
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Web Application for OSM-Based Indoor Navigation

Matyáš Richter

Ing. Marek Suchánek

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

Indoor navigation is very useful for larger buildings and groups of buildings (e.g.

university campuses). However, it has various issues and different aspects when

compared to traditional outdoor navigation. OpenStreetMap (OSM) provides so-called

Simple Indoor Tagging to capture indoor map elements such as rooms, doors, elevators,

and others. That can be used together with special map layers for indoor navigation. The

goal of this thesis is to design and implement an OSM-based solution for indoor

navigation:

- Survey and describe indoor navigation specifics and technologies. Also, describe the

possibilities offered by OpenStreetMap.

- Design a method for creating a navigation graph from OSM data (for indoor navigation).

Take into account the quality of open data in OSM. Then, design a method for finding an

optimal path with various constraints or measures of optimality (e.g. minimizing total

distance or wheelchair accessibility) with the use of path-finding algorithms. Formally

describe the properties of the algorithms used.

- Briefly survey existing solutions for indoor navigation.

- Set requirements for your application and design the technical solution meeting the

requirements in the form of a reusable web application (i.e. not limited to a specific

building).

- Implement the application based on your design. Justify the selection of technologies

used. Document your solution. Include a test suite and perform acceptance testing

based on use case scenarios.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 18 November 2022 in Prague.

Bachelor’s thesis

WEB APPLICATION FOR
OSM-BASED INDOOR
NAVIGATION

Matyáš Richter

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Marek Suchánek
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Matyáš Richter. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Richter Matyáš. Web Application for OSM-Based Indoor Navigation. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Review of existing solutions and the OpenStreetMap project 3
1.1 Definition of (indoor) pedestrian navigation . 3
1.2 Survey of existing indoor mapping and navigation solutions 4

1.2.1 Google Maps . 4
1.2.2 Apple Maps and IMDF . 5
1.2.3 IndorGML . 5
1.2.4 Other specialised applications . 7

1.3 OpenStreetMap . 7
1.3.1 Organisational structure . 8
1.3.2 Licencing . 8
1.3.3 Data model . 9
1.3.4 Editors . 12

1.4 Indoor data in OpenStreetMap . 15

2 Analysis 19
2.1 Formal requirements and use cases . 19

2.1.1 Functional requirements . 19
2.1.2 Ranking the requirements . 20
2.1.3 Non-functional requirements . 20
2.1.4 Use cases . 21

2.2 Architecture and technologies . 21
2.2.1 Architecture overview . 21
2.2.2 .NET and ASP.NET . 23
2.2.3 Svelte . 23
2.2.4 MapLibre and IndoorEqual . 23
2.2.5 PostgreSQL, PostGIS, and pgRouting . 24

2.3 GIS concepts . 24
2.3.1 Coordinate systems, projections and measuring distance 24
2.3.2 Spatial objects and the intersection matrix 26

2.4 Routing . 28

iii

iv Contents

3 Implementation 31
3.1 Processing OpenStreetMap data . 31

3.1.1 Import stage . 31
3.1.2 Routing graph construction . 32
3.1.3 Processing points . 33
3.1.4 Processing lines . 35
3.1.5 Processing polygons and multipolygons 35
3.1.6 Wall postprocessing . 36
3.1.7 Extracting extra information for routing 38
3.1.8 Final graph cleanup . 40

3.2 Client . 40
3.3 Unit testing and CI/CD . 44

3.3.1 GitLab Pipelines . 45

4 Outcomes of user testing and implications for future work 47
4.1 User testing . 47
4.2 Future work . 48

5 Conclusion 51

Contents of the attached archive 59

List of Figures

1.1 Google Maps Indoor in a mall in Bloomington, MN, USA 5
1.2 The data model of OpenStreetMap [34] . 9
1.3 Example of a multipolygon relation representing a pedestrian area in Prague,

Czech Republic [37] . 12
1.4 Interface of the JOSM editor . 13
1.5 Interface of the iD editor . 14
1.6 Interface of the Rapid editor, the pink rectangle is a Map With AI suggestion . . 14
1.7 Interface of the StreetComplete app . 15
1.8 Example of Simple Indoor Tagging, uploaded by user Pada [48] 17
1.9 Interface of the OsmInEdit editor . 18

2.1 Diagram of the system’s components. 22
2.2 The DE-9IM matrix of two intersecting polygons [61, 71]. 27

3.1 Entity diagram of the output tables of osm2pgsql. 32
3.2 Entity diagram of the routing graph tables. 33
3.3 Input and output of processing a way (line) with the highway=* tag 35
3.4 Output of processing a way (a closed polygon) using visibility graph construction,

polygon nodes in blue, perimeter in black . 37
3.5 Wall postprocessing that disconnects subgraphs in neighbouring rooms 39
3.6 The application displaying routing results with the default settings on a mobile

device screen size. 41
3.7 The application displaying routing results with the default settings on a mobile

device screen size with disallowed stairs. 42
3.8 The application displaying a routing result on a desktop screen size. 42
3.9 Sequence diagram of a user finding a route in the application. 43
3.10 Example of GitLab pipelines overview for a merged Merge request. [84] 45

4.1 A bug where the application suggests a route through a wall. 48
4.2 A bug where the application fails to find a route along a wall. 48

List of Tables

1.1 Example of the tags of a veterinary in Daejeon, South Korea [37] 10
1.2 Example of the tags of a footway in Cardiff, UK [37] 11
1.3 Example of the tags of a restaurant building in Bydgoszcz, Poland [37] 11
1.4 Common indoor tags, based on the Simple Indoor Tagging spec [48] and Taginfo 16

v

vi List of code listings

List of code listings

1 An example feature in the Indoor Mapping Data Format by Apple [11] 6
2 The ProcessingResult structure . 34
3 Wall postprocessing algorithm pseudocode . 38
4 An example from the test suite (with some cases removed for conciseness). 44

I would like to thank my supervisor, Ing. Marek Suchánek, for
providing feedback and guidance throughout the whole process of
writing this thesis. Additionally, I would like to express my gratitude
to every single OpenStreetMap contributor, as they are the ones who
made this thesis possible.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 11, 2023

viii

Abstract

The goal of this Bachelor’s thesis was to create an indoor routing application based on Open-
StreetMap data. In the first chapter, a survey of existing indoor navigation technologies is
presented, and the reader is introduced to the OpenStreetMap project and its specifics. Further
on, the requirements for the application are analyzed, and key concepts of the implementation
are described. A routing application has successfully been implemented, and the possibilities of
its future development are discussed in the final chapter.

Keywords OpenStreetMap, pedestrian navigation, route planning, GIS, indoor maps, open
data

Abstrakt

Cílem této bakalářeké práce byl návrh a implementace webové aplikace pro navigaci ve vnitřních
prostorách na základě dat z projektu OpenStreetMap. V první kapitole je shrnuta rešerše existu-
jících řešení pro navigaci ve vnitřních prostorách, a čtenáři je představen projekt OpenStreetMap
a jeho specifika. V další části práce je provedena analýza požadavků na aplikaci, a poté popsány
klíčové body implementace. Aplikace byla úspěšně implementována, a možnosti jejího budoucího
rozvoje jsou rozebrány v závěrečné kapitole.

Klíčová slova OpenStreetMap, navigace pro chodce, plánování trasy, GIS, mapy vnitřních
prostor, otevřená data

ix

List of abbreviations

GIS Geographic Information System
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
NGO non-governmental organisation
ODbL Open Data Commons Open Database License v1.0
OSM OpenStreetMap

OSMF OpenStreetMap Foundation
POI Point of Interest

S3DB Simple 3D Buildings
SIT Simple Indoor Tagging

XML Extensible Markup Language

x

Introduction

In large multi-floor buildings and complexes such as transport hubs, university campuses, and
offices of public authorities, visitors are likely to know their destination but struggle with locating
it. In an effort to make wayfinding easier for people not familiar with the building, pedestrian
navigation systems can be of great help. Commercial solutions for indoor navigation exist but
require a non-trivial investment by the building owner in terms of monetary and human resources,
as well as vendor lock-in. The OpenStreetMap (OSM) project aims to create a map of the world
in the form of a public database with an open data licence. In recent years, its community has
agreed on a general-purpose indoor mapping schema called Simple Indoor Tagging. The primary
targets for indoor mapping in OSM are public buildings, and many have already been mapped in
detail. While tools for viewing those maps exist, there has not yet been a comprehensive effort
to create a navigation system based on OSM data.

The goal of this thesis is to survey existing solutions in the field of indoor pedestrian navigation
(or navigation in general) and to explore techniques for processing geospatial data. Subsequently,
its goal is to design and implement an indoor navigation system based on OpenStreetMap data,
available under an open-source licence.

1

2 Introduction

Chapter 1

Review of existing solutions and
the OpenStreetMap project

1.1 Definition of (indoor) pedestrian navigation
Navigation, routing, and wayfinding are all synonyms for the process of determining a path be-
tween two points on a map. With the rise of mobile computing, people have become accustomed
to getting directions from a routing service. Such services are most popular among drivers, as
shown in a 2022 study [1] by United Tires, which claims that about 60% of Americans use a
GPS service at least once a week. However, road transport is not the only use case for routing.
In dense urban environments, it could also be desirable to provide pedestrian directions.

In contrast to drivers, pedestrians are less constrained in their mobility options. While cars
generally follow a network of roads made up of well-defined linear segments, people often have the
option to walk freely in areas such as town squares and pedestrian zones. A pedestrian navigation
service is expected to take open space into account. In addition to routing in areas, pedestrian
navigation engines need to work with vertical dimensions as well. Since a building can contain
multiple floors (up to 160 in the Burj Khalifa skyscraper, Dubai [2]), a single point identified
by geographical coordinates can actually be ambiguous, representing multiple distinct locations.
While this is also the case when it comes to road tunnels and bridges, even the most complex
interchanges, such as the Judge Harry Pregerson Interchange [3] only contain a relatively low
number of layers. Additionally, the layers of the road network can generally be easily mapped
as distinct segments, removing the need to consider the vertical dimension when finding a route.
Buildings introduce the concept of level connections, usually staircases, lifts, or ramps.

This thesis uses several basic concepts of graph theory, formally defined as [4]:

▶ Definition 1.1. A directed graph G is an ordered pair (V,E), where

V is a nonempty finite set of vertices (nodes), and

E is a set of edges, ordered pairs of nodes.

V (G) and E(G) denote the sets of vertices and edges of G, respectively. A weighted graph is
a graph (V,E,w), where w : E −→ R+ is a weight function assigning a weight to each edge.

▶ Definition 1.2. Let G and H be two graphs. A mapping f : V (G) −→ V (H) is a graph
isomorphism of G and H if:

f is bijective and

3

4 Review of existing solutions and the OpenStreetMap project

for every pair of vertices u, v ∈ V (G): (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H).

If such mapping exists, we call graphs G and H isomorphic.

▶ Definition 1.3. Graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H is an
induced subgraph of G if E(H) = E(G)

∩(
V (H)

2

)
.

▶ Definition 1.4. Let m >= 0. The path Pm is a graph with m edges: ({0, . . . ,m}, {(i, i+1)|i ∈
{0, . . . ,m− 1}}). For a graph G, a subgraph isomorphic to some path P is called a path in the
graph G.

▶ Definition 1.5. A graph G is connected if for any two vertices u, v, there is a path in the
graph that contains u and v. An induced subgraph H of G is a connected component of G if
H is connected and there is no connected subgraph F of G such that F ̸= H and H ⊆ F .

For finding a route on a map, the map is first transformed into a weighted directed graph,
where edges represent roads, footways and other elements that a human can traverse, called a
routing graph. The goal is to find a path in this graph, given its end vertices. More specifically,
the task is to find the path with the lowest possible sum of weights of its edges, or length.

Naturally, the result is dependent on the weight function used when constructing the graph.
The choice of this function creates different measures of the optimality of a solution. When
modelling routing graphs for finding paths in the real world, it is desirable to use a weight
function that minimises the physical distance of the path. However, there are other factors to
consider. Pedestrians usually prefer footpaths to roads. Some segments, such as stairs, may
not be accessible to wheelchair users. The weight function must reflect these requirements by
arbitrarily inflating the weight of unsuitable edges or removing such edges altogether.

1.2 Survey of existing indoor mapping and navigation so-
lutions

The concepts of digital indoor mapping and navigation can hardly be called new. A number of
commercial solutions and standards exist, originating both from major players in the mapping
industry and specialised start-ups. In this section, I will point out several indoor mapping
implementations and their specifics.

1.2.1 Google Maps
Google launched its mapping service in 2005 and has since become a leader in the business-
to-customer (B2C) digital mapping market segment. The keys to their success, as thoroughly
described in an article by Scott McQuire [5], were strategic acquisitions that helped Google deliver
features that the competition lacked, such as a 3D view of the world with satellite imagery (Google
Earth), or a global service for 360 ° street-level photos (Google Street View). The company also
provided an API for embedding maps into third-party websites, which extended its market reach
even further. Google even used to run a platform for map contributors, in some ways very similar
to OpenStreetMap, with the significant difference of not providing the database back under an
open licence as OSM does. To this day, many features of Google Maps rely on user-provided
content: business reviews and photos are some examples of that.

Indoor mapping is also part of the company’s product — Google allows the import of floor
plans as part of their “business partners” program [6]. Upon zooming into a supported building,
the user is shown floor plans, including an interface for switching floors. Since the implementation
is proprietary and not publicly documented, the details are unclear, but as shown in Figure 1.1,
indoor navigation is supported.

Survey of existing indoor mapping and navigation solutions 5

Figure 1.1 Google Maps Indoor in a mall in Bloomington, MN, USA

1.2.2 Apple Maps and IMDF
Apple’s venture into the mapping industry has not been an easy one. After its launch as a
replacement for Google Maps in 2012, the product received harsh criticism due to errors in map
data, which even led to an apology from one of the company’s executives [7]. Apple has continued
to work on their map product, and public opinion seems to have also changed [8, 9].

When it comes to indoor mapping, Apple takes a vastly different approach compared to
Google. The company developed a specification called Indoor Mapping Data Format (IDMF) and
published it freely. It then worked with the Open Geospatial Consortium (OGC), an international
consortium of businesses, government agencies, and research institutions, to have IDMF accepted
as a “community standard” for indoor mapping [10]. Among the companies that pushed for this
standard to be accepted was also Apple’s competitor, Google. The format is based on GeoJSON,
adding feature types to describe indoor structures [11]. Each building complex, like a public
transport station, a shopping mall, etc., is represented as venue. A venue can have several levels,
ordered by a numeric ordinal property. The geometry of a level describes its outline. Indoor
features (kiosks, openings, …) have a mandatory level_id property. This system is very similar
to OpenStreetMap’s Simple Indoor Tagging, described in Section 1.4. For an example of an
IMDF GeoJSON structure for a room, see Listing 1.

1.2.3 IndorGML
IndoorGML [12] is an extension of Geographic Markup Language (GML), an XML-based lan-
guage for spatial information. It is an OGC standard for describing indoor spaces. The interior
of a building is divided into cells that represent areas (rooms, corridors, stairs, …). The standard
contains an Indoor Navigation Module, making the concepts of routable spaces and connec-
tions between them a first-class citizen. However, in my research, I have not come across any
IndoorGML-based routing engines.

