routines performing matrix-matrix operations of complexity O(n3)

As we can see in the following three subsections, this categorization also has a historical
context. The content of these subsections will closely follow [9], [10] and [11], respectively.

3.1.1 Level 1 BLAS
The historically first BLAS package, published by C. L. Lawson, R. J. Hanson, D. R. Kincaid
and F. T. Krogh in 1979, was comprised of the set of routines that we now call Level 1 BLAS
[9]. It was written in Fortran, and it included 38 routines for working with single-precision,
double-precision, complex or extended-precision vectors. Examples of these routines are:

17
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Dot products (DDOT, SDSDOT, CDOTU)

Givens rotation construction and application (DROTG, DROT)

Euclidean and Manhattan norm calculation (DNRM2, DASUM)

3.1.2 Level 2 BLAS
In 1988, an extended set of BLAS routines was published by J. J. Dongarra, J. Du Croz, S.
Hammarling and R. J. Hanson [10]. The newly developed routines performed matrix-vector
operations of three types:

Matrix-vector products (GEMV, SYMV, TRMV)

Solution of triangular linear systems of equations (TRSV)

Rank-1 or rank-2 updates (GER, SYR, SYR2)

The paper [10] also introduced the Level 1 BLAS and Level 2 BLAS terminology, noting that
the newly-introduced routines could be implemented by series of calls to the original routine set
from 1979, but it was inefficient (and therefore not recommended) to use such an implementation.

As the new routine set included matrix operations, unlike its predecessor, it had to account
for various types of matrices (general, symmetric, hermitian, triangular, band matrices) and
various forms of storage (packed matrices) that were used in different applications. That is why
it introduced a naming convention with two prefixes – one denoting the scalar data type and
the other denoting the matrix type. This naming convention would later be used in Level 3
BLAS [11] as well.

▶ Example 3.1 (Level 2 BLAS routine naming convention example).

D {

Scalar data type
Double precision

SB{

Matrix type
Symmetric Band matrix

MV{
Operation type

Matrix-Vector product

Some newly introduced argument conventions (e.g., the TRANS and UPLO arguments) would
also later make their way to Level 3 BLAS.

3.1.3 Level 3 BLAS
Level 2 BLAS routines offered efficient matrix-vector computations suited mostly for vector
processing machines [11]. Many matrix-matrix operations could be performed by sequences
of calls to Level 2 BLAS routines (e.g., matrix-matrix multiplication could be carried out by
calling the matrix-vector multiplication routine DGEMV on every column of the right-hand side
matrix). That approach, however, proved to be inefficient for computers with a hierarchical
structure of memory (i.e., global memory, several levels of cache and vector registers), where
better performance could be obtained by splitting the matrices into blocks and performing those
operations on the blocks.

For that reason, no more than 2 years after Level 2 BLAS was made public, a new article
describing Level 3 BLAS routines was published along with a reference implementation [11]. It
followed naming conventions from Level 2 BLAS (see Example 3.1), and it introduced four new
types of operations:
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Matrix-matrix products (GEMM, SYMM, HEMM)

Rank-k or rank-2k updates of symmetric/hermitian matrices (SYRK, HERK, SYR2K)

Products of general matrices and triangular matrices (TRMM)

Solution of triangular linear systems of equations with a right-hand side matrix (TRSM)

The scope of the new set was intentionally limited – for instance, no routines for matrix de-
composition were proposed, as they would later become part of a library that was in development
at the time, LAPACK (see Section 5.1).

Three Level 3 BLAS routines are used in the blocked Cholesky decomposition algorithm, as
proposed by [11]. Implementation of these three routines was also a part of this thesis. On that
account, they will be described in more detail in the following sections of this chapter.

3.2 General matrix-matrix product (GEMM)
The GEMM routine performs the following computation:

C ← αopA(A)opB(B) + βC (3.1)

The values of α and β are passed to GEMM as parameters ALPHA and BETA. Assuming that
A, B and C are real matrices, the meaning of opA and opB is determined by the TRANSA and
TRANSB parameter values as follows:

If TRANSA=N, then A is an M ×K matrix and opA(A) = A

If TRANSA=T or TRANSA=C, then A is a K ×M matrix and opA(A) = AT

If TRANSB=N, then B is a K ×N matrix and opB(B) = B

If TRANSB=T or TRANSB=C, then B is an N ×K matrix and opB(B) = BT

The C value of these parameters marks a Hermitian transpose, which, in the case of real
matrices, is equivalent to a transpose as specified in Definition 1.1 [11].

The other parameters of GEMM determine the matrix sizes (integer-valued parameters M, N and
K), the pointers to the matrices (parameters A, B and C) and the leading dimensions (parameters
LDA, LDB and LDC).

A naive (simple but unoptimized) implementation of the GEMM routine could be described with
the following pseudocode (we consider TRANSA=N and TRANSB=N and ignore leading dimensions
for simplicity):

Data: Positive integers M,N,K, matrices A ∈ RM,K , B ∈ RK,N , C ∈ RM,N

Result: The updated matrix C
1 for i← 1; i ≤M ; i← i+ 1 do
2 for j ← 1; j ≤ N ; j ← j + 1 do
3 Cij ← βCij

4 for k ← 1; k ≤ K; k ← k + 1 do
5 Cij ← Cij + αAikBkj

6 end
7 end
8 end
9 return C
Algorithm 2: Naive GEMM for TRANSA=N and TRANSB=N without leading dimensions
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The number of floating point operations performed is:

MN multiplications on line 3

2MNK multiplications on line 5

MNK additions on line 5

In total, we have 3MNK + MN floating point operations. If the values of α and β are
both equal to one, which is a common case when benchmarking GEMM implementations, we can
omit MNK multiplications on line 5 and remove line 3 altogether. That leaves us with 2MNK
floating point operations.

It is also worth noting that the total number of floating point operations is the same for all
values of TRANSA, TRANSB and leading dimensions [12].

3.3 Symmetric matrix rank-k update (SYRK)
The SYRK routine calculates

C ← αAAT + βC (3.2)

for an N ×K matrix A if TRANSA=N and

C ← αATA+ βC (3.3)

for a K × N matrix A if TRANSA=T. The matrix C is symmetric with the size N × N in both
cases.

The other parameters are:

UPLO – determines whether the upper (value U) or lower (value L) part of C is stored
(see Subsection 2.2.2)

N and K – the matrix sizes

LDA and LDC – the matrix leading dimensions

A and C – the matrices

ALPHA and BETA – the α and β values used in equations (3.2) and (3.3)

For values TRANSA=N UPLO=U, SYRK could be naively implemented as follows (again, ignoring
leading dimensions):

Data: Positive integers N,K, matrices A ∈ RN,K and C ∈ RN,N

Result: The updated matrix C
1 for i← 1; i ≤ N ; i← i+ 1 do
2 for j ← i; j ≤ N ; j ← j + 1 do
3 Cij ← βCij

4 for k ← 1; k ≤ K; k ← k + 1 do
5 Cij ← Cij + αAikAjk

6 end
7 end
8 end
9 return C

Algorithm 3: Naive SYRK for TRANSA=N and UPLO=U without leading dimensions
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The number of times line 3 is executed is
N∑
i=1

N∑
j=i

1 =
N∑
i=1

(N − i+ 1) = N2 −
N∑
i=1

i+N = N2 − N(N − 1)

2
+N =

1

2
N2 +

3

2
N.

Line 5 is then executed K
(
1
2N

2 + 3
2N
)

times.
That leaves us with K

(
1
2N

2 + 3
2N
)

additive and 1
2N

2 + 3
2N + 2K

(
1
2N

2 + 3
2N
)
= (2K +

1)
(
1
2N

2 + 3
2N
)

multiplicative floating point operations, or

K
(1
2
N2 +

3

2
N
)
+ (2K + 1)

(1
2
N2 +

3

2
N
)
= (3K + 1)

(1
2
N2 +

3

2
N
)

floating point operations in total.
In case of both α and β being equal to one, we end up with K

(
1
2N

2 + 3
2N
)

additive and
K
(
1
2N

2 + 3
2N
)

multiplicative floating point operations, totaling K
(
N2 + 3N

)
floating point

operations.
According to [12], the analysis yields the same result for other values of TRANSA and UPLO.

3.4 Solution of triangular systems of equations with mul-
tiple right-hand sides (TRSM)

The TRSM routine receives a nonsingular triangular matrix A and an M ×N matrix B.
It calculates

B ← αop(A)−1B (3.4)
where A ∈ RM×M if SIDE = L and

B ← αBop(A)−1 (3.5)
where A ∈ RN×N if SIDE = R.

If the value of the DIAG parameter is U, all of the entries on the main diagonal of A are
assumed to equal one, allowing us to skip one floating point division for every entry of B (see
Algorithm 4). If the entries on the main diagonal are not known to be one, the user should use
the N value of DIAG.

The value of α is determined by the parameter ALPHA and opA is determined by TRANSA in
the same way as described in Section 3.2. The UPLO parameter defines the stored part of A (see
Subsection 2.2.2). The rest of the parameters represent the matrices (A and B), their dimensions
(M and N) and their leading dimensions (LDA and LDB).

As stated above, A is assumed to be nonsingular. The TRSM routine, however, does not
explicitly check for its nonsingularity. As a consequence, if a singular matrix (or a “nearly
singular” matrix1) matrix A is used, the resulting matrix may vastly differ from the matrix
specified in equations (3.4) or (3.5) due to numerical stability issues.

For the rest of this section, we name the newly calculated matrix X. When SIDE = L
and TRANSA = N, we can rewrite the calculation (3.5) as an equation and then rearrange it in
the following way:

X = αA−1B

AX = A(αA−1)B

AX = α(AA−1)B

AX = αIB

AX = αB

1By “nearly singular”, we mean a matrix whose condition number approaches positive infinity.
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We further suppose that UPLO = L. The matrix X can then be computed in an entry-wise
manner:

(AX)ij = (αB)ij
N∑

k=1

AikXkj = αBij

i∑
k=1

AikXkj = αBij

AiiXij +

i−1∑
k=1

AikXkj = αBij

AiiXij = αBij −
i−1∑
k=1

AikXkj

Xij =
αBij −

∑i−1
k=1 AikXkj

Aii

When transforming the sum in the left-hand side of the equation from line 2 to line 3, we
eliminated all summands containing the term Aik where k > i. Those terms are all equal to zero
due to A being lower triangular.

