
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Detection and Reading Number Plates in Photos

Patrik Vodila

Ing. Miroslav Čepek, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2022/2023

Instructions

Review literature dealing with identification and reading of number plates in pictures.

After consultation with the supervisor choose datasets of pictures with number plates

(for example, from Kaggle) and test selected techniques to assess their performance on

selected datasets. Explore ways to improve the performance of the selected techniques.

Also, assess if the selected techniques are applicable in different use-cases (eg. form

reading).

Electronically approved by Ing. Karel Klouda, Ph.D. on 24 February 2022 in Prague.

Bachelor’s thesis

DETECTION AND
READING NUMBER
PLATES IN PHOTOS

Patrik Vodila

Faculty of Information Technology
Katedra teoretické informatiky
Supervisor: Ing. Miroslav Čepek, Ph.D.
May 12, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Patrik Vodila. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Vodila Patrik. Detection and Reading Number Plates in Photos. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments vii

Declaration viii

Abstrakt ix

List of abbreviations x

1 Introduction 1

2 Analysis 3
2.1 Number plates . 3

2.1.1 Number plate naming convention across the world 3
2.1.2 Various number plates across the world 3
2.1.3 Czech registration plate . 6
2.1.4 Additional disruptive elements . 6
2.1.5 Problem conclusion . 9

2.2 AI, ML, ANN, and DL . 9
2.2.1 Artificial intelligence . 10
2.2.2 Machine learning . 10
2.2.3 Artificial neural network . 10
2.2.4 Deep learning . 11
2.2.5 Computer vision . 11

2.3 Gaussian distribution in 2D . 11

3 Technologies 13
3.1 Programming language . 13
3.2 Object detector . 13

3.2.1 Versioning . 14
3.2.2 YOLO Model . 14
3.2.3 Compertion . 14

3.3 TensorFlow . 16
3.4 Image processing library . 16
3.5 Tesseract . 16
3.6 Python-tesseract . 16

4 Image processing 17
4.1 Image blurring . 17

4.1.1 Gaussian blur . 17
4.2 Thresholding . 19

4.2.1 Adaptive Thresholding . 19
4.3 Finding contours . 20

iii

iv Contents

5 Implementation 21
5.1 Implementation steps . 21
5.2 Dataset . 25
5.3 Results . 26
5.4 Different use-cases . 26

6 Conclusion 29

A Results 31

Contents of the media 37

List of Figures

2.1 Example of different sizes[2] . 4
2.2 License plate in Nepal[3] . 4
2.3 Registration plate in Iran[4] . 4
2.4 Registration plate in Iraq[5] . 5
2.5 Registration plates in Europe from 2020[6] . 5
2.6 Alphanumeric characters with the proper font used in the Czech registration

plates[7, p. 59] . 6
2.7 Czech registration plate layout 1 with different sizes[7, p. 59] 7
2.8 Czech registration plate layout 2[7] . 8
2.9 Czech registration plate layout 3[7] . 8
2.10 Czech registration plate layout 4[7] . 8
2.11 Czech registration plate layout 5[7] . 8
2.12 Czech registration plate layout 6[7] . 8
2.13 Czech registration plate layout 7[7] . 8
2.14 AI, ML, and DL diagram . 9
2.15 ANN diagram . 10
2.16 Gaussian blur . 12

3.1 The Model of YOLO[20] . 14
3.2 Comparison of YOLOv4[23] . 15

4.1 Gaussian blur . 18
4.2 Example of global and local thresholding[35] . 19

5.1 Program flow . 22
5.2 Located number plate . 22
5.3 Grayscale number plate . 23
5.4 Blurred number plate . 23
5.5 Binarized number plate . 23
5.6 All detected contours on color number plate . 24
5.7 All detected contours on binarized number plate 24
5.8 Filtered contours on color number plate . 24
5.9 Filtered contours on binarized number plate . 24
5.10 Symbols from number plate . 24
5.11 Final result . 25
5.12 Different use-case . 27

v

vi List of Tables

List of Tables

5.1 Results for EU_dataset . 26
5.2 Results for External_dataset . 26

I would like to thank my supervisor, Ing. Miroslav Čepek, Ph.D.,
for the opportunity to write such exciting work. I appreciate your
willingness to help to achieve this ultimate goal.
I want to thank the Faculty of Information Technology CTU
in Prague and all employees of this faculty for their valuable guid-
ance throw all these hardworking years.
Furthermore, I would like to thank my family and my loved ones for
all the support needed throw the study.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Praze on May 12, 2022 .

viii

Abstrakt

Práce se zabývá automatickým rozpoznáváním registračních značek vozidel. Výsledkem této
práce je program, který je schopen rozpoznávat text na jednořádkových registračních značkách s
tmavým textem na světlém pozadí. Výstupem programu je fotografie s označenými všemi deteko-
vanými registračními značkami i s rozpoznaným textem. Program je napsán v programovacím
jazyce Python a používá YOLO verzi 4 implementovanou za pomoci TensorFlow pro lokalizaci
značky a Tesseract pro rozpoznávání znaků. Použitím knihovny OpenCV moje implementace
zlepšila počátečné výsledky používající pouze Tesseract OCR a YOLO. Zlepšení správného
rozpoznávání bylo více než desetkrát lepší. Správné rozpoznání značek dosáhlo až do 31,5%.
Našel jsem také více případů použití, kde se implementace osvědčila.

Klíčová slova umělá inteligence, počítačové vidění, strojové učení, rozpoznávání objektů,
optické rozpoznávání znaků, automatizované čtení registračních značek vozidel

Abstract

The work deals with the automatic recognition of vehicle number plates. The result of this work
is a program that is able to recognize text on a single-line number plate with dark text on a light
background. The output of the program is an image marked with all detected number plates and
with recognized text. The program is written in Python and uses YOLO version 4 implemented
using TensorFlow for number plate localization and Tesseract for character recognition. By using
the OpenCV library, my implementation improved the results initially, using only Tesseract OCR
and YOLO. The improvement in the correct recognitions was more than ten times better. Correct
number plate recognition reached up to 31.5%. I have also found more applicable use-cases where
the implementation proved successful.

Keywords artificial intelligence, computer vision, machine learning, object recognition, optical
character recognition, automatic license plate recognition

ix

List of abbreviations

AI Artificial Intelligence
ALPR Automatic License Plate Recognition
ANN Artificial Neural Network

ANPR Automatic Number Plate Recognition
CNN Convolutional Neural Network

CV Computer Vision
DL Deep Learning
EU European Union

GPU Graphics Processing Unit
ML Machine Learning

YOLO You Only Look Once

x

Chapter 1

Introduction

We live in a time when the majority of citizens of well-developed countries want to own a vehicle,
and many of them own more than one. This fact can cause a number of problems that different
regulations must address. For example, every commonly used motor vehicle must have a number
plate. Number plates are used to identify and distinguish vehicles.

In the olden days, only people could identify a vehicle. As we well know, people make
mistakes. Nowadays, we no longer need to rely on human intelligence to recognize text on the
number plate. We have created machines to do so.

In the 21st Century, we have seen a major improvement in information technology. Higher
quality cameras, more powerful computers, and more optimal processing helped us use these
programs in multiple use-cases, such as number plate recognition.

Automatic number plate recognition is already widely used. Many police officers now have
access to a spectrum of valuable devices that helps them identify vehicles with a camera. There
are also many parking lots where the computer allows us into the parking lot according to the
vehicle number plate within seconds.