Another GML standard that allows mapping indoor spaces is CityGML. Its primary goal is

6 Review of existing solutions and the OpenStreetMap project

{
"id": "11111111-1111-1111-1111-111111111111",
"type": "Feature",
"feature_type": "unit",
"geometry": {
"type": "Polygon",
"coordinates": [
[

[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]

]
]

},
"properties": {
"category": "room",
"restriction": null,
"accessibility": null,
"name": {"en": "Ball Room"},
"alt_name": null,
"display_point": {
"type": "Point",
"coordinates": [100.0, 1.0],

},
"level_id": "22222223-2222-2222-2222-222222222222"

}
}

Code listing 1 An example feature in the Indoor Mapping Data Format by Apple [11]

OpenStreetMap 7

to capture 3D building data. It allows multiple levels of detail, and the fourth level includes
support for mapping indoor spaces. As noted by Ryoo, Kim and Li [13], CityGML has poor
support for route analysis, because it is primarily concerned with modelling 3D space and the
positions of doors, windows, ceilings, and walls, and omits information necessary for creating a
routing network.

1.2.4 Other specialised applications
The demand for custom-made indoor navigation solutions led to a number of start-ups that
specialise in this area, as well as several open-source projects. Companies in this field typically
offer both mapping services (creating an indoor map from floorplans) and an application for
viewing the map that contains a routing engine. They use a custom data format specific to each
application. Since all of these services are very similar, I will not go into too much detail for
each individual one, and only provide a list of a select few:

1. Steerpath is a Finnish company that provides a full suite for the mapping of building com-
plexes: a map editor, a routing engine, hardware (Bluetooth beacons) for indoor positioning
and APIs for integration with tools like booking systems. [14]

2. Mapstead offers a similar set of products and adds a marketing platform for location-bound
promotions and an analysis tool for visits to the building. [15]

3. Indrz is a free and open source indoor mapping and navigation project built on top of the
Django web framework and PgRouting. The application is used by several European univer-
sities including TU Wien and AAU Klagenfurt. [16]

4. iQNavs is an indoor navigation application developed at CTU in Prague. It contains an
editing interface for floor plans and a routing engine. It is simpler than the other solutions
mentioned, which could make deployment easier, but only supports navigation within a single
building (or several directly connected buildings) without the context of the building’s outdoor
position. [17, 18]

1.3 OpenStreetMap
The OpenStreetMap (OSM) project [19] aims to provide a free, editable map of the whole world,
built and maintained by volunteers and released with an open content licence.

Founded in 2004, OSM celebrated its 10,000,000th registered user in January 2023. The
founder, Steve Coast, originally had a goal of mapping the United Kingdom, aiming to create
an alternative to government-funded geospatial databases [20]. Although the organisations cre-
ating these databases had accumulated large volumes of detailed data, they did not make it
easily accessible to the general public. The Ordnance Survey, Great Britain’s national mapping
agency, allowed third parties outside of the public sector to use its maps, but enforced a strict
interpretation of “derived works” and collected high licencing fees. Thanks to its open licence,
OpenStreetMap quickly rose as a competition to Ordnance Survey and similar bodies in other
countries. Its influence, along with pushes from both nongovernmental and commercial organ-
isations, played a role in opening up a large part of Ordnance Survey’s data in 2010 [21, 22,
23].

In November 2010, OpenStreetMap finalised an agreement with Microsoft, which allowed
royalty-free use of the Bind Maps Imagery Editor API [24]. This was a major stepping stone in
attracting new mappers, as it was no longer necessary to create GPS track recordings as a source
of positional data. Instead, editors could track map features based on Microsoft’s high-resolution
satellite and aerial imagery. This lowered the barrier of entry for new contributors. At the same
time, OSM became available as a “map style” on Bing maps [25]. Today, imagery from several

8 Review of existing solutions and the OpenStreetMap project

other providers is supplied with a compatible licence and available in OpenStreetMap editors
alongside the aforementioned Bing Imagery.

As the map improved over time, more businesses and organisations started using OSM
data. Consumers range from online businesses such as Amazon, Apple, Facebook, and Mi-
crosoft through transport companies (Air France, Deutsche Bahn, Uber), geodata-related service
providers (Garmin, Mapbox, ESRI), public and government organisations, other open databases
(Wikimedia and Wikipedia), to small firms using OpenStreetMap for the purpose of displaying
a map on their website [26]. Use for humanitarian purposes is also notable. The Humanitarian
OpenStreetMap Team (HOT) connects volunteers from all over the world and helps organise the
mapping of areas affected by natural disasters, underdeveloped regions, and previously uncharted
territories of little value to commercial map providers [27].

1.3.1 Organisational structure
In August 2006, the OpenStreetMap Foundation (OSMF) was founded as a company limited by
guarantee. It does not own OSM data, but plays several key roles in the project’s operation [28,
29]:

It acts as a legal entity representing the OpenStreetMap project.

It manages the infrastructure necessary for its hosting.

It participates in the organisation of fundraising for OSM-related activities.

It organises the annual State-of-the-map conference.

It supports and delegates tasks to its working groups. Working groups are made up of volun-
teers and act as organisational units in OSM’s otherwise decentralised community. Among
the most important groups are the Data Working Group (which resolves disputes regarding
map editing, cases of vandalism, copyright infringement claims, etc.), and the Operations
and Engineering working groups (which handle server maintenance and first-party software
development, respectively).

Apart from the global Foundation, local communities have formed around OpenStreetMap. They
are typically centred around a single country or another geographical area and provide a forum for
discussing local mapping specifics, host mapping projects, and make map editing more accessible
to people in their region. Many of them have become legal entities, usually NGOs, to be able
to raise and distribute funds for mapping projects, make communication with authorities easier,
and assist mappers in other ways. In recent years, it has become possible for them to become
official Local Chapters registered with OSMF [30], allowing them to publicly associate themselves
with the Foundation and potentially receive funding or other resources through its channels.

1.3.2 Licencing
Originally, the OpenStreetMap database was published under the Creative Commons Attribution-
ShareAlike 2.0 (CC-BY-SA 2.0) licence. This was problematic for several reasons [31]:

The CC-BY-SA 2.0 licence relies on the copyright of the data. Based on several cases in the
United States, a precedent had been set, which stated that the information in a database
cannot be copyrighted, only the collection as a whole. A requirement for copyrightability in
the US (and possibly other jurisdictions) is the creativity of the “work” in question, which
is, in the case of a geospatial database mirroring the real world, debatable.

OpenStreetMap 9

Figure 1.2 The data model of OpenStreetMap [34]

A common use case for OSM data is rendering them on a map along with other information.
The CC-BY-SA 2.0 licence requires the result to be released with the same licence, causing
legal uncertainty in the case of combining the data with proprietary information.

The licence did not encourage consumers of the data who made improvements to them to
contribute those improvements back to OpenStreetMap’s database.

It was unclear whether the licence required attribution to every single contributor and legal
liability should any of them file for copyright infringement.

In 2010, due to the concerns listed above, the OpenStreetMap Foundation held a vote on
relicencing the database [32]. The licence was changed to the Open Database Licence 1.0 (ODbL).
This licence creates a distinction between Derivative Databases and Produced Works. While
Derivative Databases created from OSM data — databases which extend or modify the data —
are subject to a Share-Alike and must also be licenced under ODbL, most OSM-based projects
such as interactive maps, routing engines, machine learning models, or images, video and other
media created from the data are considered Produced Works, and the licence only requires proper
attribution [33].

1.3.3 Data model
The OpenStreetMap model aims for simplicity. All data in the database is modelled as one of
the following elements [34]:

nodes define points in space,

ways are sequences of points and represent linear features or area boundaries,

relations are used to add additional information to sets of nodes and ways.

As presented in Figure 1.2, elements are identified by numerical IDs, unique per element type.
There are also several metadata attributes associated with each element, such as the timestamp,
author, and changeset1 of the last modification, or a numerical incrementing version.

1A batch of changes to the database, similar to a Git commit.

10 Review of existing solutions and the OpenStreetMap project

Node 368770565
Key Value
amenity veterinary
name 둔산동물병원
name:en Dunsan Animal Hospital
name:ko 둔산동물병원
name:ko-Latn Dunsandongmulbyeongwon
ncat 동물병원

Table 1.1 Example of the tags of a veterinary in Daejeon, South Korea [37]

On their own, these records only describe the location and geometry of the real-world feature
they represent. To interpret them, consumers need to know what the feature is. For that
purpose, OpenStreetMap associates a set of tags with each element. Tags are key-value pairs,
so each element’s tags form a dictionary data structure. There are no validations in place for
tags, so it is possible to add any key-value pair to any element. However, the OpenStreetMap
community has agreed on a set of commonly used tags, which are documented in the project’s
wiki. The OpenStreetMap Foundation regularly holds votes on new tags to be standardized by
adding them to the wiki. The taginfo [35] service provides statistics on the usage of tags and
allows filtering by area, element type, and other criteria. It is a useful resource for determining
which tags are used in practice and comparing the popularity of different tags to information
from the wiki.

1.3.3.1 Nodes
Nodes are the basic building blocks of OpenStreetMap. As of March 2023, the database contains
about 8.2 billion nodes [36]. They are defined by latitude and longitude, although, as discussed
in greater detail later in this thesis, there are ways to differentiate points along the Z axis, too:
the ele=* (elevation), layer=* and level=* tags describe the vertical location of a node. When
used on their own, nodes usually represent features that are too small or insignificant to have
their geometry represented on the map, such as wastebaskets, tourist shelters, or parcel lockers.
In some countries (including the Czech Republic), address nodes placed on top of buildings are
preferred over adding address tags to the building itself. Another common use case of standalone
nodes is amenities inside a building that do not take up the entire building, such as shops in
mixed-use neighbourhoods.

In Table 1.1, we can see the tags of a node in Daejeon, South Korea, which represents a
veterinary. Other than the widespread amenity=* tag, the example contains two notable keys.
The name=* tag describes what the real-world feature is called, and is often accompanied by
“co-tags” with a language code suffix. This way, the map can be rendered in different languages.
The other interesting tag is ncat. It is an example of a tag used by a local community —
searching for it on taginfo [35] shows that it is used exclusively in South Korea. In this case,
its value translates to “animal hospital”. Since there is no wiki entry for this tag, it is not
clear what exactly it is used for, but it seems that it might be a case of a widespread issue in
OpenStreetMap: mappers sometimes add custom tags even though a standard for that type of
feature already exists (amenity=veterinary).

1.3.3.2 Ways
Ways are ordered sequences of nodes. Two kinds of ways exist, they can be either linear or form
a polygonal area. Whether a way belongs in one category or the other depends on both its shape
(ways representing areas must be closed, i.e. start and end at the same node) and tags. Not all

OpenStreetMap 11

closed ways are areas - a roundabout, for instance, can be mapped as a circular way, usually with
a highway=* tag and optionally junciton=roundabout. For most tags, there is a consensus on
whether they imply that an object is an area. The building=* tag is an example of a tag that
is used to map the area of a building, and therefore should not be interpreted as a line (though
this behaviour could be overridden with area=no).

Table 1.2 shows the tags of a way located in Cardiff, UK. From the tags, we can see that the
way represents a footway with a designated bicycle path (mixed with a pedestrian path). The
way is located on a bridge, and since it overlaps another feature (in this case, the river under
the bridge), it is marked with layer=1, which tells the renderer to draw the footway above the
river.

Table 1.3 shows the tags of a building in Bydgoszcz, Poland. We can see that the way has
a building=yes tag. This key-value combination is in fact the most commonly used one in the
entirety of the OSM database — according to taginfo [35], 4.81% of all tags are building=yes.
As for the other tags: amenity=* signifies that the element is a point of interest, in this case, a
restaurant. The set of tags prefixed with addr:, as the name hints, contains address information.
In some areas, the convention is to put addr: tags on the building itself, while in others, a
separate “addres node” is preferred.

Way 443633472
Key Value
bicycle designated
bridge yes
footway sidewalk
highway footway
layer 1
segregated no
surface asphalt

Table 1.2 Example of the tags of a footway in Cardiff, UK [37]

Way 197799694
Key Value
addr:city Bydgoszcz
addr:housenumber 6a
addr:postcode 85-030
addr:street Świętego Floriana
amenity restaurant
building yes
name Restauracja Zatoka

Table 1.3 Example of the tags of a restaurant building in Bydgoszcz, Poland [37]

1.3.3.3 Relations
The most complex data structures in the OSM database are relations. They are sets of other
elements which add new attributes to them. Below is a list of the most common relation types,
which are differentiated by the type=* tag on the relation itself.

12 Review of existing solutions and the OpenStreetMap project

Figure 1.3 Example of a multipolygon relation representing a pedestrian area in Prague, Czech
Republic [37]

Multipolygons (54% of all relations [35]) are used to model complex areas, such as ones with
“holes” in them. Figure 1.3 shows an example of a multipolygon relation. The relation
is composed of two ways, one representing the outer boundary of the area, and the other
representing the inner boundary (in this case, a building). The inner way is marked with
role=inner, and the outer way with role=outer.

Restrictions (16%) describe traffic turn restrictions. They usually contain the from, to and
via member nodes, and are used in applications that provide driving directions.

Routes (8%) are used to model long-distance routes, such as cycle routes and hiking trails,
that span multiple ways. Public transport routes can also be mapped using this relation type.

Boundary (6%) relations define administrative boundaries of countries, counties, cities etc.

1.3.4 Editors
The software used to add and alter the OpenStreetMap database is referred to as editors. This
section briefly describes a subset of them. All of these programs are distributed free of charge
with an open-source licence.

1.3.4.1 JOSM
The Java OpenStreetMap editor [38] is a desktop application written in, as the name implies,
Java. It is arguably the most advanced OSM editor, popular among experienced mappers. Com-
pared to other tools, its interface (Figure 1.4) has high information density at the expense of
higher complexity. A major advantage of JOSM is extensibility. Its architecture allows straight-
forward extension of its features through Java plugins, with tools aimed at specific areas of

OpenStreetMap 13

Figure 1.4 Interface of the JOSM editor

mapping, such as advanced geometry manipulation tools, different imagery providers, or helpers
for different tagging schemes (e.g. Simple Indoor Tagging, see Section 1.4).

1.3.4.2 iD
iD [39] is in many ways a polar opposite of JOSM. It is browser-based, eliminating the need
for local installation, and aims for simplicity and user-friendliness. The Edit button on the
OpenStreetMap homepage opens iD by default, making it the first editor most people encounter
when trying to edit OpenStreetMap. It includes several imagery sources, including local ones that
it only suggests for covered areas (for example, orthophoto by the Prague Institute of Planning
and Development). The editor also has a number of presets, sets of predefined tags, for common
features — opening hours for businesses, surface types for roads, etc. — and quick documentation
previews that partially relieve the user of having to study the OSM wiki thoroughly.

1.3.4.3 Rapid
Originally called RapiD, this editor is a forked and modified version of iD [40] developed by
Meta Platforms. It offers two additions to the original:

The rendering engine has been rewritten using WebGL to improve performance in areas with
a large number of elements.

