
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Codebase modernisation for car sharing Android application

Branislav Bilý

Ing. Václav Jirovský, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The task is to find obsolete parts of the current car-sharing student project application

and to modernise said obsolete parts using modern tools following developer guides,

such as using programming language Kotlin, MVVM architecture and Compose. Focus on

the area, where modernisation will have the most impact - identify these areas together

with the project's student team. Follow these steps:

1. Familiarise yourself with the project and used technologies

2. Analyse the codebase and research possible improvements

3. Refactor obsolete code to meet modern standards

4. Thoroughly test and document new implementation

5. Compare previous and current implementation and justify refactoring

Electronically approved by Ing. Michal Valenta, Ph.D. on 16 February 2023 in Prague.

Bachelor’s thesis

CODEBASE
MODERNISATION FOR
CAR SHARING ANDROID
APPLICATION

Branislav Bilý

Faculty of Information Technology
BI-WSI – Web and Software Engineering
Supervisor: Ing. Václav Jirovský, Ph.D.
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Branislav Bilý. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Bilý Branislav. Codebase modernisation for car sharing Android application.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2021.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Introduction 1

1 Refactoring 3
1.1 Technical debt . 3
1.2 Refactoring . 4
1.3 When to refactor . 4
1.4 How to refactor . 5
1.5 Neglecting refactoring . 6
1.6 When not to refactor . 6

2 Android Platform Specifics 7
2.1 Android Platform . 7

2.1.1 Android SDK . 7
2.1.2 Android Studio . 7
2.1.3 Activity and Fragment . 9
2.1.4 Views . 9
2.1.5 Resources . 9
2.1.6 Emulator . 9
2.1.7 LiveData . 10
2.1.8 Jetpack Compose . 10

2.2 Kotlin . 11
2.3 Gradle . 11
2.4 Lifecycle . 11

2.4.1 Lifecycle of an Activity . 11
2.4.2 Lifecycle of a Composable . 13

2.5 App architecture . 13
2.5.1 Separation of concerns . 13
2.5.2 Driving UI from data models . 13
2.5.3 Single source of truth . 14
2.5.4 Unidirectional Data Flow . 14

3 Design 15
3.1 Using Kotlin . 15
3.2 Dependency injection . 17
3.3 High cohesion, Low coupling . 17

3.3.1 UseCase . 17
3.3.2 Repository . 18

3.4 Building UI with Compose . 18

iii

iv Contents

3.4.1 Creating layout . 18
3.4.2 Creating custom Composables . 18
3.4.3 Configuring layout and Composables . 19

3.5 App architecture patterns . 19
3.5.1 MVC . 19
3.5.2 MVVM . 20
3.5.3 MVI . 20

4 Analysis of the application 23
4.1 Application parts . 23
4.2 Login section . 24

5 Implementation 27
5.1 Strategies of refactoring . 27

5.1.1 Java class to Kotlin . 27
5.1.2 Migrating from Android Views to Compose 27
5.1.3 Migrating to a new app architecture . 28
5.1.4 Separating concerns . 28

5.2 Adding Kotlin to Java Android app . 28
5.3 From MVC to MVVM app architecture . 29

5.3.1 Making sure ViewModel works . 29
5.3.2 Migrating functionality to ViewModel . 29

5.4 Migrating from Views to Compose . 30
5.4.1 Making sure Compose works . 30
5.4.2 Migrating functionality to Compose . 30

5.5 Login screen functionality implementation . 31
5.5.1 TextField error . 31
5.5.2 Enabling Log in button . 32
5.5.3 Showing Progress bar . 33
5.5.4 Showing Dialog . 33

5.6 Creating documentation . 34

6 Testing 35
6.1 Importance of testing . 35
6.2 Different types of tests . 35

6.2.1 Unit tests . 35
6.2.2 Integration tests . 35
6.2.3 End-to-end tests . 36

6.3 Test pyramid and ice-cream cone . 37
6.4 Black box vs. White box testing . 38

6.4.1 White box testing . 38
6.4.2 Black box testing . 38

6.5 Android tests running environment . 38
6.6 UI tests in Compose . 38
6.7 Tests added to the application . 39
6.8 Testing scenarios . 39

Conclusion 41

A Acronyms 49

B Attachment contents 51

List of Figures

1.1 Flowchart showing 3 stages of refactoring . 6

2.1 Different Android versions, their API versions and cumulative distributions [15] . 8
2.2 Overview of Activity Lifecycle [27] . 12
2.3 Lifecycle of a Composable [28] . 13

3.1 Graphical visualisation of standard layout elements [44] 18
3.2 Flowchart illustrating MVC pattern [45] . 20
3.3 Flowchart illustrating MVVM pattern [48] . 20
3.4 Flowchart illustrating MVI pattern [50] . 21

4.1 Login screen with no error messages and with both email and password error . . 25
4.2 Password reset screen with no error message and then with email error 26

6.1 The test pyramid [67] . 37

List of code listings

2.1 Example of a Composable function composing a disabled button with text . . . 10
2.2 Example of simple counter that follows SSOT principle 14
3.1 Example of a Composable function with default and named arguments 16
3.2 Example of using sealed class . 16
3.3 Example of using Modifier class to fill max possible width, have horizontal padding

and test tag . 19
5.1 Code snippet of how showing error in a TextField could be implemented 32
5.2 Code snippet of how showing enabling Button could be implemented 32
5.3 Code snippet of how Progress bar could be implemented 33
5.4 Code snippet showing how Dialog could be implemented 34

v

I would like to thank my supervisor Ing. Václav Jirovský, Ph.D. for
his guidance and experience. I would also like to thank my family for
supporting me throughout my studies, especially my brother. Lastly,
my gratitude goes to my friends.

vi

Declaration

I declare that I have prepared the submitted thesis independently and that I have listed all
the information sources used in accordance with the Methodological Guideline on the Ethical
Preparation of University Theses. I acknowledge that my thesis is subject to the rights and
obligations arising from Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the
fact that the Czech Technical University in Prague has the right to conclude a license agreement
for the use of this thesis as a school work pursuant to Section 60 (1) of the Copyright Act for
a definite period of time until the expiry of the protection under the Agreement. The use of
the submitted work is governed by the Cooperation Agreement concluded in connection with
the cooperation between the Czech Technical University in Prague and ŠKODA AUTO a.s. and
ŠKODA AUTO DigiLab s.r.o. on the research project “CarSharing for university students”,
published in the Register of Contracts at https://smlouvy.gov.cz/smlouva/5973503. I am bound
by a Non-Disclosure Agreement that I will not disclose to any third party any confidential
information that I have obtained during my work on the Project.

In Prague on May 11, 2023 .

vii

Abstract

This bachelor thesis is focused on refactoring the code of an Android application, that was written
using older technologies and architectures. The main part of the thesis is to show the evolution
of Android development, how it changed over a couple of years, and where it is headed. The
second part shows one method, how to take an older application and gradually refactor code,
that will be easily expandable and testable.

Keywords Android mobile application, refactor, application architecture, Jetpack Compose,
technical debt

Abstrakt

Tato bakalářská práce se zabývá refaktoringem Android aplikace, která byla napsána s využitím
starších technologií a architektur. Hlavní část se zabývá evolucí Android vývoje, jak se změnil
v průběhu několika let a kam směřuje. Druhá část obsahuje jeden způsob, jak postupně refak-
torovat kód starší aplikace, aby byl jednoduše rozšiřitelný a testovatelný.

Klíčová slova Android mobilní aplikace, refaktorování, architektura aplikace, Jetpack Com-
pose, technický dluh

viii

1

9

2 Abstract

Introduction

Smartphones have become an inseparable part of our lives. From listening to music to sharing
cars, smartphones, and mobile applications that run on them are becoming more and more
complex to cater to users who want to do more and more things from the comfort of their palms.
Behind every application, there are developers who try to bring their products to the market
as fast as possible without any bugs or hidden problems.

Software development is a difficult and ever-changing field. What was once considered best
practice a few years back is now an outdated technique that no one uses. Even Java, one of the
most popular programming languages, is not immune to advancements in software development.
Therefore, the problem of rewriting applications is not something new, but it is something
necessary. The most drastic way is to rebuild the whole application from the ground up, using
new technologies and frameworks. This is the approach that Google chose for Android with
Compose, into which we will look at in a later chapter. Another way is to refactor parts of the
application one by one, based on where the new technologies will have the greatest impact. This
is the approach I chose for a car-sharing application.

The goal of the thesis is to identify a part of an Android application that is most suitable
for refactoring and to refactor that said part using the newest technologies and architectures
that are recommended by Google. Refactoring will involve rewriting Java code in Kotlin, using
a new declarative way to create layouts using Compose, and changing the architectural pattern
from MVC to MVVM and later to MVI, all while following OOP principles and maintaining
functionality. By the end of the refactoring process, the technical debt of the application should
be lower, and the code should be easier to read, expand, and test.

1

2 Introduction

Chapter 1

Refactoring

This chapter focuses on what refactoring is, when and how to refactor, and what can happen
when we neglect our code. It will also define a couple of terms that are important to understand
when we talk about refactoring.

1.1 Technical debt
In any software system, there is a certain essential complexity required for the software to perform
its function. However, most software systems also contain unnecessary complexity that make
them harder to understand without providing any benefits. Technical debt is a metaphor that
treats this unnecessary complexity as financial debt. Interest payments are the extra resources
that will be needed to be spent on the system to add new features [1]. Technical debt accumulates
when the development team is either forced or free to choose an easy but limiting solution.

Just like financial debt, technical debt is sometimes necessary to bring a product to market.
Just like monetary debt, technical debt also accumulates interest. This can make it expensive to
repay the debt when it is left alone for a long time.

Unrealistic release dates are the biggest culprit for technical debt. Managers are often
not software engineers, so they do not understand the challenges that come with software de-
velopment. Programmers are also notoriously bad at estimating the time required to implement
new features. Combining these two factors often results in cutting corners during development
to expedite feature delivery. This adds unnecessary complexity that will need to be reduced in
the future. After a few of these rushed deliveries, it can become extremely time-consuming and
difficult to add new features. This is exactly what happened with the Oracle database, where
after years of tight deadlines, the addition of one line of code could potentially break thousands
of different tests [2].

Technical debt can also increase when the development team suffers from insufficient qual-
ity control. Every team should have documented coding standards that need to be followed
and enforced. These standards can include how to version code, write classes and methods, and
what design patterns should be used. To enforce these rules, senior developers need to check the
code of their peers and point out any problems. When a team does not have these standards in
place, every developer will solve problems their way, which makes the code harder to read and
maintain. The practice of reviewing the code of peers is called code review, where senior devel-
opers spend time reviewing the code of others instead of writing code themselves. It is a type of
insurance policy where, by paying with the time of senior developers, the development team gets
assurance that less experienced developers do not introduce unnecessary complexity or hidden
problems.

With the rise of cloud trends, parallel programming or increased emphasis on security, in-

3

4 Refactoring

sufficient expertise is another problem that can create technical debt. Teams may adopt tools
and technologies without fully understanding their benefits and drawbacks. Sometimes these
tools can be even unnecessary and can needlessly increase the complexity of software.

The complexity of software is also increased when there is no documentation. This not
only makes it harder for new developers to understand and write new code, but it also impacts
senior developers on the project [3]. The ratio of time spent reading versus writing code is well
over 10 to 1 [4], so by making it easier to read, we are making it easier to write.

1.2 Refactoring
▶ Definition 1.1 (Refactoring as a noun). “A change made to the internal structure of soft-
ware to make it easier to understand and cheaper to modify without changing its observable
behaviour” [5].

Refactoring refers to any change made to the software with the intention of making it easier
and more cost-effective to modify. This can include rewriting code in a different programming
language, completely overhauling the system’s architecture, or simply switching to a new library.
However, the key requirement is that the software’s observable behaviour must not be altered.
After refactoring, the software should continue to function in the same way as it did before the
changes were made. It is not permissible to add new features or alter any existing functionality
during the refactoring process.

▶ Definition 1.2 (Refactoring as a verb). “To restructure software by applying a series of
refactorings without changing its observable behaviour” [5].

So by refactoring we are trying to manage the technical debt of the software system.