When calculating Xij using the last equality, all entries in the same column with a smaller
row index must have already been calculated. Thus, if we choose any entry calculation order
which satisfies those dependencies, such as a row major order where rows are calculated top to
bottom, the matrix X can be calculated in the place of the original matrix B.

Assuming that we also know that all of the entries on the main diagonal are equal to one
(that is, DIAG = U), we can skip the division by Aii. All of these findings lead us to the following
naive TRSM algorithm:

Data: Positive integers M,N , matrices A ∈ RM,M and B ∈ RM,N

Result: The updated matrix B
1 for i← 1; i ≤M ; i← i+ 1 do
2 for j ← 1; j ≤ N ; j ← j + 1 do
3 Bij ← αBij

4 for k ← 1; k < i; k ← k + 1 do
5 Bij ← Bij −AikBkj

6 end
7 if DIAG = N then
8 Bij ← Bij/Aii

9 end
10 end
11 end
12 return B

Algorithm 4: Naive TRSM for SIDE = L and TRANSA = N without leading dimensions
In this case (SIDE = L and TRANSA = N), we can see that the algorithm performs:

MN floating point operations on line 3,

2 ·
(
1
2M(M − 1)N

)
= M(M + 1)N operations on line 5,

MN operations on line 8 (only if DIAG = N)

Summed up, that is M
(
2N + (M − 1)N

)
floating point operations. If α = 1, all operations

on line 3 are left out, leaving us with MN +M(M −1)N = MN(1+M −1) = M2N operations.
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That number of operations stays the same for both values of TRANSA and both values of UPLO.
If DIAG = U, it further reduces to M2N −MN . The floating point operation count also changes
for SIDE = R to MN2 and MN2−MN for values of DIAG being equal to N and U, respectively. [12]

3.5 The CBLAS interface
The content of this section closely follows [13].

The original BLAS specifications were made primarily with Fortran in mind. As Fortran is
a compiled language, the routines can, by all means, be called from C/C++ as well. Further-
more, there is no functionality of BLAS that C/C++ programmers may be unable to access
via the Fortran interface. However, differences in the design of the C and Fortran languages
lead to inconveniences for C/C++ programmers who use the Fortran BLAS interface, such as
the necessity to perform additional argument preprocessing and return value postprocessing or
the increased difficulty of debugging errors due to fewer compile-time checks. Examples of those
inconveniences are:

Arguments have to be passed by reference, not by value

No compile-time checking of argument values is performed

No C include files are available

Only column major matrix storage is supported, as it is the default storage scheme in Fortran

Vector indices start with 1 (in C/C++, arrays are indexed starting from 0)

As a result, a new C interface for BLAS routines, named CBLAS, was proposed [13]. The rou-
tines were newly named using non-capital letters and a cblas_ prefix (e.g., the DGEMM routine
became cblas_dgemm in CBLAS). The vector index numbering was shifted from 1, 2, . . . , N to
0, 1, . . . , N − 1 and arguments were made to be passed by value. An include file named cblas.h
was made newly available so that the C compiler could check the routine calls against the specified
signatures during compile time, leading to fewer errors.

The CBLAS interface also started using enumerated types for arguments that were charac-
ters in the original Fortran interface. That allowed for tighter error checking – for instance,
passing CblasNoTrans as a value of the CBLAS_SIDE argument raises a compile-time error, but
in the original BLAS interface, passing the character N as a value of the SIDE argument only
produces a run-time error, which is harder to debug for the programmer.

Another feature introduced by the CBLAS interface is row major storage support. By con-
vention, the column major storage scheme is used for matrices in Fortran, so the Fortran BLAS
interface does not support row major matrices at all. The CBLAS interface adds a new param-
eter CBLAS_ORDER to all routines working with matrices. Using this parameter, programmers
may specify the storage scheme (column major or row major) used for all matrices passed to
the routine. Reference [13] notes that for Level 1 and Level 3 BLAS routines, no extra storage
is required to support row major BLAS operations. However, some Level 2 BLAS routines may
require up to O(n) extra storage and O(n) extra floating point operations.

The paper also mentions discussions about support for two-dimensional arrays in C (i.e.,
arrays of pointers), which was not added in the end, as conversions between two-dimensional C
arrays and Fortran-style one-dimensional arrays would lead to significant performance losses.
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Chapter 4

Cholesky decomposition

Lay, Lay and McDonald [2] define a matrix factorization (also called a matrix decomposi-
tion) as an equation that represents a matrix as a product of two or more matrices, which we call
factors. We typically want the factors to have specific properties, such as being upper or lower
triangular, diagonal or orthogonal [14]. Optimized routines that perform those factorizations can
then be used to solve other problems efficiently, for example:

The LU, Cholesky and QR factorizations are used to solve systems of linear equations

The QR factorization is used in analysis of variance (ANOVA) methods

The singular value decomposition (SVD) is used in principal component analysis1

The spectral decomposition is used in locally linear embedding2

One of the most important factorizations is the Cholesky factorization, which is defined for
symmetric positive definite matrices. Along with the LU and QR factorizations, it is considered
to be one of the three elementary matrix factorizations (also called the “Three Amigos”) used in
numerical linear algebra.

▶ Definition 4.1 ([3]). A Cholesky factorization (or Cholesky decomposition) of a sym-
metric positive definite matrix A ∈ Rn,n is an equation that has the form

A = LLT (4.1)

where L is a lower triangular matrix with Lii > 0 for all i ∈ {1, . . . , n}.

By finding the Cholesky factorization of a symmetric positive definite matrix A ∈ Rn,n, we
typically mean finding the factor L, as the other factor LT can be constructed from L trivially.

In general, the Cholesky decomposition can be defined for Hermitian matrices (matrices with
complex entries that are equal to the transpose of their complex conjugate). In this thesis,
however, we limit ourselves to matrices with real-valued entries, for which the complex conjugate
transpose equals the transpose.

In some definitions of the Cholesky factorization (including the definition in Reference [3]),
the defining equation has the form

A = UTU, (4.2)
1A linear method of dimensionality reduction used in machine learning.
2A non-linear method of dimensionality reduction used in machine learning.

25
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where U is an upper triangular matrix with positive entries on the main diagonal. Both of these
definitions are equivalent – if we know the matrix U used in (4.2), we can obtain the matrix L
from (4.1) as L = UT , since

A = AT = (UTU)T = UT (UT )T = LLT .

We will now show that every symmetric positive definite matrix has a Cholesky decomposi-
tion:

▶ Lemma 4.2. Let A ∈ Rn,n be a symmetric positive definite matrix and L ∈ Rn,n a lower
triangular matrix such that A = LLT . Then Lii ̸= 0 for all i ∈ {1, . . . , n}.

Proof. Suppose that Lii = 0 for some i ∈ {1, . . . , n}. Then L is singular as per Theorem 1.15
since detL = 0. Following Theorem 1.12, LT is also singular. Thus, according to Theorem 1.20,
there is a non-zero vector x ∈ Rn,1 such that:

∥LTx∥ = 0

LTx = θ

LLTx = θ

Ax = θ

xTAx = 0

which is contradictory to the assumption that A is positive definite. ◀

▶ Theorem 4.3. Let A ∈ Rn,n be a symmetric positive definite matrix. Then A has a unique
Cholesky decomposition, i.e., there exists precisely one lower triangular matrix L ∈ Rn,n with
positive entries on the main diagonal such that A = LLT .

Proof. We will show both the existence and the uniqueness of L by finding an explicit formula
for all of its entries.

For all i, j ∈ {1, . . . , n}, i ≥ j, we have:

Aij =

n∑
k=1

Lik(L
T )kj =

n∑
k=1

LikLjk

Since L is lower triangular and i ≥ j, we have LikLjk = 0 for all k > j:

Aij =

j∑
k=1

LikLjk. (4.3)

If i = j, we then obtain:

Aii =

i∑
k=1

L2
ik

Aii = L2
ii +

i−1∑
k=1

L2
ik

L2
ii = Aii −

i−1∑
k=1

L2
ik

|Lii| =

√√√√Aii −
i−1∑
k=1

L2
ik
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Since the diagonal entries of L are required by definition to be positive, we set:

Lii =

√√√√Aii −
i−1∑
k=1

L2
ik (4.4)

We can see that Lii > 0, since a square root of a non-negative number is non-negative and
we know that Lii ̸= 0 from Lemma 4.2.

Following (4.3) for i > j, we obtain:

Aij =

j∑
k=1

LikLjk

Aij = LijLjj +

j−1∑
k=1

LikLjk

LijLjj = Aij −
j−1∑
k=1

LikLjk

Lij =
Aij −

∑j−1
k=1 LikLjk

Ljj
(4.5)

The correctness of the last line follows from Lemma 4.2.
◀

4.1 Unblocked algorithm
In the proof of Theorem 4.3, we found the explicit formulas for all entries of the matrix L. Both
of the formulas (4.4) and (4.5) only require the entries in columns 1 to j − 1 to be known when
calculating an entry in the jth column. Thus, we can calculate the Cholesky decomposition using
formulas (4.4) and (4.5) in a column-wise order:

Data: Symmetric positive definite matrix A ∈ Rn,n

Result: Lower triangular matrix L with positive diagonal entries such that A = LLT

1 L← Θ
2 for j ← 1; j ≤ n; j ← j + 1 do
3 Ljj ←

√
Ajj −

∑j−1
k=1 L

2
jk

4 for i← j + 1; j ≤ n; i← i+ 1 do
5 Lij ← (Aij −

∑j−1
k=1 LikLjk)/Ljj

6 end
7 end
8 return L

Algorithm 5: Unblocked Cholesky decomposition (variant of [3], Algorithm 23.1)
Note that when calculating the entry Ljj on line 3, we only use Ajj and the entries of L

that are already calculated. Similarly, we only access Aij and the already calculated entries of L
when calculating Lij on line 5. Thus, if the programmer does not require the matrix A to remain
unchanged, we can perform all of the computations in place – that is, remove line 1 and change
all memory accesses to L to memory accesses to A instead. Since we do not overwrite the entries
above the diagonal, the returned matrix will likely not be lower triangular. However, if we
consider the entries of the returned matrix above the main diagonal to be zero, the correctness
of the algorithm still holds.
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4.1.1 Time complexity of the unblocked algorithm