It includes “Map With AI” - a component that suggests edits based on generated datasets
— Facebook roads, Microsoft Buildings, and government-published open datasets. The user
can choose to accept these suggestions instead of mapping the road or building outline by
hand, which can speed up mapping new areas.

14 Review of existing solutions and the OpenStreetMap project

Figure 1.5 Interface of the iD editor

Figure 1.6 Interface of the Rapid editor, the pink rectangle is a Map With AI suggestion

Indoor data in OpenStreetMap 15

Figure 1.7 Interface of the StreetComplete app

1.3.4.4 StreetComplete
StreetComplete [41] is an Android application that takes a very different approach to map
editing. Instead of trying to become a full-fledged mobile editor, simplicity is placed above
everything else on the list of priorities. The target audience are casual mappers without extensive
knowledge of tagging standards. The app prompts the user with quests, easy-to-answer questions
about things around them in the real world, such as “What kind of surface does this road have?”,
“How many levels does this building have?”, “Is there a bicycle lane on this road?” etc., often
with straightforward multichoice answers and example pictures. It also promotes different OSM
projects through non-intrusive gamification — for instance, answering a preset number of bicycle
infrastructure quests “unlocks” a link to a cycling map renderer.

1.4 Indoor data in OpenStreetMap
Over time, as the OpenStreetMap database kept growing, some mappers started to shift their
focus to smaller and smaller details in their local areas. This trend was caused mainly by the
fact that those areas were already well-mapped in terms of primary roads, place names, city
boundaries, etc., and people who wanted to contribute were looking for things that had not been

16 Review of existing solutions and the OpenStreetMap project

mapped before. When it started to gain traction, the term micromapping [42] was established as
the name of this trend. A natural extension of efforts to map fine details in cities was mapping
indoor spaces.

In the 2010s, drafts of indoor tagging schemas first started appearing [43]. In the years
2011-2014, four notable alternatives were proposed:

IndoorOSM [44] and CompoundFacility [45] were heavily based on a hierarchy of rela-
tions. Each floor was to be modelled as a relation containing all the features on that floor as
members. The level relations were members of another relation.

The Termite [46] editor introduced an indoor tagging schema that also used relations for
different floors. The author’s goal was to make standardised indoor mapping accessible to
non-technical people. The project was very ambitious but eventually became abandoned.

The F3DB [47] proposal, short for “Full 3D buildings” took a different approach. An
indoor:* tag namespace was added, with a set of tags similar to existing outdoor tags,
such as indoor:highway=*, indoor:level=* etc.

In the end, the OSM community has converged on using a modification of F3DB. Proposed in
2014, the Simple Indoor Tagging (SIT) [48] schema’s main objective is to stay as close to the
outdoor tagging style as possible. It only introduces new tags for concepts that do not already
exist, such as rooms. Doors, footways, stairs, elevators and other elements are mapped just like
their outdoor counterparts, allowing existing routers, renderers and other software to partially
support them even without special indoor modifications.

Additionally, the schema includes an indoor=* tag, which can be used to map corridors,
rooms, and other indoor areas. Individual elements can have a level=* tag with numeric values
that describe their vertical location. The connections between levels are mapped using a node
with level=* and door=* tags, with a value of door=no for connections without doors, such as
a node connecting an area representing stairs to another area on a different floor. Features that
span multiple floors are mapped with a range value in the level=* tag. See Table 1.4 for an
overview of common tags and values used in indoor mapping.

Tag and value Usage

indoor=yes Marks an object as indoor.
indoor=room Room with walls. Walls can be passed through

via door=* nodes.
indoor=wall A free-standing wall, or a wall at the edge of an area.

indoor={area, corridor} Unwalled area or passage.
level=X Floor number the element is located on.

level={X-Y, X;Y} Used when the element spans multiple floors, e.g. a stair-
case, a lift, …

repeat_on={X-Y, X;Y} Replicates an element on multiple floors.
door={yes, no, *} Doors and other openings in walls, or level connections

at ending nodes of stairs.
highway=elevator A lift. Can be mapped as a node, a way, or a

indoor=room polygon.
highway={footway, stairs, …} Same as outdoor highway=* tags, paired with level=*

inside buildings.
Table 1.4 Common indoor tags, based on the Simple Indoor Tagging spec [48] and Taginfo

Indoor data in OpenStreetMap 17

Figure 1.8 Example of Simple Indoor Tagging, uploaded by user Pada [48]

1.4.0.1 Indoor support in editors
The topic of this thesis is an indoor routing engine based on OpenStreetMap data. For it to
be useful, it is important to be able to add indoor data to OSM easily, using an application
that supports Simple Indoor Tagging. JOSM includes only basic filtering of elements by their
level=* tag values. The iD editor does not support SIT natively either. It is, of course, possible
to add indoor tags just like any other, but the user experience suffers from the inability to edit
floors one by one, and the user is overwhelmed by a large number of elements stacked on top
of one another. JOSM allows filtering by tags, which could seem satisfactory at first glance,
but simply filtering by level=* is not enough, since it ignores repeat_on=*. The same problem
arises in iD. This inspired the creation of several specialised editors and modifications.

There have been two notable efforts to add indoor support to iD. In his master’s thesis [49],
Pavel Zbytovský aimed to add a special “indoor mode” to iD’s interface and proposed modifica-
tions to the SIT schema regarding the use of ways for corridors. Unfortunately, his pull request
was never merged. Parallel to his work, Adrien Pavie created a fork of iD called iD-indoor [50].
The project was halted in the hope that Zbytovský’s work would soon be accepted into the iD
core.

IndoorHelper [51] is a JOSM plugin that helps with SIT mapping. It extends the built-in
level filtering to automatically populate the level=* tag of new elements and validates compli-
ance with SIT. Its main advantage over other solutions is that experienced users can leverage
the power of JOSM and its other plugins.

With efforts to include indoor support in iD ceasing, Pavie created an alternative browser-
based editor, OsmInEdit [52]. Instead of forking a general-purpose editor, he chose the path
of writing a dedicated indoor editor from scratch. Therefore, OsmInEdit focuses on the con-
cepts of buildings, levels, and indoor features. It assists the user with input of level=* and
repeat_on=* and provides a number of presets specific to the environment, for example, rooms
with different amenity=* values. In my experience, however, it sometimes behaves unexpectedly
when determining which nodes should be merged and which should be duplicated on different
levels, leading to the rooms I created not being connected to one another.

18 Review of existing solutions and the OpenStreetMap project

Figure 1.9 Interface of the OsmInEdit editor

1.4.0.2 Indoor support in renderers
The software that creates a map from OpenStreetMap data is called a renderer [53]. Renderers
usually produce tiles by dividing the map into square areas of multiple tiers for each level of
“zoom”. They either produce raster image tiles, or vector tiles, blobs of binary data that the
client application draws on the screen.

Indoor support in renderers is lacking, mainly because indoor data needs another component
to work - a floor switcher, which is out of the scope of rendering a flat map. Two notable solutions
for rendering indoor data exist, both of which support the Simple Indoor Tagging schema:

OpenLevelUp! [54] is an open-source web application for viewing indoor data. Alongside
pure rendering, it offers data filtering and tools for inspecting indoor elements on-click.

IndoorEqual [55] is similar to OpenLevelUp, but more focused on displaying the data in
a visually pleasing way. It also includes an API for embedding its indoor layer into other
mapping applications.

Chapter 2

Analysis

2.1 Formal requirements and use cases
In this section, I will define the requirements for implementing an OpenStreetMap-based indoor
navigation application. I will divide them into functional and non-functional requirements, and
prioritise them using the MoSCoW method.

2.1.1 Functional requirements
Functional requirements describe features and functions that the application should offer.

F1: Pathfinding — The application will allow the user to find a path between two points on a
map.

F1.1 Map browsing — The main screen of the application will be a zoomable and pannable
map.

F1.2 Start and target selection from the map — The user will be able to pick route points
from the map.

F1.3 POI search — The application will let the user search for named points of interest, such
as room codes.

F1.4 Multi-floor route display — When presenting the route to the user, the application
will clearly distinguish segments on different floors.

F2: Data import — The application will perform routing based on OpenStreetMap data.

F2.1 Routing area selection — The administrator will choose a bounding rectangle for rout-
ing, such as an area around the building of interest.

F2.2 Raw OpenStreetMap data input — The only necessary input will be an unmodified
OSM data extract in a standard file format; or an equivalent API.

F2.3 Data updates — When OSM data for the selected location changes, the application will
allow updates.

F2.4 Data enhancement — It will be possible to extend the imported data custom elements,
such as extra POIs.

19

20 Analysis

Requirement Priority Note

F1.1 MUST HAVE Map zooming and panning is necessary to give the
user an overview of the entire route while allowing
them to view close-up details.

F1.2 MUST HAVE The map view needs to be as interactive as possible.

F1.3 COULD HAVE Extracting POIs from the map will let a use who find
directions when they only know the name of their des-
tination. It is, however, a complex process, resulting
in a lower priority.

F1.4 SHOULD HAVE After a route is found, users are interested in direc-
tions on each floor separately.

F2.1 MUST HAVE This is useful for the administrator, who can only let
users query paths in an area they have verified to be
well-mapped.

F2.2 SHOULD HAVE The person deploying the application should not be
forced to waste time with pre-processing using exter-
nal tools.

F2.3 COULD HAVE Reimporting from scratch upon changes is also a vi-
able strategy, hence the priority is lower.

F2.4 WILL NOT HAVE Combining datasets brings a large set of issues with
routability between points from different sources. It
would, however, be an interesting feature to add in
the future, and could be accompanied by a QR code-
based positioning system (like iQNavs [17, 17]).

2.1.2 Ranking the requirements
I will use the MoSCoW method [56] to rank the requirements. The requirements will be divided
into four categories:

Must have — These requirements are essential for the application to work at all.

Should have — These requirements are important, but not essential. They add value but
are not strictly necessary for the application to be considered functional.

Could have —Features that are nice to have, but have a lower impact on the user experience.

Will not have — These requirements will not be implemented in the first version of the
application. They may be implemented in the future.

2.1.3 Non-functional requirements
Non-functional requirements describe the properties of the application that are not directly
related to its functionality and affect the technology choices during design and implementation.

NF1: Web interface — The application will be accessible in the end user’s browser without the
need for installation.

Architecture and technologies 21

NF2: Responsivity — The user interface will be usable on a wide range of screen sizes.

NF3: Thin client — The application will not require significant computing power on the client
side, i.e. it will be possible to use the application on a mobile device.

NF4: Containerized deployment —The server part of the application will use industry-standard
containerized deployment techniques that remove dependencies on OS libraries (other than
the container runtime).

NF5: Documented deployment without domain expertise — It will be possible to deploy an
instance of the application without a thorough understanding of the underlying concepts of
OSM and geographic information systems. The operations engineer deploying the application
should not need to expend more resources on understanding how it works than necessary.

2.1.4 Use cases
When analysing the problem and designing the application, I have identified two main use cases,
each with a different actor.

Use case 1: Data import
The actor in this use case is the administrator (for the lack of a better term), the person who is
deploying the application, to offer navigation inside their building to their customers or visitors.
After adding the data from their building’s floorplans to the OSM database, they are ready for
deployment. They follow instructions bundled with the application to find the bounding box of
the routing area, start an import script, and end up with a database ready for routing.

Use case 2: Routing
The actor in this use case is a person seeking help with navigation inside the building. The use
case has several linear steps:

1. The user selects a pair of start/target points from the map, potentially each on a different
floor.

2. They click a button to start routing.

3. They are presented with a route drawn on the map, with a clear separation of levels.

4. They can zoom and pan the map to view route details on their way to the destination.

2.2 Architecture and technologies
In this section, I will briefly introduce each of the technologies selected for the implementation
and compare them to other alternatives that were considered. Additionally, I will describe the
architecture of the system and the way it is deployed.

2.2.1 Architecture overview
The system is composed of two main parts: import services and routing services. Both parts com-
municate with a PostgreSQL database, which stores a copy of OpenStreetMap data, extracted
features, and the routing graph created from those features. See Figure 2.1 for a component
diagram of the system.

22 Analysis

Figure 2.1 Diagram of the system’s components.

Architecture and technologies 23

Import is a one-time process with an optional periodic task for syncing the latest changes
from the OSM database (or, more precisely, from data extracts). When the import is finished,
the routing application comes into play. It follows a client-server model, where the server exposes
a JSON HTTP API for the client running in a web browser. Thanks to the decoupling of the
client and server parts of the application, the user interface can be interactive, and changes in
the displayed data do not require a page reload.

2.2.2 .NET and ASP.NET
.NET [57] (formerly .NET Core) is a cross-platform open source developer platform. It supports
several languages, primarily C# and F#, which run in the Common Language Runtime (CLR),
a virtual machine that abstracts away the underlying operating system. Prior to the release
of .NET, Microsoft had a product of a similar name, the .NET Framework — a proprietary
platform for creating Windows apps. In 2014, they created .NET Core, a new cross-platform
implementation of .NET. The “Core” suffix was kept during the transition, and dropped with
the release of .NET 5 in 2020.

ASP.NET is a web application framework for .NET and C#. It has support for building web
APIs, server-rendered web pages, websockets, and even single-page applications. It is a part of
the .NET ecosystem and is maintained by Microsoft.

In this project, .NET and ASP.NET are used in two backend components: the routing API
and the map processing service. It’s a choice driven primarily by personal preference, but backed
by objective reasoning. Being maintained by a large company, some of the points of pride of the
ecosystem are its extensive and well-written documentation, and an established community, both
of which elevate the developer experience. Another compelling reason to choose .NET for this
project was the NetTopologySuite (NTS) library, a port of JTS Topology Suite from Java. It offers
a set of tools for creating and manipulating geometries, and several related algorithms and data
structures, such as spatial indexes. Many of these features are useful during map processing.

The arguments stated above also hold for the Python language paired with the Django web
framework, which I considered as an alternative, and which I am more familiar with. However,
I decided to go with C# and .NET for the benefit of better type safety, which I value highly.

2.2.3 Svelte
Svelte [58] is a JavaScript or TypeScript framework for web applications. It uses a component
model similar to other alternatives like React and Vue.js. Unlike those alternatives, it does not
use a virtual DOM (Document Object Model) — a technique that keeps the application’s tree
in memory and synchronizes it with the DOM. Instead, it compiles into JavaScript code that
directly manipulates the DOM. In addition to Svelte, the application uses SvelteKit, a framework
that adds a directory-tree-based routing system and server-side rendering on top of Svelte.

Since the main part of the application is the map, implemented using a separate set of tools,
the choice of a frontend framework was not as important as it would be in a form-heavy “business”
application. Due to that fact, I chose Svelte out of curiosity, because it is a tool I had not tried
before, and without thorough evaluation of all alternatives.

2.2.4 MapLibre and IndoorEqual
Maplibre GL JS [59] (GL stands for WebGL, JS for JavaScript) is a library for browser map
rendering. It is a fork of Mapbox GL JS, the product of the American company Mapbox spe-
cialising in custom maps and other related solutions. When Mapbox changed the license of their
library to a proprietary one, MapLibre was born as a community-driven fork.

24 Analysis

Alternatives include Leaflet and OpenLayers. Leaflet is not being actively developed anymore
and only supports raster tiles. When deciding between MapLibre and OpenLayers, I inspected
the documentation of both libraries and found MapLibre to be more approachable, although
with fewer features.