1.3 When to refactor
There are several motivations when to refactor. The main ones include:

It is difficult to add new functionality

There is code area that is consistently buggy

Encountering code smells

New better technology can be used

As we can see, refactoring can be often motivated by technical debt [6].

It is difficult to add new functionality
When we need to modify parts of the code that are unrelated to new features, we often resort to
adding fixes, exceptions, and workarounds to make it functional. This is a clear indication that
we should refactor the code first before implementing any new features.

There is code area that is consistently buggy
Frequent occurrences of bugs in a specific section of code can suggest that the code was either
poorly designed or written. Furthermore, it’s probable that the code was not adequately tested.

How to refactor 5

Encountering code smells
▶ Definition 1.3 (Code smell). “A surface indication that usually corresponds to a deeper
problem in the system” [7].

Just as smelling smoke in our home is a sign that something is wrong, code smell is a sign of
a bad code. Code smells include:

Duplicated code

Nested if statements

Global states and variables

Long methods and large classes

Unreachable code

The great thing about code smells is that they are easy to spot, even for inexperienced
developers, and are fairly easy to correct. With today’s powerful IDEs, some types of code
smells, such as duplicated or unreachable code, can be corrected with the press of a button.

It is important to keep in mind that not all code smells are created equal. For example, some
long methods are long because they need to be. Therefore, before refactoring code mindlessly,
we need to ask ourselves simple questions to determine whether a particular code smell indicates
a problem that needs to be addressed or not [7].

New better technology can be used
This does not mean that we always have to use the latest technologies and libraries, as this
can ironically lead to worse code quality. However, there may be trends in the way a product
is developed that developers should be prepared to follow. For example, Java was the default
programming language for Android development since the introduction of the Android platform
in 2008 [8]. However, in just two years, Kotlin became the first-class language for Android apps in
May 2017 [9] and the preferred language in May 2019 [10]. Therefore, ever since May 2019, every
Android application written in Java is accumulating technical debt. The process of rewriting
Java into Kotlin is explained in section 5.2.

1.4 How to refactor
To prepare for the refactoring process, it’s essential to have a good understanding of version
control systems. This is because we can’t risk altering the code’s behaviour, and we must have
the ability to revert to a previous version where the code worked correctly. In this thesis, Git
is utilized as the version control system, but other systems can also be used.

Once we have the version control system in place, we can proceed with the refactoring process,
which can be broken down into three distinct stages. The first stage is refactoring, which
involves identifying and eliminating code smells, following new design patterns, or making any
other necessary improvements to the code. Once the changes have been made, we move on to
the second stage, which involves running tests to ensure that the behaviour of the code has
not been affected. If any issues are found, we return to the first stage and repeat the refactoring
process. If the tests pass, we can move on to the final stage, which is committing the changes.
This involves saving the current state of the application using Git, after which we can continue
with the refactoring process.

6 Refactoring

Figure 1.1 Flowchart showing 3 stages of refactoring

1.5 Neglecting refactoring
I will start this section by drawing a comparison between software and a building with glass
windows. There exists a famous theory titled “Broken Windows” by James Q. Wilson and
George L. Kelling [11], which demonstrated that when one broken window is left unrepaired, it
signals that no one cares, and subsequently, breaking more windows costs nothing. This analogy
is particularly relevant to software development. When there is already a poorly designed part
of an application (a broken window), it becomes easier to justify writing poorly designed code
(breaking more windows). Unfortunately, this process can often occur subconsciously, which
is why development teams and management need to proactively consider the importance of
refactoring.

1.6 When not to refactor
In this chapter, I have highlighted the importance of refactoring in software development. How-
ever, it is important to note that there are situations where refactoring may not be the best
solution. It is always a trade-off between the benefits of refactoring and the time and effort
required to implement it. For example, if the feature to be added is small and the required
refactoring is extensive, it may be more efficient to just implement the feature without refactor-
ing. Additionally, sometimes it may be more feasible to rewrite the application from scratch.
Deciding when to refactor or when to implement new features without refactoring requires ex-
perience and professional judgement. Ultimately, the goal of refactoring is to improve product
quality and speed up development, but it is important to consider the costs and benefits of each
approach before making a decision [1].

Chapter 2

Android Platform Specifics

This chapter is focused on the basics of Android development and gives a brief overview of
used technologies, tools, and architectures.

2.1 Android Platform
Android Platform was launched in 2007 by the Open Handset Alliance, an alliance of many
companies that included Google, HTC, Motorola, and others [12]. It had turbulent development,
especially thanks to the rapid increase of touchscreen popularity that started with the release of
the first iPhone when the Android team was still focusing on developing Android for phones with
physical keyboards [13]. This lead to a great deal of ramifications to this day, since the entire
platform carries a lot of technical debt. In spite of that, Android is the leader in the market
share of all smartphones, with 71.63% market share in Q1 of 2023 [14].

2.1.1 Android SDK
The Android SDK (software development kit) is a collection of tools used to develop Android
applications. It includes necessary libraries, a debugger, an emulator, and much more. Whenever
a new version of the Android operating system is released, a new version of the SDK is also
released to support the latest features. Since the SDK is closely tied to the Android version,
there are multiple versions of this collection available.

This creates a dilemma of choosing the minimum SDK version to support in an Android
app. By choosing an older SDK version, developers can ensure that their app will be compatible
with a wider range of devices, but they may also need to make an additional effort to implement
certain features or workarounds for limitations of older versions. On the other hand, choosing
a newer SDK version can give developers access to the latest features and tools, but may limit
the devices on which the app can be installed, as shown in 2.1 figure. Ultimately, the decision
of which SDK version to support will depend on the specific needs of the app and its target
audience.

2.1.2 Android Studio
Android Studio is the official integrated development environment (IDE) for Android app devel-
opment. It is based on IntelliJ IDEA by JetBrains, which makes it a powerful tool for develop-
ment. In addition to the features included in IntelliJ, such as code completion, renaming, and
code simplification, Android Studio includes tools specifically for Android development. These

7

8 Android Platform Specifics

Figure 2.1 Different Android versions, their API versions and cumulative distributions [15]

Android Platform 9

tools include an emulator for emulating Android devices, Logcat for logging system messages,
the Layout Inspector, which allows developers to inspect the current layout on the device in
detail, and much more.

2.1.3 Activity and Fragment
An Activity in Android is a “single, focused thing that a user can perform” within an applica-
tion [16]. It is the main building block for creating user experiences. For example, an app may
have separate Activities for user login, password resetting, and registration. If a user is cur-
rently in the login Activity and wants to reset their password, the app can simply switch to the
appropriate Activity.

“Fragment is a piece of application’s user interface that is placed inside an Activity” [17]. To
continue with the Activity example, we would have one main Activity whose sole purpose would
be to host Fragments. Instead of changing Activities to reset a password or register, we could
just change the Fragment that the Activity is hosting. This was the way most applications were
built before 2.1.8 Compose.

2.1.4 Views
View is a basic building block for creating user interface components. From this View, every
UI component called Widget is built from. We can organize these Widgets into ViewGroups,
which are containers that house others Views or ViewGroups [18]. The most notable ViewGroup
is ConstraintLayout.

ConstraintLayout allows us to create responsive layouts directly inside Android Studio by
drag-and-dropping components, instead of editing any XML (which is the language used for
specifying Views). It works by adding two constraints, vertical and horizontal, and by adjusting
the constraint bias, we can move components within the ConstraintLayout. Since we are working
with biases and not pixels, we can be sure that our layout will look the same on almost all screen
sizes [19].

2.1.5 Resources
When developing apps, we need to save additional files and static content such as images, layout
definitions, and text displayed to the user. It is recommended to store these files separately to
maintain them independently. We can provide alternate resources based on device configuration
by grouping them in specially-named resource directories. At runtime, Android uses the correct
resource directory, allowing us to customize the user experience for the device [20]. For example,
we can use translated text in the app based on the device’s preferred language.

2.1.6 Emulator
Emulator emulates Android devices, allowing us to quickly and efficiently test our application
on various devices and Android API levels, without the need to own any physical device. This
emulated Android device can specify the location of the device, simulate phone calls, messages,
rotation, and much more.

In most cases, the emulator is the best option for our testing needs. Alternatively, we can
install the application on a real Android device.

10 Android Platform Specifics

2.1.7 LiveData
LiveData is a special type of data class that is observable and lifecycle-aware. Whenever the value
of the LiveData object changes, it notifies all its observers. The lifecycle awareness guarantees
that only the observers that are in an active lifecycle state are notified of the change. This
ensures that the UI always has the latest data and avoids the need for manual lifecycle handling.
LiveData objects also avoid memory leaks, as they can clean up after themselves when their
lifecycle owner is destroyed [21].

2.1.8 Jetpack Compose
Google defines Jetpack Compose (later only Compose) as: “Android’s recommended modern
toolkit for building native UI. It simplifies and accelerates UI development on Android. Quickly
bring your app to life with less code, powerful tools, and intuitive Kotlin APIs” [22].

UI in Compose is created by calling Composable functions that create UI elements called
Composables. These Composables create trees, based on the order they were called.

Composable functions
Composable functions are a fundamental building block in Compose. They are a new type of
function in Kotlin that allows us to describe our UI in code. These functions can call other
Composable functions, and we can change the behaviour of our UI by passing parameters to
these functions. Instead of building UI using XML tags, we create UI by nesting function calls.
In the code listing 2.1, we can see an example of a Composable function that calls the built-in
Composable function Button.

Code listing 2.1 Example of a Composable function composing a disabled button with text

@Composable
fun MyButton() {

Button(
onClick = { /* Function called when button is clicked */ },
enabled = false,

) {
Text(text = "Click me")

}
}

Why was Compose created
This is a completely different way of building UI. So why the drastic change and why now? After
a couple of tries to refactor the underlying technology of Android Views, Google decided to write
a new toolkit for building UI from scratch. The main two factors were:

Decoupling (separating) UI toolkit from the Android platform. As was mentioned in the
2.1.1 Android SDK subsection, SDK is closely coupled with the Android version, meaning
that it can only be used to create Android UI and cannot be updated without updating the
Android version, which limits the speed and frequency of updates. With Compose, we can
use the same UI toolkit to write Android, iOS (operating system on iPhones and iPads),
desktop, and web apps [23]. This significantly reduces the amount of code required to make
a multi-platform application.

Declarative model for the creation of the UI. There is an industry-wide shift towards this
model. Fundamental change is that Widgets are stateless and do not expose any setters or

Kotlin 11

getters. When we want to update a Widget, we simple call the same function that created
the Widget with new parameters. This approach was first pioneered by web community with
frameworks like React with great success.

It is safe to say that most UIs across all platforms will be developed using a similar approach
as Compose [24].

2.2 Kotlin
“Kotlin is a modern statically typed programming language used by over 60% of professional
Android developers that helps boost productivity, developer satisfaction, and code safety” [25].

Kotlin can be compiled into bytecode and executed on the Java Virtual Machine (JVM), which
means it can run on any system that supports Java. This feature makes it simple to incorporate
Kotlin into projects developed using Java, such as Android applications. Furthermore, Android
Studio offers an almost seamless transition process, as it can automatically convert Java classes
to Kotlin classes.

2.3 Gradle
Gradle is an open-source build automation tool. It handles external dependencies, defining build
configuration, building applications, running tests, and much more. Gradle is:

Highly customizable – Gradle is modeled in a way that is customizable and extensible in the
most fundamental ways.

Fast – Gradle completes tasks quickly by reusing outputs from previous executions, processing
only inputs that changed, and executing tasks in parallel.

Powerful – Gradle is the official build tool for Android, and comes with support for many
popular languages and technologies [26].

2.4 Lifecycle
“As a user navigates through, out of, and back to our app, the application goes through different
stages of Lifecycle”. Lifecycle has its own callbacks, allowing us to declare specific behaviour for
each stage. Activity, Fragment, Composables, or ViewModels (check 3.5.2 MVVM pattern), all
have their Lifecycles [27].