On line 3, we perform j − 1 multiplications, j − 1 additions/subtractions and a square root
computation. The overall amount of floating point operations executed on line 3 is thus

n∑
j=1

j − 1 + j − 1 + 1 =

n∑
j=1

2j − 1 = 2
n(n+ 1)

2
− n = n(n+ 1)− n = n2

On line 5, j − 1 multiplications and j − 1 additions/subtractions are performed as well as
a single floating point division. The number of floating point operations performed on line 5 is

n∑
j=1

n∑
i=j+1

j − 1 + j − 1 + 1 =

n∑
j=1

(n− j)(2j − 1) = 2n
( n∑

j=1

j
)
− 2
( n∑

j=1

j2
)
− n2 +

( n∑
j=1

j
)
=

= 2n
n(n+ 1)

2
− 2

n(n+ 1)(2n+ 1)

6
+ n2 − n(n+ 1)

2
=

= n3 + n2 − 2n3 + 3n2 + n

3
− n2 +

n2 + n

2
=

=
1

3
n3 − 1

2
n2 +

1

6
n

In total, the number of floating point operations performed during the algorithm execution
is 1

3n
3 + 1

2n
2 + 1

6n.
In the following sections, we will denote the first factor in the Cholesky decomposition of

a symmetric positive definite matrix A by POTF2(A) (that is, if A = LLT , then we represent L
by POTF2(A)). This comes from the fact that the routine implementing the unblocked Cholesky
decomposition algorithm in the LAPACK library (see Section 5.1) is named POTF2.

4.2 Blocked algorithm

In this section, we split the matrices A and L into blocks. We first fix a number nb ∈ {1, . . . , n}
and we define:

Aij for i, j ∈ {1, . . . , ⌈n/nb⌉} as a submatrix of A obtained by removing the first i . . . nb rows
and the first i . . . nb columns, and then removing all but the first nb rows and columns

Lij for i, j ∈ {1, . . . , ⌈n/nb⌉} as a submatrix of L obtained by removing the first i . . . nb rows
and the first i . . . nb columns, and then removing all but the first nb rows and columns

In this section, Aij will not denote the i, jth entry of A, but the i, jth block of A, unless
stated otherwise.
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Data: Symmetric positive definite matrix A ∈ Rn,n

Result: Lower triangular matrix L with positive diagonal entries such that A = LLT

1 L← Θ
2 for j ← 1; j ≤ nb; j ← j + 1 do
3 Ljj ← POTF2(Ajj)
4 for i← j + 1; i ≤ nb; i← i+ 1 do
5 Lij ← Aij ·

(
(Ljj)

T
)−1 // this can be calculated using TRSM

6 end
7 for k ← j + 1; k ≤ nb; k ← k + 1 do
8 for i← k + 1; i ≤ nb; i← i+ 1 do
9 if i = k then

10 Akk ← Akk − Lkj · (Lkj)
T // this can be calculated using SYRK

11 else
12 Aik ← Aik − Lij · (Lkj)

T // this can be calculated using GEMM
13 end
14 end
15 end
16 end
17 return L

Algorithm 6: Blocked Cholesky decomposition ([15], Algorithm 3)
For the purposes of proving the correctness of Algorithm 6, we denote the submatrix of A at

the start of the (j+1)th iteration of the outer loop on line 2 obtained by removing the first j ·nb
rows and the first j · nb columns by Bj . Trivially, we can see that A = B0.

For a particular j ∈ {1, . . . , ⌈ n
nb⌉ − 1}, we partition Bj =

(
D WT

W K

)
, where D ∈ Rnb,nb,

W ∈ Rn−(j+1)·nb,nb and K ∈ Rn−(j+1)·nb,n−(j+1)·nb. Then by definition of Bj :

D has the same value as A(j+1)(j+1) at the start of the (j + 1)th iteration of the outer loop

W has the same value as the block matrix

A(j+2)(j+1)

...
A⌈ n

nb ⌉(j+1)

 at the start of the (j+1)th iteration

of the outer loop

K has the same value as the block matrix

A(j+2)(j+2) . . . A(j+2)⌈ n
nb ⌉... . . . ...

A⌈ n
nb ⌉(j+2) . . . A⌈ n

nb ⌉⌈
n
nb ⌉

 at the start of

the (j + 1)th iteration of the outer loop

We further denote the submatrix of L obtained by removing the first j ·nb rows and the first
j · nb columns by Lj . The first column of the matrix Lj is thus comprised solely of the blocks of
L that are modified during the (j + 1)th iteration of the outer loop.

▶ Lemma 4.4. Fix j ∈ {1, . . . , ⌈ n
nb⌉ − 1} and partition Bj =

(
D WT

W K

)
as described above.

If Bj is symmetric positive definite, then Bj+1 = K −WD−1WT .

Proof. Since D = (Bj)11 is a leading principal submatrix of Bj , it is symmetric positive definite
following Theorem 1.26. We denote LD = POTF2(D).

During the (j+1)th iteration of the outer loop, Ljj is set to POTF2(Ajj) and Lij to Aij ·(LT
jj)

−1

for all i ∈ {j + 1, . . . , nb}. The first column of Lj thus becomes
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
(Lj)11
(Lj)21

...
(Lj)n1

 =


POTF2

(
(Bj)11

)
(Bj)21

(
(Lj)

T
11

)−1

...
(Bj)(⌈ n

nb ⌉−j)1

(
(Lj)

T
11

)−1

 =


LD

(Bj)21
(
LT
D

)−1

...
(Bj)(⌈ n

nb ⌉−j)1

(
LT
D

)−1

 .

For all i, k ∈ {j + 1, . . . , ⌈ n
nb⌉} where i ̸= k:

Akk is set to Akk − Lkj · (Lkj)
T on line 10, and since no other modifications of Akj and Lkj

are performed during the (j + 1)th iteration, we can conclude that

(Bj+1)(k−j)(k−j) = (Bj)(k−j+1)(k−j+1) − Lkj · (Lkj)
T =

= (Bj)(k−j+1)(k−j+1) − (Lj)(k−j+1)1 · (Lj)
T
(k−j+1)1

Aik is set to Aik −Lij · (Lkj)
T on line 12, and because the only lines where Aik, Lij and Lkj

are modified during the (j + 1)th iteration are 5 and 12, we observe that

(Bj+1)(i−j)(k−j) = (Bj)(i−j+1)(k−j+1) − Lij · (Lkj)
T =

= (Bj)(i−j+1)(k−j+1) − (Lj)(i−j+1)1 · (Lj)
T
(k−j+1)1

We thus obtain:

Bj+1 =

 (Bj+1)11 . . . (Bj+1)1(⌈ n
nb ⌉−j−1)

... . . . ...
(Bj+1)(⌈ n

nb ⌉−j−1)1 . . . (Bj+1)(⌈ n
nb ⌉−j−1)(⌈ n

nb ⌉−j−1)

 =

= K −


(Lj)21 ·

(
(Lj)21

)T
. . . (Lj)21 ·

(
(Lj)(⌈ n

nb ⌉−j)1

)T
... . . . ...

(Lj)(⌈ n
nb ⌉−j)1 ·

(
(Lj)21

)T
. . . (Lj)(⌈ n

nb ⌉−j)1 ·
(
(Lj)(⌈ n

nb ⌉−j)1

)T
 =

= K −

 (Lj)21
...

(Lj)(⌈ n
nb ⌉−j)1


 (Lj)21

...
(Lj)(⌈ n

nb ⌉−j)1


T

=

= K −

 (Bj)21(L
T
D)−1

...
(Bj)(⌈ n

nb ⌉−j)1(L
T
D)−1


 (Bj)21(L

T
D)−1

...
(Bj)(⌈ n

nb ⌉−j)1(L
T
D)−1


T

=

= K −

 (Bj)21(L
T
D)−1

...
(Bj)(⌈ n

nb ⌉−j)1(L
T
D)−1


 (Bj)21(L

−1
D )T

...
(Bj)(⌈ n

nb ⌉−j)1(L
−1
D )T


T

=

= K −

 (Bj)21(L
T
D)−1

...
(Bj)(⌈ n

nb ⌉−j)1(L
T
D)−1

(L−1
D (Bj)

T
21 . . . L−1

D (Bj)
T
(⌈ n

nb ⌉−j)1

)
=

= K −W (LT
D)−1L−1

D WT = K −W (LDLT
D)−1WT = K −WD−1WT

◀

▶ Lemma 4.5. For a symmetric positive definite matrix A ∈ Rn,n, the matrix Ajj on line 3 is
symmetric positive definite in all iterations of the outer loop.
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Proof (inspired by the proof in [3], lecture 23).

We will first prove by induction that all Bj are symmetric positive definite:

Base step B0 = A is symmetric positive definite.

Inductive step Let Bj be symmetric positive definite. Then D is also symmetric positive
definite following Theorem 1.26.

We set LD = POTF2(D), L̃ =

(
LD θT

W (LT
D)−1 I

)
and B̃ =

(
I θT

θ Bj+1

)
such that

L̃, B̃ ∈ Rn−j·nb,n−j·nb, then:

L̃B̃L̃T =

(
LD θT

W (LT
D)−1 I

)(
I θT

θ Bj+1

)(
LT
D

(
W (LT

D)−1
)T

θ I

)
=

=

(
LD θT

W (LT
D)−1 Bj+1

)(
LT
D

(
W (LT

D)−1
)T

θ I

)
=

=

(
LDLT

D LD

(
W (LT

D)−1
)T

W (LT
D)−1LT

D W (LT
D)−1

(
W (LT

D)−1
)T

+Bj+1

)
=

=

(
LDLT

D LD

(
W (L−1

D )T
)T

W (LT
D)−1LT

D W (LT
D)−1

(
W (L−1

D )T
)T

+Bj+1

)
=

=

(
LDLT

D LDL−1
D WT

W (LT
D)−1LT

D W (LT
D)−1L−1

D WT +Bj+1

)
=

=

(
D WT

W W (LDLT
D)−1WT +Bj+1

)
Following Lemma 4.4,(

D WT

W W (LDLT
D)−1WT +Bj+1

)
=

(
D WT

W WD−1WT +K −WD−1WT

)
=

(
D WT

W K

)
=

= Bj

Following Theorem 1.15 and Lemma 4.2, we can observe that L̃ is nonsingular since all of its
diagonal entries are non-zero. L̃T and (L̃T )−1 are then also nonsingular thanks to Theorem
1.12. Given our supposition that Bj is positive definite, we have xTBjx > 0 for all non-zero
x ∈ Rn−j·nb,1. We also know from Theorem 1.20 that (L̃T )−1x is non-zero. We then obtain

xT B̃x = xT
(
L̃−1Bj(L̃

T )−1
)
x =

(
(L̃T )−1x

)T
Bj

(
(L̃T )−1x

)
.

which is positive due to the positive definiteness of Bj . As such, B̃ is positive definite and so
is its principal submatrix Bj+1.