The tile server is configurable, and the example configuration uses the MapTiler1 cloud ser-
vice. Alongside the base map, the application also uses IndoorEqual [55] (stylised indoor=), a
tile server for a layer with SIT-compliant indoor maps. IndoorIqual also provides a plugin for
MapLibre which adds a map control for switching between different floors. Both MapTiler and
IndoorEqual can be replaced with a self-hosted version in order to avoid relying on external
services.

2.2.5 PostgreSQL, PostGIS, and pgRouting
PostgreSQL [60] is an open-source relational database system. It is one of the most popular
databases on the market, used heavily in the industry. PostgreSQL is extensible, allowing users
to load third-party extensions into the database. Extensions add all sorts of functionality, such
as new column types (hstore), indexing methods (ZomboDB, an abstraction over ElasticSearch),
or new methods of data storage (TimescaleDB for time-series data).

I picked PostgreSQL for this project to be able to use two such extensions:

1. PostGIS [61] adds column types for storing geometric and geographic objects. It also provides
a set of functions for manipulating these objects, and spatial indexes for efficient querying.

2. pgRouting [62] is an extension that adds several stored procedures for pathfinding and other
graph algorithms. It is described in more detail in the following sections.

2.3 GIS concepts

2.3.1 Coordinate systems, projections and measuring dis-
tance

Locations on the surface of Earth are usually represented using tuples of numbers called coor-
dinates [63]. A given location can be represented in many ways, depending on the coordinate
system used, a reference for locating data across an area relative to each other. They are usually
two or three-dimensional, depending on whether altitude is considered.

Coordinate systems can be divided into two categories [63]. Geographic coordinate systems
(GCS) use a spherical model of Earth and usually describe locations using degrees of longitude
and latitude. The most important distinction between geographic systems is their datum, which
determines which model of Earth is used — since the planet is not perfectly spherical, different
systems use different approximation methods. Projected coordinate systems (PCS), on the other
hand, leverage a projection of the planet’s surface onto a flat plane. The units of measurement
in projected systems are usually linear, such as meters or feet. However, the farther from the
centre of the projection a location is, the more distorted the coordinates become in that area, as
the Earth’s curvature diverts from the plane it is being projected onto. Geographic systems are
useful for storing the location of data, and projected systems are necessary for drawing the same
data onto a flat map. Sets of parameters for working with geospatial data, spatial references,
are standardized in the EPSG Geodetic Parameter Dataset and identified by a well-known ID
(WKID) or spatial reference ID (SRID) [64].

Applications that work with geospatial data combine both types of coordinate systems. Open-
StreetMap is no exception [65, 66] — the database itself uses the 1984 version of the World

1https://www.maptiler.com/

https://www.maptiler.com/

GIS concepts 25

Geodetic System (WGS-84, WKID 4326), but maps based on it (and web maps in general [64])
most commonly use the Web Mercator (WKID 3857) projection for displaying the data. The
MapLibre library used in the web frontend of my routing application implementation works is
aware of this — it draws the map using the Web Mercator projection but accepts coordinates as
latitude and longitude.

When working with coordinates in any part of the application, the WGS-84 latitude/longitude
is used. An important part of the construction of the routing graph is distance calculation. There
are three “levels of approximation” we can use to calculate distance between coordinates [67, 68].

If we pretend the Earth is flat, we can use the Pythagorean theorem, converting degrees to
meters using the length of meridians (20,003.93 km) and an estimate for the length of the parallel
at the latitude of the line we are measuring — 40,901 km at the equator, scaling with the cosine
of latitude:

δy = 20 003 930 · |lat1 − lat2|
180

δx = 40 075 016,7 · |lng1 − lng2|
360

· cos
(
lat1 + lat2

2

)
d =

√
δx2 + δy2

The distance d is an approximation, and its error increases with the distance between the two
points, and is also larger in the vicinity of the poles. For small distances, however, it is “accurate
enough”. Mapbox, for example, uses it in their analytics pipeline, which is optimized for maxi-
mum performance [68]. Since it only uses two computationally expensive functions: the cosine
and the square root, it is much faster than other more precise geodesic methods.

Another option is to assume the Earth is a sphere and use the haversine formula. The name
“haversine” comes from a spherical trigonometric function:

haversine(θ) = sin2
(
θ

2

)
Using the haversine formula, we can calculate the great circle distance, the distance along the
perimeter of a circle on the surface of a sphere, which the two points lie at:

a = sin2
(
lat2 −

lat1
2

)
+ cos(lat1) · cos(lat2) · sin2

(
lng2 −

lng1
2

)
c = 2 · atan2(

√
a,
√
1− a)

d = R · c

where R is the mean radius of the Earth. An advantage of this spherical approach is that the
error is independent of distance, but rather tied to the latitude of the points, guaranteed to be
lower than 0.5% even at the poles.

One last method exists, the Vincenty’s formulae set for ellipsoidal distance and azimuth
calculation [69]. This method is extremely precise, up to 0.5 mm, but also more computationally
expensive, since it narrows down the approximation iteratively, using trigonometric functions
heavily. And since the WGS-84 datum is only accurate to 1 m, the extra effort expended to
calculate a more precise distance is wasted.

When calculating the lengths of edges in the routing graph, the vast majority of distances
will be less than 100 meters, so the euclidean approximation would likely be sufficient. However,
I decided to use the Haversine formula as a middle ground between precision and performance.
Profiling the graph construction process later revealed that (ignoring time spent waiting for the
database and parsing query results), distance calculation takes up less than 1% of the total CPU
time.

26 Analysis

2.3.2 Spatial objects and the intersection matrix
In GIS, we can come across several kinds of spatial objects. In this section, I will briefly describe
the basic ones, introduce the concept of spatial relationships, and highlight both shared and
differing concepts between general-purpose GIS and OpenStreetMap. Most of the text in this
section paraphrases the PostGIS documentation [61] and the NTS documentation[70].

The most common spatial objects in two-dimensional space are:

Point — a pair of coordinates.

Linestring — a sequence of points, forming a line. When a linestring starts and ends with
the same node, it is called a closed linestring.

Polygon — a representation of an area. Its outer boundary is a closed linestring called a
ring. A polygon may also contain inner rings, which represent holes in the area.

Each of these objects can be contained in a geometry collection: a multi-point, multi-linestring,
multi-polygon or mixed collection.

OpenStreetMap data types can also be mapped spatial types, but it is not as straightforward
as it may seem at first glance. The geometry of a node is a point. The geometry of a way is
a linestring, but closed ways can also represent polygons, depending on their tags. In the case
of relations, there are even more options: some multipolygon relations are simply polygons with
inner rings, others relations, such as routes, are geometry collections (multilinestrings). The
processing of OSM data is described in more detail in Section 3.1.1.

When working with multiple objects (geometries), we are often interested in their topological
relationship. The Dimensionally Extended 9-Intersection Model (DE-9IM) is a model for de-
scribing that relationship used as a de-facto standard in many geospatial applications, libraries
(NetTopologySuite), and databases (PostGIS).

Each kind of spatial object (points, linestrings, polygons etc.) can be decomposed into three
parts: the interior, the boundary and the exterior.

For a polygon, the boundary are its rings, both inner and outer. The interior is the area
between those rings, and the exterior is the rest of the plane.

For a linestring, the boundary are its endpoints. The interior is the line itself, and the exterior
is, once again, the rest of the plane.

In the case of points, the decomposition can be a bit confusing at first: the boundary is
empty, the interior is the actual point, and the exterior is the rest of the plane.

To relate two geometries, we look at each of the three parts of both of them and compute
the intersection. The result is a 3x3 matrix, filled with the dimensions of the intersections, in
the order of interior-interior, interior-boundary, interior-exterior, boundary-interior, …, exterior-
exterior. Every two-dimensional relationship can be described using such an intersection matrix.
In Figure 2.2, we can see the matrix for two intersecting polygons. The matrix is usually serialized
to a 9-character string by reading it left to right, top to bottom. In the case of this polygon
intersection, the matrix is 212101212.

When asking the question “Is the relationship of these two objects XXX?”, an intersection
matrix pattern is usually used: for each of its 9 cells, the “query matrix” contains either the
exact dimension (-1/F, 0, 1, 2), or one the two wildcard symbols, T for “any intersection of
dimension >= 0” or * for “any relationship”. Because some kinds of relationships are very
common, they have their own names. In the routing application implementation, the following
named relationships are used (for geometries a,b):

Covers — {T*****FF*,*T****FF*,***T**FF*,****T*FF*} — all points of b lie in the inte-
rior or on the boundary of a.

GIS concepts 27

Figure 2.2 The DE-9IM matrix of two intersecting polygons [61, 71].

28 Analysis

Contains — {T*****FF*} — the interiors intersect, and no points of b lie in the exterior of
a. Unlike Covers, boundary-only intersections do not match this relationship.

Intersects — {T********,*T*******,***T*****,****T****} — a and b share at least one
point.

Disjoint — {FF*FF****} — a and b do not share any points.

Notice that some named relationships are logical negations of each other — i.e. Intersects means
Not Disjoint.

2.4 Routing
I have identified several approaches to implementing routing. First, I will discuss their advantages
and disadvantages, and then justify my final choice. I will refer to tasks, logic and computations
executed during pre-processing OSM data as “processing-time”, in contrast to “routing-time”
code executed during pathfinding.

1. Implement pathfinding on raw OSM data, or with minor pre-processing.

+ Low complexity of pre-processing code, great processing-time performance.
+ Flexible routing with different constraints, since they can be interpreted directly from OSM

tags.
− High complexity of routing-time code, since we need to evaluate the traversability of each

edge, or even create edges on-the-fly.
− Slow routing-time performance.
− Redundant re-calculation of weights/costs for each routing request.

2. Implement pathfinding on data pre-processed into a complete routing graph.

+ Relatively low complexity of routing code, essentially just an implementation of a well-
known pathfinding algorithm.

+ Expected relatively fast routing, and ability to fine-tune the algorithm.
+ Construction of edges and weight calculation is only done once.
− Complex pre-processing code.
− A custom routing algorithm implementation is required.

3. Use a universal routing service with a pre-processed routing graph.

+ Virtually no routing code - just a thin wrapper around the routing service.
+ Expected high performance thanks to efficient implementation on the side of the routing

service.
− Complex pre-processing code, which needs to prepare the data to the format expected by

the service.
− The routing service may not support all necessary features, such as multiple nodes on the

same coordinates. This depends on the service used.

4. Extend an existing OpenStreetMap routing service with indoor routing support.

+ Routing is already implemented.
+ Expected high performance thanks to optimisations done by the routing service.

Routing 29

+ Many pre-processing rules may be reused.
− Requires understanding of a foreign codebase.
− It might be difficult (or even impossible) to add some indoor routing requirements without

major changes to the routing service. This is hard to assess beforehand.

After considering the options described above, I have decided to use approach #3. It provides
a balance between flexibility and not “reinventing the wheel”. OpenStreetMap routing services
like GraphHopper and OSRM generally optimise for huge routing graphs (e.g. all of Europe),
and focus on advanced algorithms such as contraction hierarchies[72], an algorithm that adds
“shortcuts” to the graph during pre-processing, virtual edges based on paths between hotspots in
the graph. Since our application is expected to be used within a small area, such as a university
campus, these kinds of optimisations for a large graph are not critical.

The final choice is not a “service” per se, but rather a PostgreSQL database extension.
Extensibility is one of the core features of PostgreSQL, allowing contributors to add new column
types, functions, and even replication features. Other parts of this project are already using two
major ones: PostGIS for spatial data types and indexes, and hstore for key-value column types.
In addition to those, I have selected the pgRouting [62] extension for pathfinding. It adds a set of
stored procedures not only for shortest-path algorithms but also useful graph analysis tools, such
as a depth-first-search-based algorithm for finding connected components. Internally, it uses the
C++ Boost Graph Library.

PgRouting needs the routing graph to be stored in the database, which is an approach I
probably would have chosen anyway. All of its routing functions share a similar interface. They
accept an SQL query string as a parameter, which must return a set of graph edges. The edges
are then loaded into memory and processed by the selected routing algorithm. An implication of
this is that all routing constraints and metadata must be representable in the edges table since
this edges query should be as lightweight as possible. I will address this in more detail in a later
section about OSM data processing.

My only concern with this choice is that it moves processing away from the application
layer, into the database, which is not a common practice, and introduces scalability issues. For
instance, should there be a need to run multiple replicas of the application for load-balancing,
the database would become an even bigger bottleneck than normally. However, since routing is a
read-only operation, this limitation could be circumvented by using read-only database replicas.
PostgreSQL supports streaming replication out of the box, which is a good fit for this use case. It
allows scaling the database horizontally by assigning primary and standby database nodes, where
primary nodes send changes to the standby nodes, maximising the throughput of database read
operations. This is, however, outside the scope of the current stage of this project, and should
be only considered when proven necessary in the future.

For routing, the A* algorithm [73] is used. A* is a search algorithm that uses a heuristic
function to estimate the distance to the goal node and combines it with the length of the shortest
known path to each explored node to determine the next node to explore. It can find the optimal
path in graph G with a worst-case time complexity of O(|V (G)| + |E(G)|), like the Dijkstra’s
algorithm which it is based on, but improves the “average case” using the heuristic function by
exploring nodes with better prospects of being part of the optimal path first.

For A* to return optimal paths, the heuristic function h on a graph G, searching for paths
to a target node nt, must be:

admissible - considering the hypothetical “optimal heuristic fuction” h∗, which always returns
the length of the real shortest path to the target, the heuristic function h must, for every
node n ∈ V (G) and target node, satisfy h(n) ≤ h∗(n).

consistent - for every pair of nodes n1, n2 ∈ V (G), it must satisfy h(n1) ≤ w(n1, n2) + h(n2),
where w(n1, n2) is the weight of the edge between n1 and n2.

30 Analysis

The heuristic function used for routing in this application is euclidean distance, calculated
using the formula described in Section 2.3.1, with a slight optimisation. Because the implemen-
tation uses edges with metric weights (based on distance), but their coordinates are latitude and
longitude, the heuristic function needs another parameter: a factor, which is used to calculate the
δx in the equation. The factor is calculated using the average of the two latitudes of the routing
area’s bounding box. Since the routing area is rather small, it is a “good enough” approximation
to compute the value of the heuristic function. This design choice is part of osm2pgsql, and the
pgr_astar function expects a factor parameter.

Chapter 3

Implementation

3.1 Processing OpenStreetMap data
In this section, I will describe the implementation of raw OpenStreetMap data conversion into a
routing graph.

As mentioned in the previous section, the routing graph needs to be in a format compatible
with pgRouting. The output must be a database table with edges and their costs. As a side-effect
of the simplicity of the format, swapping the routing engine for another one should be relatively
easy, should that be necessary in the future.

The process is divided into two parts (stages) — first, OSM data is imported, and then the
routing graph is constructed. It can run periodically and consume OSM data updates, so that
changes to the live map are always reflected in the routing application. During updates, routing
queries are not interrupted, and the routing engine only transitions to the updated graph once
the update is complete. This is achieved using the concept of graph versions. When the graph
update job starts, a new record is created in the RoutingGraphVersions table. Then, a new
graph is produced, and this record is marked as active. All components of the routing graph
have an attribute which associates them with a specific graph version. This way, the routing
part of the application can keep using any given graph version and only switch to the latest one
once it is ready.