Although it is clear that the issue of number plate recognition is not new, and this problem
is already solved by many commercial and non-commercial solutions, this topic is of particular
interest to me because it deals with computer vision. And with the growing number of images,
image processing is a rising field of computer vision.

My goal is to create an application that will recognize the text on the number plate. My
program will recognize the most widely used number plate type: one line of dark text (usually
black or dark blue) with light background (usually white or yellow).

Before I reach the key objective of creating the application, I must first review the literature
dealing with automatic number plate recognition in images. Then I will choose an image dataset
with a number plate. I will also analyze available techniques useful for my solution.

After a successful implementation, I will test the application on the selected dataset. And
finally, I will try to use my application for other use-cases.

1

2 Introduction

Chapter 2

Analysis

This chapter will analyze the problem of automatic number plate recognition. Next, I will
define the necessary terms in this section, with whom I will be working throughout the whole
thesis. I will also try to show some examples of number plates across the world. I will also
try to go through the theory briefly.

2.1 Number plates
This chapter will look at the ANPR (automatic number plate recognition) problem and the
various limitations and difficulties I have faced while creating my implementation. Next, I will
focus on the diversity of number plate names in different parts of the world. Later, I will go
through the legislation and other international agreements which govern the Czech Republic.
Then I will go through specific symbols in the number plate that can cause problems when
trying to solve ANPR. Finally, I will focus on the types of number plates that will be recognized
with my implementation.

2.1.1 Number plate naming convention across the world
Number plate is “a sign on a road vehicle that shows its registration number”[1]. Usually, the
plate has information such as registration number, region identification, information about the
last emission control, and the last technical inspection of the vehicle.

Although several countries use a similar type of vehicle identification, the naming convention
between these countries is different. In the United Kingdom, the phrase number plate is used.
For the United States of America, the license plate is being used. Furthermore, in the case of
European countries, registration plate is often used.

For this reason, various terms and abbreviations are used in different parts of the world. For
example, the acronym ANPR (automatic number plate recognition) is utilized in the United
Kingdom. And a similar abbreviation with the equivalent meaning ALPR (automatic license
plate recognition) is used in the United States of America.

Nevertheless, the meaning remains the same.

2.1.2 Various number plates across the world
There are a large number of different layouts and types of number plates. An example of different
sizes used worldwide are in Figure 2.1.

3

4 Analysis

Figure 2.1 Example of different sizes[2]

Figure 2.2 License plate in Nepal[3]

A certain number plate is occasionally visibly divided into sections separated by a line, for
example, in Figures 2.3, 2.4, and 2.5. This can help recognize a specific type of number plate.
However, in my implementation, I am unable to take advantage of this line separation.

Also, for example, in Figures 2.2, 2.3, 2.4, and 2.5, different character sets are being used.
Adding support for more characters would hurt the performance because every new character
allowed on the number plate increases the possibility of error.

There are also number plates with multi-line designs, often combined with different individual
characters’ sizes, for example, in Figures 2.3 and 2.5.

Unfortunately, I will not be able to recognize such a large number of tags in my implemen-
tation. Therefore in Section 2.1.5, I will define a portion of number plates that I will try to
recognize with the greatest possible accuracy.

I have even more examples of Czech registration plates in Section 2.1.3.

Figure 2.3 Registration plate in Iran[4]

Number plates 5

Figure 2.4 Registration plate in Iraq[5]

Figure 2.5 Registration plates in Europe from 2020[6]

6 Analysis

2.1.3 Czech registration plate
I will take a closer look at the registration plates in the Czech Republic. I will take data from
the currently active Decree [7]. The Czech Republic, as a European Union Member State, must
also meet the requirements of the EU. For example, Legislation[8].

The Czech Republic has a legally defined range of alphanumeric characters that can be used
on a registration plate. These are numbers from “0” to “9” and some capital letters from the
Czech alphabet. Letters “G”, “CH”, “O”, “Q”, and W are not listed. This set of characters is
defined only by the government of the Czech Republic and therefore does not apply worldwide.
For example, the Slovak Republic has the character O allowed but has a defined way to separate
the letter “O” from the number “0”. In Figure 2.6, the allowed alphanumeric characters and
their font is to be seen.

Figure 2.6 Alphanumeric characters with the proper font used in the Czech registration plates[7,
p. 59]

The Czech Republic also has different layouts. One categorization is by size. The Czech
Republic nowadays uses the following six sizes of the registration plate in use:

520 x 110 mm

340 x 200 mm

280 x 200 mm

320 x 160mm

200 x 160 mm

80 x 100 mm

These sizes can be seen in Figure 2.7.
The second division is by color and position. There are seven different layouts in use that

can be seen in Figures 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, and 2.13.

2.1.4 Additional disruptive elements
Unfortunately, the difficulty of ANPR problems does not end there. In addition to poor image
quality, noise, and sludge, there are additional disruptive elements. Other factors that can make
ANPR a challenging task are stickers, national or regional symbols, and other elements of this
nature. All these elements are sometimes located on the number plate. The problem is with the
fact that the program is unable to filter out everything. Suppose the implementation is not able
to filter out all contours that are not part of the symbols used for the vehicle identification. The
result of the program for the number plate can have extra symbols, and therefore identification
will not be correct.

Number plates 7

Figure 2.7 Czech registration plate layout 1 with different sizes[7, p. 59]

8 Analysis

Figure 2.8 Czech registration plate layout 2[7]

Figure 2.9 Czech registration plate layout 3[7]

Figure 2.10 Czech registration plate layout 4[7]

Figure 2.11 Czech registration plate layout 5[7]

Figure 2.12 Czech registration plate layout 6[7]

Figure 2.13 Czech registration plate layout 7[7]

AI, ML, ANN, and DL 9

Another fact that is very harmful to ANPR is using the number plate external attachment
to secure the number plate in place. Many times driver tries to secure the number plate by zip
ties. The legality of these actions is questionable because recognition using specialized cameras
that use the reflexivity of number plates is quite impaired.

2.1.5 Problem conclusion
Every state in the world has the right to create its own rules and define its own way of identifying
vehicles. Even countries belonging to the European Union have their own rules, such as the
positioning of characters on the number plate, preset of characters being used on the number
plate, and font used for the symbols.

Among other things, most states have several types of number plates and therefore creating
ANPR for all cases with an almost perfect detection rate becomes an impossible task.

Ideally, ANPR is specified for a special type of number plate in a particular region.
My solution will focus on recognizing number plates with a one-line design where there is

dark text on a light background.

2.2 AI, ML, ANN, and DL

In today’s world, the terms: Artificial intelligence, Machine learning, Artificial neural network,
and Deep learning are often referred to as modern things, often used as the selling point of a
product. Although these terms are considered modern, they were formed much sooner than many
think. The first mention dates back to the summer of 1956 by John McCarthy at a conference.[9]

The opinion of most experts and researchers is that ML is part AI and DL is part ML. I have
a diagram presenting this relation in Figure 2.14.

Figure 2.14 Artificial intelligence, Machine learning, and Deep learning diagram[10]

Nevertheless, since then, the minority opinion of researchers from ML has also emerged. They
consider ML as a separate field with links to AI. Many of them argue that certain parts of ML
can be performed without any AI knowledge.

The most common problem with these terms is their mutual confusion. Therefore, let me go
through the definitions.