Finally, we can observe that at the start of the jth iteration of the outer loop, the matrix Ajj is
positive definite, since it is a leading principal submatrix of Bj−1. ◀

▶ Theorem 4.6. For a symmetric positive definite matrix A ∈ Rn,n, Algorithm 6 returns
the matrix POTF2(A).

Proof. Using backward induction, we will prove that Lj = POTF2(Bj) for all j ∈ {1, . . . , ⌈ n
nb⌉}:

Base step L⌈ n
nb ⌉⌈

n
nb ⌉ is set to POTF2(A⌈ n

nb ⌉⌈
n
nb ⌉) on line 3 during the last iteration of the outer

loop.
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Inductive step Suppose that Lj+1 = POTF2(Bj+1) for any j ∈ {1, . . . , ⌈ n
nb⌉ − 1}.

Using observations from the proof of Lemma 4.4, we have


(Lj)11
(Lj)21

...
(Lj)n1

 =


LD

(Bj)21
(
LT
D

)−1

...
(Bj)(⌈ n

nb ⌉−j)1

(
LT
D

)−1

 =

(
LD

W
(
LT
D

)−1

)
.

Thus:

LjL
T
j =

(
LD Θ

W
(
LT
D

)−1 POTF2(Bj+1)

)(
LD Θ

W
(
LT
D

)−1 POTF2(Bj+1)

)T

=

=

(
LD Θ

W
(
LT
D

)−1 POTF2(Bj+1)

)(
LT
D

(
W
(
LT
D

)−1
)T

ΘT POTF2(Bj+1)
T

)
=

=

(
LD Θ

W
(
LT
D

)−1 POTF2(Bj+1)

)(
LT
D L−1

D WT

ΘT POTF2(Bj+1)
T

)
=

=

(
LDLT

D LDL−1
D WT

W
(
LT
D

)−1
LT
D W

(
LT
D

)−1
L−1
D WT + POTF2(Bj+1)POTF2(Bj+1)

T

)
=

=

(
D WT

W WD−1WT +Bj+1

)

We know that K = WD−1WT +Bj+1 from Lemma 4.4, and as such, we have

(
D WT

W WD−1WT +Bj+1

)
=

(
D WT

W K

)
= Bj .

We have obtained the identity Lj = POTF2(Bj) for all j ∈ {1, . . . , ⌈ n
nb⌉}. Specifically for

j = 0, we have L = L0 = POTF2(B0) = POTF2(A). ◀

In Algorithm 6, we can notice that the blocks Aik for i < k are only accessed in a single
iteration of line 12, where they are modified. As such, we can eliminate some redundant floating
point operations by rewriting the algorithm in the following form:
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Data: Symmetric positive definite matrix A ∈ Rn,n

Result: Lower triangular matrix L with positive diagonal entries such that A = LLT

1 L← Θ
2 for j ← 1; j ≤ nb; j ← j + 1 do
3 Ljj ← POTF2(Ajj)
4 for i← j + 1; i ≤ nb; i← i+ 1 do
5 Lij ← Aij ·

(
(Ljj)

T
)−1 // this can be calculated using TRSM

6 end
7 for k ← j + 1; k ≤ nb; k ← k + 1 do
8 Akk ← Akk − Lkj · (Lkj)

T // this can be calculated using SYRK
9 for i← k + 1; i ≤ nb; i← i+ 1 do

10 Aik ← Aik − Lij · (Lkj)
T // this can be calculated using GEMM

11 end
12 end
13 end
14 return L
Algorithm 7: Improved blocked Cholesky decomposition (variant of [15], Algorithm 3)

Note that the reason why we first introduced Algorithm 6 was a more straightforward proof
of correctness – the matrices Bj would not always be symmetric if we used Algorithm 7, but
the matrices obtained by “mirroring” the lower triangular part of Bj along the main diagonal
would.

A second improvement is to perform the calculation in place – that would be achieved by
removing line 1 and replacing all references to L with references to A in Algorithm 7.

4.2.1 Parallelization of the blocked Cholesky decomposi-
tion algorithm

In Algorithm 7, we can notice that on lines 5, 8 and 10, we do not need to perform all of
the computations in series. On line 5, we only have to know the value of the block Ljj in order
to compute the blocks Lj(j+1) to Ljn, but not the other blocks with the column index j. As
such, the computations of the blocks Lj(j+1) to Ljn are independent, and can thus be performed
in parallel, because the only memory accessed by all computing threads is the block Ljj , which
is only read, but not overwritten.

In a similar fashion, we can perform all of the computations on line 8 in a single iteration of
2 simultaneously, since we do not need to access any of the diagonal blocks A(j+1)(j+1), . . . , Ann

except for Akk to be able to update the block Akk. The block Lkj can be accessed by all of
the threads running on line 8 at once due to the fact that Lij is only read, but not written to.

Using the same reasoning, we can also perform all of the computations on line 10 in one
iteration of 2 in parallel.

In summary, the parallelized algorithm can be expressed as follows:
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Data: Symmetric positive definite matrix A ∈ Rn,n

Result: Lower triangular matrix L with positive diagonal entries such that A = LLT

1 L← Θ
2 for j ← 1; j ≤ nb; j ← j + 1 do
3 Ljj ← POTF2(Ajj)

4 Compute Lij ← Aij ·
(
(Ljj)

T
)−1 using TRSM for i ∈ {j + 1, . . . , nb} in parallel

5 Compute Akk ← Akk − Lkj · (Lkj)
T using SYRK for k ∈ {j + 1, . . . , nb} in parallel

6 Compute Aik ← Aik − Lij · (Lkj)
T using GEMM for k ∈ {j + 1, . . . , nb} and

i ∈ {k + 1, . . . , nb} in parallel
7 end
8 return L

Algorithm 8: Parallelized version of blocked Cholesky decomposition

4.3 Solving systems of linear equations using Cholesky de-
composition

Cholesky decomposition can be used to solve systems of linear equations Ax = b with a symmetric
positive definite matrix A in the following way:

Data: Symmetric positive definite matrix A ∈ Rn,n

Data: Vector b ∈ Rn,1

Result: Vector x ∈ Rn,1 such that Ax = b
1 L← POTF2(A)
2 y ← L−1b

3 x← (LT )−1y
4 return x

Algorithm 9: Solution of a system of linear equations Ax = b with a symmetric positive
definite matrix A using Cholesky decomposition

The calculations on lines 2 and 3 can be performed using the TRSV Level 2 BLAS routine.

▶ Theorem 4.7. For a symmetric positive definite matrix A ∈ Rn,n and a vector b ∈ Rn,1,
Algorithm 9 returns a vector x̃ that is the only solution of the equation system Ax = b.

Proof. We know that both L and LT are nonsingular from Lemma 4.2 and Theorem 1.15. We
then have

Ax̃ = A(LT )−1y = A(LT )−1L−1b =
(
LLT

)
(LT )−1L−1b = LLT (LT )−1L−1b = LL−1b = b.

Following Theorem 1.13, A is also nonsingular. By multiplying both sides of Ax = b by A−1

from the left, we obtain
x = A−1b.

Since both A−1 and b are determined uniquely, x is also unique. ◀

If A is not positive definite, other decomposition algorithms are used to solve the system of
linear equations (typically the LU factorization) [14]. The reason why solution using the Cholesky
decomposition algorithm is attempted first is that it performs approximately 1

3n
3 floating point

operations, whereas algorithms for solving systems of linear equations with general matrices
require roughly 2

3n
3 operations [3].

We can show that if Algorithm 9 fails to return a solution x, then the input matrix A was
not positive definite, regardless of the algorithm used on line 1:
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▶ Theorem 4.8. A square matrix A ∈ Rn,n has a Cholesky decomposition if and only if it is
symmetric positive definite.

Proof. The converse implication (⇐) has already been proven in Theorem 4.3.
A matrix A ∈ Rn,n with a Cholesky decomposition A = LLT is symmetric positive definite

following Lemmas 1.22 and 1.24, since L has a non-zero determinant and is therefore nonsingular.
◀

In summary, if the algorithm used on line 1 fails to produce the matrix L, then A is not
symmetric positive definite and thus some other algorithm for solving systems of linear equations
must be used.
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Chapter 5

Numerical libraries for linear
algebra

In this chapter, we will present existing libraries for dense numerical linear algebra that are used
in this thesis for performance comparison.

5.1 LAPACK
We will start with the oldest library described in this chapter – LAPACK. The content of this
section closely follows [16].

In 1987, six authors, three of whom were co-authors of the original articles that introduced
the Level 1, Level 2 and Level 3 BLAS routine sets (articles [9], [10] and [11]), pledged to design
and develop a new numerical library that would serve as an alternative to the LINPACK and
EISPACK libraries [16]. Consequently, the scope of this new library would mainly consist of
the following:

Routines for solving systems of linear equations

Routines for eigenvalue problems

Routines for linear least squares problems

Routines for performing associated matrix factorizations

Routines for estimating condition numbers for the above problems

The main reason for this proposal was the insufficient performance of the LINPACK and
EISPACK libraries, which were constructed only using Level 1 BLAS routines. Using optimized
implementations of those routines, LINPACK and EISPACK could perform well on scalar pro-
cessors, but these libraries were not very well suited for vector processing machines. Thus, many
of the algorithms used in LINPACK and EISPACK were restructured to employ the Level 2 and
Level 3 BLAS so that users could gain increased performance by linking against optimized BLAS
libraries.