2.4.1 Lifecycle of an Activity
The Activity class provides multiple callbacks to declare how the Activity will behave when the
user leaves and re-enters the Activity. For example, when the user changes the screen orientation,
Android re-draws the entire Activity, losing all the progress the user made. Similarly, when the
user receives a phone call, progress can be lost. We can save the progress by overriding onStop()
callback, which is called when the Activity is no longer visible to the user. Then, we can load the
saved progress overriding onRestart() callback [27]. As can be seen in figure 2.2, the Lifecycle of
an Activity is complicated but very important. Proper usage of an Activity’s lifecycle is essential
for Android apps to function properly.

12 Android Platform Specifics

Figure 2.2 Overview of Activity Lifecycle [27]

App architecture 13

2.4.2 Lifecycle of a Composable
The Lifecycle of a Composable is handled in a very different way than the lifecycle of an Activity.
When Compose runs Composable functions for the first time, it keeps track of the order in which
they were called. When the state of the app changes, Compose schedules an recomposition, which
means re-executing only the Composable functions that were affected by the new state. This
recomposition can happen 0 or more times, depending on the changes in the app’s state [28]. In
contrast to the Activity lifecycle, the lifecycle of a Composable is much simpler, and it is not
something that developers need to worry about in most cases. Figure 2.3 illustrates the difference
between the two lifecycles and highlights the simplicity of the Composable lifecycle.

Figure 2.3 Lifecycle of a Composable [28]

2.5 App architecture
As apps become more complex, it is crucial to develop them in a way that is easy to scale and
test. App architecture provides a framework for defining boundaries between different parts of
the app and specifying their respective responsibilities. To achieve these goals, we should design
our app architecture according to specific principles [29].

2.5.1 Separation of concerns
“The SoC principle identifies the parts of an application with a specific purpose and encapsu-
lates these parts in closed units. These units only communicate with each other using specified
interfaces. Thanks to this principle, the software - which would have otherwise been overly
complicated - is divided up into manageable components” [30].

A great example of not following this principle are UI-based classes, such as Activity of
Fragment. These classes often not only contain logic that handles UI but also business logic
or data models, causing them to easily grow into hundreds if not thousands of lines of code.
As a result, it becomes difficult to test and scale them. This type of class is often referred to
as a God class and should be avoided whenever possible [29].

2.5.2 Driving UI from data models
Data models represent the data of our app. We should drive our UI from data models and
preferably store them in persistent models, such as a local database. These models should be

14 Android Platform Specifics

independent of the UI and all other components in our app. This means that they are not tied
to the Android application lifecycle but will nonetheless be destroyed when the OS decides to
remove the app’s process from the memory [29].

2.5.3 Single source of truth
“When a new data type is defined in your app, you should assign a Single Source of Truth
(SSOT) to it. The SSOT is the owner of that data, and only the SSOT can modify or mutate
it. To achieve this, the SSOT exposes the data using an immutable type, and to modify the data,
the SSOT exposes functions or receive events that other types can call” [29]. Code listing 2.2
shows a simple counter that follows this principle. The private variable is mutable, and only
the SSOTCounter class can change the value of the counter. The SSOTCounter class exposes
the value of the counter through an immutable variable that cannot be changed outside of the
SSOTCounter class.

Code listing 2.2 Example of simple counter that follows SSOT principle

class SSOTCounter {
private val _counter = mutableStateOf(0)
val counter: State<Int> = _counter

fun increaseCounter() {
/* */

}
}

2.5.4 Unidirectional Data Flow
Unidirectional Data Flow is one pattern often used along side the Single source of truth. “In
Android, state or data usually flow from the higher-scoped types of the hierarchy to the lower-
scoped ones. Events are usually triggered from the lower-scoped types until they reach the SSOT
for the corresponding data type” [29].

Chapter 3

Design

This chapter focuses on design patterns, frameworks and technologies I used when refactoring.

3.1 Using Kotlin
This section will show many benefits of using Kotlin over Java.

Data class
In Java, it is common to use a DTO (data transfer object) class whose sole purpose is to transfer
data. Even with just a few parameters, this class can become quite large. To solve this issue, the
Project Lombok Java library provides a solution. With just a few simple annotations, Lombok
can generate constructors, getters, setters, and more during compilation. This makes our code
cleaner, and we can easily understand what the class is doing based on the annotations [31].

Kotlin solves this problem by providing a built-in class marked with data. This class auto-
matically includes all members that are useful for a DTO class [32].

Examples of all three types of DTO classes are included in the attachment files/DTOClasses.

Null safety
In Kotlin, a reference to a value that can be null must be explicitly marked with ? at the
end. Conversely, a reference that is not marked with ?, is guaranteed to not be null. However,
this does not mean that Kotlin is immune to NullPointerException (later NPE). There are two
main causes of NPE in Kotlin: explicitly throwing NPE or using !! (often called bang bang)
non-null assertion operator. This operator converts any value to a non-null type and throws an
exception if the value is null [33]. Using the non-null operator is often considered a code smell
as it undermines Kotlin’s null safety features.

While Kotlin does help developers think about null values and where they are possible, it is not
a silver bullet that can completely prevent NPEs [34].

Extension functions
Kotlin provides ability to extend a class or an interface with new functions without need for
inheritance. This allows us to extend functionality of Views or classes like String [35].

15

16 Design

Default and named arguments
In Kotlin, it’s possible to omit function parameters when they have default values. This default
value can be set by appending = to the type. If a function has default values and we want to
use them, we can simply exclude those arguments altogether.

Additionally, it’s possible to name one or more arguments when calling a function. This
is helpful when a function has many arguments and it’s difficult to associate a value with an
argument. It also allows us to freely change the order of arguments [36].

Combining default and named arguments can greatly improve the readability of Composable
functions and reduce the amount of code required to build them. This can be observed in the 3.1
code listing, where the TextWithDefault function is called twice - once using the default value,
and a second time using a named argument.

Code listing 3.1 Example of a Composable function with default and named arguments

@Composable
fun TextWithDefault(

text: String = "Great text",
) { /* */}
@Composable
fun ComposableFunction() {

TextWithDefault()
TextWithDefault(text = "Not a great text")

}

Sealed class and when expression
A sealed class is a special type of class in Kotlin that provides more control over inheritance.
By putting the sealed modifier before its name, all direct subclasses of a sealed class must be
declared in the same package and are known at compile time.

The main advantage of using sealed classes is in the use of the when expression, which is a con-
ditional expression with multiple branches. If all cases are covered in the statement, an else clause
is not required. However, if the when statement is not exhaustive and all possibilities are not
covered, Kotlin will not compile the code. For example, if a new Error type is added to the code
listing 3.2 but is not included in the when statement, the code will not compile [37].

Code listing 3.2 Example of using sealed class

sealed class Error {
class FileNotFound: Error()
class NoPermission: Error()
class NoInternet: Error()

}
/* ... */
fun handle(error: Error) {

when(error) {
is Error.FileNotFound -> print("FileNotFound")
is Error.NoInternet -> print("NoInternet")
is Error.NoPermission -> print("NoPermission")

}
}

We could compare sealed classes to Enum. The set of values of an Enum is also known at compile
time, but each Enum constant can have only a single instance, unlike subclasses of a sealed class,
which can each have multiple instances [38].

Dependency injection 17

Kotlin Multiplatform
Kotlin Multiplatform is a technology that can simplify cross-platform project development by
reducing the time spent on writing and maintaining the same code for multiple platforms. One
example is the ability to share business logic and connectivity code between Android and iOS ap-
plications [39].

3.2 Dependency injection
Dependency injection (DI) is a software design pattern that decouples a class from its dependen-
cies. Instead of a class creating its own dependencies in constructors or other places where they
are needed, dependencies are injected into the class, usually in the constructor. It is preferable
to inject these dependencies as interfaces, which abstract the dependency and allow for easy
component changes [40].

Koin
Koin is a Kotlin dependency injection framework with simple API. Koin extends the Android
platform to provide specific features for Android development, such as injecting ViewModels [41].

3.3 High cohesion, Low coupling
High cohesion is a software design principle that aims to ensure that each class and method in
a system has a single, well-defined responsibility. A class or method with high cohesion is focused
on a specific task or set of related tasks, and its behaviour is closely aligned with that task or
tasks. High cohesion is often associated with the Single Responsibility Principle (SRP), which
states that a class or module should have only one responsibility.

By designing classes and methods with high cohesion, we can create more modular and
reusable code. High cohesion helps us to reduce code duplication and to isolate changes to
a specific part of the system, making it easier to maintain and test. When we follow the principle
of high cohesion, our code becomes more focused, easier to understand, and less prone to errors.

Low coupling refers to the degree of dependency between classes in a software system. When
classes are designed to be as independent from each other as possible, they can be modified
without causing ripple effects in other modules. This is a significant advantage of low coupling
in software design. On the other hand, high cohesion implies that every class and method should
have a clear and specific purpose, resulting in better separation of logic into multiple files and
more reusable code [42]. Achieving high cohesion and low coupling is possible with tools such
as Koin, a dependency injection library, as well as UseCases and Repositories.

3.3.1 UseCase
A UseCase is a class with a singular purpose, which is to perform a specific task or operation.
In particular, it is designed to manipulate data that is passed through it. It is important that
a UseCase be stateless and free from mutable data. Additionally, it is recommended that a new
instance is created each time UseCase is injected as a dependency.

For instance, consider a UseCase for extracting values from a JSON object. To implement
this, we define an interface and an associated implementation. When we need to extract values
from a JSON object, we can inject the implementation as an interface. This abstraction of an
implementation not only allows us to easily add new implementations for extracting values from
JSON but also to test classes that use this UseCase.

18 Design

3.3.2 Repository
The repository acts as a SSOT of data for our application. It coordinates data from different
data sources by resolving conflicts between them and exposing only the correct data. These
sources can include local files, local databases, or a network connection. Similarly to UseCase,
Repository is abstracted using an interface, which hides the source of data from the rest of the
application [43].

3.4 Building UI with Compose
Building UI with Compose is completely different from building UI using XML and Views, as was
the norm before. This is great news for someone who is trying to get into Android development,
as even senior developers are only starting to learn how to use Compose to the fullest potential.

3.4.1 Creating layout
To create layouts in Compose, we have access to three different standard layout elements: Col-
umn, used for placing items vertically on the screen, Row for placing items horizontally, and Box
for placing elements on top of each other. Combining these three layout elements is all we need
to create layouts. The visual representation of these elements can be seen in Figure 3.1.

To set positions for children within Column, we can set verticalArrangement and horizonta-
lAlignment arguments. For Row, it is horizontalArrangement and verticalAlignment. For Box,
we have access to contentAlignment parameter [44].

Figure 3.1 Graphical visualisation of standard layout elements [44]

3.4.2 Creating custom Composables
One of the primary goals of Compose is to make creating custom Views as simple as creating
a new function. This is exactly how we create custom Composables in Compose: by creating
a new Composable function. Since the entire Compose UI toolkit is open source, we can take
a look at how developers at Google created each built-in Composable. If we want to create

App architecture patterns 19

something slightly different from the built-in Composable, we can copy the function and change
a few parameters.

Before Compose, creating a custom View was something that only brave and senior developers
would do. Now in Compose, creating a custom Composable is the second step in the Hello World
tutorial [24].

3.4.3 Configuring layout and Composables
When we want to ensure that a layout meets our design requirements, we must use modifiers to
decorate and enhance our Composables. These modifiers are essential for configuring our layout.
When we add a modifier to a Composable, we create a chain of modifiers that are processed
sequentially. Therefore, it is important to order the modifiers correctly to achieve the desired
effect [44]. An example of a modifier in a Column can be seen in 3.3 code listing.

Code listing 3.3 Example of using Modifier class to fill max possible width, have horizontal padding
and test tag

Column(
modifier = Modifier

.fillMaxWidth()

.padding(horizontal = 16.dp)

.testTag("MyColumn"),
)

3.5 App architecture patterns

2.5 App architecture section introduced best practices for creating high-quality applications.
But it did not explain how to implement and use these practises together. For that we need to
introduce architecture patterns. There are many different patterns, each with unique advantages
and disadvantages.

3.5.1 MVC
The Model-View-Controller (MVC) is an architectural pattern that separates the code into three
distinct components. The Model component is responsible for managing the data, including any
business logic and communication with the data source (network or database). The View com-
ponent is responsible for the user interface, usually an Activity or Fragment with ViewGroups.
The View displays data from the Model and provides interaction with the user. The Controller
component handles the communication between the View and the Model. It processes user input
and manages the data accordingly [45].