10 Analysis

2.2.1 Artificial intelligence
John McCarthy wrote in his book “WHAT IS ARTIFICIAL INTELLIGENCE?”: “It is the
science and engineering of making intelligent machines, especially intelligent computer programs.
It is related to the similar task of using computers to understand human intelligence, but AI
does not have to confine itself to methods that are biologically observable.”[11, p. 2]

However, a simpler and shorter definition for artificial intelligence is often used. It is a field
of computer science, where computers try to do tasks that are attributed to work by intelligent
beings.

2.2.2 Machine learning
Exactly the way people have the ability to learn, there is an effort to teach computers how to
learn. Therefore, a branch of AI focused on using algorithms to allow computers to get knowledge
from available data was created. This branch is called machine learning.[12]

2.2.3 Artificial neural network
The human brain works with the use of neurons. An idea to imitate this to work for computers
is called an Artificial neural network. The main idea is to have many neurons communicate with
each other, resulting in an educated decision.[13]

In the case of ANN, it has a collection of connected units called Artificial neurons. Usually,
those neurons are distributed into multiple layers. There are three types of layers: input, output,
and hidden.

The layer that receives input data is called the input layer. The layer that produces the final
result is called the output layer. The rest of the layers between input and output layers are called
hidden layers. An ANN can have multiple hidden layers.

An example of ANN with two hidden layers is in Figure 2.15.

Figure 2.15 Artificial neural network diagram with two hidden layers[14]

Gaussian distribution in 2D 11

2.2.3.1 Convolutional neural network
The ANNs are commonly divided into categories according to which mathematical operations
are being used. Convolution is one of the most commonly used operations in Computer vision.

The ANNs with at least one convolution operator are called Convolutional neural networks.
The layers of neurons that use convolution are called Convolutional layers.

2.2.4 Deep learning
An Artificial neural network with multiple hidden layers is often referred to as a Deep neural
network. The advantage of these Deep neural networks is that no data pre-processing is of-
ten required, which would otherwise be necessary. Nevertheless, this advantage does not come
without a price. The price of this advantage is that for the same result, Deep neural network
training needs more significant amount of data compared to training ANN with only a single
hidden layer.

A branch of machine learning that takes care of improving results for Deep neural networks
is called Deep learning.

2.2.5 Computer vision
Computer vision is a field of AI, focuses on information inquiring from any digital visual input,
for example, photos and videos. “If AI enables computers to think, computer vision enables
them to see, observe and understand.”[15]

The main goal of computer vision is to supplement the human effort needed to detect the
problem according to the picture, identify objects, and more.

Computers are already able to outperform people in some tasks in terms of speed and accu-
racy.

According to the Report [16] form 2021, in 2020 computer vision market size was valued at
USD 11.32 billion and is expected to have a compound annual growth rate of 7.3% from 2021 to
2028.

2.3 Gaussian distribution in 2D
First, let me go through what Gaussian distribution is. Gaussian distribution, is also known
as the normal distribution, is a “continuous probability distribution”[17] function for a random
variable. Gaussian distribution is often used in statistics but has wider use even in Computer
vision.

The general use Gaussian distribution function is defined:

G(x) = 1
σ
√
2π
e
−
(
(x−µ)2

2σ2

)
The parameter µ is the mean of the distribution, x is the random variable, and σ is the

parameter of the normal distribution. The σ2 is the variance of the distribution. The π refers
to the mathematical constant approximately equal to 3.141592.

In my case, the mean is equal to zero. Therefore it can be simplified to:

G(x) = 1
σ
√
2π
e
−
(

x2

2σ2

)

12 Analysis

In the case of two random variables, I get this formula:

G(x, y) = 1
2πσ2

e
−
(
x2+y2

2σ2

)
The expression can be rewritten:

1
2πσ2

e
−
(
x2+y2

2σ2

)
= 1

σ
√
2π
e
−
(

x2

2σ2

)
1

σ
√
2π
e
−
(

y2

2σ2

)
The final result of this expression is as follows:

G(x, y) = 1
σ
√
2π
e
−
(

x2

2σ2

)
1

σ
√
2π
e
−
(

y2

2σ2

)
= G(x)G(y)

Furthermore, instead of using complex calculations for normal distributions with two random
variables, two separate normal distributions can be used. In our case, even each of these distri-
butions may have a different parameter σ.

The values for such a Gaussian distribution in 2D can be used for applications in image
processing.

The Gaussian distribution is well known for the shape called “bell-shaped” curve. In Fig-
ure 2.16 is the visualization of why this nickname was utilized.
[18]

Figure 2.16 2D Gaussian distribution[18]

Chapter 3

Technologies

This chapter will give all the essential information about the technologies and libraries used
in this bachelor’s thesis.

3.1 Programming language
The ANPR is a problem in a field of AI called Computer vision. For more information about
computer vision, go to Section 2.2.5. Mostly recommended programming languages for CV are
C++ and Python.

Experts recommend Python as a programming language from the following reasons: [19]

Easy to use

Most used programming language for CV

Excellent documentation

Good debugging and visualization tools

In my experience, Python is a better programming language for this task. Therefore in my
implementation, I will be using Python in version 3.7.

3.2 Object detector
Many object detectors are used. Many of them focus on getting the best results possible. These
are some of them: R-CNN, Fast R-CNN, Faster R-CNN, cascade R-CNN, Single Shot MultiBox
Detector, Single-Shot Refinement Neural Network, and more.

Although accuracy is an important parameter, someone on the street who wants to recognize
a number plate will not have the ability to use the power of a supercomputer. Therefore, I was
looking for something for my implementation that would consider both accuracy and speed. The
best match was the object detector You Only Look Once.

YOLO is a Deep Neural Network with 26 layers, of which 24 are convolutional. The main
goal of this project was to create an ANN that would be able to detect objects in real-time.
Over time, with some improvements and newer versions, YOLO is able to compete with the best
current models.

13

14 Technologies

3.2.1 Versioning
As with most of the great tools, many try to adapt them for their suite. This is what happened
with YOLO, and therefore one simply gets lost among the dozens of YOLO versions.

I have decided to use the primary branch of YOLO. The history of this branch is as follows:
YOLO from 2015 [20], YOLO v2 from 2016 [21], YOLO v3 from 2018 [22], and finally, YOLO
v4 from 2020 [23], which is still being well maintained at the time of this writing. Every new
version was able to come with improvements. Some focus on accuracy and some speed. But the
idea is still the same as the first version.

3.2.2 YOLO Model
YOLO divides the input image into an S x S grid. Where S is the size of the input layer.
Each grid cell predicts bounding boxes and a confidence score for those bounding boxes. Each
bounding cell predicts for every class of object we are detecting the probability of the object
being in the bounding box. Figure 3.1 shows the process.[20]

Figure 3.1 The Model of YOLO[20]

In my implementation, I will work with size S equal to 416, and my number of classes
is one since I am only detecting number plates. I also decided to use an implementation in
TensorFlow. This implementation allows users to use this library not only for desktop computers
with dedicated GPU but with some limitations. It can run on devices like smartphones.

3.2.3 Compertion
Figure 3.2 is the comparison of YOLOv4 with other solutions. MS Common Objects in context
is used as a validation dataset. A significant increase in precision is shown over a single version.

Object detector 15

Figure 3.2 Comparison of YOLOv4[23]

16 Technologies

3.3 TensorFlow
Among many beginners in AI and especially ML, one of the most popular libraries is TensorFlow.
This library makes sure that implementing complex or straightforward ANNs is easy to make.
Description from official Github website [24]:

“TensorFlow is an end-to-end open-source platform for machine learning. It has a compre-
hensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push
the state-of-the-art in ML and developers easily build and deploy ML-powered applications.”