3.1.1 Import stage
I used the osm2pgsql [74] tool to import OpenStreetMap data into the database before building
the routing graph. It is a general-purpose solution for importing and pre-processing files in the
OSM data format.

The import data source is configurable. OpenStreetMap publishes downloadable copies of the
database known as Planet OSM1, along with daily, hourly and minutely diffs — sets of changes
in a special format meant to be used for replicating the database locally. To reduce the load
on the main server, several organisations mirror these copies as a form of support for the OSM
project. Often, they also create extracts from the database, limited to common areas of interest,
such as to a single city, country or continent. This is ideal for the application developed in this
thesis since it only needs data for the area around the target building.

Before starting the import, the administrator needs to specify two bounding boxes - rectan-
gular areas described using their southwest and northeast corners. The first bounding box is for
the processing stage, the second is for routing. As recommended in the manual for osm2pgsql,

1Available from https://planet.osm.org/

31

https://planet.osm.org/

32 Implementation

Figure 3.1 Entity diagram of the output tables of osm2pgsql.

the bounding box for processing should be slightly larger than for routing and fully contain it.
The reason is that data on the edge of the bounding box may end up being incomplete, for
example when a street starts inside the box, then heads out of it, before finally curving back
inside. The issue is more severe for multipolygon relations. Since some members may be missing,
multipolygons that represent an area can become unclosed and therefore invalid.

Osm2pgsql uses a user-provided script in the Lua programming language to configure the
import. The script included in this project is based on an example from the osm2pgsql manual,
and sets up five tables, as shown in Figure 3.1: a table for points (nodes with non-empty tags),
lines (unclosed ways, e.g. highways), polygons (closed ways with tags that specify that the
element is an area), and multipolygons (relation of type multipolygon, along with a many-to-
many relationship table). It also strips tags irrelevant for routing, such as the source and note
tags or reference numbers from data imports. The same script is used for the replication mode
— elements from the changefiles are processed similarly, overwriting or deleting existing data.

I have included an example configuration in the source code repository for the application,
set up for routing in the university campus in Dejvice, Prague. It uses extracts by the German
company Geofabrik2, and is set up as follows:

When running the application for the first time, a Geofabrik extract for the Czech Republic
is downloaded, cropped, and imported.

Replication is initialized using Geofabrik’s daily diffs service for the same area.

The replication job is scheduled to run daily in the morning.

When deploying an instance of the application, the configuration can be updated to suit the
individual needs of the user.

3.1.2 Routing graph construction
Once osm2pgsql has finished importing the data, it is time for the routing graph to be built. The
updater service is implemented in .NET and makes heavy use of the NetTopologySuite library,
which I already mentioned in Section 2.2. Graph construction is performed in several steps.

First, osm2pgsql output for the routing area is loaded from the database and stored in mem-
ory. The output contains all four types of elements: points, lines, polygons and multipolygons.
Processing follows the same order.

2Available from https://www.geofabrik.de/data/download.html

https://www.geofabrik.de/data/download.html

Processing OpenStreetMap data 33

Figure 3.2 Entity diagram of the routing graph tables.

Each element is processed into a structure containing lists of nodes, edges, and wall edges,
called ProcessingResult (see Listing 2). Each result is self-contained, meaning that the node
IDs of each edge refer to indices in the list of nodes within the result. Once results for all elements
(of one kind, e.g. for all points) are collected, nodes are concatenated and de-duplicated, edge
IDs are re-mapped to their “global” equivalents, and everything is stored in an instance of a
stateful GraphHolder class. Along with the list of nodes, a hash table with a (SourceId, Level)
pair as the key is created. Before adding nodes from new ProcessingResults, the hash table is
checked, and if a node with the same SourceId and Level is already present, it is reused, and edges
from two distinct elements end up with the same node ID, extending a connected component of
the graph. Since processing an element into a ProcessingResult is independent, they can be
processed in parallel, and only brought together afterwards, speeding up the graph construction
process.

3.1.3 Processing points
First in line for processing are points, entries from the osm_points table created using osm2pgsql.
Based on each point’s tags, it is decided whether (and how) it should be added to the graph or
not. Several kinds of points are considered:

Points with the elevator=yes or highway=elevator tags are identified as elevator points
and processed into one node per level, plus edges between those nodes. For example, a
point with tags highway=elevator; level=0-2 is processed into three nodes on the same
coordinates, with levels 0, 1 and 2, and two edges between levels (0, 1), (1, 2). For the Cost
property, a constant value of 3 is used as an estimate of floor height.

Points with the entrance=* tag are processed into a node on the floor specified by their
level=* tag, plus a node with Level=0. Outdoor nodes implicitly have Level value of 0.
Buildings located in rising terrain often have entrances on different floors on each side of the
building. For routing, outdoor nodes just outside the entrance would end up with a different
level=* value, and thus would not get connected to the entrance. This is solved using an
edge with Cost=0 between the entrance node on its indoor floor and its copy with Level=0.

34 Implementation

using NetTopologySuite.Geometries;

public enum SourceType
{

Point,
Line,
Polygon,
Multipolygon

}

public record struct Source(SourceType Type, long Id);

public record InMemoryNode(
Point Coordinates,
decimal Level,
Source? Source,
bool IsLevelConnection = false

);

public record InMemoryEdge(
long FromId,
long ToId,
LineString Geometry,
double Cost,
double ReverseCost,
Source? Source,
double Distance

);

public record ProcessingResult(
IList<InMemoryNode> Nodes,
IList<InMemoryEdge> Edges,
IList<(decimal Level, (int FromId, int ToId) Edge)> WallEdges

);

Code listing 2 The ProcessingResult structure

Points with any value of door=* are processed into a node on the specified floor. This tag
is used in Simple Indoor Tagging to mark level connections. Creating a node for these level
connections in the first stage of processing ensures that they already exist when processing
polygons, allowing nodes between the boundaries of indoor areas and corridors and a level
connection in the middle of said areas to be created. For the application to support cases
where mappers forget to add the door=* tag, all points with the level=* tag are also added,
even though they are technically not SIT-compliant. Polygon processing is described in more
detail later in this section.

The same process applies to points with any of the amenity, shop, name or ref tags, as those
are often the targets of routing requests.

Processing OpenStreetMap data 35

Figure 3.3 Input and output of processing a way (line) with the highway=* tag

3.1.4 Processing lines
Processing lines is also fairly straightforward. OpenStreetMap ways are sequences of nodes, and
each node pair of that sequence can directly be mapped to an edge. The osm2pgsql import step
outputs both a list of node IDs and a LineString. Iterating over these two sequences at the same
time produces the information necessary for constructing routing graph edges. The Cost for
edges created from way segments is calculated as the length of the segment in meters.

Ways with the highway=* tag are cut into segments at each node, producing a sequence of
edges (or multiple sequences depending on the value of the repeat_on=* tag). Although the
Simple Indoor Tagging schema discourages the use of ways for mapping indoor pathways,
many mappers use them. For instance, steps and escalators at the Berlin Main Station
are mapped as ways with the highway=steps tag, connected to different levels using SIT-
compliant indoor=corridor polygons3. To accommodate for level connections mapped this
way, ways tagged with multiple level=* values are assumed to be meant to connect floors,
and each of their OSM nodes is checked for the presence of its own level=* tag. If such tag is
present, the rest of the line is treated as being on that level. This is visualised in Figure 3.3.

Other than highways, there is a second kind of line that needs to be processed: walls and
other linear barriers, identified by the indoor=wall and barrier={wall,fence} tags. No
routing edges are created for these lines. Instead, their nodes are mapped to routing nodes,
and the line itself is converted into wall edges, which are then used for wall postprocessing
described in Section 3.1.6.

3.1.5 Processing polygons and multipolygons
The last kind of OSM element that needs to be processed is polygons. In the case of outdoor
navigation, polygons are often overlooked, because only a few tags exist that represent routable
outdoor areas. The most common one is the combination of highway=pedestrian and area=yes
used for — as the name implies — pedestrian areas and plazas. Since area routing is a niche

3https://www.openstreetmap.org/way/268633035

36 Implementation

use case for outdoor routing, many engines either do not support it at all, or route along the
perimeter of the area, producing a detour. Implementing better area routing is a low priority
for them, and feature requests for it have stayed in the “open” state in their issue trackers for
years [75, 76].

Several algorithms exist for constructing routing subgraphs from polygons. Among the most
commonly suggested are two types: visibility-based and grid-based. Several variations have
recently been compared by a research group at Heidelberg University [77]. The visibility approach
considers every pair of nodes of the polygon and creates an edge if the direct line between them
is fully contained in the polygon. Its greatest strength is the fact that routing on the resulting
graph produces optimal routes. Variations of the base algorithm aim to reduce the number of
extra edges, for example by only keeping edges between nodes connecting the polygon’s subgraph
to the rest of the routing graph, trading path optimality for performance. Grid algorithms, on
the other hand, create “virtual” nodes inside the area and connect them, forming a grid. Other
variations construct also add diagonal edges to the grid, creating a mesh where each node has
eight neighbours, called a spider grid. The advantage of grids and spiders over visibility graphs
is that the start and target of routing can be inside a polygon.

For the indoor routing application, I selected the raw visibility graph approach. Indoor
polygons tend to be smaller than large outdoor plazas, and the application is expected to operate
on smaller graphs, too (as in, not spanning an entire continent), so I prioritised the precision
of resulting paths. In the case of lines, edges were produced by iterating through lists of node
IDs and coordinates and creating edges between each pair of consecutive nodes. For polygons,
the algorithm is similar but considers all (unordered) pairs of nodes. For each pair, an edge
is constructed, and related to the geometry of the polygon. If the polygon covers the edge, it
is added to the graph. If the edge was to be partially outside of the polygon, it would mean
that there is not a direct traversable line between the two nodes. The algorithm works both
for polygons and multipolygons, since the X covers Y operation is defined for both types of
geometries. See Figure 3.4 for a visualisation.

Additionally, edges need to be added for any routing node that is inside the polygon. The
nodes could have been created in either of the previous two stages of processing - from a point
or a line. To reduce the number of points that need to be checked, a k-d tree (or, in this case,
2-d tree) implementation from the NetTopologySuite library is used to retrieve all nodes within
the polygon’s bounding box. It is a binary search tree optimised for spatial data[78]. Its nodes
divide space into two parts, causing each subtree to only contain nodes in the respective section
of the space. A perfectly balanced two-dimensional tree has a maximum depth of log2(n). For
each node retrieved from the tree that the polygon covers, edges are created between it and each
of the polygon’s nodes, using the same visibility check as for edges created from the polygon
itself.

3.1.6 Wall postprocessing
When processing polygons, edges are created between nodes on their boundaries. Because poly-
gons share nodes with other elements, there are paths in the resulting graph that start inside one
polygon and end in a neighbouring one, going through a node shared by both polygons. This is
the desired outcome since the only way to get from one element to another is a shared node -
whether the elements are lines, points or polygons. Routing engines that only operate on lines,
for example only on the network of ways tagged as highway=*, are fine with it and only need to
disconnect barriers tagged as nodes, such as barrier=gate.

Simple Indoor Tagging uses polygons as the primary routable elements. Many indoor polygons
are rooms (indoor=room), and their boundaries are not supposed to be crossable, even if the
node is shared. Walls can also be mapped as indoor=wall ways in the middle of a indoor=area,
or using other combinations of tags representing a linear barrier, like barrier=fence. In either
case, the routing graphs must not contain paths that penetrate a linear barrier, other than

Processing OpenStreetMap data 37

Figure 3.4 Output of processing a way (a closed polygon) using visibility graph construction, polygon
nodes in blue, perimeter in black

through nodes that are explicitly tagged as wall openings, such as nodes with the door=* or
barrier=turnstile tags.

Removing wall nodes is not an acceptable solution, because edges inside rooms are not re-
dundant just because they are connected to a wall node. Instead, the edges need to be split into
groups on opposite sides of the wall. During element processing, wall nodes have been collected
alongside the rest of the routing graph. In the wall postprocessing step, they are aggregated and
used to split wall nodes into copies on each side of the wall. Edges originally leading to wall
nodes are then remapped, causing the two subgraphs in each of the rooms to get disconnected.

In Listing 3, we can see the algorithm used for wall postprocessing. While it may seem
overwhelming at first, the core method is fairly straightforward — as visualised in Figure 3.5.
For each wall node (that is also a routing node), the geometric shape of walls connected to it
(its “wall edge star”) is inspected, and a copy of the wall node is created, moved slightly into the
space next to the wall, along the bisector of the angle between the two walls. On lines 19-27,
edges that were originally connected to the wall nodes are instead re-connected to the new copy.
Then, the geometry of the new edge is checked — and it is only added to the graph if it does
not intersect a wall. This way, edges in each room are only connected to nodes inside the same
room, that are no longer shared with areas behind a wall. Finally, edges on that level that cross
a wall with their interior are also removed from the graph.

To speed up the process of finding candidate wall edges for intersection checks, another
spatially indexed data structure is used. Unlike in the polygon processing step (Section 3.1.5),
where a k-d tree was constructed, an R-tree is queried for all wall edges in the routing edge
candidate’s bounding box, and the geometric check is only performed against this small set of
wall edge geometries.

An R-Tree [79] is a binary search tree for spatial data. It stores values in leaf nodes, with
a preset capacity of values per leaf. When the capacity is exceeded, a new branch is created in
the tree. Other nodes of three, on the other hand, store bounding boxes of their children. When
inserting a new value, the tree is traversed, searching for the leaf where after the insertion, its
bounding box would be expanded the least. A great strength of R-tree is the ability to query
by range. In the case of wall postprocessing, the tree is queried using the bounding rectangle of
an edge, but R-trees support querying by any object that supports the contains and intersects

38 Implementation

1 wallNodes := all wall nodes on level L
2 wallEdgeStars := map of wallNodes indices
3 to sets of coordinates of neighbouring wall
4

5 for each wallNode in wallNodes:
6 if wallNode is a wall opening:
7 // wall openings are accessible from both sides
8 continue
9 walEdgeStar := wallEdgeStars[wallNode.index]

10 ordered by polar angle from wallNode
11 if walEdgeStar only contains a single edge:
12 // end of a wall in space is routable
13 continue
14 for each pair (l, r) in walEdgeStar:
15 bisectorAngle := (l, wallNode, r) angle bisector
16 // create a new node that is just inside the room
17 newNode := wallNode moved a tiny bit along the bisector
18 add newNode to the graph
19 for each oldEdge in edges connected to wallNode:
20 edgeCandidate := oldEdge with wallNode replaced by newNode
21 if edgeCandidate intersects a wall:
22 continue
23 if edgeCandidate comes from a polygon but no longer intersects it:
24 // this prevents edges from getting moved to another room
25 continue
26 add edgeCandidate to the graph
27 remove original edges connected to wallNode from the graph
28 for each edge on level L:
29 if the interior of edge intersects any wallEdge:
30 // this check handles routing edges
31 // that intersect a wall in the middle of a polygon
32 remove edge from the graph
33

Code listing 3 Wall postprocessing algorithm pseudocode

operations. Range lookups are fast since branches whose bounding box the queried object neither
contains nor intersects can be skipped.