Many new algorithms (especially the ones computing matrix factorizations) took a similar
approach to utilize Level 3 BLAS routines – partition the matrices into blocks and then ex-
press the computation using basic matrix operations on those blocks. Those algorithms were
called blocked algorithms; an example is given in Section 4.2. The basic block operations
often involved the same computation being performed on one of the blocks (such as the POTF2

37
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routine used in Algorithm 7), which required the unblocked algorithm to be implemented in
the library, too. The unblocked algorithms used Level 2 BLAS routines more frequently.

Like the Reference BLAS libraries, LAPACK was implemented in Fortran 77. Many rou-
tines also followed the naming convention showcased in Example 3.1, with the exception that
the operation type could exceed the two letter limit. The routines were divided into two groups –
top-level routines that were intended to solve complete problems and lower-level routines which
represented the individual steps of those solutions.

Apart from improving the performance of LAPACK and EISPACK routines, the library also
intended to increase portability (mainly through making calls to BLAS) and serve as a benchmark
to evaluate the performance of various supercomputers.

5.2 Intel OneApi MKL
In an effort to optimize performance with respect to the given CPU architecture and its features,
hardware vendors often provide their own implementations of numerical routines. An example
of this phenomenon is the Math Kernel Library (MKL), which is freely provided by Intel as
a part of their OneApi interface. The rest of this section follows [17]. The functionalities of
MKL include:

Dense linear algebra routines – all BLAS and selected LAPACK routines

Selected sparse BLAS routines

Fast Fourier Transform routines

Random number generators

Selected Vector Math routines

MKL is parallelized using the Intel Threading Building Blocks (TBB) runtime model but also
supports OpenMP GPU offloading. Programs that use the MKL are suggested to be compiled
using Intel’s icc compiler (which is also part of the OneApi interface), though other compilers,
such as GNU gcc, are supported as well.

5.3 OpenBLAS
OpenBLAS is an open-source numerical library which supports many different CPU architec-
tures, such as x86-64, AArch64 and RISC-V. As a successor to GotoBLAS, it was initially
strictly a BLAS library. Today, it implements many LAPACK routines as well (including
the POTRF Cholesky decomposition routine), though the optimization efforts are mainly focused
on the BLAS routines. The leading maintainer of the project is Dr Zhang Xianyi [18].

For many BLAS routines, the authors of the project use a “template-based optimization
framework” [19] called AUGEM. The framework allows them to select “the best configurations
based on performance feedback of the optimized code” [19].

5.4 AMD Optimizing CPU Libraries
This section follows [20].

As Intel MKL became more focused on Intel CPUs, AMD introduced their own set of numer-
ical libraries named AMD Optimizing CPU Libraries (AOCL). Unlike Intel MKL, AOCL is fully
open-source. Most of the libraries that the AOCL set contains are forks of other open-source
numerical libraries, such as:
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AOCL-BLIS – an optimized BLAS library (a fork of BLIS)

AOCL-libFLAME – a parallel numerical library providing the functionality of LAPACK
(a fork of libFLAME)

AOCL-ScaLAPACK – a numerical library for “parallel distributed memory machines” [20]

AOCL also implements routines for sparse linear algebra, Fast Fourier Transform, crypto-
graphically secure random and pseudo-random number generation, cryptography, data compres-
sion, optimized math, string and memory functions. All of the AOCL libraries are available on
GitHub.

5.5 Arm performance libraries
Arm developed a set of free-to-use (though not open-source) libraries named the Arm Perfor-
mance Libraries. It is optimized for Arm CPUs, and it implements the following functionalities
[21]:

The BLAS routines

Higher level numerical linear algebra routines using the LAPACK interface

Routines for Fast Fourier Transform using the FFTW1 interface

Sparse numerical linear algebra functionalities

Elementary math functions optimized for the AArch64 architecture as defined in math.h

String and memory functions optimized for the AArch64 architecture as defined in string.h

Many of the numerical routines are parallelized using OpenMP [21].

1Fastest Fourier Transform in the West, an open-source library implementing Fast Fourier Transform routines.
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Chapter 6

Task-based runtime systems

In scientific computations, programs are rarely ever sequential. Most often, calculations are
performed on several CPU cores, multiple different CPUs or even multiple processing units with
different architectures. As such, numerical programs have to be parallelized.

One way to parallelize existing programs is to utilize standard threading libraries, such as
the pthread library on UNIX systems. The disadvantage to this approach is that the programmer
is solely responsible for managing dependencies between sections of code (e.g., making sure that
a function is run only after another function is already finished). Such code is thus very prone
to race conditions – program errors which arise when the same memory section is either written
to by multiple threads simultaneously or read by one or more threads while it is written to
by another thread. These libraries usually provide tools for synchronization, such as mutual
exclusion locks, semaphores, atomic data types or barriers, which can theoretically be used even
for programs with high amounts of dependencies. That approach, however, leads to code that is
difficult to understand and therefore difficult to debug.

For many programs with large amounts of dependencies, we can split the code into sections
and describe how each of those code sections accesses shared memory areas (whether it reads
the memory, writes to the memory, or both) and what other code sections need to be finished
before this code section can be run. An object that holds this information about a particular
code section is called a task. The memory sections that the code section of a certain task
accesses, along with the corresponding data access modes, are called its data dependencies
(or memory dependencies) and the tasks which need to be executed before a certain task is
run are called its task dependencies [22].

The programmer can either deduce the task dependencies from the data dependencies and
the sequential code themselves and express them explicitly, or they can describe the data depen-
dencies to a task-based runtime system, which then implicitly derives the task dependencies
from the data dependencies and the order that the tasks were added in [22].

6.1 Task-based Cholesky decomposition algorithm

The parallel Algorithm 8 can be further improved using task-based programming. For exam-
ple, if the value A(j+1)(j+1) is already updated on line 6 but some of the other values are still
being recalculated, the algorithm waits for those computations to finish. The computation of
the value L(j+1)(j+1) could, however, be launched on the core that A(j+1)(j+1) was recalculated
on. As such, we can achieve better parallelization by describing the data dependencies and let-
ting the runtime system implicitly construct the task dependencies:
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Data: Symmetric positive definite matrix A ∈ Rn,n

Result: Lower triangular matrix L with positive diagonal entries such that A = LLT

1 for j ← 1; j ≤ nb; j ← j + 1 do
2 Insert task Ajj ← POTF2(Ajj) with data dependency Ajj (R + W)
3 for i← j + 1; i ≤ nb; i← i+ 1 do
4 Insert task Aij ← Aij ·

(
(Ajj)

T
)−1 with data deps. Ljj (R) and Aij (R + W)

5 end
6 for k ← j + 1; k ≤ nb; k ← k + 1 do
7 Insert task Akk ← Akk −Akj · (Akj)

T with data deps. Akj (R) and Akk (R + W)
8 for i← k + 1; i ≤ nb; i← i+ 1 do
9 Insert task Aik ← Aik −Aij · (Akj)

T with data dependencies Aij , Akj (R) and
Aik (R + W)

10 end
11 end
12 end
13 return the lower triangular part of A

Algorithm 10: Task-based Cholesky decomposition (variant of [15], Algorithm 3)
This algorithm was derived from the in-place variant of Algorithm 7.

6.2 Task graphs
By considering tasks as vertices of an oriented graph and the task dependencies as edges, we can
characterize the task-based program by a task graph. Task graphs can also be called directed
acyclic graphs or DAGs for short, meaning graphs that contain no cycles. In the context of
task-based runtime systems, we define a cycle in a task graph of a program P as a finite sequence
of tasks a1, a2, . . . , an in P where ai is a task dependency of ai+1 for all i ∈ {1, . . . , n−1} and an
is a task dependency of a1. The following theorem shows that the task graph of a finite program
is always acyclic:

▶ Theorem 6.1. Let P be a task-based program. If all tasks of P finish in a finite amount of
time, then the task graph of P is acyclic.

Proof. We will prove the contraposition of the statement.
Suppose that a task-based program P contains a cycle, or equivalently, there are tasks

a1, a2, . . . , an in P such that ai is a task dependency of ai+1 for all i ∈ {1, . . . , n − 1} and
an is a task dependency of a1. Using induction, we can prove that the task a1 has to be finished
before the runtime system executes the task an:

Base step a1 is a task dependency of a2, so a1 has to be finished before the system starts a2

Inductive step Suppose that ai can be started only after a1 is finished for any i ∈ {2, . . . , n−1}.
Due to ai being a task dependency of ai+1, ai+1 can be run only after ai is finished, which,
following our supposition, is only after a1 is finished.

We have thus established using the induction principle that an can only be executed after a1 is
finished. However, since an is a task dependency of a1, a1 can only be run after an is finished.
Running either a1 or an (or both at once) would break at least one of those two conditions,
therefore a1 and an will not be launched at all. Hence, P never finishes. ◀

To provide an example, we present the task graph of Algorithm 10 for an input matrix with
3× 3 blocks:

▶ Example 6.2. Task graph of Algorithm 10 for an input matrix with 3× 3 blocks.
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6.3 Task states and scheduling

This section follows [22].
At any moment when running a task-based program, each task can be in exactly one of

the following states:

Submitted One or more task dependencies of this task are not finished yet

Ready All of the task dependencies are finished, but the task has not been executed yet

Active The task is being executed at the moment

Completed The execution of the task has been finished.

The runtime system stores a list of all tasks that are ready called a ready pool. Once
an active task a is complete, the system iterates through all submitted tasks that have a as a de-
pendency and marks the dependency as satisfied – this may be implemented as simply removing
the dependency from the task dependency list. If any of those submitted tasks have no unsatisfied
dependencies, they are moved to the ready pool. Then, the system selects a task from the ready
pool and executes it on a core that is currently free. The component of the runtime system
that selects tasks for execution is called the scheduler. Most schedulers allow programmers to
influence the task selection process by setting task priorities.

6.4 Task granularity

When designing parallel programs, it is crucial for the programmer to choose the right granularity
of the tasks – i.e., how many tasks will the problem be split into and how long will those tasks
take to execute.

If we have a small amount of tasks that take long to execute, the CPU may not be utilizing
all of its cores at all times, and so the program might take longer to finish. On the contrary, if
we have a large amount of short tasks, it is going to be more difficult (and more time consuming)
for the runtime system to manage all of those tasks, their dependencies and priorities. So while
the workload may be better distributed among the CPU cores, the system is going to require
more time to manage the tasks, so the overall time may increase as well [22].