One advantage of this pattern is that it is easy and fast to implement. However, a significant
disadvantage is that the View is dependent on both the Controller and the Model. Any changes
to the View require updates to several classes. Moreover, it often results in a bloated Controller
with hundreds of lines of code, making it difficult to test and scale [46].

20 Design

Figure 3.2 Flowchart illustrating MVC pattern [45]

3.5.2 MVVM
Model-View-ViewModel (MVVM) is an architectural pattern that separates code into 3 compo-
nents. The Model and View components are similar to those in MVC, with the main difference
being the ViewModel. Unlike the Controller in MVC, the ViewModel does not hold any reference
to the View. Instead, the ViewModel updates the Model based on user interaction and exposes
data streams containing data from the Model, which are then observed by the View.

The advantages of this pattern are that there are no references between the 3 components,
making it easier to develop them in parallel and to scale the application. Since the ViewModel
does not depend on the View or Model, it is easy to test. However, this pattern can be more com-
plex than MVC and requires a deeper understanding of the system and the observable pattern.
Additionally, it may be overkill for smaller projects [47].

Figure 3.3 Flowchart illustrating MVVM pattern [48]

3.5.3 MVI
Model-View-Intent (MVI) is a new architectural pattern that is growing in popularity ever since it
was introduced in Android. Unlike the MVC or MVVM patterns, MVI works on a unidirectional
and circular flow. The model represents data but also the state of the UI as an immutable class.
This ensures that the state can be changed only in one place, following SSOT principle. The
intent represents an intention to perform an action. The advantages of this pattern are easy
implementation of the SSOT principle, easy debugging thanks to the unidirectional data flow,
having an immutable representation of the UI state, the ability to test all layers independently,
and simple implementation in Compose. The disadvantage of this pattern is that it requires a lot
of boilerplate code (code used in multiple places without much change) [49], [50], [51].

App architecture patterns 21

Figure 3.4 Flowchart illustrating MVI pattern [50]

22 Design

Chapter 4

Analysis of the application

This chapter is focused on the analysis of the application.

4.1 Application parts
This section will provide a description of all the primary sections of the application with which
the user interacts. Each part will be briefly discussed and evaluated to determine whether it
is suitable for refactoring.

Map
The Map is the central component of the application and the primary interface with which users
interact. It displays the locations of available cars, parking zones, and the user’s location on the
map. Users can filter the available cars and click on a specific car to view information about it.
From there, they can reserve the car or access more detailed information.

Some Android Views are too complex to be converted to Compose. For instance, the MapView
is one such View, and it is the primary view used in this section of the application. Moreover,
this part of the application is quite intricate, containing many features and functionalities.

Vehicles
This section displays a list of all available vehicles in alphabetical order based on the name of the
vehicle. Users can filter the cars based on the car model, transmission, vehicle type, or range,
similar to the Map section. When a user clicks on a car, they are taken to the Map section,
where they can see the details of the vehicle.

This part of the application is relatively small and is not expected to undergo many changes
in terms of functionality.

Login
The Login section of the application allows the user to enter their email and password to log
in. Both email and password fields provide real-time feedback to the user and display an error
message if the input is invalid. The user can only click the Log in button if both TextFields are
valid. If the user is not registered, they can click the Register button, which redirects them to
the Uniqway web page for registration (this functionality was disabled during the writing process
of this thesis). In case the user forgets their password, they can click the Forgotten password

23

24 Analysis of the application

button, which opens a new screen with an email TextField and a button to reset the password.
Similar to the email and password fields, the reset password TextField also provides real-time
feedback to the user and displays an error message if the input is invalid. Unlike the Log in
button, the Reset password button is always enabled.

The Login section may be small, but it is a crucial component of the application since every
user interacts with it at least once. In the future, the functionality of this part is likely to
expand as registering on the web page is not ideal, and it would be preferable to have the option
to register within the application itself.

Information
The Information section of the application offers users various types of useful information. The
Emergency situations section provides a list of emergencies and guidance on how to handle them.
Infoline offers a list of ways users can contact support. The Vehicle equipment section displays all
the necessary equipment for a ride. The Information section lists all the social channels users can
use to interact with the Uniqway community. Contact points contain all the necessary contact
points for registration and other information. Finally, the About section displays the application
version and a link to the Google Play store.

Choosing part for refactoring
As noted in the 1.2 Refactoring section, refactoring is a technique employed to reduce technical
debt and facilitate smoother future development. Of all the aforementioned sections of the
application, the Login section is the most likely to be expanded in the near future. As a result,
it is preferable to refactor it. This chapter will now closely examine the Login section of the
application.

4.2 Login section
Login section contains two different screens, Login and Reset password. The following sections
will describe exactly their behaviour and how it was implemented.

Login
The login screen primarily validates both the email and password TextField and displays an error
message for each TextField if the input is invalid. The Log in button is only enabled when there
are no errors. For each email and password TextField, an instance of the InputValidator class
is created. This class listens to changes made to the TextField. To determine whether the text
is valid, a regex string is passed in the constructor during initialization of the InputValidator
and this regex is later used to validate user input. If the text after a change is invalid, the Input-
Validator creates an error message and calls a callback that alerts the LoginActivity controller
that the valid status has changed. In LoginActivity, this callback enables or disables the Log in
button. As we can see, the ”InputValidator” class has many responsibilities and low cohesion.
Its responsibilities should be separated into separate modules.

After the user presses the Log in button, the LoginActivity creates a request to the backend
server and handles the response accordingly. If the log in attempt is successful, the Activity
creates a log entry about the successful log in and then closes. If the log in attempt is not
successful, the error message is passed into the ErrorUtil class, which creates a dialog showing
the user what error has occurred based on the error message. If there was a failure during
the request, the user probably has no internet connection, and a corresponding error dialog
is displayed.

Login section 25

There is also a feature for users who wish to reset their password. When a user navigates
to the ResetPassword screen, the value that was entered in the email TextField is automatically
transferred to the ResetPassword TextField, making the process faster and more convenient.

If the user pressed Forgotten password button, he is transferred to the Forgotten password
screen.

Figure 4.1 Login screen with no error messages and with both email and password error

Forgotten password
On this screen, the email TextField also displays an error message when the text input is not
valid, but this error does not affect the ”Reset password” button, which is always enabled. To
determine if the input is correct, the ResetPasswordActivity uses the same InputValidator class
as in the Login screen.

After the user presses the Reset password button, the first step is to check if the email value
is correct. If it is not, an error dialog is displayed. If the email is valid, the ResetPasswordActivity
creates a request to the backend server. If there is a failure during the request, it is likely due to
the user having no internet connection, and a corresponding error dialog is displayed. Otherwise,
the user is shown a dialog indicating that their request has been processed. If the email provided
is registered, they will receive an email with further instructions.

Lastly, Forgotten password screen contains an arrow back in the top left corner, allowing the
user to navigate back into the Login screen.

26 Analysis of the application

Figure 4.2 Password reset screen with no error message and then with email error

Chapter 5

Implementation

This chapter focuses on how to refactor an application from Android Views to Compose, all
while following the principles described in previous chapters.

5.1 Strategies of refactoring

5.1.1 Java class to Kotlin
Migrating an app written in Java to Kotlin is a lengthy process that can take several years. For
large projects with thousands of classes, it is unrealistic to rewrite everything while simultane-
ously implementing new features. Therefore, it is often recommended to migrate incrementally.

Kotlin classes are expected to have fewer lines of code than their Java counterparts. Meta,
for example, reported a reduction of 11% in the number of lines of code after refactoring over 10
million lines of Kotlin code [52]. Popular HTTP client OkHttp, on the other hand, only reported
a 7% reduction in lines of code [53].

When to migrate Java class to Kotlin
Given the size of the car sharing app project, I decided to write all new classes in Kotlin.
Additionally, whenever I had to modify or read a Java class, I converted it to Kotlin. This
approach ensured that frequently visited or modified classes are written in Kotlin [54].

How to migrate Java class to Kotlin
It is important to note that while the built-in tool for converting Java code to Kotlin in Android
Studio can save time, it is not foolproof and may lead to issues in the resulting Kotlin code.
Therefore, it is recommended to review the converted code and make necessary manual changes
to ensure that the code is correct and readable. One common issue that may arise from the
conversion tool is the usage of the non-null assertion operator, which can lead to potential
NPEs at runtime. It is important to avoid using this operator and instead handle null values
appropriately to ensure the stability of the application [55], [52].

5.1.2 Migrating from Android Views to Compose
To migrate an entire application to Compose in one go, just like migrating from Java to Kotlin,
is an unrealistic approach. Therefore, Google recommends a similar approach for Compose
migration as with Java to Kotlin. First, we should start by implementing new features with

27

28 Implementation

Compose, and then gradually replace existing features one screen at a time. Luckily, we can
mix Android Views and Compose, allowing us to migrate to Compose one UI component at
a time [56].

5.1.3 Migrating to a new app architecture
The Login and Password Reset Activities in the application use the MVC architecture. The
transition from MVC to the MVI architecture, which is often recommended with Compose,
is quite significant. Therefore, I decided to first migrate both Activities to Kotlin and the MVVM
architecture. This additional step allowed me to run tests sooner to ensure that the behaviour of
both Activities remained the same. Furthermore, since testing in Compose is slightly different,
this step was also done without using Compose. After completing this migration, I started using
Compose and modified the architecture to be a hybrid of MVVM and MVI, taking advantage
of both approaches. ViewModel and its Lifecycle from MVVM and immutable state class from
MVI.

5.1.4 Separating concerns
Refactoring is a great opportunity to separate concerns in the app into separate units with
a single purpose. A great example would be the InputValidator class, which handled listening to
changes in the TextField, validating input, and changing the error state. During the migration
from MVC to MVVM, this class can be nicely separated into standalone units, greatly improving
the flexibility of our code.

5.2 Adding Kotlin to Java Android app
This section will show all steps required to add Kotlin support to Java Android app and how to
convert Java into Kotlin.

Adding support for Kotlin
To add support for Kotlin, we will need to update both project and app build.gradle files. What
to add is shown in files/JavaToKotlin folder.

Converting Java class to Kotlin
Once Kotlin support has been added, we can begin converting Java classes to Kotlin. To do
this, we open the Java class and use the built-in converter. However, because the converter does
not fully understand the code, we will likely need to perform some manual optimizations on the
resulting Kotlin class.

Optimizing Kotlin class
The most common optimization required is how to handle null values. The converter creates
a nullable property that can never be null but cannot be initialized where it is defined, often with
View references. This can be solved by adding the lateinit modifier to the variable. Sometimes we
know from the system’s knowledge that the variable cannot be null, so we can remove nullability.

Since the converter does not understand the code, it creates a non-null assertion operator (!!)
wherever an NPE was possible, which is not ideal and is even considered a code smell. Using
the safe-call operator (?.) alongside the elvis operator (?:) is much more preferred.

From MVC to MVVM app architecture 29

5.3 From MVC to MVVM app architecture

This section will show all steps required to add ViewModel to an Activity. Code after each
important step is included in files/MVC-MVVM folder.

5.3.1 Making sure ViewModel works
First, we have to make sure that everything is set up correctly. No functionality will be transferred
to ViewModel yet.

Adding required dependencies and settings – First, we will have to modify app level build.gradle
file. We have to enable dataBinding and apply Kotlin annotation processor.

Create ViewModel – We create a new ViewModel class extending class ViewModel with one
String property, that will be used to verify that everything works correctly.

Adding ViewModel variable to layout – Next step is to add avariable to our layout, that
will hold reference to our ViewModel and create a simple TextView that will show the String
we defined in our ViewModel in the previous step.

Binding ViewModel to variable in layout – This step is most important and can some-
times be forgotten. We have to bind our ViewModel instance to the ViewModel variable in
the layout. This can be simply achieved using an extension function on our Activity and
calling it in onCreate function.

5.3.2 Migrating functionality to ViewModel
Now that we are assured ViewModel is working correctly, we can start to migrate functionality
from Activity to ViewModel.

Handling user interaction
Now we want to handle user interactions, such as pressing a button or inputting text. These
interactions are handled differently.