I will be using this platform as the backbone for my computer vision implementation.

3.4 Image processing library
I will be using the OpenCV library for image processing. Where Open stands for open-source
and CV stands for Computer Vision. As the name suggests, this is an open-source library for
use on Computer Vision. This library is available in several programming languages, including
Python.

The library can boast more than 2500 optimized state-of-the-art algorithms for computer
vision. As well as algorithms for machine learning.[25]

Some of to features I will be using are image resizing, changing between different color models
in the image, blurring, thresholding, and more.

The significant number of users naturally creates a big community with many solutions to
every possible problem.

3.5 Tesseract
“Tesseract is ope-source optical character recognition tool. Tesseract has support for Unicode

and can recognize words and characters for more than 120 languages.” [26]
Tesseract’s most vital point is the support of individual languages and their words. Tesseract

supports multiple detection modes. Many of them are dedicated to detecting larger blocks of
text in specific languages.

Tessecat is a massive and robust tool that tries to do all the work. From line detection and
language detection to trying to find individual text characters.[27]

AlthoughTesseract is a powerful tool. Tesseract documentation has a dedicated page on how
to improve the result. This page will be my primary source of ideas for improvements. Page is
available from[28].

3.6 Python-tesseract
Python-tesseract is a Python library for optical character recognition. Python-tesseract is only
a wrapper for Tesseract OCR. The pre-requirement is to have the Tesseract OCR installed and
have its path in the PATH environment variable. Depending on the Operating system, installing
“tessconfigs” and “configs” may be needed. Refer to the library documentation.[29]

Chapter 4

Image processing

This chapter will describe different algorithms used in our implementation as part of the image
processing. I will also describe the mathematics and formulas behind those algorithms.

4.1 Image blurring
Image blurring is an often-used effect in image processing. If I want to draw attention to some-
thing, often image blurring is used. This effect causes a specific object to lose a clear and sharp
shape. People are used to focusing their view on the sharpest things in the picture, and therefore
it can be used to redirect the viewer’s viewpoint. Nevertheless, image blurring is also helpful for
other use-cases.

I won’t be using image blurring to redirect the viewer’s viewpoint. In my case, I will use
blurring to reduce the noise in the image. Nighttime images can have decreased quality, and
therefore the number of disturbing particles that I will want to get rid of will increase. Therefore,
our goal of blurring will be to create a picture with a minimal number of disturbing particles
while not losing the accuracy of the characters on the number plate.

I had different types of image blurring to choose from. For example: Average blurring, Median
blurring, Bilateral filtering, and Gaussian blurring. After several attempts in combination with
various thresholding more in Section 4.2. I have achieved the best results with the use of Gaussian
blur.

Average blurring is a technique where the center pixel is replaced by averaging all surrounding
pixels. In contrast, Gaussian blurring is a weighted average. Values are weighted by the Gaussian
distribution in 2D.[30, pp. 86-88] More about the Gaussian distribution is in Section 2.3.

4.1.1 Gaussian blur
Gaussian blur (also known as Gaussian smoothing) is an image blurring technique that simulates
the “effect that of viewing the image through a translucent screen”[31].

Gaussian blur is often used as a pre-processing step by Computer Vision Engineers. “If you
take a photo in low light, and the resulting image has a lot of noise. Gaussian blur can mute
that noise.”[32]

In my case, it helps with low light photos as well as with different types of sludge on the
number plate. Another benefit of Gaussian blur is that it can help fill possible noise. This
noise can cause symbols to be divided into several parts, which could cause a character not to
be recognized as one large enough piece for automatic character recognition. Section 4.3 will
describe more about searching for characters and their contours.

17

18 Image processing

In the code of my implementation, I am using the library OpenCV for image blurring. More
information about the library is in Section 3.4.

This library has implemented the function GaussianBlur with main parameters src - the
input image to be blurred, ksize - the size of the square area of the pixel to calculate its value,
sigmaX and sigmaY - the parameter for Gaussian distribution for x and y coordinates.[33]

The result of the blurring techniques for the parameter ksize = StDev can be seen in Fig-
ure 4.1.

Figure 4.1 Gaussian blur with ksize parameter equal to 3 and 10[34]

Thresholding 19

4.2 Thresholding
Another image processing method that is widely used in Computer vision is thresholding. The
basic idea is to create a binary image using a threshold value. The pixel below the threshold
value is set to be zero. And the pixel above the value is set to be a positive number, usually one.
Sometimes the inverted result is used instead. This process is called binarization. It is essential
to differentiate between grayscale images and binarized images. A grayscale image is an image
with colors ranging from black to white. In the case of the binarized image, there are only two
values. These values are usually shown in pictures in white and black colors. In many cases, the
image is first reduced to the grayscale image before binarization.

There are a few methods for obtaining these binarized images. The simplest method is
Simple thresholding, is also known as Global thresholding. This type of thresholding is a simple
comparison applied to every pixel. Although this method works well on scenes with low noise
and good lighting conditions, it is not sufficient for use in my implementation. Another common
method used for thresholding is Otsu’s method. This method belongs to the so-called global
thresholding methods. However, the global thresholding does not solve the problem of poor
lighting and shadows in the photo. Therefore it is not ideal for my use.

The difference between local and global thresholding can be seen in Figure 4.2.

Figure 4.2 Example of global and local thresholding[35]

I achieved the best results using the Adaptive Thresholding methods. More about Adaptive
Thresholding methods in Section 4.2.1.

4.2.1 Adaptive Thresholding
This method also has a different activation method. I will only pay attention to the Gaussian
method because this gives, according to my experience, the best results.

This method is as good for analyzing sharp edges that are often in the text. Conversely, a
problem can occur with large objects. If parameters are not selected correctly, only the object’s
edge can be visible.

My program code uses the Adaptive Thresholding implementation with a Gaussian activation
method in the OpenCV library. More info about the library is in Section 3.4.

This library has implemented the function adaptiveThreshold with main parameters: src -
the input image where to apply the thresholding,maxValue - new value for pixel where condition
is satisfied,adaptiveMethod - the type of activation method, and blockSize - size of the square
of pixel used to calculate the threshold value.

20 Image processing

4.3 Finding contours
Contour is “curve joining all the continuous points”[36]. For finding all the contours in a binary
image I am using Topological Analysis by Border Following by Satoshi Suzuki [37].

My program code uses the Finding Conoutor implementation from the OpenCV library. More
info about the library is in Section 3.4.

This library has implemented the function findContours with the main parameter: image
- the input binarize image where the contours can be detected.

The function result is a list of all detected contours in the image.

Chapter 5

Implementation

This chapter will define every step of my implementation, the dataset used for evaluating the
result as well a reason for the results of my implementation.

My implementation builds on top of a project that implements Yolo in version 4 with the help
of TensorFlow. This implementation is open-source under The Massachusetts Institute of Tech-
nology License. The YOLO implementation is by hunglc007 and is available at [38]. Also, my
implementation uses a pre-trained model. I have the model from the author, theAIGuysCode,
and it is available at the address [39]. The current implementation from this author is unfortu-
nately not functional, but I also thank him for some inspiration for my implementation.

5.1 Implementation steps

I was able to divide my implementation into eleven consecutive steps. The individual steps can
be seen in Figure 5.1.

The first step of my implementation is detecting all number plates in the image using YOLO
version 4. The result is a list of found objects, the probability of belonging to the class of objects,
and their position. An example can be seen in Figure 5.2.