To address these issues, we usually run the task-based program for various different task
granularities and select the case with the lowest overall execution time. In our case of the blocked
Cholesky decomposition algorithm, task granularity is controlled by the block size – smaller
blocks lead to a higher amount of smaller tasks and vice versa.
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6.5 Trace
A trace of a runtime program is a visualization of the individual tasks’ lifecycles. It contains
a horizontal timeline for each CPU core, and each of the colored areas on one of the timelines
represents the time that a particular task was active. Tasks may be colored according to their
name.

A trace may help us spot unwanted dependencies or tune the task granularity:

If there is a long time period at the end of the program where not all cores are being used,
it may be better to split the program into more granular tasks

If there are many tasks that are switching rapidly, it may be better to join the tasks into less
granular ones

▶ Example 6.3. A trace of Algorithm 10 for an input matrix with 3× 3 blocks on a machine
with two cores.
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6.6 OpenMP
OpenMP is an interface for programming shared-memory parallel systems published in 1997
[23]. Recently, extensions have been released to also provide an interface for GPU computing
functionalities. OpenMP can be used in C/C++ as a set of preprocessor pragmas, all of which
have the form #pragma omp <construct> [options]. OpenMP also has a Fortran interface,
but the syntax differs from the C/C++ interface.

In task-based programming, the most important OpenMP construct is the task construct.
A task construct followed by a brace-enclosed code block creates a task, which is either executed
immediately, or delayed until it is scheduled for execution. Data dependencies of the task can
be specified using the depend clause and the priority of a task can be set using the priority
clause. The variable access rules can be specified using the following clauses [24]:

private Creates a new variable for each thread and ignores the variable with the same name in
the outer scope, if one exists.

firstprivate Creates a new variable for each thread with the same value as the eponymous
variable in the outer scope.

shared Shares the variable in the outer scope across all threads.

Another important construct is barrier, which waits for all previously created tasks to finish.
In case we want to wait for child tasks only (i.e., tasks that were created inside another task),
the taskwait construct can be used [24].



6.7. StarPU 45

OpenMP also offers many constructs outside of the task-based programming domain. A code
block can be run in the fork-join model by multiple threads using the parallel construct, though
there is no option to specify the dependencies. The single construct may then be used to tell
OpenMP to execute a code block inside a parallel region by only one thread. If we want to
execute a code block by a single thread at a time, we can use the critical construct. A for
loop in C/C++ can be parallelized using a loop construct [24].

As OpenMP is an interface, it cannot be distributed as a standard C/C++ or Fortran library,
but compiler vendors may choose to implement the OpenMP preprocessor pragmas in their
compiler. Examples of widely used compilers that implement the OpenMP interface are the gcc
compiler developed by the GNU initiative, the icc compiler by Intel Corporation and the clang
compiler, which is a part of the LLVM project [25].

6.7 StarPU
StarPU is a task-based runtime system developed at the University of Bordeaux and released in
2009. The main motivation behind its development was to design a high-level, easy to use,
portable runtime system for heterogeneous architecture systems. Reference [26] states that
the most successful interface for programming heterogeneous architectures prior to the devel-
opment of StarPU was OpenCL, but it was too low level to be considered a runtime system.

Data used by StarPU tasks has to be registered in the system using a function, which then
returns a handle. A handle is a structure that contains information about a data block that
may be specified as a data dependency of a task. Data blocks have different types in StarPU, for
example, a vector data block represents a contiguous array of elements and the matrix data
block represents a matrix stored in the row major full storage format (see Subsection 2.2.1.1).
There are also data block types for some of the sparse storage formats described in Section 2.1
[27]. The ability to run tasks across devices with different architectures is accomplished by using
codelets, which can be thought of as a structure similar to tasks, with the difference that multiple
implementations can be provided for the same task – usually one implementation per device
architecture. That allows programmers to utilize different libraries or even different programming
languages for each architecture that the task may be run on. Every codelet also specifies the data
dependencies, that is, the data blocks that the code accesses along with the corresponding data
access modes (read, write or read + write). StarPU also manages the data transfers between
devices in a way that all of the data blocks that a task is dependent on are present in the memory
of the device that runs the task.

StarPU has an interface for the C/C++, Java, Python and Fortran programming languages.
Using the KStar source-to-source compiler, programmers can seamlessly translate a program
that uses OpenMP pragmas to a program that uses StarPU [28].

Unlike OpenMP, StarPU is also well suited for distributed memory systems, as it integrates
very well with the Message Passing Interface (MPI). Since version 1.2, it also supports data
offloading to disks. Several tools exist to visualize the task graphs of StarPU programs (Temanejo,
ViTe) or to generate a trace (the FxT library) [28].
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Chapter 7

Implementation

The blocked algorithm for Cholesky factorization was implemented in the C language, as both
OpenMP and StarPU offer a C interface and the language is commonly used in many modern
numerical libraries (e.g., libFLAME, BLIS and OpenBLAS). The implementation was tested on
Linux systems with the gcc and gfortran compilers only (version 10.2.0 for both), although it
may work on other UNIX-like systems with other compilers as well.

When compiled, the following artifacts are produced by default:

A dynamic library – libcholesky.so

A C/C++ header file for the library – cholesky.h

Three test binaries – blas_test, potf2_test, cholesky_test

A benchmarking utility – cholesky_benchmark

A static library build may be enabled in the configuration script as well (see Section 7.6).
The code is freely available on GitLab under a 2-clause BSD license.

7.1 Implementation of BLAS routines
The GEMM, SYRK and TRSM routines are implemented in the src directory. Only the double-
precision real number variants are implemented, though the code would not be difficult to edit in
order to implement the single-precision number routines SGEMM, SSYRK, and STRSM or the complex
number routines prefixed with Z or C.

The implementations closely resemble Algorithms 2, 3 and 4, though the C implementa-
tions are split in four branches (for SYRK) or eight branches (for GEMM and TRSM) according to
the different values of the TRANS, TRANSA, TRANSB, UPLO and SIDE parameters.

The interface to the BLAS routines is highly inspired by the original Fortran interface (see
Section 3.1.3), but with the following changes:

The function names consist of non-capital letters only (dgemm, dsyrk and dtrsm)

The TRANS, TRANSA, TRANSB, UPLO and SIDE parameters are passed by value, not reference
(the parameters are of type char, not char*, but the meaning of the values remains the same)

The ALPHA and BETA parameters are passed by value, not reference (these parameters have
the double type as opposed to double*)
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All matrix size and leading dimension parameters are passed by value, not reference (these
parameters have the int type as opposed to int*)

The error code is not passed by the INFO output variable, but by the return value

Similarly to the Fortran BLAS interface, the routines assume all matrices in column major
full storage.

7.1.1 Cache access optimization
The only optimizations performed were the reordering of the nested for loops in order to avoid
unnecessary cache misses, i.e., accesses to memory addresses that are not loaded in the cache
memory. As cache memories are known to perform better when the memory is accessed se-
quentially, we try to reorder the loops in a way that minimizes the offsets between subsequent
accesses.

For instance, in the DGEMM routine, the code in listing 7.1 is not very efficient, since most
subsequent memory accesses in matrices A and B have an offset of ldc entries, which leads to
large amounts of cache misses:

Code listing 7.1 Unoptimized code from the DGEMM implementation.
for (int i = 0; i < M; i++) {

for (int k = 0; k < K; k++) {
...
C[i + j * ldc] += alpha * A[i + k * ldc] * B[j + k * ldc];
...

}
}

To the contrary, the code in listing 7.2 accesses the entries of A and C sequentially in an as-
cending order, and is therefore more efficient due to a lower amount of cache misses:

Code listing 7.2 Cache access optimized code from the DGEMM implementation.
for (int k = 0; k < K; k++) {

for (int i = 0; i < M; i++) {
...
C[i + j * ldc] += alpha * A[i + k * ldc] * B[j + k * ldc];
...

}
}

The only branches that are optimized for cache accesses are the ones used in Algorithm 7.
Those are:

TRANSA = N and TRANSB = T for GEMM

UPLO = L and TRANS = N for SYRK

SIDE = R, UPLO = L and TRANSA = T for TRSM

7.1.2 Further possible optimizations
The BLAS routine implementations could be further optimized by utilizing SIMD vector register
instructions, such as SSE or AVX instructions on certain Intel processors. These register have
a larger size than standard registers, but allow the same operations to be performed on more
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parts of the data at once. This allows multiple floating point operations to be performed on
multiple floating point numbers during one instruction cycle.

Optimized BLAS routines also often make use of the Fused-Multiply-Add (FMA) instruction,
which combines the floating point addition and multiplication operations into one instruction. In
combination with SIMD instructions, it can lead to a throughput may times higher than the one
of unoptimized routines.

The BLAS routines could themselves be parallelized using a threading library or a runtime
system, but that is outside of the scope of this thesis.

It should be noted that we only use optimized BLAS routines from numerical libraries in
the final benchmarks.

7.2 Implementation of the Cholesky decomposition rou-
tines

The unblocked Cholesky routine is implemented in the src/potf2 subdirectory using a modified
variant of Algorithm 5. The interface is similar to the one of BLAS routines (described in
the Section 7.1), with the difference that invalid parameter values are signaled with negative
return codes, while positive return codes indicate an input matrix that is not positive definite.
The return value then marks the index of the main loop iteration where a negative diagonal
element was detected before computing the square root.

The blocked Cholesky decomposition algorithm implementation comprises two routines in
the src/cholesky subdirectory, where one of them uses OpenMP tasks and the other uses
the StarPU runtime system. Apart from the pointer to the memory area where the matrix is
stored and the matrix size, the routines also retrieve the block size used for partitioning the matrix
and the translation method as parameters.

The Cholesky routines are implemented using the task-based Algorithm 10. In both routines,
we assume that the input matrix A ∈ Rn,n is stored in the column major full storage format
with the leading dimension equal to n.

The routines start by partitioning the input matrix into blocks. The information about
the blocks is stored in a matrix (the information about a particular block is stored in
the starpu_data_handle_t structure for the StarPU variant and a custom structure
block_data_t for the OpenMP variant). According to the value of the translation_method
parameter, one of the following operations is performed on the matrix:

The matrix is left as it is (the NO_TRANSLATION value)

The matrix is translated into the block storage format sequentially
(the SEQUENTIAL_TRANSLATION value)

The matrix is translated into the block storage format using StarPU or OpenMP where
the translation of each block is inserted as a task (the PARALLEL_TRANSLATION value)

At the end, the computed matrix is translated back into the column major format if necessary
(again, in sequential or in parallel, according to the value of the translation_method parameter)
and all memory blocks associated with matrices created in the routine are freed.