To handle text input, we can use a property of type MutableLiveData, which is an observable
property that can be changed. In the previous section, we used a concept called one-way binding,
which means that the binding goes only one way, from the observable to the View. However,
since we want to update our variable based on user input, we need to use two-way binding. This
binding goes both ways, so the observable or the View can modify the value, and the new value
will be propagated to the other.

We can handle actions by simply calling a function from ViewModel.

Handling events
To handle events, we can expose LiveData representing our event. For each event, we will have
one sealed class and its descendants will represent all possible outcomes of this event. In the
Activity, we can observe the LiveData representing our event and use when statement to handle
all possible outcomes.

30 Implementation

Using business logic
We aim to utilize business logic in the ViewModel instead of the Activity. Assuming we followed
the Separation of Concerns principle, we have already established access to UseCases and Repos-
itories with our data and business logic. By utilizing any DI library, we can inject them into our
ViewModel and subsequently inject our ViewModel into the Activity. For the purposes of this
thesis, we will assume that DI is operational. This approach allows us to use business logic and
reveal its result using sealed classes.

Handling screen state
To handle the screen state, we can use a special type of LiveData called MediatorLiveData. This
type of LiveData allows us to observe other LiveData variables and change the screen state based
on their values. We can then use the MediatorLiveData value to update the screen state.

By following these steps, we can gradually remove the logic from the Activity and migrate it
to the ViewModel.

5.4 Migrating from Views to Compose
This section will show all the steps required to migrate one Activity from Views to Compose.

5.4.1 Making sure Compose works
As with ViewModel, we will first make sure that Compose is working correctly. No Views will
be migrated to Compose yet.

Adding required dependencies
The easiest way to add all the required dependencies is to let Android Studio handle it. To create
a new empty Compose Activity, go to File -> New -> Compose -> Empty Compose Activity
and follow the prompts. Android Studio will automatically add all the required dependencies.
Additionally, we will need to enable viewBinding in the application’s build.gradle file.

Adding Compose to our layout
When working with Compose, we can easily add a ComposeView into our layout and specify its
ID. This is possible because Compose was designed with view interoperability in mind from the
start. As a result, we no longer need to bind ViewModel variables to the layout. Instead, we can
remove the setupDataBinding method and create a ViewBinding object. We can then use this
object to find our ComposeView and set its content to a Composable.

Creating first Composable
We create a new Composable by creating an empty Kotlin file and adding a new Composable
function. We can add Text Composable to make sure that everything is working.

5.4.2 Migrating functionality to Compose
To begin, we create a data class in our ViewModel that represents the state of our UI. This
example includes two variables: the text entered by the user and a boolean value indicating
whether the Button is enabled. We expose this state through an immutable variable. We then

Login screen functionality implementation 31

use this state variable to modify Composables and recompose them whenever their arguments
change.

Handling user interaction
Every Composable that a user can interact with provides a callback function that is called every
time the user interacts with it. We can simply call a function from our ViewModel in these
callbacks.

Handling screen state
Handling screen state in Compose is simpler than in traditional Android Views. Since Compos-
ables are just Kotlin functions, we can use conditions or loops to show or hide different parts
of the screen, depending on the state of the UI. This allows us to create more dynamic and
responsive UI with less boilerplate code.

Separating ViewModel from Composables
Composable functions in Compose allow us to create reusable UI components that can be com-
bined to build a complete UI. The Preview feature in Compose allows developers to visualize how
these components will look and behave on different devices and configurations without having
to build and deploy the app on a device or emulator.

When creating a Composable function that uses a ViewModel, it’s recommended to create
a second Composable function that doesn’t depend on the ViewModel but only contains the
necessary variables and callbacks. This enables us to create previews of the Composable without
simulating the ViewModel. To create a preview, we can annotate the Composable function with
the Preview annotation and then use the PreviewParameter annotation to specify the input
parameters to use in the preview. This approach can significantly speed up the development
process by allowing us to iterate and test our UI components quickly without having to perform
a complete build and deployment cycle.

5.5 Login screen functionality implementation
This section will focus on how each functionality in the Login screen was implemented using
Compose and the MVI app architecture.

5.5.1 TextField error
Every time the value of a TextField changes, the corresponding callback is called in the View-
Model. This callback updates the view state with the new TextField value and checks if the
new value is valid. After this, our view state is updated with new values depending on the user
input, which we can use to change our screen. Code Listing 5.1 shows how this could be imple-
mented. EmailTextInput is a custom Composable that, when the error Boolean value is true,
shows the errorText error message. In the attachment Implementation/EmailTextFieldError.txt,
there is a simplification of the previous implementation.

Importantly, this callback does not directly change any components but rather updates the
view state with new values. Every Composable function that was changed with the new values
in the view state undergoes a recomposition and updates itself accordingly, as mentioned in the
2.4.2 section on the Lifecycle of a Composable.

32 Implementation

Code listing 5.1 Code snippet of how showing error in a TextField could be implemented

//Function in ViewModel
fun emailChanged(newValue: String) {

val email = newValue
viewState.update { it.copy(email = email) }
if (validateEmail(email)) {

viewState.update { it.copy(emailError = false) }
} else {

viewState.update { it.copy(emailError = true) }
}

}

...

//Composable function
EmailTextInput(

labelText = stringResource(id = R.string.hint_email),
error = viewState.value.emailError ,
errorText = stringResource(id = R.string.invalid_mail),
onValueChanged = viewModel::emailChanged ,

)

5.5.2 Enabling Log in button
The Login button depends on the values of the TextFields, so after any one of them is updated,
we have to check if the login button should be enabled. We can use the callback shown in the
previous subsection. Our Log in button will then enable or disable itself depending on the view
state. Code Listing 5.2 shows how this could be implemented. The previous implementation can
be found in the attachment Implementation/LogInButtonEnabled.txt.

Code listing 5.2 Code snippet of how showing enabling Button could be implemented

//Function in ViewModel
fun checkLoginEnabled() {

val email = viewState.email
val password = viewState.password
//Button is disabled when there is an error or email/password is empty
if (viewState.emailError || viewState.passwordError ||

email.isEmpty() || password.isEmpty()
) {

viewState.update { it.copy(buttonEnabled = false) }
} else {

viewState.update { it.copy(buttonEnabled = true) }
}

}

...

//Composable function
UniqwayLoginButton(

onLoginClicked = viewModel::onLogin,
buttonEnabled = viewState.buttonEnabled ,

)

Login screen functionality implementation 33

5.5.3 Showing Progress bar
The view state will have one Boolean value indicating whether the progress bar should be visible
or not. We can change this value to true before every asynchronous call and to false after every
response. In Compose, we can check if the value is true and then show the progress bar. Code
Listing 5.3 shows an example of a possible implementation. The previous implementation of the
progress bar before refactoring is shown in the attachment Implementation/ProgressBar.txt.

Code listing 5.3 Code snippet of how Progress bar could be implemented

//Function in ViewModel
fun login() {

val email = _viewState.value.email
val password = _viewState.value.password
viewState.update { it.copy(isLoading = true) }
val loginCall = restApi.logIn(email, password)
//Asynchronous call trying to log in the user
loginCall.enqueue(object : Callback <LoggedUser > {

override fun onResponse(call: Call<User>,response: Response <User>) {
viewState.update { it.copy(isLoading = false) }
// Handle response

}

override fun onFailure(call: Call<LoggedUser?>, t: Throwable) {
viewState.update { it.copy(isLoading = false) }
// Handle failure

}
})

}

...

//Inside a Composable function
Box {

ViewLayout() {
...

}
if (viewState.isLoading) {

ProgressBar()
}

}

5.5.4 Showing Dialog
Similar to the progress bar, we can show a dialog to the user depending on the view state. By
creating a class that has all the values required to show the correct dialog, we can save this value
in the view state as a nullable value. When the value is null, no dialog should be shown. But
when the value is not null, it is used to show the correct dialog. Code Listing 5.4 shows an
example of a possible implementation. The DialogResource data class has only two values, an
identification for the text in the title and the body of the dialog. By passing only the identifi-
cation, we can use Android resources mentioned in section 2.1.5 to show translated text to the
user. Unfortunately, the previous implementation was quite complex and could not be simplified
for the purposes of this thesis.

34 Implementation

Code listing 5.4 Code snippet showing how Dialog could be implemented

//Functions in ViewModel
private fun handleLoginUnsuccessful(response: Response<User>) {

response.errorBody()?.let {
val errorDialogResource = responseBodyToDialogResource.parse(it)
showDialogWithError(errorDialogResource)

}
}

private fun showDialogWithError(dialogResource: DialogResource?) {
viewState.update { it.copy(dialogError = dialogResource) }

}

fun dismissDialog() {
viewState.update { it.copy(dialogError = null) }

}

...

data class DialogResource(
val headerRes: Int,
val messageRes: Int

)

...

//In Composable function
val dialogError = viewState.value.dialogError
if (dialogError != null) {

ErrorDialog(
onDialogClicked = viewModel::dismissDialog ,
titleRes = dialogError.headerRes ,
textRes = dialogError.messageRes ,

)
}

5.6 Creating documentation
To create documentation for the code that I wrote, I decided to use KDoc comments for each
public method and then generate documentation using the documentation engine Dokka. This
engine understands KDoc and Javadoc comments and generates documentation in many formats,
including HTML [57]. The documentation is included in the attachment in folder dokka.

Chapter 6

Testing

This chapter focuses on different types of tests in Android and various techniques for testing.

6.1 Importance of testing
Testing our app is an integral part of the development process. It helps to validate that the
application works as intended, reduces the risk of bugs in the released product, and reduces
stress during release. Testing also offers the advantage of early failure detection [58]. The earlier
a bug is caught, the more debugging information is available about its origin. Testing our app
also makes refactoring faster and safer, allowing developers to focus on optimizing code and
minimizing technical debt without worrying about regressions.

Edsger W. Dijkstra, renowned for his contributions to the shortest path algorithm known
as Dijkstra’s algorithm, once said, “Program testing can be used to show the presence of bugs,
but never to show their absence!” [59] This statement can be interpreted in various ways, such
as the idea that achieving high test code coverage (the percentage of lines of code executed at
least once during testing) does not necessarily guarantee a bug-free application.

6.2 Different types of tests
Developing software is a complex undertaking since applications must run on various systems
under different loads, making testing them also challenging. As a result, there are various types
of tests, depending on the aspects of the application being tested. This thesis will concentrate
on functional tests and categorize them based on their degree of isolation [60].

6.2.1 Unit tests
The foundation of every project should be unit tests. Unit tests ensure that each unit of our
codebase works as intended. These tests have the narrowest scope of all tests and should largely
outnumber any other type of test since they are very fast [61]. While they increase confidence
in a single class, they do not verify interactions between multiple classes.

6.2.2 Integration tests
Integration tests focus on testing the interaction between classes or subsystems, ensuring that
they work together as intended. These tests often use test doubles, to isolate the subsystem being

35

36 Testing

tested from external dependencies. While integration tests are generally faster than end-to-end
tests, they require more setup and may be more complex to write than unit tests.

Test doubles
During testing, it is important to test every element in isolation. However, in some cases, the
test subject may depend on other components to function properly. In such cases, it is a common
practice to create a test double to provide the necessary behaviour or data. Test doubles are
objects that mimic the behaviour of real components in our app, but are created specifically for
testing purposes. They offer several advantages, such as making tests faster and simpler, as well
as providing a way to test components in isolation [62], [63].

There are several different kinds of tests doubles. These kinds have conflicting definitions
depending on the source.

Table 6.1 Different kinds of test doubles [63]

Fake A test double that has a “working” implementation of the class,
but it is implemented in a way that makes it good for tests but
unsuitable for production. For example an in-memory database.

Mock A test double that behaves how we program it to behave and that
has expectations about its interactions. Mocks will fail tests if their
interactions don’t match the requirements that you define. Mocks
are usually created with a mocking framework to achieve all this.

Stub A test double that behaves how we program it to behave but doesn’t
have expectations about its interactions. Usually created with
a mocking framework. Fakes are preferred over stubs for simplicity.

Dummy A test double that is passed around but not used, such as if we just
need to provide it as a parameter. For example, an empty function
passed as a click callback.