3.1.7 Extracting extra information for routing
When looking for a route between two rooms in a building on different floors, users might want
to place constraints on the route. In particular, they are interested in vertical passages: stairs
and elevators.

The solution I implemented is quite simple. During element processing, each item’s tags are
inspected and converted into a set of flags on the routing graph edges: IsStairs, IsElevator
and IsEscalator.

Elements with the highway=elevator tag are marked with the IsElevator flag.

Elements with the highway=steps or stairs=yes tags are either marked with IsStairs or
IsEscalator, based on the value of the conveying=* tag.

Processing OpenStreetMap data 39

Figure 3.5 Wall postprocessing that disconnects subgraphs in neighbouring rooms

40 Implementation

The routing API then accepts optional parameters disableStairs, disableEscalators and
disableElevators, which are reflected in the SQL query for selecting edges passed to pgRouting.
As a result, the pathfinding algorithm then operates on a graph with the matching edges removed.

3.1.8 Final graph cleanup
Groups of edges that form “islands” in the routing graph are an issue for all routing engines.
Formally, these subgraphs are called connected components of the routing graph. OpenStreetMap
editors try to prevent components of highway=* ways from being created by issuing a warning4.
The issue is even more prevalent in the routing graph created using the steps described in previous
sections. Routing nodes are added based on points, with the hope of some other element getting
connected to each of them. Understandably, that does not always happen, creating a necessity
for a cleanup step. Points are not the only issue, though — polygons with the indoor=room tag
without any wall openings cause a connected component to be created inside that room. When
the user selects a point inside that room, they would be surprised by the inability to find a path
to other parts of the map, since they are unaware of the fact there is no door in the source data.

The graph cleanup step has two stages, and runs after the graph has been saved into the
database, but before its version has been marked as active. First, the pgRouting function
pgr_connectedComponents (which is implemented as a depth-first-search-based algorithm) is
used to find all connected components. The number of nodes in each component is counted us-
ing the SQL GROUP BY clause, and compared to the total number of nodes in the routing graph.
Edges in components smaller than 10% of the graph are then removed.

Then, “deserted” nodes are cleaned up. The operation is simple: delete all nodes where no
edge exists that leads from or to this node. This ensures that the user cannot request routing
from a point that is not connected to the rest of the graph.

3.2 Client
The client is a Svelte application, acting as a wrapper around a map rendered using the MapLibre
library. It communicates with a tile server delivering vector tiles and renders indoor data using
the IndoorEqual service, which serves tiles for a second layer with indoor data only. Both the
start/target selection dialog and the other routing UI elements are implemented as a map control
for the Maplibre Map instance.

The application relies on the backend, which provides a JSON API for routing. Figure 3.9
describes the communication during the entire process of finding a route.

1. The user navigates to the URL the application is served at. On the server, the client appli-
cation requests the current config from the routing API. This config contains the bounding
box of the map, the identifier of the latest version of the routing graph, and a set of flags,
which carry information about available route options.

2. In the user’s browser, a map is rendered. When zooming and panning, the map communicates
with two data sources: a tile server for the base map, and the IndoorEqual service. On top
of the vector base map, the IndoorEqual API is used to render an indoor map. The switcher
control on the map is IndoorIqual also provided by IndoorEqual — not by the API, but as a
plugin for MapLibre.

3. The user is presented with two buttons for start and target. Clicking one of them triggers
the point selection mode, and they can click on the map to select one of the two route points.
Once the user selects coordinates for a route point, the client application sends a request to

4iD uses a simple breadth-first-search approach: https://github.com/openstreetmap/iD/blob/develop/
modules/validations/disconnected_way.js

https://github.com/openstreetmap/iD/blob/develop/modules/validations/disconnected_way.js
https://github.com/openstreetmap/iD/blob/develop/modules/validations/disconnected_way.js

Client 41

Figure 3.6 The application displaying routing results with the default settings on a mobile device
screen size.

the routing API to find the routing node closest to the selected coordinates, on the currently
selected floor. Additionally, they can toggle checkboxes for route flags to disable features.
Only checkboxes for features present in the routing graph are available — if there are, for
example, no escalators, the checkbox for escalators is not shown at all.

4. Once both start and target are selected, the “Find route” button becomes active. Clicking
the button triggers a request to the routing API containing the IDs of the start and target
nodes, the graph version, and edge types that the user marked as excluded (e.g., stairs).

5. The routing API either responds with a route (a list of nodes along with total length), or
with an HTTP 404 error, meaning that no route was found.

6. If a route was found, it is rendered on the map. The client divides the route into segments,
each segment being a sequence of nodes on the same level. Then, it switches to the level
the start node is located on and the segments are drawn on the map, with the current level
highlighted. Nodes that connect levels are marked with “Up” or “Down” icons, which can be
used to quickly move to the level of the next segment.

The user interface is designed to be as simple as possible, especially on mobile devices. In
Figure 3.6, we can see the interface of the application after selecting routing points on different
levels in the CTU T9 and CTU A buildings and searching for a route between them. In Figure 3.7,
we can see a route between the same points, but routing through stairs had been disabled before
the search, causing the route to take a “detour” to the elevators. Figure 3.8 shows the same
route on a desktop screen size.

42 Implementation

Figure 3.7 The application displaying routing results with the default settings on a mobile device
screen size with disallowed stairs.

Figure 3.8 The application displaying a routing result on a desktop screen size.

Client 43

Figure 3.9 Sequence diagram of a user finding a route in the application.

44 Implementation

public static TheoryData<string, IEnumerable<decimal>> ParsingData =>
new()
{

{ "", new[] { 0m } },
{ "0", new[] { 0m } },
{ "G", new[] { 0m } },
{ "1", new[] { 1m } },
{ "1.0", new[] { 1m } },
{ "+1", new[] { 1m } },
{ "2", new[] { 2m } },
{ "-1", new[] { -1m } },
{ "0;1", new[] { 0m, 1m } },
{ "-1;2;5", new[] { -1m, 2m, 5m } },
{ "2-4", new[] { 2m, 3m, 4m } },
{ "0;2-3", new[] { 0m, 2m, 3m } },
{ "-1-1", new[] { -1m, 0m, 1m } },
{ "-3--1", new[] { -3m, -2m, -1m } },

};

[Theory]
[MemberData(nameof(ParsingData))]
public void Parses(string input, IEnumerable<decimal> expected) =>

new LevelParser(Mock.Of<ILogger<LevelParser>>())
.Parse(input)
.Should()
.BeEquivalentTo(expected);

Code listing 4 An example from the test suite (with some cases removed for conciseness).

3.3 Unit testing and CI/CD
During development, unit tests were written along with the code. The test suite contains about
100 tests, which cover important parts of the application. They have proven very useful in
preventing regressions when introducing new kinds of element processing.

The test suite uses four main testing libraries:

xUnit [80], a testing framework. XUnit uses the concepts of facts for simple test cases and
theories for parametrised tests — tests that are run multiple times with different inputs.

Fluent Assertions [81], a library for writing readable assertions. This library allows writing
self-documenting tests by exposing an API that reads like a sentence.

Moq [82], the most popular .NET mocking library.

Testcontainers [83], a library that starts Docker containers from code. In the test suite, I
used it to start a PostgreSQL database for integration and database layer tests. Tests are
then run against the database running in a container, which is destroyed after the tests finish.

In Listing 4, we can see a test taken from the test suite which used xUnit, FluentAssertions and
Moq. The unit under test is LevelParser, a class which handles the parsing of the level=*
OSM tag values.

Unit testing and CI/CD 45

Figure 3.10 Example of GitLab pipelines overview for a merged Merge request. [84]

3.3.1 GitLab Pipelines
The Git repository for the project is hosted on the faculty instance of GitLab. On every push
to a branch with an open Merge request, a GitLab pipeline [84] is triggered, which executes the
following stages:

1. Code formatting check using the csharpier tool. The repository also contains a pre-commit
hook, a script which runs the formatting tool before committing, which keeps the codebase
consistent.

2. Build stage, where dependencies are fetched and it is verified that the application compiles
without errors.

3. Test stage, where unit tests are run.

On the default branch, main, two additional stages are run on each commit:

1. Docker build stage, which builds Docker images for the application and pushes them to the
GitLab container registry.

2. Deploy stage, where a new version of the application is deployed to a Docker Swarm environ-
ment, serving as a live demo for the project.

46 Implementation

Chapter 4

Outcomes of user testing and
implications for future work

4.1 User testing
User testing was conducted using a deployment of the application with a bounding box of
(N 50.100700, E 14.386007; N 50.105917, E 14.395190), which contains the area of the
university campus in Dejvice, Prague. In terms of indoor areas coverage at the time of testing,
OpenStreetMap data in the area contained maps for the ground floor of the Czech National
Library of Technology, the ground and second floors of the Czech Technical University (CTU)
T9 building, and several floors in the CTU building A. Users were not given an exact script to
follow in order to simulate their first impression of the application. Rather asked vaguely to
pick points of their choice and find a route between them. The users were not familiar with any
technical details of the application, such as the fact that the data comes from OpenStreetMap.
Naturally, the users followed the steps of Use Case 1 Section 2.1.4.

Testing sessions were held with four users in total. Two of them were students at the Faculty
of Information Technology at CTU and were therefore already familiar with the area. The other
two users had never visited the area before. In terms of devices, one user in each category
accessed the application using a mobile device with a small screen (a smartphone), one used a
desktop computer with an ultrawide monitor, and one used a laptop with a Full HD screen.

During user testing, the following issues and suggestions were collected:

1. When selecting floor 2, the user picked the start point on that floor and tried to pick a target
point outside. The application snapped their target point to the closest routing node on the
second floor, far away from the location they picked. The user expected to be able to select
a point outside of the building without switching back to level 0.

2. A user who is familiar with the area was confused by the presented floor numbering. In the
CTU T9 building, floor 2 is labelled as floor 3, while the application uses zero-based indexing
from OSM.

3. The user who had a wide-screen monitor found it hard to locate map controls since they were
pushed far to the edges of their screen.

4. One user suggested that the application should visualise areas that are not properly mapped,
which would help them understand why trying to pick a point in an unmapped building
failed.

47

48 Outcomes of user testing and implications for future work

Figure 4.1 A bug where the application suggests a route through a wall.

Figure 4.2 A bug where the application fails to find a route along a wall.

5. For one of the mobile users, the floor switching control took a long time to load, even though
they were on a stable internet connection.

6. A bug was discovered, where the application would find a route through the walls of a room
on level 2 in the CTU T9 building. See Figure 4.1.

7. A bug was discovered, where the application would find a route that “ricochets” between
nodes on opposite sides of a corridor instead of following its wall. See Figure 4.2.

4.2 Future work
In its current state, the application can be considered a working prototype. Before it can be
deployed to a production environment, the points raised during user testing need to be addressed,
and unfulfilled requirements implemented. The following list summarises them. Issues from
testing are labelled I1, I2, …, original requirementsSection 2.1.1 are labelled F1, F2,…

1. A solution for I1 could be to only allow snapping to a point up to, for instance, 10 meters
away from the clicked location. Additionally, the API could return a point on the ground
level if no result was found within that radius on a higher level.

Future work 49

2. Floor numbering (I2) will be more complex. Simple Indoor Taggings does support adding
names to levels, but support for displaying those names would need to be implemented in the
IndoorEqual floor switching plugin.

3. I consider the issue with large screen sizes (I3) to be a low priority since the primary target
audience of the application are mobile users.

4. I4 is an interesting suggestion. After graph processing, the application could generate a
heatmap of nodes for each level, and display an inverted version as a map layer, hiding areas
without routing nodes. A potential problem comes from areas that do not contain any nodes
by design, such as parks and bodies of water, because those should not be hidden.

5. I5 should hopefully be resolvable by self-hosting IndoorEqual instead of waiting for the re-
sponse from the public instance, which can sometimes take a long time. In my testing, the
response time from the public API was not consistent across requests, which is probably
caused by varying load on IndoorEqual’s servers.

6. The two bugs, I5 and I6, need to be fixed. From my inspection of the OSM map, the area
seems to be mapped correctly, so they are likely caused by an issue in graph processing.

7. To better reach the audience of users who are not familiar with the area at all, search func-
tionality should be implemented (F1.3, originally marked COULD HAVE). I consider this to
be a high-priority feature.

8. Implementing requirement F2.4 (Data Enhancement, WILL NOT HAVE) would allow the
application to have a feature similar to iQNavs [17, 18], a network of QR codes around the
building mapped to routing nodes. In my opinion, the solution implemented in iQNavs is a
very elegant solution for indoor positioning.

I intend to keep working on the application in the future, focusing on the steps outlined
above.

50 Outcomes of user testing and implications for future work

Chapter 5

Conclusion

In this Bachelor’s thesis, I created an application for finding multi-floor routes based on Open-
StreetMap data. I surveyed existing indoor navigation technologies and found that they are
either proprietary or based on a custom data format. Then, I introduced the OpenStreetMap
project and its specifics, including the support for indoor maps. I analyzed the requirements
for the application and selected appropriate technologies for implementation. I became more
familiar with geospatial concepts and introduced them to the reader.

Then, I implemented an indoor routing application. The application has the ability to down-
load and import OpenStreetMap data extracts and process them into a routing graph. The main
challenges I faced when implementing the solution were level connections and routing in areas
bounded by impassable linear barriers. I also implemented a user interface with an interactive
map, which allows the user to search for a route between two points and view the result. In the
source code, I included a test suite and set up a CI pipeline for automatic tests.

All requirements implied by the thesis assignment were fulfilled, and the result is a functional
prototype, which I intend to further develop in the future. I included a list of minor shortcomings
of the solution and options for its extension and improvement.

51

52 Conclusion

Bibliography

1. UNITED TIRES. Study Reveals Where Drivers Are Most Reliant on Their GPS [online].
2022. [visited on 2023-04-02]. Available from: https://archive.is/VL268.

2. Figures about the Burj Khalifa [online]. [visited on 2023-04-03]. Available from: https:
//www.burjkhalifa.ae/en/the-tower/facts-figures/.

3. WIKIDATA. Judge Harry Pregerson Interchange [online]. 2021. [visited on 2023-04-03].
Available from: https://www.wikidata.org/w/index.php?title=Q806003&oldid=
1396703579.

4. SAUMELL, Maria. Algorithms and graphs 1 lecture slides [online]. Faculty of Information
Technology, Czech Technical University in Prague, 2022.

5. MCQUIRE, Scott. One map to rule them all? Google Maps as digital technical object.
Communication and the Public. 2019. Available from doi: 10.1177/2057047319850192.

6. GOOGLE LLC. Indoor Maps [online]. [visited on 2023-04-22]. Available from: https://
www.google.com/maps/about/partners/indoormaps/.

7. ARTHUR, Charles. Apple Maps: Tim Cook says he is ’extremely sorry’. The Guardian
[online]. 2012 [visited on 2023-04-22]. Available from: https://www.theguardian.com/
technology/2012/sep/28/apple-maps-tim-cook-apology.

8. PETERS, Jay. Apple Maps turns 10 —and it’s finally worth using - The Verge. The Verge
[online]. 2022 [visited on 2023-04-23]. Available from: https : / / www . theverge . com /
23323550/apple-maps-10-year-anniversary-iphone-google.