7.3 Testing of BLAS routines
The DGEMM, DSYRK and DTRSM routines were tested using a modified version of the DBLAT3 program
– a testing program for double-precision Level 3 BLAS routines from the reference BLAS library.
Function calls that test other Level 3 BLAS routines were deleted and only the function calls to
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test routines DPOT1, DPOT3 and DPOT4 were left in, as they test the three aforementioned BLAS
routines.

These test routines use the reference DMMCH function. It receives matrices A, B, CT and CC
as input parameters and performs a computation of the general matrix product

CT ← αop(A)op(B) + βCT (7.1)

It then computes the maximum error ratio among all of the entries and reports failure if at
least one of the results is less than half accurate [29].

Testing DGEMM using DMMCH is straightforward, as both of the routines perform the same
computation. The computation that SYRK performs (equation (3.2) or (3.3)) is a special case
of equation (7.1), so SYRK can be tested using DMMCH in a straightforward way as well. TRSM
performs fundamentally different computations, but after B has been updated according to
equations (3.4) or (3.5), the value of the original matrix B can be obtained as α−1op(A)B or
α−1Bop(A), respectively. Both of those formulas are specific cases of (7.1), so TRSM can be tested
using the DMMCH routine, too.

7.4 Testing of the Cholesky decomposition routines
The main blocked Cholesky decomposition routine was tested using a modified version of
the DCHKPO LAPACK routine rewritten to C. The tests performed in the routine were purposely
limited to exclude testing features that are outside of the scope of this thesis. Those are:

Testing error exits for invalid parameter values

Testing error exits for input matrices that are not symmetric positive definite

Testing the UPLO = U variant of the DPOTRF routine (the A = UTU decomposition)

All of the remaining tests are run for several block sizes.
For a single set of input parameters (matrix size, matrix type, block size, translation method

and right-hand side count rhs), an n× rhs right-hand side matrix is generated and the following
tests are performed [29]:

1. Reconstructing Ã = LLT and computing the matrix 1-norm ∥A− Ã∥

2. Calculating the inverse Ã−1 = (LT )−1L−1 and computing the matrix 1-norm ∥AÃ−1 − I∥

3. Solving Ax = b for each right hand side b and computing the vector 1-norm ∥Ax̃− b∥

4. Computing the difference between the solution obtained in the previous test and the true
solution to Ax = b (there is only a single true solution, see Theorem 4.7)

5. Iteratively refining the computed solution and computing the error bounds

6. Estimating the condition number of a matrix and comparing the estimate with the true value

The unblocked routine dpotf2 was tested using a stripped down version of the DCHKAA pro-
gram, where all test routines except for DCHKPO (the routine testing symmetric positive definite
matrix operations) were removed. In order to be able to call the xerbla error handling routine
from LAPACK with strings of size that is unknown at compile time, a custom helper Fortran
routine is provided in the file xerbla_helper.f.

The source code for all tests can be found in the test directory.
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7.5 Implementation of the benchmarking utility

The benchmarking utility measures the performance of the blocked Cholesky routine. Its source
code is found in the src/benchmark directory. It is a Linux command line executable with the
following arguments:

Matrix size: -m, --matrix-size

Block size: -b, --block-size

Number of threads used: -t, --no-threads

The random seed for matrix generation: -s, --seed

Number of iterations for each matrix size and block size: -i, --iterations

Additional correctness testing: -C, --check-correctness

Running the custom implementations only: -c, --custom-only

Selection of the translation method: -T, --translation-method

Ensuring correct trace generation using the FxT library and StarPU: -f, --fxt-trace

The --matrix-size and --block-size parameter values may be specified in the form of
start:end:step ranges. If so, the benchmarking utility iterates through every matrix size and
every block size specified in the ranges.

In every iteration, the utility first generates a symmetric positive definite matrix using Al-
gorithm 1 with the entries of R being random uniform numbers from the interval ⟨0, 1⟩ and
λ = 1.

Then, the custom blocked Cholesky routine is run and the execution time is measured using
the clock_gettime(CLOCK_MONOTONIC, ...) function from time.h. The Gflop/s metric (in-
troduced in Section 8.1) is then calculated and the results are printed. The translation method
used is determined by the --translation-method argument, the possible values are no for not
performing scheme translation at all, sequential for sequential translation and parallel for
parallelized translation using OpenMP or StarPU.

If additional correctness testing is enabled, the utility performs a test equivalent to test 1
from the list in Section 7.4 and prints the test ratio and the test result. If the --custom-only
option is not enabled and if the program has been linked with one of the numerical libraries,
the same steps are then taken for the library implementation of the DPOTRF routine, which
computes the Cholesky factorization.

To make a fair comparison between the library implementation and the custom implemen-
tation, we need the driver routines (DGEMM, DSYRK, DTRSM and DPOTRF/DPOTF2) to be exe-
cuted sequentially during the custom implementation, because the program is already paral-
lelized by the runtime system and parallelizing the driver routines would lead to very gran-
ular “subtasks” with a big overhead. On the other hand, those routines need to be paral-
lelized in the library implementation. We use builtin library functions (usually with the name
<libname>_set_num_threads) to set the desired number of threads for both implementations.

Note that in order for the AOCL implementation to work properly, the libFLAME library
has to be built with the LAPACK2FLAME option enabled. Similarly, the OpenBLAS imple-
mentation requires the usage of the USE_THREAD=1 and USE_OPENMP=0 options when compiling.



52 Chapter 7. Implementation

7.6 The configuration script
The implementation contains a configuration script which automatically detects the gcc and
gfortran compilers, StarPU and OpenMP. Using the --numerical-lib option, one of the fol-
lowing numerical libraries/library sets can be linked:

Intel MKL – value MKL

AOCL (both libFLAME and BLIS have to be available) – value AOCL

OpenBLAS – value OpenBLAS

Arm Performance libraries – value ArmPL

When using the --numerical-lib option with one of these values, the script tries to detect
the selected library. If the library files are not present in one of the directories specified in
the LIBRARY_PATH environment variable or if the include files are not present in a location
specified in the C_INCLUDE_PATH variable, the script returns an error. If the library is found, its
implementations of the driver routines are then used instead of the builtin ones and its DPOTRF
implementation is run in the benchmarking utility (see Section 7.5). If the option is omitted,
the builtin implementations of the driver routines are used and only the custom implementations
are run in the benchmarking utility.

The used runtime systems can be specified with the --use-openmp and --use-starpu op-
tions. Both options may be used at once, but at least one of them has to be used, otherwise
the script returns an error. The script tries to detect the associated libraries and exits with
an error in case of a failure.

The user can also opt to build a static library by using the --build-static option. After
building, a file named libcholesky.a is produced as an artifact.

The directory where the artifacts will be installed can be specified with the --prefix option,
with the default directory being /usr/local.

7.6.1 Makefile
The implementation is built with the GNU make utility using the Makefile in the top-level
directory.

Available targets include:

all builds all artifacts (default target)

check runs the tests and prints their results

install installs the compiled libraries, header file and benchmarking utility into the directory
specified by --prefix (or /usr/local by default)

uninstall uninstalls the installed artifacts

clean removes the artifacts produced by building

distclean removes the artifacts produced by building and the files generated by the configuration
script

The installation procedure thus consists of running the configuration script with the desired
options and running make and subsequently make install. Optionally, make check may be run
to test the library before installation.
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Evaluation of results

8.1 Measuring performance in GFlop/s
When comparing the performance of several implementations of the same numerical routine,
the overall execution time (sometimes called the wall time) may be used as a performance
metric – the lower the wall time, the better the implementation (assuming that all of the im-
plementations are tested with the same set of inputs). It is, however, impractical to compare
implementations of different numerical operations using the execution time, because those oper-
ations may perform a different number of floating point operations.

To account for that difference, we may use the Flop/s metric, which is computed as follows:

Flop/s = floating point operations required to perform the numerical computation
wall time

Note that the number of floating point operations used in the numerator does not depend on
the algorithm used for the computation. Instead, we use the number of floating point operations
that have to be carried out in order to perform the computation – i.e., the number of operations
of the best known algorithm for the computation. For instance, we use 1

3n
3 + 1

2n
2 + 1

6n for
computations of the Cholesky decomposition, where n is the matrix size (see Subsection 4.1.1).

Using this metric, we may compare implementations of different numerical computations,
where higher values mean better performance. The values of Flop/s obtained on modern multi-
core processors are usually in the order of billions, which is why the Gflop/s metric calculated
as

Gflop/s = Flop/s
109

is used more often.

8.2 Performance evaluation
In this section, we examine the performance of the main Cholesky decomposition routine using
the benchmarking utility described in Section 7.5. All plots presented in this section were gen-
erated using the ggplot2 library of the R programming language. Each data point in a plot
represents an average value across 5 iterations. All tests apart from the ones in Subsection 8.2.4
have been run on all available CPU cores. Only the custom implementations using StarPU are
presented in this chapter, as the OpenMP custom implementations showed inferior performance.
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8.2.1 Used hardware
Performance of the Cholesky decomposition routine was evaluated on three types of multicore
compute nodes with different CPU architectures. All of the nodes are part of the IT4Innovations
National Supercomputing Center, which belongs to the Technical University of Ostrava.

The used compute nodes have the following specifications [30]:

1. Node of the Karolina supercomputer (without accelerators)

Processors: 2×AMD EPYC 7H12
Processor architecture: x86-64
Processor cores: 64 per processor (128 in total)
CPU frequency: 2.6GHz
Instruction set extensions: Streaming SIMD Extensions 4.2 (SSE4.2), Advanced Vector
Extensions 2 (AVX2)
Theoretical peak performance: 5324.8 Gflop/s

2. Node of the Barbora supercomputer (without accelerators)

Processors: 2×Intel Cascade Lake 6240
Processor architecture: x86-64
Processor cores: 18 per processor (36 in total)
CPU frequency: 2.6GHz
Instruction set extensions: SSE4.2, AVX2
Theoretical peak performance: 2995.2 Gflop/s

3. Complementary systems partition 1 node (Arm node)

Processors: 1×Fujitsu A64FX
Processor architecture: ARMv8.2-A
Processor cores: 48

CPU frequency: 2GHz
Instruction set extensions: Scalable Vector Extension (SVE)
Theoretical peak performance: 3072 Gflop/s (according to [31])

8.2.2 Block size benchmarking results
Figure 8.1 shows the performance of the custom blocked Cholesky decomposition routine for
different block sizes. All results were generated using the StarPU version of the routine on all
128 cores of the Karolina compute node with 10000× 10000 input matrices. Note that the Arm
Performance Libraries were left out, as they are only available on Arm-based processors [21].