Spy A wrapper over a real object which also keeps track of some ad-
ditional information, similar to mocks. They are usually avoided
for adding complexity. Fakes or mocks are therefore preferred over
spies.

In this project, Mock testing double was used. I added tests using Fake and Dummy testing
doubles.

6.2.3 End-to-end tests
End-to-end tests, also known as Espresso tests in Android (named after the Espresso testing
framework), simulate user interactions with Views. These tests can range from testing the
behaviour of a single component to using a large navigation test that covers an entire user flow.
Because these tests run on a real or emulated device, they take a long time to complete [64].

There are two ways to create end-to-end tests. The first way is through record-and-playback
tools where the testing framework records user interactions and generates a test script based on
those interactions. Although this method is fast, it can create brittle tests that break easily with
even small changes to the system. The second method is to manually write the end-to-end tests,
which can be time-consuming. However, this approach results in more reliable tests that are less
likely to break due to changes in the system [65].

Test pyramid and ice-cream cone 37

Flakiness
Flaky tests can pass or fail despite making no changes to code or test itself [66]. The culprit
is the asynchronous nature of mobile applications. Sometimes, asynchronous calls like loading
data or even showing infinite animations can make our test fail [64].

6.3 Test pyramid and ice-cream cone
Both the test pyramid and ice-cream cone are metaphors that provide us with an idea of how
many tests we should have at each level of isolation. The test pyramid is a visual representation
of how our applications should be tested, although, from a modern point of view, the original
naming of the layers is overly simplistic. With Compose, for example, we can test UI with Unit
tests, breaking this metaphor. Nonetheless, the test pyramid illustrates two important lessons:
to write tests with different scopes and that the more high-level we get, the fewer tests we should
have.

If we do not follow these principles, we can end up with what is called the ice-cream cone.
This is the test pyramid flipped on its head, with a few unit tests on the bottom, a few service
tests, a lot of UI tests, and even more manual UI tests at the top [61].

Figure 6.1 The test pyramid [67]

Test ratio
To follow the test pyramid metaphor, the test ratio indicates how many tests should be present
in each layer. The recommended guideline for Android applications is 7 : 2 : 1, meaning that
out of 10 tests, 7 should be unit tests, 2 integration tests, and one end-to-end test. However, it
is essential to keep in mind that the exact ratio may vary depending on the application and its
requirements. Donn Felker suggested a 6 : 4 ratio (6 unit and integrated tests and 4 end-to-end),
which may work better for some applications, particularly those with complex user flows and
interactions.

It’s also important to note that while end-to-end tests are essential for verifying the behaviour
of the app from a user’s perspective, they can be slower and more difficult to maintain than
unit and integration tests. Therefore, finding the right balance between the different types of

38 Testing

tests is key to ensuring high-quality software that meets both user needs and development team
requirements. [68].

6.4 Black box vs. White box testing
Tests could be also separated into two boxes, depending on whether we know, how the test
subject is implemented or not [69].

6.4.1 White box testing
When we test a subject with a known implementation, we can write tests to cover all possible
outcomes. However, this approach can make the tests brittle, meaning that even minor changes
to the implementation can break the tests [69].

6.4.2 Black box testing
When testing a subject without considering its implementation, we are testing against the inter-
face. In this approach, we create tests by grouping inputs into equivalent classes that expect the
same return value and then testing the edge cases between these equivalent classes. This makes
the tests more robust, as changes to the implementation will have no effect on the tests [69].

6.5 Android tests running environment
For most Android developers, the most important aspect to consider in testing is where the
tests are executed. Instrumented tests run on an Android device, either a physical device or an
emulator. The app is built and installed alongside a test app that injects commands and reads
the state. Instrumented tests usually involve UI testing, launching an app, and then interacting
with it. While unit tests and integration tests can also run on the device, it is less common.
The downside of instrumented tests is that they can be slow compared to local tests. Local tests
execute on our development machine or a server, so they are also called host-side tests. These
tests are usually small and fast, running on the JVM and isolating the subject under test from
the rest of the app [60].

6.6 UI tests in Compose
UI tests are crucial for verifying the behaviour of our Compose code. They not only include end-
to-end tests that simulate user interactions with our app but also Unit tests of our Composables.
When working with a hybrid app that contains both Compose components and traditional view
hierarchies, we can use both the Compose testing API and the Espresso API in the same test to
ensure complete coverage of our app’s behaviour.

Creating end-to-end tests in Compose differs from testing a View-based UI, as Compose
offers a new set of testing APIs for finding elements, verifying their state, and performing user
actions. In Compose UI testing, semantics are used to interact with the UI hierarchy. Semantics
provide meaning to a given UI element and are generated into a semantics tree alongside the
UI hierarchy. The semantics tree gives meaning to the UI hierarchy and is mostly used for
accessibility, although UI tests can also take advantage of the information exposed by semantics,
which includes content descriptions or text.

The testing API in Compose provides three ways to interact with the UI hierarchy. First,
finders are used to select one or multiple elements (known as nodes in the semantics tree) based
on their text, content description, testing tag, and more. After selecting an element, assertions

Tests added to the application 39

are used to verify that the element exists and has specific attributes. Finally, when interacting
with the UI is required, actions are used to inject simulated user events on the elements, such
as clicks, text input, or other gestures [70].

Finders
The ComposeTestRule class provides the onNode and onAllNodes functions to select one or
multiple nodes respectively, but there are also a couple of convenience functions called Finders
that are used within these functions to specify how to search for nodes in the Semantics tree.
The most common searches are provided as convenience functions, such as onNodeWithText,
onNodeWithContentDescription, and so on [70].

Assertions
We can call the assert function on the node returned by the finder with one or multiple matchers.
In addition, there are also several convenience functions available for the most common assertions,
such as assertExists, assertIsDisplayed, assertTextEquals, and more [70].

Hierarchical matchers
Hierarchical matchers can go up or down the semantics tree and perform simple matching.
Functions include matching parent, siblings, ancestors and descendants [70].

6.7 Tests added to the application
Every UseCase that was added was tested using integration tests, except for one UseCase where
providing a testing double for the API response proved to be too difficult. Both the Email and
Password Validators were tested using unit tests, utilizing a black box method (testing edge
cases of equivalent classes). Compose components that contain behaviour were tested using unit
tests as well. Two end-to-end tests were created to test the functionality of sending an email
from the Login to ResetPassword TextFields. Lastly, the end-to-end tests for both the Login and
ResetPassword screens were first rewritten from Espresso to the Compose testing API. Then,
several new tests were added to test the initial state of the screens or test different combinations
of TextField values.

6.8 Testing scenarios
This section will focus on testing scenarios of tests included in the files/Testing folder.

Unit test email validator
1. Validator returns true on correct email

2. Validator returns true on correct email with different domain

3. Validator returns false when trying to validate null value

4. Validator returns false when email is missing username

5. Validator returns false when email is missing domain

40 Testing

Compose button Unit test
1. First create Button that is enabled and when it is clicked, it changes a boolean value

2. First check if the Button exists

3. Check if it has correct text

4. Then check if is it displayed

5. Click the button and check, if the onLogin function was called

Error to dialog Integration test
1. Before all tests start, initialize UseCase variable with test double dependency

2. Initialize Error variable with unknown code

3. Check, if UseCase returned null

4. Change value of variable to another unknown code

5. Check again, if UseCase returned null

Login end-to-end test
1. Input into e-mail address field incorrect e-mail

2. Assert that error text field exists and has correct error message

3. Input into password field incorrect password

4. Assert that error two text fields exist and are showing correct error messages

5. Input into e-mail address field correct email

6. Assert that error text field exists and has correct error message

7. Input into password field correct password

8. Assert that no error text fields exist

Conclusion

The goal of this thesis was to modernize the codebase of an Android application. This included
rewriting Java code in Kotlin, changing the app architecture, following recommended design
patterns, and using Compose instead of Views.

Initially, support for Kotlin was added to the project. However, this led to a problem with all
classes that used the aforementioned Project Lombok. These classes had to be rewritten in Kotlin
before any other changes could be made to the project. Afterwards, both the Login and Reset
Password Activities were rewritten to follow the MVVM architectural pattern and then rewritten
from Java to Kotlin. During this change of architectural pattern, all data and business logic were
separated from the UI, following the design patterns explained in chapters 2 (Android platform
specifics) and 3 (Design), and later injected into the ViewModel using dependency injection.
Once the Login and Reset Password Activities were using the MVVM pattern and were written
in Kotlin, the change to Compose and MVI pattern was much faster and simpler. Step by step,
the Views were removed from the Activity and transferred into Compose, allowing for manual
testing of the functionality. After every View was transferred to Compose, I began to rewrite the
previous end-to-end tests using Compose testing API and even added some additional tests that
I found were missing. I also used unit tests to test Composables, Validators (classes used for
validating email and password), and even UseCases, which contain business logic. To ensure that
the UseCases were working correctly together, I also added integration tests using fake testing
doubles.

Although the number of lines of code in the project only decreased by 1% after transitioning
to Kotlin, this does not necessarily indicate that the transition was unnecessary. The project
underwent significant changes in its architecture, with business logic and data being separated
into their own modules and the adoption of new design patterns. These changes led to the
creation of 22 additional files, which contributes to the minimal decrease in the number of lines
of code. However, in the DTO classes, there was a significant reduction of 55% in the number
of lines of code from Java to Kotlin. Therefore, the number of lines of code may not be the best
metric to evaluate the effectiveness of the Kotlin transition. In terms of metrics that are hard
to measure, both Login and ResetPassword screens are simpler, since they do not contain any
business logic. The MVI pattern and Compose make it easier to debug the screen state and add
new functionality. By using ViewModels, DI, and UseCases, changes made to one module won’t
affect other modules. This makes it faster and more robust to make changes. Even if a new bug
is introduced, there are tests at every level of isolation, increasing the probability that the bug
won’t go unnoticed. Lastly, every public method and class is documented, making it easier to
read the code.

There is still a lot of work to be done on the application, as 83% of the code is still written in
Java. While it is unrealistic to bring this number down to zero, there are parts of the application
that could be refactored into Kotlin and Compose. For instance, the Information section could be

41

42 Conclusion

converted to Compose, and once all the business logic is converted to Kotlin, it could potentially
be used in an iOS application using Kotlin Multiplatform.

Bibliography

1. FOWLER, Martin. Technical debt [online]. 2019. Available also from: https://martinfowler.
com/bliki/TechnicalDebt.html. Accessed on 2023-03-25.

2. Oracle Database [online]. 2018. Available also from: https://news.ycombinator.com/
item?id=18442941. Accessed on 2023-03-25.

3. 6 technical debt examples and how to solve them [online]. 2022. Available also from: https:
//www.techtarget.com/searchitoperations/tip/6-technical-debt-examples-and-
how-to-solve-them. Accessed on 2023-03-25.

4. MARTIN, Robert Cecil. Clean Code. In: Clean code: A Handbook of Agile Software Crafts-
manship. Prentice Hall, 2009, pp. 14–14. isbn 978-0132350884.

5. FOWLER, Martin. DefinitionOfRefactoring [online]. 2004. Available also from: https://
martinfowler.com/bliki/DefinitionOfRefactoring.html. Accessed on 2023-03-25.

6. MATTA, Peter. Refactoring and object-oriented design patterns [online]. 2022. Available
also from: https : / / docs . google . com / presentation / d / 1KOHLt2OHRmxUx0TQ4k41 -
dVhaLGZ8uTClWT67iDdXyk/edit#slide=id.g615494dbd9_0_0. Accessed on 2023-03-26.

7. FOWLER, Martin. CodeSmell [online]. 2006. Available also from: https://martinfowler.
com/bliki/CodeSmell.html. Accessed on 2023-03-25.

8. CHEBBI, Ajay. Choosing the best programming language for mobile app development [on-
line]. 2021. Available also from: https://developer.ibm.com/articles/choosing-the-
best-programming-language-for-mobile-app-development/. Accessed on 2023-03-25.

9. LARDINOIS, Frederic. Google makes Kotlin a first-class language for writing Android apps
[online]. 2017. Available also from: https://techcrunch.com/2017/05/17/google-
makes-kotlin-a-first-class-language-for-writing-android-apps/. Accessed on
2023-03-25.