9. VONAU, Manuel. Apple Maps is good now, and that’s a big problem for Google. Android
Police [online]. 2023 [visited on 2023-04-23]. Available from: https://www.androidpolice.
com/apple-maps-good-now-problem-google-maps/.

10. OPEN GEOSPATIAL CONSORTIUM. OGC membership approves new Community Stan-
dard: Indoor Mapping Data Format (IMDF) [online]. 2021. [visited on 2023-04-23]. Avail-
able from: https://www.ogc.org/press-release/ogc-membership-approves-new-
community-standard-indoor-mapping-data-format-imdf/.

11. OPEN GEOSPATIAL CONSORTIUM. Indoor Mapping Data Format (1.0.0) [online]. 2021.
[visited on 2023-04-23]. Available from: https://docs.ogc.org/cs/20-094/index.html.

12. LEE, Jiyeong; LI, Ki-Joune; ZLATANOVA, Sisi; KOLBE, Thomas H.; NAGEL, Claus;
BECKER, Thomas; KANG, Hye-Young. IndoorGML 1.1 [online]. 2020-11. [visited on 2023-
04-23]. Available from: http://www.opengis.net/doc/IS/indoorgml/1.1.

13. RYOO, Hyung-Gyu; KIM, Taehoon; LI, Ki-Joune. Comparison between two OGC standards
for indoor space. In: Proceedings of the Seventh ACM SIGSPATIAL International Workshop
on Indoor Spatial Awareness. ACM, 2015. Available from doi: 10.1145/2834812.2834813.

53

https://archive.is/VL268
https://www.burjkhalifa.ae/en/the-tower/facts-figures/
https://www.burjkhalifa.ae/en/the-tower/facts-figures/
https://www.wikidata.org/w/index.php?title=Q806003&oldid=1396703579
https://www.wikidata.org/w/index.php?title=Q806003&oldid=1396703579
https://doi.org/10.1177/2057047319850192
https://www.google.com/maps/about/partners/indoormaps/
https://www.google.com/maps/about/partners/indoormaps/
https://www.theguardian.com/technology/2012/sep/28/apple-maps-tim-cook-apology
https://www.theguardian.com/technology/2012/sep/28/apple-maps-tim-cook-apology
https://www.theverge.com/23323550/apple-maps-10-year-anniversary-iphone-google
https://www.theverge.com/23323550/apple-maps-10-year-anniversary-iphone-google
https://www.androidpolice.com/apple-maps-good-now-problem-google-maps/
https://www.androidpolice.com/apple-maps-good-now-problem-google-maps/
https://www.ogc.org/press-release/ogc-membership-approves-new-community-standard-indoor-mapping-data-format-imdf/
https://www.ogc.org/press-release/ogc-membership-approves-new-community-standard-indoor-mapping-data-format-imdf/
https://docs.ogc.org/cs/20-094/index.html
http://www.opengis.net/doc/IS/indoorgml/1.1
https://doi.org/10.1145/2834812.2834813

54 Bibliography

14. Steerpath [online]. 2023. [visited on 2023-04-23]. Available from: https://www.steerpath.
com/.

15. Mapstead [online]. 2023. [visited on 2023-04-23]. Available from: https://mapsted.com/
indoor-navigation/#.

16. INDRZ [online]. 2023. [visited on 2023-04-23]. Available from: https://www.indrz.com/.
17. BURKOŇ, Richard. Frontend iQR navigačního systému. 2022. Available also from: http:

//hdl.handle.net/10467/99085. MA thesis. Czech Technical University in Prague.
18. KREJČÍ, David. Backend iQR navigačního systému. 2022. Available also from: http://

hdl.handle.net/10467/103758. Bachelor’s Thesis. Czech Technical University in Prague.
19. OPENSTREETMAPWIKI CONTRIBUTORS. About OpenStreetMap [online]. OpenStreetMap

Wiki, 2022 [visited on 2023-03-06]. Available from: https://wiki.openstreetmap.org/w/
index.php?title=About_OpenStreetMap&oldid=2310396.

20. OPENSTREETMAPWIKI CONTRIBUTORS. History of OpenStreetMap. OpenStreetMap
Wiki, 2023. Available also from: https://wiki.openstreetmap.org/w/index.php?title=
History_of_OpenStreetMap&oldid=2475549. [Online; accessed 19-April-2023].

21. ARTHUR, Charles. How free will Ordnance Survey’s maps be? Your last chance to decide.
The Guardian. 2010. issn 0261-3077. Available also from: https://www.theguardian.
com/technology/blog/2010/mar/17/ordnance-survey-consultation-ending.

22. JWALSH. Response to the consultation on opening access to Ordnance Survey data –Open
Knowledge Foundation blog [online]. 2010-03. [visited on 2023-03-06]. Available from: https:
//blog.okfn.org/2010/03/15/response-to-the-consultation-on-opening-access-
to-ordnance-survey-data/.

23. Locus Association’s response to the Ordnance Survey Consultation [online]. 2010-03. [vis-
ited on 2023-03-06]. Available from: https://data.europa.eu/sites/default/files/
report/2010_locus_associations_response_to_the_ordnance_survey_consultation.
pdf.

24. COAST, Steve. Microsoft Imagery details | OpenStreetMap Blog. 2010. Available also from:
https://blog.openstreetmap.org/2010/11/30/microsoft-imagery-details/.

25. MICROSOFT. Bing Maps Adds OpenStreetMap. 2010. Available also from: https://blogs.
bing.com/maps/2010/08/02/bing-maps-adds-openstreetmap.

26. OPENSTREETMAP FOUNDATION [online]. Openstreetmap.org, 2023 [visited on 2023-
03-07]. Available from: https://welcome.openstreetmap.org/about-osm-community/
consumers/.

27. HUMANITARIAN OPENSTREETMAP TEAM. What we do [online]. Hotosm.org, 2023
[visited on 2023-03-07]. Available from: https://www.hotosm.org/what-we-do.

28. OPENSTREETMAP FOUNDATION. About [online]. 2023. [visited on 2023-03-06]. Avail-
able from: https://blog.openstreetmap.org/about/.

29. OPENSTREETMAPWIKI CONTRIBUTORS. Foundation [online]. OpenStreetMapWiki,
2022 [visited on 2023-03-06]. Available from: https://wiki.openstreetmap.org/w/index.
php?title=Foundation&oldid=2450475.

30. OPENSTREETMAP FOUNDATION. Local Chapters and Communities Working Group —
OpenStreetMap Foundation [online]. 2023. [visited on 2023-03-06]. Available from: https:
//wiki.osmfoundation.org/w/index.php?title=Local_Chapters_and_Communities_
Working_Group&oldid=10374.

31. OPENSTREETMAP FOUNDATION CONTRIBUTORS. Why CC BY-SA is Unsuitable
[online]. OpenStreetMap Foundation, 2016-07 [visited on 2023-03-07]. Available from: https:
//wiki.osmfoundation.org/w/index.php?title=Licence_and_Legal_FAQ/Why_CC_BY-
SA_is_Unsuitable&oldid=3927.

https://www.steerpath.com/
https://www.steerpath.com/
https://mapsted.com/indoor-navigation/#
https://mapsted.com/indoor-navigation/#
https://www.indrz.com/
http://hdl.handle.net/10467/99085
http://hdl.handle.net/10467/99085
http://hdl.handle.net/10467/103758
http://hdl.handle.net/10467/103758
https://wiki.openstreetmap.org/w/index.php?title=About_OpenStreetMap&oldid=2310396
https://wiki.openstreetmap.org/w/index.php?title=About_OpenStreetMap&oldid=2310396
https://wiki.openstreetmap.org/w/index.php?title=History_of_OpenStreetMap&oldid=2475549
https://wiki.openstreetmap.org/w/index.php?title=History_of_OpenStreetMap&oldid=2475549
https://www.theguardian.com/technology/blog/2010/mar/17/ordnance-survey-consultation-ending
https://www.theguardian.com/technology/blog/2010/mar/17/ordnance-survey-consultation-ending
https://blog.okfn.org/2010/03/15/response-to-the-consultation-on-opening-access-to-ordnance-survey-data/
https://blog.okfn.org/2010/03/15/response-to-the-consultation-on-opening-access-to-ordnance-survey-data/
https://blog.okfn.org/2010/03/15/response-to-the-consultation-on-opening-access-to-ordnance-survey-data/
https://data.europa.eu/sites/default/files/report/2010_locus_associations_response_to_the_ordnance_survey_consultation.pdf
https://data.europa.eu/sites/default/files/report/2010_locus_associations_response_to_the_ordnance_survey_consultation.pdf
https://data.europa.eu/sites/default/files/report/2010_locus_associations_response_to_the_ordnance_survey_consultation.pdf
https://blog.openstreetmap.org/2010/11/30/microsoft-imagery-details/
https://blogs.bing.com/maps/2010/08/02/bing-maps-adds-openstreetmap
https://blogs.bing.com/maps/2010/08/02/bing-maps-adds-openstreetmap
https://welcome.openstreetmap.org/about-osm-community/consumers/
https://welcome.openstreetmap.org/about-osm-community/consumers/
https://www.hotosm.org/what-we-do
https://blog.openstreetmap.org/about/
https://wiki.openstreetmap.org/w/index.php?title=Foundation&oldid=2450475
https://wiki.openstreetmap.org/w/index.php?title=Foundation&oldid=2450475
https://wiki.osmfoundation.org/w/index.php?title=Local_Chapters_and_Communities_Working_Group&oldid=10374
https://wiki.osmfoundation.org/w/index.php?title=Local_Chapters_and_Communities_Working_Group&oldid=10374
https://wiki.osmfoundation.org/w/index.php?title=Local_Chapters_and_Communities_Working_Group&oldid=10374
https://wiki.osmfoundation.org/w/index.php?title=Licence_and_Legal_FAQ/Why_CC_BY-SA_is_Unsuitable&oldid=3927
https://wiki.osmfoundation.org/w/index.php?title=Licence_and_Legal_FAQ/Why_CC_BY-SA_is_Unsuitable&oldid=3927
https://wiki.osmfoundation.org/w/index.php?title=Licence_and_Legal_FAQ/Why_CC_BY-SA_is_Unsuitable&oldid=3927

Bibliography 55

32. OPENSTREETMAP FOUNDATION CONTRIBUTORS. We Are Changing The License
[online]. OpenStreetMap Foundation, 2016-03 [visited on 2023-03-07]. Available from: https:
/ / wiki . osmfoundation . org / w / index . php ? title = Licence / Historic / We _ Are _
Changing_The_License&oldid=4141.

33. OPENSTREETMAP FOUNDATION CONTRIBUTORS. Licence [online]. OpenStreetMap
Foundation, 2021-08 [visited on 2023-03-07]. Available from: https://wiki.osmfoundation.
org/w/index.php?title=Licence&oldid=8605.

34. OPENSTREETMAP WIKI CONTRIBUTORS. Elements [online]. OpenStreetMap Wiki,
2023 [visited on 2023-03-11]. Available from: https://wiki.openstreetmap.org/w/
index.php?title=Elements&oldid=2459386.

35. OPENSTREETMAP CONTRIBUTORS. taginfo [online]. 2023. [visited on 2023-05-06].
Available from: https://taginfo.openstreetmap.org/.

36. OPENSTREETMAP FOUNDATION. OpenStreetMap Statistics [online]. [visited on 2023-
03-11]. Available from: https://planet.openstreetmap.org/statistics/data_stats.
html.

37. OPENSTREETMAP CONTRIBUTORS. OpenStreetMap [online]. 2023. [visited on 2023-
05-06]. Available from: https://www.openstreetmap.org/.

38. OPENSTREETMAPWIKI CONTRIBUTORS. JOSM [online]. OpenStreetMapWiki, 2023
[visited on 2023-04-16]. Available from: https://wiki.openstreetmap.org/w/index.php?
title=JOSM&oldid=2499791.

39. OPENSTREETMAP WIKI CONTRIBUTORS. ID [online]. OpenStreetMap Wiki, 2023
[visited on 2023-04-16]. Available from: https://wiki.openstreetmap.org/w/index.
php?title=ID&oldid=2495702.

40. OPENSTREETMAPWIKI CONTRIBUTORS. Rapid [online]. OpenStreetMap Wiki, 2023
[visited on 2023-04-16]. Available from: https://wiki.openstreetmap.org/w/index.php?
title=Rapid&oldid=2502687.

41. OPENSTREETMAP WIKI CONTRIBUTORS. StreetComplete [online]. OpenStreetMap
Wiki, 2023 [visited on 2023-04-16]. Available from: https://wiki.openstreetmap.org/w/
index.php?title=StreetComplete&oldid=2483306.

42. OPENSTREETMAP WIKI CONTRIBUTORS. Micromapping [online]. OpenStreetMap
Wiki, 2023 [visited on 2023-04-14]. Available from: https://wiki.openstreetmap.org/w/
index.php?title=Micromapping&oldid=2496545.

43. OPENSTREETMAP WIKI CONTRIBUTORS. Indoor Mapping [online]. OpenStreetMap
Wiki, 2023 [visited on 2023-04-14]. Available from: https://wiki.openstreetmap.org/w/
index.php?title=Indoor_Mapping&oldid=2499378.

44. OPENSTREETMAP WIKI CONTRIBUTORS. Proposed features/IndoorOSM [online].
OpenStreetMapWiki, 2022 [visited on 2023-04-15]. Available from: https://wiki.openstreetmap.
org/w/index.php?title=Proposed_features/IndoorOSM&oldid=2299157.

45. OPENSTREETMAP WIKI CONTRIBUTORS. Proposed features/CompoundFacility [on-
line]. OpenStreetMap Wiki, 2018 [visited on 2023-04-15]. Available from: https://wiki.
openstreetmap.org/w/index.php?title=Proposed_features/CompoundFacility&
oldid=1599475.

46. OPENSTREETMAP WIKI CONTRIBUTORS. Termite [online]. OpenStreetMap Wiki,
2016 [visited on 2023-04-15]. Available from: https://wiki.openstreetmap.org/w/
index.php?title=Termite&oldid=1321283.