From my experience, the YOLO model I used did not have any false positive objects with a
probability of over 25%. Therefore, the next step is selecting the largest detected object for the
OCR.

In the next step, I will try to prepare a number plate for recognition for Tesseract. The ideal
font height for Tesseract is 20 pixels. Since my implementation aims to recognize only one-line
tags, the next step is to change the number plate size to the desired size. From my experience,
the image with the detected number plate is usually twice as big as the symbols. Therefore new
height will be 40 pixels tall, and the width will be changed proportionally. This resizing will help
us standardize the data for the following steps.

I know that it is most difficult for a Tesseract to create a binary image so I will help it.
However, before I can binarize the image, I have to change it to the grayscale image first. The
result of this step is visible in Figure 5.3.

At the moment, I still have noise to remove. Therefore my next step will try to eliminate the
noise in the image. The ideal way to eliminate this noise is to use Gaussian Blur. The result of
this step is visible in Figure 5.4.

At this point, I got rid of most of the noise, so the image is ready for the next step.

21

22 Implementation

Figure 5.1 Program flow

Figure 5.2 Located number plate

Implementation steps 23

Figure 5.3 Grayscale number plate

Figure 5.4 Blurred number plate

I can finally binarize the image. I will use Adaptive thresholding with the Gaussian activation
method for image binarization. As a result of this step, I have a binary image. The result of this
step is visible in Figure 5.5.

Nevertheless, my work is not over here. There are still many parts that do not belong to the
symbols in these pictures. Therefore, the next step is to detect all contours in the image. I get
an extensive contour list where not everything is part of a symbol in this step. The result of this
step is visible in Figure 5.6 and 5.7.

In the next step, I will try to filter out all contours that do not have the potential to be a
symbol. For this step, I can use the color if the original image is colorful, or I can use the size of
the contour. In my implementation, I have both of these examples. I will eliminate parts with
the logo of the European Union. I will eliminate objects that do not resemble a letter in size or
shape. The result of this step is visible in Figure 5.8 and 5.9.

Next, I will prepare these detected symbols for our OCR by copying the white contours on
the black background. The result of this step is visible in Figure 5.10.

I have done everything so that Tesseract OCR can achieve the best possible results.

Therefore, the next step is to call the Tesseract library with a single-line reading mode to
detect all characters of the alphabet and all numbers.

The last step is to write the detected character on the original image where I already have
the number plate detection shown. The final result is in Figure 5.11.

Figure 5.5 Binarized number plate

24 Implementation

Figure 5.6 All detected contours on color number plate

Figure 5.7 All detected contours on binarized number plate

Figure 5.8 Filtered contours on color number plate

Figure 5.9 Filtered contours on binarized number plate

Figure 5.10 Symbols from number plate

Dataset 25

Figure 5.11 Final result

5.2 Dataset

I will use two different datasets to evaluate the results.
The first dataset is freely available and published by OpenALPR to evaluate results from any

ANPR system. I will use the European part of this dataset. This dataset is available at [40].
The dataset has color photos with various number plates, both current and some no longer

in use. The size and quality vary in the images. There are images in size 2048 x 1536 to the
pictures with the size 480 x 360. This dataset also contains a reference result. I will refer to this
dataset as EU_dataset.

I managed to get the second dataset from the private company “Villa Pro spoločnosť s ručením
obmedzeným” based in Slovakia. This dataset is from a parking lot in Slovakia where a special
camera is used. This company has years of experience using ALPR cameras. The cameras are set
up precisely so that their software has the best possible results. The shots from the camera are
unfortunately not of the best quality. These are 835 x 455 photos embedded in a 1280 x 720 file
for support from their software. Another feature of these photos is that they are black and white.
The element of reflexivity of the number plates is used. Unfortunately, in my case, the object
detector for the number plate is trained on the dataset with colors. Images from this camera
are often giving different results than standard cameras, and therefore my object detection tool
is not able to recognize the number plate. Also, the dataset contains a large number of Slovak
number plates for which Tesseract is unable to identify the character ‘O’ due to the specific font
used. I will refer to this dataset as External_dataset.

26 Implementation

5.3 Results
I will compare results from my implementation to results from test implementation with no
image processing. The implementation without image processing will only use YOLO to detect
the objects and then Tesseract OCR to recognize number plates without any pre-processing. I
will refer to the implementation without image processing as my baseline implementation. The
resulting percentage will be rounded to one decimal place.

In EU_dataset, the baseline result is, that from 108 photos, Tesseract was only able to
recognize 3 number plates, which is 2.8%. My implementation improved the correct recognition
by 28.7% to 31.5%, which is more than 11 times better. In baseline implementation, Tesseract
was only able to recognize any meaningful text in 53 cases which make 49.1%. I was able to
recognize meaningful text in all cases, but one where the number plate was inverted in colors
meaning the text was in a light color, and the background was dark. This case was outside
of my implementation goal. This means that some meaningful text was extracted in 107 cases
out of 108, which make 99.1%. The baseline implementation has the correct number of symbols
detected in the number plate only in 8.3% of the cases. My implementation was able to approve
it to 64.8%.

Some results for EU_dataset are available in Appendix A.
In External_dataset, the baseline result is, that from 2211 photos, Tesseract was only able to

recognize 31 number plates, which is 1.4%. My implementation was able to improve the correct
recognition by 14.3% to 15.7%, which is more than ten times better. In baseline implementation,
Tesseract was only able to recognize any meaningful text in 558 cases which make 25.2%. I was
able to recognize meaningful text in 1938 cases which make 25.2%. In most of these cases, the
YOLO could not locate the number plate in the images from the specialized camera. Pre-training
the model could significantly increase this number. The baseline implementation has the correct
number of symbols detected in the number plate only in 4.9% of the cases. My implementation
was able to approve it to 48.4%.

Tables 5.1 and 5.2 show the results for EU_dataset and External_dataset, respectively.

Correct recognitions Detected some symbols Correct number of symbols
Baseline solution 2.8% 49.1% 8.3%
My implementation 31.5% 99.1% 64.8%

Table 5.1 Results for EU_dataset

Correct recognitions Detected some symbols Correct number of symbols
Baseline solution 1.4% 25.2% 4.9%
My implementation 15.7% 87.7% 48.4%

Table 5.2 Results for External_dataset

5.4 Different use-cases
Since I decided to implement my implementation with the Tesseract OCR, in which you can
recognize any text, it is also possible to use it for other occasions that use a similar size and
layout. In this case, I found, for example, a road sign used in Prague to identify parking spaces.
This mark uses a one-line design with a specific symbol at the start. With a sufficient amount of
data, an object detector model could be created to recognize just such a mark from a photograph.

Different use-cases 27

Figure 5.12 Different use-case

In my case, I recognized this number plate by myself and used the rest of my implementation
to identify the symbols. In Figure5.12 can be seen that all the symbols were recognized correctly,
and therefore my implementation would be helpful even for other use-cases.

28 Implementation

Chapter 6

Conclusion

The key objective of this thesis was to create an application that will recognize the text on the
number plate for the most widely used number plate type: one line of Dark text with light
background.

On the way to achieving the main objective, I have reviewed the literature dealing with
automatic number plate recognition in images. After the implementation, I have tested my
result on the preselected dataset and other use-cases.

The result is a Python application that will detect number plates with the help of YOLO
version 4 implemented in TensorFlow and, as the next step, recognize text on the number plate
using the open-source OCR Tesseract.