10. LARDINOIS, Frederic. Kotlin is now Google’s preferred language for Android app develop-
ment [online]. 2019. Available also from: https://techcrunch.com/2019/05/07/kotlin-
is-now-googles-preferred-language-for-android-app-development/. Accessed on
2023-03-25.

11. WILSON, James Q.; KELLING, George L. Broken windows [online]. 1982. Available also
from: https://www.theatlantic.com/magazine/archive/1982/03/broken-windows/
304465/. Accessed on 2023-03-26.

12. ROUSE, Margaret. What is Android platform? [Online]. 2011. Available also from: https:
//www.techopedia.com/definition/4219/android-platform. Accessed on 2023-03-27.

43

https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html
https://news.ycombinator.com/item?id=18442941
https://news.ycombinator.com/item?id=18442941
https://www.techtarget.com/searchitoperations/tip/6-technical-debt-examples-and-how-to-solve-them
https://www.techtarget.com/searchitoperations/tip/6-technical-debt-examples-and-how-to-solve-them
https://www.techtarget.com/searchitoperations/tip/6-technical-debt-examples-and-how-to-solve-them
https://martinfowler.com/bliki/DefinitionOfRefactoring.html
https://martinfowler.com/bliki/DefinitionOfRefactoring.html
https://docs.google.com/presentation/d/1KOHLt2OHRmxUx0TQ4k41-dVhaLGZ8uTClWT67iDdXyk/edit#slide=id.g615494dbd9_0_0
https://docs.google.com/presentation/d/1KOHLt2OHRmxUx0TQ4k41-dVhaLGZ8uTClWT67iDdXyk/edit#slide=id.g615494dbd9_0_0
https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html
https://developer.ibm.com/articles/choosing-the-best-programming-language-for-mobile-app-development/
https://developer.ibm.com/articles/choosing-the-best-programming-language-for-mobile-app-development/
https://techcrunch.com/2017/05/17/google-makes-kotlin-a-first-class-language-for-writing-android-apps/
https://techcrunch.com/2017/05/17/google-makes-kotlin-a-first-class-language-for-writing-android-apps/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://www.theatlantic.com/magazine/archive/1982/03/broken-windows/304465/
https://www.theatlantic.com/magazine/archive/1982/03/broken-windows/304465/
https://www.techopedia.com/definition/4219/android-platform
https://www.techopedia.com/definition/4219/android-platform

44 Bibliography

13. IONESCU, Daniel. Original Android Prototype Revealed During Google, Oracle Trial [on-
line]. 2017. Available also from: https://www.pcworld.com/article/464050/original_
android_prototype_revealed_during_google_oracle_trial.html. Accessed on 2023-
03-27.

14. STATCOUNTER. Mobile Operating System Market Share Worldwide [online]. 2023. Avail-
able also from: https://gs.statcounter.com/os-market-share/mobile/worldwide/
#quarterly-202301-202301-bar. Accessed on 2023-03-27.

15. PHAM, Dat; ALEXA, Marek. Recommended minimum SDK version for Android projects
[online]. 2023. Available also from: https://www.megumethod.com/blog/recommended-
minimum-sdk-version-for-android-projects. Accessed on 2023-03-27.

16. Activity [online]. 2023. Available also from: https://developer.android.com/reference/
android/app/Activity. Accessed on 2023-03-27.

17. Fragment [online]. 2023. Available also from: https://developer.android.com/reference/
android/app/Fragment. Accessed on 2023-03-27.

18. View [online]. 2023. Available also from: https://developer.android.com/reference/
android/view/View. Accessed on 2023-03-27.

19. Build a responsive UI with ConstraintLayout [online]. 2023. Available also from: https:
//developer.android.com/develop/ui/views/layout/constraint-layout. Accessed
on 2023-03-27.

20. App resources overview [online]. 2022. Available also from: https://developer.android.
com/guide/topics/resources/providing-resources. Accessed on 2023-03-27.

21. LiveData [online]. [N.d.]. Available also from: https://developer.android.com/reference/
android/arch/lifecycle/LiveData. Accessed on 2023-04-13.

22. Jetpack Compose UI App Development Kit [online]. [N.d.]. Available also from: https:
//developer.android.com/jetpack/compose. Accessed on 2023-03-27.

23. Compose Multiplatform UI Framework [online]. 2023. Available also from: https://www.
jetbrains.com/lp/compose-multiplatform/. Accessed on 2023-04-13.

24. FELKER, Donn; GOPAL, Kaushik; RICHARDSON, Leland. 171: Jetpack compose with
Leland Richardson [online]. 2019. Available also from: https : / / open . spotify . com /
episode/2OGsY6iuKx6ZL5EKLxJyVn. Accessed on 2023-03-27.

25. Kotlin and Android [online]. [N.d.]. Available also from: https://developer.android.
com/kotlin. Accessed on 2023-03-27.

26. Gradle User Manual [online]. 2022. Available also from: https://docs.gradle.org/
current/userguide/userguide.html. Accessed on 2023-03-29.

27. The activity lifecycle [online]. 2023. Available also from: https://developer.android.
com/guide/components/activities/activity-lifecycle. Accessed on 2023-03-29.

28. Lifecycle of composables [online]. 2023. Available also from: https://developer.android.
com/jetpack/compose/lifecycle. Accessed on 2023-03-29.

29. Guide to app architecture [online]. 2023. Available also from: https://developer.android.
com/topic/architecture. Accessed on 2023-03-28.

30. Separation of Concerns [online]. 2023. Available also from: https : / / help . sap . com /
doc/abapdocu_753_index_htm/7.53/en-US/abenseperation_concerns_guidl.htm.
Accessed on 2023-03-28.

31. Project Lombok [online]. 2023. Available also from: https://projectlombok.org. Accessed
on 2023-03-30.

32. Data classes [online]. 2023. Available also from: https://kotlinlang.org/docs/data-
classes.html. Accessed on 2023-03-30.

https://www.pcworld.com/article/464050/original_android_prototype_revealed_during_google_oracle_trial.html
https://www.pcworld.com/article/464050/original_android_prototype_revealed_during_google_oracle_trial.html
https://gs.statcounter.com/os-market-share/mobile/worldwide/#quarterly-202301-202301-bar
https://gs.statcounter.com/os-market-share/mobile/worldwide/#quarterly-202301-202301-bar
https://www.megumethod.com/blog/recommended-minimum-sdk-version-for-android-projects
https://www.megumethod.com/blog/recommended-minimum-sdk-version-for-android-projects
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Fragment
https://developer.android.com/reference/android/app/Fragment
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View
https://developer.android.com/develop/ui/views/layout/constraint-layout
https://developer.android.com/develop/ui/views/layout/constraint-layout
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/reference/android/arch/lifecycle/LiveData
https://developer.android.com/reference/android/arch/lifecycle/LiveData
https://developer.android.com/jetpack/compose
https://developer.android.com/jetpack/compose
https://www.jetbrains.com/lp/compose-multiplatform/
https://www.jetbrains.com/lp/compose-multiplatform/
https://open.spotify.com/episode/2OGsY6iuKx6ZL5EKLxJyVn
https://open.spotify.com/episode/2OGsY6iuKx6ZL5EKLxJyVn
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/userguide.html
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/jetpack/compose/lifecycle
https://developer.android.com/jetpack/compose/lifecycle
https://developer.android.com/topic/architecture
https://developer.android.com/topic/architecture
https://help.sap.com/doc/abapdocu_753_index_htm/7.53/en-US/abenseperation_concerns_guidl.htm
https://help.sap.com/doc/abapdocu_753_index_htm/7.53/en-US/abenseperation_concerns_guidl.htm
https://projectlombok.org
https://kotlinlang.org/docs/data-classes.html
https://kotlinlang.org/docs/data-classes.html

Bibliography 45

33. Null safety [online]. 2023. Available also from: https://kotlinlang.org/docs/null-
safety.html#the-operator. Accessed on 2023-04-12.

34. FELKER, Donn. 176: Kotlin’s !! Operator is a Code Smell [online]. 2019. Available also
from: https : / / open . spotify . com / episode / 2OGsY6iuKx6ZL5EKLxJyVn. Accessed on
2023-04-12.

35. Extensions [online]. 2023. Available also from: https://kotlinlang.org/docs/extensions.
html. Accessed on 2023-03-30.

36. Functions [online]. 2023. Available also from: https://kotlinlang.org/docs/functions.
html. Accessed on 2023-04-12.

37. Conditions and loops [online]. 2023. Available also from: https://kotlinlang.org/docs/
control-flow.html. Accessed on 2023-03-30.

38. Sealed classes and interfaces [online]. 2023. Available also from: https://kotlinlang.org/
docs/sealed-classes.html. Accessed on 2023-03-30.

39. Kotlin multiplatform [online]. 2023. Available also from: https://kotlinlang.org/docs/
multiplatform.html. Accessed on 2023-07-05.

40. JANSSEN, Thorben. Design patterns explained – dependency injection with code examples
[online]. 2023. Available also from: https://stackify.com/dependency- injection/.
Accessed on 2023-03-30.

41. Koin - The pragmatic Kotlin dependency injection framework [online]. 2023. Available also
from: https://insert-koin.io. Accessed on 2023-03-30.

42. MONTIEL, Ivan. Low Coupling, High Cohesion [online]. 2018. Available also from: https:
//medium.com/clarityhub/low-coupling-high-cohesion-3610e35ac4a6. Accessed on
2023-03-30.

43. BAJPAYEE, Vikas. Clean architecture Android— important points and terms [online]. 2020.
Available also from: https://medium.com/@vikas.bajpayee/clean- architecture-
android-important-points-and-terms-23272265e262. Accessed on 2023-03-31.

44. Compose layout basics [online]. 2023. Available also from: https://developer.android.
com/jetpack/compose/layouts/basics. Accessed on 2023-03-31.

45. MVC (Model View Controller) Architecture Pattern in Android with Example [online]. 2020.
Available also from: https://www.geeksforgeeks.org/mvc-model-view-controller-
architecture-pattern-in-android-with-example/. Accessed on 2023-03-28.

46. MUNTENESCU, Florina. Android Architecture Patterns Part 1: Model-View-Controller
[online]. 2016. Available also from: https://medium.com/upday-devs/android-architecture-
patterns-part-1-model-view-controller-3baecef5f2b6. Accessed on 2023-03-28.

47. GALLARDO, Estefanía García. What Is MVVM Architecture? [Online]. 2023. Available also
from: https://builtin.com/software-engineering-perspectives/mvvm-architecture.
Accessed on 2023-03-29.

48. CHUGH, Anupam. Android MVVM Design Pattern [online]. 2022. Available also from:
https : / / www . digitalocean . com / community / tutorials / android - mvvm - design -
pattern. Accessed on 2023-03-29.

49. GALOS, Maciej. Modern Android Architecture with MVI design pattern [online]. 2021. Avail-
able also from: https://amsterdamstandard.com/story/modern-android-architecture-
with-mvi-design-pattern. Accessed on 2023-03-29.