47. OPENSTREETMAPWIKI CONTRIBUTORS. F3DB [online]. OpenStreetMapWiki, 2021
[visited on 2023-04-15]. Available from: https://wiki.openstreetmap.org/w/index.php?
title=F3DB&oldid=2191286.

https://wiki.osmfoundation.org/w/index.php?title=Licence/Historic/We_Are_Changing_The_License&oldid=4141
https://wiki.osmfoundation.org/w/index.php?title=Licence/Historic/We_Are_Changing_The_License&oldid=4141
https://wiki.osmfoundation.org/w/index.php?title=Licence/Historic/We_Are_Changing_The_License&oldid=4141
https://wiki.osmfoundation.org/w/index.php?title=Licence&oldid=8605
https://wiki.osmfoundation.org/w/index.php?title=Licence&oldid=8605
https://wiki.openstreetmap.org/w/index.php?title=Elements&oldid=2459386
https://wiki.openstreetmap.org/w/index.php?title=Elements&oldid=2459386
https://taginfo.openstreetmap.org/
https://planet.openstreetmap.org/statistics/data_stats.html
https://planet.openstreetmap.org/statistics/data_stats.html
https://www.openstreetmap.org/
https://wiki.openstreetmap.org/w/index.php?title=JOSM&oldid=2499791
https://wiki.openstreetmap.org/w/index.php?title=JOSM&oldid=2499791
https://wiki.openstreetmap.org/w/index.php?title=ID&oldid=2495702
https://wiki.openstreetmap.org/w/index.php?title=ID&oldid=2495702
https://wiki.openstreetmap.org/w/index.php?title=Rapid&oldid=2502687
https://wiki.openstreetmap.org/w/index.php?title=Rapid&oldid=2502687
https://wiki.openstreetmap.org/w/index.php?title=StreetComplete&oldid=2483306
https://wiki.openstreetmap.org/w/index.php?title=StreetComplete&oldid=2483306
https://wiki.openstreetmap.org/w/index.php?title=Micromapping&oldid=2496545
https://wiki.openstreetmap.org/w/index.php?title=Micromapping&oldid=2496545
https://wiki.openstreetmap.org/w/index.php?title=Indoor_Mapping&oldid=2499378
https://wiki.openstreetmap.org/w/index.php?title=Indoor_Mapping&oldid=2499378
https://wiki.openstreetmap.org/w/index.php?title=Proposed_features/IndoorOSM&oldid=2299157
https://wiki.openstreetmap.org/w/index.php?title=Proposed_features/IndoorOSM&oldid=2299157
https://wiki.openstreetmap.org/w/index.php?title=Proposed_features/CompoundFacility&oldid=1599475
https://wiki.openstreetmap.org/w/index.php?title=Proposed_features/CompoundFacility&oldid=1599475
https://wiki.openstreetmap.org/w/index.php?title=Proposed_features/CompoundFacility&oldid=1599475
https://wiki.openstreetmap.org/w/index.php?title=Termite&oldid=1321283
https://wiki.openstreetmap.org/w/index.php?title=Termite&oldid=1321283
https://wiki.openstreetmap.org/w/index.php?title=F3DB&oldid=2191286
https://wiki.openstreetmap.org/w/index.php?title=F3DB&oldid=2191286

56 Bibliography

48. OPENSTREETMAP WIKI CONTRIBUTORS. Simple Indoor Tagging [online]. Open-
StreetMapWiki, 2023 [visited on 2023-04-14]. Available from: https://wiki.openstreetmap.
org/w/index.php?title=Simple_Indoor_Tagging&oldid=2478681.

49. ZBYTOVSKÝ, Pavel. Indoor mapping on the OpenStreetMap platform. Prague, 2016. MA
thesis. Czech Technical University in Prague, Faculty of Information Technology.

50. PAVIE, Adrien. iD-indoor source repository. Available also from: https://framagit.org/
PanierAvide/iD-indoor. [Online; accessed 16-April-2023].

51. OPENSTREETMAPWIKI CONTRIBUTORS. JOSM/Plugins/indoorhelper [online]. Open-
StreetMapWiki, 2022 [visited on 2023-04-16]. Available from: https://wiki.openstreetmap.
org/w/index.php?title=JOSM/Plugins/indoorhelper&oldid=2263317.

52. PAVIE, Adrien. OsmInEdit source repository. Available also from: https://framagit.
org/PanierAvide/osminedit. [Online; accessed 16-April-2023].

53. OPENSTREETMAP WIKI CONTRIBUTORS. Rendering [online]. OpenStreetMap Wiki,
2023-02-08 [visited on 2023-05-06]. Available from: https://wiki.openstreetmap.org/w/
index.php?title=Rendering&oldid=2475960.

54. PAVIE, Adrien. OpenLevelUp [comp. software]. 2023. [visited on 2023-05-06]. Available from:
https://openlevelup.net/.

55. METZ, François de. indoor= [online]. 2023. [visited on 2023-05-06]. Available from: https:
//indoorequal.org/.

56. PRODUCTPLAN. MoSCoW Prioritization [online]. 2023. [visited on 2023-05-07]. Available
from: https://www.productplan.com/glossary/moscow-prioritization/.

57. MICROSOFT. .NET (and .NET Core) - introduction and overview [online]. [visited on
2023-04-25]. Available from: https://learn.microsoft.com/en- us/dotnet/core/
introduction.

58. SVELTE CONTRIBUTORS. Svelte Documentation [online]. 2023. [visited on 2023-05-06].
Available from: https://svelte.dev/docs.

59. MAPLIBRE. MapLibre GL JS Documentation [online]. 2023. [visited on 2023-05-06]. Avail-
able from: https://maplibre.org/maplibre-gl-js-docs/api/.

60. THE POSTGRESQL GLOBAL DEVELOPMENT GROUP. PostgreSQL 15.2 Documen-
tation [online]. 2023. [visited on 2023-05-06]. Available from: https://www.postgresql.
org/docs/.

61. RAMSEY, Paul; LESLIE, Mark; POSTGIS CONTRIBUTORS. Introduction to PostGIS
[online]. 2023. [visited on 2023-05-06]. Available from: https://postgis.net/workshops/
postgis-intro/index.html.

62. PGROUTING CONTRIBUTORS. pgRouting documentation [online]. 2023. [visited on 2023-
04-25]. Available from: https://docs.pgrouting.org/latest/en/index.html.

63. SMITH, Heather. Geographic vs Projected Coordinate Systems [online]. 2020-02-27. [visited
on 2023-05-06]. Available from: https://www.esri.com/arcgis-blog/products/arcgis-
pro/mapping/gcs_vs_pcs/.

64. ESRI. ArcGIS Developer Glossary [online]. 2023. [visited on 2023-05-06]. Available from:
https://developers.arcgis.com/documentation/glossary/.

65. OPENSTREETMAP WIKI CONTRIBUTORS. Projection [online]. OpenStreetMap Wiki,
2022-08 [visited on 2023-05-06]. Available from: https://wiki.openstreetmap.org/w/
index.php?title=Projection&oldid=2371538.

66. OPENSTREETMAP WIKI CONTRIBUTORS. Web Mercator [online]. OpenStreetMap
Wiki, 2022-08-13 [visited on 2023-05-06]. Available from: https://wiki.openstreetmap.
org/w/index.php?title=Web_Mercator&oldid=2371529.

https://wiki.openstreetmap.org/w/index.php?title=Simple_Indoor_Tagging&oldid=2478681
https://wiki.openstreetmap.org/w/index.php?title=Simple_Indoor_Tagging&oldid=2478681
https://framagit.org/PanierAvide/iD-indoor
https://framagit.org/PanierAvide/iD-indoor
https://wiki.openstreetmap.org/w/index.php?title=JOSM/Plugins/indoorhelper&oldid=2263317
https://wiki.openstreetmap.org/w/index.php?title=JOSM/Plugins/indoorhelper&oldid=2263317
https://framagit.org/PanierAvide/osminedit
https://framagit.org/PanierAvide/osminedit
https://wiki.openstreetmap.org/w/index.php?title=Rendering&oldid=2475960
https://wiki.openstreetmap.org/w/index.php?title=Rendering&oldid=2475960
https://openlevelup.net/
https://indoorequal.org/
https://indoorequal.org/
https://www.productplan.com/glossary/moscow-prioritization/
https://learn.microsoft.com/en-us/dotnet/core/introduction
https://learn.microsoft.com/en-us/dotnet/core/introduction
https://svelte.dev/docs
https://maplibre.org/maplibre-gl-js-docs/api/
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://postgis.net/workshops/postgis-intro/index.html
https://postgis.net/workshops/postgis-intro/index.html
https://docs.pgrouting.org/latest/en/index.html
https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/
https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/
https://developers.arcgis.com/documentation/glossary/
https://wiki.openstreetmap.org/w/index.php?title=Projection&oldid=2371538
https://wiki.openstreetmap.org/w/index.php?title=Projection&oldid=2371538
https://wiki.openstreetmap.org/w/index.php?title=Web_Mercator&oldid=2371529
https://wiki.openstreetmap.org/w/index.php?title=Web_Mercator&oldid=2371529

Bibliography 57

67. KETTLE, Simon. Distance on a Sphere: the Haversine Formula. Esri Community Blog
[online]. 2017 [visited on 2023-05-06]. Available from: https://community.esri.com/
t5/coordinate-reference-systems-blog/distance-on-a-sphere-the-haversine-
formula/ba-p/902128.

68. AGAFONKIN, Vladimir. Fast geodesic approximations with Cheap Ruler.maps for develop-
ers [online]. 2016 [visited on 2023-05-06]. Available from: https://blog.mapbox.com/fast-
geodesic-approximations-with-cheap-ruler-106f229ad016.

69. VENESS, Chris. Vincenty solutions of geodesics on the ellipsoid. Movable Type Scripts
[online]. 2022 [visited on 2023-05-06]. Available from: https://www.movable-type.co.uk/
scripts/latlong-vincenty.html.

70. NETTOPOLOGYSUITE CONTRIBUTORS. NetTopologySuite Documentation [online].
2022. [visited on 2023-05-06]. Available from: https://nettopologysuite.github.io/
NetTopologySuite/index.html.

71. TOEWS, M. W.; RAMSEY, Paul; LESLIE, Mark; POSTGIS CONTRIBUTORS. DE-9IM
[online]. 2015-07-24. [visited on 2023-05-06]. Available from: https://en.wikipedia.org/
w/index.php?title=DE-9IM&oldid=1090012465.

72. KARICH, Peter. Now flexible routing is at least 15 times faster [online]. 2017-08-14. [visited
on 2023-05-07]. Available from: https://www.graphhopper.com/blog/2017/08/14/
flexible-routing-15-times-faster/.

73. SURYNEK, Pavel; ŘEHOŘEK, Tomáš. Artificial Intelligence Fundamentals lecture slides
[online]. Faculty of Information Technology, Czech Technical University in Prague, 2022.

74. Osm2pgsql Manual [online]. 2023. [visited on 2023-05-02]. Available from: https://osm2pgsql.
org/doc/manual.html.

75. Route through squares (area=yes) [online]. 2018. [visited on 2023-05-06]. Available from:
https://github.com/Project-OSRM/osrm-backend/issues/64.

76. Area routing for pedestrian/bike [online]. 2022. [visited on 2023-05-06]. Available from:
https://github.com/graphhopper/graphhopper/issues/82.

77. HAHMANN, Stefan; MIKSCH, Jakob; RESCH, Bernd; LAUER, Johannes; ZIPF, Alexan-
der. Routing through open spaces –A performance comparison of algorithms. Geo-spatial
Information Science. 2018, vol. 21, no. 3, pp. 247–256. Available from doi: 10. 1080 /
10095020.2017.1399675.

78. BEREZOVSKÝ, Marko; MAŘÍK, Radek. Search trees, k-d tree [online]. Faculty of Electrical
Engineering, Czech Technical University in Prague, 2012 [visited on 2023-05-06]. Available
from: https://cw.fel.cvut.cz/old/_media/courses/a4m33pal/paska13.pdf.

79. SYPYTKOWSKI, Bartosz. R-Tree: algorithm for efficient indexing of spatial data [online].
2022-04-29. [visited on 2023-05-07]. Available from: https://www.bartoszsypytkowski.
com/r-tree/.

80. .NET FOUNDATION. About xUnit.net [online]. 2023. [visited on 2023-05-07]. Available
from: https://xunit.net/.

81. DOOMEN, Dennis. About - Fluent Assertions [online]. 2023. [visited on 2023-05-07]. Avail-
able from: https://fluentassertions.com/about/.

82. MOQ CONTRIBUTORS.moq [online]. 2023. [visited on 2023-05-07]. Available from: https:
//github.com/moq/moq4.

83. TESTCONTAINERS CONTRIBUTORS. Testcontainers for .NET [online]. 2023. [visited
on 2023-05-07]. Available from: https://dotnet.testcontainers.org/.

84. GITLAB. GitLab CI/CD [online]. 2023. [visited on 2023-05-07]. Available from: https:
//docs.gitlab.com/ee/ci/.

https://community.esri.com/t5/coordinate-reference-systems-blog/distance-on-a-sphere-the-haversine-formula/ba-p/902128
https://community.esri.com/t5/coordinate-reference-systems-blog/distance-on-a-sphere-the-haversine-formula/ba-p/902128
https://community.esri.com/t5/coordinate-reference-systems-blog/distance-on-a-sphere-the-haversine-formula/ba-p/902128
https://blog.mapbox.com/fast-geodesic-approximations-with-cheap-ruler-106f229ad016
https://blog.mapbox.com/fast-geodesic-approximations-with-cheap-ruler-106f229ad016
https://www.movable-type.co.uk/scripts/latlong-vincenty.html
https://www.movable-type.co.uk/scripts/latlong-vincenty.html
https://nettopologysuite.github.io/NetTopologySuite/index.html
https://nettopologysuite.github.io/NetTopologySuite/index.html
https://en.wikipedia.org/w/index.php?title=DE-9IM&oldid=1090012465
https://en.wikipedia.org/w/index.php?title=DE-9IM&oldid=1090012465
https://www.graphhopper.com/blog/2017/08/14/flexible-routing-15-times-faster/
https://www.graphhopper.com/blog/2017/08/14/flexible-routing-15-times-faster/
https://osm2pgsql.org/doc/manual.html
https://osm2pgsql.org/doc/manual.html
https://github.com/Project-OSRM/osrm-backend/issues/64
https://github.com/graphhopper/graphhopper/issues/82
https://doi.org/10.1080/10095020.2017.1399675
https://doi.org/10.1080/10095020.2017.1399675
https://cw.fel.cvut.cz/old/_media/courses/a4m33pal/paska13.pdf
https://www.bartoszsypytkowski.com/r-tree/
https://www.bartoszsypytkowski.com/r-tree/
https://xunit.net/
https://fluentassertions.com/about/
https://github.com/moq/moq4
https://github.com/moq/moq4
https://dotnet.testcontainers.org/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/

58 Bibliography

Contents of the attached archive

repository...GIT repository with the implmentation
README.md........... repository information, including steps for running the application

thesis..thesis source code in the LATEX format

59

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Review of existing solutions and the OpenStreetMap project
	Definition of (indoor) pedestrian navigation
	Survey of existing indoor mapping and navigation solutions
	Google Maps
	Apple Maps and IMDF
	IndorGML
	Other specialised applications

	OpenStreetMap
	Organisational structure
	Licencing
	Data model
	Editors

	Indoor data in OpenStreetMap

	Analysis
	Formal requirements and use cases
	Functional requirements
	Ranking the requirements
	Non-functional requirements
	Use cases

	Architecture and technologies
	Architecture overview
	.NET and ASP.NET
	Svelte
	MapLibre and IndoorEqual
	PostgreSQL, PostGIS, and pgRouting

	GIS concepts
	Coordinate systems, projections and measuring distance
	Spatial objects and the intersection matrix

	Routing

	Implementation
	Processing OpenStreetMap data
	Import stage
	Routing graph construction
	Processing points
	Processing lines
	Processing polygons and multipolygons
	Wall postprocessing
	Extracting extra information for routing
	Final graph cleanup

	Client
	Unit testing and CI/CD
	GitLab Pipelines

	Outcomes of user testing and implications for future work
	User testing
	Future work

	Conclusion
	Contents of the attached archive