Figure 8.2 examines the relationship between performance and block size for the custom
implementations using Arm Performance Libraries and OpenBLAS on the A64FX CPU, also
with input matrices of size 10000× 10000.

Both figures were generated with the PARALLEL_TRANSLATION translation method. The op-
timal block size is thus influenced by line sizes of various level cache memories on the processor,
among other factors.

The plots show the effects described in Section 6.4 – large block sizes lead to a low num-
ber of long tasks, which means less parallelization near the end (sometimes also the start) of
the program. On the other hand, small block sizes lead to many short tasks, which increases
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the overhead and, as a result, the overall execution time. We can see from Figure 8.1 that for
this matrix size, the tasks hit the right level of granularity for block sizes approximately between
400 and 600.

We will now focus on the implementation using MKL driver routines (the orange line in
Figure 8.1). The optimal block size for 10000 × 10000 matrices will likely be smaller than
the optimal block size for 20000×20000 matrices, as the overall number of blocks is proportional
to the square of the matrix size (assuming a fixed block size). In other words, smaller block
sizes tend to yield better performance for smaller matrices and larger block sizes usually perform
better on larger matrices. This phenomenon can be demonstrated on Figure 8.3, where we
compare the performance of custom implementation using StarPU and MKL driver routines
across varying matrix sizes (along the x axis) for different block sizes (represented by the colored
lines).

The effect that varying task granularities have on performance can also be shown on the traces.
The trace in Figure 8.4 was generated on one of the Karolina nodes using StarPU and MKL with
a 10000 × 10000 matrix with 200 × 200 blocks, limited to 36 CPU cores for readability. This
combination of input parameters leads to many short, rapidly changing tasks. We can compare
this behavior with the trace in Figure 8.5, which was generated with the same matrix size and core
count, but with 800 × 800 blocks. As we can see, the individual tasks have considerably longer
execution times, which causes the underutilization of CPU cores towards the end of the program.

Figure 8.1 Performance vs. block size plot for different custom implementations using StarPU and
routines from several numerical libraries. The performance was measured on a Karolina compute node
with 10000× 10000 input matrices. The PARALLEL_TRANSLATION translation method was used.
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Figure 8.2 Performance vs. block size plot for different custom implementations using StarPU and
routines from several numerical libraries. The performance was measured on the Arm node with 10000×
10000 input matrices. The PARALLEL_TRANSLATION translation method was used.
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Figure 8.3 Performance vs. matrix size plot for the custom implementation using StarPU and MKL
routines. The performance was measured on a Karolina compute node. The NO_TRANSLATION translation
method was used.

0

200

400

600

800

1000

1200

1400

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000

Matrix size

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Block size 300 400 500 600



8.2. Performance evaluation 57

Figure 8.4 Trace of the custom implementation using StarPU and MKL routines generated on
a Karolina compute node limited to 36 cores with a 10000 × 10000 input matrix and blocks of size
200× 200. The NO_TRANSLATION translation method was used.
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Figure 8.5 Trace of the custom implementation using StarPU and MKL routines generated on
a Karolina compute node limited to 36 cores with a 10000 × 10000 input matrix and blocks of size
800× 800. The NO_TRANSLATION translation method was used.
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8.2.3 Performance benchmarking results
In this section, we will compare the performance of individual implementations. Figure 8.6 shows
the performance on the Karolina compute nodes (with block sizes set to 500 for all three custom
implementations) and Figure 8.7 presents the same comparison of the Barbora compute nodes,
also with 500× 500 blocks.

In these benchmarks, we compare our StarPU implementation with calls to optimized driver
routines used by tasks with the parallel Cholesky routines from the same libraries.
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We can see that on both processors with the x86-64 architecture, the custom implementation
has the best results when linked with MKL routines, which is consistent with the fact that
the MKL implementation of DPOTRF yields the overall best performance on both processors.
The custom implementation reaches more than 95% of the performance of MKL DPOTRF for
some block sizes and on the Karolina node, it seems to perform well even on smaller matrices.

On the Complementary systems’ A64FX processor, the custom implementation using Arm
Performance Libraries driver routines shows a competitive performance for larger matrices, even
surpassing the Arm Performance Libraries implementation for 20000× 20000 matrices. The cus-
tom implementation does not yield a good performance for smaller matrices, but the performance
may be improved by using a smaller block size.

An interesting observation is that the maximum measured performances (in Gflop/s) are no-
ticeably lower than the theoretical peak performances on all three compute nodes. On the Barbora
and Karolina nodes, this might be partially explained by the relatively high-latency communi-
cation between the two CPUs that make up the compute node, as examined in Section 8.2.4.

Figure 8.9 compares the performance of the three different translation methods on a Karolina
compute node, using the StarPU custom implementation with MKL driver routines. It shows
that the presumed performance gain from localizing the blocks by scheme translation (which
may lead to a lower amount of cache misses with the use of an appropriate block size) has been
outweighed by the time it takes to perform the translation.

Figure 8.6 Performance vs. matrix size plot for several custom and library implementations. The per-
formance was measured on a Karolina compute node with blocks of size 500×500. The NO_TRANSLATION
translation method was used.
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Figure 8.7 Performance vs. matrix size plot for several custom and library implementations. The per-
formance was measured on a Barbora compute node with blocks of size 500× 500. The NO_TRANSLATION
translation method was used.
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Figure 8.8 Performance vs. matrix size plot for several custom and library implementations. The per-
formance was measured on the Arm node with blocks of size 1000×1000. The NO_TRANSLATION translation
method was used.
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Figure 8.9 Performance vs. matrix size plot for all translation methods for the custom implementation
using StarPU MKL routines. The performance was measured on a Karolina compute node with blocks
of size 500× 500.
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8.2.4 Parallelization benchmarking results

Figure 8.10 shows the relationship between performance and the number of processor cores that
we allow the runtime system to use (which is equivalent to the number of threads). Note that
the x axis of the figure is in logarithmic scale.

We can notice that the performance improves with a higher number of cores, up until the 64
core threshold. That number is precisely the number of cores of one of the two AMD EPYC
7H12 processors which make up the compute node, so the slowdown from 64 to 128 cores might
be explained by the need for the CPUs to communicate with each other. Inter-processor com-
munication naturally has a higher latency than communication between cores on the same CPU.
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Figure 8.10 Performance vs. matrix size plot for the custom implementation using StarPU and MKL
routines. The performance was measured on a Karolina compute node with 10000×10000 input matrices
and blocks of size 500× 500. The PARALLEL_TRANSLATION translation method was used.
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Conclusions

The goal of this thesis was to implement the blocked Cholesky decomposition algorithm using
a task-based runtime system, test the implementation and evaluate its performance compared to
other well known numerical libraries for linear algebra. Along the main algorithm, the implemen-
tation also consisted of three Level 3 BLAS routines (DGEMM, DSYRK and DTRSM) and the low-level
LAPACK routine POTF2, which implements the unblocked algorithm for Cholesky decomposition.

In the implementation, users are able to select the utilized runtime systems (OpenMP and/or
StarPU) via a configuration script. They can then also select a numerical library that provides
the optimized implementations for the four subroutines mentioned above. In case that the user
does not have access to any of the libraries or they choose not to use them, they can also opt for
the algorithm to utilize the builtin implementations of those subroutines. They are, however, not
optimized, and their performance will thus not compare well with their optimized counterparts.

All of the variants for both runtime systems and all numerical libraries were tested using
slightly modified LAPACK test routines.

The performance of the implementation was evaluated in comparison to the Arm Performance
Libraries, MKL, AOCL and OpenBLAS libraries/library sets on three different compute nodes
– two of them with x86-64 processors (AMD EPYC 7H12 and Intel Cascade Lake 6240) and
the third one with an ARMv8 processor (Fujitsu A64FX). On both of the x86-64 processors,
the StarPU implementation performs best with MKL driver routines, where it reaches more
than 95% of MKL’s performance for certain matrix sizes. On the A64FX processor, the StarPU
implementation using driver routines from Arm Performance Libraries performs well for large
matrices, even outperforming the Arm Performance Libraries DPOTRF implementation for one
specific matrix size.

In the thesis, a custom proof of correctness was provided for the unblocked algorithm and
a custom proof inspired by [3] was formulated for the correctness of the blocked algorithm as
well.

The main area of possible improvement is the implementation of the four driver routines.
The implementation could be rewritten in order to utilize features of modern processors (such
as SSE/AVX vector register instructions) or some amount of parallelization. The behavior of
the implementation could also be studied more thoroughly so that the algorithm could select
the optimal block size automatically depending on the matrix size, the CPU type/architecture
and the available number of cores.

The main Cholesky decomposition routines could be extended to a full parallelized alternative
to the LAPACK routine DPOTRF. To accomplish that, the routines would have to:

1. Provide the functionality to calculate the upper triangular variant of the Cholesky decompo-
sition (A = UTU)

2. Support input matrices whose leading dimension is greater than their size
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3. Indicate invalid parameter values by returning non-zero integer values

4. Indicate that the input matrix is not symmetric positive definite, also by returning non-zero
integer values

The performance of the blocked Cholesky decomposition routines could also be improved by
experimenting with different schedulers or task priorities.

The knowledge of the concepts described in this thesis (block algorithm formulation, working
with the LAPACK library and the BLAS interface, fundamentals of task-based programming,
testing and evaluation of numerical routines) could be utilized to provide implementations of
other blocked numerical algorithms, such as the LU and QR factorizations or the SVD.
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Attachment structure

README.md ................................... description of the structure of the attachment
impl............................directory containing the source code of the implementation
thesis..........................................directory containing the text of this thesis

src...............directory containing the source code of this thesis in the LATEX format
thesis.pdf ....................................... text of this thesis in the PDF format
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