Using the OpenCV library, my implementation improved the results initially, using only
Tesseract OCR and YOLO. The improvement in the correct recognitions was more than ten
times better. I have also found more applicable use-cases where the implementation proved
successful. It is admirable that such a result was achieved for a dataset containing different
lighting conditions using only Tesseract OCR.

In the future, the application could be improved by not using Tesseract for OCR. Tesseract
is mainly used for reading documents. Using other methods of character recognition, such as
Convolutional Neural Network, could help improve the results. It would also be possible to
improve the accuracy of the character localization. The ideal way would be to classify the
number plate into different types that determine the exact position of the characters. This way,
I would have the correct position of every symbol. This could improve the result up to the
currently available services.

29

30 Conclusion

Appendix A

Results

First 30 results for EU dataset.

program_result reference_result is_program_result_empty is_correct_detection is_correct_length
M5XSX M5XSX false true true
WA56660 WA56660 false true true
IBS47049 BS47040 false false false
GWAGEN GWAGEN false true true
FESD FWE50 false false false
BIMMIAN BIMMIAN false true true
OYO9FEUI OYO9FEU false false false
WOBVHIK4 WOBVWMK4 false false true
TWW4X4UP VW4X4WP false false false
HSO302 WSQ3021 false false false

W053011 true false false
PP587A0 PP587AO false false true
RK755AJI RK755AJ false false false
SI819AK SI819AK false true true
RK115AN RK115AN false true true
TS260AK TS260AK false true true
RKOSSAN RKO99AN false false true
ORK828AG RK828AG false false false
JLM298A LM298AI false false true
1T43213 1T43213 false true true
RK248AH RK248AH false true true
RK346AL RK346AL false true true
RK291AT RK291AT false true true
RK857A1 RK857AI false false true
RKS76AHI RK576AH false false false
RKO19AF RK019AF false false true
BB751BH BB751BH false true true
RK867AD RK867AD false true true
RKBB4AL RK884AL false false true
PRKBE5AC RK865AC false false false

31

32 Results

Bibliography

1. Number plate. Cambridge University Press, 2020. Available also from: https://dictionary.
cambridge.org/dictionary/english/number-plate. [Online; Accessed 24-April-2022].

2. ALLO002. File:license plate sizes.svg. Wikimedia Foundation, 2012. Available also from:
https://commons.wikimedia.org/wiki/File:License_plate_sizes.svg. [Online;
Accessed 1-May-2022].

3. BASILLEAF. File:Nepal License Plate - Private Car - Heavy Vehicle - 1983-2019.png.
Wikimedia Foundation, 2021. Available also from: https://commons.wikimedia.org/
wiki/File:Nepal_License_Plate_-_Private_Car_-_Heavy_Vehicle_-_1983-2019.
png. [Online; Accessed 1-May-2022].

4. SAJAD-HASANAHMADI. File:.png. Wikimedia Foundation, 2018. Available also from:
https://commons.wikimedia.org/wiki/File:%D9%BE%D9%84%D8%A7%DA%A9_%D8%B4%D8%
AE%D8%B5%DB%8C.png. [Online; Accessed 1-May-2022].

5. FARID, Nima. File:Iraq - Kurdistan - License Plate - Private.png. Wikimedia Founda-
tion, 2020. Available also from: https://commons.wikimedia.org/wiki/File:Iraq_-
Kurdistan-_License_Plate_-_Private.png. [Online; Accessed 1-May-2022].

6. WALSER.FL. File:vehicle registration plates in Europe.png. Wikimedia Foundation, 2020.
Available also from: https://commons.wikimedia.org/wiki/File:Vehicle_registration_
plates_in_Europe.png. [Online; Accessed 24-April-2022].

7. ČESKO. VYHLÁŠKA ze dne 19. prosince 2014 o registraci vozidel. 2014. Available also
from: https://aplikace.mvcr.cz/sbirka-zakonu/ViewFile.aspx?type=z&id=27609.
[Accessed 30-April-2022].

8. PUBLICATIONS OFFICE OF THE EUROPEAN UNION. Rear registration plates on
motor vehicles. N-Lex, 2019. Available also from: https://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=LEGISSUM%3Ami0064. [Online; Accessed 24-April-2022].

9. ARTIFICIAL SOLUTIONS. Homage to John McCarthy, the father of Artificial Intelligence
(AI). Artificial Solutions, 2022. Available also from: https://www.artificial-solutions.
com/blog/homage-to-john-mccarthy-the-father-of-artificial-intelligence#:
~:text=McCarthy%20presented%20his%20definition%20of,AI%20research%20for%
20many%20decades. [Online; Accessed 7-May-2022].

10. YAKOOVE. File:fig-X all ML as a subfield of AI.jpg. Wikimedia Foundation, 2020. Available
also from: https://en.wikipedia.org/wiki/File:Fig-X_All_ML_as_a_subfield_of_
AI.jpg. [Online; Accessed 24-April-2022].

33

https://dictionary.cambridge.org/dictionary/english/number-plate
https://dictionary.cambridge.org/dictionary/english/number-plate
https://commons.wikimedia.org/wiki/File:License_plate_sizes.svg
https://commons.wikimedia.org/wiki/File:Nepal_License_Plate_-_Private_Car_-_Heavy_Vehicle_-_1983-2019.png
https://commons.wikimedia.org/wiki/File:Nepal_License_Plate_-_Private_Car_-_Heavy_Vehicle_-_1983-2019.png
https://commons.wikimedia.org/wiki/File:Nepal_License_Plate_-_Private_Car_-_Heavy_Vehicle_-_1983-2019.png
https://commons.wikimedia.org/wiki/File:%D9%BE%D9%84%D8%A7%DA%A9_%D8%B4%D8%AE%D8%B5%DB%8C.png
https://commons.wikimedia.org/wiki/File:%D9%BE%D9%84%D8%A7%DA%A9_%D8%B4%D8%AE%D8%B5%DB%8C.png
https://commons.wikimedia.org/wiki/File:Iraq_-_Kurdistan_-_License_Plate_-_Private.png
https://commons.wikimedia.org/wiki/File:Iraq_-_Kurdistan_-_License_Plate_-_Private.png
https://commons.wikimedia.org/wiki/File:Vehicle_registration_plates_in_Europe.png
https://commons.wikimedia.org/wiki/File:Vehicle_registration_plates_in_Europe.png
https://aplikace.mvcr.cz/sbirka-zakonu/ViewFile.aspx?type=z&id=27609
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=LEGISSUM%3Ami0064
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=LEGISSUM%3Ami0064
https://www.artificial-solutions.com/blog/homage-to-john-mccarthy-the-father-of-artificial-intelligence#:~:text=McCarthy%20presented%20his%20definition%20of,AI%20research%20for%20many%20decades
https://www.artificial-solutions.com/blog/homage-to-john-mccarthy-the-father-of-artificial-intelligence#:~:text=McCarthy%20presented%20his%20definition%20of,AI%20research%20for%20many%20decades
https://www.artificial-solutions.com/blog/homage-to-john-mccarthy-the-father-of-artificial-intelligence#:~:text=McCarthy%20presented%20his%20definition%20of,AI%20research%20for%20many%20decades
https://www.artificial-solutions.com/blog/homage-to-john-mccarthy-the-father-of-artificial-intelligence#:~:text=McCarthy%20presented%20his%20definition%20of,AI%20research%20for%20many%20decades
https://en.wikipedia.org/wiki/File:Fig-X_All_ML_as_a_subfield_of_AI.jpg
https://en.wikipedia.org/wiki/File:Fig-X_All_ML_as_a_subfield_of_AI.jpg

34 Bibliography

11. MCCARTHY, John. WHAT IS ARTIFICIAL INTELLIGENCE? N. Alberto Borghese,
[n.d.]. Available also from: https://borghese.di.unimi.it/Teaching/AdvancedIntelligentSystems/
Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/
Symbolic/04_McCarthy_whatisai.pdf. [Online; Accessed 7-May-2022].