50. GAZZAH, Rim. MVI Architecture with Android [online]. 2020. Available also from: https:
//medium.com/swlh/mvi- architecture- with- android- fcde123e3c4a. Accessed on
2023-03-29.

https://kotlinlang.org/docs/null-safety.html#the-operator
https://kotlinlang.org/docs/null-safety.html#the-operator
https://open.spotify.com/episode/2OGsY6iuKx6ZL5EKLxJyVn
https://kotlinlang.org/docs/extensions.html
https://kotlinlang.org/docs/extensions.html
https://kotlinlang.org/docs/functions.html
https://kotlinlang.org/docs/functions.html
https://kotlinlang.org/docs/control-flow.html
https://kotlinlang.org/docs/control-flow.html
https://kotlinlang.org/docs/sealed-classes.html
https://kotlinlang.org/docs/sealed-classes.html
https://kotlinlang.org/docs/multiplatform.html
https://kotlinlang.org/docs/multiplatform.html
https://stackify.com/dependency-injection/
https://insert-koin.io
https://medium.com/clarityhub/low-coupling-high-cohesion-3610e35ac4a6
https://medium.com/clarityhub/low-coupling-high-cohesion-3610e35ac4a6
https://medium.com/@vikas.bajpayee/clean-architecture-android-important-points-and-terms-23272265e262
https://medium.com/@vikas.bajpayee/clean-architecture-android-important-points-and-terms-23272265e262
https://developer.android.com/jetpack/compose/layouts/basics
https://developer.android.com/jetpack/compose/layouts/basics
https://www.geeksforgeeks.org/mvc-model-view-controller-architecture-pattern-in-android-with-example/
https://www.geeksforgeeks.org/mvc-model-view-controller-architecture-pattern-in-android-with-example/
https://medium.com/upday-devs/android-architecture-patterns-part-1-model-view-controller-3baecef5f2b6
https://medium.com/upday-devs/android-architecture-patterns-part-1-model-view-controller-3baecef5f2b6
https://builtin.com/software-engineering-perspectives/mvvm-architecture
https://www.digitalocean.com/community/tutorials/android-mvvm-design-pattern
https://www.digitalocean.com/community/tutorials/android-mvvm-design-pattern
https://amsterdamstandard.com/story/modern-android-architecture-with-mvi-design-pattern
https://amsterdamstandard.com/story/modern-android-architecture-with-mvi-design-pattern
https://medium.com/swlh/mvi-architecture-with-android-fcde123e3c4a
https://medium.com/swlh/mvi-architecture-with-android-fcde123e3c4a

46 Bibliography

51. VASUDEV, Shwetha. MVI Architecture [online]. 2020. Available also from: https://blog.
mindorks.com/mvi-architecture-android-tutorial-for-beginners-step-by-step-
guide/. Accessed on 2023-03-29.

52. STRULOVICH, Omer. From zero to 10 million lines of Kotlin [online]. 2022. Available also
from: https://engineering.fb.com/2022/10/24/android/android-java-kotlin-
migration/. Accessed on 2023-04-12.

53. Metrics for OkHttp’s Kotlin Upgrade [online]. 2019. Available also from: https://publicobject.
com/2019/05/13/metrics-for-okhttps-kotlin-upgrade/. Accessed on 2023-04-12.

54. KOMEN, Benjamin. Using Kotlin in a Java project: 10 lessons learned [online]. 2021.
Available also from: https://xebia.com/blog/using-kotlin-in-a-java-project-10-
lessons-learned/. Accessed on 2023-04-12.

55. ALVELO, Nikolas. Make It Kotlin! — Migrating a Purely Java Android App at Scale [online].
2021. Available also from: https://medium.com/draftkings-engineering/make-it-
kotlin-migrating-the-purely-java-android-app-at-scale-906395c6a34e. Accessed
on 2023-04-12.

56. Migrating to Jetpack Compose [online]. 2023. Available also from: https://developer.
android.com/codelabs/jetpack-compose-migration. Accessed on 2023-04-12.

57. Dokka [online]. 2023. Available also from: https://github.com/Kotlin/dokka. Accessed
on 2023-04-18.

58. Test apps on Android [online]. 2023. Available also from: https://developer.android.
com/training/testing. Accessed on 2023-04-01.

59. DIJKSTRA, Edsger Wybe et al. Notes on structured programming [online]. Technological
University, Department of Mathematics, 1970. Available also from: http://dea.unsj.edu.
ar/informatica1/recursos/Apuntes/Unidad6/2- NotesOnStructuredProgramming-
Dijkstra.PDF.

60. Fundamentals of testing Android apps [online]. 2023. Available also from: https://developer.
android.com/training/testing/fundamentals. Accessed on 2023-04-01.

61. VOCKE, Ham. The Practical Test Pyramid [online]. 2018. Available also from: https:
//martinfowler.com/articles/practical-test-pyramid.html. Accessed on 2023-04-
01.

62. Use test doubles in Android [online]. 2022. Available also from: https : / / developer .
android.com/training/testing/fundamentals/test-doubles. Accessed on 2023-04-01.

63. FOWLER, Martin. Mocks Aren’t Stubs [online]. 2007. Available also from: https : / /
martinfowler.com/articles/mocksArentStubs.html. Accessed on 2023-04-01.

64. Automate UI tests [online]. 2022. Available also from: https://developer.android.com/
training/testing/instrumented-tests/ui-tests. Accessed on 2023-04-01.

65. FOWLER, Martin. TestPyramid [online]. 2012. Available also from: https://martinfowler.
com/bliki/TestPyramid.html. Accessed on 2023-04-01.

66. What are Flaky Tests? [Online]. [N.d.]. Available also from: https://www.jetbrains.com/
teamcity/ci-cd-guide/concepts/flaky-tests/. Accessed on 2023-04-01.

67. COHN, Mike. Succeeding with agile: Software development using scrum. 1st ed. Addison-
Wesley, 2013. Addison-Wesley Signature Series. isbn 0321579364.

68. FELKER, Donn; GOPAL, Kaushik. 174: Testing RxJava, Debugging and More [online].
2019. Available also from: https://open.spotify.com/episode/5O3XA61zsBtXacxG4uV2pd.
Accessed on 2023-04-01.

https://blog.mindorks.com/mvi-architecture-android-tutorial-for-beginners-step-by-step-guide/
https://blog.mindorks.com/mvi-architecture-android-tutorial-for-beginners-step-by-step-guide/
https://blog.mindorks.com/mvi-architecture-android-tutorial-for-beginners-step-by-step-guide/
https://engineering.fb.com/2022/10/24/android/android-java-kotlin-migration/
https://engineering.fb.com/2022/10/24/android/android-java-kotlin-migration/
https://publicobject.com/2019/05/13/metrics-for-okhttps-kotlin-upgrade/
https://publicobject.com/2019/05/13/metrics-for-okhttps-kotlin-upgrade/
https://xebia.com/blog/using-kotlin-in-a-java-project-10-lessons-learned/
https://xebia.com/blog/using-kotlin-in-a-java-project-10-lessons-learned/
https://medium.com/draftkings-engineering/make-it-kotlin-migrating-the-purely-java-android-app-at-scale-906395c6a34e
https://medium.com/draftkings-engineering/make-it-kotlin-migrating-the-purely-java-android-app-at-scale-906395c6a34e
https://developer.android.com/codelabs/jetpack-compose-migration
https://developer.android.com/codelabs/jetpack-compose-migration
https://github.com/Kotlin/dokka
https://developer.android.com/training/testing
https://developer.android.com/training/testing
http://dea.unsj.edu.ar/informatica1/recursos/Apuntes/Unidad6/2-NotesOnStructuredProgramming-Dijkstra.PDF
http://dea.unsj.edu.ar/informatica1/recursos/Apuntes/Unidad6/2-NotesOnStructuredProgramming-Dijkstra.PDF
http://dea.unsj.edu.ar/informatica1/recursos/Apuntes/Unidad6/2-NotesOnStructuredProgramming-Dijkstra.PDF
https://developer.android.com/training/testing/fundamentals
https://developer.android.com/training/testing/fundamentals
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://developer.android.com/training/testing/fundamentals/test-doubles
https://developer.android.com/training/testing/fundamentals/test-doubles
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://developer.android.com/training/testing/instrumented-tests/ui-tests
https://developer.android.com/training/testing/instrumented-tests/ui-tests
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://www.jetbrains.com/teamcity/ci-cd-guide/concepts/flaky-tests/
https://www.jetbrains.com/teamcity/ci-cd-guide/concepts/flaky-tests/
https://open.spotify.com/episode/5O3XA61zsBtXacxG4uV2pd

Bibliography 47

69. Testing [online]. 2022. Available also from: https://moodle-vyuka.cvut.cz/pluginfile.
php/530559/course/section/84272/2020_2021/06_Testing.pdf. Accessed on 2023-04-
02. Translated by author on 2023-04-02.

70. Testing your Compose layout [online]. 2023. Available also from: https://developer.
android.com/jetpack/compose/testing. Accessed on 2023-04-02.

https://moodle-vyuka.cvut.cz/pluginfile.php/530559/course/section/84272/2020_2021/06_Testing.pdf
https://moodle-vyuka.cvut.cz/pluginfile.php/530559/course/section/84272/2020_2021/06_Testing.pdf
https://developer.android.com/jetpack/compose/testing
https://developer.android.com/jetpack/compose/testing

48 Bibliography

Appendix A

Acronyms

MVC Model View Controller
MVVM Model View ViewModel

MVI Model View Intent
API Application Programming Interface

DI Dependency Injection
XML Extensible Markup Language
IDE Integrated Development Environment

JSON JavaScript Object Notation
SSOT Single Source of Truth
OOP Object-Oriented Programming

HTML HyperText Markup Language
NPE NullPointerException
DTO Data transfer object

UI User interface
JVM Java virtual machine

49

50 Acronyms

Appendix B

Attachment contents

files...Folder containing files with code snippets
DTOClasses Folder containing examples of DTO classes

Person.java...Simple Java DTO class
PersonLombok.java............................Simple Java DTO class with Lombok
Person.kt.......................................Example of an DTO class in Kotlin

JavaToKotlin...................Folder containing gradle files for adding Kotlin support
app_build.gradle App level gradle file with Kotlin support
project_build.gradle..................Project level gradle file with Kotlin support

MVC-MVVM Folder containing MVVM set-up and after migration files
Set-Up

activity_main.xml.....................Activity layout with working ViewModel
build.gradle App level gradle file with added ViewModel support
MainActivity.kt..............................Activity with working ViewModel
MainViewModel.kt Simple ViewModel with one property

After-Migration
activity_main.xml...........Activity layout with functionality with ViewModel
MainActivity.kt.......................Activity observing data from ViewModel
MainViewModel.kt.....................ViewModel handling Activity interactions

Testing...........................Folder containing examples of different types of tests
ComposeUnitTest.kt.................................. Unit test testing Composable
EndToEndTest.kt..Compose end-to-end test
IntegrationTestWithFake.kt............. Integrated test using Fake testing double
UnitTestEmailValidator.kt.......................Unit test testing EmailValidator

ViewToCompose..........Folder containing simple example of working Compose Activity
activity_main.xlm..Activity layout file
Main.kt.................................Kotlin file containing Composable functions
MainActivity.kt.............................Activity setting ComposeView content
MainViewModel.kt ViewModel with MainViewState class

Implementation
EmailtextFieldError..............Previous implementation of email text field error
LogInButtonEnabled.............Previous implementation of enabling log in button
ProgressBar...............................Previous implementation of Progress bar

thesis.pdf..Thesis in PDF format
dokka...Folder containing documentation
thesis..Source code of the thesis
app..Source code of the application

51

52 Attachment contents

	Acknowledgments
	Declaration
	Abstract
	Introduction
	Refactoring
	Technical debt
	Refactoring
	When to refactor
	How to refactor
	Neglecting refactoring
	When not to refactor

	Android Platform Specifics
	Android Platform
	Android SDK
	Android Studio
	Activity and Fragment
	Views
	Resources
	Emulator
	LiveData
	Jetpack Compose

	Kotlin
	Gradle
	Lifecycle
	Lifecycle of an Activity
	Lifecycle of a Composable

	App architecture
	Separation of concerns
	Driving UI from data models
	Single source of truth
	Unidirectional Data Flow

	Design
	Using Kotlin
	Dependency injection
	High cohesion, Low coupling
	UseCase
	Repository

	Building UI with Compose
	Creating layout
	Creating custom Composables
	Configuring layout and Composables

	App architecture patterns
	MVC
	MVVM
	MVI

	Analysis of the application
	Application parts
	Login section

	Implementation
	Strategies of refactoring
	Java class to Kotlin
	Migrating from Android Views to Compose
	Migrating to a new app architecture
	Separating concerns

	Adding Kotlin to Java Android app
	From MVC to MVVM app architecture
	Making sure ViewModel works
	Migrating functionality to ViewModel

	Migrating from Views to Compose
	Making sure Compose works
	Migrating functionality to Compose

	Login screen functionality implementation
	TextField error
	Enabling Log in button
	Showing Progress bar
	Showing Dialog

	Creating documentation

	Testing
	Importance of testing
	Different types of tests
	Unit tests
	Integration tests
	End-to-end tests

	Test pyramid and ice-cream cone
	Black box vs. White box testing
	White box testing
	Black box testing

	Android tests running environment
	UI tests in Compose
	Tests added to the application
	Testing scenarios

	Conclusion
	Acronyms
	Attachment contents