12. IBM CLOUD EDUCATION. What is machine learning? IBM, 2020. Available also from:
https://www.ibm.com/cloud/learn/machine-learning. [Online; Accessed 7-May-2022].

13. IBM CLOUD EDUCATION. What is Neural Networks? IBM, 2020. Available also from:
https://www.ibm.com/cloud/learn/neural-networks. [Online; Accessed 7-May-2022].

14. MATHWORKS. What is deep learning? MathWorks, [n.d.]. Available also from: %7Bhttps:
//www.mathworks.com/discovery/deep-learning.html#:~:text=Deep%20learning%
20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost.%7D. [Online; Accessed
7-May-2022].

15. IBM CLOUD EDUCATION. What is computer vision? IBM, [n.d.]. Available also from:
https://www.ibm.com/cloud/learn/neural-networks. [Online; Accessed 7-May-2022].

16. Computer vision market size, share report, 2021-2028. Grand View Research, 2021. Available
also from: %7Bhttps://www.grandviewresearch.com/industry-analysis/computer-
vision-market#:~:text=Report%20Overview,7.3%25%20from%202021%20to%202028%
7D. [Online; Accessed 7-May-2022].

17. ZHANG, Xinhua. Gaussian distribution. Springer, Boston, MA, 1970. Available also from:
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_323.
[Online; Accessed 3-May-2022].

18. CHERNENKO, Sergey. Gaussian filter, or Gaussian Blur. Librow, [n.d.]. Available also
from: http://www.librow.com/articles/article-9. [Online; Accessed 3-May-2022].

19. CHATTERJEE, Marina. What is Computer Vision? Great Learning, 2022. Available also
from: https://www.mygreatlearning.com/blog/what- is- computer- vision- the-
basics/. [Online; Accessed 1-May-2022].

20. REDMON, Joseph; DIVVALA, Santosh; GIRSHICK, Ross; FARHADI, Ali. You Only Look
Once: Unified, Real-Time Object Detection. arXiv, 2015. Available from doi: 10.48550/
ARXIV.1506.02640. [Online; Accessed 26-April-2022].

21. REDMON, Joseph; FARHADI, Ali. YOLO9000: Better, Faster, Stronger. arXiv, 2016.
Available from doi: 10.48550/ARXIV.1612.08242. [Online; Accessed 26-April-2022].

22. REDMON, Joseph; FARHADI, Ali. YOLOv3: An Incremental Improvement. arXiv, 2018.
Available from doi: 10.48550/ARXIV.1804.02767. [Online; Accessed 26-April-2022].

23. BOCHKOVSKIY, Alexey; WANG, Chien-Yao; LIAO, Hong-Yuan Mark. YOLOv4: Optimal
Speed and Accuracy of Object Detection. arXiv, 2020. Available from doi: 10.48550/ARXIV.
2004.10934. [Online; Accessed 26-April-2022].

24. TENSORFLOW. Tensorflow/tensorflow: An open source machine learning framework for
everyone. GitHub, Inc, [n.d.]. Available also from: https://github.com/tensorflow/
tensorflow. [Online; Accessed 11-May-2022].

25. About. OpenCV, 2020. Available also from: https://opencv.org/about/. [Online; Accessed
11-May-2022].

26. Languages supported in different versions of Tesseract. tesseract-ocr, [n.d.]. Available also
from: https://tesseract- ocr.github.io/tessdoc/Data- Files- in- different-
versions.html. [Online; Accessed 28-April-2022].

27. SMITH, R. An Overview of the Tesseract OCR Engine. In: Ninth International Conference
on Document Analysis and Recognition (ICDAR 2007). 2007, vol. 2, pp. 629–633. Available
from doi: 10.1109/ICDAR.2007.4376991.

https://borghese.di.unimi.it/Teaching/AdvancedIntelligentSystems/Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf
https://borghese.di.unimi.it/Teaching/AdvancedIntelligentSystems/Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf
https://borghese.di.unimi.it/Teaching/AdvancedIntelligentSystems/Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/neural-networks
%7Bhttps://www.mathworks.com/discovery/deep-learning.html#:~:text=Deep%20learning%20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost.%7D
%7Bhttps://www.mathworks.com/discovery/deep-learning.html#:~:text=Deep%20learning%20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost.%7D
%7Bhttps://www.mathworks.com/discovery/deep-learning.html#:~:text=Deep%20learning%20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost.%7D
https://www.ibm.com/cloud/learn/neural-networks
%7Bhttps://www.grandviewresearch.com/industry-analysis/computer-vision-market#:~:text=Report%20Overview,7.3%25%20from%202021%20to%202028%7D
%7Bhttps://www.grandviewresearch.com/industry-analysis/computer-vision-market#:~:text=Report%20Overview,7.3%25%20from%202021%20to%202028%7D
%7Bhttps://www.grandviewresearch.com/industry-analysis/computer-vision-market#:~:text=Report%20Overview,7.3%25%20from%202021%20to%202028%7D
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_323
http://www.librow.com/articles/article-9
https://www.mygreatlearning.com/blog/what-is-computer-vision-the-basics/
https://www.mygreatlearning.com/blog/what-is-computer-vision-the-basics/
https://doi.org/10.48550/ARXIV.1506.02640
https://doi.org/10.48550/ARXIV.1506.02640
https://doi.org/10.48550/ARXIV.1612.08242
https://doi.org/10.48550/ARXIV.1804.02767
https://doi.org/10.48550/ARXIV.2004.10934
https://doi.org/10.48550/ARXIV.2004.10934
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://opencv.org/about/
https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html
https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html
https://doi.org/10.1109/ICDAR.2007.4376991

Bibliography 35

28. Improving the quality of the output. [N.d.]. Available also from: https : / / tesseract -
ocr.github.io/tessdoc/ImproveQuality.html. [Online; Accessed 11-May-2022].

29. LEE, Matthias. Pytesseract. Python Software Foundation, [n.d.]. Available also from: https:
//pypi.org/project/pytesseract/. [Online; Accessed 10-May-2022].

30. NIXON, Mark S.; AGUADO, Alberto S. Feature extraction and image processing. Newnes,
2006. isbn 0750650788. Available also from: https://theswissbay.ch/pdf/Gentoomen%
20Library/Artificial%20Intelligence/Computer%20Vision/Feature%20Extraction%
20in%20Computer%20Vision%20and%20Image%20Processing%20-%20Mark%20S.%20Nixon.
pdf. [Accessed 1-May-2022].

31. Gaussian blur. Wikimedia Foundation, 2022. Available also from: https://en.wikipedia.
org/wiki/Gaussian_blur. [Online; Accessed 27-April-2022].

32. ADOBE. Using gaussian blur in image processing | adobe. Adobe, [n.d.]. Available also
from: https://www.adobe.com/creativecloud/photography/discover/gaussian-
blur.html. [Online; Accessed 1-May-2022].

33. OPENCV. GaussianBlur. OpenCV, [n.d.]. Available also from: https://docs.opencv.
org/4.x/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1.
[Online; Accessed 3-May-2022].

34. IKAMUSUMEFAN. File:Cappadocia Gaussian Blur.svg. Wikimedia Foundation, 2015. Avail-
able also from: https://commons.wikimedia.org/wiki/File:Cappadocia_Gaussian_
Blur.svg. [Online; Accessed 27-April-2022].

35. ELKOSOLTIUS. File:Example of adaptive thresholding.png. Wikimedia Foundation, 2022.
Available also from: https : / / commons . wikimedia . org / wiki / File : Example _ of _
adaptive_thresholding.png. [Online; Accessed 24-April-2022].

36. Contour approximation method. [N.d.]. Available also from: https://docs.opencv.org/
3.4/d4/d73/tutorial_py_contours_begin.html. [Online; Accessed 11-May-2022].

37. SUZUKI, Satoshi; BE, KeiichiA. Topological structural analysis of digitized binary images
by border following. Computer Vision, Graphics, and Image Processing. 1985, vol. 30, no.
1, pp. 32–46. issn 0734-189X. Available from doi: https://doi.org/10.1016/0734-
189X(85)90016-7.

38. HUNGLC007. HUNGLC007/tensorflow-yolov4-tflite: Yolov4, Yolov4-tiny, yolov3, yolov3-
tiny implemented in tensorflow 2.0, Android. Convert Yolo V4 .Weights tensorflow, tensorrt
and tflite. [N.d.]. Available also from: https://github.com/hunglc007/tensorflow-
yolov4-tflite. [Online; Accessed 11-May-2022].

39. Custom.weights. Google, [n.d.]. Available also from: https://drive.google.com/file/
d/1EUPtbtdF0bjRtNjGv436vDY28EN5DXDH/view?usp=sharing. [Online; Accessed 11-May-
2022].

40. OPENALPR. Benchmarks/endtoend/EU at MASTER · openalpr/benchmarks. [N.d.]. Avail-
able also from: https://github.com/openalpr/benchmarks/tree/master/endtoend/eu.
[Online; Accessed 11-May-2022].

https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
https://pypi.org/project/pytesseract/
https://pypi.org/project/pytesseract/
https://theswissbay.ch/pdf/Gentoomen%20Library/Artificial%20Intelligence/Computer%20Vision/Feature%20Extraction%20in%20Computer%20Vision%20and%20Image%20Processing%20-%20Mark%20S.%20Nixon.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Artificial%20Intelligence/Computer%20Vision/Feature%20Extraction%20in%20Computer%20Vision%20and%20Image%20Processing%20-%20Mark%20S.%20Nixon.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Artificial%20Intelligence/Computer%20Vision/Feature%20Extraction%20in%20Computer%20Vision%20and%20Image%20Processing%20-%20Mark%20S.%20Nixon.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Artificial%20Intelligence/Computer%20Vision/Feature%20Extraction%20in%20Computer%20Vision%20and%20Image%20Processing%20-%20Mark%20S.%20Nixon.pdf
https://en.wikipedia.org/wiki/Gaussian_blur
https://en.wikipedia.org/wiki/Gaussian_blur
https://www.adobe.com/creativecloud/photography/discover/gaussian-blur.html
https://www.adobe.com/creativecloud/photography/discover/gaussian-blur.html
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
https://commons.wikimedia.org/wiki/File:Cappadocia_Gaussian_Blur.svg
https://commons.wikimedia.org/wiki/File:Cappadocia_Gaussian_Blur.svg
https://commons.wikimedia.org/wiki/File:Example_of_adaptive_thresholding.png
https://commons.wikimedia.org/wiki/File:Example_of_adaptive_thresholding.png
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://drive.google.com/file/d/1EUPtbtdF0bjRtNjGv436vDY28EN5DXDH/view?usp=sharing
https://drive.google.com/file/d/1EUPtbtdF0bjRtNjGv436vDY28EN5DXDH/view?usp=sharing
https://github.com/openalpr/benchmarks/tree/master/endtoend/eu

36 Bibliography

Contents of the media

impl
conda-cpu.yml..environment python environment
conda-gpu.yml..environment python environment
detect.py .. init part of the implementation
README.md ... user guide
requirements-gpu.txt...............................environment python environment
requirements.txt....................................environment python environment
save_model.py..implementation file
core

backbone.py...implementation file
common.py... implementation file
config.py... implementation file
dataset.py..implementation file
plate_recognition.py..............................main file of my implementation
utils.py .. implementation file
yolov4.py... implementation file

data
anchors

yolov4_anchors.txt... implementation file
classes

custom.names .. implementation file
example

eu1.jpg..example file for implementation
eu1.txt..example file for implementation

thesis
ctufit-thesis.pdf...final form of thesis
src

assignment-include.pdf..assignment
ctufit-thesis.cls ... thesis file for LATEX
ctufit-thesis.tex ... thesis file for LATEX
images

1_locate.png..image used in thesis
2_gray.png..image used in thesis
3_blur.png..image used in thesis
4_binarized.png..image used in thesis
5_all_contours_binarized.png image used in thesis
5_all_contours_color.png................................. image used in thesis

37

38 Contents of the media

6_filtered_conts_binarized.png..........................image used in thesis
6_filtered_conts_color.png...............................image used in thesis
7_chars_on_white_background.png.........................image used in thesis
800px-Cappadocia_Gaussian_Blur.png..................... image used in thesis
8_final.png...image used in thesis
AI_subfield.jpg..image used in thesis
alphanumeric_CZ.png....................................... image used in thesis
ANN_diagram.png..image used in thesis
cz_sizes.png..image used in thesis
different_usecase.png.....................................image used in thesis
Example_of_adaptive_thresholding.png...................image used in thesis
gaussian_function.png.....................................image used in thesis
gauss_2d.png..image used in thesis
Iran_plate.png... image used in thesis
Iraq_plate.png... image used in thesis
License_plate_sizes.png image used in thesis
Nepal_License_Plate.png image used in thesis
program_flow.png...image used in thesis
registration_plates_Europe.png..........................image used in thesis
Russian_license_plate.png................................image used in thesis
white_black_numbers.png image used in thesis
white_black_paid.png......................................image used in thesis
white_black_stars.png.....................................image used in thesis
white_blue.png... image used in thesis
white_green_long.png......................................image used in thesis
white_green_short.png.....................................image used in thesis
yellow_black.png...image used in thesis
yolo.png.. image used in thesis
YOLOv4.png..image used in thesis

text
appendix.tex..thesis file for LATEX
bib-database.bib ... thesis file for LATEX
medium.tex...thesis file for LATEX
text.tex...thesis file for LATEX

tstex_modules
_api.ts..thesis file for LATEX

	Acknowledgments
	Declaration
	Abstrakt
	List of abbreviations
	Introduction
	Analysis
	Number plates
	Number plate naming convention across the world
	Various number plates across the world
	Czech registration plate
	Additional disruptive elements
	Problem conclusion

	AI, ML, ANN, and DL
	Artificial intelligence
	Machine learning
	Artificial neural network
	Deep learning
	Computer vision

	Gaussian distribution in 2D

	Technologies
	Programming language
	Object detector
	Versioning
	YOLO Model
	Compertion

	TensorFlow
	Image processing library
	Tesseract
	Python-tesseract

	Image processing
	Image blurring
	Gaussian blur

	Thresholding
	Adaptive Thresholding

	Finding contours

	Implementation
	Implementation steps
	Dataset
	Results
	Different use-cases

	Conclusion
	Results
	Contents of the media

